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Abstract 

Cells often encounter various external and internal signals in a non-sustained pulsatile manner with 

varying amplitude, duration and residual value. However, the effect of signal pulse on the regulatory 

networks is poorly understood. In order gain a quantitative understating of pulse processing by bistable 

switches, we investigated pulse induced population inversion kinetics in bistable switches generated 

either by mutual activation or by mutual inhibition motifs. We show that both a transient intense pulse 

and a prolonged weak pulse can induce population inversion, however by distinct mechanisms. An 

intense pulse facilitates the population inversion by reducing the inversion time, while a weak prolonged 

pulse allows more late responders to flip their steady state causing increased average transition time. 

Although the inversion is controlled by the pulse amplitude and duration, however the fate of the 

inverted state is dictated by the residual signal that determines the mean residence at the flipped state. 

Therefore, population inversion and its maintenance require a proper tuning of all three signal 

parameters. Bistable system of mutual activation motif is more prone to make a transient response to 

the pulse however it is less susceptible to flip its steady state. While the bistability of mutual inhibition 

motif does not make a transient response yet it is more prone to switch its steady state. By comparing 

the pulse parameters and statistical properties of associated times scales, we conclude that a bistable 

switch originating from mutual activation loop is less susceptible to spurious signals as compared to the 

mutual inhibition loop.  
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1. Introduction 

Living cells receive a plethora of external and internal signals altering the expression of genes required 

for appropriate cellular response against these signals (Kholodenko, 2006). Signaling pathways carry the 

information encoded in the signals to the nucleus where specific genes are targeted for their activation 

or inactivation decoding the signals. Although, the signaling networks can be quite complex with a 

significantly large number of regulators involved in numerous interconnected chemical reactions, 

however majority of the signaling networks contain a core regulatory motif that functions as the main 

engine in processing the signals. Some of these important motifs are signal transducer, feed-forward 

loop, negative feedback loop, positive feedback loop (Ferrell Jr, 2002; Tyson and Novák, 2010). These 

networks motifs are capable of generating nontrivial dynamical and steady state responses (Purvis and 

Lahav, 2013; Tyson and Novak, 2020; Tyson et al., 2003). For example, negative feedback and incoherent 

feed-forward loops are capable of generating temporal pulse and are found to be key in regulating in 

adaptation (Ferrell, 2016; Ma et al., 2009; Mangan and Alon, 2003). Negative feedback loop is also a key 

ingredient for generating temporal oscillations observed in circadian oscillations (Becker-Weimann et 

al., 2004; Gonze, 2011; Kim and Forger, 2012; Leloup and Goldbeter, 2003; Ueda et al., 2001), cell 

division cycle (Barik et al., 2016; Chen et al., 2004) and NF-κB pathway (Hayot and Jayaprakash, 2006; 

Hoffmann et al., 2002). Positive feedback loops are known to generate bistability leading to an abrupt 

change in activation state or expression of a macromolecular species such as genes and proteins. 

Bistability plays a key regulatory role in G1 to S phase transition in the mammalian cell (Yao et al., 2008), 

mitotic control in yeast (Pomerening et al., 2003) and frog egg extracts (Sha et al., 2003), apoptosis  

(Bagci et al., 2006; Spencer and Sorger, 2011), cellular differentiation (Domingo-Sananes et al., 2015; 

Wang et al., 2009; Zhang et al., 2014) and biological memory (Ajo-Franklin et al., 2007; Chang et al., 

2010; Doncic et al., 2015).  

In modeling these network motifs, typically, steady state dose response curves or dynamical properties 

of the network motifs are analyzed considering the presence of persistent signal (Tyson et al., 2003). 

However, cells may experience signals in a discrete manner in which the signals appear as train of pulses 

with varying amplitudes, durations and intervals and due to the variation of these parameters the signal 

may appear as noisy (Raj and van Oudenaarden, 2008). There are many examples of pulsatile signaling 

specific distinct gene expression and subsequent cellular response in various organisms. For example, in 

Saccharomyces cerevisiae proteomic analysis revealed pulsatile dynamics of several transcription factors 

(Dalal et al., 2014). Particularly, the transcription factor Msn2 was found to exhibit, under glucose 
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starvation, dose dependent pulsatile dynamics regulating expressions of several genes depending on its 

temporal expression pattern (Hansen and O’Shea, 2016). Radiation induced DNA damage induces p53 

pulses and differential cellular fates emerge depending on the features of pulses (Harton et al., 2019; 

Purvis et al., 2012). In epithelial cells, epidermal growth factor concentration dependent modulation of 

ERK pulses is required for the proliferation of these cells (Albeck et al., 2013). Pulsatile temporal ERK 

activity was found to be key in diversification of cellular fates in Caenorhabditis elegans (de la Cova et 

al., 2017). Temporal oscillations in the expression of transcription factors Ascl1 and Hes1 are required 

for the maintenance of multipotency in the mouse neural progenitor cells, whereas sustained 

expression of Ascl1 leads to differentiation (Imayoshi et al., 2013; Ochi et al., 2020). Correlation between 

the pulses of NF-κB and differential gene expression patterns have been identified in the recent past 

(Lane et al., 2017; Zambrano et al., 2016).  Subsequently, mathematical model studies revealed the 

topology of network motifs that are capable of generating pulses (Gao et al., 2018; Lormeau et al., 2021; 

Martinez-Corral et al., 2018; Zhang et al., 2016). Therefore, it is important to gain a systematic 

quantitative understanding of how various network motifs process pulsatile signals such that regulatory 

units process it as a true signal leaving out the small amplitude noisy signals.  

Here we have investigated processing of signal pulse of varying qualities by bistable switches generated 

by a positive feedback loop either due to a mutual activation or a mutual inhibition between the two 

participating regulators. We varied three different pulse parameters, amplitude, duration and residual 

amplitude, to determine the effects of these parameters on the transition kinetics from one stable 

steady state to the other stable steady state for a population bistable switch. As a pulse of signal can 

lead to population inversion, we estimated the fraction of population that inverts to the other steady 

state, the fraction that is locked in the inverted state and the fraction that reverts to the original state. 

In addition, we quantified the time the bistable system takes to execute these events in order to 

understand the kinetics of pulse induced switching. Further, we correlated the durations of two 

consecutive events to determine how the history of previous event influences the future outcome. We 

compared the statistical properties of the various events between two bistable systems to determine 

the role of regulatory networks in dictating the chemical noise.  

 

 

 



 

 4 

2. Results 

We modeled bistable switches generated by two different mechanisms in which the required positive 

feedback loop was achieved either by mutual inhibition or by mutual activation between the two 

regulators. While the mutual activation creates a conventional positive feedback loop (PFL) motif, the 

mutual inhibition creates a double negative (DNFL) motif (Fig.1a-b). We used multisite phosphorylation 

of the target protein to generate ultrasensitive activation/inhibition of the protein that takes part in the 

positive feedback loop leading to bistable response (Kapuy et al., 2009; Salazar and Höfer, 2007). 

Multisite phosphorylation with threshold mechanism is known to generate ultrasensitive response with 

mass action rate laws of chemical reactions and has been used previously to model bistable switches in 

cell division cycle of Saccharomyces cerevisiae (Barik et al., 2010). In the model diagrams, the protein X 

possesses ten phosphorylation sites and its activation state is altered by phosphorylation catalyzed by 

the kinase, K. In the DNFL motif, the unphosphorylated state, X0, is the active protein that catalyzes the 

degradation of the kinase and the kinase inactivates it by catalyzing the phosphorylation (Fig.1a). 

Therefore, the mutual antagonism between X0 and K generates the DNFL motif in the network. In the 

PFL motif the terminally phosphorylated state, X10, is the active protein that catalyzes the production of 

the kinase creating a PFL motif in the network (Fig.1b). The S is the phosphatase that catalyzes the 

dephosphorylation reactions and its level was controlled externally considering it as a parameter. We 

used mass action kinetics of the chemical reactions to model the dynamics of the chemical species in the 

network. The sole motivation of using mass action kinetics was to accurately capture the effects of 

fluctuations of molecular abundance in the dynamics of the system. It is crucial to note that, the well-

established Gillespie’s stochastic simulation algorithm faithfully captures the effects of intrinsic noise 

only for the mass action rate laws of chemical reactions (Gillespie, 1976). The dynamical equation for 

the kinase in the DNFL is given by 

𝑑𝑁𝐾

𝑑𝑡
= 𝑘𝑠 − 𝑘𝑑𝑁𝐾 − 𝑘𝑎𝑁𝑋0

𝑁𝐾 
 (1) 

 

The dynamical equation for the kinase in the PFL is given by 

𝑑𝑁𝐾

𝑑𝑡
= 𝑘𝑠 + 𝑘𝑎𝑁𝑋10

𝑁𝐾 − 𝑘𝑑𝑁𝐾 
 (2) 

 

The dynamical equations for the chemical species in the phosphorylation chain are given by 
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𝑑𝑁𝑋0

𝑑𝑡
= 𝑆 ∙ 𝑁𝑋1

− 𝑘𝑝𝑁𝐾𝑁𝑋0
 

 

 (3) 

𝑑𝑁𝑋𝑗

𝑑𝑡
= 𝑆 ∙ 𝑁𝑋𝑗+1

+ 𝑘𝑝𝑁𝐾𝑁𝑋𝑗−1
− 𝑘𝑝𝑁𝐾𝑁𝑋𝑗

− 𝑆 ∙ 𝑁𝑋𝑗
 

                                                                                                                                         

for 2 ≤ 𝑗 ≤ 9 (4) 

𝑑𝑁𝑋10

𝑑𝑡
= 𝑘𝑝𝑁𝐾𝑁𝑋9

− 𝑆 ∙ 𝑁𝑋10
 

 

 (5) 

 

In these equations 𝑁𝑗  represents the molecular abundance of the chemical species j. The parameters 𝑘𝑠, 

𝑘𝑑, 𝑘𝑎 and 𝑘𝑝 are the rate constants associated with synthesis, degradation, catalytic effects of X and K, 

respectively. The parameter values used in the calculations are listed in the table 1. 

Table 1: List of parameters and their values.  

Parameters Model 

DNFL PFL 

𝑘𝑠 1.0 0.06 

𝑘𝑑 0.001 0.001 

𝑘𝑎 0.0002 0.01 

𝑘𝑝 0.005 0.01 

 

The one-parameter bifurcation diagrams of the DNFL and PFL networks are presented in the Fig.1c and 

Fig.1d, respectively. In the bifurcation analysis, the phosphatase, S, was chosen as the bifurcation 

parameter. The system is bistable in the region between the two saddle-node bifurcation points. In both 

the models, the amount of kinase decreases with increasing phosphatase. In the DNFL network, with the 

increase of the phosphatase, the abundance of X0 increases leading to decrease of the kinase. In the PFL 

network, however, the increased phosphatase decreases the availability of X10 leading to reduction of 

kinase production. For a fair comparison of pulse processing by the DNFL and PFL motifs, we 

parameterized these models such that a reasonably similar bifurcation diagrams can be obtained.  
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Fig.1: In the network diagrams of DNFL (a) and PFL (b) networks, the kinase, K, catalyzes the 

phosphorylation of the target protein X. In return, the active form of X catalyzes the degradation of the 

kinase in the DNFL network and catalyzes the production of K in the PFL network creating net positive 

feedback loops. The unphosphorylated (X0) and terminally phosphorylated (X10) forms are assumed to be 

the active forms of X in the DNFL and PFL networks, respectively. The solid and dashed lines represent 

chemical reactions and catalytic effects on the chemical reaction, respectively. The bistable one-

parameter bifurcation diagrams of the DNFL (c) and PFL (d) are presented with the phosphatase (S) as the 

bifurcation parameter. The triangles indicate the signal values corresponding to the left (𝑆𝐿) and right (𝑆𝑅) 

saddle-node bifurcation points. The values of 𝑆𝐿 and 𝑆𝑅, respectively, are 0.91 and 2.98 for the DNFL 

network and 0.98 and 2.82 for the PFL network. 

We have investigated the fate of the system under a pulse of phosphatase in the face of inherent 

stochasticity of the system originating from the finite number of molecular species involved. In order to 

accurately estimate the stochasticity in the system we used Gillespie’s stochastic simulation algorithm to 

simulate the chemical reactions in the model. In the computational experimental setup, we initialized 

the system at a very low phosphatase level (𝑆 = 0.001) and simulated for a sufficiently long time such 

that it reaches its steady state corresponding to the upper stable branch of the bifurcation diagram. The 

initial state of the system belonged to the monostable region of the bifurcation diagram with a high 

level of the kinase at 𝑆 = 0.001 (before left saddle-node bifurcation point). A pulse of phosphatase of a 

certain amplitude (𝑆𝑚) was applied for a particular duration (𝜏𝑑) and then the pulse amplitude was 

lowered to a residual or resting value (𝑆𝑟) for the rest of the simulation (Fig.2a). We varied the pulse 
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amplitude, duration and resting pulse to determine the effects of these three parameters on the 

transition kinetics of the upper stable steady of the bistable systems. In the variation of pulse amplitude 

𝑆𝑚, the lowest value was chosen to be the level of phosphatase corresponding to the right saddle-node 

bifurcation point (𝑆𝑅) as beyond 𝑆𝑅 the system is monostable with low expression of the kinase. While in 

the variation of resting pulse 𝑆𝑟, the minimum value was chosen to be the level of phosphatase 

corresponding to the left saddle-node bifurcation point (𝑆𝐿) such that the system is bistable region with 

a possibility of locking either in low or high expression of the kinase. There are four different temporal 

outcomes possible due to the pulse of phosphatase: the system may not at all respond to the pulse 

(Fig.2b) or the system may transiently respond to the pulse by lowering the expression of the kinase 

(Fig.2c) or the system may invert to the other steady state either remaining there (Fig.2d) or switching 

back to the original state (Fig.2e). Therefore, in order to quantitatively estimate the fates of the bistable 

system under the pulse, we calculated the fraction of population that did not respond to the pulse 

(𝑓𝑛𝑟𝑠), the fraction of population that responded transiently without reaching the lower steady state 

(𝑓𝑡𝑟𝑛), the fraction of population that flipped to the lower steady state (𝑓𝑖𝑛𝑣), the fraction of inverted 

population that switched back to the upper steady state (𝑓𝑠𝑤𝑡) and the fraction of inverted population 

that is locked in the lower steady state (𝑓𝑙𝑐𝑘). Furthermore, we computed the time scales associated 

with the various transitions as indicated in the schematic diagram (Fig.2e). We defined the inversion 

time (𝜏𝑖𝑛𝑣) as the time the system takes to reach the lower steady state since the switching on of the 

pulse. The residence time (𝜏𝑟𝑠𝑑) and the switching time (𝜏𝑠𝑤𝑡) were defined, respectively, as the 

duration that the system spends in the lower steady state before switching to the upper steady state 

and the time it takes to switch from the lower to the upper steady state. In addition, the inversion time 

was divided into an initial delay phase (𝜏𝑑𝑙𝑦) and subsequent rapid response phase (𝜏𝑟𝑠𝑝). 
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Fig.2: Schematic representations of the signal pulse (a) and various possible temporal outcomes of the 

kinase (b-e). The pulse dose (𝑆𝑚), duration (𝜏𝑑) and resting dose (𝑆𝑟) are the three parameters that 

characterize the pulse of phosphatase. The four possible temporal outcomes of the kinase are: (b) non-

responding trajectory (nrs), (c) transient trajectory with reduced expression without reaching the lower 

steady state (trn), (d) inversion (inv) of the steady state with permanently locked in the lower steady state 

(lck) and (e) inversion and subsequent switching to the upper steady state (swt). The time scales 

associated with the inversion of steady state, residence in the lower steady state and switching into the 

upper steady state are represented, respectively, as 𝜏𝑖𝑛𝑣, 𝜏𝑟𝑠𝑑 and 𝜏𝑠𝑤𝑡. The inversion time is divided into 

an initial delay phase (𝜏𝑑𝑙𝑦) and subsequent response phase (𝜏𝑟𝑠𝑝). The dark and light shaded regions 

indicate the pulse with maximum amplitude and pulse with resting amplitude, respectively.  

We first present the dependence of the various population fractions on the pulse parameters. In Fig.3a-

b the fraction of population that flips to the lower steady state is plotted as a function of pulse dose and 

duration for the DNFL and PFL motifs. The 𝑓𝑖𝑛𝑣 increases nonlinearly with increased pulse dose and 

duration indicating that the population inversion can be achieved by a pulse of phosphatase in which a 

strong pulse for a very short duration or a weak pulse for prolonged duration both can change the 

steady state of the bistable system. When the pulse duration is short, the bistable system requires a 

stronger pulse for the population inversion to occur and a small amplitude pulse can induce population 

inversion if the pulse duration was longer.  The sharpness in the 𝑓𝑖𝑛𝑣 vs 𝜏𝑑 curves are more as compared 

to the sharpness in the 𝑓𝑖𝑛𝑣 vs Δ𝑆𝑅 suggesting that the criticality of pulse duration is more than the pulse 

amplitude. The sharp change in 𝑓𝑖𝑛𝑣 with 𝜏𝑑 suggests that a critical duration of pulse is required for 

population inversion, particularly in the PFL. Although the qualitative effect of pulse on the bistable 
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switch originated from the DNFL and PFL motifs are similar, however, PFL requires prolonged exposure 

of the pulse (large 𝜏𝑑) as compared to the DNFL for population inversion. Particularly, even a transient 

pulse can induce significant population inversion in the DNFL motif, while the PFL network needs a pulse 

of prolonged duration. We calculated the pulse duration that is required to achieve 1% population 

inversion for both the systems across various pulse amplitudes. The decrease of this duration with 

increasing pulse dose suggests the complementary roles of pulse dose and duration (Fig.3c). 

Furthermore, the PFL needs a significantly large duration of pulse, as compared to the DNFL, to initiate 

the population inversion. In addition, the curved edge of the flat region indicates that a minimum dose 

and duration are required to cause a complete population inversion. In order to pinpoint the major 

player between the dose and duration, we calculated the area under the pulse required to obtain 99% 

population inversion (Fig.3d). The area signifies the integrated phosphatase signal that is exposed to the 

bistable system. The area as a function of the dose and duration indicate that the minimum pulse 

duration needed to cause 99% of population inversion is significantly higher in the PFL as compared to 

the DNFL. This suggests that PFL is less susceptible to the external signal as compared to the DNFL. 

Therefore, a transient signal (or noisy) signal may not lead to the change of the steady state in a PFL. 

Further, the decrease of the area with increasing dose indicates that the pulse dose has stronger effect 

in population inversion than the duration in flipping the state. We repeated these calculations with 

different values of resting pulse to establish that the population inversion dynamics in a bistable system 

is independent on the magnitude of the resting pulse (Supplementary Fig.S1). 
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Fig.3:  The fraction of population that flips into the lower steady state (𝑓𝑖𝑛𝑣) is plotted as a function pulse 

duration (𝜏𝑑) and pulse dose (𝛥𝑆𝑅 = 𝑆𝑚 − 𝑆𝑅) for the DNFL (a) and PFL (b) networks. 𝛥𝑆𝑅 represents the 

pulse amplitude relative to the right saddle-node bifurcation point. In (c) The duration of pulse required 

to attain 1% population inversion is plotted as a function of 𝛥𝑆𝑅. The integrated signal required for 99% 

population inversion is plotted as a function of 𝜏𝑑 and 𝛥𝑆𝑅 for the DNFL (circles) and PFL (squares) 

networks (d). The value of the resting pulse was the value of the signal corresponding to the left 

bifurcation point. 

In order to study the transient nature of the bistable system under the pulse, we quantified the fraction 

of population that does not respond (𝑓𝑛𝑟𝑠) and the fraction of population that responds transiently 

without reaching the lower steady state (𝑓𝑡𝑟𝑛). We found a stark contrast between the DNFL and PFL 

network in their transient dynamics. In the DNFL motif, 𝑓𝑛𝑟𝑠 decreases with increasing dose and duration 

of the pulse (Fig.4a) and 𝑓𝑡𝑟𝑛 are quite low across various doses and duration of the pulse (Fig.4b). These 

indicate that the trajectories that responded to the pulse reached the lower steady state as the 

transient fractions are less across various doses and durations. Whereas in the PFL, 𝑓𝑛𝑟𝑠 are nearly zero 

across all doses and durations suggesting that the entire population makes a response to the pulse 

irrespective of the pulse parameters (Fig.4c). The decrease of 𝑓𝑡𝑟𝑛 with increased pulse parameters in a 

dose dependent manner suggesting that after an initial transient response the trajectories flip to the 

lower steady state depending on the pulse parameters (Fig.4d). Therefore, the DNFL makes a single-step 

decision of flipping its steady state based on the quality of the pulse and the PFL makes this choice later 



 

 11 

after an initial transient response to the pulse. Although a PFL motif is more susceptible to transient 

response, as compared to the DNFL, however PFL requires signal for prolonged duration for inverting 

the steady state indicating that PFL is less prone to perturbation due to the pulse. We verified that the 

initial responses of the system against the pulse are independent of resting pulse (Supplementary 

Fig.S2).  

 

Fig.4: The fraction of non-responding, 𝑓𝑛𝑟𝑠, (top row) and transiently responding, 𝑓𝑡𝑟𝑛, population (bottom 

row) are plotted as a function of 𝜏𝑑 and 𝛥𝑆𝑅 for the DNFL (left) and PFL (right) networks. The value of the 

resting pulse was the value of the signal corresponding to the left bifurcation point. 

The time that the bistable system takes to switch from one state to another is an important aspect as it 

provides information about the kinetics of inversion in the dynamical system. The average time of 

flipping the steady state (< 𝜏𝑖𝑛𝑣 >), since the switching on of the pulse, are plotted as a function of 

pulse dose and duration for the two bistable switches (Fig.5a-b). The < 𝜏𝑖𝑛𝑣 > decreases with the 

increasing pulse amplitude as the transition is facilitated by an intense pulse (left to right in Fig.5-b). At 

the low dose, the dependence of < 𝜏𝑖𝑛𝑣 > on the pulse duration, however, is somewhat nonintuitive 

where < 𝜏𝑖𝑛𝑣 > increases with 𝜏𝑑 for both the bistable systems (bottom to top in Fig.5-b). The increase 

of < 𝜏𝑖𝑛𝑣 > implies that although a sustained weak signal may induce population inversion however, it 

comes at the cost of time. In order to determine the reason of this nonintuitive behavior, we looked at 

the trajectories under the pulse (Fig.5g-h). These trajectories indicate that the system does not respond 

immediately to the pulse in the DNFL network and after an initial delay the system rapidly transition to 
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the lower steady state (Fig.5g). On the contrary, in the case of PFL network, all trajectories respond 

immediately to the pulse by exhibiting a sluggish decrease of kinase level and after this initial phase the 

system rapidly jumps to the lower steady state (Fig.5h). Therefore, for better understanding, we 

partitioned the inversion time into an initial delay phase (𝜏𝑑𝑙𝑦) and the subsequent rapid response phase 

(𝜏𝑟𝑠𝑝). In the case of DNFL, the average duration of the initial delay phase increases with increasing 𝜏𝑑 in 

the low dose regime (Fig.5c) and the average duration of the response phase is nearly independent of 

the dose and duration of the pulse (Fig.5e). Therefore, at low dose, the increase of  < 𝜏𝑖𝑛𝑣 > with 𝜏𝑑 is 

due to the increased average delay in the DNFL. The increase of delay is due to the fact that larger pulse 

duration allows more trajectories to flip their state at a later time and thereby prolonging the average 

time of response. It is important to note that, such phenomena happens when the magnitude of the 

dose is close to the right saddle-node bifurcation point (𝛥𝑆𝑅~0). Therefore, it suggests that the delay in 

making a decision of flipping is most likely due to the critical slowing down of the system near the 

bifurcation point. At a large dose the system remains far away (𝛥𝑆𝑅 ≫ 0) from the bifurcation point and 

therefore critical slowing down related delay does not occur. Consequently, the system responds faster 

and  < 𝜏𝑟𝑠𝑝 > becomes independent of the pulse duration. The dose and duration independence of 

< 𝜏𝑟𝑠𝑝 > suggests that once the decision of transition is made the system self-propels itself into the 

lower steady state in a pulse independent manner. Therefore the increase of the average transition time 

with pulse duration is due to the increased delay in initial response in the DNFL system. In the case of 

PFL, the dynamics of the system is quite different than that of the DNFL motif. Here < 𝜏𝑑𝑙𝑦 > is nearly 

independent of 𝜏𝑑 (Fig.5d), whereas < 𝜏𝑟𝑠𝑝 > increases with  𝜏𝑑 at the low pulse dose (Fig.5f). 

Therefore, the effect of the critical slowing down is manifested exclusively in the second phase of the 

switching dynamics in the PFL motif. We found that these durations do not depend on the magnitude of 

the resting pulse (Supplementary Fig.S3). 
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Fig.5: The surface plots of average inversion time (⟨𝜏𝑖𝑛𝑣⟩), average initial delay time (⟨𝜏𝑑𝑙𝑦⟩) and average 

response time (⟨𝜏𝑟𝑠𝑝⟩) are presented as a function of 𝜏𝑑  and 𝛥𝑆𝑅 for the DNFL (top row) and PFL (middle 

row) networks (a-f). The pulse induced temporal dynamics of the kinase are shown for the DNFL (g) and 

PFL (h) networks. The dark and light shaded regions indicate the pulse on state with maximum and resting 

amplitudes, respectively. The value of the resting pulse was the value of the signal corresponding to the 

left bifurcation point. 

The pulse of phosphatase forces the system to flip its steady state from the upper to the lower steady 

state. However, removal of the signal pulse may lead to returning of the system to the original state. 

Thus, we determined next the fate of the flipped state upon removal of the pulse while maintaining a 

residual signal level. We calculated the fraction of cells that returned to the upper steady state (𝑓𝑠𝑤𝑡) as 

a function of various parameters of the pulse.  𝑓𝑠𝑤𝑡 critically depends on the magnitude of the resting 

pulse, 𝑆𝑟 or 𝛥𝑆𝐿. At low resting pulse, the entire population returns back to the upper steady state 

irrespective of the duration (Fig.6a-b) and amplitude (Supplementary Fig.S4) of the pulse for both the 

bistable systems. However, with the increase of the resting pulse (large 𝛥𝑆𝐿) the fraction of population 

returning decreases in a nonlinear manner and consequently the fraction of locked population in the 

lower steady state increases in a complementary manner (Supplementary Fig.S5). Therefore, although a 



 

 14 

pulse of signal may induce flipping of the state however to maintain the flipped state a residual signal is 

necessary. A comparison of 𝑓𝑠𝑤𝑡 vs. 𝛥𝑆𝐿 curves between DNFL and PFL networks revealed that 𝑓𝑠𝑤𝑡 

decreases sharply with the resting pulse in DNFL network as compared to the PFL network 

(Supplementary Fig.S6). Consequently, at a particular resting pulse, relatively a larger fraction of 

population switches back to the upper steady state in PFL network as compared to DNFL network. The 

bifurcation diagram provides a clue to this difference between the DNFL and PFL system. Although the 

at low 𝛥𝑆𝐿 the system remains within the bistable region, however in the PFL network the close 

proximity of the unstable branch with a small basin of attraction allowed the system to make a chemical 

noise assisted transition to the upper steady state that has a large basin of attraction near the left 

bifurcation point. Consistent with the population results, the increased resting pulse leads to elevated 

average residence time (< 𝜏𝑟𝑠𝑑 >) of the lower steady state (Fig.6c-d). A moderate increase of < 𝜏𝑟𝑠𝑑 > 

is noted with the increased 𝜏𝐷 as longer pulse allows the system to spend longer in the lower steady 

state. Supplementary Fig.S4 confirms that the pulse dose does not play any role in the residence and 

return dynamics of the system. The average switching time (< 𝜏𝑠𝑤𝑡 >) from the lower to the upper 

steady state increases marginally with the resting pulse, however < 𝜏𝑠𝑤𝑡 > is mostly independent of the 

dose and the duration of the pulse (Fig.6e-f).  

 

Fig.6: The fraction of the population that switches back to the upper steady state (𝑓𝑠𝑤𝑡), the average 

residence time in the lower steady state (⟨𝜏𝑟𝑠𝑑⟩) and the average switching time (⟨𝜏𝑠𝑤𝑡⟩) are plotted as a 

function of pulse duration and resting pulse (𝛥𝑆𝐿 = 𝑆𝑚 − 𝑆𝐿) for the DNFL (top row) and PFL (bottom row) 
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networks. 𝛥𝑆𝐿 represents the resting pulse over and above the signal value corresponding to the left 

saddle node bifurcation point. The value of the 𝛥𝑆𝑅 was 0.1. 

Previous studies have highlighted that regulatory networks play a crucial role in attenuating the 

chemical noise biochemical reaction networks (Dey and Barik, 2017; Hornung and Barkai, 2008; Raj and 

van Oudenaarden, 2008). Therefore, in order to understand the role of feedback loops in regulating the 

chemical noise, we compared the statistical properties of inversion and switching time between the 

DNFL and PFL networks (Fig.7a-d). The comparison of average duration of inversion and switching time 

show that the bistability from PFL motif takes more time to make a transition from one steady state to 

the other steady state (Fig.7a-b). Furthermore, the noise, quantified as the coefficient of variation (CV), 

in these two times are significantly less in the case of PFL as compared to the DNFL network (Fig.7c-d). It 

is worth noting that the noise in the inversion time increases with 𝜏𝐷 for both the networks. This is due 

to increased relative available time (= (𝜏𝐷−< 𝜏𝑖𝑛𝑣 >)/𝜏𝐷) for the system to respond against the pulse 

(Fig.7e). The relative available time measures the amount of extra time available, over and above the 

average inversion time, by the system to respond to the pulse. Large relative available duration would 

accommodate a greater number of late responders contributing to increased variability. As the 

switching dynamics is autonomous in nature therefore the CV and average of 𝜏𝑠𝑤𝑡 are independent of 

𝜏𝐷. These two results suggest that the bistable switch originating from a PFL is less susceptible to the 

external pulse as compared to the bistable switch from a DNFL. Therefore, a PFL motif will be less prone 

to make a stochastic transition from one state to the other due to external noisy signal and 

consequently a PFL will be more robust to external perturbations of noisy signal by efficiently filtering 

out the spurious signals. Consequently, the population heterogeneity of a bistable switch originated 

from mutual inhibition will be more as compared to a bistable switch from mutual activation. By 

repeating these calculations for different values of pulse amplitudes, we confirmed that greater 

robustness of PFL persists across various pulse amplitudes (Supplementary Fig.S7). 
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Fig.7:  The comparison of statistical properties of inversion and switching times between the DNFL and 

PFL networks (a-d). The comparison of relative available time vs. 𝜏𝑑  between the DNFL and PFL networks. 

The values of the pulse dose and resting pulse were 𝛥𝑆𝑅 = 0 and 𝛥𝑆𝐿 = 0. 

In the Fig.8a-c the correlation between the inversion time and the residence time of individual 

trajectories are plotted for the DNFL motif to find out whether the history of the system influences the 

future outcome in the dynamics. The negative correlation between these two events implies that the 

trajectory that made an early transition to the lower steady state stayed for a longer duration there. 

Furthermore, a larger value of the correlation coefficient implies that these two events are tightly 

controlled by the external pulse or in other words the temporal behavior of the system is more 

predictable in nature. For the DNFL network, the correlation decreases with increased pulse duration 

(Fig.8a) implying that exposure of small amplitude signal for a prolonged duration may lead to delayed 

inversion of the steady state, however such inversion would be temporary. Therefore, the dynamics of 

the system is tightly regulated (more predictable or correlative) when the state inversion is induced by a 

sustained signal. On the contrary, a shorter pulse results in increased variability of 𝜏𝑟𝑠𝑑  and 

consequently the correlation between the two events becomes less making the future outcome more 

unpredictable relative to the past event. Increased resting pulse (Fig.8b) and pulse dose (Fig.8c) lead to 
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poor correlations between these two times. However, the origins of reduced correlations due to higher 

dose and resting pulse are not same. The dose controls the population inversion dynamics (or 𝜏𝑖𝑛𝑣) and 

therefore larger dose skews the population towards smaller < 𝜏𝑖𝑛𝑣 >, without affecting the switching 

dynamics, leading to decoherence of the two events. At a smaller resting pulse, the temporal dynamics 

of the system correlate well with the temporal profile of the pulse and consequently, the correlation 

coefficient between 𝜏𝑖𝑛𝑣 and 𝜏𝑟𝑠𝑑 is large at a smaller resting pulse. A larger resting pulse forces the 

system to be at the lower steady state with larger < 𝜏𝑟𝑠𝑑 > thus the temporal correlation between the 

pulse and dynamics of the system is lost leading to the decreased correlation coefficient. In the case of 

PFL, the qualitative effects of pulse parameters on the correlation are similar to the DNFL, however here 

the correlations are generally poor as compared to DNFL across various pulse parameters (Fig.8d and 

Supplementary Fig.S8).  

 

Fig.8: The correlation between the mean-normalized 𝜏𝑖𝑛𝑣 and 𝜏𝑟𝑠𝑑 are plotted for the indicated values of 

𝜏𝑑 (a), 𝛥𝑆𝐿 (b) and 𝛥𝑆𝑅 (c) for the DNFL network. The values of correlation coefficients are indicated within 

the parenthesis inside each plot. In (d) the correlation between these two times are compared for the 

DNFL and PFL networks. The pulse parameters used were: 𝛥𝑆𝑅 = 0 and 𝛥𝑆𝐿 = 0 in (a); 𝜏𝑑 = 1 × 104 and 

𝛥𝑆𝑅 = 0 in (b),  𝜏𝑑 = 1 × 104 and 𝛥𝑆𝐿 = 0 in (c) and  𝜏𝑑 = 1.5 × 104, 𝛥𝑆𝑅 = 0.1 and 𝛥𝑆𝐿 = 0 in (d). 

We extended these calculations to networks with two fused positive feedback loops centered around 

the kinase, K. In the two-loop networks, another protein regulator, Y, was introduced with 10 

phosphorylation sites and possessing a similar causal relationship with the kinase K. Fig.9a and Fig.9b 
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represent the network diagrams consisting of the two fused DNFLs and two fused PFLs, respectively. 

Different forms of Y will have similar dynamical equations as listed in the case of single positive feedback 

loop (Eq.3-4). In the DNFL network, the equation for the kinase consists of another degradation term 

due to the catalytic effect of Y0 on the kinase. Similarly, the dynamical equation for the kinase consists of 

another synthesis term due to Y10 in the PFL network.  Here the value of 𝑘𝑎 was reduced by a factor of 2, 

as compared to single loop case, in order to obtain the identical bifurcation diagrams as in the case of 

single positive feedback loop. All other parameters were the same as in the case of single loop. In the 

two loops case, the fractions of population that flip to the other steady state are slightly higher across 

various doses and durations of the pulse (Fig.9c-d). Therefore, pulse induced transitions to the other 

steady state are facilitated by the additional positive feedback loop. 

 

Fig.9: The network diagrams of two fused DNFLs (a) and two fused PFLs (b). Here, one more positive 

feedback loop was introduced either by mutual inhibition (a) or by mutual activation (b) between K and 

Y. Analogous to X, the phosphorylation and dephosphorylations of Y are catalyzed by the kinase, K, and 

the phosphatase, S, respectively. The plots of 𝑓𝑖𝑛𝑣 as a function of pulse dose (𝛥𝑆𝑅) and duration (𝜏𝑑) are 

compared between one-loop (blue lines) and two-loop (red lines) DNFL (c) and PFL (d) networks. The 

vertical black lines indicate the difference between the two lines. The value of the resting pulse was the 

value of the signal corresponding to the left bifurcation point. 
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3. Conclusions 

Processing various external and internal signals are key to living organisms for the proper functioning of 

physiology at the cellular and organismal levels. Cells often receive signals in discrete manner with 

varying amplitudes, durations and intervals. In order to understand the processing of transient signal by 

a regulatory motif, we investigated the fate of a bistable switch generated either by mutual activation 

(PFL) or by mutual inhibition (DNFL) between two regulators.  

We find that a pulse of signal can induce population inversion by driving the bistable system into the 

other stable steady state and such inversion can be achieved either by a strong transient signal or by a 

prolonged weak signal indicating that the dose or duration can be compensated by each other. Between 

the pulse amplitude and duration, amplitude imparts a stronger effect on the inversion dynamics in 

bistable switches. The pulse amplitude facilitates population inversion by reducing the average inversion 

time irrespective of the nature of the bistable network. Whereas the pulse duration facilitates inversion 

by accommodating more numbers of late responders that take a longer time to switch to other steady 

state. As a consequence, in the weak dose regime, the average inversion time increases significantly 

with the pulse duration. This also confirms that the critical slowing down of the trajectories strongly 

influence the dynamics when the signal dose is close to the saddle-node bifurcation point. We find 

critical differences in processing of pulse by a mutual activation and a mutual inhibition loop. 

Irrespective of pulse parameters, a bistable switch originating from mutual activation motif makes an 

immediate transient response to the pulse and the average duration of this initial response is 

independent of the pulse duration. After this initial response, the system flips to the other steady state 

with an average duration that depends strongly on the pulse duration. On the contrary, the mutual 

inhibition motif does not exhibit a transient initial response. After a pulse duration dependent initial 

delay, it rapidly self-propels into the lower steady state. Here the average duration of the initial delay 

depends strongly on the pulse duration but the second phase is independent of the pulse duration.  

Although the population inversion is independent of the resting pulse, however, the fraction of 

population locked in the flipped state and the average residence time in the flipped state strongly 

depends on the residual signal in the form of resting pulse. Whereas, the pulse amplitude and duration 

do not have much role in dictating the dynamics of the flipped state. Therefore, a pulse of signal may 

lead to inversion of steady state, however to maintain the inverted state the system requires a residual 

signal. The average duration of inversion and switching times associated with the upper and lower 

steady states of bistable system are higher in the mutual activation network as compared to the mutual 
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inhibition network. Furthermore, the variabilities in these two times are significantly smaller in the 

mutual activation network as compared to the mutual inhibition network. In addition, mutual activation 

requires a pulse of significantly prolonged duration as compared to mutual inhibition loop in order to 

cause population inversion. These three results indicate that the mutual activation network is less 

susceptible to responding to the transient signal and therefore a bistable system originating from 

mutual activation would be a better topology to filter noisy external signals. These conclusions are 

consistent with previous finding that mutual activation networks are better topology in attenuating 

chemical noise in the context of sustained signaling (Hornung and Barkai, 2008). 

The correlations between the inversion time and residence time indicate that the pulse induced 

inversion and subsequent revival to the original state are tightly regulated by weak pulse of prolonged 

duration. This suggests that the system behaves in a deterministic or predictable fashion when the 

inversion of steady state is caused by signal of longer duration. Thus, although a short intense pulse may 

induce flipping of steady state efficiently however the behavior of the subsequent events becomes less 

predictable. Therefore, it features that the noise in the system can also be controlled by an external 

signal. 

The pulse of signal can be used in controlling the ratio of population for a system having two possible 

cellular fates (Menn et al., 2019). The mixed population in the bistable system can either be achieved by 

noise induced transition leading to stochastic switching of one state to the other in the bistable regime 

or it can be achieved by the pulse of signal where the signal amplitude remains outside the bistable 

regime. In this study, we systematically investigated the effect of signal pulse with amplitude outside the 

bistable regime and determined the various populations and the associated time scales. Our work 

reveals the fate of the system under the pulse of various qualities and underscores the key differences 

by which PFL and DNFL motif process the pulse. 

 

4. Methods 

The one-parameter bifurcation analyses of the models were performed by the software tool XPP-AUT. 

The stochastic simulations of the models were carried out by converting the model equations into the 

corresponding mass-action chemical reactions and simulating those chemical reactions using the 

Gillespie’s stochastic simulation algorithm. The system was initialized at a very low value of the 

phosphatase (S=0.001) and simulated for sufficiently long time so that the system reaches its steady state 
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corresponding to the upper steady state of the bifurcation diagram. A pulse of the phosphatase was 

initiated and the trajectory of the kinase was monitored to estimate the fractions of the various 

populations and the associated time scales by triggering flags at different values of the kinase during its 

time course. Once the trajectory reaches a threshold value of 100, we count the trajectory as flipped 

trajectory and the time it takes to reach this value since the switching on of the pulse is the 𝜏𝑖𝑛𝑣. The 

trajectory with unaltered expression and with transiently lowered expression without reaching 100, was 

labeled as non-responder and transiently responder, respectively. To estimate the response delay (𝜏𝑑𝑙𝑦), 

we used threshold values of 800 and 600, respectively, for DNFL and PFL networks. The response time 

(𝜏𝑟𝑠𝑝) was calculated by subtracting 𝜏𝑑𝑙𝑦 from 𝜏𝑖𝑛𝑣. The residence time in the lower steady state (𝜏𝑟𝑠𝑑) 

was estimated by calculating the time the system takes to reach a threshold value of 150, after removal 

of the pulse, since reaching the lower steady state. Thereafter, the time taken to switch back to its upper 

steady state (𝜏𝑠𝑤𝑡) was estimated when the system reached a threshold value of 850 and the trajectory 

was labelled as switched.  
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Fig.S1: Effect of resting pulse on the population inversion. The plot of 𝑓𝑖𝑛𝑣 as a function pulse duration 

(𝜏𝑑) and pulse dose (𝛥𝑆𝑅) for the DNFL (fisrt column) and PFL (second column) networks for two different 

doses of resting pulse (𝛥𝑆𝐿 = 0.05 top row, and 𝛥𝑆𝐿 = 0.1, bottom row). The integrated signal required 

for 99% population inversion is plotted as a function of 𝜏𝑑 and 𝛥𝑆𝑅 for two different values of resting 

pulse (c & f) in the DNFL (circles) and PFL (squares) networks. 
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Fig.S2: Effect of resting pulse on the transient dynamics. 𝑓𝑛𝑟𝑠 and 𝑓𝑡𝑟𝑛  are plotted as a function of 𝜏𝑑 and 

𝛥𝑆𝑅 for the DNFL (a, c, e and f) and PFL (b, d, f and h) networks for different values of resting pulse, 𝛥𝑆𝐿 =

0.05 (a-d) and 𝛥𝑆𝐿 = 0.1 (e-h). 
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Fig.S3: Effect of resting pulse on the time scales of population inversion. The surface plots of average 

inversion time (⟨𝜏𝑖𝑛𝑣⟩), average response time (⟨𝜏𝑟𝑠𝑝⟩) and average initial delay time (⟨𝜏𝑑𝑙𝑦⟩) are 

presented as a function of 𝜏𝑑 and 𝛥𝑆𝑅 for the DNFL (1st and 3rd rows) and PFL (2nd and 4th rows) networks 

at two different values of 𝛥𝑆𝐿. 
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Fig.S4: Effect of pulse amplitude on residence and switching times.  The fraction of the population that 

switches back to the upper steady state (𝑓𝑠𝑤𝑡), the average residence time in the lower steady state 

(⟨𝜏𝑟𝑠𝑑⟩) and the average switching time (⟨𝜏𝑠𝑤𝑡⟩) are plotted as a function of pulse duration (𝜏𝑑) and resting 

pulse (𝛥𝑆𝐿) for the DNFL (1st and 3rd rows) and PFL (2nd and 4th rows) networks. The values of the 𝛥𝑆𝑅 were 

0.0 and 0.2. 
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Fig.S5: The effect of pulse amplitude on the population locked in the inverted state. Fraction of cells locked 

at lower steady state, 𝑓𝑙𝑐𝑘 is plotted as a function of pulse duration (𝜏𝑑) and resting pulse (Δ𝑆𝐿) for the 

DNFL (top row) and PFL (bottom row) networks for the indicated values of pulse amplitude. 
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Fig.S6. The fraction of the population that switches back to the upper steady state (𝑓𝑠𝑤𝑡) is plotted as a 

function of resting pulse (Δ𝑆𝐿) for increasing values of pulse duration, 𝜏𝑑, in case of DNFL (red to yellow) 

and PFL (green to yellow) networks. The value of the 𝛥𝑆𝑅 was 0.2.  
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Fig.S7: The comparison of statistical properties of inversion and switching times between the DNFL and 

PFL networks for different values of pulse dose (a-d). The comparison of relative available time vs. 

𝜏𝑑  between the DNFL and PFL networks. Different colors represent different value of dose (𝛥𝑆𝑅) following 

an increasing trend of red to yellow for the DNFL and green to yellow for the PFL.  
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Fig.S8: The correlation between the mean-normalized 𝜏𝑖𝑛𝑣 and 𝜏𝑟𝑠𝑑 times are plotted for the indicated 

values of pulse duration (a), pulse dose (b) and resting pulse (c) for the PFL network. The values of 

correlation coefficients are indicated within the parenthesis inside each plot. 

 


