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Abstract

IMPORTANCE—Infants with hypotonia can present with a variety of potentially severe clinical 

signs and symptoms and often require invasive testing and multiple procedures. The wide 

range of clinical presentations and potential etiologies leaves diagnosis and prognosis uncertain, 

underscoring the need for rapid elucidation of the underlying genetic cause of disease.

OBSERVATIONS—The clinical application of exome sequencing or genome sequencing has 

dramatically improved the timely yield of diagnostic testing for neonatal hypotonia, with 

diagnostic rates of greater than 50% in academic neonatal intensive care units (NICUs) across 

Australia, Canada, the UK, and the US, which compose the International Precision Child Health 

Partnership (IPCHiP). A total of 74% (17 of 23) of patients had a change in clinical care in 

response to genetic diagnosis, including 2 patients who received targeted therapy. This narrative 
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review discusses the common causes of neonatal hypotonia, the relative benefits and limitations of 

available testing modalities used in NICUs, and hypotonia management recommendations.

CONCLUSIONS AND RELEVANCE—This narrative review summarizes the causes of 

neonatal hypotonia and the benefits of prompt genetic diagnosis, including improved 

prognostication and identification of targeted treatments which can improve the short-term 

and long-term outcomes. Institutional resources can vary among different NICUs; as a result, 

consideration should be given to rule out a small number of relatively unique conditions for 

which rapid targeted genetic testing is available. Nevertheless, the consensus recommendation is 

to use rapid genome or exome sequencing as a first-line testing option for NICU patients with 

unexplained hypotonia. As part of the IPCHiP, this diagnostic experience will be collected in 

a central database with the goal of advancing knowledge of neonatal hypotonia and improving 

evidence-based practice.

The presentation of primary hypotonia in the neonatal intensive care unit (NICU) is complex 

to diagnose. Although our understanding of the genetic basis of hypotonia has advanced 

significantly in the past decade,1–5 there remains a lag in implementation of state-of-the-art 

genetic testing along with variation in diagnostic approaches across institutions. Availability 

of effective treatments for genetic conditions, such as congenital myasthenic syndromes 

or spinal muscular atrophy (SMA),6–8 highlights the importance of a timely diagnosis, 

and therapies for other hypotonic conditions will probably become available in the future. 

Therefore, prompt genetic diagnosis is increasingly informing clinical care decision and 

benefit from targeted treatments.9–12

Here, we have developed a consensus approach to genetic testing for infants with 

unexplained hypotonia. Experts volunteered from 5 medical centers that are members of 

the International Precision Child Health Partnership (IPCHiP): Royal Children’s Hospital, 

Melbourne, Australia; The Hospital for Sick Children, Toronto, Ontario, Canada; Cambridge 

University Hospitals and Great Ormond Street Hospital, London, UK; and Boston 

Children’s Hospital, Boston, Massachusetts. We systematically reviewed the diagnosis and 

outcomes of infants who presented with neonatal hypotonia during the period of 5 years 

(2016–2020) at each center. Based on iterative review of these data, we formulated an 

evaluative approach with consistent application of genomic testing in the NICU. In our 

experience, diagnostic rates by exome sequencing (ES) or genome sequencing (GS) for 

those infants exceeded 50%.

Clinicopathophysiological Observations

Pathophysiology

The causes of neonatal hypotonia are diverse, and the differential diagnosis is influenced 

by multiple factors, including pattern of hypotonia, family history, and accompanying 

signs and symptoms (multisystemic or hypotonia as the primary finding)1 (eTable 1 in the 

Supplement). In contrast to weakness—defined as a reduction in maximum voluntary power 

of the muscles—hypotonia may be defined as reduced resistance to passive range of motion 

(phasic tone), or loss of postural control.3 Here we will consider conditions characterized by 

hypotonia, which are often accompanied by weakness.
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Hypotonia can be primary or secondary. Primary causes of hypotonia can be categorized 

into broad categories of (1) central nervous system (CNS) disorders (central hypotonia; 

60%–80% of primary neonatal hypotonia) and (2) peripheral nervous system (PNS) 

disorders, including neuromuscular disorders (15%–30% of primary neonatal hypotonia).13 

Secondary causes of hypotonia, such as hypoglycemia, congenital heart disease, and sepsis, 

are common and are routinely diagnosed during an initial evaluation. Therefore, when 

an obvious secondary cause is not identified, primary causes of hypotonia should be 

considered.

Clinical Presentation

CNS hypotonia manifests as low muscle tone, normal or exaggerated deep tendon reflexes, 

and relative preservation of antigravity movements. Primary genetic etiologies for CNS 

neonatal hypotonia include chromosomal abnormalities, such as trisomy 21 or Prader-Willi 

syndrome (PWS)14,15; neurometabolic conditions, such as peroxisomal disorders and other 

inborn errors of metabolism; malformations of cortical development; and a broad range of 

monogenic disorders where CNS dysfunction is considered a primary mechanism of disease 

(covered in recent reviews2,3,16,17). Non-genetic causes of CNS hypotonia include hypoxic-

ischemic encephalopathy, infection, intracranial hemorrhage, CNS/spinal cord trauma, or 

craniocervical junction lesions, such as Chiari malformation. Encephalopathy is commonly 

observed in CNS-related causes of neonatal hypotonia.

PNS hypotonia is a major manifestation of neuromuscular disorders that can involve the 

anterior horn cells of the spinal cord (motor neurons), peripheral nerve, neuromuscular 

junction, or skeletal muscle. The PNS conditions, in contrast to CNS disorders, often (1) 

have hypotonia as the presenting symptom and (2) have absent or diminished deep tendon 

reflexes, absent neonatal reflexes, and profound weakness.

Conditions that reduce movements in utero can lead to joint contractures (arthrogryposis). 

Primary congenital muscle disorders include myopathies,18 muscular dystrophies,19 and 

myotonic dystrophies.16,20 Congenital myopathies and muscular dystrophies typically 

present in the neonatal period with hypotonia, weakness, and arthrogryposis (Figure 1). 

Evidence of muscle injury, such as elevated creatine phosphokinase levels, is typical of 

congenital muscular dystrophy, and infants may have additional features, such as CNS, 

cardiac, or eye abnormalities. Congenital myotonic dystrophy type 1 (DM1) is often 

inherited from a mother with DM1 who has no or mild symptoms. Neonatal-onset SMA,21 

or SMA type 0 or 1A, is a rare but severe motor neuron disease which is rapidly progressive 

and is associated with proximal and axial weakness, as well as respiratory failure with 

typical paradoxical inspiratory movements owing to the relative sparing of the diaphragm. 

SMA 1B, the most common form, can also present within the first weeks of life. Other 

less common but treatable conditions are neuromuscular junction disorders, including 

aminoglycoside toxic effects, congenital myasthenic syndromes, and transient neonatal 

myasthenia from placental transfer of maternal antibodies against the acetylcholine receptor.

Congenital myasthenic syndromes are associated with primary dysfunction of the 

neuromuscular junction that manifest as fatigable weakness. Transient neonatal myasthenia 

presents with initial weakness with preservation of deep tendon reflexes. Peripheral 
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neuropathies, characterized by distal weakness and atrophy, can have severe early-onset 

forms, such as congenital hypomyelinating neuropathy. PNS conditions that can be 

multisystemic include metabolic conditions, such as mitochondrial disorders, acid maltase 

deficiency, and fatty acid oxidation disorders. Such multisystemic disorders may be 

diagnosed through additional evaluation of metabolites such as lactic acid, plasma amino 

acids, plasma acylcarnitines, and urine organic acids.

Optimizing Genetic Diagnosis of Neonatal Hypotonia

Genetic causes of neonatal hypotonia include single-nucleotide variants (SNVs) or small 

insertion/deletion variants in the nuclear or mitochondrial genomes, expansions of repeated 

elements (as in congenital DM1), copy number variations, changes in DNA methylation 

states or uniparental disomy (as in PWS), and aneuploidies.2,4,5,17,18,22–25 Clinically 

available genetic testing modalities each detect a different range of variants with variable 

reliability (Table 1; eTable 2 in the Supplement).26–28 The optimal diagnostic approach for 

neonatal hypotonia, therefore, depends on the frequency of each genetic condition, as well as 

the relative costs and time to report of each test. Patients with neurodevelopmental disorders 

have higher diagnostic yields for GS than for microarray.29,30 Further, mitochondrial 

genome sequencing, alone or as part of GS, may be needed to diagnose a disorder caused by 

a variant in the mitochondrial genome.31–33

Three common causes of neonatal hypotonia that have rapid targeted testing available should 

be considered early in evaluation: DM1, PWS, and SMA. DM1 is best detected by targeted 

testing; GS also offers the potential to detect repeated expansions. PWS can be caused by 

deletion of paternal genes, maternal uniparental disomy, or imprinting defects of genes in 

15q11.2-q1334; PWS may be detected by chromosomal microarray (CMA), methylation 

testing, and/or detection of isodisomic regions via GS or ES.14 Finally, diagnosis of 

SMA, caused by recessive variants of SMN1 (most commonly deletion of exon 7), poses 

specific technical challenges, and reliable diagnosis requires targeted assays or optimization 

of genomic analysis pipelines. As early or presymptomatic treatment of SMA results in 

dramatically improved clinical outcomes compared with postsymptomatic onset of therapy, 

SMA testing is increasingly included in routine newborn screening.35,36 For example, 35 

states in the US have implemented newborn screening that can lead to the diagnosis of 

SMA during the first week of life and prompt treatment with the medications nusinersen or 

onasemnogene abeparvovec-xioi, both for SMA.

A multicenter database reflecting contemporary experience with neonatal hypotonia is 

needed to enhance collaboration and accelerate development of evidence-based guidelines. 

Toward this objective, a new collaborative to advance diagnosis and treatment for rare 

pediatric conditions called IPCHiP has combined the recent experiences in determining the 

genetic basis of hypotoniaamong5academic NICUs from 3 continents. Of the 5 hospitals, 

4 are specialist referral centers, and 1 is a regional hospital. Royal Children’s Hospital 

has a 38-bed level 4 NICU and a 28-bed pediatric intensive care unit, admitting newborns 

with complex medical and surgical needs. Level 4 NICUs are also found at The Hospital 

for Sick Children (36 beds), Cambridge University Hospitals (58 beds), Great Ormond 
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Street Hospital (9 beds), and Boston Children’s Hospital (24 beds). The experiences of each 

institution contributing to this common analysis are detailed below:

• Royal Children’s Hospital, Melbourne, Australia: The Royal Children’s Hospital 

completed a pilot study led by the Victorian Clinical Genetics Services providing 

singleton rapid ES with a 2- to 3-week turnaround time (TAT) in 2016 to 2017.37 

The program then transitioned to ultrarapid trio ES (3-day TAT) in 2018 to 2019 

and subsequently to ultrarapid trio GS (3-day TAT) in 2020.38 All newborns 

presenting with isolated hypotonia underwent CMA, myotonic dystrophy testing, 

and SMA testing before ultrarapid genomic testing. The site is also a national 

referral center for ultrarapid genomic testing from throughout Australia as part of 

the Australian Genomics Acute Care Study.38 Of the 108 patients published, 4 of 

8 (50%) with hypotonia received a molecular diagnosis via ES.38

• The Hospital for Sick Children, Toronto, Ontario, Canada: At The Hospital 

for Sick Children, 44 infants had initially unexplained hypotonia from 2017 to 

2020. In 2017, clinical genomic testing and extensive biochemical screening 

investigations were completed for 8 patients with hypotonia, of which 4 (50%) 

received a molecular diagnosis.39

• Cambridge University Hospitals, Cambridge, UK: Cambridge University 

Hospitals was the site of the Next Generation Children’s Project, in which 

159 patient-family trios received rapid TAT GS.40 Of these, 3 of 10 

patients (30%) with neonatal hypotonia in the cohort had pathogenic variants 

inMTM1(hemizygous), and a large de novo deletion in 5q15–23 (24 megabase) 

and SMA.

• Great Ormond Street Hospital, London, UK: At Great Ormond Street Hospital, 

rapid-trio ES is used for diagnosis of acutely unwell children, sometimes 

supplemented with targeted tested for PWS and SMA. No published results are 

available.

• Boston Children’s Hospital, Boston, Massachusetts: At Boston Children’s 

Hospital, rapid ES with TAT of 5 to7 business days41 was completed for 

15 patients with hypotonia. A diagnosis was reached with ES in 12 patients 

(80%). Ten of 15 infants (67%) had a single gene disorder. The 2 additional 

ES diagnoses were an infant with copy number variations (also detected by 

CMA) and an infant with PWS due to uniparental disomy. One infant with 

negative findings on ES needed mitochondrial GS to diagnose Leigh syndrome. 

In addition, 2 infants had a variant of unknown significance (VUS) that needed 

further workup to attribute pathogenicity.

Each IPCHiP center hospital reviewed all patients cared for during their recent experiences 

from prior publications who had undergone an ES/GS evaluation for primary hypotonia 

after exclusion of conditions such as trisomy 21. All hospitals have implemented genomic 

testing early in the care of patients with hypotonia. Our results indicate that 56% of 

neonates (23 of 41) with hypotonia received a genetic diagnosis by ES/GS (Table 2). When 

separately considering the 12 infants who have primary hypotonia compared with those with 
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multisystemic findings, such as seizures or structural brain abnormalities, 10 (83%) had a 

genetic diagnosis, which included 4 (40%) with congenital myopathy, 4 (40%) with PNS 

disorder (including 3 with SMA), 1 (10%) with a syndrome that included myopathy, and 

1 (10%) with PWS (eTables 3 and 4 in the Supplement).Our experience indicates that the 

diagnosis can be significantly expedited through use of trio ES/GS, where both parents’ 

sequences can be compared with the infant’s sequence. Trio sequencing allows rapid and 

more efficient prioritization of variants of interest and can provide more definitive variant 

classifications by establishing inheritance patterns, thereby reducing uncertainty and time to 

diagnosis.

Treatment

Infants affected by hypotonia can require prolonged life-supporting care, such as assisted 

ventilation and nutritional support. Further, many infants require invasive testing, such 

as skin or muscle biopsy or electromyography, lumbar puncture, or invasive medical 

procedures (eg, tracheostomy and gastrostomy placement). As testing times continue to 

improve, molecular diagnoses can shorten the length of hospital stay for patients with 

hypotonia and inform management choices. In our case series, 74% of patients (17 of 23) for 

whom detailed clinical information was available had a change in clinical care after genetic 

diagnosis, and 2 received targeted therapy for mitochondrial DNA depletion syndrome and 

congenital myasthenic syndrome. Of the 5 patients who did not have a change in clinical 

care, 1 (20%) had results return after death, 2 (40%) were referred to research opportunities, 

and in 2 families, the diagnosis informed reproductive options for future pregnancies. Gene 

therapy is being developed to treat several causes of neonatal hypotonia, including SMA, 

MTM1-related congenital myopathy, aromatic L-amino acid decarboxylase deficiency, giant 

axonal neuropathy, and metachromatic leukodystrophy.10–12,42Molecular-based precision 

therapies also include antisense oligonucleotides, currently in clinical practice for SMA, 

tested in other conditions in an n-of-1 setting43 and in consideration for a range of diseases 

including infantile epileptic encephalopathies. For several infants, early initiation of precise 

therapy for these disorders appears to provide added benefit, making timely diagnosis 

essential to improve patient outcomes. Additional disease-modifying therapies, such as 

enzyme replacement therapy, are also used either in clinical practice (eg, for Pompe disease) 

or are under development (eg, for forms of neuronal ceroid lipofuscinosis). Furthermore, 

early diagnosis of a few genetic metabolic disorders, with prompt implementation of specific 

therapy, can greatly ameliorate the infant’s clinical condition. Prognostic information, such 

as the anticipated trajectory of severe conditions without available treatments, is important to 

share with families that may help with potential palliative care decisions.

Discussion

Efficient diagnosis of rare mendelian disorders is essential to advancing treatments.44 

We developed IPCHiP, an international consortium of academic centers across Australia, 

Canada, UK, and US, dedicated to promoting the role of genomic medicine in pediatrics. 

As part of this collaboration, we are developing an international patient database to 

enable evidence-based diagnostic recommendations, consistent with our overarching goal 

of bringing innovative solutions to the management of patients with rare diseases. Our 
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proposed recommendations for evaluation of hypotonia (Figure 2) are based on the 

experience and expertise of member sites of IPCHiP and emphasize the role of ES or GS 

early in the diagnostic pathway with the view that such information will optimize patient 

management. In our experience, use of ES/GS early in the evaluation process improves 

diagnostic rates and leads to meaningful changes in care. Although in this review we only 

describe case summaries that were previously published of patients with hypotonia who had 

ES/GS, more recent clinical experience at our institutions with larger numbers of patients 

suggests a similar diagnostic yield of 50% or greater.

Microarray analysis and/or targeted testing for trisomy 21, PWS, SMA, and DM1 are 

important to consider during the initial evaluation as those results can be returned rapidly 

and influence care decisions. Clinical phenotyping, driven by the patient’s features, is 

essential to aid interpretation of the genetic test. Although many NICUs use multigene 

panels to evaluate neonatal hypotonia or use ES/GS after a substantial number of other 

investigations have been completed, our experience argues that rapid-diagnostic trio ES/GS 

analysis is the preferred first-line diagnostic test. Rapid testing provides the greatest 

benefit, both for mitigating prolonged and invasive diagnostic testing (eg, electromyography, 

muscle biopsy), optimizing medical management, and decreasing intensive care costs.29,45,46 

Although advancements in bioinformatic analysis of ES/GS have shown increased potential 

for detecting structural variants (eg, SMA), repeated expansions (eg, DM1), and uniparental 

disomy (eg, PWS), criterion-standard targeted testing should be considered if the clinical 

suspicion of these disorders is high. This decision will also be influenced by the scope 

of local ES/GS diagnostic pipeline validation, relative costs, and TAT. Given the greater 

diagnostic potential of GS, in the future, IPCHiP will focus on enhancing the evidence base 

and clinical implementation of GS.

There is a high prevalence of VUS and a concomitant substantial unmet need in diagnostic 

testing.47–49 VUS can be characterized with predictive algorithms that assess interspecies 

conservation, protein domain structure,50 and variation within reference human cohorts51 to 

infer functional consequences. Guidelines that discuss the factors relevant to interpretation 

of VUS in clinical scenarios have been developed.49,52 The effect of VUS may be unclear 

either owing to lack of information about the role of genes in human disease, or the 

unknown effect of specific variants on disease gene function.53 Coordinating an expert 

multidisciplinary review of VUS can increase sharing of knowledge resources across 

different health care systems and facilitate patient-oriented research that moves variants 

into more definitive functional categories, thereby increasing diagnostic yield. As knowledge 

advances, periodic reevaluation of VUS is indicated.

Our group comprises experts in neuromuscular, motor neuron, and glial pathobiology to 

support extending our scope from the bedside to the laboratory. Functional modeling of 

VUS54,55 and validation of the pathological consequences of these DNA changes, such 

as assessing the effect on production of relevant protein(s) or RNA splicing in muscle 

or skin biopsies, or the introduction of VUS in patient-derived–induced pluripotent or 

mesenchymal stem cells,56–59 could provide functional data to support a genetic diagnosis. 

Additionally, such models could be used to develop novel therapeutics. Important technical 

issues remain unaddressed in the area of VUS interrogation, including limited ability to 
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predict the functional effect of missense and noncoding variants, lack of resources for 

cell-specific functional validation, and lack of rapid model organism approaches to assay 

the effect of VUS during development. In addition, our consortium will incorporate and 

evaluate emerging diagnostic modalities, such as RNA sequencing, proteomics, and DNA 

methylomics. Early data suggest that RNA sequencing can significantly increase diagnostic 

yield in pediatric monogenic disorders and can enable clarification of some VUS.60,61 

The potential utility of approaches, such as proteomics, require further study, as was 

demonstrated in a family with congenital myopathy and PLIN4 repeated expansion.62 By 

developing a core of experts with relevant domain knowledge and technical expertise, new 

collaborations can be forged to address these open questions.

Emerging therapies for neuromuscular disorders include antisense oligonucleotides, which 

bind to pre–messenger RNA and alter splicing to increase, restore, or reduce gene 

expression,43 gene replacement via integrating or nonintegrating viral vector platforms, 

and clustered regularly interspaced short palindromic repeats–based technologies to edit 

the genome.63 One of our main goals is to identify patients who can benefit from early 

personalized therapies. For SMA, there are gene replacement (onasemnogene abeparvovec-

xioi),10,64–67 antisense oligonucleotides (nusinersen),7,8,68 and small molecule therapies.69 

The 2 clinical trials for congenital myopathy listed at ClinicalTrials.gov are gene transfer 

via adeno-associated virus for X-linked MTM1 myotubular myopathy (AT132)70 and 

antisense oligonucleotide knockdown of DNM2 for centronuclear myopathy (DYN101),71 

although neither is currently enrolling neonates (Table 3). Other neuromuscular conditions 

that may be amenable to personalized therapies in the near future include specific 

pharmacological therapies for rare mitochondrial disorders72 and gene replacement in rare 

infantile cardiomyopathies owing to MYBPC3 variants.73 To accelerate the development 

and implementation of new interventions, we will continue to evaluate patients for new 

therapeutic options.

Genome-wide testing (ES/GS) of infants can raise concerns about privacy, autonomy, and 

potential for misuse or discrimination.74 These general concerns need to be considered 

appropriately and balanced against the potential direct benefits to patients of achieving 

a diagnosis in clinical presentations with high a priori risk. Parental acceptance of rapid 

genome-wide testing for intensive care unit populations is generally high75 with enrollment 

rates of 80% or more at several institutions.38,40,41 Genomic testing is increasingly 

recognized as a critical diagnostic test by health care professionals and families.74 

Nevertheless, rapid genomic testing in the already stressful environment of the NICU 

raises significant ethical and counseling issues76–79 with long-term psychosocial effects on 

families, an important area for future research.

Conclusions

The diagnosis and care of neonates with hypotonia benefits from prompt and comprehensive 

genetic testing. Based on the experience of the IPCHiP consortium, in this narrative review, 

we propose a shift toward the use of rapid genomic testing as a first-tier test in this patient 

group with the aim of optimizing medical management and access to emerging therapies.
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Figure 1. Physical Examination Findings in Neonatal Hypotonia
A, Observational findings during examination of infants with primary hypotonia can 

include frog-leg positioning owing to low tone and paucity of movement, the presence 

of a nasogastric feeding tube owing to poor feeding, tracheostomy for respiratory failure, 

knee dimpling from restricted movements in utero, and ptosis with myopathic facies in 

neuromuscular junction disorders. B, Physical examination maneuvers including horizontal 

suspension, lift to sitting position, and ankle flexion demonstrate differences between typical 

infants and infants with hypotonia. C, Prader-Willi syndrome can be accompanied by 

narrow nasal bridge, narrowing of the forehead at the temples, almond-shaped eyes, thin 

upper lip, and down-turned corners of the mouth. Infants with spinal muscular atrophy 

can demonstrate bell-shaped chest, retractions with respirations, paucity of movement, and 
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passive positioning with flexed hips and knees. Congenital muscular dystrophy is often 

associated with joint contractures.
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Figure 2. Consensus Diagnostic Algorithm for Neonatal Hypotonia
Evaluation of infants with hypotonia should include early exome of genome sequencing. 

Clinicians should also consider concomitant chromosomal microarray if other anomalies 

present, spinal muscular atrophy if not included in newborn screening, or type 1 myotonic 

dystrophy if evidence of myotonia in the mother.
a Ensure evaluation for secondary causes, such as infectious disease, hypoglycemia, inborn 

errors of metabolism, and hypoxic ischemic encephalopathy.
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