
1.  Introduction
In the post sunset F region of the ionosphere, plumes of low density plasma, known as Equatorial Plasma 
Bubbles (EPBs) are prone to form. These bubbles were first observed in ionosonde traces, and have subsequently 
been captured by radar, air glow images, and in-situ detectors (Argo & Kelley, 1986; Retterer & Roddy, 2014; 
Woodman & La Hoz, 1976). EPBs can cause fluctuations in the amplitude and phase of radio waves that traverse 
through them (Kintner et  al.,  2007). These scintillations adversely affect Global Navigation Satellite System 
(GNSS) and other communication systems which rely on quiet ionospheric conditions. Their morphology, onset, 
and development is complex and has been the subject of numerous studies over the years.

In the sunlit hemisphere, the neutral wind generally travels in an easterly direction toward the day-night termina-
tor (Heelis et al., 2012), forcing the plasma in an upwards zenith direction under the action of the Lorentz force. 
Once in the nightside, ionization ceases and recombination dominates. This leads to a large density gradient 
between the E and F regions. When the interface between these layers is perturbed, the rarified lower F layer is 
forced vertically upward into the higher density plasma, which itself is being pulled down under the action gravity 
(Kelley, 2009). This mechanism is known as a Generalized Rayleigh-Taylor instability, 𝐴𝐴 𝐴𝐴  , and its growth rate is 
described by Sultan (1996). The growth rate of the RTI, 𝐴𝐴 𝐴𝐴  , was formulated by Sultan in 1996
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where ∑P is the flux integrated Pederson conductivity for the E and F layers, Vp is the vertical plasma drift, 𝐴𝐴 𝐴𝐴𝑃𝑃
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is the Pederson conductivity weighted neutral meridional wind, ge is the altitude corrected acceleration due to 
gravity, veff is the ion-neutral collision frequency, K F is the total F region flux electron tube content, and R is the 
ion-electron recombination rate (Sultan, 1996). Because of the conductivity ratio of 𝐴𝐴
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Abstract  In this study we present AI Prediction of Equatorial Plasma Bubbles (APE), a machine 
learning model that can accurately predict the Ionospheric Bubble Index (IBI) on the Swarm spacecraft. 
IBI is a correlation (R 2) between perturbations in plasma density and the magnetic field, whose source can 
be Equatorial Plasma Bubbles (EPBs). EPBs have been studied for a number of years, but their day-to-day 
variability has made predicting them a considerable challenge. We build an ensemble machine learning model 
to predict IBI. We use data from 2014 to 2022 at a resolution of 1s, and transform it from a time-series into 
a 6-dimensional space with a corresponding EPB R 2 (0–1) acting as the label. APE performs well across all 
metrics, exhibiting a skill, association and root mean squared error score of 0.96, 0.98 and 0.08 respectively. 
The model performs best post-sunset, in the American/Atlantic sector, around the equinoxes, and when solar 
activity is high. This is promising because EPBs are most likely to occur during these periods. Shapley values 
reveal that F10.7 is the most important feature in driving the predictions, whereas latitude is the least. The 
analysis also examines the relationship between the features, which reveals new insights into EPB climatology. 
Finally, the selection of the features means that APE could be expanded to forecasting EPBs following 
additional investigations into their onset.
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act to suppress an EPB, whereas high values of Vp, K F and, ge/veff will destabilize the plasma and enhance the 
likelihood of an EPB (Carter et al., 2020; Sultan, 1996).

The spatiotemporal prediction of EPB occurrence has remained an on-going challenge for a number of years. 
Whilst the growth rate is described by Equation 1, the terms themselves are influenced by local time, geoloca-
tion, season, and solar and geomagnetic activity (Burke et al., 2004; Carter, Yizengaw, et al., 2014; S. Kumar 
et al., 2016; J. Smith & Heelis, 2017; Aa et al., 2020; Carter et al., 2020). To complicate matters, these climatolog-
ical markers can often contradict themselves and the relationship between them is nuanced. Geomagnetic activity 
can both enhance and suppress the onset of an EPB via modified equatorial electrodynamics due to different 
perturbation electric fields (e.g., Aa et al., 2019; Abdu, 2012; Carter et al., 2016; S. Kumar et al., 2016). The 
under-shielding prompt penetration electric field (PPEF) tends to be dominant during the storm main phase due 
to suddenly varying magnetosphere convection, which has an eastward polarity in the dayside through local dusk 
but westward polarity in the nighttime. This typically enhances equatorial upward plasma drift in the  dusk sector 
and thus facilitates the development of postsunset EPBs, but may disrupt post-midnight EPBs via downward 
plasma drift. On the other hand, the disturbance dynamo electric field (DDEF)—due to changes in global ther-
mosphere circulation—usually dominates during the storm recovery phase, which has an opposite polarity with 
PPEF and so tends to suppress postsunset EPBs, but enhances postmidnight EPBs. In addition, the over-shielding 
penetration electric field due to substorm activity has an opposite polarity with that of PPEF, thereby suppressing 
the postsunet EPBs, but enhancing postmidnight EPBs. The combination and interaction of these perturbation 
electric fields leads to complicated occurrence patterns and spatio-temporal variations of EPBs.

Interest in machine learning (ML) within the heliophysics community has grown enormously in recent years 
(Camporeale, 2019), but its direct application to EPBs remains more limited. A random forest regressor has 
been employed to predict the vertical plasma drifts, or VP in Equation 1 (Shidler & Rodrigues, 2020). This is 
a significant term in the overall onset of an EPB (Tsunoda et al., 2018). Others have used an all-sky imager to 
train a convolution neural network to detect EPBs, although the results seem more preliminary (Srisamoodkham 
et al., 2022). EPBs are also known as Spread F, which is a broader class of irregularities or wave-like structures 
within the ionosphere (Lan et al., 2018). Here ensemble and deep learning methods have been employed to clas-
sify and automatically detect Spread F in ionograms (Lan et al., 2018; Luwanga et al., 2022). EPBs are a known 
cause of radio wave scintillations (Kintner et al., 2007), and ML has been used to predict when and where scintil-
lations may occur (Jiao et al., 2017; Linty et al., 2018; McGranaghan et al., 2018). Lastly, deep learning has also 
been applied to predict storm-driven irregularities within the ionosphere (Liu et al., 2021).

In this study we present AI Prediction of EPBs (APE), an ML model that predicts the Ionospheric Bubble Index 
(IBI) index on Swarm. First, we introduce Swarm and the IBI product. Then, we analyze the R 2 value which is 
created by IBI and contains plasma bubbles. Third, we describe the ML models and their performance. Finally, 
we use Shapley values to interpret and explain the complex interactions within APE, all of which highlights the 
scientific benefits of using such an approach.

2.  Instrumentation, Data and Observations
Swarm is a three-spacecraft Earth exploration constellation that launched on 22 November 2013. Two spacecraft, 
Alpha and Charlie, were at an initial altitude of roughly 470 km, whereas Bravo was at 520 km (Friis-Christensen 
et al., 2008). Alpha and Charlie operate side-by-side, separated by about 1.4° in longitude. All three have a circu-
lar near-polar orbit of 87°. Swarm automatically detects EPB's via its Ionospheric Bubble Index (IBI) product, 
which we use to train our machine learning models. EPBs can be characterized by prolonged and simultaneous 
changes in B and Ne (Stolle et al., 2006). Swarm has an on-board magnetometer and Langmuir probe to meas-
ure these quantities respectively. IBI correlates the strength of ΔNe and ΔB (where residual B fluctuations in 
the range 0.04–0.5 Hz exceed 0.2 nT) using the Pearson correlation co-efficient (R). An R 2 > 0.5 is tagged as 
a “confirmed bubble” and <0.5 is an “unconfirmed bubble.” In addition to a strong R 2 score, bubbles are only 
confirmed if: detected at night, at latitude <45°, there are no gaps in the data, and no non-physical measurements 
from the Langmuir probe or magnetometer. This reduces the risk of contamination from non-EPB events, but it 
does not stop some plasma blobs from being erroneously labeled as EPBs (Park et al., 2013). These will be more 
pronounced during solar minimum (Choi et al., 2012).
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An example IBI EPB is shown inside the gray box of Figure 1a. Here a ΔB 
occurs simultaneously with a ΔNe between the period 0140–0147, which in 
turn triggers an IBI R 2 of 0.97. This value equates to a very high chance of 
EPB detection. A quiet bubble-free ionosphere is shown in Figure 1b.

IBI data was accessed via ESA's virtual research environment for Swarm 
(https://vires.services) and the Python package viresclient (A. Smith 
et  al.,  2022). We also use viresclient to map F10.7 and Kp values to the 
IBI data set. We use data from 2014 to 2022 at a resolution of 1s across all 
three spacecraft where R 2 > 0. The date range covers the declining phase of 
solar cycle 24 and the start of solar cycle 25. We transform the data from a 
time-series into a 6-dimensional space consisting of MLT, latitude, longi-
tude, day-of-the-year, Kp, and F10.7, with each dimension having a corre-

sponding R 2 value (0–1) provided by IBI. This allows us to make a prediction of IBI based on the climatology 
of EPBs which are dependent on time, geolocation, season, and geomagnetic and solar activity (Aa et al., 2020; 
Burke et al., 2004; Carter et al., 2016, 2020). It also ensures that the model can be expanded to forecasting, as Kp 
and F10.7 are readily available via NOAA (https://www.swpc.noaa.gov/products). After re-binning and cleaning, 
we have ∼42k samples for the machine learning models. Figure 2 shows the distribution of R 2 across the 9-year 
period. As seen the majority of values cluster around R 2 = 0 and R 2 = 0.9. We are mainly interested in R 2 > 0.7.

Next, we examine the distribution of the 42k samples across the 6 features. Figure 3 shows that “confirmed” and 
“unconfirmed” bubbles are not uniform across the climate markers.

Most confirmed bubbles are in the post-sunset time frame (19–24 MLT), with a small increase at 4 MLT 
(Figure 3a). The distribution of confirmed bubbles is centered around the geographic equator with only a few 
instances beyond 25° glat (Figure 3b). Next, we see that most bubbles occur in the American/Atlantic sector, but 
that instances exist at all longitudes (Figure 3c). The majority of EPBs occur around the equinox months and 
winter solstice, with little activity in July and August (Figure 3d). Figure 3e shows that the number of confirmed 
EPBs declines with Kp, and there are no bubbles detected at Kp > 7. Lastly, we see that EPB activity peaks 
around F10.7 = 125, but an additional population exists at F10.7 = 220 (Figure 3f). This panel also reveals that 
EPBs are generally less likely to occur at F10.7 < 90. Overall, these results align with the existing literature on 
EPB climatology (e.g., Aa et al., 2020; Abdu, 2012; Burke et al., 2004; Carter et al., 2016; Park et al., 2013). 
Figure 3 also provides some insight into magnetic-only fluctuations (R 2 < 0.5) in the ionosphere, with F10.7 and 
Kp showing some interesting distributions (Figures 3e and 3f).

3.  Machine Learning
We use supervised machine learning (ML) algorithms to predict the IBI value provided by Swarm. Supervised 
methods require labels, yi, which we assign to R 2. We use regression specific architectures as the labels are 
considered a continuous value. ML has a unique ability to identify complex relationships in data that contains rare 
events. It can also handle heterogeneity in space-time and large amounts of noise (Camporeale, 2019; Karpatne 
et al., 2018). Because of this, we believe it is well suited to the task of predicting IBI and the EPBs contained 
within it.

Our main algorithm is the eXtreme Gradient Boosting (XGBoost) method 
which is a tree-based ensemble learner. XGBoost has good control over bias 
and variance, whilst remaining computationally inexpensive to train and 
enabling explainability (Chen & Guestrin, 2016; Lundberg et al., 2020). The 
model's prediction ability is expressed by

𝑦𝑦𝑖𝑖 =

𝐾𝐾
∑

𝑘𝑘=1

𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖), 𝑓𝑓𝑘𝑘 ∈  ,� (2)

where 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 is the prediction value, K is the number of trees, xi is the input data, 
fk is a function in the functional space 𝐴𝐴  , and 𝐴𝐴  is the set of all the possible 
regression trees (Chen & Guestrin, 2016). To evaluate the model's perfor-
mance we need an objective function (Géron, 2019)

Figure 1.  Two examples of Swarm passing over the equator. (a) Swarm 
detects an EPB as indicated by the gray-box. (b) Quiet time conditions with no 
bubbles present.

Figure 2.  Distribution of R 2 detected by IBI across 2014–2022, where 
R 2 > 0.5 = “confirmed,” and R 2 < 0.5 = “unconfirmed” (Park et al., 2013).
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where yi is the target value (R 2), 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖
(𝑡𝑡) is the prediction of the ith instance at the tth iteration, and ω is the complexity 

of the model (Chen & Guestrin, 2016). The term on the left is the loss function, and the term on the right is the 
regularization term. Regularization controls the magnitude of the parameters, 
and thus reduces the model's complexity (Géron, 2019). We use the XGBoost 
package for python (xgboost.readthedocs.io) and Sci-kit learn (scikit-learn.
org) to perform the modeling and analysis. GridSearchCV was used to iden-
tify the optimal hyperparameters, which are as follows: nestimators = 300, 
alpha = 0.1, subsample = 0.5, and eta = 0.2. The last three parameters are 
used to prevent overfitting. We divide the samples into train and test datasets 
with a 80%–20% split. This is randomised initially and then fixed to prevent 
data leakage across the training runs.

We also tested a Random Forest method (Breiman, 2001) and a standard 
linear regression approach as part of our study. These will feature as a 
basis for global performance comparison, but are not subject to extensive 
analysis.

The model's input features and the linear correlation between them is shown 
in Figure  4. It reveals that there is no strong linear correlation between 
any of the features, which provides further justification for using an ML 
approach.

Figure 3.  Bubble detection across the six climate features. Confirmed bubbles (R 2 > 0.5) exhibit different spatio-temporal 
characteristics than unconfirmed magnetic-only fluctuations (R 2 < 0.5).

Figure 4.  A correlation plot showing the relationship between the features. No 
strong linear correlation exists between any of the features.
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3.1.  Assessment Metrics

Several metrics are used to assess the performance, skill, and association of the model. Root Mean Squared 
Error (RMSE) and Mean Absolute Error (MAE) are typical performance tests for regression problems (Chai & 
Draxler, 2014),

MAE =
1

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

|(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)|,� (4)

RMSE =

√

√

√

√

1

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)
2
,� (5)

where n is the number of samples. Accuracy metrics tell us how close the prediction is to the true value, but they 
do not tell us how well the model captures the up-and-down trends of the data set. Association can be represented 
by the Pearson correlation coefficient R

𝑅𝑅 =

∑

(𝑦𝑦𝑖𝑖 − 𝑦̄𝑦)
(

𝑦𝑦𝑖𝑖 − ̄̂𝑦𝑦
)

√

∑

(𝑦𝑦𝑖𝑖 − 𝑦̄𝑦)
2
∑

(

𝑦𝑦𝑖𝑖 − ̄̂𝑦𝑦
)2

,� (6)

This tells us if the predictions are close to the target in some part of the data range, but not in others. An ideal 
value is R = 1. Finally, we examine the skill of the model by looking at its Prediction Efficiency which is based 
on its mean square error (Murphy, 1988)

𝑃𝑃𝑃𝑃 = 1 −

∑

(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)
2

∑

(𝑦𝑦𝑖𝑖 − 𝑦̄𝑦)
2
,� (7)

A model with perfect skill is PE = 1, while PE < 0 shows that the model is no better at making predictions that 
the average of the target values 〈y〉.

4.  Results
The following section presents the performance of the machine learning models in terms of error, association, and 
skill. It goes on to interpret the behavior of the XGBoost model via Shapley values, determining the importance 
of the features and the relationships between them.

Figure 5a shows the association (Equation 6) and skill (Equation 7) of the three modeling techniques. As shown, 
the machine learning techniques outperform the standard linear model, particularly with respect to prediction 
efficiency (0.45 vs. 0.96), which justifies their use. The same trend continues with RMSE (Equation  5) and 
MAE (Equation 4), with the RF and XGBoost architecture outperforming the linear regression method across 
both metrics. The ensemble learners offer a considerable leap across the four metrics, but XGBoost comfortably 
outperforms the RF in all areas. It achieves a PE, R, MAE, and RMSE of 0.96, 0.98, 0.05, and 0.08 respectively, 
all of which are excellent scores. XGBoost also trains 3.8X faster than the RF, because it sub-samples and 

Figure 5.  The skill (PE), association (R), and performance (MAE, RMSE) of three learning models on the 20% test set. 
XGBoost outperforms the random forest and linear method across all four metrics.
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approximates the split points amongst the trees (Chen & Guestrin, 2016). We now select the XGBoost model for 
further analysis and name it AI Prediction of EPBs, or APE.

4.1.  APE

Figure 5 tells us how APE is performing at a global level, but it does not tell us how it performs across the feature 
space. For example, does the model perform better at certain local times or during specific levels of geomagnetic 
activity? Figure 6 looks at the absolute error between the prediction and tagret, 𝐴𝐴 |(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)| , across the features. 
Error bars are calculated using the bootstrapping method (Efron & Tibshirani, 1994).

Generally speaking, APE performs very well across the entire feature space (Figure 6). It performs poorer at 18 
and 3 MLT (Figure 6a), outside the equatorial region (Figure 6b), and during low F10.7 (Figure 6f). These are 
periods when EPB activity is expected to be lower and is therefore not of concern. The performance also tracks 
directly to the availability of the data (Figure 3). That is, when there are more confirmed EPB events to learn 
from, model performance increases.

4.2.  Explainability

A key tenet of the study is to understand the factors that influence predictions, as well as the connections between 
them. To do this we use Shapley Values, which allow us to approximate feature contribution via cooperate game 
theory (Shapley, 1953). The SHapley Additive exPlanations (SHAP) package for Python (shap-lrjball.readthe-
docs.io/) treats the features as players, and prediction of R 2 as the pay-off (Lundberg et al., 2020). The predictions 
and SHAP contributions are calculated with

𝑓𝑓 (𝑥𝑥) = 𝐸𝐸[𝑓𝑓 (𝑥𝑥)] +
∑

𝑛𝑛

𝜙𝜙𝑛𝑛,� (8)

where f(x) is the prediction of R 2, E[f(x)] is the expected value which is ≈〈R 2〉 and is equal to 0.66, and ϕn is the 
SHAP value for each of the features n. ϕ represents the contribution to the pay-off, weighted and summed over all 
possible feature value combinations. Shapley values have the properties of efficiency, symmetry, and additivity, 
which ensures the pay-off is fair (Lundberg et al., 2020; Shapley, 1953). E[f(x)] can be thought of as the climatology 

Figure 6.  The absolute error 𝐴𝐴 |(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)| of APE across the 6 climate features. 0 is an ideal score. The uncertainties are 
calculated with the bootstrapping method (Efron & Tibshirani, 1994), and are represented by vertical bars (a) and (e) and the 
shaded areas (b–d, f).
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of R 2, and each of the feature values can contribute to this in a positive (ϕ > 0) 
or negative (ϕ < 0) way. Shapley values are emerging as the de facto method 
for explaining the output of ML models (Merrick & Taly,  2020), but their 
interpretation requires caution and expertise (I. E. Kumar et al., 2020).

Figure  7 shows the mean absolute SHAP value across the six features. It 
shows that, on average, an F10.7 value will influence the prediction by 0.1, 
which is sufficient enough to consider a prediction a “confirmed bubble” 
(Park et al., 2013). Latitude contributes the least with ϕ = 0.04. Figure 7 also 
shows that F10.7 is the most influential feature, whilst Latitude is the least.

We now turn our attention to the feature inputs and corresponding SHAP 
values. Figure 8 shows that ϕ can be positive and negative, but Equation 8 
means that we can only interpret the contribution to R 2 when we take the sum 
of all the SHAP values. ϕ > 0 equates to increasing EPB likelihood, whereas 
ϕ < 0 is decreasing.

In the F10.7 panel (Figure 8a), we see that low solar activity corresponds to extremely negative SHAP values. 
This suggests that IBI is primarily detecting magnetic-only fluctuations and that EPBs require F10.7  >  90. 
Second, post-sunset values of MLT equate to the highest values of ϕ, with the contribution peaking at 21 MLT 
(Figure 8b). It also shows a largely negative contribution after midnight, meaning that most EPBs occur after 
sunset. Longitude generally follows the known pattern of increased EPB formation over the American/Atlan-
tic sector (Figure  8c), but there are positive contributions across the longitudinal space. Unlike the previous 
features, Day of the Year values generally contribute in a positive and negative way across the entire feature space 
(Figure 8d). We see high values of ϕ > 0 around the equinoxes and winter soltice, which is to be expected as EPB 
formation is generally highest during this period. That said, we also see a high positive cluster around the Earth-
Sun perihelion, with the highest value of ϕ on Day of the Year = 19. Kp provides perhaps the most intriguing 

Figure 7.  The mean absolute SHAP value across the six features. F10.7 
contributes an absolute average of 0.1 to the 0.66 baseline and is the 
considered the most important feature. Latitude contributes 0.04 to E[f(x)] is 
considered the least.

Figure 8.  SHAP ϕ contributions across the feature space. ϕ > 0 increases the predicted value of R 2, whereas ϕ < 0 decreases 
it. Predictions of R 2 > 0.7 are considered to be EPBs, so large values of ϕ > 0 are more likely to be associated with plasma 
bubbles. Generally the SHAP values follow the climatology outlined in Figure 3.
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insight into EPB climatology (Figure 8e). It clearly shows that increasing Kp equates to negative SHAP values, 
which reduce the likelihood of an EPB. Beyond Kp > 6 we only see ϕ < 0 which increases the likelihood of a 
B-only fluctuation. Lastly, we see that positive SHAP values are mainly centered around Latitude = 0°–20° which 
is expected given EPBs known formation and our use of geodetic coordinates (Figure 8f).

Next we examine some of the ϕ > 0 values at Kp = 4–5 and Day of the Year = 360 to 21. These are intriguing 
because the former are the only positive contributions to EPB prediction during a moderate storm, and the latter 
exhibits the highest ϕ > 0 contribution for that feature. Figure 9 illustrates the values for Kp and Day of the Year, 
as well as the other features that contribute to R 2. In all cases we see that the IBI value is >0.9, and is therefore 
almost certainly an EPB (Park et al., 2013). It's also evident that Day of the Year is the dominant “player,” with 
contributions as high as ϕ = +0.27 (Figure 9a). More importantly, Figures 9c and 9d show the only examples of 
high Kp equating to positive SHAP values, which also coincide with the Earth-Sun perihelion. Examining this 
as a whole, Figure 9 shows that a combination of winter solstice/Earth-Sun perihelion, Kp > 2, and low F10.7 
equates to a high chance of detecting an EPB.

5.  Discussion
APE can reliably predict the IBI R 2 index on Swarm. If it predicts an R 2 > 0.7 it can be considered an EPB. The 
model has a high accuracy of RMSE = 0.08 and exhibits excellent skill and association. SHAP values reveal the 
most important features, how features contribute to predictions, and the interrelation between them. We now 
expand on the IBI observations and SHAP values with respect to geomagnetic activity and seasonal effects. 
Generally speaking the IBI climate feature observations (Figure 3) and SHAP (Figures 8 and 9) values align 
with the existing literature: EPBs mainly occur in post-sunset, in the American/Atlantic sector, around the equi-
nox months, and when solar activity is high (Aa et al., 2020; Abdu, 2012; Burke et al., 2004; Park et al., 2013). 
They also show that magnetic-only fluctuations (R 2 < 0.5) are more likely post-midnight, during low F10.7, and 
high  Kp.

The above suggests that geomagnetic activity suppresses EPB onset. This is supported by the test-set histo-
grams in Figure 8e, which shows that less data still results in more positive SHAP contributions when Kp is 
low. However, geomagnetic activity is both able to suppress and enhance EPB formation, via DDEF and/or over 
and under-shielding electric fields (Aa et al., 2019; Abdu, 2012). Unfortunately, this cannot be fully captured 

Figure 9.  A “waterfall” plot showing 4 predictions around the Earth-Sun perihelion and Kp > 2. The final prediction value is 
denoted by f(x), and the values represent the contribution to this from the baseline E[f(x)] ≈ 〈R 2〉 = 0.66. SHAP ensures that 
the sum of the contributions always enables a prediction between 0 and 1.

 21699402, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JA

031183 by U
niversity C

ollege L
ondon U

C
L

 L
ibrary Services, W

iley O
nline L

ibrary on [01/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Space Physics

REDDY ET AL.

10.1029/2022JA031183

9 of 11

by concurrent Kp owing to DDEF's time-delay effects to the equator. It's possible that indices such as DST or 
AE are better suited to capturing this, but neither are currently available as forecast products, and thus were 
excluded from the feature space. To fully capture the influence of geomagnetic activity on EPBs, bespoke indices 
may be required. For now, this exceeds the remit of this study, especially when the model accuracy is as high 
as RMSE = 0.08. Kp has been shown to capture day-to-day variability of EPBs during “EPB Season” (Carter, 
Retterer, et al., 2014), but additional work is required to capture them during “off-season.” If we assume that 
F10.7 < 90 to be off-season, then Figures 9c and 9d, shows Kp could be useful at all times, particularly around the 
Earth-Sun perihelion. That said, Figures 9c–9d also shows that identical values of F10.7 can have different contri-
butions for different predictions, which shows that interpreting Shapley values requires caution (I. E. Kumar 
et al., 2020). Another interesting feature is that Kp = 5 also coincides with the only ϕ > 0 at 3 MLT (Figures 8b 
and 9c–d). EPBs are suppressed after sunset, but enhanced after midnight during large ΔDDEF (Abdu, 2012), so 
these points could be direct evidence of over-shielding effects. That said, the MLT values contribute to the pay-off 
in a negative way (−ϕ) and others have reported that over-shielding is more impactful than under-shielding on 
vertical drifts (Hui & Vichare, 2019), and so more evidence is required to support this.

Turning to the cluster of positive SHAP values around the Earth-Sun perihelion (Figure 8d). We would not expect 
these ϕ values to be higher than the vernal and autumnal equinoxes or December solstice when EPB onset is most 
probable (Burke et al., 2004). One possible explanation is an increase in the F region density around the Gregorian 
new year, potentially arising from the Earth-Sun perihelion (Rishbeth & Uller-Wodarg, 2006). The exact cause of 
this semi-annual variation remains unknown, but we do know that an increased 𝐴𝐴

∑𝐹𝐹

𝑃𝑃
 in Equation 1 would increase the 

growth rate of an EPB (Carter et al., 2020; Sultan, 1996). This F region asymmetry has also been linked to increased 
atmospheric gravity waves, which are a known seeding mechanism for EPBs (Abdu et al., 2009; Singh et al., 1997). 
That said, the asymmetry happens every year, yet we do not see a large number of points around this period. Although 
further investigation is required into both the seasonal and geomagnetic influences on EPB formation, this discussion 
highlights the potential of Shapley values to improve our understanding of bubble climatology and predictability.

6.  Conclusions
In this paper have shown that machine learning can successfully predict the Ionospheric Bubble Index (IBI) 
on-board the Swarm spacecraft. IBI detects equatorial plasma bubbles in the ionosphere by assessing changes in 
the plasma density and magnetic field. AI Predictions of EPBs (APE) is able to accurately predict IBI across a 
range of spatio-temporal conditions. The main findings of our study are summarized below:

1.	 �APE fully captures the climatology of EPBs detected by Swarm. This is made possible with the size and reso-
lution of the data set (9 years @ 1s), feature selection, and regression-specific model architecture. APE could 
also be expanded to forecasting as Kp and F10.7 are currently available via NOAA.

2.	 �The XGBoost approach outperforms the other methods (linear regression and random forest) across all 
metrics. It performs extremely well; presenting a skill, association, and root mean square error score of 0.96, 
0.98, 0.08 respectively.

3.	 �APE performs well across the entire feature space, especially post-sunset, in the American/Atlantic sector, 
around the equinoxes, and when solar activity is high. This is encouraging as most EPBs occur during these 
periods and locations. Extra consideration may be required when using APE around 3 MLT.

4.	 �SHAP values reveal that F10.7 is the most influential feature, whereas latitude is the least. SHAP values 
generally align with the existing climatology of IBI EPBs, which validates these results.

5.	 �Additional metrics may be required to fully capture the effects of geomagnetic activity on EPB predictions, but 
this may compromise APE's ability to forecast them. There is some evidence of high Kp generally suppressing 
EPB activity, but further investigation into under and over-shielding is required.

6.	 �The Shapley analysis also reveals that a combination low solar activity, active geomagnetic conditions, and the 
Earth-Sun perihelion all contribute to increased EPB likelihood. To the best of our knowledge, this is the first 
time this exact combination of features has been linked to bubble detection. Although its underlying mecha-
nism needs additional investigation, it does showcase the ability of Shapley values to enable new insights into 
EPB climatology and predictability.

Acronyms
EPB	 equatorial plasma bubble
GNSS	 global navigation satellite system
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PPEF	 prompt penetration electric field
DDEF	 disturbance dynamo electric field
ML	 machine learning
APE	 AI prediction of EPBs
IBI	 ionospheric bubble index
MLT	 magnetic local time
XGBoost	 eXtreme Gradient Boosting
RF	 random forest
SHAP	 SHapley Additive exPlanations

Data Availability Statement
Swarm datasets can be accessed with the VirES Python client (https://github.com/ESA-VirES/VirES-Python-Cli-
ent), or via the Virtual Research Environment (https://vires.services). Users need to create a free-account to 
access the data.
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