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The ever-growing popularity of citizen science, as well as recent technological and 
digital developments, have allowed the collection of data on species’ distributions at 
an extraordinary rate. In order to take advantage of these data, information of varying 
quantity and quality needs to be integrated. Point process models have been proposed 
as an elegant way to achieve this for estimates of species distributions. These models 
can be fitted efficiently using Bayesian methods based on integrated nested Laplace 
approximations (INLA) with stochastic partial differential equations (SPDEs). This 
approach uses an efficient way to model spatial autocorrelation using a Gaussian ran-
dom field and a triangular mesh over the spatial domain. The mesh is constructed by 
user-defined variables, so effectively represents a free parameter in the model. However, 
there is a lack of understanding about how to set these mesh parameters, and their 
effect on model performance. Here, we assess how mesh parameters affect predictions 
and model fit to estimate the distribution of the serotine bat, Eptesicus serotinus, in 
Great Britain. A Bayesian INLA model was fitted using five meshes of varying densi-
ties to a dataset comprising both structured observations from a national monitoring 
programme and opportunistic records. We demonstrate that mesh density impacted 
spatial predictions with a general loss of accuracy with increasing mesh coarseness. 
However, we also show that the finest mesh was unable to overcome spatial biases in 
the data. In addition, the magnitude of the covariate effects differed markedly between 
meshes. This confirms that mesh parameterisation is an important and delicate process 
with implications for model inference. We discuss how species distribution modellers 
might adapt their use of INLA in the light of these findings. 
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Introduction

Species distribution models (SDMs) are a commonly used 
tool in ecological research to model species distributions and 
abundances over space and time. The data available for these 
models have greatly increased in past years owing to the digi-
tal and technical changes in data collection (Hampton et al. 
2013, Guillera‐Arroita 2016). New monitoring technologies 
such as passive acoustic monitoring, and the continuously 
increasing popularity of citizen science, are just two innova-
tions that drive this growing data availability (August et al. 
2015, Bayraktarov et al. 2019, Gibb et al. 2019). However, 
this increase in data does not come without challenges for 
species distribution modelling. These data vary in their infor-
mation content and their attributes, for example sampling 
method or spatial extent, but they all include useful informa-
tion about species abundance and occurrence. Traditionally, 
these differences in the data meant that one dataset would 
be chosen for modelling, while others with potentially vital 
information were discarded. To take advantage of this large 
amount of information, it is necessary to integrate data of 
varying quantity and quality. Integrated distribution models 
(IDMs) are a recently emerging approach that allow different 
datasets to be used while accounting for the strengths and 
weaknesses of each (Fletcher et al. 2019, Miller et al. 2019, 
Zipkin et al. 2019, Isaac et al. 2020). One method to imple-
ment IDMs is the joint-likelihood approach (Pacifici  et  al. 
2017). Here, IDMs are formed through submodels that com-
bine an unobservable latent state (e.g. the true distribution 
of a species) with one or more observation models, which 
describe how data were generated from the latent state. While 
the observation models are unique to a dataset, the latent 
state and the parameters describing it are shared between all 
datasets through a joint likelihood (Pacifici et al. 2017).

Although the combination of different data sources for 
parameter estimation is not novel to ecological modelling, 
the innovation of IDMs lies with their ability to make use 
of different ecological ‘currencies’ (e.g. occupancy and abun-
dance data), or data of different spatial resolutions (Isaac et al. 
2020). This can be achieved by using point process models, 
which describe the continuous spatial distribution of points 
(Dorazio 2014, Renner  et  al. 2015, Bowler  et  al. 2019, 
Adde et al. 2021, Farr et al. 2021). The location of points is 
modelled with an intensity that describes the likelihood of 
points being present. Points in this context are individuals, 
meaning a high intensity implies that individuals are more 
likely to be present. The intensity can be estimated using a 
log-Gaussian Cox process (Møller et al. 1998), which can be 
interpreted as a latent Gaussian random field with a Matérn 
covariance function, a type of statistical model used for spa-
tial processes over a continuous space. These models include a 
spatially structured effect which is used to account for spatial 
autocorrelation unexplained by covariates in the model. The 
fitting of these models can be troublesome and computation-
ally expensive. However, the stochastic partial differential 
equation (SPDE) approach of the integrated nested Laplace 
approximation (INLA) method enables Bayesian inference of 

the Gaussian Markov random field (continuous) by approxi-
mating it with a discrete triangulated mesh (Lindgren et al. 
2011, Illian et al. 2013, Lindgren and Rue 2015). This mesh 
divides the study area into a set of non-intersecting triangles.

Several studies have now demonstrated that IDMs are an 
efficient approach to combining multiple sources of data that 
improve estimation and can account for biases in data collec-
tion (Fithian et al. 2015, Koshkina et al. 2017, Peel et al. 2019). 
While IDMs can be fitted with more established Markov 
chain Monte Carlo (MCMC) software (Bowler  et  al. 2019, 
Chevalier et al. 2021, Gilbert et al. 2021, Strebel et al. 2022), 
INLA is suggested to be a more computationally efficient 
alternative (Isaac et al. 2020). Despite its growing popularity, 
INLA is still poorly understood in ecology and conservation. 
In particular, spatial point process methodology has been slow 
to be picked up, potentially due to a lack of accessible litera-
ture for the applied user community (Renner et al. 2015, Illian 
and Burslem 2017). As a result, discretising the study domain 
into grid cells remains the norm when estimating species dis-
tributions. The common issue of this approach is that a spatial 
scale needs to be fixed, which makes it harder to account for 
within-grid heterogeneity (Isaac et al. 2020). While strictly this 
problem does not arise when using a mesh approach, it is none-
theless an approximation of the intensity surface. The finer the 
mesh, the finer the approximation can be, but this comes at a 
higher computational cost (Blangiardo and Cameletti 2015).

Given that one of the proposed applications of IDMs is 
a better use of the vast amount of data generated by citizen 
scientists (Johnston  et  al. 2022), which are often used by 
applied researchers and conservation practitioners, it is vital 
to advance practical understanding of the mesh parameterisa-
tion on model inferences. The aim of our study was to test 
the impact of mesh density, and thus approximation, on 
model predictions of an IDM fitted with the INLA–SPDE 
approach. Specifically, we compare the statistical properties 
of five models that differ only in their mesh parameters. We 
used data from a structured citizen science monitoring pro-
gramme and integrated them with opportunistic data from 
an ad hoc recording scheme to model the distribution of the 
serotine bat Eptesicus serotinus in Great Britain (consisting of 
England, Scotland, and Wales). E. serotinus is common at its 
core range in mainland Europe but is considered less common 
in the United Kingdom (consisting of England, Scotland, 
Wales, and Northern Ireland), where it is spatially restricted 
to southern England and Wales (Dietz and Helversen 2009). 
The species is protected by domestic and international legis-
lation throughout its range, which makes accurate informa-
tion about its distribution and environmental relationships 
important for conservation.

Material and methods

Data and covariates

We used two sources of E. serotinus data for our study 
(Fig. 1), the first from the field survey that is part of the 
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National Bat Monitoring Programme (NBMP) of the UK’s 
Bat Conservation Trust (BCT). The field survey consists of a 
structured mobile acoustic survey where trained volunteers 
walk an approximately 3 km long transect within a randomly 
allocated 1 km grid square. Counts of the number of bat 
passes are made at 12 points along the transect. For our study, 
we reduced the data to presences and absences (PA) per site 
(n = 666) because it is likely that the counts reflect bat activ-
ity (a combination of species abundance and time spent in 
the area) rather than true abundance, due to their foraging 
behaviour. There is a risk of recording the same bat multiple 
times, which would add additional uncertainty to the analy-
sis. The second dataset was from the National Biodiversity 
Network (NBN) Atlas which combines presence-only (PO) 
data from multiple sources. We excluded data that were 
not verified by expert verifiers, were from the NBMP field 
survey, and where coordinate uncertainty was more than 1 
km (remaining data n = 1374). For both datasets, data from 
2005–2015 were used, which maximised the number of data 
points while assuming that the species’ range was stable over 
the chosen time period. While the NBMP field survey data 
are collected in a spatially random way (Barlow et al. 2015), 
most of the data that make up the NBN dataset are not. For 
example, a large number of the records come from unstruc-
tured, that is spatially non-random, surveys. These are com-
monly uneven in their geographical distribution as recorders 
are more likely to record where human population density 
is high or where they have pre-existing knowledge about the 

presence of a species (Dennis and Thomas 2000, Botts et al. 
2011, Geldmann et al. 2016, Mair and Ruete 2016). 

We chose the following environmental covariates for anal-
ysis of the impact of mesh dimensions: mean annual temper-
ature (°C) averaged across our study period (Robinson et al. 
2017); percentage cover arable land, broadleaf woodland, 
and improved grassland (Rowland et al. 2017) (Fig. 2). These 
covariates were chosen because E. serotinus roosting sites are 
known to be associated with arable land, improved grassland 
(Tink et al. 2014), and broadleaf woodland (Boughey et al. 
2011). Their foraging sites are generally determined by the 
habitat available to them around their roosting site, and 
they are able to exploit a large variety of habitat for forag-
ing (Catto et al. 1996). All covariate values were scaled and 
centred (mean = 0, SD = 1). Empirical variograms were cal-
culated for all four covariates to explore the spatial autocor-
relation in each.

Modelling

The R code for data preparation and model fitting was based 
on the R-package (www.r-project.org) ‘PointedSDMs’ ver. 
0.2.1.9004 (https://github.com/oharar/PointedSDMs), 
which is built on the widely used ‘R-INLA’ package 
(Lindgren and Rue 2015). It was implemented in R ver. 
4.0.0 (www.r-project.org) with INLA 21 February 2023 (for 
INLA methodology Rue  et  al. 2009; for SPDE methodol-
ogy Lindgren et al. 2011, Krainski 2019; for software http://
www.r-inla.org).

We modelled the distribution of E. serotinus as a log-
Gaussian Cox process whose intensity varies as a function 
of our environmental covariates and the spatial field. A 
sub-model was developed for each dataset, and these were 
integrated together via a joint-likelihood. The PA data were 
assumed to follow a Bernoulli distribution (Eq. 1):

Y Bernoulli p i ni i( ) = ¼, , , ,1 2 	  (1)

cloglog p x f si
i

L

i i s( ) = + + ( )
=

( )åa b1
1

, 	  

where the response variable Yi  (presence or absence) was 
modelled as the probability of presence pi  within a sampled 
quadrat i  following a single Bernoulli trial. The log intensity 
was linked to pi  via a cloglog link (Kéry and Royle 2016), 
where a1  is the intercept, 

i

L

i i sx
=

( )å 1
b ,  the sum of the envi-

ronmental covariates (mean annual temperature, percentage 
cover arable land, broadleaf woodland, and improved grass-
land) and f s( )  a spatial random effect. The PO data were 
modelled as the expected number of individuals in an area 
with a Poisson distribution (Eq. 2):

N A Poisson s d s
A

( ) l( ) ( )æ
è
ç

ö
ø
÷ò 	  (2)

Figure 1. Spatial distribution of data modelled in the integrated spe-
cies distribution models. Map A shows presences of Eptesicus seroti-
nus in Great Britain from the presence-only (PO) dataset, which was 
sourced from the NBN Atlas (n = 1374). Map B shows presences 
and absences (PA) of E. serotinus in Great Britain from the presences 
and absences (PA) dataset, which was sourced from the National Bat 
Monitoring Programme (NBMP) field survey (n = 666). 
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log s x f s
i

L

i i sl a b( )( ) = + + ( )
=

( )å2
1

, 	  

where N is the expected number of presences in an area A, 
l  is the mean intensity function, a2  is the intercept, and 

i

L

i i sx
=

( )å 1
b ,  and f s( )  are the same terms as in the PA data: 

these model the actual distribution of E. serotinus. To fit the 
PO data as a Poisson process, we derived integration points 
and set weights in the likelihood following Simpson  et  al. 
(2016). We integrated our two datasets via a joint-likelihood 
approach, where the likelihoods of each dataset are multiplied, 
and some parameters, bi  and f s( ) , are shared between the 
individually modelled datasets (Kéry and Royle 2016).

Mesh parameterisation

We constructed five meshes by using an outline of mainland 
Great Britain as a domain boundary (Fig. 3). There are two 
main parameters we can define which influence the den-
sity of the mesh. The units for these parameter values will 
depend on the input data, in our case they are in kilome-
tres. The first parameter, which must always be specified, 
consists of two arguments which set the maximum allowed 
triangle edge length inside (max.edge1) and outside (max.
edge2) of the boundary. Max.edge1 is recommended to be set 
as smaller than 1/5 of the range (Bakka 2018), which is the 
radius around an observation at which autocorrelation falls 
below a threshold of 0.1. Spatial autocorrelation is driven by 
many different factors, which can be difficult to determine 
(Mielke et al. 2020). E. serotinus is considered a non-migra-
tory species with seasonal flights of under 100 km (Hutterer 

2005). Its mean home-range radius in the UK – that is, 
the mean of the greatest straight line distance an individual 
has been recorded from the roost in telemetry studies – is 
reported to be 7 km (Boughey et al. 2011). However, on rare 
occasions, individuals in the UK have been found to travel 
greater distances of over 41 km (Robinson and Stebbings 
1997). While we can assume that spatial autocorrelation is 
related to the home range of a species, this would likely be a 
severe underestimate due to the various extrinsic and intrin-
sic drivers of spatial autocorrelation (Mielke et al. 2020). We 
therefore chose a value of 5 for max.edge1 of the first model 
and added 20 for each subsequent model to account for a 
variety of reasonable range values. The value of max.edge2 
should always be larger than max.edge1, as the space outside 
the boundary only exists to avoid boundary effects and no 
predictions are generated there, which is why we always set 
max.edge2 to 150. The second parameter (cutoff) is optional 
and refers to the shortest allowed distance between two mesh 
vertices. This parameter must always be smaller than max.
edge. As per recommendations, we set cutoff to be 1/5 of max.
edge1 (Bakka 2017) (Table 1). 

Prior specification

We used the default priors for the fixed effects, which are 
Gaussian with a 0 mean and a precision of 0.001. For the spa-
tial effect, we ran models twice, once with default priors and 
once with penalised complexity (PC) priors, which penalise 
departure from a base model (Simpson et al. 2017). For the 
default priors, the model seeks values that are sensible for 
the mesh, so they differ between meshes. The PC priors are 
defined through probability statements about the variation 

Figure 2. Maps of the environmental covariates used in the integrated species distribution models (SDMs). Map (A) shows the mean annual 
temperature 2005–2015 in degrees Celsius from the CHESS-met dataset (Robinson et al. 2017). Maps (B), (C), and (D) show the percent-
age land cover of arable, broadleaf woodland, and improved grassland from the UK Centre for Ecology & Hydrology land cover map 2015 
dataset (Rowland et al. 2017). The land cover map 2015 was produced by classifying satellite images from 2014 and 2015 into different 
habitat classes.
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in and range of the spatial effect. In theory, the PC priors are 
not independent from the mesh as they could be specified 
to contradict the mesh: e.g. if the prior range suggests a very 
small range but the mesh is set with a large range in mind. 
The prior for the SD d  is defined by P pd d>( ) =0 , where 
we set d0 1=  and p = 0 5. . This means that we consider an 
SD above 1 as likely. The prior for the range k  is defined 
through P pk k<( ) =0 , where we set k0 7=  and p = 0 01. .  
This was motivated by our knowledge of the mean home-
range radius of E. serotinus being 7 km (Boughey 2011). We 
assume that the range of the spatial effect – that is, the dis-
tance at which two points are independent – is very unlikely 
to be below 7 km.

Further model variants

Because of the posterior range estimates given by the mod-
els described above, and because we assume that spatial 

autocorrelation may be driven by factors operating on a 
much larger scale than the home range, we also ran models 
with two different sets of priors for the range k , which we 
set as P k <( ) =50 0 01. , as well as P k <( ) =100 0 01. . The 
SD d  remained the same. We did not change the meshes 
to reflect these range values as our main goal was to inves-
tigate the effect of a wide range of potential mesh param-
eterisations on model results. In addition, we also ran models 
with a fixed range k  ( k0 7= ) and a fixed SD d  ( d0 1= ). 
Finally, we also ran models (using the initial set of PC pri-
ors P k <( ) =7 0 01.  and P d >( ) =1 0 5. ) with an additional 
spatial effect for the PO dataset, to account for the additional 
spatial bias in these data (following Simmonds et al. 2020).

Model evaluation and comparison

To investigate the effect of mesh density on overall inference, 
we compared the spatial predictions of each model by map-
ping the mean as well as the SD of the estimated intensity on 
a regular grid with a 5 km resolution. Next, we focused on 
the individual model components, namely the spatial effect 
and the fixed effects. We mapped the mean and SD of the 
intensity as a function of the spatial effect on its own to visu-
ally assess its smoothness. It is important to note that we are 
using the term smoothness in a qualitative way to describe 
the shape of the spatial effect (Miller et al. 2020). In addition, 
we plotted the posterior range of the spatial effect, that is the 
spatial scale of the correlation, for each model. In order to 
measure the proportion of the mean intensity explained by 
the spatial effect, we calculated the correlation (R2) between 

Figure 3. Maps of the five meshes from finest mesh (A – Mesh number 1) to coarsest (E – Mesh number 5). The blue outline is the mesh 
boundary within which distributions will be predicted. The area between the blue and black lines serves to prevent boundary effects.

Table 1. Values of different mesh parameters used to construct the 
five different meshes. Mesh 1 is the finest and 5 is the coarsest. Max.
edge1 sets the maximum triangle edge length inside the boundary, 
while max.edge2 sets it outside the boundary. Cutoff determines the 
shortest allowed distance between two mesh vertices.

Mesh number max.edge1 max.edge2 cutoff

1 5 150 1
2 25 150 5
3 45 150 9
4 65 150 13
5 85 150 17
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the total mean intensity and the intensity as a function of the 
spatial effect. To further compare the different models, we 
plotted the posterior estimates of the environmental covari-
ates, as well as the individual and shared intercepts. 

For each parameter, we report the mean of the posterior 
distribution and 95% credible intervals. We also report the 
Watanabe Akaike information criterion (WAIC) for each 
model as a measure of goodness-of-fit, which is calculated 
within INLA. A smaller WAIC suggests a better model fit. 
For the models’ predictive performance, we used the Log-
score, which is a summary measure of the conditional predic-
tive ordinate (CPO). The CPO is a cross-validation method 
estimating the leave-one-out predictive distribution, which is 
also calculated within INLA (Held et al. 2010). A higher Log-
score suggests a better predictive performance. These mea-
sures allow us to compare the fit and predictive performance 
of models fitted with and without PC priors. However, it is 
not possible to use these measures to compare models fitted 
with different meshes as INLA evaluates the deviance and 
CPO at the integration points, the number of which varies 
between different meshes and as such would mean compar-
ing models with different datasets. 

Results

Effect of prior specification

Overall, we found that any effect of changing the priors was 
dwarfed by the variation between meshes, highlighted by the 
similarities in WAIC and CPO (Supporting information). 
For simplicity, here we present the results of the five mod-
els with one set of PC priors P k <( ) =( )7 0 01.  since this is 
the generally recommended practice for SPDE models. See 
Supporting information for results for comparable models 
with different prior specifications, models with default pri-
ors, models with P k <( ) =50 0 01.  and P k <( ) =100 0 01. ,  
models with fixed PC priors, and models with an additional 
spatial effect for the PO dataset.

How do the spatial predictions differ between 
models?

The maps of the mean intensity (Fig. 4) share one overall 
similar trend, which is that a generally higher intensity is pre-
dicted for the south of England (see Supporting information 
for SD). However, the amount of land predicted to have high 
intensities (values above zero) noticeably increases from the 
finest mesh model (model with mesh number 1, Fig. 4A) to the 
coarsest mesh model (model with mesh number 5, Fig. 4E). 
Despite these broadly similar spatial trends, it is remarkable 
how much the finer spatial patterns vary between the models. 
For example, models with mesh numbers 1–3 (Fig. 4A–C) 
predict areas of high intensity in the Midlands, while models 
with mesh numbers 4 and 5 do not (Fig. 4D–E). The model 
with mesh number 1 in particular seems to perfectly repro-
duce the spatial patterns found in our observed data, which 

suggests that it is overfitting (Supporting information). It is 
also noticeable that, for all but the finest mesh model, the 
intensity tends to increase near the coast. This is especially 
visible at the Scottish peninsula Kintyre on the west coast, 
which is outside the known range of E. serotinus. These pat-
terns may point to some issues with boundary effects, despite 
the large outer extension of our meshes (Fig. 3).

How does the spatial effect differ between models?

Looking at the individual model components, the spatial 
effect does get noticeably smoother (that is, less disjointed) 
with decreasing mesh density (Fig. 4) (see Supporting infor-
mation for SD). This is confirmed by the posterior range of 
the spatial effect, which varies from approximately 30 km 
in the finest mesh model to around 200 km in the coarsest 
(Supporting information). The spatial effect of each model 
exhibits very similar spatial patterns to the overall predicted 
intensity. This is reflected by the R2 measures, which are all 
close to 1 and indicate that in all models over 90% of the 
predictions were explained by the spatial effect (Fig. 5). There 
does not seem to be a directional effect related to the mesh 
coarseness, as the model with mesh number 1 (Fig. 5A) actu-
ally has the highest R2, and the model with mesh number 3 
the lowest (Fig. 5C).

How do the covariate effects differ between 
models?

The empirical semi-variograms for each covariate showed 
evidence for spatial autocorrelation in temperature, arable, 
and grassland. Semi-variance for these variables increased 
with increasing distance, but was comparatively stable for 
broadleaf (Supporting information). The comparison of 
the posterior estimates for the environmental covariates 
revealed differences in effect size and direction between the 
models (Fig. 6). The first pattern to emerge is that, as the 
mesh becomes coarser, the effect of broadleaf (Fig. 6C) and 
grassland (Fig. 6D) generally becomes bigger. On the other 
hand, temperature (Fig. 6A) and arable (Fig. 6B) show almost 
an inverse pattern of one another, where the effect becomes 
increasingly positive (temperature) or increasingly negative 
(arable) from the model with mesh number 1 to the model 
with mesh number 3; peaks (negative or positive) at the 
model with mesh number 3; and then gets close to zero and 
non-significant for the model with mesh number 5. In con-
trast, the effects of the intercepts of the individual datasets 
show little differences between the models (Supporting infor-
mation). Only the effect of the intercept of the integration 
points (Supporting information) becomes considerably more 
negative with increasing mesh coarseness. 

Discussion

This study set out to investigate the effect of mesh den-
sity on model performance using an IDM fitted with an 
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Figure 4. Maps of the mean predicted spatial effect (left) and the mean predicted intensity (right) from the integrated species distribution 
models (SDMs) estimated for Eptesicus serotinus. The maps are presented from finest to coarsest mesh (Fig. 3, Table 1), meaning map (A) 
shows the results from the model with mesh number 1 (the finest mesh) and map (E) shows the results from the model with mesh number 
5 (the coarsest mesh).
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INLA–SPDE approach. It is commonly assumed that a finer 
mesh will lead to more accurate results with the only trade-off 
being computational cost (Blangiardo and Cameletti 2015). 
Yet, we found that the model with the finest mesh perfectly 
reproduced the spatial patterns found in our observations, 
thus was potentially overfitting. We demonstrate that spatial 
predictions became broader and less detailed with increased 
mesh coarseness. While these results indicate that coarser 
mesh density affects the level of accuracy in the predictions 
of spatial intensity, they also show that care must be taken 
to avoid overfitting by using a mesh that is too fine. These 
patterns are potentially surprising for those outside of the 
statistical literature, and something they should be aware 
of when using an INLA–SPDE approach to model species 
distributions.

We also found that the spatial effect became visually 
smoother with decreased mesh density. This may be an issue 
in a case like the one presented in this study, where the spatial 
effect accounts for most of the unexplained variation in the 
model, and could therefore have large impacts on inferences 
(Hodges and Reich 2010). Our results also revealed large 

differences between one another for the posterior fixed effects. 
A study modelling the distribution of waterfowl (Adde et al. 
2021) using the same approach reported that mesh den-
sity had little influence on model estimates. However, close 
inspection of their models reveals that the effects of temper-
ature were consistently closer to zero in models with finer 
meshes, which is consistent with the pattern we observe 
when moving from mesh number 3 to mesh number 1. They 
included an observational covariate to account for sampling 
bias, which our models did not have. However, we did run 
our models with a second spatial effect to attempt to account 
for sampling bias in the PO dataset, which did not change 
the overall pattern of results presented here (Supporting 
information). Adde et al. (2021) also fixed their PC priors, 
which we have also shown to make little difference to the 
results (Supporting information). Thus, methodological dif-
ferences cannot explain why the effects of mesh density are so 
pervasive in our study.

One explanation for our results is that the scale of the 
spatial effect competes with the scale at which the covari-
ates operate (Paciorek 2010). If the spatial effect is allowed 

Figure 5. The correlation (R2) between the total mean intensity and the intensity at a location as a function of the spatial effect. The red line 
indicates a slope of 1.
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to operate at a finer scale than that of the covariates, it can 
create a situation in which the spatial effect explains all varia-
tion in the data, leading to over-fitting and under-estimation 
of the covariate effects (Illian et al. 2012; Illian and Burslem 
2017). This could explain why the parameter estimates for 
temperature, which appears to be a limiting factor in the 
macro-scale distribution of E. serotinus (Fig. 1), increased 
from the finest (mesh number 1) to intermediate (mesh 
number 3) spatial effect (Fig. 6), but not why the estimates 
were lower for the two coarsest meshes (numbers 4 and 5). 
Estimates for arable land, which has broad spatial gradients 
in Britain (Fig. 2), showed a similar pattern. The remaining 
covariates – broadleaf woodland and grassland – vary at fine 
spatial scales, and determine the distribution of bats within 
landscapes, i.e. at smaller scales: parameter estimates for these 
variables increased with mesh coarseness. Thus, the relation-
ship between the scale of the spatial effect and that of the 
covariates is not straightforward. Sørbye  et  al. (2019) also 
acknowledge the problems that arise from spatial processes 
operating at various spatial scales and demonstrate the use 
of PC priors to address these. However, they do not take the 
mesh-based approach needed for an INLA–SPDE model. 
In addition, they analyse data from a dataset that is spatially 
limited and where all species locations are known. In con-
trast, most ecological datasets, especially those used to fit 
SDMs and IDMs, are heterogeneous, incomplete, and often 
observed at a large scale. Future work is therefore required 

to better understand the interaction between PC priors and 
mesh parameterisation, especially as a way to deal with spatial 
confounding.

While it was not the aim of this study to establish which 
mesh parameterisation would result in the ‘best’ model in terms 
of model fit and predictive accuracy, the conclusions drawn 
from the results could have been strengthened if models had 
been validated formally. One approach for validating spatial 
data would be block cross-validation, where data are divided 
strategically rather than randomly into spatial, environmental, 
or temporal units (‘blocks’) (Roberts et al. 2017, Valavi et al. 
2018). A newly released version of the ‘PointedSDMs’ R 
package (www.r-project.org) used in this study also includes 
a function to apply block cross-validation for IDMs (Morera-
Pujol et al. 2022, Mostert and O’Hara 2022), which makes it 
easy and straightforward for future studies to validate models 
as standard. In addition, future work could also focus on con-
ducting simulation studies to further explore the generalisabil-
ity of the findings presented here.

Our results do raise questions about the degree to which 
INLA is a useful tool for modelling species distributions, espe-
cially using integrated models. In the absence of clearer guid-
ance about the issues raised here, we recommend that modellers 
should present results from multiple meshes as a matter of 
course. Adopting this practice would have two benefits. First, 
it would recognise explicitly that the mesh is an important vari-
able in the modelling process, rather than something that is 

Figure 6. Posterior estimates of the environmental covariates: mean annual temperature (A), percentage cover arable land (B), broadleaf 
woodland (C), and improved grassland (D) for the five different models (Fig. 3, Table 1). Points indicate the mean of the different models, 
lines indicate the 95% credible intervals.

 16000587, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06391 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [02/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

www.r-project.org


Page 10 of 12

external, fixed, and already optimised. Second, it would gener-
ate a body of evidence about whether the phenomena we report 
are pervasive, or restricted to datasets with specific properties.

Point process models provide an intuitive framework to 
implement IDMs but some uncertainties remain, specifically 
surrounding the spatial effect, that cast doubt on inferences 
made from these models. Here, we have shown that mesh 
density affects both spatial predictions and the posterior esti-
mates of the fixed effects. The parameterisation of the mesh 
is conceptually straightforward but requires the user to esti-
mate the range; that is, the radius around an observation at 
which autocorrelation nears zero, for the problem at hand. 
Depending on the study species and the factors driving spa-
tial autocorrelation, the potential values one might consider 
could range widely. We conclude that for those interested 
in the description of spatial patterns, the greatest problem 
may be overfitting from a mesh that is too fine. This could 
have knock-on effects for conservation measures, for example 
when trying to consider protection measures for important 
areas of the species’ distribution. For those interested in the 
posterior covariate estimates, for example for climate change 
predictions, even greater care must be taken when param-
eterising the mesh. In particular, users should pay attention 
to the scale at which the spatial effect and the covariates are 
set to operate.
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