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Abstract 

BACKGROUND: ERBB2/HER2 is amplified in a significant proportion of human breast cancers, 

where it is correlated to poor prognosis for the patient and therapeutic resistance. However, little is 

known about the underlying mechanisms and their effect on tumour progression. In the ongoing 

attempt to elucidate the downstream signalling mechanisms of ERBB2 overexpressing breast cancer, 

a poorly characterised calcium-binding protein called Copine III (CPNE3) has been identified as 

potentially associated with ERBB2-dependent transformation.  

METHODS: Two mass spectrometry-based proteomic methods, tandem mass tagging (TMT) LC-

MS/MS and label-free LC-MS/IMS/MS were implemented to discover candidate biomarkers regulated 

by siRNA-mediated gene knockdown of CPNE3 in ERBB2 overexpressing HMLECs. A combination of 

real-time cell adhesion assays, mass spectrometry based proteomic workflows, statistical analysis, 

biological network construction, causal and functional enrichment analysis revealed the functional role 

of these CPNE3 regulated candidate biomarkers. Novel clinical biomarkers of HER2-positive status 

were confirmed by mapping candidate biomarkers to data from two breast cancer patient cohorts 

using Pearson correlation and potential signalling mechanisms were identified by evaluating 

phosphopeptide enrichment. 

RESULTS: The downregulation of adhesion related proteins ITGA6 and ITGB4 was shown to 

correlate with the overexpression of CPNE3 in ERBB2 over-expressing HMLECs. However, the 

knockdown of both CPNE3 and ERBB2 did not reverse the expression pattern. Cell adhesion assays 

demonstrated that ERBB2 over-expressing HMLECs adhere to an adherent surface more readily than 

parental HMLECs and mass spectrometry-based proteomic profiling, PCA and k-means clustering 

revealed a link between CPNE3 and components of ribonucleoprotein complexes that form in the 

early stages of cell spreading. In addition, CPNE3 expression regulates several proteins such as 

CANX, CS, HIST1H4A and PYGM that are downstream effectors or targets of OXPHOS. 

CONCLUSION: CPNE3 is proposed as a marker for adaptive mechanosensing related metabolic 

reprogramming. Moreover, suggesting a role for CPNE3 in glucose homeostasis of breast cancer 

during malignant transformation. 
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ErbB4     Receptor tyrosine-protein kinase erbB-4 

ERK    Extracellular signal-Regulated Kinase 

FAK     Focal adhesion kinase 

Grb2     Growth factor receptor bound protein-2 

HB-EGF    Heparin-binding EGF 

HIST1H4A   Histone H4 

HRG     Heregulin β1 

HRP     Horseradish peroxidise 

IFN     Interferon 

ITGA6    Integrin alpha 6 

ITGB4    Integrin beta 4 

KPNA2    Importin subunit alpha-1 

LET-23     Lethal complementation group 23 

Lin-3     Abnormal cell lineage 3 

MAPK     Mitogen activated protein kinases 

NDRG1    Protein NDRG1 

NRG     Neuregulin 

NRG1     Neuregulin 1 

NRG2    Neuregulin 2 

NRG3     Neuregulin 3 

NRG4    Neuregulin 4 

PAK2    p21-activated kinase 2 

PI3K     Phosphatidylinositol 3 kinase 
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PR    Progesterone receptor 

PTB     Phosphotyrosine-binding domain 

PYGM    Glycogen phosphorylase 

RAGE     Receptor of advanced glycation end products 

RAS    Ras GTPase 

RTK     Receptor tyrosine kinase 

SH2    Src homology-2 domain 

Sos     Son of sevenless 

SSRP1    Structure specific recognition protein 

STARD10    PCTP-like protein 

P53     Cellular tumour antigen p53 
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Chapter 1 

1. Introduction 

1.1 Breast cancer epidemiology 

1.1.1 Statistics 

In women, breast cancer has a one in eight lifetime risk of incidence (CRUK 2006) and is the most 

prevalent malignancy in the United Kingdom (CRUK 2007). Despite an escalating rate of incidence, 

five-year survival rates in Britain are as high as 80%, attributed largely to the screening programme 

initiated in 1988 and dramatic advances in therapeutics (CRUK 2006). 

1.1.2 Risk factors 

The risk of breast cancer incidence is related to multiple factors. The sex of the individual confers the 

highest risk of developing breast cancer since 1 in 8 women and 1 in 870 men will develop breast 

cancer in their lifetime. Age contributes greatly to the risk of breast cancer incidence although it is the 

most frequently diagnosed malignancy in women under the age of thirty-five (CRUK 2007). Early 

onset of the menstrual cycle, late age at first pregnancy, nulliparity and late age at menopause have 

all been reported to contribute to an elevated risk (Kelsey, Gammon et al. 1993). Furthermore, the 

use of exogenous hormones such as oral contraceptives and hormone replacement therapy may also 

affect tumourigenicity (Chen, 2008). The lifestyle of the individual contributes significantly to the risk of 

breast cancer development. Physical activity may play a protective role in premenopausal and 

overweight postmenopausal women(Singletary & Gapstur, 2001). However, obesity displays the 

opposite relationship to breast cancer incidence in both groups (Carmichael & Bates, 2004). High 

alcohol intake significantly increases the risk of malignancy (Teng et al., 2008). Familial mutations 

account for 5-10% of all cancers; the BRCA1 tumour suppressor is frequently mutated in hereditary 

breast cancer and confers a lifetime risk of 60-80% (Burnett & Kennedy, 1954). Nevertheless, an 

increase in the effectiveness of breast cancer screening methods such as mammography, which 

remains the main screening tool for breast cancer, has seen a reduction in breast cancer mortality 
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rates by about 20 to 35% in women aged 50 to 79 years and slightly less in women aged 40 to 49 

years at 14 years of follow-up (Elmore et al., 2005). 

 

1.1.3 Malignancy and breast neoplasms 

 

Figure 1.1.1 Female breast morphology and breast malignancies. Breast malignancies can 
be categorised based on mammary duct or lobular acini origin and whether the cancer cells 
have left the primary site. Invasive ductal carcinoma (IDC) acquires the ability to undergo 
basal extrusion via the basement membrane and intravasates into the surrounding blood 
capillaries gaining the ability to metastasise from the primary site to other body tissues. The 
figure was created using BioRender (www.biorender.com). 

 

Malignancy is the condition where normal human cells undergo molecular changes that lead to 

aberrant cell division to form a mass of tissue or neoplasm that has the ability to spread to other sites 

in the body. Breast cancer is a malignant condition of breast cells that may invade adjacent tissues or 

propagate to other organs of the body. It includes carcinomas that originate from epithelial cells and 

sarcomas that arise from fat/muscle tissues or blood vessels. A carcinoma is a malignancy that 

develops from epithelial cells, particularly those found in a tissue that lines the inner and outer parts of 

the body. The female breast is a common source of carcinomas and consists of lobules which 

produce milk, ducts which deliver milk to the nipple, and stroma tissues. Ductal and lobular 
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carcinomas in situ (DCIS and LCIS respectively) are non-invasive breast malignancies wherein 

tumour cells are confined to the mammary ducts or lobular acini (Figure 1.1.1). Invasive carcinomas 

are classically adenocarcinomas, which arise from mammary glandular epithelial cells and are 

typically of ductal (85%) as opposed to lobular (10%) origin. Direct invasion to the skin and nipple is 

common whilst distal site metastases via the lymph nodes and blood circulation frequently establish 

secondary tumours in the lungs, bones, liver, adrenal glands and brain. 

Oestrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 

(ERBB2/HER2) are frequently expressed in breast cancer and are effective both as prognostic 

indicators and for directing treatment. Breast cancers termed triple negative (TN) do not exhibit 

protein expression of the any of these receptors (Anders & Carey, 2008). The receptors may also 

confer common expression patterns, for instance a general inverse correlation is observed between 

ERBB2 expression and the ER with or without the PR (Konecny et al., 2003). About 20%-30% of 

breast cancers overexpress ERBB2, which induces aberrant cell growth and proliferation. This type of 

cancer is correlated with a poor long-term prognosis and has a high rate of metastasis to other sites 

(Kallioniemi et al., 1991). More importantly, the ligand-unbound ERBB2 and kinase-deficient ERBB3 

represent the most mitogenic signalling pair among ERBB family receptors, making ERBB2-related 

breast cancer signalling a key area of research, both for elucidation of the mechanisms of signalling 

and the identity of therapeutic targets. 
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1.2 The ERBB receptor family 

1.2.1 Receptor tyrosine kinases

 

Figure 1.2.1   Phosphorylation of receptor tyrosine kinase (RTK). Regulation of receptor 
tyrosine kinase (RTK) protein phosphorylation by protein kinase activities catalyse the 
addition of phosphate to the tyrosine residues on proteins and phosphatase activities 
remove phosphate from the proteins. The figure was created using BioRender 
(www.biorender.com). 

 

Phosphorylation of proteins is a widespread chemical modification and has been known to exist since 

the nineteenth century (Venerando et al., 2017). The molecule responsible for the transfer of a 

phosphate group (ATP) remained elusive until 1954 (Burnett & Kennedy, 1954). The first mechanism 

was described as an ATP-mediated transfer of a 32P labelled phosphate group to serine residues on 

the protein casein (Burnett & Kennedy, 1954). Krebs and Fischer later studied the activity of a 

metabolic enzyme called glycogen phosphorylase and determined that its activity is mediated by an 

ATP- catalysed reversible phosphorylation (KREBS & FISCHER, 1956). Protein phosphorylation was 

later shown to decrease enzyme activity of glycogen synthase in rabbit muscle tissue (FRIEDMAN & 

LARNER, 1963). Protein kinases and phosphatases that mediate ATP-catalysed reversible protein 

phosphorylation are now recognized to regulate a wide range of cellular mechanisms (Figure 1.2.1) 

(Krebs, 1983). Approximately 1.7% of genes in the human genome code for protein kinases, which 

are a family of 518 proteins comprised of 478 members unique to eukaryotes (Roskoski, 2004). This 

eukaryotic protein kinase superfamily consists of 90 protein tyrosine kinases (of which 58 are 
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receptors and 32 are non-receptors) and 43 tyrosine kinase-like kinases (Manning et al., 2002; 

Robinson et al., 2000). Despite a phosphoserine: phosphothreonine: phosphotyrosine ratio of 3000: 

300: 1 existing in many cell types, tyrosine phosphorylation is an essential mediator of cellular signal 

transduction (Roskoski, 2004). 

Cell to cell signalling may occur via the secretion and reception of biomolecules which elicit diverse 

intracellular and extracellular responses. Various extracellular signals are incapable of passively 

entering the cytoplasm due to the impermeable nature of the plasma membrane. Receptor tyrosine 

kinases play a pivotal role in interpreting and transducing the chemical message from the external 

environment across the plasma membrane to initiate intracellular signalling. Common intracellular 

signalling events triggered by receptor tyrosine kinases are associated with cellular development, 

differentiation, proliferation, motility and survival. Effective signalling is controlled by reversible 

phosphorylation which is tightly regulated by the opposing activities of protein kinases and 

phosphatases. The human genome encodes 107 protein tyrosine phosphatases of which 38 are 

strictly tyrosine specific and are of receptor or non-receptor subtypes (Alonso et al., 2004). Tyrosine 

phosphatases often antagonise receptor tyrosine kinase signalling either via the dephosphorylation of 

receptors or target substrates. Protein tyrosine phosphatases may also agonise signalling through the 

inactivation of inhibitory signalling components (Ostman et al., 2006). 

1.2.2 Origin, structure and ligands 

The family of ERBB receptors is a group of type I receptor tyrosine kinases (RTKs) with structural 

homology. The family includes, epidermal growth factor receptor (EGFR), ERBB2 (HER2), ERBB3 

(HER3) and ERBB4 (HER4) receptors. EGFR was one of the first RTKs described as a ligand-

regulated protein kinase. It largely serves as the pioneering model for the structure of ERBB family 

RTKs. Consequently, all ERBB receptors consist of extracellular domains, a transmembrane 

domain, a juxtamembrane region, an intracellular tyrosine kinase domain and a regulatory region 

comprised of a non-catalytic carboxyl-terminal tail with numerous tyrosine phosphorylation sites 

(Figure 1.2.2) (Bazley & Gullick, 2005; Ferguson, 2008). 
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The ERBB receptor was originally observed in Caenorhabditis elegans as let-23 (lethal 

complementation group 23)(Aroian et al., 1990) with a sole ligand lin-3 (abnormal cell lineage 3)(Hill 

& Sternberg, 1992). The ERBB family demonstrates evolutionary conservation and the vertebrate 

forms are homologous variants of the ERBB in C. elegans. However, the vertebrate ERBB family 

demonstrates more complexity and diversity. The ancestral vertebrate ERBB family is thought to 

have arisen from a gene duplication event, which initially produced a set of precursors to the present 

day ERBB family of receptors. The ERBB family ligands are also thought to have undergone a 

similar diversification to yield the current EGFR and ERBB3/4 ligands (Stein & Staros, 2000, 2006). 

Moreover, the ERBB receptors have varying kinase activity with EGFR and ERBB4 demonstrating 

potent kinase activity and intact ligand binding. The catalytic region of the ERBB3 kinase domain 

has a point mutation at a key residue which results in a lack of kinase activity (Guy et al., 1994). In 

contrast, ERBB2 has potent kinase activity but lacks ligand binding capability. Therefore, ERBB2 

heterodimerises with the other receptors which in turn activates signalling; the ERBB2/ERBB3 

dimerisation pair being the most potent signalling activator. 

 

Signalling activation in the ERBB receptor family is stimulated by the binding of small protein growth 

factor ligands. All ERBB ligands have a consensus EGF-like core domain, comprised of sixty amino 

acids with six cysteine residues forming intramolecular disulphide bonds to sufficiently confer 

binding specificity and basic activation (R. C. Harris et al., 2003; J. T. Jones et al., 1999). 

Accordingly, they are categorized as per their binding specificity and ERBB receptor affinity. The 

ligands are divided into three groups, an epidermal growth factor (EGF) associated group which 

binds specifically to EGFR, a group of neuregulins (NRGs) that undergo alternative splicing to 

produce multiple isoforms that interact with ERBB3 and ERBB4 (Warren & Landgraf, 2006) and a 

group that demonstrates dual binding specificity to EGFR or ERBB4 and includes growth factors 

such as heparin-binding EGF-like growth factor (HB-EGF), epiregulin (EPR) and β-cellulin (BTC). 

ERBB2 is an orphan receptor with no known ligands (Klapper et al., 1999). The EGFR receptor has 

an affinity for EGF, amphiregulin, BTC, HB-EGF, and transforming growth factor α (TGF- α). The 

ERBB3 receptor has an affinity for neuregulin-1 and the ERBB4 receptor binds to neuregulins, EPR 

and HB-EGF (Yarden & Sliwkowski, 2001). 



 31 

 

 
 

Figure 1.2.2 Structural representation of a typical ERBB receptor. A. The EGFR receptor 
consists of four extracellular domains I-IV (L1, CR1, L2, CR2), transmembrane span, 
juxtamembrane region, kinase domain, and a C-terminal tail. B. Ribbon diagrams 
representing the secondary and tertiary structures of EGFR domains. Domain I and III adopt 
a β-helix fold. Domain II and IV adopt extended structures comprising a series of disulfide-
bonded modules. The inactive kinase is shown with the ATP analogue (AMP-PNP) in stick 
representation (Ferguson, 2008). 

1.2.3 Signal transduction 

The ERBB receptors naturally exist as monomeric units spanning the plasma membrane and have 

dormant cytoplasmic kinase domains capable of intrinsic auto/cross-phosphorylation of tyrosine 

residues. The receptors hetero/homodimerise in response to ligand binding which is widely 

recognized as the principle mechanism of activating the auto/cross phosphorylation of tyrosine 

residues in the carboxyl-terminal tails (Hazan et al., 1990; Margolis et al., 1989). The EGFR, ERBB3 

and ERBB4 receptors have intramolecular interactions between domains II and IV (CR1 and CR2) 

which maintain the dimerisation loop in an inactively tethered receptor conformation (Bouyain et al., 

2005; Cho & Leahy, 2002; Ferguson et al., 2003). Ligand binding between extracellular domains I and 

III (L1 and L2) induces conformational changes and disrupts the dimerisation loop. This leads to an 
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untethered conformation and induces an interaction with another proximal ligand bound ERBB 

receptor (Garrett et al., 2002; Ogiso et al., 2002). The structure of ERBB2 closely resembles that of 

an untethered receptor and as such is capable of hetero/homodimerising in a ligand independent 

manner (Cho et al., 2003; Garrett et al., 2003). ERBB2 is however homodimerization deficient and 

prefers to heterodimerise with the other ERBB receptors. Thus, it interacts with its binding partners to 

promote signalling (Graus-Porta et al., 1997; Tzahar et al., 1996). 

 

When a ligand binds to an ERBB receptor, the conformational change leads to kinase activation and 

phosphorylation of the receptor and downstream adaptor proteins which leads to recruitment and 

activation of signalling molecules which enhance signal transduction cascades (Figure 1.2.3). This 

can occur through the interaction of a phosphotyrosine docking site located on the carboxyl terminal 

tail of the receptor with SH2 domain and phosphotyrosine-binding domain (PTB) containing proteins 

(Schlessinger, 1994). All combinations of active receptor pairs can activate the GRB2-SOS-Ras 

pathway. However, the PI3K-Akt signalling pathway is mainly coupled to the EGFR homodimer and 

ERBB3 in its hetero-complex and ERBB4 in both its dimer complexes (Gschwind et al., 2004; Rubin & 

Yarden, 2001). Other major pathways involved in intracellular signalling are the stress activated 

protein kinase cascade, PLCγ-PKC pathway and cell migration related to Vav-Rac-JNK which are 

EGFR activated (Rubin & Yarden, 2001). The EGFR homodimer binds and activates the widest range 

of downstream signalling proteins. In contrast the ERBB3 receptor is kinase-deficient with low 

complexity, but a highly potent interaction partner for adaptors. Intracellular signalling is transduced to 

the nucleus and activates transcription factors which regulate gene transcription (Schaeffer et al., 

1998). Through this and other mechanisms, the receptors feed into pathways regulating cellular 

metabolism and energy control, biosynthesis, the cytoskeleton, adhesion and molecular transport 

(Figure 1.2.3).  



 33 

 
 
Figure 1.2.3 Overview of ERBB signalling. The extracellular ligand binding domains of the 
various receptors are shown to bind to either epidermal growth factor (EGF), neuregulin 1 
(NRG1), neuregulin 2 (NRG2), neuregulin 3 (NRG3), neuregulin 4 (NRG4), heregulin 1 (HRG 
1) or heregulin 2 (HRG 2). The figure was created using BioRender (www.biorender.com). 

1.2.4 Signal attenuation  

Mammalian cells have developed complex regulatory mechanisms to turn off intracellular signalling, 

which prevents deregulated signalling and aberrant cell proliferation. This negative regulation process 

is essentially achieved in three ways: dephosphorylation of tyrosine residues, internalisation and 

degradation of activated receptors, and modulation of receptor kinase activity. Phosphatases, such as 

density-enhanced phosphatase-1 (DEP-1) and protein tyrosine phosphatase 1B (PTP1B), can 

dephosphorylate the phosphorylated tyrosine residues at receptor tail region, such that adaptor 

protein recruitment to the cell surface receptors is diminished (Tarcic et al., 2009; Yip et al., 2010). 

Downregulation of signalling by receptor internalization occurs in two steps; receptor degradation and 

recycling. EGFR naturally resides in caveolae on the cell membrane, whereupon it exits caveolae 

following ligand binding and enters clathrin-coated vesicles. Clathrin-coated vesicles have been 
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implicated in several distinct intracellular transport steps. The clathrin-mediated endocytic pathway 

plays an important role in the selective uptake of proteins at the plasma membrane of eukaryotic cells. 

Hence, the EGFR undergoes endocytosis through endosomes. The endosome differentiates between 

unliganded EGFR, which is sent back to cell surface, whereas a ligand occupied receptor is tagged by 

the E3 ubiquitin ligase Cbl and directed to degradation (Levkowitz et al., 1998).  

Modulation of receptor kinase activity can also be used to switch off oncogenic signalling. A good 

example is the binding of Hsp90 to ERBB2, which blocks phosphorylation of ERBB2 at residue 

Tyr877 within the receptor kinase domain (W. Xu et al., 2007).  When Hsp90 binds to ERBB2, it 

stabilizes the receptor, and this may explain the correlation between poor prognosis and elevated 

ERBB2 and Hsp90 levels in breast and other cancers. Accordingly, ERBB2 overexpressing cancers 

are highly sensitive to Hsp90 inhibition (Pick et al., 2007). 

1.2.5 ERBB expression in the mammary gland 

ERBB expression has been investigated extensively in knockout mice which have made an invaluable 

contribution towards functional assignment. Studies conducted with knockout mice have shown that 

the ERBB receptors are expressed in the mammary gland prior to puberty but are not phosphorylated. 

EGFR and ERBB2 phosphorylation are initiated during ductal morphogenesis at puberty, whilst 

ERBB3 and ERBB4 receptors are not (Sebastian et al., 1998). Similarly, the EGFR and ERBB2 

receptors are preferentially expressed in mouse mammary ducts and alveoli, whilst the expression of 

ERBB3 and ERBB4 receptors is mostly alveolar. Early evidence suggested that all ERBB receptors 

are expressed and phosphorylated during murine pregnancy and lactation stages (Schroeder & Lee, 

1998). These observations were substantiated by rat studies that confirmed the functional presence of 

EGFR and ERBB2 during the entire process of mammary development, whilst the ERBB3 and 

ERBB4 receptors were limited to pregnancy and lactation (Darcy et al., 1999, 2000). These studies 

point toward an essential role for EGFR during ductal morphogenesis (Andrechek et al., 2005; 

Jackson et al., 2004; Sebastian et al., 1998; Wiesen et al., 1999; Xie et al., 1997), and place ERBB2, 

ERBB3 and ERBB4 as essential receptors in lobuloalveolar formation and lactation (F. E. Jones et al., 

1999; F. E. Jones & Stern, 1999; Qu et al., 2006; Tidcombe et al., 2003).  



 35 

 

While EGFR and ERBB2 have been detected throughout all stages of mammary development (Darcy 

et al., 1999, 2000) and the presence of EGFR and ERBB2 in these tissues correlates with an early 

observation that their overexpression is associated with various types of invasive cancers in humans, 

unlike ERBB3 and ERBB4 (Verbeek et al., 1997), there still remain unanswered questions regarding 

the mechanisms that drive tumorigenesis and the role played by ERBB family members. Breast 

cancer development is known to involve several signalling pathways which are associated with 

patterning and morphogenesis during mammary gland development (S. Y. Lin et al., 2000). Both 

EGFR and ERBB2 have been shown to play a role in activating several well-known intracellular 

signalling pathways such as the PI3K-Akt and GRB2-SOS-Ras signalling pathways (Figure 1.2.3) 

(Gschwind et al., 2004; Rubin & Yarden, 2001). However, the downstream signalling mechanisms 

and their interaction partners remain largely unknown. Furthermore, there remains a need to elucidate 

the functional role of potential downstream signalling partners in bringing about neoplastic phenotypes 

in mammary tissue cells. 

1.3 ERBB2 Overexpressing Cell Systems 

The role of gene expression in disease progression can be studied in relevant cell models that reflect 

similar molecular characteristics to those of the normal cell type from which a malignancy originates. 

Cancer cell lines are generally regarded as a good model of primary cells as they retain the molecular 

features of cancer cells in vivo (Lacroix & Leclercq, 2004), are generally more robust and easier to 

work with than primary cells but are susceptible to genotypic and phenotypic transformation. 

Manipulation of normal cells may enable the characterisation of the underlying molecular alterations 

responsible for the development of carcinomas. Most breast cancers originate from ductal luminal 

epithelial cells. HB4a is an established cell line derived from normal human mammary luminal 

epithelial cells immortalised with a temperature-sensitive (TS) mutant of the SV40 large T antigen. 

The HB4a cells exhibit a non-transformed phenotype, and retain luminal epithelial cell markers 

(Stamps et al., 1994). However, analysis of mRNA profiles and transcriptome found that the miRNA 

profile of HB4a is quite different from that of normal breast tissue. Nevertheless, HB4a still carries a 

similar mRNA expression profile to that of normal breast tissue and is an excellent molecular model 
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for proteomic studies (Git et al., 2008). Human mammary luminal epithelial clones expressing different 

levels of ERBB2 were developed by transfecting HB4a cells with c-ERBB2 cDNA under the control of 

the MMTV-LTR (R. A. Harris et al., 1999). Selected clones (C3.6 and C5.2) assumed a 

hyperproliferative state and exhibited anchorage-independent proliferation and are thus relevant 

models for the study of ERBB2-specific transformation. In contrast, ERBB2 overexpressing cell lines 

such as BT474 and SkBr3, derived from primary tumours are also useful in vitro models for the study 

of cellular transformation in cancer research (Lasfargues et al., 1978; Trempe, 1976). 

 

Cancer cell line models, although useful for understanding basic cellular mechanisms, have intrinsic 

and unsurmountable limitations. These limitations include the fact that they are cultured in 2D flat 

dishes, growing in cell culture media, and lacking matching tumour microenvironment (TME) 

components. In contrast, the TME is a complex network of cells, extracellular matrix, and signalling 

molecules that surround and support the growth of tumour cells. It is a dynamic and constantly 

evolving environment that plays a crucial role in tumour development and progression. The TME 

includes a variety of cell types, such as cancer-associated fibroblasts, immune cells, endothelial cells, 

and pericytes, as well as cytokines, chemokines, growth factors, and extracellular matrix proteins. 

These components interact with each other to regulate tumour cell behaviour, such as proliferation, 

migration, invasion, and resistance to therapy. The TME can also create a barrier for immune cells to 

enter and attack the tumour, leading to immune evasion and immune suppression (Anderson & 

Simon, 2020; Baghban et al., 2020). Overall, understanding the TME is critical for developing effective 

cancer therapies that can target the tumour and its surrounding microenvironment. 

1.4 Passive in Vitro Cell Adhesion Assays 

Anchorage-independent proliferation is widely considered a hallmark of oncogenic transformation and 

has been shown to be a powerful predictor of tumourigenic and metastatic potential of non-malignant 

cells (Freedman, 1974). Studies involving several cell types have demonstrated that anchorage-

independent proliferation is initiated by multiple genetic changes that inactivate the Rb and p53 

tumour suppressor pathways while activating the Ras signalling pathways (Hahn & Weinberg, 2002). 

During anchorage-independent proliferation, cell-matrix and cell-cell adhesions enable cells to stick to 
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an extracellular matrix (ECM) characterised by passive mechanical aspects such as its bulk, local 

stiffness, viscoelasticity, ligand density and topography (Arnold et al., 2004), or to adjacent cells in a 

passive manner (Baum & Georgiou, 2011; Leckband & de Rooij, 2014; Yap et al., 2018). Since HB4a-

derived ERBB2 overexpressing cell line models such as C3.6 and C5.2 are known to assume 

anchorage-independent growth (Lasfargues et al., 1978; Trempe, 1976), the effect of protein 

expression on cell adhesion can be assessed using passive in vitro cell adhesion assays. Passive in 

vitro cell adhesion is the cell adhesion process that occurs in a static medium culture, e.g., culture 

flasks, petri dishes. Static in vitro cell adhesion is characterised by three stages: sedimentation, 

attachment, flattening and spreading of the cell body on its substrate, and the organization of the actin 

skeleton with the formation of focal adhesion between the cell and its substrate (LeBaron & 

Athanasiou, 2000). The attachment of the cell body to its substrate involves specific integrin-mediated 

adhesion and starts with the binding of a single receptor-ligand pair (S. Hong et al., 2006), followed by 

subsequent receptor-ligand bonds that increase the total adhesion strength (Taubenberger et al., 

2007). Cells continue to flatten, spread and increase contact area on the substrate (W. Huang et al., 

2003). Finally, the cells spread beyond the projected area of the un spread cell due to the 

reorganisation of the actin skeleton and the formation of focal adhesions between the cell and its 

substrate (S. Hong et al., 2006) (Figure 1.4). 

 
Figure 2.4 Stages of passive in vitro cell adhesion. The three-stage process involves the 
sedimentation of cells, initial attachment and spread mediated by integrin bonds and the formation of 
stable adhesion through actin skeleton reorganisation and focal adhesions. The figure was created 
using BioRender (www.biorender.com). 
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1.4.1 End Point Cell Adhesion Assays 

The MTT assay is a cell-based endpoint assay widely used to assess cell viability or cell adhesion by 

measuring the proportion of cells that attach to a plate after a given period. The MTT assay relies on 

the presence of functional mitochondria as the cellular reduction of tetrazolium salts to insoluble 

purple formazan crystals by the action of mitochondrial reductase (Mosmann, 1983a). The MTT 

reaction mixture is added towards the end of the incubation for a given assay and the plate is 

incubated for an additional time period. The formazan crystals are then dissolved in an acid/alcohol 

solution and the plate is read on a multi-well scanning spectrophotometer. Percentage cell adhesion 

is determined by comparing the optical density values of the treated cells with the optical density 

values of the control cells and the results are presented as a percentage of adherent cells (Miki et al., 

1993). The MTT assay has several advantages that are favourable for cell adhesion assays, such as 

ease of implementation, rapidity of performance and reproducibility of the results (Colangelo et al., 

1992; Iselt et al., 1989; Jiao et al., 1992; Pieters et al., 1988). However, one of the limitations of the 

MTT assay lies in the underlying assumption that mitochondrial activity is proportional to the formation 

of formazan in the mitochondria.  

Hitherto, the location of formazan formation and its intracellular transportation has remained 

controversial (Ghasemi et al., 2021). Several biomolecules such as ascorbic acid, cysteine, 

dihydrolipoic acid, glutathione, glutathione S-transferase, and tocopherols have been found to reduce 

MTT, suggesting that the formazan produced during the MTT assay represents more than 

mitochondrial activity (Stockert et al., 2018). Moreover, the limitations of the MTT assay have been 

revealed in several studies (Ghazali et al., 2020; Kok et al., 2019; Y. Liu et al., 1997; Mor-Yossef 

Moldovan et al., 2020; Mosmann, 1983b; Stockert et al., 2018; Surin et al., 2017) that highlight 

various confounding factors to be considered when designing, performing, analysing, and interpreting 

the assay results (G. Diaz et al., n.d.; Gokduman & Gok, 2020; Y. Liu et al., 1997; Małaczewska et al., 

2021; Nikoloff et al., 2021; Patra & Gupta, 2020; Stockert et al., 2012). Ultimately, the MTT assay is 

an endpoint assay that provides a “snapshot” of the adhesion process at the time the experiment is 

stopped and does not capture the real-time cell dynamics of passive in vitro cell adhesion as 

comprehensively as real time cell adhesion assays such as the xCELLigence RTCA system (S. Hong 
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et al., 2006; Khalili & Ahmad, 2015; Martinez-Serra et al., 2014; Stefanowicz-Hajduk & Ochocka, 

2020).  

1.4.2 Real Time Cell Adhesion Assays 

 
Unlike endpoint approaches, real-time assay systems allow for the tracking of cell dynamics 

throughout all the stages of passive in vitro cell adhesion. This is particularly effective for assessing 

characteristics which may otherwise be missed using endpoint-based methods; such as the flattening 

and spreading of the cell body, periodic changes in the actin skeleton and formation of focal 

adhesions between the cell and its substrate. The xCELLigence system is a real-time assay system 

that integrates microelectronics and cell biology and is suitable for uninterrupted monitoring of 

biological processes of living cells. It uses specially designed microtitre plates containing interdigitated 

gold microelectrodes to non-invasively monitor the viability of cultured cells. The electrodes measure 

the electrical impedance of the cell population in each well and it provides quantitative real-time 

information about the status of the cells (Roshan Moniri et al., 2015).  

 

Microelectrode biosensor technology is a favourable method for assessment of passive in vitro cell 

adhesion because it reveals the temporal profile of the response in real-time, which enables both 

acute responses and longer-term responses to be profiled within the same assay (Kho et al., 2015). 

The monitoring of changes in the adhesion and morphology of target cells using xCELLigence 

microelectrode technology has been shown to be a convenient way to continuously determine cell 

number and cell adhesion of cells undergoing apoptosis due to NK cell-mediated cytotoxic effects 

(Glamann & Hansen, 2006). Moreover, the xCELLigence RTCA system has been used to analyse cell 

adhesion in MDA-MB-231 (triple-negative human breast adenocarcinoma) cells and HEK293 (human 

embryonic kidney) cells to demonstrate that the silencing of SHANK proteins increased integrin 

activation and promoted cell adhesion (Lilja et al., 2017) Therefore, continuous monitoring of passive 

in vitro cell adhesion by the xCELLigence system is a useful real-time cell adhesion method to 

distinguish between the sedimentation, initial attachment and spreading, and stable adhesion stages 

of passive in vitro cell adhesion (S. Hong et al., 2006; Khalili & Ahmad, 2015; Martinez-Serra et al., 

2014; Stefanowicz-Hajduk & Ochocka, 2020). 
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1.5 Proteomics  

Proteomics is the large-scale study of proteins, under a specific set of experimental conditions and 

often employs a method called mass spectrometry (MS; see section 1.5.3). Different techniques can 

be applied to identify a catalogue of the proteins present in a complex mixture (Washburn et al., 

2001), characterise post-translational modifications (PTMs) (Mann & Jensen, 2003), or determine the 

relative abundance of the proteins (Griffin et al., 2003; Gygi & Aebersold, 2000; McIlwain et al., 2012). 

Protein samples can be analysed using two different MS strategies; “top-down” and “bottom-up” 

approaches (VerBerkmoes et al., 2002). Top down proteomics analyses intact proteins in a mixture 

and uses their accurate masses and fragment ions to yield a protein identity (Reid & McLuckey, 

2002). The bottom-up approach involves a protein digestion step to yield peptides which are then 

fragmented and detected via tandem mass spectrometry (MS/MS) and their identities determined 

from sequence level data (Hunt et al., 1986). The identified peptide sequences are then assigned to 

the proteins they originate from, through a process called protein inference (Nesvizhskii & Aebersold, 

2005). 

1.5.1 Proteomic workflows 

Proteomic workflows are often designed to aid the detection of low abundance protein species to 

maximize protein identification and coverage. This is achieved by reducing the sample complexity 

prior to mass analysis, which involves fractionating the sample either at the protein or peptide level. 

Gel-based protein fractionation techniques are widely used in proteomics and include sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) or 2D-difference gel electrophoresis (2D 

DIGE). Alternatively, OFFGEL electrophoresis may be used to fractionate proteins according to their 

isoelectric point where the separated proteins are recovered in the liquid phase. Following 

fractionation, proteins are enzymatically digested into peptides which makes them more amenable to 

analysis by mass spectrometry. The enzyme trypsin is often used, which cleaves after the commonly 

occurring amino acids lysine and arginine. Peptides can be further separated using ion-exchange 

chromatography, hydrophobicity (normal phase, HILIC) or ion exchange chromatography and/or 

resolved using HPLC (high-performance/pressure liquid chromatography. 
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1.5.2 High-performance/pressure liquid chromatography (HPLC)  

HPLC is an optimised analytical form of column chromatography. The technique is used to resolve 

molecular species based on their interactions with a column-bound stationary phase. Instead of 

allowing the solvent to drop through the column under gravity, it is forced through the column under 

high pressure. The passage of analyte molecules through the column is retarded by specific chemical 

or physical interactions with an immobilised chromatographic support called the stationary phase. 

Bound peptides are sequentially eluted using a graduated mobile phase. The specific point at which a 

peptide elutes from the column is known as the retention time and is a unique property of the analyte 

molecule. RPLC (reversed-phase liquid chromatography) separates peptides according to their 

hydrophobicity. The stationary phase typically consists of C18 alkyl chains. HPLC can be directly 

interfaced to an MS for direct analysis as peptides are sequentially eluted in order of their 

hydrophobicity using a linear gradient of organic solvent, typically with flow rates of 200-500 nL/min 

(nano-flow) or the use of capillary flow. HILIC (hydrophilic interaction chromatography) separates 

proteins according to their hydrophilicity and is a popular orthogonal technique to RPLC. Peptides are 

bound to a hydrophilic stationary phase and are eluted using a linear gradient of increasing polarity. 

HPLC is an invaluable fractionation tool due to its high resolution, reproducibility and compatibility with 

mass spectrometry (MS). In proteomic analyses, RPLC or HILIC can be coupled directly to a mass 

spectrometer in a technique known as liquid chromatography tandem mass spectrometry (LC-

MS/MS). 

1.5.3 Mass spectrometry 

Mass spectrometry (MS) has become a fundamental technique in protein analysis. MS is the scientific 

field focusing on the separation and analysis of molecules by accurate molecular mass measurement. 

In principle, MS offers a comprehensive technique for the identification of molecules in a mixture by 

measuring the mass-to-charge ratio (m/z) of gas-phase ions. Mass spectrometers are comprised of 

an ion source that converts analyte molecules into gas-phase ions, a mass analyser comprised of an 
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accelerator and an electromagnetic deflector that separates ionised analytes based on their m/z ratio, 

and a detector that records the number of ions at each m/z value (Figure 1.5.1).  

 

Figure 1.5.1 Mass spectrometry principle. This schematic provides a general overview of 
sample injection from HPLC, sample ionisation and acceleration, deflection and detection of 
sample gas phase ions. The figure was created using BioRender (www.biorender.com).  

1.5.3.1 Soft ionization of analytes 

Two methods of ionising analytes collectively termed as soft ionisation, revolutionised protein 

analysis using MS. Electrospray ionisation (ES) is a soft ionisation technique used to convert 

analyte molecules into gas-phase ions (Fenn et al., 1989). The analyte is ionised by the source 

which is held at a positive or negative potential depending on the polarity of interest. Peptides are 

typically analysed in the positive ion mode and are sprayed into the source in acidified organic 

solvent to assist ionisation. As peptides are sprayed (usually from an LC column), a Taylor cone of 

highly charged droplets is formed (Taylor, 1964). Solvent evaporates from the droplets and the ions 

are transferred to the gas phase. Heat and gas are applied to assist droplet desolvation which is 

believed to occur via the combined effects of the charged residue and/or ion evaporation models. In 

the charged residue model, solvent evaporation initiates a sequence of Rayleigh instabilities 

(coulomb fissions) which ultimately produce individual gas phase ions (Dole et al., 1968). In the ion 
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evaporation model, desolvation decreases the droplet size until the surface field strength is 

sufficient to allow ion desorption (Iribarne, 1976).  

ESI is the ionisation method of choice for LC-MS/MS analyses due to its compatibility with RPLC 

and ability to produce multiply charged ions which extend the mass range of the analyser (Karas & 

Hillenkamp, 1988). 

1.5.3.2 Linear trap quadrupole (LTQ) mass spectrometry 

 
Figure 1.5.2 LTQ Orbitrap Mass Spectrometer. The figure shows the structure of an LTQ 
Orbitrap mass spectrometer composed of an ion source where the ions are produced and 
transferred into the linear ion trap or via the C-trap into the Orbitrap mass analyzer. This 
figure is reproduced with permission of Thermo Fisher Scientific (www.thermofisher.com) 

 
The linear quadrupole ion trap (LTQ) is a low-resolution mass analyser which features fast scan 

times and high sensitivity. The LTQ is based on trapping ions using radiofrequency (RF) electric 

fields to form a "trap". Typically, ions in the LTQ are focused to the ion trap by a series of multipoles 

(quadrupoles). Multipoles consist of four parallel metal rods to which a radiofrequency (RF) voltage 

is applied. The same RF voltage is placed on opposing poles so that one set is positive whilst the 

other is negative. Ions are sequentially attracted/repelled by the poles and focus into a concise 

beam which moves forwards towards the trap. Radial trapping is achieved essentially as previously 

described, whilst ions are trapped in the axial direction by distinct direct current (DC) voltages. 

Changing the RF and direct current (DC) voltages facilitates the manipulation of the ions. These 
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manipulations include isolation of an ion with a specific mass to charge ratio, activation by putting 

kinetic energy into the ions with specific m/z to cause fragmentation by collision with a gas (helium 

is usually in the trap) (Figure 1.5.2). The helium serves as an inert dampening/buffer gas whose 

particles frequently collide with the ions and control their motion in a net loss of kinetic energy. The 

mass analysis is done in the analyser by selectively ejecting ions out of the trap into a pair of 

electron multiplier in the detector. The particles are transferred to a multiplier and create an electron 

cascade as they move towards the anode which results in a measurable current that is proportional 

to the ion intensity. This generates a mass spectrum which is the signal intensity of the ions at each 

value on the m/z scale. 

1.5.3.3 Orbitrap mass analyzers 

The orbitrap is an ion trap mass analyser that consists of a coaxial inner spindle-like electrode that 

traps ions in an orbital motion and an outer barrel-like electrode, which generates an electrostatic 

field. Ions are trapped within the electrostatic field and subsequently orbit around the central 

electrode and oscillate in the axial direction. The m/z of the ions determines how frequently they 

oscillate along the axial trajectory. Oscillating ions induce an alternating current that is detected by 

the outer electrodes. This time-domain signal is converted to a m/z spectrum using the fast Fourier-

transform (FFT) algorithm. The oscillation frequency can be read with high precision and thus the 

m/z measurement is extremely accurate. The orbitrap provides high resolution and mass accuracy. 

The LTQ Orbitrap XL (Thermo Fisher Scientific Ltd.) and other hybrid mass spectrometers, feature 

both the high resolution and mass accuracy of the orbitrap, combined with the speed and sensitivity 

of the LTQ and are increasingly popular instruments for high-throughput proteomic analysis (Figure 

1.5.2). 

 

1.5.3.4 Ion mobility spectrometry (IMS) 

Ion mobility spectrometry (IMS) is a bioanalytical technique often coupled with MS and HPLC to 

detect ionised molecules in the gas phase based on their mobility in a carrier buffer gas (Kabir & 

Donald, 2017). The coupling of ion mobility and mass spectrometry (IM-MS) is more favourable than 
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MS-only in lipidomics and metabolomics due to increased peak capacity and separation power of 

isomers and isobars. Furthermore, IM-MS has superior quality spectra acquisition and a higher 

confidence level of identification due to reduced chemical noise and inclusion of the collision cross 

section (CCS) as a quasi-orthogonal property respectively (Baker et al., 2014; Hines & Xu, 2019; 

Paglia et al., 2015, 2021). CSS values are considered important distinguishing characteristics of 

ions in the gas phase and can be determined empirically or derived computationally with a known 

3D structure of a molecule. The structural identification confidence and accuracy of glycans has 

drastically been improved by adding CCS values of glycans and their fragments to databases. 

 

1.5.3.5 Time of flight mass spectrometry (TOF MS) 

Time of flight mass spectrometry (TOF MS) Is a mass spectrometry technique that determines the 

mass over charge ratio of detected ions by measuring their time of flight in an electric field of known 

strength (Wolff & Stephens, 1953). The TOF mass analyser can be coupled with an ion mobility 

(IMS) section and a soft ionisation source such as ESI, in a method known as electrospray 

ionisation ion mobility time-of-flight mass spectrometry (ESI-IMS-TOF MS) (Chakraborty et al., 

2009). The method is developed based on a simple and flexible modification to a commercial TOF 

MS instrument with off-the-shelf components, thus enabling the gas-phase ion-molecule reaction of 

the ESI-IMS to be effectively coupled to the high-performance TOF MS without sacrificing any of the 

high-performance attributes of the original instrumentation. 

1.5.4 Quantitative proteomics 

Quantitative proteomics refers to the determination of the relative abundance of proteins in different 

cell. Protein quantification is typically achieved by incorporating mass spectrometry with stable 

isotope labelling by amino acids in cell culture (SILAC) (Rigbolt & Blagoev, 2010) or by chemical 

modification of the peptides using isobaric tags (TMT/ITRAQ) (Thompson et al., 2003; Unwin, 2010) 

or by label free methods that rely on measurement of chromatographic peak integrals, ion intensities 

or spectral counting (Levin & Bahn, 2010).  
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Isobaric tags for relative and absolute quantification (iTRAQ) and tandem mass tags (TMT) are 

chemical labelling technologies that utilize isobaric tagging to enable multiple samples to be analysed 

in a single experiment (Sinclair & Timms, 2011). The isobaric tagging typically targets free amines at 

either the protein or peptide level. The isobaric tags all have an identical precursor mass addition but 

yield different reporter ions when fragmented during MS/MS analysis. The different reporter 

groupintensities in the low mass region of the MS/MS spectrum are then used to derive the relative 

peptide and thus protein abundance ratios between the different experimental conditions (Unwin, 

2010). Utilising isobaric tagging to analyse multiple samples in this manner reduces the number of 

missing peptide quantification values and is known as multiplexing. In addition, a deeper proteome 

coverage is achieved for multiple samples in a reasonable amount of experimental time. Therefore, 

isobaric tags such as TMT tags are highly attractive for analysis of proteoform studies that require 

robust quantification of single peptides across experimental conditions. Nevertheless, isobaric tagging 

has a high cost of reagent and several studies have successfully endeavoured to mitigate the cost by 

reducing the amount of TMT regent used in each multiplexed experiment to address a variety of 

biological questions (Zecha et al., 2019). 

 

 Several label-free quantitative proteomic methods are available and can be applied to achieve an 

absolute or relative quantification. In this strategy, the proteins or peptides are not labelled, and the 

method relies on analysing the samples sequentially and discretely. Thus, the MS mode of operation 

defines the analysis and distinguishes the label-free methods. Obtaining a label-free relative 

quantification of proteins, involves either a spectral counting or peptide signal intensity method to 

estimate the relative peptide and thus protein abundance ratios in different samples. A label-free 

absolute quantification of proteins can be achieved using SRM (selected reaction monitoring) or MRM 

(multiple reaction monitoring) technologies. In a typical SRM/MRM experiment the mass spectrometer 

v is set to exclusively monitor a specific set of transitions (precursor and product ions) from peptides 

unique to a protein of interest. These are then normalized against spiked heavy isomer peptide 

standards of the selected transitions to enable absolute peptide and thus protein quantification (Levin 

& Bahn, 2010). SRM-based methods have several limitations involving sample complexity and the 

number of transitions required to increase sensitivity and quantification capacity (Calvo et al., 2011). 
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In addition, low resolution analyzers (both Q1 and Q2) give rise to greater co-isolation of interferences 

along with the precursor ion (Figure 1.5.3) (Gallien et al., 2011). Unlike SRM, data-independent 

acquisition (DIA) (Venable et al., 2004) uses sequential window acquisition to fragment and quantify 

all precursor and product ions within a sample (Bruderer et al., 2015; Egertson et al., 2013; Geiger et 

al., 2010; Gillet et al., 2012) and offers high reproducibility and quantitation (Figure 1.5.3) (Selevsek et 

al., 2015).  

 

Figure 1.5.3 Schematic Depictions of SRM, DDA and DIA Analyses. A) In SRM, a single 
target precursor peptide ion is isolated in the Q1 quadrupole and then fragmented in q2 by 
collision-induced dissociation (CID). Specific, pre-selected product ions (typically three) are 
then detected and analysed in Q3. B) In DDA, the top #N precursors are isolated in Q1 based 
on mass-to-charge (m/z) values and then fragmented together in q2 by CID or Higher-energy 
C-trap dissociation (HCD). The highly complex mixture of all product ions is then analysed in 
Q3 by an Orbitrap HR/AM or TOF mass analyzer. The analysis is repeated until the full m/z 
range has been covered in a stepwise fashion. C) In DIA, all precursors falling within a 
defined m/z window are isolated in Q1 and then fragmented together in q2 by CID or HCD. 
The highly complex mixture of all product ions is then analysed in Q3 by an Orbitrap HR/AM 
or TOF mass analyzer. The analysis is repeated until the full m/z range has been covered in a 
stepwise fashion (Hu et al., 2016; Shi et al., 2016; J. Li et al., 2021). 
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Advances in mass spectrometry have resulted in the development of a high-definition mass 

spectromtry (HDMS) technology with DIA and IMS function. HDMS improves peptide identification 

and protein sequence coverage in complex biological samples. Furthermore, an MSE implementation 

allows the collision energy to be alternated between low energy and high energy ramp in order to 

produce precursor- and product-ion spectra, respectively. The addition of IMS prior to peptide 

fragmentation aligns the precursor and its fragment ions in mobility drift time as well as 

chromatographic retention time to provide accurate coordinates for assigning precursor/product ion 

relationships. When ion mobility separation is used in conjunction with the MSE the workflow is 

referred to as HDMSE (H. Wang & Hanash, 2015). Due to analysis of all product ions in Q3, HDMSE is 

prone to detector saturation which may affect the dynamic range of protein quantitation. Several 

studies have demonstrated that this can be overcome using the “top3” method of protein quantitation 

to sum the three most intense peptides for each protein (Shliaha et al., 2013). 

1.6 Background research 

Amplification of the tyrosine kinase receptor ERBB2/HER2 in breast cancer is correlated with disease 

progression, metastasis and poor therapeutic response (Ross & Fletcher, 1999; Slamon et al., 1987). 

The mechanisms of downstream ERBB2 signalling and their effects on tumour progression remain 

ambiguous (Yarden & Sliwkowski, 2001) and thus the elucidation of pathways involved in ERBB2-

dependent breast cancer is essential to understanding the biology of breast cancer and potentially 

finding biomarkers. Protein and gene expression profiling of cell models and breast tissues in the 

Timms laboratory previously identified gene products potentially implicated in ERBB2-dependent 

transformation (Durán et al., 2008; Gharbi et al., 2002; Timms et al., 2002; White et al., 2004; 

Worthington et al., 2010, 2017). Candidate proteins were selected from the profiling studies with 

respect to their relationship with ERBB2 expression and/or ERBB growth factor-dependent 

modulation. Interest was placed on candidates that are poorly characterised functionally or where a 

role in breast cancer is ambiguous. Candidates were validated and functionally characterised by 

analysing the effects of their siRNA-mediated knockdown on invasion, proliferation, adhesion and 

anchorage-independent growth in ERBB2 over-expressing breast cancer cell lines. The effects on 

global protein expression of knocking down the candidates (CPNE3, AGR2, STARD10 and ERBB2 
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itself) was also assessed using a quantitative stable isotope labelling of amino acids in cell culture 

(SILAC)  combined with high resolution LC-MS/MS. Bioinformatics analysis of data using gene 

ontology, pathway and interaction enrichment was used to define the possible functional 

consequences of the siRNA-mediated knockdown, to identify novel targets and to link changes with 

cellular phenotype (Table 1.6.1 and Table 1.6.2). Finally, novel and specific ERBB2 signalling targets 

and putative sites of phosphorylation were determined using a combination of SILAC labelling, 

phosphopeptide enrichment and LC-MS/MS (Worthington et al., 2017). This research has revealed 

hitherto unknown components of the ERBB signalling network and suggests novel roles in cancer 

development for several poorly characterised gene products. 
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Table 1.6.1 Table of selected gene product changes of interest in AGR2, CPNE3, ERBB2 and 
STARD10 siRNA knockdowns versus control siRNA from SILAC LC-MS/MS profiling of SKBR3 cells. 
Gene symbol, knockdown group and ratios of expression change for each knockdown versus non-
targeting siRNA control are presented. The table below shows results of a phenotype analysis using 
cell-based assays where the numbers represent % versus the siRNA control. For example, siAGR2 
transfected cells displayed 33% proliferation compared to siControl cells. The list represents potential 
candidates for validation and functional characterisation (Worthington, 2012). 
 

Gene Name Knockdown Group 
Ratio 

siAGR2/ Ctrl 

Ratio 
siCPNE3/ 

Ctrl 

Ratio 
siERBB2/ 

Ctrl 
Ratio 

siSTARD10/ Ctrl 
AKR1C1 N/S 4.17 2.72 3.00  

AKR1C3 N/S  3.20 6.15 5.94 
AP3D1 AGR2 0.65    
AIFM2 ERBB2   8.40  
CAD STARD10 1.50  1.54 1.56 

CAMK1G STARD10    2.48 
CAPS STARD10    0.37 
CAPS ERBB2 0.67  0.65  
CAT ERBB2 1.50  1.82  

ALCAM ERBB2   1.69  
CHMP4A ERBB2   0.34  
CHMP4B CPNE3  1.54   

CKB ERBB2 0.51  0.40  
CDK1 ERBB2   0.54  
DIEXF AGR2 0.63    

EPS8L1 STARD10    1.59 
EPPK1 CPNE3 0.64 0.62   
FER1L4 STARD10    5.94 
FER1L6 CPNE3  15.15   
GRB7 ERBB2   1.53  

KPNA2 CPNE3  0.67   
ITGAV CPNE3  5.44   
KRT10 AGR2 25.32    
KPRP AGR2 0.04    

LAMC1 ERBB2   37.03  
LANCL1 STARD10 0.60  0.66 0.55 
LRRTM3 ERBB2   0.00  
LIMA1 ERBB2   1.86 1.62 

IQSEC3 AGR2 5.61    
LCN2 ERBB2   3.27  
PPL ERBB2   1.52  

PBLD ERBB2   4.05  
PI4KA STARD10 1.57   1.64 

PITPNB STARD10    1.56 
PLEC ERBB2   1.82  
PCNA ERBB2   0.61  

FAM49A AGR2 2.35    
NDRG1 STARD10    0.49 

RANGAP1 CPNE3  0.67   
RSU1 STARD10    1.54 

RAB9A ERBB2 1.63  1.93  
ARHGDIB N/S 2.32 1.62 2.01 2.00 
SMARCC1 ERBB2   0.64  
SMARCA5 ERBB2   0.63  

STX5 AGR2 0.65    
STX8 STARD10    1.67 

TRIM16 STARD10  1.70  2.22 
   

Phenotype analysis  % vs siCtrl 
  siAGR2 siCPNE3 siERBB2 siSTARD10 

Adhesion 105 87 82 105 
Anchorage-independent growth 68 97 45 118 

Invasion 51 139 37 178 
Proliferation 33 148 26 56 
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Table 1.6.2 Table of differentially regulated proteins (>2 fold) in ERBB2-overexpressing human 
mammary luminal epithelial (HMLEC) cells (C3.6) versus parental HMLEC cells (HB4a) determined by 
SILAC LC-MS/MS profiling (Worthington et al., 2017). 
 

Protein Name Gene Name 
Ratio 

(C3.6/HB4a) 
Significance 
(*B-H FDR) Function 

Plastin-2 LCP1 29.09 * cytoskeletal actin-binding, immune response 
Transgelin TAGLN 8.12 * cell contraction 
Single-stranded DNA-binding protein mitochondrial SSBP1 7.08 * DNA replication 
Keratin type II cytoskeletal 5 KRT5 6.56 * cytoskeletal intermediate filament protein 
Interleukin-1 receptor antagonist protein IL1RN 6.32 * immune response, interleukin-1 receptor antagonist activity 
3-hydroxyisobutyryl-CoA hydrolase mitochondrial HIBCH 6.16 * amino acid catabolic process 
Aldehyde dehydrogenase family 1 member A3 ALDH1A3 6.09 * retinal metabolic process 
Interleukin-18 IL18 5.76 * immune response, positive regulator of cytokine production 
Keratin type II cytoskeletal 4 KRT4 4.97 * cytoskeletal intermediate filament protein 
Alpha-2-macroglobulin-like protein 1 A2ML1 4.60 * endopeptidase inhibitor activity 
Zyxin ZYX 4.34 * cellular adhesion, signal transduction 
Pirin PIR 4.07 * transcriptional regulation 
Copine-3 CPNE3 3.95 * vesicle-mediated transport 
Phosphopantothenoylcysteine decarboxylase PPCDC 3.90 * glycolysis 
Keratin type I cytoskeletal 13 KRT13 3.82 * cytoskeletal intermediate filament protein 
Acetyl-CoA acetyltransferase mitochondrial ACAT1 3.76 * amino acid catabolic process, ketone body and lipid metabolic process 
PDZ and LIM domain protein 5 PDLIM5 3.75 * dendritic spine morphogenesis 
LIM domain only protein 7 LMO7 3.74 * unknown, ubiquitin ligase activity 
Histone H1.4 HIST1H1E 3.54 * nucleosome assembly 
Histone H1.2 HIST1H1C 3.54 * nucleosome assembly 
Carboxymethylenebutenolidase homolog CMBL 3.51 * drug metabolism 
Annexin A2 ANXA2 3.44 * positive regulation of vesicle fusion 
Calcineurin-like phosphoesterase domain-containing 
protein 1 

CPPED1 3.39 * unknown, hydrolase activity 

Glutathione S-transferase kappa 1 GSTK1 3.34 * unknown, glutathione transferase activity 
Uncharacterized protein C12orf69 C12orf69 3.31 * unknown, possible membrane protein 
Vacuolar protein sorting-associated protein 13C VPS13C 3.30 * unknown, possibly protein transport 
Beta-lactamase-like protein 2 LACTB2 3.25 * unknown, hydrolase activity 
Radixin RDX 3.23 * unknown, possible cytoskeletal actin-membrane linker 
creatine kinase U-type mitochondrial CKMT1B 3.20 * creatine metabolic process 
Sorbitol dehydrogenase SORD 3.20 * fructose biosynthetic process 
Coatomer subunit gamma-2 COPG2 3.18 * vesicle-mediated transport 
Serpin B5 SERPINB5 2.99 * tumour suppressor activity 
Myosin phosphatase Rho-interacting protein MPRIP 2.93 * cytoskeletal actin-regulation 
Proteasome subunit beta type-5 PSMB5 2.74 * proteasomal degradation, antigen processing, cell cycle regulation, DNA 

damage response, apoptosis, immune response 
cDNA FLJ56073 highly similar to Lipin-1 LPIN1 2.71 * fatty acid metabolic process 
Haloacid dehalogenase-like hydrolase domain-
containing protein 2 

HDHD2 2.67 * unknown, hydrolase activity 

Electron transfer flavoprotein subunit alpha 
mitochondrial 

ETFA 2.65 * respiratory electron transport chain 

Tripartite motif-containing protein 29 TRIM29 2.61 * transcriptional regulation 
E3 ubiquitin-protein ligase NEDD4 NEDD4 2.58  signal transduction, proteasomal degradation 
Vacuolar protein sorting-associated protein 4B VPS4B 2.54 * vesicle-mediated transport 
60S ribosomal protein L14 RPL14 2.52 * protein synthesis (ribosome constituent) 
Transportin-3 TNPO3 2.48 * protein transport 
Isoform M2 of pyruvate kinase isozymes M1/M2 PKM2 2.47 * cell death, transcriptional regulation, glycolysis 
14-3-3 protein zeta/delta YWHAZ 2.45 * signal transduction, anti-apoptosis 
Electron transfer flavoprotein subunit beta ETFB 2.44 * respiratory electron transport chain 
Annexin A4 ANXA4 2.36 * signal transduction, anti-apoptosis 
Tropomyosin alpha-1 chain TPM1 2.36  cytoskeletal structural protein, muscle contraction 
Programmed cell death protein 4 PDCD4 2.36 * apoptosis, inhibition of translation, negative regulation of cell cycle, tumour 

suppressor activity 
Peptidyl-prolyl cis-trans isomerase B PPIB 2.34 * protein folding 
Asparaginyl-tRNA synthetase cytoplasmic NARS 2.32 * unknown, tRNA ligase activity 
Aldose reductase AKR1B1 2.32  carbohydrate metabolic process, response to stress, carbonyl reduction 
Filamin-C FLNC 2.31  cell junction assembly 
Platelet-activating factor acetylhydrolase IB subunit 
beta 

PAFAH1B2 2.30 * unknown, 1-alkyl-2-acetylglycerophosphocholine esterase activity 

Tumor protein D52 TPD52 2.28 * secretion 
Protein AHNAK2 AHNAK2 2.27  unknown 
Ras-related protein Rab-2A RAB2A 2.27 * vesicle-mediated transport 
Niban-like protein 1 FAM129B 2.26  unknown, may function in invasion/anti-apoptosis 
Oligoribonuclease mitochondrial REXO2 2.25 * nucleotide metabolic process 
Galectin-3 LGALS3 2.24 * immune response 
Dihydrolipoyllysine-residue acetyltransferase 
component of pyruvate dehydrogenase complex 
mitochondrial 

DLAT 2.23  glycolysis 

Quinone oxidoreductase CRYZ 2.23  xenobiotic catabolic process 
Proteasome subunit beta type-6 PSMB6 2.18  proteasomal degradation, antigen processing/presentation, cell cycle 

regulation, DNA damage response, apoptosis, immune response 
Deoxyuridine 5-triphosphate nucleotidohydrolase 
mitochondrial 

DUT 2.17  DNA replication 

Acyl-CoA synthetase family member 2 mitochondrial ACSF2 2.17  fatty acid metabolic process 
Plastin-3 PLS3 2.14  cytoskeletal actin-bundling 
Vesicle-fusing ATPase NSF 2.13  vesicle-mediated transport 
Similar to Zinc finger CCCH domain-containing 
protein 15 

ZC3H15 2.11  unknown, possibly anti-degradation 

Syntenin-1 SDCBP 2.08  cytoskeletal actin-organisation, axon guidance 
Protein NDRG1 NDRG1 2.07  tumour suppressor activity, vesicle-mediated transport, cell cycle regulation, 

apoptosis, growth/differentiation 
Ankycorbin RAI14 2.04  unknown, potential cytoskeletal protein 
Ubiquitin-conjugating enzyme E2 H UBE2H 2.03  proteasomal degradation 
Plastin-1 PLS1 2.00  cytoskeletal actin-bundling 
Histone H2A type 2-B HIST2H2AB 1.99  nucleosome assembly 
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Cullin-4B CUL4B 1.98  DNA damage response, cell cycle progression, proteasomal degradation 
Adenylyl cyclase-associated protein 1 CAP1 1.98  axon guidance, regulation of cell polarity, signal transduction 
Uveal autoantigen with coiled-coil domains and 
ankyrin repeats 

UACA 1.97  apoptosis 

Actin cytoplasmic 2 ACTG1 1.95  cytoskeletal structural protein 
Inorganic pyrophosphatase PPA1 1.95  diphosphate metabolic process, tRNA aminoacetylation 
Glucosamine 6-phosphate N-acetyltransferase GNPNAT1 1.93  N-linked glycosylation 
COP9 signalosome complex subunit 7a COPS7A 1.93  cullin deneddylation 
Sorting nexin-1 SNX1 1.91  vesicle-mediated transport 
Adenylyl cyclase-associated protein 1 CAP1 1.91  axon guidance, regulation of cell polarity, signal transduction 
Dihydropyrimidinase-related protein 2 DPYSL2 1.88  signal transduction, regulation of cell polarity, axon guidance 
Quinone oxidoreductase PIG3 TP53I3 1.88  apoptosis by oxidative stress 
Tripartite motif-containing protein 16 TRIM16 1.87  differentiation, transcriptional regulation 
Xaa-Pro dipeptidase PEPD 1.86  proteolysis 
Interferon-inducible double stranded RNA-
dependent protein kinase activator A 

PRKRA 1.86  immune response, apoptosis, inhibition of translation  

Puromycin-sensitive aminopeptidase NPEPPS 1.86  proteolysis, antigen processing/presentation 
Programmed cell death protein 6 PDCD6 1.85  apoptosis 
Eukaryotic translation initiation factor 3 subunit J EIF3J 1.85  protein synthesis 
RNA polymerase II-associated protein 1 RPAP1 1.84  transcriptional regulation 
3-ketoacyl-CoA thiolase mitochondrial ACAA2 1.83  cholesterol biosynthetic process, anti-apoptosis 
Sorcin SRI 1.82  muscle contraction, signal transduction 
LDLR chaperone MESD MESDC2 1.81  signal transduction, protein folding 
Keratin type II cytoskeletal 6A KRT6A 1.80  cytoskeletal intermediate filament protein 
Nucleoside diphosphate kinase A NME1 1.79  nucleoside triphosphate synthesis, proliferation/differentiation, signal 

transduction, anti-apoptosis 
Activated RNA polymerase II transcriptional 
coactivator p15 

SUB1 1.78  transcriptional regulation 

Calpain-2 catalytic subunit CAPN2 1.76  protease involved in cytoskeletal remodelling and signal transduction 
Ribosomal L1 domain-containing protein 1 RSL1D1 1.73  protein synthesis (ribosome constituent) 
Signal transducer and activator of transcription 1-
alpha 

STAT1 0.51  cytokine signal transduction, transcriptional regulation 

Very long-chain specific acyl-CoA dehydrogenase 
mitochondrial 

ACADVL 0.49  fatty acid beta-oxidation 

Peptidyl-prolyl cis-trans isomerase FKBP4 FKBP4 0.49  protein folding, regulation of microtubule dynamics 
cDNA FLJ54365 highly similar to DNA replication 
licensing factor MCM4 

MCM4 0.48  DNA replication, cell cycle regulation 

Proteasome activator complex subunit 1 PSME1 0.46  proteasomal degradation, antigen processing/presentation, cell cycle 
regulation, DNA damage response, apoptosis, immune response (IFNγ-induced) 

Bifunctional purine biosynthesis protein PURH ATIC 0.46  purine base metabolic process 
DNA replication licensing factor MCM6 MCM6 0.46  DNA replication, cell cycle regulation 
DNA replication licensing factor MCM2 MCM2 0.45  DNA replication, cell cycle regulation 
RuvB-like 2 RUVBL2 0.45  DNA damage repair, transcriptional regulation, protein folding 
60 kDa heat shock protein mitochondrial HSPD1 0.44  protein chaperone/re-folding, stress response, immune response 
DNA replication licensing factor MCM7 MCM7 0.44  DNA replication, cell cycle regulation 
Protein TFG TFG 0.42  unknown, possibly positive regulation NFkB cascade 
Alkaline phosphatase placental type precursor ALPP 0.42  unknown, alkaline phosphatase activity 
Ras-related protein Rab-6A RAB6A 0.41  vesicle-mediated transport 
Cellular tumor antigen p53 TP53 0.41  DNA damage response, tumour suppressor, apoptosis, negative regulation of 

cell cycle, transcriptional regulation 
Transferrin receptor protein 1 TFRC 0.40  iron-homeostasis 
Abhydrolase domain-containing protein 10 
mitochondrial 

ABHD10 0.40  unknown, peptidase activity 

TUBB6 protein TUBB6 0.40  cytoskeletal microtubule protein, protein folding 
D-3-phosphoglycerate dehydrogenase PHGDH 0.40  amino acid metabolic process 
Leukocyte elastase inhibitor SERPINB1 0.40  endopeptidase inhibitor activity 
Reticulocalbin-1 RCN1 0.40  unknown, may regulate Ca2+ binding activities in ER 
Dipeptidyl peptidase 1 CTSC 0.40  proteolysis 
Ornithine aminotransferase mitochondrial OAT 0.39  amino acid metabolic process 
Glycine dehydrogenase [decarboxylating] 
mitochondrial 

GLDC 0.38  amino acid metabolic process 

Coiled-coil-helix-coiled-coil-helix domain-containing 
protein 6 

CHCHD6 0.38  mitochondrial maintenance, DNA damage response 

Nuclear autoantigenic sperm protein NASP 0.38  DNA replication, cell cycle progression, proliferation  
Proteasome subunit beta type-8 PSMB8 0.37  proteasomal degradation, antigen processing/presentation, cell cycle 

regulation, DNA damage response, apoptosis, immune response (IFNγ-induced) 
Proteasome activator complex subunit 2 PSME2 0.37  proteasomal degradation, antigen processing, cell cycle regulation, DNA 

damage response, apoptosis, immune response (IFNγ-induced) 
Tryptophanyl-tRNA synthetase cytoplasmic WARS 0.36  tRNA aminoacetylation, immune response (IFNγ-induced), angiogenesis, 

negative regulation of proliferation 
cDNA FLJ52712 highly similar to Tubulin beta-6 chain TUBB6 0.36  cytoskeletal microtubule protein, protein folding 
Secernin-1 SCRN1 0.34  exocytosis 
Uncharacterized protein C11orf73 C11orf73 0.34  unknown, possibly secretion 
Structural maintenance of chromosomes flexible 
hinge domain-containing protein 1 

SMCHD1 0.33  unknown, possibly chromatin organisation 

Interferon-induced double-stranded RNA-activated 
protein kinase 

EIF2AK2 0.33  immune response (IFNα-induced), inhibition of translation 

Stromal cell-derived factor 2 SDF2 0.32  glycosylation 
Histone H1x H1FX 0.32  nucleosome assembly 
Cytosol aminopeptidase LAP3 0.30  proteolysis 
Phosphoserine aminotransferase PSAT1 0.30  amino acid metabolic process 
Hydroxymethylglutaryl-CoA synthase cytoplasmic HMGCS1 0.29  cholesterol biosynthetic process 
Argininosuccinate synthase ASS1 0.29  urea cycle 
Fascin FSCN1 0.29  cytoskeletal actin-regulation, proliferation, migration 
Integrin beta-4 ITGB4 0.28  epithelial cell laminin receptor, hemidesmosome assembly, migration 
SAM domain and HD domain-containing protein 1 SAMHD1 0.28  immune response (IFNγ-induced) 
Signal transducer and activator of transcription 2 STAT2 0.28  cytokine signal transduction, transcriptional regulation 
Serpin H1 SERPINH1 0.23  protein chaperone/re-folding 
Endoplasmic reticulum aminopeptidase 1 ERAP1 0.23  antigen processing/presentation, immune response (IFNγ-induced), 

angiogenesis, differentiation 
Serine protease HTRA1 HTRA1 0.21  proteolysis 
Integrin alpha-6 ITGA6 0.21  epithelial cell laminin receptor, hemidesmosome assembly, migration 
Complement C3 fragment C3 0.18  inflammatory response, complement cascade, signal transduction 
Proteasome subunit beta type-9 PSMB9 0.15  proteasomal degradation, antigen processing/presentation, cell cycle 

regulation, DNA damage response, apoptosis, immune response (IFNγ-induced) 
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Basal cell adhesion molecule BCAM 0.13 * laminin α-5 receptor 
Interferon-induced GTP-binding protein Mx1 MX1 0.13 * immune response (IFN-induced), apoptosis 
Superoxide dismutase [Mn] mitochondrial SOD2 0.13 * redox homeostasis 
Retinal dehydrogenase 1 ALDH1A1 0.12 * retinal metabolic process, xenobiotic metabolic process, aldehyde metabolic 

process 
Intercellular adhesion molecule 1 ICAM1 0.11  cellular adhesion, heterophilic cell-cell adhesion, integrin α-L/β-2 ligand, 

immune response 
Interferon-induced 35 kDa protein IFI35 0.10  immune response (IFNγ-induced) 
N-myc-interactor NMI 0.09 * immune response (IFNγ-induced), transcriptional regulation 
Fatty acid-binding protein epidermal FABP5 0.08 * fatty acid transport, differentiation 
     

 

1.7 Candidates  

1.7.1 Rho GDP-dissociation inhibitor 2 (ARHGDIB) 

ARHGDIB is a member of the Rho (or ARH) protein family and other Ras-related small GTP binding 

proteins. The GTP-binding proteins are active only in the GTP-bound state and ARHGDIB is a GDP-

dissociation inhibitor (GDI), one of at least 3 classes of proteins that tightly regulate cycling between 

the GTP-bound and GDP-bound states (Hoffman et al., 2000). ARHGDIB regulates the GDP/GTP 

exchange reaction of the Rho proteins by inhibiting the dissociation of GDP from Ras-like GTPases, 

and the subsequent binding of ATP to them (Adra et al., 1993; Scherle et al., 1993). It also plays a 

key role in regulating the reorganisation of the actin cytoskeleton mediated by Rho family members 

(Leffers et al., 1993). A recent study found that the depletion of ARHGDIB decreased the migration of 

breast cancer cells and linked ARHGDIB to epithelial-mesenchymal transition (X. Wang et al., 2020). 

This makes ARHGDIB a possible drug target for a therapeutic mechanism of action that targets the 

reorganisation of the actin cytoskeleton during migration of breast cancer cells.  

ARGHDIB is located in the cytoplasm and has a functional role in signal transduction (Figure 1.7.1). 

This role in signal transduction is thought to regulate cytoskeletal organisation through 

phosphorylation of ARHGDIB on the tyrosine 24 (Y24) residue by Src kinase (Y. Wu et al., 2009). The 

role of Src as an upstream regulator of ARHGDIB is plausible because Src has been shown to be a 

non-receptor protein tyrosine kinase with a key role in regulating cell-to-matrix adhesion, migration, 

and junctional stability (Frame, 2004). Furthermore, activation of the ERBB2 receptor and subsequent 

downstream signalling have been described as leading to Src up-regulation and activation to mediate 

breast cancer invasion and metastasis (Tan et al., 2005). Interestingly, SILAC LC-MS/MS profiling of 

ERBB2 overexpressing SKBR3 cells found that ARHGDIB was upregulated >1.5 fold following the 
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siRNA-mediated knockdown of AGR2, CPNE3, ERBB2 and STARD10 versus control siRNA (Table 

1.6.1) (Worthington, 2012). 

 
Figure 1.7.1 Biological features of biomarker candidates for ERBB2 overexpressing breast 
cancer. A) The figure shows the subcellular location of proteins presented as candidate 
biomarkers in this study retrieved from UniProtKB. B) This schematic provides an overview of 
the functional intersection of candidate biomarkers and groups them under common 
Reactome pathways. The figure was created using BioRender (www.biorender.com). 
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1.7.2 Calcyclin-binding protein (CacyBP) 

CacyBP is primarily a cytoplasmic protein at low calcium concentrations. However, it has been shown 

to localize to both the nucleus and cytoplasm after a retinoic acid (RA) induction and calcium increase 

in neuroblastoma cells. Moreover, the nuclear fraction may be phosphorylated (Figure 1.7.1) (J. Wu et 

al., 2003). CacyBP Is known to interact with members of the S100 family, tubulin, and Siah-1 and 

Skp-1 (Schneider et al., 2007). S100 is a family of low molecular weight proteins that contains more 

than 20 family members and comprises the largest subfamily of EF-hand calcium - binding proteins 

(J. Wu et al., 2003). The interaction of CacyBP and S100 proteins is particularly interesting because 

members of the S100 family have been shown to regulate Ca2+ homeostasis, protein phosphorylation, 

and degradation by interacting with several other targets, such as RAGE, p53, Jab-1, and matrix 

metalloproteinases, affecting cell proliferation, metastasis and many other biological events related to 

cancer progression (Santamaria-Kisiel et al., 2006). CacyBP may play a role in cytoskeletal 

reorganisation by interacting with S100 proteins that regulate all three major constituents of 

cytoplasmic cytoskeleton, i.e. MTs, IFs and microfilaments (MFs), and tropomyosin and myosin 

(Donato, 2001). 

CacyBP/SIP expression has also been linked with the clinical progression of breast cancer, where it is 

evident in more advanced clinical progression of breast cancer (N. Wang et al., 2010). However, in a 

separate study that investigated the relationship between CacyBP and COX-2 in breast cancer, the 

knockdown of CacyBP gene using siRNA enhanced the proliferation and invasion ability of breast 

cancer cells, which was dependent on COX-2 expression suggesting that it may play a role as a 

tumour suppressor (Nie et al., 2010). More recent studies have shown that the overexpression of 

CacyBP and not the knockdown, enhance the proliferation and invasion ability of certain cancers. For 

instance, the overexpression of CacyBP in NSCLC cell lines results in differential expression of 

epithelial-mesenchymal transition (EMT) markers including E-cadherin, N-cadherin, Snail1, Vimentin 

and it may promote the proliferation and invasion of NSCLC cells by regulating the Akt signalling 

pathway (Y. J. Xu et al., 2021).  ERBB2 and COX-2 expression is known to be upregulated in NSCLC 

lung cancer and ERBB2 has been shown to elevate COX-2 expression through the activation of 

MEK/ERK pathway, which subsequently induced cell proliferation and invasion via AKT pathway(Chi 
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et al., 2016). This is particularly interesting because ERBB2 amplification in breast cancer is known to 

activate the PI3K/Akt pathway independent of ERBB3. The resulting hyperactivation of this PI3K/Akt 

signalling cascade is associated with resistance to ERBB2 targeting therapies (Carmona et al., 2016; 

Ruiz-Saenz et al., 2018). 

 

1.7.3 Calnexin (CANX) 

CANX is a member of the calreticulin family and the gene encodes a member of the calnexin family of 

molecular chaperones. The calcium-binding protein interacts transiently with newly synthesized N-

linked glycoproteins in the endoplasmic reticulum, facilitating post-translational protein modifications 

such as protein folding and assembly (Figure 1.7.1). It may play a central role in the quality control of 

protein folding by retaining incorrectly folded protein subunits within the endoplasmic reticulum for 

degradation (Kleizen & Braakman, 2004; Olsen et al., 2013). CANX is also associated with partial T-

cell antigen receptor complexes that escape the endoplasmic reticulum of immature thymocytes and it 

may function as a signalling complex regulating thymocyte maturation (Okazaki et al., 2000; Wiest et 

al., 1995). Low expression or defective CANX may lead to a higher risk of developing brain 

metastasis due to the defects in T cell-based immunosurveillance in primary breast cancer patients 

(Y. Liu et al., 2012). Furthermore, upon viral infection, the levels of SMAR1 have been shown to 

undergo a significant increase that results in a reduced expression of CANX and an increase in MHC I 

antigen presentation (Alam et al., 2019). Stimulation of HER2-positive breast cancers by heregulin-

beta1 (HRG) has been shown to induce a rapid redistribution of CANX from vesicle-like structures in 

the cell cytoplasm to the perinuclear area and to the cell membrane. The co-localisation and physical 

interaction of CANX with the HER2 growth factor receptor and an increase in CANX protein levels 

linked to the progressive stages of human breast cancer have also been shown (F. Li et al., 2001).  

 

1.7.4 Copine III (CPNE3) 

CPNE3 (Copine III) is a predicted calcium-dependant, phospholipid binding protein first isolated from 

Paramecium tetraurelia. CPNE3 binds to calcium, phospholipids, and inositol polyphosphates via two 
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C2 domains (Creutz et al., 1998). CPNE3 was later found to share sequence homology to kinases but 

lacks conserved residues required for kinase activity (Caudell et al., 2000). CPNE3 is located in the 

cytoplasm and translocates to the plasma membrane or the nucleus in a calcium or growth factor 

HRG dependent manner (Figure 1.7.1). It was shown to interact with ERBB2 and promote cell 

migration (Heinrich et al., 2010). Furthermore, CPNE3 expression has been shown to correlate with 

ERBB2 and ERBB3 overexpression in a panel of HMLECs and breast tumour cells (Figure 1.7.2). 

Additionally, the expression of CPNE3 was found to be higher in the ERBB2 overexpressing C3.6 

clone compared to the parental HB4a cell line. Treatment with growth factors induced a moderate 

increase in CPNE3 expression in the HB4a cells (Bertani, 2005; Gharbi et al., 2002; White et al., 

2004). A study found JAB1 as a direct interactor of CPNE3 and that binding of CPNE3 to ERBB2 

correlates with Jab1 overexpression in SKBR3 cells. JAB1 expression also led to the activation of 

protein kinase B (AKT) and phosphatidylinositol 3 (PI3) kinase which are key mediators of 

downstream ERBB2 signalling. This suggests a possible role for the CPNE3 and Jab1 interaction in 

regulating downstream ERBB2 signalling pathways (Choi et al., 2016). In our laboratory, knockdown 

of CPNE3 in SKBR3 cells increased cellular invasiveness and proliferation suggesting a tumour 

suppressor function for CPNE3 (Worthington, 2012). 

 

Figure 1.7.5 Expression of CPNE3 correlates with ERBB2 and ERRB3 status in a panel of 
HMLECs and breast tumour lines. The candidates are shown alongside 14-3-3β as a loading 
control (Worthington, 2012). 
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1.7.5 Citrate synthase, mitochondrial (CS) 

CS is a member of the citrate synthase family located in the mitochondria (Figure 1.7.1) and the 

enzyme catalyses the synthesis of citrate from oxaloacetate and acetyl coenzyme A during the Krebs 

tricarboxylic acid cycle (Usher et al., 1994). CS is found in nearly all cells capable of oxidative 

metabolism and unlikely to be a plausible drug target for cancer. To date, little is known about the role 

of CS in ERBB2 overexpressing breast cancers. Nevertheless, the downregulation of CS expression 

in Embryonic kidney 293-T (HEK293T) cells has been linked to low levels of ATP production, 

excessive superoxide formation and cell apoptosis (Cai et al., 2017). Furthermore, RNAi-mediated CS 

knockdown in human cervical carcinoma cells has been shown to induce severe defects in respiratory 

activity and marked decreases in ATP production, but great increases in glycolytic metabolism. This 

change in cell metabolism accelerated cancer cell metastasis and proliferation for in vitro assays and 

in vivo tumour xenograft models.  

Citrate, a substance related to de novo fatty acid synthesis and tricarboxylic acid (TCA) cycle and 

synthesised by CS, has a pivotal role in cell survival. The potential for CS to greatly increase 

glycolytic metabolism while reducing the citrate contribution to the TCA cycle links CS expression to 

the Warburg effect, a phenomenon where cancer cells shift energy production from the TCA cycle 

and OXPHOS in the mitochondria to a less efficient process in aerobic glycolysis (Alfarouk, 2016; 

Peng et al., 2019). The aerobic glycolysis consists of a high level of glucose uptake, glycolysis and 

lactic acid fermentation that takes place in the cytosol, not the mitochondria, even in the presence of 

abundant oxygen (Alfarouk, 2016). The Warburg effect is also known to be directly linked to tumour 

malignancy via induction of CS expression dependant morphological changes characteristic of the 

epithelial-mesenchymal transition (EMT) in human cervical carcinoma cells (C.-C. Lin et al., 2012). 

CS’s role in metabolic reprogramming and morphological changes during EMT of cervical cancer cells 

make it an interesting potential biomarker for ErbB2 overexpressing breast cancer, particularly where 

the metabolic reprograming is facilitated by downstream signalling of ErbB2. 

 

1.7.6 Eukaryotic translation initiation factor 5A-1 (eIF5A) 
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EIF5A is a member of the eIF-5A family and it has an important function as an mRNA binding protein 

involved in mRNA turnover, and is located in the cytoplasm, nucleus and rough endoplasmic 

reticulum (Figure 1.7.1). Its subcellular location is linked to a suggested role in translation of a specific 

subset of mRNAs, particularly, those involved in the cell cycle progression (G1/S transition) (H. A. 

Kang & Hershey, 1994; Park et al., 1993, 1997). EIF5A is linked to the Post Translational Protein 

modification Reactome Pathway (R-HSA-597592) along with two other candidates CANX and 

HIST1H4 (Figure 1.7.1). This role in post translational modification of proteins contributes to actin 

dynamics (Hofmann et al., 2001), mRNA decay and maintenance of cell integrity during stress 

response (Galvão et al., 2013; Hoque et al., 2017; Smeltzer et al., 2021). However, it’s role in 

malignancy has not been well established. Recently, EIF5A2 has been shown to play an important 

role in doxorubicin chemoresistance (Y. Liu et al., 2015), to be an effective drug target for reducing 

cell viability by inhibiting c-Myc expression in vitro (Shah et al., 2016) and identified as a candidate 

target gene of miR-375 which may be a potential key regulator of EIF5A2 in human breast cancer 

cells (J. Liu et al., 2019). Nonetheless, the expression of eIF5A in breast cancer tissues and its 

association with the clinicopathology of patients with breast cancer have not been reported (Ning et 

al., 2020). 

 

1.7.7 Histone H4 (HIST1H4A) 

HIST1H4A is a member of the histone H4 family located in the nucleus (Figure 1.7.1) and is 

responsible for nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of 

HIST1H4A form an octamer with two molecules of the other core histones (H2A, H2B and H3), 

around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes 

(Bellard et al., 1976). Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility 

to the cellular machineries which require DNA as a template (Aragay et al., 1988; Moore et al., 1997; 

Simpson, 1976). HIST1H4A thereby plays a central role in transcription regulation, DNA repair, DNA 

replication and chromosomal stability, and is linked to the Post Translational Protein modification 

Reactome Pathway (R-HSA-597592) along with CANX and EIF5A (Figure 1.7.1). ERBB2/HER2-

overexpressing breast cancer cells have been found to contain significantly higher levels of acetylated 
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and phosphorylated histone H3, and acetylated histone H4 associated with the HER2 promoter 

(Mishra et al., 2001). Histone H4 is associated with arginine-rich fractions (F2a1) and undergoes more 

active histone acetylation than in the lysine rich fractions (F1, F2b) (JOHNS & BUTLER, 1962; 

Marzluff & McCarty, 1970; Wilhelm & McCarty, 1970). This increase in levels of acetylated histone H4 

in association with the HER2 promoter, is likely to contribute to post translational modifications that 

regulate nucleic acids and mRNA turnover in association with EIF5A (Figure 1.7.1).  

 

1.7.8 Integrin alpha 6 (ITGA6) 

The integrins are a family of integral membrane proteins by which cells attach to extracellular matrix 

(ECM) proteins and in some cases, mediate cell-cell adhesion by forming interactions with the cell 

cytoskeleton (Figure 1.7.1) (Hynes, 1987, 1992; Pinkstaff et al., 1999). ITGA6 is a receptor for 

glycoproteins of the extracellular matrix of epithelial cells known as laminin and a major component of 

highly specialised integrin-mediated epithelial attachment structures called hemidesmosomes  

(Borradori & Sonnenberg, 1999; Ieguchi et al., 2010). ITGA6 is linked to the Type I Hemidesmosome 

Assembly Reactome Pathway (R-HSA-446107) along with ITGB4 and Metabolism Pathway 

Reactome Pathway (R-HSA-1430728) along with other candidates CPNE3, CS and PYGM (Figure 

1.7.1). Studies involving mouse models have revealed the role of ITGA6 in many developmental 

processes such as cortical and retinal lamination, apical ectodermal ridge formation and 

organogenesis (De Arcangelis et al., 1999; Georges-Labouesse et al., 1998). Of greater interest is the 

role played by ITGA6 in altering survival signalling processes mediated by neuregulin with a switch 

from dependence on the PI3K pathway to the mitogen-activated protein kinase (MAPK) pathways 

(Colognato et al., 2002). The integrin heterodimer ITGA6/B4 (α6β4) has been found to play a specific 

role in breast cancer progression and metastasis (Diaz et al., 2005; Friedrichs et al., 1995; J. L. Jones 

et al., 1997; Mukhopadhyay et al., 1999) and there is growing evidence that cross-talk between HER2 

and α6β4 promotes tumour aggressiveness. This evidence points towards a cross talk between 

receptor tyrosine kinases and the Src/FAK complex activated by TGF-β.  

The activation of Src-FAK has been shown to integrate ErbB receptor and integrin signalling to induce 

cell migration and survival during breast cancer progression (Carraway & Sweeney, 2006; Fan et al., 
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2011; H. Wang et al., 2010; S. E. Wang et al., 2009). The knockdown of ITGA6 expression was found 

to impair FAK-mediated PI3K signalling to Akt by abolishing the formation of a functional complex 

comprised of receptor tyrosine kinase ERBB2, FAK and integrin (S. E. Wang et al., 2009). The cross 

talk between HER2 and a6b4 has been shown by the phosphorylation of Src-FAK and integrin-FAK 

signalling has been linked to resistance to either trastuzumab or lapatinib (X. H. Yang et al., 2010). 

Integrin α6β4 is known to amplify downstream pathways such as PI3K, AKT, MAPK, and the Rho 

family small GTPases by cooperating with growth factor receptors including EGFR, ERBB-2, and c-

Met. Moreover, it upregulates and activates key tumour-promoting transcription factors such as the 

NFATs and NF-κB (Stewart & O’Connor, 2015). Inhibition of HER2/integrin signalling has been shown 

to suppress in vitro and in vivo breast tumour growth (P. Gupta & Srivastava, 2014). SILAC-based 

LC-MS/MS profiling of HMLECs found that ITGA6 was downregulated in response to ERBB2 

overexpression (Worthington et al., 2017).  

 

1.7.9 Integrin beta 4 (ITGB4) 

ITGB4 is a component of the alpha-6/beta-4 integrin and is primarily expressed in epithelial cells, 

where it plays a role in adhesion and is recognized as a receptor for most of the known laminins 

(Mercurio, 1995). ITGB4 is a structurally distinct integrin subunit with an intracellular domain of 

approximately 1000 amino acids located at the plasma membrane (Figure 1.7.1) (Hemler et al., 

1989). The intracellular domain of the ITGB4 links the beta 4 subunits to intermediate filaments in 

hemidesmosomes (Wilhelmsen et al., 2006). ITGB4 is predominantly associated with 

hemidesmosome organization and function and plays a pivotal role in modulating tumour progression 

(Bachelder et al., 1999; Chao et al., 1996; Jauliac et al., 2002; Lipscomb et al., 2005; O’Connor et al., 

1998; Rabinovitz & Mercurio, 1997; Santoro et al., 2003; Shaw et al., 1997; Wilhelmsen et al., 2006).  

ITGB4 is linked to the Type I Hemidesmosome Assembly Reactome Pathway (R-HSA-446107) along 

with ITGA6 (Figure 1.7.1). SILAC LC-MS/MS profiling of HMLECs showed that like its binding partner 

ITGA6, ITGB4 was downregulated in response to ERBB2 overexpression in HMLECs (Worthington et 

al., 2017). 
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1.7.10 Importin subunit alpha-1 (KPNA2) 

KPNA2 is a member of the importin alpha family located in the cytoplasm, rough endoplasmic 

reticulum or nucleus, and functions in nuclear protein import as an adapter protein for nuclear 

receptor importin beta (KPNB1) (Figure 1.7.1). It binds specifically and directly to substrates 

containing either a simple or bipartite NLS motif. The docking of the importin substrate complex to the 

nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and 

the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent 

mechanism (Görlich, 1998; Lange et al., 2007). The three components of the translocated complex 

are separated by binding of Ran to KPNB1 at the nucleoplasmic side of the NPC. KPNA2 and KPNB1 

are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. 

The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the 

GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (Chook & Blobel, 2001; 

Goldfarb et al., 2004). KPNA2 is linked to the Signal Transduction Reactome Pathway (R-HSA-

162582) along with ARHGDIB and HIST1H4A (Figure 1.7.1) which alludes to a potential mechanism 

involving GDP dissociation and nuclear import. Increased expression of KPNA2 has been shown to 

predict unfavourable prognosis in ovarian cancer patients and to promote colorectal cancer 

development by activating the PI3K/AKT pathway (Cui et al., 2021; B. Huang et al., n.d.). A separate 

study concluded that the silencing of KPNA2 expression inhibits the proliferation, migration and 

invasion of breast cancer cells by blocking NF-κB signalling and c-Myc nuclear translocation in vitro 

(Duan et al., 2020). The downregulation of KPNA2 was previously observed following specific knock-

down of target candidate CPNE3 in SKBR3 breast cancer cells (Worthington, 2012) (Table 1.6.1) and 

KPNA2 may function as a downstream signalling candidate in ERBB2 overexpressing breast cancer. 

 

1.7.11 Glycogen phosphorylase (PYGM) 

PYGM is an allosteric enzyme located in the cytoplasm that catalyses the rate-limiting step in 

glycogen catabolism, the phosphorolytic cleavage of glycogen to produce glucose-1-phosphate and 

plays a central role in maintaining cellular and organismal glucose homeostasis. PYGM is linked to 

the Metabolism Reactome Pathway (R-HSA-1430728) along with CPNE3, CS and ITGA6 (Figure 
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1.7.1). The glycogen phosphorylase isoforms, PYGB and PYGM, have been shown to be expressed 

at very low levels compared to PYGL in EMT-derived breast cancer cells. The study demonstrated 

that EMT induces multiple metabolic changes such as enhanced glycolysis in HER2-positive, 

epithelial BT- 474 and ERα-positive, epithelial MCF-7 breast cancer cells, suggesting that breakdown 

of glycogen is promoted during EMT in order to provide carbons for glycolysis (Kondaveeti et al., 

2015). While cells get less energy from each molecule of glucose during aerobic glycolysis, the 

process is faster and has a higher rate of energy turnover than would be obtained per time unit 

through the TCA cycle as long as the extracellular glucose levels are maintained at a high enough 

concentration (Cox E & Bonner J T, 2001). Low expression of PYGM could be serve as a marker for 

EMT and upregulation of aerobic glycolysis in breast cancer cells (Kondaveeti et al., 2015).  

 

1.7.12 Structure specific recognition protein (SSRP1) 

SSRP1 is a component or subunit of the chromatin transcriptional elongation factor FACT and forms 

the heterodimer complex along with SUPT16H located in the nucleus (Figure 1.7.1). SSRP1 is 

typically associated with the cell differentiation stage and elevated SSRP1 has been found in many 

metastasised tumours making SSRP1 a potential prognostic marker (Garcia et al., 2013; Gurova et 

al., 2013). SSRP1 is linked to the Gene Expression (Transcription) Reactome Pathway (R-HSA-

74160) along with HIST1H4A (Figure 1.7.1). High SSRP1 is known to corelate with markers of poor 

prognosis in breast cancer such as negative hormone receptor status and presence of HER2 

(Attwood et al., 2017). Nevertheless, SSRP1 is not an established marker or drug target for ERBB2 

overexpressing breast cancer. 
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1.8 Impact statement 

The work presented in this thesis addresses the issue of therapeutic resistance in the ERBB2/HER2 

overexpressing subset of breast cancer patients. In particular, the elucidation of downstream 

signalling mechanisms responsible for the malignancy of HER2 positive breast cancers by functionally 

characterising gene products associated with ERBB2-dependent breast cancer and identifying 

potential biomarkers linked to therapeutic resistance mechanisms. The work presented herein 

focused on CPNE3, a poorly characterised gene product which the Timms lab have shown to be 

linked to the overexpression of ERBB2. The change in CPNE3 gene expression along with adhesion 

related proteins was previously observed in HB4a/C3.6 HMLECs and SKBR3 breast cancer cells 

following specific knock-down of ERRB2. It can be hypothesized that the altered gene products are 

somehow involved in generating the observed altered cellular phenotypes and play a role in ERBB2-

mediated signalling. 

 

This study has successfully unravelled an underlying mechanism driving ERBB2-mediated 

therapeutic resistance, by functionally characterising CPNE3’s role in cellular adhesion. Moreover, the 

study introduces a novel method or workflow to discover and validate CPNE3 linked gene expression 

changes by combining siRNA mediated knockdown of CPNE3 in an ERBB2 overexpressing cell line 

model, mass spectrometry based global protein expression profiling and a biostatistical method to 

create functional networks using clinical data from patient cohorts of all breast cancer subtypes. The 

evaluation of clinical data provided a real-world model that will better inform on the relevance of 

changes observed in the cell line profiling experiment, overcoming the commonly cited drawbacks 

regarding the limited clinical translation of discoveries made using cell line models.  

 

Identifying biomarkers that predict changes in cell adhesion is an important first step in preventing 

treatment failure for breast cancer. This thesis presents the discovery of such biomarkers related to 

changes in cell adhesion or metabolic reprogramming and differentially regulated by CPNE3 

expression in cell line models and HER2 positive breast cancer patients. Moreover, suggesting a role 

in glucose homeostasis for the hitherto poorly characterised downstream signalling candidate CPNE3. 
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Chapter 2 

2. Materials and methods 

2.1 Cell culture 

SKBR3 cells were cultured in 75cm2 tissue culture flasks in DMEM/F-12 medium supplemented with 

10% (v/v) foetal calf serum, 100 µg/ml streptomycin and 100 IU/ml penicillin (Gibco-Invitrogen Corp) 

in a humidified incubator at 37˚C with 5% CO2. HB4a and C3.6 cells were cultured in 75cm2 tissue 

culture flasks in 1640 RPMI medium supplemented with 10% (v/v) foetal calf serum, 2 mM L-

glutamine, 100 µg/ml streptomycin, 100 IU/ml penicillin (Gibco-Invitrogen Corp), 5 µg/ml insulin and 5 

µg/ml hydrocortisone (both Sigma) in a humidified incubator at 37˚C with 5% CO2.  

2.2 Small interfering RNA (siRNA) reverse transfection 

SKBR3 and C3.6 cells were incubated in an antibiotic-free medium overnight. The cells were 

subsequently reverse transfected with pools of siRNA targeting Copine III and ERBB2 or an ON-

TARGET plus non-targeting scrambled control siRNA pool (Dharmacon RNA technologies). The 

reverse transfection was performed in 6-well plates as per the manufacturer’s instructions using 

lipofectamine™ RNAi Max (Invitrogen) and diluting the siRNA with Opti-Mem® reduced serum 

medium (Invitrogen). A final concentration of 50 nM of siRNA was found to be effective and was 

typically used to transfect 2.5 x 105 cells. The cells were maintained in antibiotic-free medium, either 

1640 RPMI supplemented with 10% (v/v) foetal calf serum, 2 mM L-glutamine, 5 µg/mL insulin and 5 

µg/mL hydrocortisone (Sigma) for C3.6 cells or DMEM/F-12 medium supplemented with 10% (v/v) 

foetal calf serum for SKBr3 cells. Cells were incubated at 37˚C and lysed with 200 µL/well of NP40 

buffer after 96 hours. The knockdown of protein expression was confirmed by western blotting. 
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2.3 Protein extraction and sample preparation  

Transfected cells were washed twice in ice-cold PBS prior to lysis in 200 µL of NP40 lysis buffer (50 

mM HEPES, 150 nM NaCl, 1% NP40 and 1 mM EDTA) supplemented with the protease and 

phosphatase inhibitors: AEBSF (100 µg/mL), aprotinin (17 µg/mL), leupeptin (4.8 µg/mL), pepstatin (1 

µg/mL), okadaic acid (1 µM), sodium orthovanadate (2 mM), BpVphen (5 µM) and fenvalerate (5 µM) 

or 8 M urea, 100 mM TEAB pH 8. Lysates were placed on ice for 20 minutes followed by 

centrifugation at 13,000 rpm and 4˚C for 10 minutes to remove cell debris. A BCA assay was used to 

determine protein concentration using a microtitre plate and 2 µL of cell lysate (in triplicate) plus 200 

µL of BCA reagent mixture (Thermo-Scientific). The microtiter plates were incubated for 30 minutes at 

37˚C per the manufacturer’s instructions. Absorbance readings were taken at 562 nm on a microtitre 

plate spectrophotometer and protein quantification was determined against a standard curve of 

incremental dilutions of bovine serum albumin (BSA).   

2.4 Western blotting 

The samples were then diluted to equal protein concentrations followed by reduction and denaturation 

in sample buffer (50 mM Tris-HCL pH 6.8, 2% SDS (w/v), 6% (v/v) glycerol, 1% β-mercaptoethanol 

and 0.02% (w/v) bromophenol blue) at 96˚C for 5 minutes. Proteins were resolved by SDS-PAGE on 

4-12% NuPAGE® Novex Bis-Tris Gels with NuPAGE® MOPS SDS Running Buffer (Invitrogen) as 

per the manufacturer’s instructions. The proteins were subsequently electroblotted onto 

polyvinylidene fluoride (PVDF) membranes (Immobilon P, Millipore) in a wet transfer tank containing a 

transfer buffer composed of 195 mM glycine, 25 mM Tris and 20% (v/v) methanol. The membranes 

were blocked overnight in a blocking solution of 5% BSA in TBS-T (50 mM Tris-HCL pH 8.0, 150 mM 

NaCl and 0.05% Tween-20) followed by a 1-hour incubation with primary antibody diluted in TBS-T. 

Membranes were washed for 3 x 15 minutes in TBS-T. An appropriate horseradish peroxidase (HRP)-

coupled secondary antibody was diluted in TBS-T and applied to the membrane for 45 minutes. 

Membranes were washed in TBS-T as previously. The membrane-bound proteins were visualised on 

film using enhanced chemiluminescence reagent (ECL) (PerkinElmer Life Sciences) as per the 

manufacturer’s instructions. 
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2.5 Adhesion assays 

ERBB2 overexpressing HMLEC C3.6 and its parental cell line HB4a were subjected to adhesion 

assays on 96-well plates.  Cells were trypsinised, washed twice in serum-free medium and seeded at  

 
Table 2.4. The table contains a list of antibodies used for western blotting and their corresponding 
dilutions. 
 

Antibody Company/Source Mono/Polyclonal Dilution 

CPNE3 Elizabeth Grimm lab Rabbit pAb 1:1000 

ERBB2 Santa Cruz Rabbit pAb 1: 500 

ITGA6 Anti-ITGA6 (ab105669 Abcam)  Rabbit mAb  1:100 

ITGB4 Anti-ITGB4 Cell Signalling 
Technologies  

Rabbit pAb 1:1000 

NDRG1 Sigma-Prestige   Rabbit  1:500 

Anti-Mouse Secondary GE Healthcare sheep anti mouse 1:5000 

Anti-Rabbit Secondary GE Healthcare donkey anti-rabbit 1: 5000 

Anti-Goat Secondary Chemicon International rabbit anti-goat 1: 15000 

 

a cell density of 2 x 104 per well into 96-well plates with complete medium.  Cells were left to adhere 

for 10, 20, 30, 60 and 120 minutes at 37 oC before washing with PBS and adding a volume of 200 μL 

of complete medium. The cells were seeded on either laminin-coated or non-coated tissue culture 

plates. The plates were incubated overnight at 37 oC. The medium was aspirated, and the cells were 

washed with PBS before adding a volume of 50 μL of 1 mg/mL, 3-[4,5-dimethyl-thiazol-2-yl]-2,5-

diphenyl-tetrazolium bromide (MTT) (Sigma) in PBS. The cells were incubated for 4 hours. DMSO 

(100 μL) was added, the plates were shaken for 20 minutes at 22 oC, and the absorbance read at 

540nm. Each time point was performed in quadruplicate per well and an average absorbance reading 

was calculated along with the standard error of the mean. 

2.6 De-adhesion assays 

ERBB2 overexpressing HMLEC C3.6 and its parental cell line HB4a were subjected to de-adhesion 

assays. Cells were trypsinised, washed twice in serum-free medium and seeded at a cell density of 2 

x 104 per well into 96-well plates with complete medium.  Cells were left to adhere overnight at 37 oC 
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before washing with PBS and trypsinising at varying concentrations of trypsin. The cells were seeded 

on either laminin-coated or non-coated tissue culture plates. The concentrations of trypsin were 0.01, 

0.02, 0.03,0.04 and 0.06%. The plates were incubated for 10 minutes before the plates were knocked, 

detached cells aspirated, and the remaining cells washed gently with PBS. A volume of 50 μL of 1 

mg/mL, 3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) (Sigma) in PBS was 

added to each well. The cells were incubated for 4 hours. DMSO (100 μL) was added, the plates were 

shaken for 20 minutes at 22 oC, and the absorbance read at 540nm. Each time point was performed 

in quadruplicate per well and an average absorbance reading was calculated with standard error of 

the mean.  

2.7 Real-time cell adhesion or spreading assays 

Cells were plated in 16-wells E-Plate View (ACEA Biosciences/Agilent) and placed at a seeding 

density of 40000 cells per well onto an xCELLigence RTCA DP (ACEA Biosciences/Agilent) located 

inside a tissue culture incubator at 37°C and 5% CO2. The cells were allowed to obtain equilibrium 

according to the manufacturer's guidelines. The cell index (CI) values were measured automatically 

every 30 min over 12 h for adhesion. The cell adherence was determined by calculating the slope of 

the line between two given time points. Standard deviations of well replicates were analysed with the 

RTCA 2.1.0 Software. The rate of cell spread was determined by identifying the maxima or the largest 

CI where two given time points have a slope equal to zero or less than zero. 

2.8 TMT tagging and HPLC fractionation.  

Cell lysates (urea lysis buffer) from candidate siRNA-transfections were concentrated to 

approximately 50 µL in a Viva Spin 5kDa column by centrifuging at 15,000xg (approximately 12.5 

x1000rmp) at 4oC. A buffer exchange was conducted by adding an additional 450 µL 0.1M TEAB. The 

final concentration of urea was < 1M. The vial was centrifuged to concentrate the solution to 

approximately 50 µL.  
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Reduction of 100 µg for each test sample protein was achieved by adding TCEP to a final 

concentration of 1mM. The samples were incubated at 56o for 45 minutes followed by centrifugation 

at 4oC for 1 minute to ensure all liquid was at the bottom of the tube and to chill the solution. 

An alkylation step was performed by adding iodoacetamide at a final concentration of 7.5mM. The 

sample was left for 45 minutes in the dark. The protein was then digested by adding sequencing 

grade modified porcine trypsin (Promega) trypsin to the sample to give a 1:50 trypsin to protein ratio. 

The mixture was left overnight at 37oC before being dried in a vacuum centrifuge.  

The digests 100 µg protein were re-suspended in 50 nM TEAB (Thermo Scientific) by shaking in a 

Grant-bio shaker at 1130 rpm for 10 minutes.  The TMT Label Reagents were equilibrated to room 

temperature immediately before use. 41 μL of anhydrous acetonitrile was added to each 0.8mg vial. 

TMT reagents were left to dissolve for 5 minutes with occasional vortexing. The tube was centrifuged 

to gather the solution and were then added to the samples as follows: siCtrl-1: TMT126, siCPNE3-1: 

TMT127, siCtrl-2: TMT128, siCPNE3-2: TMT129, siCtrl-3: TMT130 and siCPNE3-3: TMT131.  

The tags and samples were mixed and incubated at room temperature for 1 hour. A 50-fold dilution of 

5% hydroxylamine was made up in 50 mM TEAB and 16 μL added to the labelled vials. The individual 

TMT-labelled samples were pooled (total volume of 942 μL). The sample was desalted with Oasis 

HLB 1cc (30 mg) extraction cartridges as per the manufacturing protocol before high pH C-18 reverse 

phase HPLC. Fractionation was achieved using high pH, RP-LC. Samples were suspended in 20 mM 

ammonium formate at pH 8.4 and loaded onto a PoroShell 300 Extend-C18 column (2.1 x 75 mm, 5 

mm-bead size, 300 Å-pore size, Agilent) using an Agilent 1100 HPLC system. 30 fractions were 

collected by eluting with a gradient of acetonitrile (3-45%) over 35 mins. Samples were dried to 

completion, re-solubilised in 200 µL 0.1% formic acid, dried down again and stored at -20oC to 

remove ammonium formate. 

2.9 Mass Spectrometry (LC-MS/MS) and protein identification 

The 30 fractions of the TMT 6plex-labelled sample were re-suspended to a concentration of ~0.2 

μg/μL in buffer A (0.1% formic acid) and sequentially analysed by nanoLC-MS/MS (LTQ Orbitrap XL) 

as described in Sinclair et al (Sinclair & Timms, 2011). In brief, peptides were separated by C18 RP-
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LC on an Ultimate 3000 nano-liquid chromatography system (Dionex); 5 uL samples were injected 

onto an Acclaim PepMap 100 C18 pre-column (5 μm, 100 Å, 300 μm i.d x 5 mm) (ThermoFisher 

Scientific) and washed for 3 min with 10% buffer B (ACN + 0.1% (v/v) FA) at a flow rate of 25 μL/min 

and then peptides separated on an Acclaim PepMap 100 C18 Nano-LC column (3 μm-bead size, 100 

Å-pore size, 75 μm i.d x 250 mm) (ThermoFisher Scientific) with a 90 min linear gradient of 10-50% 

buffer B at a flow rate of 300 nL/min. Samples were electrosprayed into an LTQ-Orbitrap XL 

instrument controlled using Xcaliber software (ThermoFisher Scientific). Precursor MS scans were 

acquired in the orbitrap using data-dependent acquisition (DDA) at a resolution of 60,000 at m/z 400, 

followed by top3 CID/HCD using a normalised collision energy of 40% for HCD and a resolution of 

7,500 for detection of product ions in the orbitrap. Dynamic exclusion was enabled with a list size of 

500, excluding for 15 seconds. Atmospheric polymethylcyclosiloxane was used as a lock mass 

(455.12003 m/z) for in-run calibration. 

Raw data files were analysed using Proteome Discoverer V1.4 software (ThermoFisher Scientific) 

with database searching against the UniProtKB/SwissProt database (2014_09; 546,439 sequence 

entries) using the Mascot search engine V2.4 (Matrix Science). For searching, taxonomy was human, 

enzyme was trypsin, MS tolerance was set to +/- 10 ppm, MS/MS tolerance was set to 0.5 Da and 

one missed cleavage was allowed. TMT 6-plex modification of peptides and carbamidomethylation of 

cysteines were set as fixed modifications. Protein N-terminal acetylation, methionine oxidation and 

N/Q deamidation were set as variable modifications. Search result filters were as follows: only 

peptides with a score of >20 and below the Mascot significance threshold filter of P<0.05 were 

included. Protein grouping was enabled such that when a set of peptides in one protein were equal to 

or completely contained within the set of peptides of another protein, the two proteins were put 

together into a protein group. The false discovery rate was calculated to be 2.3% based on searching 

a decoy database. 

Reporter ion-based quantification was carried out using Proteome Discoverer Version 2.4 with the 

following ratios calculated: (127+129+131)/ (126+128+130), 126/128, 126/130, 127/126, 127/128, 

127/129, 127/130, 127/131, 128/130, 129/126, 129/128, 129/130, 129/131, 131/126, 131/128 and 

131/130. The reporter ion ratios were normalized on protein median with a minimum protein count of 

20. A filtering system was applied to aid in defining a list of up and down-regulated proteins. Search 
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result filters were selected as follows; only peptides with a score >20 and below the Mascot 

significance threshold filter of p = 0.05 were included and single peptide identifications required a 

score equal to or above the Mascot identity threshold (Sinclair & Timms, 2011).  

While TMT labelling can offer greater accuracy and precision in quantitation, particularly for small 

quantitative differences, it requires more complex sample preparation and is more expensive than 

label free alternatives. Furthermore, several experiments have shown that it may suffer from 

variations in labelling efficiency (Hutchinson-Bunch et al., 2021; Zecha et al., 2019). On the other 

hand, label-free quantification is a low-cost alternative to labelled quantification for relative and 

absolute protein quantification in large-scale experiments. Label-free methods are generally well-

suited for large-scale screening and biomarker discovery experiments and can detect large 

differences in protein expression. However, label-free methods may be less sensitive than labelled 

methods for detecting small quantitative differences and have a limited range of linear quantitative 

measurement. Additionally, label-free methods require careful experimental control to account for 

experimental variations and have been shown to suffer from missing values which can impact 

statistical analysis and downstream functional interpretation (Ball et al., 2023; Hamid et al., 2022; 

Rozanova et al., 2021; M. Wang et al., 2008).  

2.10 Label-Free sample preparation 

Reduction of 100 µg for each test sample protein was achieved by adding TCEP to a final 

concentration of 10mM. The samples were incubated at 56o for 45 minutes followed by centrifugation 

at 4oC for 1 minute to ensure all liquid was at the bottom of the tube and to chill the solution. An 

alkylation step was performed by adding 2-chloroacetamide at a final concentration of 40mM. The 

sample was left for 45 minutes in the dark. The protein was then digested by adding sequencing 

grade modified porcine trypsin (Promega V5111) trypsin to the sample to give a 1:50 trypsin to protein 

ratio. The mixture was left overnight at 37oC before being dried in a vacuum centrifuge.  

The digests of 100 µg protein were resuspended in an aqueous solution free of any organic solvents 

and acidified with trifluoroacetic acid (TFA) to a concentration of 0.1% (v/v). Each sample was 

desalted with Oasis C18 spin tip desalting cartridge (Pierce 89873) and capacity filter (HLB 1cc (30 
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mg) extraction cartridges) as per the manufacturing protocol. Samples were dried to completion 

without pre-fractionation. 

2.11 Mass Spectrometry (LC-MS/IMS/MS) and protein identification 

The samples were re-suspended in a buffer comprised of solvent A1 (Water LC/MS Grade ≥ 99.9%) 

and solvent B1 (Acetonitrile) at a ratio of 95% A1 and 5% B1 and sequentially analysed by LC-

MS/IMS/MS (Waters Synapt G2 QTOF). In brief, peptides were separated by C18 RP-LC on an 

Acquity M+ (Waters Corporation); samples were injected at a flow rate of 0.5 μL/min and washed for 

5 min at a flow rate of 15 μL/min. Samples were electrosprayed into an ion mobility separation (IMS) 

capable Waters Synapt G2 QTOF instrument controlled using MassLynx software (Waters 

Corporation). Analysis was performed on a Waters Synapt G2 QTOF operating in positive HDMSE 

mode (high and low fragmentation channel monitoring with IMS active) and TOF mass resolution in 

positive ions. In HDMSE, the mass spectrometer alternates between low-energy and high-energy 

scans to generate two separate data sets for each sample. The low-energy scan is used for intact 

precursor ion detection and quantification, while the high-energy scan is used for fragment ion 

detection and structural characterization(Claude et al., 2013; Britt et al., 2022). Furthermore, IMS in 

HDMSE provides an additional dimension of separation, improving the resolution of complex sample 

mixtures. By incorporating IMS and separating ions based on their CCS, HDMSE allows for more 

accurate identification and quantification of analytes in the presence of interferences or background 

noise (Figure 2.11.1) ( Gil‐Solsona et al., 2021; Britt et al., 2022). Precursor MS scans were acquired 

between 50 to 2000 Da for 120 minutes at collision energies between 19v to 45v.  

 

Raw data files were analysed using Progenesis Qi (Waters Corporation) for fragment ion searches 

and peak alignment across multiple alignments over the MZ range with 2 database searches against 

the default database for the Ion Accounting search algorithm (Waters Corporation) and the 

UniProtKB/SwissProt database (2014_09; 546,439 sequence entries) using the Mascot search engine 

V2.4 (Matrix Science) respectively. Optional peak filtering was applied with FDR correction for 

experimental design. Output data from the Ion Accounting default database search was used for the 
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Mascot search as a data normalisation step to ensure that the SwissProt search was for human 

samples. The high false discovery rate for samples was adjusted using ANOVA FDR adjustment. 

 

Figure 2.11.1 Schematic representation of the mass spectrometer processes for various 
acquisition modes available on Synapt G2‐Si mass spectrometer. The quadrupole can be used in 
three modes allowing all ions to pass through (MS, HDMS, MSE, HDMSE) or perform precursor 
ion selection based on intensity (DDA, HDDDA). CID fragmentation is applied in the trap for some 
acquisition modes (DDA, HDDDA). Mobility separation is performed next for IM‐enabled modes 
either on precursor ions (HDMS, HDMSE) or CID fragments (HDDDA). In addition to the trap, CID 
fragmentation can be performed in the transfer for the high energy MS2 experiment that makes 
up part of the MSE and HDMSE acquisition modes. The broadband DIA modes (MSE and HDMSE) 
and DDA provide both MS1 and MS2 data. The ion m/z is denoted by the colour of the 
precursor/product ion (orange/blue), and the shape of the precursor/product ion denotes the 
collision cross-section (CCS) Adapted with permission from the authors. (Britt et al., 2022). 

 

2.12 Dimensionality reduction by PCA and k-means clustering 

The comparison of proteomic profiles obtained from TMT LC-MS/MS and Label Free LC-MS/MS was 

achieved by reducing the dimensions of each dataset to an intrinsic dimension that describes protein 

expression changes with a high similarity to CPNE3 in Python 3.8. The TMT data was comprised of 9 

sample combinations derived from all possible knockdown vs control combinations for CPNE3 

knockdown sample tandem mass tags TMT6-127, TMT6-129 and TMT6-131 and control sample 
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tandem mass tags TMT6-126, TMT6-128 and TMT6-130. Similarly, the label free data was transformed 

to 9 sample combinations comprised of all possible knockdown vs control combinations for CPNE3 

knockdown samples 1 to 3 and control samples 1 to 3. Both datasets were log2-transformed 

normalised to moderate the variance across the mean. The optimal number of components which 

capture the greatest amount of variance in the data was determined using StandardScaler() function 

and the principal component analysis (PCA) module in the Scikit-learn library. K-means clustering to 

identify the PCA component with proteins of high expression similarity to CPNE3 in all sample 

replicates was implemented using the k-means module in the Scikit-learn library. Principal 

components were first fit using the k-means algorithm and the optimal number of clusters determined 

for each data set.  

 

The number of clusters to be used for the k-means clustering were determined by an iterative 

statistical technique for measuring the sum of the squared distances to the nearest cluster centre 

(sum of squared error) by running the k-means algorithm for a range of cluster values. The iterative 

statistical technique known as the elbow method, was used to determine the optimal number of 

clusters for k-means clustering. The elbow method involves he sum of squared error (SSE) values 

against the number of clusters and selecting the number of clusters at the point of the plot where the 

rate of SSE reduction begins to level off, forming an elbow-like shape. This point indicates that 

additional clusters do not significantly reduce SSE and can lead to overfitting, while using fewer 

clusters may result in underfitting. Therefore, the elbow method is useful in identifying the optimal 

number of clusters for k-means clustering that balance model complexity with the need for accurate 

clustering. However, it should be noted that the elbow method is not always definitive, and other 

factors such as domain knowledge and context should also be considered. Additionally, the elbow 

method may not be applicable in cases where missing values or noisy data are present.  

 

To ensure that the entire range of features in our datasets was represented, a range of cluster values 

from n=1 to 15 were selected. A 2 component PCA visualisation of k-means clustered components 

was carried out and used to interpret the CPNE3 containing principal component for each dataset. 
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2.13 Clinical data 

The sources and processing of clinical protein expression data used in the construction of biological 

networks reported here are detailed elsewhere. The data consists of protein expression profiles of 40 

breast cancer patients derived through SILAC-based mass spectrometry (Tyanova et al., 2016) and 

105 breast cancer patient profiles derived through iTRAQ-based mass spectrometry by the NCI 

clinical proteomic tumour analysis consortium (CPTAC) (Ellis et al., 2013; Mertins et al., 2016). 

2.14 Creating partial compendia of clinical data 

We call the total set of patient samples for which protein expression data is available the full 

compendium of protein expression data. However, for this analysis, we created partial compendia for 

each of the two data sets, a discovery cohort and a validation cohort (Table 4.2.1). Partial compendia 

were created to include only protein expression data for the 52 proteins identified as up/down-

regulated in response to CPNE3 knockdown in HMLECs using TMT mass spectrometry (Appendix 

2.1). 36 proteins were consistently quantified in all 40 samples of the discovery cohort. 16 proteins, 

AHSG, ALPP, HIST1H1A, HIST1H1C, HIST1H1D, HIST1H3A, MGST1, PNPLA7, PPP6R2, PYGM, 

RPL32, S100A10, SLC3A2, TIMELESS, UBC and ZFP28, were not quantified for all 40 patient 

samples. The 36 proteins were evaluated in the correlation analysis of the discovery cohort of 40 

breast cancer patients. Because protein expression data and patient prognosis involve numerous 

uncertainties, the data set with 105 patients was partitioned on the basis of characterisation and 

quality control tests previously described (Mertins et al., 2016). 75 female patient samples were 

included in our validation cohort (Table 4.2.1). Genes with protein expression values for all 75 

samples were included in the compendia. 45 proteins were consistently quantified in all samples. 7 

proteins, ALPP, HIST1H3A, HMGA1, PNPLA7, PTGES, UBC and ZFP28, were omitted due to a high 

number of missing values for the samples or not detected at all during the quantification. The 45 

proteins quantified for all 75 patients were used in the correlation analysis of the validation cohort. 
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2.15 Statistical analysis and network construction 

The Pearson correlation coefficient r for each protein-protein association was computed using 

GraphPad Prism with statistical significance of the r-values determined using a two-tailed test with a 

95% confidence interval. Heatmaps of the respective correlation matrix for each breast cancer 

subtype were visualised in GraphPad Prism software (version 9) (GraphPad Software, Inc) (Mitteer & 

Greer, 2022) and correlation networks constructed using Cytoscape software (version 3.9.1) 

(Shannon et al., 2003). Proteins included as nodes in the constructed networks were required to 

share at least one correlation with significance level p-value < 0.05 for the visualised edges. Each 

network was used to identify the predominant functional cluster containing either a set of highly 

interconnected nodes or CPNE3 respectively and for functional enrichment analysis of proteins 

related to the cluster. 

2.16 Functional enrichment analysis 

Differentially expressed proteins (up/ down-regulated (>1.5 fold)) were imported into WebGestalt 

(WEB-based Gene SeT AnaLysis Toolkit) and mapped to the pathway functional database for either 

KEGG, Panther or Reactome databases using the Over-Representation Analysis (ORA) enrichment 

analysis method for Homo sapiens using the genome reference set (Liao et al., 2019). The 

significance of the association between the uploaded data set and the KEGG, Panther or Reactome 

pathway was determined for each gene set, by calculating an enrichment p-value using the 

Hypergeometric distribution or the Fisher exact test and corrected for multiple-hypothesis testing with 

a Benjamini-Hochberg FDR (Liao et al., 2019; J. Wang et al., 2013; Zhang et al., 2005). 

2.17 Causal analysis 

Differentially expressed proteins (up/ down-regulated (>1.5 fold)) were imported into Ingenuity® 

pathway analysis (IPA) (QIAGEN) (Krämer et al., 2014) and mapped to the IPA knowledgebase to 

identify causal relevance to breast cancer, a role in cell adhesion or known biomarker application. 
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2.18 Protein interaction analysis 

Differentially expressed proteins (up/ down-regulated (>1.5 fold)) were uploaded to the STRING 

database (version 11.5) (Szklarczyk et al., 2021) and mapped to protein-protein interaction networks. 

Molecules were required to interact with a confidence score cut-off ≥ 0.90 (high confidence) for 

significantly up/down - regulated proteins discovered using the TMT-LC-MS/MS method and only 

interactions between proteins identified by the dataset were permitted. 

2.19 Bioinformatics analysis of phosphoproteomic data 

Bioinformatics analysis of phosphopeptides/proteins that were differentially regulated with ErbB2 

over-expression (HER2 positive + HER2-enriched vs. HER2 negative + HER2-enriched) in the 

validation cohort was used to define the downstream phosphorylation networks potentially involved in 

oncogenic transformation. Differentially regulated phosphoproteins (containing at least one 

phosphosite with ≥1.5-fold change) were identified using Clustal Omega (Sievers et al., 2011) 

sequence alignments of phosphopetides extracted from the 

TCGA_Breast_BI_Phosphoproteome.phosphopeptide.itraq file of the data used for the validation 

cohort. This represented a total of 45 proteins of which 11 were found to have phosphopeptide 

enrichment and assigned sites for modified residues on each peptide sequence. The phosphopeptide 

ratio was determined for HER2 positive + HER2-enriched vs. HER2 negative + HER2-enriched 

patients from the 75 patient validation cohort described previously for each of the peptide sequences 

from the 11 proteins found to contain a modified residue. Given the small number of 11 

phosphoproteins differentially regulated for HER2 positive + HER2-enriched vs. HER2 negative + 

HER2-enriched patients there were a high number of significantly enriched (≥1.5-fold change) singly 

(1pST) or doubly phosphorylated (2pST) phosphopeptides (Table 4.4.1) (see Appendix 2.2.2 for more 

detailed results). 
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2.20 Logistic regression analysis of selected candidate biomarkers 

Logistic regression analysis was implemented in Python 3.8 using candidate biomarkers identified by 

statistical analysis and network construction as the given set of input variables. A binary logistic 

regression model was implemented by creating an instance of the LogisticRegression() class in Scikit 

learn (Sklearn) and a 70:30 splitting ratio or train: test ratio, x_train, x_test for the independent 

features and y_train, y_test for the dependent variables using the sklearn library. The target variable 

or dependent variable was either HER2 positive (case) or HER2 negative (control). Model 

performance was evaluated using Leave-One-Out-Cross-Validation (LOOCV) and Youden’s J 

statistic. LOOCV was implemented using sklearn’s model_selection method and the Youden’s J 

statistic was calculated by subtracting 1 from the sum of sensitivity (True Positive / (True Positive + 

False Negative)) and specificity (True Negative / (True Negative + False Positive)). 
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Chapter 3 

3. Evaluating the effect of gene expression on HMLEC phenotype 

3.1. Chapter Introduction 

This chapter presents the findings of our work that investigates the functional role of CPNE3 in 

ERBB2 overexpressing breast cancer. Specifically, we sought to answer the following research 

questions: What is the effect of ERBB2 overexpression on cell adhesion? What is the role of CPNE3 

expression on cell adhesion? To address these questions, we conducted experiments to assess the 

expression of ERBB2 and CPNE3 in HMLECs and their impact on cell adhesion. Additionally, we 

analysed global protein expression in ERBB2 overexpressing HMLECs using two mass spectrometry 

instrument platforms and quantification methods, the Orbitrap LTQ for TMT and the Waters Synapt 

QTOF for Label-Free LC-MS/MS, to identify proteins up/downregulated in response to CPNE3 

knockdown. The mass spectrometry data from both instruments and methods were evaluated using a 

quantification method agnostic dimensionality reduction method, to identify proteins with a similar 

expression pattern to CPNE3 across all samples as an intrinsic dimension (id) of each data set.  Our 

hypothesis posited that there is a positive correlation between ERBB2 overexpression and CPNE3 in 

ERBB2 overexpressing breast cancer, and CPNE3 is a potential downstream effector. Therefore, the 

method applied for dimensional reduction identifies a cluster of proteins with a strong positive 

correlation to CPNE3 following siRNA mediated knockdown. These proteins are the minimum number 

of parameters needed to generate a data description of the proteomic profiles generated by each 

method for comparison using functional annotation databases. 

3.2. The effect of ERBB2 expression on HMLEC cell phenotype 

3.2.1. siRNA-dependent knockdown of candidate proteins 

To validate the role of ERBB2 in regulating the expression of downstream proteins in HMLECs, 

siRNA-mediated knockdown of ERBB2 was carried out in C3.6 cells and compared to the parental 
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cell line HB4a. The siRNA knockdown of target proteins was conducted by reverse transfection and a 

concentration of 50 nM of siRNA with lipofectamine produced an optimal knockdown of ERBB2 as 

determined by immunoblotting of lysates (Figure 3.2.1).  

As shown in figure 3.2.1., the western blot confirms the differential expression of ERBB2, CPNE3, 

NDRG1, ITGB4 and ITGA6 in HB4a versus C3.6 cells as previously reported (Worthington et al., 

2017). CPNE3, NDRG1, ITGA6 and ITGB4 were expected to exhibit an inverse change in expression 

in C3.6 cells following the knockdown of ERBB2. However, this was not the case and all candidates 

except for NDRG1, which was elevated in expression, remained unchanged by the siRNA knockdown 

of ERBB2 in C3.6 cells. This data suggests that ERBB2 either modulates the expression of these 

candidates through a long-term adaptive regulation of expression that cannot be reversed by acute 

knockdown of ERBB2 or it does not modulate them at all. 

 
 

Figure 3.2.1 Western blot confirmation of target expression of candidates in non-transfected cells 
(NTC), non-targeting siControl transfected cells and siRNA-targeted cells. No loading control was 
used and no probing for a housekeeping protein was done. Uniform signal intensity of proteins 
expected to share similar expression change demonstrates a consistent loading. 
 

3.2.2. Assessing the effect of ERBB2 overexpression using end point assays 

The differential expression of several integrin subunits and other cell adhesion molecules in the 

HMLEC system, suggest that ERBB2 expression may modulate adhesion by altering interactions with 
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laminin in the basement membrane. Thus, an investigation of the cell adhesion of HB4a and its 

ERBB2 overexpressing derivative C3.6 were carried out on both plastic and laminin-coated tissue 

culture plates. Deadhesion assays were conducted to assess the detachment of cells under varying 

concentrations of trypsin. The results largely suggest that C3.6 cells detach more readily than the 

HB4a cells (Figure 3.2.2). The deadhesion assay was performed in triplicate (Figure 3.2.2 A-C) on 

tissue culture plastic, or in a single experiment on laminin-coated plates (Figure 3.2.2 D). However, 

the results are somewhat inconclusive as graph C displayed an inverse relationship, suggesting that 

HB4a cells detach more readily than C3.6 cells when seeded at 20,000 cells per well in a 96-well 

plate and incubated for 10 minutes with a range of trypsin concentrations. Furthermore, the difference 

in the rate of detachment between C3.6 and HB4a cells shown in graph B is not wide enough to 

accept the trend as significant. This might be due to subtle differences in deadhesion dynamics within 

each experiment and the limitations of end point assays. Conducting a series of additional assays 

using a real time analysis system was determined to be necessary. 

 
 
Figure 3.2.2 De-adhesion assay. C3.6 and HB4a cells were seeded at 20,000 cells per well in a 96-
well plate and incubated for 10 minutes with a range of trypsin concentrations. A) no laminin B) no 
laminin C) no laminin D) laminin-coated plate. Errors bars represent standard error of the mean of 
technical replicates on each plate.  
 

A time-dependent analysis of the attachment of cells was also conducted on both tissue culture 

plastic and laminin-coated surfaces. The results demonstrate that the C3.6 cells adhere at a greater 

A B 

C D 
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rate than HB4a cells (Figure 3.2.3). Nevertheless, the full dynamics of a time dependent cell adhesion 

process were not captured by these end point assays and a need to conduct further investigations 

using a real time analysis system was determined. Furthermore, the experimental procedure 

introduced inconsistencies involving knocking the plate to free loosely attached cells before washing 

the well. The differences in mechanical force applied to each well due to the direction of the force 

applied with each knock would introduce some technical differences. These are partially responsible 

for the fact that experiment A and B results in graphs wherein the absorbance of the two cell types 

doesn’t resolve. However, it is much more likely due to the fact that C3.6 cells proliferate at a higher 

rate than HB4a which results in the C3.6 cells having a greater maximum absorbance at 120 minutes. 

 

Figure 3.2.3 Adhesion assay. C3.6 and HB4a cells were seeded at 20,000 cells per well and allowed 
to adhere for different times. A) no laminin B) no laminin C) laminin-coated plates. Errors bars 
represent standard error of the mean of technical replicates on each plate. 
 

 

 

A B 

C 
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3.3. The effect of CPNE3 expression on HMLEC cell phenotype 

 
3.3.1. siRNA-dependent knockdown of CPNE3 expression 

To evaluate the functional role of CPNE3 as a downstream signalling partner in ERBB2 mediated 

regulation of cell adhesion, C3.6 cells were reverse transfected with siRNA targeting the expression of 

CPNE3. A concentration of 50 nM of siRNA with lipofectamine incubated for 96 hours produced an 

optimal knockdown of ERBB2 and CPNE3 as determined by immunoblotting of lysates (Figure 3.2.1. 

& 3.3.1). The expression of ITGA6 and ITGB4 was then assessed under different conditions of both 

CPNE3 and ERBB2 expression in HMLEC cells using western blot analysis. 

 

Figure 3.3.1 Western blot analysis of the expression of ITGA6 and ITGB4 in response to CPNE3 
knockdown in C3.6 cells. No loading control was used and no probing for a housekeeping protein was 
done. Uniform signal intensity of proteins expected to share similar expression change demonstrates 
a consistent loading. 

 

As shown in Figure 3.3.1, the expression of ITGA6 and ITGB4 does not correlate to the expression of 

CPNE3 in C3.6 cells. Furthermore, all experimental conditions of transfected C3.6 cells demonstrated 

a uniform protein expression. Interestingly, the siRNA treated cells appear to share a uniform 

reduction in protein expression compared to the non-transfected C3.6 cells. As expected, the HB4a 

cells exhibit a greater expression of both ITGA6 and ITGB4 compared to the C3.6 cells, which is 

consistent with previously reported findings (Worthington et al., 2017). 
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3.3.2. Assessing the effect of CPNE3 and ERBB2 expression using a real time cell 

adhesion and spreading assay 

 

      

   

      

    

Figure 3.3.2 RTCA assay analysis of real time adhesion and spreading of a layer of cells on an 
adherent surface. C3.6 and HB4a cells were seeded at 40,000 cells per well and assessed for 12 
hours to asses duration of cell spreading. Histogram shows the maxima of each curve as the point 
which the cells stop spreading in units of time. Errors bars represent standard error of the mean of 
technical replicates on each well. 

 

C D 

A B 
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To further evaluate the potential role of ERBB2 overexpression in modulating cell adhesion, a real-

time cell analysis (RTCA) of HB4a and C3.6 cells was carried out to evaluate the continuous change 

in cell proliferation or cell spreading over an assessment period of 12 hours. The cell dynamics of 

several gene expression conditions of C3.6 cells were assessed alongside HB4a using the ACEA 

xCELLingence RTCA DP system. The assay measured the impedance of electron flow as cells 

spread on an adherent surface with gold microelectrodes. The maxima of each graph (Figure 3.3.2), 

was found and is shown in histograms below each plot. The results were combined (Figure 3.3.3) and 

are inconclusive. While the knockdown of ERBB2 and CPNE3 initially appears to induce a higher rate 

of adhesion and spreading in C3.6 cells, which reach the maxima in a shorter duration. It is also clear 

that transfection with siControl RNA appears to induce a similar effect versus non transfected control.  

 
 

Figure 3.3.3 Duration of cell spreading period for HMLECs. Errors bars represent standard error of 
the mean of replicate experiments. 

 
A separate method was applied to evaluate the cell adhesion and spreading dynamics illustrated by 

the cell impedance plots. In this case, the maxima of each plot were identified and taken to indicate 

the end of the cell spreading phase of the assessment. The average duration of cell spread was then 

determined from the maxima of all experiments as shown in Figure 3.3.3. This suggests that a 

knockdown of ERBB2 in c3.6 cells confers a slight shift in adhesion, which leads to a reduction in the 

duration of the cell spreading period towards one similar to HB4a. However, the standard error of the 

mean for all experimental replicates of the siERBB2 cells was not low enough to accept this 

observation as significant and according to a Welch’s unpaired t-test had p-value > 0.05. 
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3.4. Mass Spectrometry based proteomic profiling 

3.4.1. TMT-LC-MS/MS based protein quantification 

 

2D LC-MS/MS profiling with TMT-based quantification was undertaken to assess the effects of 

CPNE3 knockdown on global protein expression in C3.6 cells with the aim of further understanding 

the function of this poorly characterised gene product. Technical triplicates of CPNE3 knockdown and 

control cell lysates were compared in a 6-plex TMT experiment with 30 peptide fractions prepared by 

high pH C18 reversed-phase LC. A total of 827 filtered protein groups were identified with 1 or more 

peptides from 6,400 PSMs (peptide spectrum matches). Of these 641 protein groups were quantified 

from 3,883 PSMs. During TMT-based quantification experiments, some peptide ions were co-isolated 

with other ions, resulting in interference during quantification of the peptide of interest. Despite an 

acceptable TMT labelling efficiency (98.5%), the quantitative coverage was lower than expected and 

1,758 PSMs (~70% of unused PSMs) were excluded from the quantification as the co-isolation 

interference was above the set threshold of 25%. The interference threshold of 25% was set as the 

limit above which PSMs were excluded from the quantification. Whilst the current method used 

sample pre-fractionation to reduce peptide co-elution and co-isolation, it appears to have been 

insufficient. 

 

Along with confirmation that expression of CPNE3 was reduced, 51 other proteins were identified as 

up/down regulated (>1.5-fold, p-value<0.05) in response to CPNE3 knockdown (Appendix Table 

3.4.1). Histones and other DNA binding proteins were prominent among the proteins identified with 11 

out of 13 of these proteins being upregulated. Cadherin binding, molecular transport and calcium ion 

binding proteins were also prominent among the proteins identified by the profiling. Importin subunit 

alpha-1 or KPNA2 was found among the downregulated molecular transport proteins. Rho-related 

GTP-binding protein RhoC and Rho GDP-dissociation inhibitor 2 or ARHGDIB were identified as 

significantly upregulated.  

 



 87 

The current study has successfully completed an initial assessment of the effect of knocking down 

CPNE3 on cell adhesion properties in C3.6 cells. Global protein expression was evaluated using 

TMT-LC-MS/MS based proteomic profiling (Appendix Table 3.4.1). The expression profiles were 

compared with a previously performed CPNE3 knockdown in SKBr3 cells (Worthington, 2012) and 

commonly changing proteins noted as targets for validation and functional characterisation. A total of 

25 proteins were commonly differentially expressed in response to CPNE3 knockdown in both cell 

lines and are highlighted in yellow. However, only 3 of these, including CPNE3, had a fold-change 

greater than 1.5-fold in both C3.6 and SKBr3 cells. The proteins ARHGDIB, CPNE3 and KPNA2 

showed a significant change in both C3.6 and SKBr3 cells (Table 3.4.2). ARHGDIB/Rho GDP-

dissociation inhibitor 2 was upregulated in response to CPNE3 knockdown in both C3.6 and SKBr3 

cells, whilst KPNA2/importin subunit alpha-1 was downregulated in both cell types. 
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Table 3.4.2. Candidates displaying similar patterns of expression in response to CPNE3 
knockdown in C3.6 and SKBR3 cells. Average ratio for CPNE3kd vs Ctrl in C3.6 was compared to 
the SKBR3 ratio (Worthington, 2012) to identify commonly changing proteins. 
 

Protein name Gene name Function  Average ratio 
CPNE3kd vs. Ctrl 

(C3.6) 

Average ratio 
CPNE3kd vs. Ctrl 

(SKBr3) 
 
Rho GDP-
dissociation 
inhibitor 2 
 

 
ARHGDIB 

 

 
GTPase activator 
activity, GTPase 
activity, Rac 
GTPase binding, 
Rho GDP-
dissociation 
inhibitor activity 
 

 
1.539 

 
1.62 

 
Copine-3 
 

 
CPNE3 

 

 
calcium-dependent 
phospholipid 
binding, calcium-
dependent protein 
binding, protein 
serine/threonine 
kinase activity, 
receptor tyrosine 
kinase binding, 
RNA binding, 
transporter activity 
 

 
0.588 

 
0.27 

 
Karyopherin 
alpha 2 (RAG 
cohort 1, 
importin alpha 1) 
 

 
KPNA2 

 

 
histone 
deacetylase 
binding, nuclear 
localization 
sequence binding, 
protein transporter 
activity, RNA 
binding 
 

 
0.550 

 
0.67 
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Functional and pathway enrichment analysis of proteins upregulated or downregulated after CPNE3 

knockdown was conducted using overrepresentation analysis (ORA) and the Panther Database. The 

search was limited to the Top 10 pathways with the highest level of significance. The search returned 

pathways based on 50 gene hits and 5 of these genes were associated with the top 10 panther 

pathways (Table 3.4.3). The angiogenesis pathway (P00005), was found to have the highest number 

of two genes linked to the gene set. The remainder of the top 10 pathways were each linked to one 

gene per pathway. Two of the five genes linked to the top 10 pathways, RHOC and CALML3, were 

associated with G-protein signalling. Rho related proteins are well-established regulators of the actin 

cytoskeleton and have been shown to play a role in modulation of gene expression and cellular 

proliferation (Ridley, 1995).  

Table 3.4.3 Top 10 enriched categories based on an ORA analysis of proteins significantly 
upregulated or downregulated after CPNE3 knockdown using the Panther Database. P-value 
adjusted for multiple comparisons using the Benjamini-Hochberg FDR method. 

 
 

A similar search was conducted using ORA and the Reactome Database and limited to the Top 10 

Pathways with the highest level of significance (Table 3.4.4). The search returned pathways based on 

50 gene hits and 18 of these genes were associated with the top 10 Reactome pathways. 9 out of the 

10 pathways had a common link to 5 genes, HIST1H1A, HIST1H1B, HIST1H1C, HIST1H1D and 

HIST1H1E, and are related to apoptosis or senescence pathways. The exception was the infectious 

disease pathway (R-HSA-5663205), which was found to have the highest number of unique genes.  

 

Gene Set Pathway Description Gene P Value Enrichment Ratio FDR

P02723 Adenine and hypoxanthine salvage pathway APRT 0.0158 62.944 0.987

P00051 TCA cycle CS 0.026217 37.767 0.987

P02772 Pyruvate metabolism CS 0.026217 37.767 0.987

P00008 Axon guidance mediated by Slit/Robo RHOC 0.046775 20.981 1

P00005 Angiogenesis CTNNB1, RHOC 0.060166 4.7806 1
P00028 Heterotrimeric G-protein signaling pathway-rod 

outer segment phototransduction
CALML3 0.084348 11.444 1

P04398 p53 pathway feedback loops 2 CTNNB1 0.11591 8.2101 1

P04393 Ras Pathway RHOC 0.17179 5.3952 1

P00016 Cytoskeletal regulation by Rho GTPase RHOC 0.17405 5.3192 1

P00004 Alzheimer disease-presenilin pathway CTNNB1 0.26249 3.372 1
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Table 3.4.4 Top 10 enriched categories based on an ORA analysis of proteins significantly 
upregulated or downregulated after CPNE3 knockdown using the Reactome Database. P-value 
adjusted for multiple comparisons using the Benjamini-Hochberg FDR method. 

 

 

The 52 proteins identified as up/down regulated in response to CPNE3 knockdown were further 

evaluated using Qiagen’s Ingenuity Pathway Analysis to identify proteins that are causally relevant to 

breast cancer or the cell adhesion phenotype. 29 proteins were discovered to have a causal 

relevance to breast cancer (Table 3.4.5) and 5 proteins, ARHGDIB, CTNNB1, KPNA2, RAP1B and 

RHOC, found to have a functional link to cell adhesion. ARHGDIB, KPNA2 and RHOC have 

Gene Set Pathway Description Gene P Value Enrichment Ratio FDR

R-HSA-2559584
Formation of Senescence-
Associated Heterochromatin 
Foci (SAHF)

HIST1H1A, HIST1H1B, 
HIST1H1C, HIST1H1D, 
HIST1H1E, HMGA1

2.86E-11 89.949 4.941E-08

R-HSA-140342
Apoptosis induced DNA 
fragmentation

HIST1H1A, HIST1H1B, 
HIST1H1C, HIST1H1D, 
HIST1H1E

1.25E-09 92.255 7.205E-07

R-HSA-211227
Activation of DNA 
fragmentation factor

HIST1H1A, HIST1H1B, 
HIST1H1C, HIST1H1D, 
HIST1H1E

1.25E-09 92.255 7.205E-07

R-HSA-2559586
DNA Damage/Telomere Stress 
Induced Senescence

HIST1H1A, HIST1H1B, 
HIST1H1C, HIST1H1D, 
HIST1H1E, HIST1H4A, 
HMGA1

3.37E-08 20.988 1.454E-05

R-HSA-75153 Apoptotic execution phase
HIST1H1A, HIST1H1B, 
HIST1H1C, HIST1H1D, 
HIST1H1E, CTNNB1

6.50E-08 27.677 2.248E-05

R-HSA-2559583 Cellular Senescence

HIST1H1A, HIST1H1B, 
HIST1H1C, HIST1H1D, 
HIST1H1E, HIST1H3A, 
HIST1H4A, HMGA1, 
UBC

8.46E-08 11.071 2.437E-05

R-HSA-5663205 Infectious disease

CANX, CTNNB1, 
HMGA1, KPNA2, 
RANBP1, RPL19, RPL32, 
SLC25A6, SSRP1, UBC

2.83E-06 6.2792 6.985E-04

R-HSA-109581 Apoptosis

HIST1H1A, HIST1H1B, 
HIST1H1C, HIST1H1D, 
HIST1H1E, CTNNB1, 
UBC

5.55E-06 9.9352 1.196E-03

R-HSA-5357801 Programmed Cell Death

HIST1H1A, HIST1H1B, 
HIST1H1C, HIST1H1D, 
HIST1H1E, CTNNB1, 
UBC

6.23E-06 9.7619 1.196E-03

R-HSA-2262752 Cellular responses to stress

HIST1H1A, HIST1H1B, 
HIST1H1C, HIST1H1D, 
HIST1H1E, HIST1H3A, 
HIST1H4A, HMGA1, 
PRDX3, UBC

7.47E-06 5.6306 1.290E-03
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previously been cited as potential biomarkers for a diagnostic application and CTNNB1 for a disease 

progression application. 

 

Table 3.4.5 Proteins with a causal relevance to breast cancer or the cell adhesion phenotype based 
on a Qiagen Ingenuity Pathway Analysis of proteins significantly upregulated or downregulated after 
CPNE3 knockdown. 
 

 
 

Gene Symbol Molecule Type Expr Fold Change Disease or Function Biomarker Application Cell Adhesion Role
PTGES enzyme 3.397 Breast cancer none none
CANX other 3.129 Breast carcinoma none none
SLC25A6 transporter 2.995 Breast cancer none none
TPD52 other 2.083 Ductal breast carcinoma none none

SSBP1 other 1.992 Migration of breast cancer cell 
lines

none none

VDAC2 ion channel 1.990 Breast cancer none none

RHOC enzyme 1.973 Migration of breast cancer cell 
lines

diagnosis Turnover of focal adhesions

RAP1B enzyme 1.911 Breast cancer none Adhesion of cells
SMG1 kinase 1.691 Ductal breast carcinoma none none
RANBP1 other 1.677 Breast cancer none none
UBC enzyme 1.650 Breast carcinoma none none

HMGA1 transcription 
regulator

1.638 Migration of breast cancer cell 
lines

none none

ALPP phosphatase 1.607 HER2-positive carcinoma of 
breast

none none

CTNNB1 transcription 
regulator

1.586 Migration of breast cancer cell 
lines

disease progression Quantity of focal adhesions

HIST1H1C other 1.567 Cell proliferation of breast 
cancer cell lines

none none

GSDMC other 1.562 Breast carcinoma none none

ARHGDIB enzyme 1.539 Migration of breast cancer cell 
lines

diagnosis Adhesion of cells

CYCS enzyme 1.492 Breast cancer none none

SERPINH1 other 0.677 Migration of breast cancer cell 
lines

none none

EIF4G1 translation 
regulator

0.674 Ductal breast carcinoma none none

PYGM enzyme 0.661 Ductal breast carcinoma none none
KARS1 enzyme 0.650 Breast cancer none none
PASK kinase 0.649 Ductal breast carcinoma none none
RPL19 other 0.618 Breast cancer none none

RUNX1 transcription 
regulator

0.615 Breast cancer none none

CPNE3 kinase 0.588 Migration of breast cancer cell 
lines

none none

KPNA2 other 0.550 Migration of breast cell lines diagnosis Adhesion of breast cell lines

SSRP1 transcription 
regulator

0.467 Cell death of breast cancer cell 
lines

none none

EIF3F translation 
regulator

0.451 Breast cancer none none
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3.4.2. Label-Free protein quantification 

 
A follow-up protein quantification method using label-free shotgun proteomics was used to further 

evaluate the effect of CPNE3 knockdown on global protein expression in C3.6 cells. Technical 

triplicates of CPNE3 knockdown and control cell lysates were compared in a label-free experiment 

and a total of 992 filtered protein groups were identified with 1 or more peptides. Of these 850 protein 

groups were quantified. In contrast to the TMT method, the quantification did not yield any PSMs 

since the spectra generated for DIA are of all the ions fragmented together, as opposed to individual 

precursor ions generated for DDA. 

 

Along with confirmation that the expression of CPNE3 was reduced, 39 other proteins were identified 

as up/down-regulated (>1.5-fold, p-value < 0.05) in response to CPNE3 knockdown (Appendix Table 

3.4.6). Noteworthy was the presence of only one upregulated protein among the 39 identified 

proteins. The rest of the proteins were downregulated in response to CPNE3 knockdown. The current 

study has successfully completed a secondary assessment of the effect of knocking down CPNE3 on 

global protein expression in C3.6 cells. Global protein expression was evaluated using label-free 

proteomic profiling (Appendix Table 3.4.6). The expression profiles were compared with a previously 

performed CPNE3 knockdown in SKBr3 cells (Worthington, 2012) and commonly changing proteins 

noted as targets for validation and functional characterisation. None of the proteins identified using 

the label- free quantification method was found to be commonly expressed in response to CPNE3 

knockdown in both cell lines. 

 

Functional and pathway enrichment analysis of proteins upregulated or downregulated after CPNE3 

knockdown was conducted using ORA and the Panther Database. The search was limited to the Top 

10 pathways with the highest level of significance. The search returned pathways based on 39 gene 

hits and 8 of these genes were associated with the top 10 panther pathways (Table 3.4.7). The 

Huntington's disease pathway, P00029, was found to have the highest number of genes, consisting of 

two genes linked to the pathway gene set. The remainder of the top 10 pathways were each linked to 
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one gene per pathway. Four pathways, cell cycle, glycolysis, TGF-beta signalling and cadherin 

signalling are of particular interest to cancer. Actin-related protein 2 (ACTR2) was the most frequently 

occurring gene among the top 10 categories. 

Table 3.4.7 Top 10 enriched categories based on an ORA analysis of proteins significantly 
upregulated or downregulated after CPNE3 knockdown using the Panther Database. P-value 
adjusted for multiple comparisons using the Benjamini-Hochberg FDR method. 

 
 
A similar search was conducted using ORA and the Reactome Database and limited to the Top 10 

Pathways with the highest level of significance (Table 3.4.8). The search returned pathways based on 

39 gene hits and 9 of these genes were associated with the top 10 Reactome pathways. 9 out of the 

10 pathways had a common link to 3 genes, MCM3, PSMA4 and PSMB6, and are related to cell cycle 

pathways. The exception was the metabolism of amino acids and derivatives pathway, R-HSA-71291, 

which was found to have the highest number of unique genes.

Gene Set Pathway Description Gene P Value Enrichment Ratio FDR

P02771 Pyrimidine Metabolism DPYSL2 0.039091 25.178 1

P04395 Vasopressin synthesis PREP 0.042925 22.889 1

P00013 Cell cycle RPA3 0.061889 15.736 1

P00024 Glycolysis PFKM 0.065641 14.81 1

P00007 Axon guidance mediated by semaphorins DPYSL2 0.073106 13.251 1

P00029 Huntington disease ACTR2, DYNC1LI2 0.08903 3.9035 1

P00049 Parkinson disease PSMA4 0.30321 2.829 1

P00052 TGF-beta signaling pathway FKBP1A 0.30896 2.7668 1

P00004 Alzheimer disease-presenilin pathway ACTR2 0.36684 2.248 1

P00012 Cadherin signaling pathway ACTR2 0.46758 1.6456 1
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Table 3.4.8 Top 10 enriched categories based on an ORA analysis of proteins significantly 
upregulated or downregulated after CPNE3 knockdown using the Reactome Database. P-value 
adjusted for multiple comparisons using the Benjamini-Hochberg FDR method. 

 

 

The 40 proteins identified as up/down-regulated in response to CPNE3 knockdown were further 

evaluated using Qiagen’s Ingenuity Pathway Analysis to explore the proteins that are causally 

relevant to breast cancer or the cell adhesion phenotype. 18 proteins were discovered to have a 

causal relevance to breast cancer (Table 3.4.9) and 3 proteins, ACTA2, ACTN2 and PTBP1, were 

found to have a functional link to cell adhesion. None of the 18 proteins has previously been cited as 

potential biomarkers.  

 

 

 

 

 

Gene Set Pathway Description Gene P Value Enrichment Ratio FDR

R-HSA-71291
Metabolism of amino acids 
and derivatives

CKMT1A, NAALAD2, OAT,  
PSMA4, PSMB6, RPS15, 
RPS21

9.69E-05 6.2397 0.1025

R-HSA-69002 DNA Replication Pre-Initiation
MCM3,  PSMA4, PSMB6, 
RPA3

1.19E-04 15.521 0.1025

R-HSA-69239 Synthesis of DNA
MCM3,  PSMA4, PSMB6, 
RPA3

4.33E-04 11.086 0.2152

R-HSA-69306 DNA Replication
MCM3,  PSMA4, PSMB6, 
RPA3

5.54E-04 10.388 0.2152

R-HSA-69206 G1/S Transition
MCM3,  PSMA4, PSMB6, 
RPA3

6.23E-04 10.071 0.2152

R-HSA-453279 Mitotic G1-G1/S phases
MCM3,  PSMA4, PSMB6, 
RPA3

1.01E-03 8.854 0.2497

R-HSA-68867
Assembly of the pre-
replicative complex

MCM3,  PSMA4, PSMB6 1.11E-03 14.551 0.2497

R-HSA-68949 Orc1 removal from chromatin MCM3,  PSMA4, PSMB6 1.26E-03 13.936 0.2497

R-HSA-69242 S Phase
MCM3,  PSMA4, PSMB6, 
RPA3

1.34E-03 8.1941 0.2497

R-HSA-69481 G2/M Checkpoints
MCM3,  PSMA4, PSMB6, 
RPA3

1.57E-03 7.8527 0.2497
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Table 3.4.9 Proteins with a causal relevance to breast cancer or the cell adhesion phenotype based 
on a Qiagen Ingenuity Pathway Analysis of proteins significantly upregulated or downregulated after 
CPNE3 knockdown. 
 

 

 

 

 

 

 

 

 

 

 

Gene Symbol Molecule Type Expr Fold Change Disease or Function Biomarker Application Cell Adhesion Role

IGF2BP2 translation regulator 0.653 Breast carcinoma none none

FKBP1A enzyme 0.650 HER2 negative breast cancer none none

MCM3 enzyme 0.634 Ductal breast carcinoma none none

PRDX5 enzyme 0.632 Breast cancer none none

CLNS1A ion channel 0.611 Breast cancer none none

SND1 enzyme 0.611 Breast cancer none none

NONO transcription regulator 0.607 Breast cancer none none

ARRDC3 other 0.603 Migration of breast cancer cell 
lines

none none

ACTA2 other 0.561 Breast carcinoma none Formation of focal 
adhesions

NASP other 0.555 Breast carcinoma none none

UQCRC2 enzyme 0.537 Ductal breast carcinoma none none

PTBP1 enzyme 0.535 Cell proliferation of breast 
cancer cell lines

none Size of focal 
adhesions

PPP2R2B phosphatase 0.529 Cell proliferation of breast 
cancer cell lines

none none

DHX9 enzyme 0.438 Breast carcinoma none none

UCHL3 peptidase 0.437 Breast cancer none none

ACTN2 transcription regulator 0.421 Breast carcinoma none Adhesion of cells

CTNNA1 other 0.387 Ductal breast carcinoma none none

CPNE3 kinase 0.319 Migration of breast cancer cell 
lines

none none
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3.5. Cluster-based method for the evaluation of mass spectrometry data 

3.5.1. Principal component analysis of mass spectrometry data  

 

To identify potential downstream interaction partners and further characterise the functional role 

of CPNE3, principal component analysis (PCA) was used to reduce the collinearity of upregulated 

or downregulated proteins in response to CPNE3 knockdown. PCA was used to evaluate both the 

TMT and Label-Free mass spectrometry data and implemented using Python's Scikit-Learn 

library. The explained variance was used to determine the number of PCA components and to tell 

us how much information (variance) can be attributed to each of the selected principal 

components (Figure 3.5.1).  

 

 

 

Figure 3.5.1 Explained variance of mass spectrometry data. A) TMT B) Label Free 
 

Given the results, it can be said that 84.85% of the variance of our TMT data is explained by 

the 2 Principal Components and 92.10% of the variance is explained by the 3 Principal 

Components (Figure 3.5.2). In addition, 79.20% of the variance of our Label Free Data is 

explained by the 2 Principal Components and 92.79% of the variance is explained by the 3 

Principal Components (Figure 3.5.3). 

B A 
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Figure 3.5.2 Principal Component Analysis of log2 transformed TMT mass spectrometry data. 
Each data point represents an individual protein. A) A scatter plot of the first two principal 
components for the dataset. The first two principal components explain 84.85% of the total 
variation in the data. B) A scatter plot of the first three principal components for the dataset. 
The first three principal components explain 92.10% of the total variation in the data. 

 

A 

B 
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Figure 3.5.3 Principal Component Analysis of log2 transformed Label Free mass spectrometry 
data. Each data point represents an individual protein. A) A scatter plot of the first two principal 
components for the dataset. The first two principal components explain 79.20% of the total 
variation in the data. B) A scatter plot of the first three principal components for the dataset. 
The first three principal components explain 92.79% of the total variation in the data. 

 

In both cases, 3 Principal Component has higher explained variance than 2 Principal Component 

and the former presents clusters better than the latter. Both plots show lumped data points about 

the origin. Thus, it is more favourable to plot on a 3D plane. However, CPNE3 expression is 

A 

B 
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expected to fall within the lower quartile range of the data and its cluster can be visualised 

accurately on a 2 Principal Component plot or 2D plane. 

 

3.5.2. K-Means clustering of mass spectrometry data 

 

To uncover meaningful groups from our data and identify proteins with a strong positive 

correlation to CPNE3 expression, K-Means clustering was implemented using Python's Scikit-

Learn library. The number of clusters to be used for the K-Means clustering were determined by 

an iterative statistical technique for determining the optimal number of clusters by running the K-

Means algorithm for a range of cluster values. The range of cluster values was selected as n=15 

to ensure that the full range of features in our datasets were represented by the technique. The 

optimal k was determined by elbow method and found to be k=6 for both datasets (Figure 3.5.4). 

 

Cluster 4 was found to contain CPNE3 and 51 other proteins with a high expression similarity 

score for the TMT data (Appendix Table 3.5.1) and cluster 1 was found to contain CPNE3 and 41 

other proteins with a high expression similarity score for the label-free data (Appendix Table 

3.5.4)(Figure 3.5.5). Functional and pathway enrichment analysis of the proteins in cluster 4 was 

conducted using overrepresentation analysis (ORA) and the Panther Database. The search was 

limited to the Top 10 pathways with the highest level of significance. The search returned 

pathways based on 51 gene hits and 9 of these genes were associated with the top 10 panther 

pathways (Table 3.5.2). However, only three of the pathways had a p-value < 0.05, arginine 

biosynthesis, adenine and hypoxanthine salvage pathway and heme biosynthesis. The FDR 

values for the enrichment analysis was 1 for all pathways. Therefore, none of the enriched 

categories identified were significant enough to accept. 
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Figure 3.5.4 Optimal number of clusters as determined by elbow method for TMT and Label 
Free mass spectrometry data. X-axis: number of clusters (k). Y-axis: sum of squared error.  
A) Elbow graph shows 6 optimal clusters, determined by elbow method analysis on TMT data. 
B) Elbow graph shows 6 optimal clusters, determined by elbow method analysis on Label Free 
data. 

 
 
 

A 

B 
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Figure 3.5.5 Two-component PCA visualisations of TMT and Label Free data. Each point 
represents an individual protein and the component of interest is highlighted in white based on 
k-means clustering A) Two-component PCA visualisation of TMT data: The plot shows a two-
dimensional representation of TMT-labelled proteomics data in the first two principal 
components. B) Two-component PCA visualisation of Label Free data: The plot shows a two-
dimensional representation of Label Free proteomics data in the first two principal components. 

A 

B 
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Table 3.5.2 Top 10 enriched categories based on an ORA analysis of proteins with a strong positive 
correlation to CPNE3 using K-Means clustering on TMT data and the Panther Database. P-value 
adjusted for multiple comparisons using the Benjamini-Hochberg FDR method. 

 

 

A similar search was conducted to analyse proteins in cluster 4 using ORA and the Reactome 

Database and was limited to the Top 10 Pathways with the highest level of significance 

(Table 3.5.3). The search returned pathways based on 51 gene hits and 27 of these genes 

were associated with the top 10 Reactome pathways. All top 10 pathways had a p-value < 

0.05 and FDR < 0.05, and 9 out of the 10 pathways were either related to mRNA processing 

or translation pathways. The exception was the influenza infection pathway (R-HSA-168254), 

which was found to have a link to KPNA2. The pathways with the highest enrichment ratio, 

L13a-mediated translational silencing of Ceruloplasmin expression (R-HSA-156827), GTP 

hydrolysis and joining of the 60S ribosomal subunit (R-HSA-72706), Eukaryotic Translation 

Initiation (R-HSA-72613) and Cap-dependent Translation Initiation (R-HSA-72737), are all 

related to translation and share the same genes RPL7, RPL6, RPL28, EIF4H, RPL27, EIF3F, 

RPL32 and EIF4G1.  

 

 

 

 

 

Gene Set Pathway Description Gene P Value Enrichment Ratio FDR

P02728 Arginine biosynthesis ASS1 0.02102 47.208 1

P02723 Adenine and hypoxanthine salvage pathway APRT 0.02102 47.208 1

P02746 Heme biosynthesis QARS 0.041652 23.604 1

P00017 DNA replication XRN2 0.065241 14.908 1

P00026
Heterotrimeric G-protein signaling pathway-Gi 
alpha and Gs alpha mediated pathway

CLTA, PYGM 0.09476 3.7517 1

P00060 Ubiquitin proteasome pathway UBA2 0.145393 6.4375 1

P00006 Apoptosis signaling pathway MAP4K4 0.323819 2.6227 1

P00027
Heterotrimeric G-protein signaling pathway-Gq 
alpha and Go alpha mediated pathway

CLTA 0.348522 2.4004 1
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Table 3.5.3 Top 10 enriched categories based on an ORA analysis of proteins with a strong positive 
correlation to CPNE3 using K-Means clustering on TMT data and the Reactome database. P-value 
adjusted for multiple comparisons using the Benjamini-Hochberg FDR method. 

 

 

Functional and pathway enrichment analysis of the proteins in cluster 1 was conducted using 

overrepresentation analysis (ORA) and the Panther Database. The search was limited to the 

Top 10 pathways with the highest level of significance. The search returned pathways based 

on 40 gene hits and 7 of these genes were associated with the top 10 panther pathways 

(Table 3.5.5). However, only one of the pathways had a p-value < 0.05.

Gene Set Pathway Description Gene P Value Enrichment Ratio FDR

R-HSA-8953854 Metabolism of RNA

LSM5, RPL7, RPL6, RPL28, 
SRSF3, RPL27, HNRNPD, 
HNRNPU, SNRPD3, SNRPB, 
RPL32, EIF4A3, DHX15, 
EIF4G1, NOP2, SF3B2, XRN2, 
POLR2B, GEMIN4

1.26E-11 6.4677 2.2E-08

R-HSA-72766 Translation
RPL7, RPL6, RPL28, EIF4H, 
RPL27, EIF3F, QARS, RPL32, 
TARS, EIF4G1, HARS, KARS

2.59E-09 9.4612 2.2E-06

R-HSA-72163
mRNA Splicing - Major 
Pathway

LSM5, SRSF3, HNRNPD, 
HNRNPU, SNRPD3, SNRPB, 
EIF4A3, DHX15, SF3B2, 
POLR2B

4.56E-09 12.537 2.6E-06

R-HSA-72172 mRNA Splicing

LSM5, SRSF3, HNRNPD, 
HNRNPU, SNRPD3, SNRPB, 
EIF4A3, DHX15, SF3B2, 
POLR2B

6.89E-09 12.012 3E-06

R-HSA-156827
L13a-mediated 
translational silencing of 
Ceruloplasmin expression

RPL7, RPL6, RPL28, EIF4H, 
RPL27, EIF3F, RPL32, EIF4G1

2.17E-08 16.536 6.7E-06

R-HSA-72706
GTP hydrolysis and joining 
of the 60S ribosomal 
subunit

RPL7, RPL6, RPL28, EIF4H, 
RPL27, EIF3F, RPL32, EIF4G1

2.33E-08 16.388 6.7E-06

R-HSA-72613
Eukaryotic Translation 
Initiation

RPL7, RPL6, RPL28, EIF4H, 
RPL27, EIF3F, RPL32, EIF4G1

3.76E-08 15.424 8.1E-06

R-HSA-72737
Cap-dependent 
Translation Initiation

RPL7, RPL6, RPL28, EIF4H, 
RPL27, EIF3F, RPL32, EIF4G1

3.76E-08 15.424 8.1E-06

R-HSA-72203
Processing of Capped 
Intron-Containing Pre-
mRNA

LSM5, SRSF3, HNRNPD, 
HNRNPU, SNRPD3, SNRPB, 
EIF4A3, DHX15, SF3B2, 
POLR2B

6.85E-08 9.4418 1.3E-05

R-HSA-168254 Influenza Infection
RPL7, RPL6, RPL28, RPL27, 
CLTA, RPL32, KPNA2, POLR2B

2.79E-07 11.919 4.8E-05
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Table 3.5.5 Top 10 enriched categories based on an ORA analysis of proteins with a strong positive 
correlation to CPNE3 using K-Means clustering on Label-Free data and the Panther Database. P-
value adjusted for multiple comparisons using the Benjamini-Hochberg FDR method. 

 

 
A similar search was conducted to analyse proteins in cluster 1 using ORA and the Reactome 

Database and was limited to the Top 10 Pathways with the highest level of significance 

(Table 3.5.6). The search returned pathways based on 40 gene hits and 17 of these genes 

were associated with the top 10 Reactome pathways. Three pathways had distinctly unique 

gene associations, branched-chain amino acid catabolism (R-HSA-70895), PTEN regulation 

(R-HSA-6807070) and neutrophil degranulation (R-HSA-6798695), which was found to have 

a link to CPNE3. 

 

 

Gene Set Pathway Description Gene P Value Enrichment Ratio FDR

P04396 Vitamin D metabolism and pathway GC 0.030525 32.371 1

P00012 Cadherin signaling pathway CTNNA1, CDH5 0.075995 4.2316 1

P02738 De novo purine biosynthesis AK2 0.083461 11.561 1

P00057 Wnt signaling pathway CTNNA1, CDH5 0.227315 2.2021 1

P00006 Apoptosis signaling pathway EIF2S1 0.289868 2.9974 1

P00004 Alzheimer disease-presenilin pathway CTNNA1 0.299044 2.8903 1

P00034 Integrin signalling pathway ACTN2 0.413326 1.9501 1

P06959 CCKR signaling map ACAT1 0.424976 1.8821 1
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Table 3.5.6 Top 10 enriched categories based on an ORA analysis of proteins with a strong positive 
correlation to CPNE3 using K-Means clustering on Label-Free data and the Reactome database. P-
value adjusted for multiple comparisons using the Benjamini-Hochberg FDR method. 

 

 

3.6. Chapter Conclusion 

In this chapter, we presented the results of our study that aimed to investigate the functional role of 

CPNE3 in ERBB2 overexpressing breast cancer. Our findings demonstrated that ERBB2 and CPNE3 

knockdown had a subtle effect on cell adhesion in HMLECs, which has previously been demonstrated 

in SKBR3 cells (Worthington, 2012). While the effect of ERBB2 overexpression on global protein 

expression in ERBB2 overexpressing HMLECs has previously been shown (Worthington et al., 2017) 

and downregulation of cell adhesion proteins such as ITGA6 and ITGB4 in HMLECs that overexpress 

ERBB2 was identified, this study demonstrates that the downregulation of ITGA6 and ITGB4 is not 

reversed by siRNA mediated knockdown of ERBB2 or CPNE3 in HMLECs. Moreover, our analysis 

demonstrates the effect of siRNA mediated knockdown of CPNE3 on global protein expression in 

ERBB2 overexpressing HMLECs using two mass spectrometry methods to identify proteins that 

explain the functional role of CPNE3 in ERBB2 overexpressing breast cancer. 

 

Gene Set Pathway Description Gene P Value Enrichment Ratio FDR

R-HSA-72163
mRNA Splicing - Major 

Pathway

DHX9, HNRNPU, 

HNRNPH1, HNRNPR
1.68E-03 7.6896 1

R-HSA-70895
Branched-chain amino acid 

catabolism
ACAT1, DLD 1.90E-03 30.591 1

R-HSA-72172 mRNA Splicing
DHX9, HNRNPU, 

HNRNPH1, HNRNPR
1.97E-03 7.3675 1

R-HSA-5218920
VEGFR2 mediated vascular 

permeability
CTNNA1, CDH5 3.02E-03 24.262 1

R-HSA-418990
Adherens junctions 

interactions
CTNNA1, CDH5 3.90E-03 21.321 1

R-HSA-72203
Processing of Capped Intron-

Containing Pre-mRNA

DHX9, HNRNPU, 

HNRNPH1, HNRNPR
4.69E-03 5.7909 1

R-HSA-1500931 Cell-Cell communication ACTN2, CTNNA1, CDH5 5.69E-03 8.1814 1

R-HSA-6807070 PTEN Regulation PSMC6, REST, USP13 7.14E-03 7.5386 1

R-HSA-6798695 Neutrophil degranulation
CPNE3, EEF2, ARMC8, 

PAFAH1B2, ERP44
1.05E-02 3.6722 1

R-HSA-421270 Cell-cell junction organization CTNNA1, CDH5 1.41E-02 10.994 1
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Our results are in agreement with previous studies by Worthington (2012) who demonstrated a partial 

reduction in cell adhesion for both ERBB2 and CPNE3 expression, and Worthington et al. (2017) who 

showed differential expression of cell adhesion-related proteins due to ERBB2 overexpression in 

HMLECs using SILAC MS/MS. The present study has evaluated global protein expression in 

response to CPNE3 knockdown in ERBB2 over expressing HMLECs and identified hitherto unknown 

biomarker candidates linked to CPNE3 expression. These candidates, ARHGDIB and KPNA2 are 

thought to be independent of disease progression as they are both evident following knockdown of 

CPNE3 in SKBR3 (Worthington, 2012), a metastatic breast cancer cell line. Thus, their link to CPNE3 

expression is thought to be related to a functional role of CPNE3. Further evaluation of global protein 

expression using two separate methods and K-means clustering with PCA identified a cluster of 

proteins that showed a strong positive correlation with CPNE3 following siRNA mediated knockdown. 

These proteins were found to be the minimum number of parameters needed to generate a data 

description of the proteomic profiles generated by each method for comparison using functional 

annotation databases. A high expression similarity between CPNE3 and ribonucleoprotein and 

ribonucleoprotein associated proteins which are known to interact with actin during mRNA processing 

is evident in both datasets. 

 

Moving forward, additional experiments could be conducted to further validate our findings with 

treatment of HMLEC cells with growth factors such as HRG and EGF and real time cell adhesion 

assays to assess cell adhesion and cell spreading on an adherent surface in response to CPNE3 

knockdown in HMLECs. Phosphoproteomic profiling of HMLECs has previously identified a total of 50 

phosphosites that were previously not known to be regulated by ErbB growth factor treatment and/or 

ErbB2 overexpression, with EGF stimulation being primarily enriched for chromosomal and 

chromatin-binding proteins and HRG stimulation being enriched for cytoskeletal proteins (Worthington 

et al., 2017). Investigating the role of CPNE3 expression under growth factor treatment using LC-

MS/MS based phosphoproteomic profiling could provide important insights into the mechanisms 

driving the aggressive behaviour of this cancer subtype. Furthermore, exploring the signalling 

pathways that interact with CPNE3 in ERBB2 overexpressing cells could identify additional 

biomarkers or targets for therapeutic intervention. 
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In the next chapter, we further interpret and discuss the findings presented in this chapter in the 

context of their expression in tumours that develop under growth factor rich TME and explore the 

expression of proteins that correlate with CPNE3 in clinical patient samples. The TME consists of 

various immune cells, such as T cells, B cells, and macrophages, which have been shown to play a 

crucial role in modulating the tumour immune response. Moreover, growth factors, such as epidermal 

growth factor (EGF), fibroblast growth factor (FGF), and transforming growth factor-beta (TGF-β), are 

also present in the TME and can promote cancer cell survival, proliferation, angiogenesis, and 

invasion (Anderson & Simon, 2020; Baghban et al., 2020). The presence of these factors in the TME 

can result in the dysregulation of several cellular signalling pathways, including the ERBB2/HER2 

signalling pathway, which has been implicated in the development and progression of several cancer 

types, including breast cancer(B. Zhou & Hung MC, 2003). This dysregulation of signalling pathways 

in response to the TME may influence the expression of the candidate proteins discovered and 

presented in this chapter following siRNA mediated knockdown of CPNE3 in HMLECs. Therefore, 

clinical validation of our findings using patient samples derived from a TME of the respective patients 

is essential to confirm the relevance and clinical significance of our results. 
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Chapter 4 

4. Clinical validation of CPNE3 related gene expression 

4.1. Chapter Introduction 

Although the role of ERBB2 and its overexpression in breast cancers is well documented (Slamon et 

al., 1987; Ross & Fletcher, 1999; Yu & Hung, 2000; Tan & Yu, 2007; Iqbal & Iqbal, 2014; Daemen & 

Manning, 2018; Marchiò et al., 2021), the underlying molecular mechanisms involved in disease 

development remain unclear. Mass spectrometry technology is a powerful tool for evaluating global 

protein expression changes and its usefulness in the study of breast cancer proteomics and 

identifying potential downstream candidates has been well established (see Chapter 1 and 3). 

However, few studies report the clinical validation of potential candidate proteins operating 

downstream, such as CPNE3 which is poorly characterised. This study addresses the functional 

characterisation and clinical validation of CPNE3 by performing a number of computational studies to 

evaluate the role of CPNE3 as a biomarker in HER2 positive breast cancer patients. These in-silico 

experiments were carried out using protein expression profiles of 40 breast cancer patients derived 

through SILAC based mass spectrometry (Tyanova et al., 2016) and 75 breast cancer patient protein 

expression profiles derived through iTRAQ based mass spectrometry by CPTAC (Ellis et al., 2013). 

This chapter describes the comparison of ERBB2 and CPNE3 expression patterns between HER2 or 

ERBB2 overexpressing patients and other breast cancer subtypes, and the subsequent harnessing of 

these expression patterns to develop a predictive model for HER2 diagnosis using mass spectrometry 

derived protein expression data. Such analysis may help to validate downstream signalling 

candidates in ERBB2 overexpressing breast cancer and their potential role as diagnostic biomarkers. 

 

4.2. Discovery of HER2 candidate biomarkers in invasive ductal carcinoma 

(IDC) patients 

To demonstrate the validity of CPNE3 as a diagnostic or prognostic marker in HER2/ERBB2 

overexpressing breast cancer and to discover potential clinical biomarkers from the previously 
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identified proteins (Appendix Table 3.4.1), a statistical evaluation of 40 breast invasive ductal 

carcinoma (IDC) patient samples comprised of HER2 positive (HER2), Estrogen Receptor and 

Progesterone Receptor positive (ERPR), and Triple Negative (TN) patients was carried out. The 

expression of HER2/ERBB2 and CPNE3 was evaluated in the samples and visualised with a pairwise 

plot (Figure 4.2.1). 

 

Figure 4.2.1 Pair plot of ERBB2 vs CPNE3 expression for ERPR, HER2 and TN for 40 female 
breast cancer patients. 

 

Sparse clustering of the HER2 samples was observed in comparison to the ERPR and TN samples. 

However, the distribution of CPNE3 was narrower and non-specific compared to that of ERBB2. In 

addition, CPNE3 appears to make a minimal contribution to the overall clustering. This observation is 

interesting as treatment with growth factors has been shown to induce a moderate increase in CPNE3 

expression in the HB4a cells, which do not overexpress ERBB2 (Bertani, 2005; Gharbi et al., 2002; 

White et al., 2004). Therefore, the distribution of CPNE3 in the 40 breast cancer patient samples 

suggests that a growth factor rich tumour microenvironment might affect the expected ratio of CPNE3 

to ERBB2 expression. Furthermore, the patient samples are known to be largely distributed between 

clinical stages I, IIA and IIB (Table 4.2.1) and CPNE3 might undergo variable expression at different 



 110 

clinical stages. With this in mind, the data for the 40 breast cancer patient samples can be confidently 

used as an in-silico clinical discovery cohort for candidate proteins or biomarkers associated with 

CPNE3 expression and is herein referred to as the discovery cohort (Table 4.2.1). 

 

Table 4.2.1 Characteristics of female breast cancer patients in the discovery and validation cohorts. 

Baseline variable Discovery cohort Validation cohort 

  

Cases 

(n=15) 

Controls 

(n=25) 

Cases 

(n=6) 

Controls 

(n=69) 

Sex (Female) 15 25 6 69 

Mean age (Years)     54.1 ± 10.7 58.9 ± 13.7 

Suspicious pathology 0 0 0 1 

Clinical stage         

0 Tis N0 M0 - - - - 

I T1 N0 M0 2 6 - 6 

IIA T1 N1 M0, T2 N0 M0 3 12 3 24 

IIB T2 N1 M0 8 6 2 20 

IIIA T3 N1 M0 - - 1 9 

IIIB T4 N0-N3 M0 1 - - 5 

IIIC T0-T4 N3 M0 - - - 4 

IV T0-T4 N0-N3 M1 - - - 1 

n.d 1 1 - - 

ER         

Positive/Negative/NA 0/15/0 14/11/0 0/6/0 51/18/0 

PR         

Positive/Negative/NA 0/15/0 14/11/0 0/6/0 41/28/0 

HER2/Neu         

Positive/Negative/NA 15/0/0 2/23/0 6/0/0 11/67/1 

Histologic grading         

G1/G2/G3/NA 0/3/12/0 2/6/17/0 0/0/0/6 0/0/0/69 

Molecular subtype         

ERPR/HER2 positive/Triple negative/NA 0/15/0/0 14/0/11/0 0/6/0/0 51/0/18/0 

 

For each patient group of the discovery cohort, the correlation of four protein candidates, ARHGDIB, 

CPNE3, ERBB2, and KPNA2 was evaluated using a Pearson correlation test. The P-values were 

determined using a two tailed test and a 95% confidence interval (Figure 4.2.2). The HER2 subtype 

was characterised by a negative correlation of ERBB2 to CPNE3 and the candidates displaying 

similar patterns of expression in response to CPNE3 knockdown in C3.6 and SKBR3 cells. In 

addition, only CPNE3 and KPNA2 were found to have a correlation pattern unique to the HER2 
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subtype of breast cancers. The Pearson r values for the HER2 subtype of breast cancers were r = -

0.12 and -0.29 for CPNE3 and KPNA2 with respect to ERBB2 and were unlike those of the ERPR or 

TN patient groups, which either show positive correlations or no correlation. 

 

  

 

  

Figure 4.2.2 Heatmap of Pearson correlations for 4 protein candidates in the discovery cohort.  
A) All breast cancer patients B) ERPR patients C) HER2 patients D) TN patients 

 

To confirm the expression of identified candidates and proteins of interest from the 52 proteins 

identified as up/down regulated in response to CPNE3 knockdown in HMLECs using TMT mass 

spectrometry, shown in Appendix Table 3.4.1, a Pearson correlation test was implemented on the 

discovery cohort comprised of 40 clinical breast cancer samples. P-values were determined using a 

two tailed test and a 95% confidence interval. Proteins with expression values in all 40 samples were 

compared across the three patient subtypes, ERPR, HER2 and TN (Figure 4.2.3). 

A B 

C D 
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Thirty-six proteins were consistently quantified in all samples. Sixteen proteins, AHSG, ALPP, 

HIST1H1A, HIST1H1C, HIST1H1D, HIST1H3A, MGST1, PNPLA7, PPP6R2, PYGM, RPL32, 

S100A10, SLC3A2, TIMELESS, UBC and ZFP28, were not quantified for all 40 patient samples. The 

thirty-six proteins were compared in the discovery cohort of 40 breast cancer patients and differences 

between the correlations of ERBB2 or CPNE3 and the other proteins were determined for ERPR, 

HER2 and TN patient subtypes. 

 

The potential role of CPNE3 as a biomarker for HER2 positive breast cancer was evident in the 

correlation pattern demonstrated by the 36 proteins. The HER2 subtype was characterised by a high 

number of proteins that demonstrated a positive correlation with 26 proteins, APRT, ARHGDIB, 

ATP5B, BOLA2, CACYBP, CANX, CS, CTNNB1, DHX15, DLD, EIF5A, ETFB, HIST1H1E, HMGA1, 

HSPE1, KARS, LRPPRC, NTMT1, PRKCSH, PTGES, RANBP1, RHOC, RPL19, SLC25A3, SLC25A6 

and VDAC2 (Figure 4.2.3A). However, only 10 proteins, ATP5B, BOLA2, CACYBP, CANX, EIF5A, 

HSPE1, LRPPRC, PRKCSH, RPL19 and SLC25A3, had statistically significant correlations (p-value < 

0.05). Each of these 10 proteins had a strong positive correlation with CPNE3 (r-value > 0.5). The TN 

subtype was characterised by a median number of proteins that demonstrated a positive correlation, 

with 16 proteins, KPNA2, BOLA2, CALML3, CS, CTNNB1, DHX15, EIF5A, HSPE1, NTMT1, 

PRKCSH, PTGES, RANBP1, RHOC, RPL19, SLC25A3 and SLC25A6 (Figure 4.2.3B). Albeit, only 3 

proteins, CALML3, CS and RHOC, had statistically significant correlations (p-value < 0.05). Each of 

these 3 proteins had a strong positive correlation with CPNE3 (r-value > 0.65). The ERPR subtype 

was characterised by a lower number of 8 proteins, APRT, CALML3, CTNNB1, KARS, LRPPRC, 

RANBP1, SLC25A6, and VDAC2, that demonstrated a positive correlation with CPNE3 (Figure 

4.2.3C). None of these 8 proteins had statistically significant correlations (p-value < 0.05) to CPNE3. 

 

CPNE3 has previously been shown to have a positive correlation with ERBB2 overexpression in a 

panel of HMLECs and breast tumour cell lines (Worthington, 2012). It is also known to undergo a 

moderate increase in expression following treatment with growth factors in non ERBB2 

overexpressing HB4a cells (Bertani, 2005; Gharbi et al., 2002; White et al., 2004). Thus, it’s 
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expression may differ from the expected positive correlation in tissues exposed to varying 

concentrations of growth factors in each patient specific tumour microenvironment. To evaluate how 

this observation translates to a patient cohort, an inspection of the correlation between ERBB2 

expression and the 36 proteins of interest, including CPNE3, was carried out. The HER2 subtype and 

the ERPR subtype were found to yield no proteins with a statistically significant positive correlation for 

ERBB2. The TN subtype was found to yield 1 protein, ATP5D with a statistically significant (p-value < 

0.05) and a strong positive correlation (r-value > 0.65) to ERBB2. However, this observation is 

negligible due to the widely accepted profile of triple negative status which precludes the absence of 

progesterone receptor, estrogen receptor and HER2 receptor for all TN subtype breast cancers. 
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Figure 4.2.3 Heatmap of subtype Pearson correlations for 36 proteins of interest in the discovery cohort. A) HER2 patients B) TN patients C) ERPR 
patients 

 

A B C 
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Many of the HER2-positive patient tumours (> 50%) in the discovery cohort are known to be Stage IIB 

tumours (Table 4.2.1). This characteristic of our discovery cohort is particularly interesting since 

variable protein expression in malignant tumours is known to not only contribute to rapid growth and 

metastasis to various other tissues but can also lead to the development of drug resistance (Brabletz 

et al., 2001; G. P. Gupta & Massagué, 2006; Lee et al., 2017). The amplification of ERBB2/HER2 in 

breast cancer has long been known to correlate with disease progression, metastasis and poor 

therapeutic response (Ross & Fletcher, 1999; Slamon et al., 1987). Therefore, we evaluated the 

correlation of ERBB2 and CPNE3 to our proteins of interest for the various clinical stages of the 

discovery cohort (Figure 4.2.4). 

 

It was not possible to determine the correlations for stages with less than 3 patient samples. The 

HER2 patient subtype was well represented in clinical stages IIA and IIB, whilst our control group 

comprised of ERPR and TN patient subtypes was well represented in clinical stages I, IIA and IIB 

(Table 4.2.1). The relevant data for each subtype is shown as a heatmap representation of the 

respective correlation matrix (Figure 4.2.4). HER2 Stage IIA was characterised by a strong negative 

correlation between ERBB2 and CPNE3 which is not consistent with our findings in the HMLECs or 

breast tumour cell lines. In addition, none of the 24 positive correlations with CPNE3 were statistically 

significant (p-value < 0.05) (Figure 4.2.4A). Unlike HER2 Stage IIA, the correlation between ERBB2 

and CPNE3 was found to be positive for HER2 Stage IIB breast cancer patients (Figure 4.2.4B). 

HER2 Stage IIB was characterised by a high number of proteins that demonstrated a positive 

correlation with 28 proteins identified,  APRT, ATP5B, ATP5D, BOLA2, CACYBP, CALML3, CANX, 

CS, CTNNB1, DHX15, DLD, EIF5A, ERBB2, HIST1H1E, HMGA1, HSPE1, KARS, LRPPRC, 

PRKCSH, PTGES, RANBP1, RHOC, RPL19, SLC25A3, SLC25A6, SSBP1, SSRP1 and VDAC2. 

However, only 7 proteins, ATP5B, CACYBP, DLD, KARS, PRKCSH, SLC25A3 and VDAC2, had 

statistically significant correlations (p-value < 0.05) (Figure 4.2.4B). 

 

ERBB2 is widely known to be expressed in other breast cancer subtypes and its expression in relation 

to CPNE3 and disease progression of the ERPR subtype was assessed in clinical stages IIA and IIB. 

ERPR Stage IIA was characterised by a positive correlation between ERBB2 and CPNE3, and 12 
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proteins that demonstrated a positive correlation with CPNE3. However, none of the 12 positive 

correlations to CPNE3 were statistically significant (p-value < 0.05) (Figure 4.2.4C). Similarly, ERPR 

Stage IIB was characterised by a positive correlation between ERBB2 and CPNE3, and 13 proteins, 

APRT, ATP5B, ATP5D, CALML3, DLD, ERBB2, KARS, MDH2, PRDX3, RANBP1, SLC25A3, 

SLC25A6 and VDAC2, that demonstrated a positive correlation with CPNE3. A noteworthy difference 

was the identification of 1 protein, PRDX3 with a statistically significant (p-value < 0.05) and strong 

positive correlation (r-value > 0.65) to CPNE3 (Figure 4.2.4D).  

 

As expected, both stages of the TN subtype demonstrated a negative correlation between ERBB2 

and CPNE3. Nevertheless, CPNE3’s correlation to proteins of interest was still carried out for each of 

the relevant TN clinical stages. TN Stage I had 17 proteins that were found to have a positive 

correlation to CPNE3, but none were statistically significant correlations (p-value < 0.05) (Figure 

4.2.4F). TN Stage IIA had 20 proteins that demonstrated a positive correlation to CPNE3 and only 1 

protein, HMGA1, with a statistically significant (p-value < 0.05) and strong positive correlation (r-value 

> 0.65) to CPNE3 (Figure 4.2.4E). 

 

There were a total of 13 proteins, ATP5B, BOLA2, CACYBP, CANX, EIF5A, HSPE1, LRPPRC, 

PRKCSH, RPL19, SLC25A3, DLD, KARS and VDAC2, with a statistically significant (p-value < 0.05) 

positive correlation to CPNE3 in HER2 patients vs control (ERPR and TN) and in Stage IIB of HER2 

patients. The identified proteins are mostly comprised of enzymes, translational regulators and 

transport proteins and may be potential diagnostic or disease progression biomarkers in HER2 breast 

cancer (Table 4.2.2). Despite the inconsistent negative correlation between CPNE3 and ERBB2 in 

HER2 patients in the discovery cohort (Figure 4.2.2C and Figure 4.2.3A), the candidates are still of 

interest due to their statistically significant correlation (p-value < 0.05) correlation to CPNE3 and their 

uniqueness to the HER2 patient subtype in the discovery cohort. 

 

To identify potential interaction partners of CPNE3, a protein network was constructed from 

correlation data (Figure 4.2.5). The network was used to identify the predominant functional cluster 

containing either a set of highly interconnected nodes or CPNE3 respectively and to identify the 
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significant KEGG Pathways related to the cluster. The functional cluster (cluster 1) of the HER2 

positive subtype in the discovery cohort (Figure 4.2.5), contained molecules with enzyme, kinase, 

translation regulator and transporter function. The enrichment of amino acid metabolism or glucose 

metabolism terms and pathways was observed. For example, citrate cycle (TCA cycle), glyoxylate 

and dicarboxylate metabolism, 2-Oxocarboxylic acid metabolism and pyruvate metabolism pathways 

were enriched KEGG terms related to glucose metabolism (Table 4.2.3).  

 

Unlike the KEGG pathways, the cluster was observed to be represented in glucose metabolism, 

interleukin signalling, viral infection, calreticulin cycle and RHO GTPase related Reactome terms, 

such as the citric acid cycle (TCA cycle) and RHO GTPases Activate Rhotekin and Rhophilins (Table 

4.2.4). Six of the seven genes observed in the KEGG (Table 4.2.3) and Reactome (Table 4.2.4) 

pathway results, CANX, DLD, LRPPRC, PRKCSH, RHOC and RPL19 were found to have protein to 

protein interactions with a high confidence score (≥ 0.90) when mapped to the STRING interactions 

database (Table 4.3.7). Moreover, the interactions shown in the constructed protein network from 

ATP5B to CS, CANX to PRKCSH, and ATP5B to ATP5D (Figure 4.2.5), were consistent with high 

confidence score (≥ 0.90) STRING interactions (Table 4.3.7). 
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Figure 4.2.4 Heatmap of TNM staging Pearson correlations for 36 proteins of interest in the discovery 
cohort. A) HER2 Stage IIA B) HER2 Stage IIB C) ERPR Stage IIA D) ERPR Stage IIB E) TN Stage 
IIA F) TN Stage I 

A B 

C D 

E F 
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Table 4.2.2 The table lists the total number of candidate biomarkers from the discovery cohort. 
Highlighted proteins are not specific to HER2 positive patients. 

 

Gene Symbol Molecule Type Potential Biomarker Application 
      

ATP5B Transporter HER2 diagnosis/Disease progression (Stage IIB) 
BOLA2 Enzyme HER2 diagnosis 

CACYBP Translation regulator HER2 diagnosis/Disease progression (Stage IIB) 

CANX Other HER2 diagnosis 
EIF5A Translation regulator HER2 diagnosis 

HSPE1 Enzyme HER2 diagnosis 

LRPPRC Other HER2 diagnosis 
PRKCSH Enzyme HER2 diagnosis/Disease progression (Stage IIB) 

RPL19 Other HER2 diagnosis 

SLC25A3 Transporter HER2 diagnosis/Disease progression (Stage IIB) 
DLD Enzyme Disease progression (Stage IIB) 

KARS Enzyme Disease progression (Stage IIB) 

VDAC2 Ion channel Disease progression (Stage IIB) 
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Figure 4.2.5 Cytoscape network analysis of proteins associated with HER2 positive status in the discovery cohort. Cluster 1 represents the primary functional 
cluster containing CPNE3 or a set of highly interconnected nodes and KEGG pathway with the highest enrichment ratio. Edges represent strong correlations 
(r-value > 0.5).
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Table 4.2.3 The table lists the top 10 enriched KEGG Pathways based on an ORA analysis of cluster 
1 of the network of proteins associated with HER2 positive status in the discovery cohort. 

Gene Set  Pathway Description  Gene  P Value 
Enrichment 
Ratio 

hsa04141 
Protein processing in endoplasmic 
reticulum 

CANX, PRKCSH 0.0069 15.09 

hsa00020 Citrate cycle (TCA cycle) DLD 0.0239 41.49 

hsa00630 Glyoxylate and dicarboxylate metabolism DLD 0.0239 41.49 

hsa00640 Propanoate metabolism DLD 0.0254 38.90 

hsa00620 Pyruvate metabolism DLD 0.0309 31.92 

hsa00260 Glycine, serine and threonine metabolism DLD 0.0317 31.12 

hsa00280 Valine, leucine and isoleucine degradation DLD 0.0380 25.93 

hsa00010 Glycolysis / Gluconeogenesis DLD 0.0534 18.31 

hsa04918 Thyroid hormone synthesis CANX 0.0580 16.82 

hsa04612 Antigen processing and presentation CANX 0.0603 16.17 

 
 

Table 4.2.4 The table lists the top 10 enriched Reactome Pathways based on an ORA analysis of 
cluster 1 of the network of proteins associated with HER2 positive status in the discovery cohort. 

Gene Set  Pathway Description  Gene  P Value Enrichment Ratio 

R-HSA-901042 Calnexin/calreticulin cycle CANX, PRKCSH 2.59E-04 81.18 

R-HSA-532668 
N-glycan trimming in the ER and 
Calnexin/Calreticulin cycle 

CANX, PRKCSH 4.73E-04 60.31 

R-HSA-447115 Interleukin-12 family signaling BOLA2, CANX 1.30E-03 36.39 

R-HSA-168255 Influenza Life Cycle CANX, RPL19 7.64E-03 14.76 

R-HSA-5666185 
RHO GTPases Activate Rhotekin and 
Rhophilins 

RHOC 8.50E-03 117.27 

R-HSA-168254 Influenza Infection CANX, RPL19 8.82E-03 13.71 

R-HSA-9020956 Interleukin-27 signaling CANX 1.04E-02 95.95 

R-HSA-1428517 
The citric acid (TCA) cycle and 
respiratory electron transport 

DLD, LRPPRC 1.11E-02 12.13 

R-HSA-8984722 Interleukin-35 Signalling CANX 1.13E-02 87.95 

R-HSA-71064 Lysine catabolism DLD 1.13E-02 87.95 
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4.3. Independent verification of candidate biomarkers 

To validate candidate biomarkers associated with the clinical stages of HER2 breast cancer and 

confirm the clinical merit of proteins identified from the discovery cohort (Table 4.2.2), a statistical 

evaluation of 75 breast cancer patient samples comprised of Basal-like, HER2-enriched (HER2 

positive), Luminal A and Luminal B patient subtypes was carried out. The expression of HER2/ERBB2 

and CPNE3 was evaluated in the samples and visualised with a pairwise plot (Figure 4.3.1). 

 

 

Figure 4.3.1 Pair plot of ERBB2 vs CPNE3 expression for Basal-like, HER2 positive, Luminal A 
and B subtypes of 75 female breast cancer patients. 
 

 
The majority of patients identified as HER2-enriched were found to cluster in the high ERBB2 

expression ranges, as expected for HER2 positive breast cancers. However, only a fraction of the 

patient samples for the HER2-enriched subtype were HER2 positive and several appear to be 

clustered in the lower ERBB2 expression range among patients of the Basal-like, Luminal A and 

Luminal B subtypes. In addition, several Luminal B patients appear among HER-enriched patients in 
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the high ERBB2 expression range of the pairwise plot. Much like the plot of ERBB2 vs CPNE3 

expression for the discovery cohort (Figure 4.2.1), the distribution of CPNE3 was narrower and non-

specific compared to that of ERBB2. A noteworthy difference lies in the clinical stage distribution of 

the patient samples, as the 75 patient cohort has a wider distribution comprised of clinical stages I, 

IIA, IIB, IIIA, IIIB and IIIC (Table 4.2.1). CPNE3 expression level is known to be positively correlated 

with TNM clinical stage and CPNE3 has been identified as a novel metastasis-promoting gene in a 

quantitative proteomic analysis of NSCLC (H. Lin et al., 2013). Due to the wide clinical stage 

distribution of the 75-patient cohort, it is an ideal dataset to explore biomarkers corelated with TNM 

staging for breast cancer and to carry out independent verification of the candidate biomarkers of 

HER2 positive breast cancer identified using the discovery cohort (Table 4.2.2). It is herein referred to 

as the validation cohort (Table 4.2.1). 

 

For each patient subtype within the validation cohort, the correlation of four protein candidates 

discovered using TMT mass spectrometry, ARHGDIB, CPNE3, ERBB2, and KPNA2 was evaluated 

using a Pearson correlation test. The p-values were determined using a two tailed test and a 95% 

confidence interval (Figure 4.3.2). The HER2 positive subtype of the HER2-enriched subtype was 

characterised by a positive correlation of ERBB2 to CPNE3 which was consistent with our hypothesis. 

Furthermore, KPNA2 was found to have a positive correlation, while ARHGDIB had a negative 

correlation with CPNE3 (Figure 4.3.2B). The expression of ARHGDIB and KPNA2 is consistent with 

the established expression of the candidate biomarkers in response to CPNE3 knockdown in C3.6 

and SKBR3 cells (Table 3.4.2). The positive correlation between ERRB2 and CPNE3 was also 

observed for the Luminal A subtype. It is not uncommon for luminal subtypes to undergo subtype 

switching (Bastien et al., 2012; Daemen & Manning, 2018; Klebe et al., 2020) and a positive 

correlation between ERBB2 and CPNE3 could indicate an early shift towards HER2-enrichment. 

Previous studies have shown that treatment with growth factors can induce a moderate increase in 

CPNE3 expression in the HB4a cells, which are the parental human mammary luminal epithelial cell 

line for the C3.6 cells and do not overexpress ERBB2/HER2 (Bertani, 2005; Gharbi et al., 2002; White 

et al., 2004). Luminal subtype cancers may undergo differential expression of CPNE3 due to the 

presence of growth factors in the tumour microenvironment. 
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To confirm the expression of candidate biomarkers identified in the discovery cohort (Table 4.2.2) and 

proteins of interest from the 52 proteins identified as up/down regulated in response to CPNE3 

knockdown in HMLECs (Appendix Table 3.4.1), a Pearson correlation test was implemented on the 

validation cohort for each of the proteins quantified in all patients. P-values were determined using a 

two tailed test and a 95% confidence interval. Proteins with quantified expression values in all 75 

samples were compared across the four cancer subtypes, Basal-like, HER2-enriched (HER2 

positive), Luminal A and Luminal B (Figure 4.3.3). Forty-five proteins were consistently quantified in 

all samples. Seven proteins, ALPP, and HIST1H3A, HMGA1, PNPLA7, PTGES, UBC and ZFP28, 

were omitted due to a high number of missing values for the samples or not detected at all during the 

quantification. The forty-five proteins quantified for all 75 patients were compared in the validation 

cohort and differences between the correlations of ERBB2 or CPNE3 with the other 45 proteins were 

determined for the four subtypes (Figure 4.3.3). 

 

The HER2 positive subtype of the HER2-enriched subtype was characterised by three proteins, 

EIF5A, PYGM and HIST1H4A, that demonstrated a statistically significant correlation (p-value < 

0.05). EIF5A and PYGM had a strong positive correlation to CPNE3 (r-value > 0.5) and HIST1H4A 

had a strong negative correlation to CPNE3 (r-value < -0.5) (Figure 4.3.3B). The Basal-like subtype 

was characterised by the absence of statistically significant correlations (p-value < 0.05) with CPNE3 

(Figure 4.3.3BA). The Luminal A subtype was characterised by 2 proteins, KARS and PPP6R2, that 

had a statistically significant correlation (p-value < 0.05) with CPNE3 (Figure 4.3.3BC). The Luminal B 

subtype was found to yield 5 proteins, EIF5A, LRPPRC, PRDX3, RANBP1 and VDAC2, that 

demonstrated a statistically significant correlation (p-value < 0.05) with CPNE3 (Figure 4.3.3BD). 

 

The vast majority of patient tumours evaluated for the HER2 positive subtype of the HER2-enriched 

subtype in the validation cohort (Figure 4.3.3B) were clinical Stage IIA (Table 4.2.1). Furthermore, the 

HER2 positive subtype had a moderate correlation between CPNE3 and ERBB2 (r-value ~ 0.5). As 

previously cited, the amplification of ERBB2/HER2 in breast cancer has long been known to correlate 

with disease progression, metastasis and poor therapeutic response (Ross & Fletcher, 1999; Slamon 
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et al., 1987) and has been shown to have a strong positive correlation with CPNE3 overexpression in 

a panel of HMLECs and breast tumour cell lines (Worthington, 2012). 

 

 

  

 

  

Figure 4.3.2 Heatmap of Pearson correlations for 4 protein candidates in the validation cohort.  
A) Basal-like B) HER2 positive C) Luminal A D) Luminal B 
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Figure 4.3.3 Heatmap of subtype Pearson correlations for 45 proteins of interest in the validation 
cohort. A) Basal-like B) HER2 positive C) Luminal A D) Luminal B 

 
 

Thus, we would also expect proteins operating downstream or directly regulated by CPNE3 to have a 

strong correlation to both CPNE3 and ERBB2. The observed correlation pattern between ERBB2 and 

CPNE3 relative to proteins of interest for the HER2 positive subtype of the HER2-enriched subtype of 

the validation cohort suggests that the expected pattern is either absent in these patients or obscured 

by multistage grouping of patients. Therefore, we evaluated the correlation of ERBB2 and CPNE3 

relative to our proteins of interest for the various TNM clinical stages of the HER2 positive subtype of 

the HER2-enriched subtype in the validation cohort (Figure 4.3.4). 

A B 

C D 
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The HER2 positive subtype of the HER2-enriched subtype was well represented in clinical stages IIA, 

IIB and IIIA (Table 4.2.1). However, Clinical stage IIB and IIIA had less than three patients for each 

stage and it was not possible to determine the correlations for any stage with less than 3 patient 

samples. Thus, the data for clinical stage IIB and IIIA was grouped and is evaluated as a unified later 

stage to present a juxtapose for the analysis of clinical stage IIA. The relevant data for each stage is 

shown as a heatmap of the respective correlation matrix (Figure 4.3.4). HER2 positive Stage IIA had 

7 proteins, ERBB2, CS, HIST1H1D, MDH2, PPP6R2, RHOC and SSBP1, with statistically significant 

and very strong correlations with CPNE3 (r-value > 0.9) (Figure 4.3.4A). Stage IIA was particularly 

interesting because of a very strong positive correlation between CPNE3 and ERBB2 and very strong 

correlations for CS, HIST1H1D and RHOC with CPNE3 (r-value > 0.9). CS, HIST1H1D and RHOC 

were both linked to several of the top 10 enriched pathways found in the Panther and Reactome 

databases (Table 3.4.3 and 3.4.4). HER2 positive Stage IIB and IIIA had 2 proteins, CS and 

HIST1H4A, that demonstrated statistically significant and very strong correlations with CPNE3 (r-

value > 0.9) (Figure 4.3.4B). Interestingly, CS was not unique to Stage IIB/IIIA, where it was found to 

have a strong positive correlation to CPNE3 (r-value > 0.9), but is also related to HER2 positive Stage 

IIA, where it was found to have a strong negative correlation to CPNE3 (r-value > 0.9). Thus, it would 

be an interesting consideration for a marker of HER2 positive status in breast cancer.     

 

The Pearson correlation scores for the previously identified proteins which are shown to be 

differentially expressed or up/down regulated in response to CPNE3 knockdown in HMLECs 

(Appendix Table 3.4.1), were used to construct protein networks for the HER2 positive subtype 

(Figure 4.3.5), HER2 positive Stage IIA (Figure 4.3.6) and HER2 positive Stage IIB/IIIA (Figure 4.3.7) 

of the validation cohort. The protein networks were evaluated to identify the primary functional cluster 

containing either a set of highly interconnected nodes or CPNE3 respectively, and to identify the 

significant KEGG Pathways related to the cluster. The enrichment of glucose metabolism related 

terms and pathways was observed to be associated with each set of highly interconnected nodes or 

clusters containing CPNE3 for each analysis done on the validation cohort (Figure 4.3.5 to Figure 

4.3.7). 
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The functional cluster (cluster 1) of the HER2 positive subtype of the validation cohort (Figure 4.3.5), 

predominantly contained molecules with enzyme or transporter function. The enrichment of glucose 

metabolism related terms and pathways was observed. For example, 2-Oxocarboxylic acid 

metabolism, glucagon signalling and insulin signalling pathways were enriched KEGG terms (Table 

4.3.1). However, the cluster was observed to be more represented by glycoprotein binding and viral 

infection terms, such as the calnexin/calreticulin cycle and host interactions with Influenza factors 

pathway in a search of the Reactome database (Table 4.3.2). As shown in Table 4.3.7, most of the 

enriched genes observed in the KEGG (Table 4.3.1) and Reactome (Table 4.3.2) pathway databases 

are consistent with STRING interactions (Table 4.3.7). For instance, CANX, CS, KPNA2, RPL19, 

RPL32 and SLC25A6 were found to have protein to protein interactions with a high confidence score 

(≥ 0.90) when mapped to the STRING interactions database. 

 

The interaction shown in the constructed protein network from RPL19 to RPL32 (Figure 4.3.5), was 

found be consistent with the STRING interactions (Table 4.3.7). RPL19 and RPL32 have been 

reported to be associated with certain types of cancer and have been shown to have an oncogenic 

role in breast cancer. Previous studies have revealed that overexpression of RPL19 could sensitise 

breast cancer cells to endoplasmic reticulum stress-induced cell death by activating the unfolded 

protein response (M. Hong et al., 2014). A more recent study has revealed that RPL32 may decrease 

breast cancer cell migration and invasion by downregulating the expression of matrix 

melloproteinasse-2 (MMP-2) and matrix melloproteinasse-9 (MMP-9) (L. Xu et al., 2020). Considering 

these facts, the enrichment of KEGG terms and pathways related to RPL19 and RPL32 (Table 4.3.1), 

indicates that the knockdown of CPNE3 which reduced expression of both RPL19 and RPL32 in C3.6  
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Figure 4.3.4 Heatmap of TNM staging Pearson correlations for 45 proteins of interest in the validation cohort. 
A) HER2 positive Stage IIA B) HER2 positive Stage IIB/IIIA 
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Figure 4.3.5 Cytoscape network analysis of proteins associated with HER2 positive status in the validation cohort. Cluster 1 represents the primary functional 
cluster containing CPNE3 or a set of highly interconnected nodes and KEGG pathway with the highest enrichment ratio. Edges represent strong correlations 
(r-value > 0.5).
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Table 4.3.1 The table lists the top 10 enriched KEGG Pathways based on an ORA analysis of cluster 
1 of the network of proteins associated with HER2 positive status in the validation cohort. 

Gene Set  Pathway Description  Gene  P Value Enrichment Ratio 

hsa04922 Glucagon signalling pathway CALML3, PYGM 0.0114 12.09 

hsa04910 Insulin signalling pathway CALML3, PYGM 0.0195 9.09 

hsa03010 Ribosome RPL19, RPL32 0.0240 8.14 

hsa04218 Cellular senescence CALML3, SLC25A6 0.0261 7.78 

hsa04217 Necroptosis PYGM, SLC25A6 0.0268 7.68 

hsa04022 cGMP-PKG signalling pathway CALML3, SLC25A6 0.0271 7.64 

hsa04141 Protein processing in endoplasmic 
reticulum CANX, PRKCSH 0.0277 7.54 

hsa01210 2-Oxocarboxylic acid metabolism CS 0.0286 34.58 

hsa05164 Influenza A KPNA2, SLC25A6 0.0296 7.28 

hsa04020 Calcium signalling pathway CALML3, SLC25A6 0.0335 6.80 
 
 

Table 4.3.2 The table lists the top 10 enriched Reactome Pathways based on an ORA analysis of 
cluster 1 of the network of proteins associated with HER2 positive status in the validation cohort. 

Gene Set  Pathway Description  Gene  P Value Enrichment Ratio 

R-HSA-168254 Influenza Infection 
CANX, KPNA2, 
RPL19, RPL32, 
SLC25A6 

4.52E-07 28.56 

R-HSA-5663205 Infectious disease 
CANX, KPNA2, 
RPL19, RPL32, 
SLC25A6 

3.88E-05 11.51 

R-HSA-901042 Calnexin/calreticulin cycle CANX, PRKCSH 3.79E-04 67.65 

R-HSA-168255 Influenza Life Cycle CANX, RPL19, 
RPL32 4.90E-04 18.45 

R-HSA-532668 N-glycan trimming in the ER and 
Calnexin/Calreticulin cycle CANX, PRKCSH 6.91E-04 50.26 

R-HSA-168253 Host Interactions with Influenza 
Factors 

KPNA2, 
SLC25A6 9.48E-04 42.90 

R-HSA-1268020 Mitochondrial protein import CS, SLC25A6 2.30E-03 27.48 

R-HSA-1643685 Disease 
CANX, KPNA2, 
RPL19, RPL32, 
SLC25A6 

4.28E-03 4.17 

R-HSA-156902 Peptide chain elongation RPL19, RPL32 4.39E-03 19.76 

R-HSA-192823 Viral mRNA Translation RPL19, RPL32 4.39E-03 19.76 

 
 
 
cells (Appendix Table 3.4.1), could play a role in mitigating endoplasmic reticulum stress-induced cell 

death and increase breast cancer migration by upregulating MMP expression. 
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The functional cluster (cluster 1) of the HER2 positive Stage IIA in the validation cohort (Figure 4.3.6), 

contained molecules with enzyme, kinase, transcription regulator, translation regulator and transporter 

function. The enrichment of glucose metabolism, DNA replication or viral infection related terms and 

pathways was observed. For example, citrate cycle (TCA cycle), glyoxylate and dicarboxylate 

metabolism, 2-Oxocarboxylic acid metabolism and pyruvate metabolism pathways were enriched 

KEGG terms related to glucose metabolism (Table 4.3.3). Likewise, the cluster was observed to be 

represented in glucose metabolism, DNA replication or viral infection related Reactome terms, such 

as apoptosis induced DNA fragmentation and citric acid cycle (TCA cycle) (Table 4.3.4). As shown in 

Table 4.3.7, most of the enriched genes observed in the KEGG (Table 4.3.3) and Reactome (Table 

4.3.4) pathway databases are consistent with STRING interactions (Table 4.3.7). Moreover, CANX, 

CS, KPNA2, LRPPRC, MDH2, HIST1H1E, HIST1H4A and SLC25A6 were found to have protein to 

protein interactions with a high confidence score (≥ 0.90) when mapped to the STRING interactions 

database. 

 

The interactions shown in the constructed protein network from HIST1H4A to SSRP1, ERBB2 to 

RHOC and ERBB2 to CPNE3 (Figure 4.3.6), were found to be consistent with mapped STRING 

interactions (Table 4.3.7). The interaction between HIST1H4A and SSRP1 has been reported by 

several Affinity Capture-MS studies (Huttlin et al., 2017, 2021; Nakamura et al., 2019). Moreover, 

CPNE3 exhibits kinase activity, phosphorylates Hl histones and basic phospholipid proteins, activates 

downstream signalling pathways, and subsequently promotes tumour proliferation and metastasis 

(Mo et al., 2013; Thomas et al., 2008). This makes HIST1H4A an interesting candidate biomarker for 

ERBB2/HER2 overexpressing breast cancers and a plausible downstream interaction partner of 

CPNE3. Analysis of proteins related to CPNE3 knockdown in HER2 positive Stage IIA of the 

validation cohort reveals that HIST1H4A is among the genes associated with cellular senescence and 

DNA damage/telomere stress induced senescence terms and Reactome pathways. 
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Figure 4.3.6 Cytoscape network analysis of proteins associated with HER2 positive Stage IIA in the validation cohort. Cluster 1 represents the primary 
functional cluster containing CPNE3 or a set of highly interconnected nodes and KEGG pathway with the highest enrichment ratio. Edges represent strong 
correlations (r-value > 0.5).
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Table 4.3.3 The table lists the top 10 enriched KEGG Pathways based on an ORA analysis of cluster 
1 of the network of proteins associated with HER2 positive Stage IIA in the validation cohort. 

Gene Set  Pathway Description  Gene  P Value Enrichment Ratio 

hsa00020 Citrate cycle (TCA cycle) CS, MDH2 0.0004 62.24 

hsa00630 Glyoxylate and dicarboxylate metabolism CS, MDH2 0.0004 62.24 

hsa01200 Carbon metabolism CS, MDH2 0.0063 16.10 

hsa05164 Influenza A KPNA2, SLC25A6 0.0133 10.92 

hsa01210 2-Oxocarboxylic acid metabolism CS 0.0191 51.87 

hsa03430 Mismatch repair SSBP1 0.0244 40.59 

hsa05166 Human T-cell leukemia virus 1 infection CANX, SLC25A6 0.0284 7.32 

hsa03030 DNA replication SSBP1 0.0379 25.93 

hsa00620 Pyruvate metabolism MDH2 0.0410 23.94 

hsa04216 Ferroptosis SLC3A2 0.0421 23.34 

 

Table 4.3.4 The table lists the top 10 enriched Reactome Pathways based on an ORA analysis of 
cluster 1 of the network of proteins associated with HER2 positive Stage IIA in the validation cohort.  

Gene Set  Pathway Description  Gene  P Value Enrichment Ratio 

R-HSA-140342 Apoptosis induced DNA 
fragmentation 

HIST1H1C, HIST1H1D, 
HIST1H1E 9.83E-07 143.27 

R-HSA-211227 Activation of DNA fragmentation 
factor 

HIST1H1C, HIST1H1D, 
HIST1H1E 9.83E-07 143.27 

R-HSA-2559584 Formation of Senescence-Associated 
Heterochromatin Foci (SAHF) 

HIST1H1C, HIST1H1D, 
HIST1H1E 1.92E-06 116.40 

R-HSA-2559586 DNA Damage/Telomere Stress 
Induced Senescence 

HIST1H1C, HIST1H1D, 
HIST1H1E, HIST1H4A 6.76E-06 31.04 

R-HSA-75153 Apoptotic execution phase HIST1H1C, HIST1H1D, 
HIST1H1E 7.31E-05 35.82 

R-HSA-1428517 The citric acid (TCA) cycle and 
respiratory electron transport 

CS, ETFB, LRPPRC, 
MDH2 1.44E-04 14.27 

R-HSA-2559583 Cellular Senescence HIST1H1C, HIST1H1D, 
HIST1H1E, HIST1H4A 2.23E-04 12.73 

R-HSA-71403 Citric acid cycle (TCA cycle) CS, MDH2 5.54E-04 56.44 

R-HSA-168254 Influenza Infection CANX, KPNA2, SLC25A6 1.78E-03 12.09 

R-HSA-168253 Host Interactions with Influenza 
Factors KPNA2, SLC25A6 1.93E-03 30.28 
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Considering these facts, CPNE3 may play a role in downstream phosphorylation of HIST1H4A, 

potentially suppressing cell senescence and DNA damage/telomere stress induced senescence 

pathways. Both ERBB2 and CPNE3 exhibit a consistent trend of negative correlations with HIST1H4A 

in most of the HER2 positive related correlation heatmaps for the discovery (Table 4.2.4 and 4.2.4) 

and the validation cohorts (Table 4.3.3 and 4.3.4). This is consistent with our findings from the TMT 

mass spectrometry analysis of global protein expression in response to CPNE3 knockdown in ERBB2 

overexpressing C3.6 HMLECs (Appendix Table 3.4.1). Therefore, indicating that the abrogated 

expression of CPNE3 may contribute to cell senescence related pathways through one of the 

HIST1H4A linked pathways identified in Reactome (Table 4.3.4). 

 

The functional cluster or CPNE3 containing cluster (cluster 1) of the HER2 positive Stage IIB/IIIA in 

the validation cohort (Figure 4.3.7), contained four molecules. The enrichment of glucose metabolism, 

DNA replication or viral infection related terms and pathways was observed. For example, 2-

Oxocarboxylic acid metabolism, citrate cycle (TCA cycle) and glyoxylate and dicarboxylate 

metabolism were enriched KEGG terms related to glucose metabolism (Table 4.3.5). Likewise, the 

cluster was observed to be represented in glucose metabolism, DNA transcription or DNA 

modification related Reactome terms, such as RNA polymerase I promoter opening and the citric acid 

(TCA) cycle and respiratory electron transport (Table 4.3.6). All four genes observed in the KEGG 

(Table 4.3.5) and Reactome (Table 4.3.6) pathway results, CPNE3, CS, LRPPRC and HIST1H4A 

were found to have protein to protein interactions with a high confidence score (≥ 0.90) when mapped 

to the STRING interactions database (Table 4.3.7). However, the interactions shown in the 

constructed protein network from CPNE3 to CS, CPNE3 to HIST1H4A, CS to HIST1H4A, LRPPRC to 

HIST1H4A and LRPPRC to CS (Figure 4.3.7), were not found among the mapped STRING 

interactions with a confidence score cut-off ≥ 0.90 (Table 4.3.7). 
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Figure 4.3.7 Cytoscape network analysis of proteins associated with HER2 positive Stage IIB/IIIA in the validation cohort. Cluster 1 represents the primary 
functional cluster containing CPNE3 or a set of highly interconnected nodes and KEGG pathway with the highest enrichment ratio. Edges represent strong 
correlations (r-value > 0.5).
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Table 4.3.5 The table lists the top 10 enriched KEGG Pathways based on an ORA analysis of cluster 
1 of the network of proteins associated with HER2 positive Stage IIB/IIIA in the validation cohort. 

Gene Set  Pathway Description  Gene  P Value Enrichment 
Ratio 

hsa01210 2-Oxocarboxylic acid metabolism CS 0.0048 207.47 

hsa00020 Citrate cycle (TCA cycle) CS 0.0080 124.48 

hsa00630 Glyoxylate and dicarboxylate metabolism CS 0.0080 124.48 

hsa01230 Biosynthesis of amino acids CS 0.0200 49.79 

hsa01200 Carbon metabolism CS 0.0308 32.19 

hsa05322 Systemic lupus erythematosus HIST1H4A 0.0353 28.08 

hsa05034 Alcoholism HIST1H4A 0.0476 20.75 

hsa05203 Viral carcinogenesis HIST1H4A 0.0531 18.58 

hsa01100 Metabolic pathways CS 0.3189 2.86 
 
 

Table 4.3.6 The table lists the top 10 enriched Reactome Pathways based on an ORA analysis of 
cluster 1 of the network of proteins associated with HER2 positive Stage IIB/IIIA in the validation 
cohort. 

Gene Set  Pathway Description  Gene  P Value Enrichment Ratio 

R-HSA-1428517 The citric acid (TCA) cycle and 
respiratory electron transport CS, LRPPRC 1.59E-03 30.33 

R-HSA-71403 Citric acid cycle (TCA cycle) CS 8.31E-03 119.93 

R-HSA-3214842 HDMs demethylate histones HIST1H4A 1.92E-02 51.74 

R-HSA-171306 Packaging Of Telomere Ends HIST1H4A 1.96E-02 50.74 

R-HSA-71406 Pyruvate metabolism and Citric Acid 
(TCA) cycle CS 2.07E-02 47.97 

R-HSA-73728 RNA Polymerase I Promoter Opening HIST1H4A 2.37E-02 41.88 

R-HSA-1268020 Mitochondrial protein import CS 2.40E-02 41.23 

R-HSA-5334118 DNA methylation HIST1H4A 2.44E-02 40.59 

R-HSA-5625886 

Activated PKN1 stimulates 
transcription of AR (androgen 
receptor) regulated genes KLK2 and 
KLK3 

HIST1H4A 2.52E-02 39.38 

R-HSA-427359 SIRT1 negatively regulates rRNA 
expression HIST1H4A 2.55E-02 38.80 
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Table 4.3.7 The table lists the STRING interactions with a confidence score cut-off ≥ 0.90 (high confidence) for significantly up/down - regulated proteins. 

Name Proximity on 
chromosome 

Gene 
fusion 

Phylogenetic 
cooccurrence Homology Coexpression 

Experimentally 
determined 
interaction 

Database 
annotated 

Automated 
textmining 

Combined 
score 

ARHGDIB (interacts with) RHOC 0 0 0 0 0.082 0.645 0.6 0.564 0.935 
ATP5B (interacts with) ATP5D 0.119 0 0 0 0.907 0.992 0.9 0.909 0.999 

ATP5B (interacts with) SLC25A3 0 0 0 0 0.942 0 0 0.645 0.978 

ATP5B (interacts with) MDH2 0.054 0 0 0 0.829 0.462 0 0.784 0.978 
ATP5B (interacts with) CS 0 0 0 0 0.757 0.319 0.9 0.597 0.992 

ATP5D (interacts with) MDH2 0.111 0 0 0 0.826 0.419 0 0.328 0.931 

CACYBP (interacts with) CTNNB1 0 0 0 0 0.062 0.863 0.72 0.413 0.976 
CANX (interacts with) PRKCSH 0 0 0 0 0.094 0.752 0.9 0.505 0.987 

CPNE3 (interacts with) ERBB2 0 0 0 0 0.062 0.27 0 0.917 0.938 

CS (interacts with) MDH2 0.075 0 0 0 0.596 0.843 0.9 0.871 0.999 
CTNNB1 (interacts with) ERBB2 0 0 0 0 0 0.76 0.9 0.989 0.999 

DLD (interacts with) MDH2 0.068 0 0 0 0.929 0.102 0 0.699 0.979 

ERBB2 (interacts with) LRPPRC 0 0 0 0 0 0.129 0.9 0.044 0.909 
ERBB2 (interacts with) RHOC 0 0 0 0 0.063 0.115 0.9 0.508 0.953 

HIST1H1E (interacts with) HIST1H4A 0 0.003 0 0 0.215 0.814 0.36 0.497 0.946 

HIST1H1E (interacts with) HIST1H3A 0 0.002 0 0 0.253 0.858 0.36 0.415 0.955 
HIST1H3A (interacts with) SSRP1 0 0 0 0 0.063 0.947 0 0.238 0.959 

HIST1H3A (interacts with) HIST1H4A 0 0.008 0 0 0.382 0.842 0.9 0.626 0.995 

HIST1H4A (interacts with) SSRP1 0 0 0 0 0.062 0.868 0 0.34 0.911 
KPNA2 (interacts with) RANBP1 0 0 0 0 0.345 0.253 0.9 0.617 0.978 

RPL19 (interacts with) RPL32 0.295 0 0 0 0.978 0.997 0.9 0.742 0.999 

SLC25A3 (interacts with) VDAC2 0 0 0 0 0.876 0.056 0 0.553 0.943 
SLC25A6 (interacts with) VDAC2 0 0 0 0 0.145 0.116 0.8 0.577 0.927 
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4.4. ERBB2-specific phosphosignalling in breast cancer patients 

 

To define the possible biological mechanisms involved with CPNE3-mediated signal transduction in 

HER2 positive breast cancer, phosphoproteomic profiling data from the validation cohort was used to 

identify putative sites of phosphorylation for candidate biomarkers. Phosphopeptide enrichment was 

determined for protein interactions shown in the constructed protein networks (Figure 4.2.5 and 

Figure 4.3.5 to 4.3.7) and confirmed to have protein to protein interactions with a high confidence 

score (≥ 0.90) when mapped to the STRING interactions. It is known that overexpression of ERBB2 

leads to heterodimerization and activation of downstream signalling proteins (Graus-Porta et al., 

1997; Tzahar et al., 1996). Thus, a cross-comparison of enriched phosphopeptides from HER2 

positive patient samples and HER2-enriched patient samples was used to determine the changes in 

downstream phosphorylation events due to ERBB2/HER2 receptor signalling (Table 4.4.1). 

 

Altered phosphopeptides with a ≥1.5-fold change between HER2 positive (HER2+) and HER2-

enriched patients were categorised depending on ERBB2 overexpression (Table 4.4.1). Most 

peptides (77%) were singly phosphorylated and a total of 159 changes for 73 unique phosphosites in 

124 sequences (from 11 proteins) were identified. As expected for ERBB2 overexpressing cells, the 

ERBB2 protein ratio was greater than 2-fold and there were a greater number of phosphosites, or 

modified residues identified for ERBB2 compared to the other proteins in the evaluation. Interestingly, 

there was no significant difference in the CPNE3 protein ratio between HER2 positive (HER2+) and 

HER2-enriched patients. This observation is unsurprising as CPNE3 is known to correlate with 

ERBB2 expression in breast cancer. The positive correlation between CPNE3 and ERBB2 might be 

true of ERBB2 mRNA enriched cells such as HER2-enriched patient cells that do not overexpress the 

ERBB2/HER2 receptor. Moreover, the similarity in CPNE3 expression or near 1-fold protein ratio 

between HER2+ and HER2-enriched patients allows us to evaluate phosphopeptide alterations for 

previously identified proteins related to CPNE3 expression with only one upstream dependent 

variable, ERBB2/HER2 expression. 
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Table 4.4.1 ERBB2 related phosphorylation in the validation cohort. 1pST, 2pST and 3pST refer to 
singly, doubly and triply phosphorylated peptide ratios for the indicated sites. Values in boldface 
display ≥ 1.5-fold change in abundance as determined from ITRAQ ratios. Dark grey is up-regulated, 
and light grey is down-regulated. 
 

      Ratio HER2+ vs. HER2-enriched 

Protein Site 
Ave Protein Ratio HER2+ vs. 

HER2-enriched 1pST 2pST 3pST 

ATP5B S160 1.08       
ATP5B S465 1.08 8.23     

ATP5B S415 1.08       

ATP5B S106 1.08       
ATP5B S433 1.08       

ATP5B T213 1.08       

CANX S583 1.57 2.63     
CANX S564 1.57 0.95 1.24   

CANX S554 1.57 0.73 1.24   

CANX S562 1.57       
CPNE3 S159 1.14       

CPNE3 S243 1.14 1.15     

CPNE3 S242 1.14 2.52     
CPNE3 S240 1.14       

CPNE3 Y203 1.14       

CPNE3 S200 1.14       
CPNE3 S197 1.14 2.01     

CPNE3 S398 1.14       

CPNE3 T395 1.14       
CPNE3 Y392 1.14 0.84     

CPNE3 S260 1.14       

CPNE3 Y261 1.14       
CPNE3 S90 1.14       

CPNE3 S14 1.14 1.10     

CS Y194 1.70       
CS Y199 1.70       

ERBB2 S963 2.18       

ERBB2 T1166 2.18 3.27     
ERBB2 S819 2.18       

ERBB2 S1002 2.18       

ERBB2 S998 2.18 3.07     
ERBB2 S1107 2.18 5.05     

ERBB2 T1103 2.18 6.26     

ERBB2 S1100 2.18 1.85     
ERBB2 Y877 2.18       

ERBB2 S703 2.18       
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ERBB2 T701 2.18 2.22     
ERBB2 S1083 2.18 1.46 5.73   

ERBB2 S1078 2.18 2.91 5.73   

ERBB2 S1073 2.18 13.42 1.54   
ERBB2 S1066 2.18 6.42 5.30   

ERBB2 S1174 2.18 3.81     

ERBB2 S1134 2.18 2.39 1.73   
ERBB2 T1132 2.18   1.73   

ERBB2 S1054 2.18 1.72 3.42   

ERBB2 T1172 2.18       
HIST1H4A Y52 1.71       

HIST1H4A S47 1.71 3.87     

HIST1H4A Y89 1.71       
PRKCSH S126 1.42 0.81     

PRKCSH S445 1.42       

PRKCSH S442 1.42 0.17     
PRKCSH S168 1.42 2.45     

RHOC S152 0.91       

RPL19 S13 0.96       
RPL19 S12 0.96       

RPL19 S189 0.96 0.49     

RPL32 S25 1.37       
RPL32 S94 1.37       

SSRP1 S349 1.05       

SSRP1 S672 1.05   1.26   
SSRP1 S673 1.05   1.72   

SSRP1 S671 1.05 2.30 2.08   

SSRP1 S668 1.05 12.17 4.96   
SSRP1 S667 1.05   3.91   

SSRP1 S444 1.05 1.16 1.36   

SSRP1 Y441 1.05       
SSRP1 Y438 1.05       

SSRP1 S437 1.05   1.36   

SSRP1 S120 1.05       
SSRP1 S531 1.05       

SSRP1 S657 1.05 0.98     

SSRP1 S627 1.05       
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SSRP1 was found to have a comparatively high number of differential phosphorylation events 

compared to the other potential downstream interaction partners of CPNE3 (Table 4.4.1). Four amino 

acid residues exhibit statistically significant altered phosphopeptides with a ≥1.5-fold change. The 

phosphopeptides with modified residues S668 and S671 were both singly and doubly phosphorylated, 

while S667 and S673 were only doubly phosphorylated. S668 is a putative site of in vivo kinases and 

has been shown to undergo phosphorylation by casein kinase II (CK2) which inhibits the DNA-binding 

activity of SSRP1 (Y. Li et al., 2005). Furthermore, SSRP1 is known to be a component of the histone 

chaperone FACT complex and plays a significant role in its involvement in chromatin-related 

processes of mammalian cells (Gurova et al., 2013; Prendergast et al., 2020). This is consistent with 

the high confidence score STRING interaction between HIST1H4A and SSRP1 (Table 4.3.7) and 

previously reported affinity capture studies (Huttlin et al., 2017, 2021; Nakamura et al., 2019). The 

high S688 phosphosite enrichment ratio of 12.17 indicates that the 2-fold ERBB2/HER2 protein ratio 

for HER2+ vs. HER2-enriched patients is associated with an increase in the putative phosphorylation 

of S688 by the serine/threonine protein kinase CK2. HIST14HA was found to be phosphorylated at 

amino acid residue S47 and this corresponds to a site an amino acid residue associated with 

upstream activity of the regulatory protein TBK1 and in vivo kinase PAK2. 

 

CANX and PRKCSH, both previously shown to interact (Table 4.3.7) and to be enriched in pathways 

linked to Calnexin/calreticulin cycle, Protein processing in endoplasmic reticulum and Antigen 

processing and presentation (Table 4.2.3 and Table 4.2.4), had a higher expression in HER2+ vs. 

HER2-enriched patients based on the Average Protein Ratio value (Table 4.4.1). CANX (MHC class I 

Antigen-Binding Protein P88) was found to be singly phosphorylated at amino acid residue S583 and 

PRKCSH was found to be singly phosphorylated at amino acid residues S442 and S168. Albeit, the 

phosphorylation of amino acid residue S442 of PRKCSH was downregulated in HER2+ vs. HER2-

enriched patients. The phosphorylation of amino acid residue S583 of CANX is a target site for the 

activity of in vitro and in vivo kinases, ERK1 and Cyclin dependent kinase 1 (CDK1). ATP5B which is 

also linked to MHC class I protein binding, had a high phosphosite enrichment ratio of 8.23 for the 

phosphorylation of amino acid residue S465. ATP5B is known to share a high confidence score 

STRING interaction between ATP5B and CS (Table 4.3.7). CS did not exhibit a statistically significant 
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enrichment of phosphopeptides; however, this indicates a potential link between the glucose 

metabolism related function of CS and MHC class I protein binding. Therefore, the proteins linked to 

CPNE3 knockdown and identified in cluster 1 of Figure 4.2.5, are linked to MHC class I related 

antigen processing and presentation, and CPNE3 could play a role as an upstream regulator of this 

process. 

 

4.5. Developing predictive models for HER2-positive breast cancer 

To determine if marker combinations showed superior sensitivity and specificity compared to single 

markers, we perform logistic regression using 2 models. Model 1 was built using a combination of six 

proteins previously identified as potential clinical biomarkers for HER2 breast cancer in experimental 

and in silico studies: ERBB2, ARHGDIB, CACYBP, CPNE3, KPNA2 and EIF5A and is a predictive 

model for HER2 status. The training and testing were implemented using a 70-30 train-test split of the 

discovery and validation cohort datasets. Model 2 was built using a combination of six proteins 

discovered to have a significant correlation to CPNE3 and HER2 positive status (Table 4.5.1) in the 

validation cohort: CPNE3, CS, EIF5A, ERBB2, HIST1H4A and PYGM and is a predictive model of 

HER2 positive status. The training and testing were implemented using a 70-30 train-test split of the 

discovery and validation cohort datasets. Both models were evaluated using the AUC of a ROC curve 

with confidence intervals computed for a given score function based on labels and predictions using a 

bootstrapping method. Leave one out cross validation (LOOCV) and the root mean squared error 

(RMSE) were used to measure how well the predictions made by the model match the observed data. 

The Youden J index was used to capture the performance of each dichotomous diagnostic test and to 

account for the imbalanced class distribution in the two datasets (Table 4.2.2). 

 

4.5.1. Model 1: A predictive model of HER2 positive status 

 

Logistic regression model 1 was trained on a combination of independent variables derived from a set 

of proteins previously identified as potential biomarkers of breast cancer: ERBB2, ARHGDIB, 

CACYBP, CPNE3, KPNA2 and EIF5A. A total of 6 predictor combinations were selected in line with 

the experimental hypothesis that CPNE3 operates downstream of ERBB2 and upstream of 
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ARHGDIB, CACYBP, EIF5A and KPNA2. The diagnostic performance of predictor combinations on 

the discovery cohort was initially explored using a pair plot from the Python Seaborn package (Figure 

4.5.1).  

 

ERBB2 and CACYBP were found to be the most effective patient diagnosis pair for HER2 positive 

and HER2 negative subtypes in the discovery cohort. Conferring a slightly denser clustering of the 

HER2 patients with a wider distribution than either ARHGDIB, CPNE3, KPNA2 and EIF5A (Figure 

4.5.1). The same pattern was observed in the validation cohort and CACYBP conferred a denser 

clustering of both HER2 positive and negative patient groups for the ERBB2 and CACYBP pairwise 

plot (Figure 4.5.3).  

 

Using all six proteins, the resulting performance scores for model 1 on the discovery cohort were a 

sensitivity of 86%, specificity of 100% and an AUC of 0.96 (95% CI: 0.79, 1.00) (Figure 4.5.3A) (Table 

4.5.2). This result was similar to the performance of the predictor pair CPNE3 & CACYBP (Table 

4.5.2).  However, the predictor pair ERBB2 & CPNE3 outperformed all other predictor combinations 

resulting in a sensitivity of 100%, specificity of 100% and an AUC of 1.0 (95% CI: 1.00, 1.00). CPNE3 

& ARHGDIB, CPNE3 & EIF5A and CPNE3 & KPNA2 performed poorly, with an equal sensitivity of 

14%, specificity of 100% and an AUC of 0.57 (95% CI: 0.50, 0.75).  Overall, three predictor 

combinations, ERBB2 & CPNE3, CPNE3 & CACYBP and all six predictors, resulted in an acceptable 

diagnostic performance with a Youden’s J index > 0.5 and RMSE of 0.274 for the LOOCV on the 

discovery cohort (Table 4.5.2). 

 

Model 1 and its respective predictors performed less favourably on the validation cohort. Using all six 

proteins, the resulting performance scores for model 1 on the validation cohort were a sensitivity of 

50%, specificity of 92% and an AUC of 0.50 (95% CI: 0.50, 0.50) (Figure 4.5.3B) (Table 4.5.2). The 

combined markers outperformed all other predictor pairs on the validation cohort. However, all 

predictor pairs evaluated had an AUC of 0.50 (95% CI: 0.50, 0.50) and Youden’s J index < 0.5 (Table 

4.5.2). Therefore, none of the predictor pairs resulted in a meaningful diagnostic performance on the 

validation cohort. 
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Figure 4.5.1 Pair plot of candidate biomarker combinations correlated with HER2 positive status in 
the discovery cohort (n=40 
 



 146 

 

 

Figure 4.5.2 Pair plot of candidate biomarker combinations correlated with HER2 positive status in 
the validation cohort (n=75 
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Figure 4.5.3 Receiver operator curve analysis of multivariate logistic regression model 1 with 
individual or combined proteins as predictor variables. A) Discovery cohort (n=40) B) Validation cohort 
(n=75) 
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4.5.2. Model 2: A predictive model of HER2-positive and HER2 enriched status 

 

Logistic regression model 2 was trained on a combination of independent variables derived from a set 

of proteins discovered to correlate with HER2 positive status among the HER2-enriched subtype of 

our validation cohort: CPNE3, CS, EIF5A, ERBB2, HIST1H4A and PYGM. The proteins were selected 

on the basis of their predictive potential for HER2 positive status and a correlation with the 

predominant HER2-enriched status (Table 4.5.1). 

 

Table 4.5.1 The table lists candidate biomarkers correlated with HER2 positive/HER2 enriched status. 

Gene Symbol Molecule Type Potential Biomarker Application 
      

CS Enzyme HER2 diagnosis 
EIF5A Translation regulator HER2 diagnosis 

HIST1H4A Other HER2 diagnosis 

PYGM Enzyme HER2 diagnosis 
 

A total of 6 predictor combinations were selected in line with the experimental hypothesis that CPNE3 

operates downstream of ERBB2 and potentially upstream of CS, EIF5A, HIST1H4A and PYGM. The 

HER2 diagnostic performance of predictor combinations was explored for the validation cohort using 

a pair plot from the Python Seaborn package (Figure 4.5.4). It was unclear from a pairwise plot which 

candidate biomarkers correlated with HER2-enriched status were the most effective for patient 

diagnosis in the validation cohort (Figure 4.5.4). 
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Figure 4.5.4 Pair plot of candidate biomarkers correlated with both HER2 positive and HER2-
enriched status in the discovery cohort (n=40) 
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Figure 4.5.5 Pair plot of candidate biomarker combinations correlated with both HER2 positive and 
HER2-enriched status in the validation cohort (n=75) 
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Figure 4.5.6 Receiver operator curve analysis of multivariate logistic regression model 2 with 
individual or combined proteins as predictor variables. A) Discovery cohort (n=40) B) Validation cohort 
(n=75) 
 

Using five proteins as predictor variables, the performance scores for model 2 on the discovery cohort 

were a sensitivity of 100%, specificity of 100% and an AUC of 0.93 (95% CI: 0.75, 1.00) (Figure 

4.5.6A) (Table 4.5.2). PYGM was not quantified in all samples of the discovery cohort and it was not 

possible to evaluate its predictive performance on the discovery cohort and only five predictors were 

used to evaluate the model. The predictor pair ERBB2 & CPNE3 outperformed the five combined 

predictors resulting in a sensitivity of 100%, specificity of 100% and an AUC of 1.0 (95% CI: 1.00, 

1.00). Interestingly, the CPNE3 & CS predictor pair selected from an evaluation of TNM clinical stages 

A 

B 
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of the HER2 positive subtype of the HER2-enriched subtype of the validation cohort performed well 

on the discovery cohort, with a sensitivity of 71%, specificity of 100% and an AUC of 0.86 (95% CI: 

0.67, 1.00). CPNE3 & EIF5A and CPNE3 & HIST1H4A performed poorly, with an equal sensitivity of 

14%, specificity of 100% and an AUC of 0.57 (95% CI: 0.50, 0.75). Overall, three predictor 

combinations, ERBB2 & CPNE3, CPNE3 & CS and the five predictors combined, resulted in an 

acceptable diagnostic performance with a Youden’s J index > 0.5 and RMSE of ≤ 0.274 for the 

LOOCV on the discovery cohort (Table 4.5.2). 

 

Using all six proteins, the resulting performance scores for model 2 on the validation cohort were a 

sensitivity of 100%, specificity of 100% and an AUC of 1.0 (95% CI: 1.00, 1.00) (Figure 4.5.6B) (Table 

4.5.2). This result was similar to the performance of the predictor pairs ERBB2 & CPNE3 and CPNE3 

& CS (Table 4.5.2).  However, the predictor pairs CPNE3 & EIF5A, CPNE3 & HIST1H4A and CPNE3 

& PYGM performed very poorly, with an equal sensitivity of 0%, specificity of 100% and an AUC of 

0.50 (95% CI: 0.50, 0.50). Overall, three predictor combinations, ERBB2 & CPNE3, CPNE3 & CS and 

the six predictors combined, resulted in an acceptable diagnostic performance with a Youden’s J 

index > 0.5 and RMSE of 0.253 for the LOOCV on the validation cohort (Table 4.5.2). 

 

The logistic regression models have confirmed that CACYBP and CS are much better predictors of 

HER2 status in clinical patients than the previously proposed candidate proteins, ARHGDIB and 

KPNA2 (Table 4.5.2). These candidate proteins discovered through comparative proteomic profiling of 

C3.6 cells, an ERBB2 overexpressing HMLEC and SKBR3 cells, a metastatic ERBB2 overexpressing 

breast cancer cell line, are shown to be ineffective at patient diagnosis and determination of clinical 

HER2 patient status in two patient cohorts. The expression of ARHGDIB and KPNA2 is sporadic and 

non-specific to the HER2 subtype of patients in the clinical samples (Figure 4.2.2 & Figure 4.3.2). 

Correlations between CPNE3 and the candidate markers CACYBP and CS (Figure 4.3.4), present a 

much more favourable HER2 status prediction performance (Table 4.2.2). Furthermore, CACYBP is 

already known to play a role in clinical progression of breast cancer (N. Wang et al., 2010). The data 

presented herein supports the findings from the literature and confirms a predictive correlation 

between CACYBP and CPNE3 in HER2 patients. 
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Table 4.5.2 Summary of logistic regression values for candidate biomarkers predicting HER2 status. 

Model Sensitivity Specificity AUC 95% CI Youden 
Index 

LOOCV 
(RMSE) 

 Model 1 - Discovery Cohort             

ERBB2 & CPNE3 1.00 1.00 1.00 1.00 - 1.00 1.00 0.274 
CPNE3 & ARHGDIB 0.14 1.00 0.57 0.50 - 0.75 0.14 0.592 

CPNE3 & KPNA2 0.14 1.00 0.57 0.50 - 0.75 0.14 0.592 

CPNE3 & EIF5A 0.14 1.00 0.57 0.50 - 0.75 0.14 0.592 
CPNE3 & CACYBP 0.86 1.00 0.93 0.79 - 1.00 0.86 0.274 

Six Predictors Combined 0.86 1.00 0.93 0.79 - 1.00 0.86 0.274 

Model 1 - Validation Cohort              
ERBB2 & CPNE3 0.50 0.89 0.50 0.50 - 0.50 0.39 0.300 

CPNE3 & ARHGDIB 0.00 1.00 0.50 0.50 - 0.50 0.00 0.300 

CPNE3 & KPNA2 0.00 1.00 0.50 0.50 - 0.50 0.00 0.300 
CPNE3 & EIF5A 0.00 1.00 0.50 0.50 - 0.50 0.00 0.300 

CPNE3 & CACYBP 0.50 0.89 0.50 0.50 - 0.50 0.39 0.277 

Six Predictors Combined 0.50 0.92 0.50 0.50 - 0.50 0.42 0.300 
Model 2 - Discovery Cohort             

ERBB2 & CPNE3 1.00 1.00 1.00 1.00 - 1.00 1.00 0.274 

CPNE3 & CS 0.71 1.00 0.86 0.67 - 1.00 0.71 0.224 
CPNE3 & EIF5A 0.14 1.00 0.57 0.50 - 0.75 0.14 0.632 

CPNE3 & HIST1H4A 0.14 1.00 0.57 0.50 - 0.75 0.14 0.632 

CPNE3 & PYGM nil nil nil nil nil nil 
Five Predictors Combined 1.00 1.00 0.93 0.75 - 1.00 1.00 0.224 

Model 2 - Validation Cohort             
ERBB2 & CPNE3 1.00 1.00 1.00 1.00 - 1.00 1.00 0.253 
CPNE3 & CS 1.00 1.00 1.00 1.00 - 1.00 1.00 0.253 

CPNE3 & EIF5A 0.00 1.00 0.50 0.50 - 0.50 0.00 0.253 

CPNE3 & HIST1H4A 0.00 1.00 0.50 0.50 - 0.50 0.00 0.300 
CPNE3 & PYGM 0.00 1.00 0.50 0.50 - 0.50 0.00 0.300 

Six Predictors Combined 1.00 1.00 1.00 1.00 - 1.00 1.00 0.253 
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4.6. Chapter Conclusion 

 

In conclusion, our findings have important implications for the use of proteomic markers to diagnose 

HER2 status in breast cancer patients. Our results contrast with previous studies that used cell lines 

for comparative proteomic profiling, which did not identify CPNE3 as a specific marker for HER2-

positive breast cancer (Heinrich et al., 2010; Kulkarni et al., 2010; Worthington et al., 2010, 2017). 

Our study has shown that CPNE3 expression is variable between different breast cancer subtypes, 

suggesting that the tumour microenvironment plays a significant role in CPNE3 expression. Further 

investigation is necessary to elucidate how the tumour microenvironment affects the expression of 

CPNE3 and its downstream candidates, such as ARHGDIB and KPNA2, which have previously been 

implicated as potential biomarkers for HER2-positive breast cancer. Additionally, treatment with 

growth factors has been shown to increase CPNE3 expression in cells that do not overexpress 

ERBB2 (Bertani, 2005; Gharbi et al., 2002; White et al., 2004), indicating that further research is 

needed to determine how this may affect downstream candidates linked to CPNE3 expression. 

 

Our analysis has also identified novel candidates that have a unique correlation to CPNE3 expression 

in HER2-positive breast cancer patients. We confirmed the specificity of these correlations using two 

patient cohorts and known STRING protein-to-protein interactions. These candidates have a 

functional role in the TCA cycle and other glucose metabolism related pathways and were previously 

unknown as biomarkers for HER2-positive breast cancer. Our analysis of the phosphoproteome of 

these candidates revealed interesting functional associations, particularly in DNA binding and antigen 

processing and presentation. Furthermore, our observation of a phosphopeptide enrichment pattern 

suggests that CPNE3 could play an upstream regulatory role in MHC class I protein binding and 

antigen processing and presentation via the MHC I pathway. These findings warrant further 

investigation into the role of CPNE3 in MAPK3 kinase signaling via ERK1 or cell cycle regulation via 

CDK1. Future research should focus on validating the candidates linked to these pathways as 

biomarkers for HER2-positive breast cancer and investigating their potential role in the development 

and progression of this subtype of breast cancer. 
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Chapter 5 

5. Discussion 

5.1. Chapter Introduction 

Copine 3 (CPNE3) expression is correlation with the amplification of tyrosine kinase receptor 

ERBB2/Her2 in human mammary luminal epithelial cells (HMLECs) and breast tumour tissues. 

ERBB2/Her2 amplification in breast cancer is implicated as a key contributor to aggressive disease 

phenotype, metastasis and poor prognosis, and CPNE3 is one of several gene products that are 

hypothesised to bring about these effects via ERBB2-dependent signalling (Bertani, 2005; Durán et 

al., 2008; Gharbi et al., 2002; Mackay et al., 2003; White et al., 2004; Worthington et al., 2010). 

Despite previous experiments to establish the role of CPNE3 with respect to ERBB2 over-expression 

and/or growth factor-dependent modulation, the candidate protein has hitherto remained poorly 

characterised and lacked a definitive role in ERBB2-dependent tumourigenicity. The functional 

characterisation of CPNE3 and identification of potential interaction partners or proteins that correlate 

with CPNE3 expression is therefore essential to unravel its role in tumourigenicity. 

 

The principal aims of this study were to validate previous findings related to the expression of CPNE3 

and cell adhesion-related proteins and to establish a functional role in cell adhesion for CPNE3 in the 

context of ERBB2 overexpression. Previous findings from gene expression profiling studies, including 

the downregulation of cell adhesion proteins ITGA6 and ITGB4 in response to ERBB2 overexpression 

were validated at the protein level in a HMLEC model cell system. CPNE3 was functionally 

characterised by evaluating the effect of siRNA (small interfering RNA)-mediated gene silencing on 

cellular adhesion and the spread of ERBB2 over-expressing HMLECs on an adherent surface. 

Further aims were to elucidate possible molecular networks involved in producing the observed 

siRNA-mediated phenotypes by global proteomic profiling of CPNE3 knockdown in an ERBB2 over-

expressing HMLEC (see Chapter 3). Proteins differentially regulated by siRNA-mediated knockdown 

of CPNE3 were identified using two bottom-up global protein expression profiling methods on two 
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separate mass spectrometry instrument platforms. To resolve the dissimilarity in the two datasets 

generated by the two methods, principal component analysis and k-means clustering were applied to 

extract an intrinsic dimension (id) of each data set that describes the proteins with the highest 

expression similarity to CPNE3. 

 

In this study, we further evaluated the expression pattern of the differentially regulated proteins 

identified using one of the global protein expression profiling methods (TMT-LC-MS/MS) by applying 

biostatistical approaches to retrospective LC-MS/MS data from two breast cancer patient cohorts to 

gain further insight into the possible molecular networks involved in producing the observed siRNA-

mediated phenotypes or alternative molecular functions of CPNE3 as a candidate in downstream 

signalling of ERBB2 positive breast. This approach coupled with logistic regression provided in silico 

validation of the ERBB2/Her2 subtype specificity of candidate biomarkers differentially regulated by 

CPNE3 expression. Bioinformatics analysis of data was used in an attempt to define the functional 

consequences of candidate gene silencing and to link changes with cellular phenotype or alternative 

molecular mechanisms. The phosphoproteomic enrichment of proteins with STRING interactions of 

high confidence (≥ 0.90) and specific to the ERBB2/Her2 subtype following biostatistical analysis was 

evaluated in an attempt to establish potential links between proteins differentially regulated by CPNE3 

and the ERBB signalling network. 

 

Despite extensive research efforts to establish the functional role of CPNE3 in several cancers, the 

full mechanistic role of CPNE3 in relation to ERBB2 over-expression and/or growth factor-dependent 

modulation remains ambiguous. The present study aimed to evaluate the effects of ERBB2 

amplification on CPNE3 expression and proteins differentially regulated by CPNE3 in early signal 

transduction events in a HMLEC model cell system and ERBB2/Her2 overexpressing patients (see 

Chapters 3 and 4). Downstream ERBB2 signalling targets differentially regulated by CPNE3 and their 

respective putative sites of phosphorylation were determined using phosphopeptide enrichment 

analysis of CPTAC LC-MS/MS data for ERBB2/Her2 overexpressing vs Her2-enriched patients. 

Finally, a binary classification model was used to evaluate the potential diagnostic potential of 

proteins determined to share a unique pairwise correlation with CPNE3 in ERBB2/Her2 patients. The 
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following section presents the major findings from the present study with a more detailed discussion 

provided within each chapter. 

5.2. Validating the role of CPNE3 in cell adhesion 

Previous expression profiling studies of a HMLEC model cell system and breast tumour tissues have 

identified the downregulation of cell adhesion-related proteins ITGA6 and ITGB4 in response to 

ERBB2 overexpression. In addition, CPNE3 knockdown in ERBB2 overexpressing breast tumour 

tissues was found to confer a slight reduction in cell adhesion. The present study aimed to validate 

the previous findings and to evaluate the effect of siRNA-mediated knockdown of CPNE3 on cellular 

adhesion and spread in ERBB2 over-expressing HMLECs (see Chapter 3). The present study verified 

previously observed differences in ITGA6 and ITGB4 expression between the model cell lines C3.6 

and HB4a. ITGA6 and ITGB4 were confirmed to be down-regulated in ERBB2 over-expressing clones 

relative to parental HMLECs. In contrast, the siRNA-mediated knockdown of ERBB2 in ERBB2 over-

expressing clones did not induce an up-regulation of ITGA6 and ITGB4 at the protein level. The 

present study did however confirm that the down-regulation of ITGA6 and ITGB4 also correlates with 

the overexpression of CPNE3 in ERBB2 over-expressing clones. However, like ERBB2, the siRNA-

mediated knockdown of CPNE3 in ERBB2 over-expressing clones did not induce an up-regulation of 

ITGA6 and ITGB4 at the protein level. While regulation of ITGA6 and ITGB4 expression isn’t apparent 

at the protein level following siRNA-mediated knockdown of CPNE3 and ERBB2, knockdown of these 

proteins may still elicit a long-term adaptive regulation of expression that cannot be reversed by acute 

knockdown of ERBB2 in the absence of growth factor-induced receptor triggering. Indeed, previous 

studies have shown that treatment with growth factors can induce a moderate increase in CPNE3 

expression in the HB4a cells, which do not overexpress ERBB2 (Bertani, 2005; Gharbi et al., 2002; 

White et al., 2004).  Further experimentation is therefore required to determine whether ERBB 

receptor triggering with growth factors would yield an upregulation of ITGA6 and ITGB4 following the 

siRNA-mediated knockdown of either CPNE3 or ERBB2. 

 

The present study also identified that ERBB2 over-expressing clones detach and adhere to an 

adherent surface more readily than parental HMLECs. This further supports the hypothesis that 
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ERBB2 signalling networks interact to modulate cell adhesion. In addition, the siRNA-mediated 

knockdown of CPNE3 and ERBB2 confers a slight shift in the rate of cell spread on an adherent 

surface from that of ERBB2 over-expressing clones towards one similar to parental HMLECs. 

Although not statistically significant, this highlights the subtlety of the mechanical dynamics involved 

and perhaps suggests that a more discernible and statistically significant difference could be achieved 

in response to ERBB receptor triggering with growth factors. The present data is therefore 

inconclusive and supports the need for a follow-up study with triggering of ERBB signalling networks 

by growth factor treatment to address this in the future. 

 

Prospective interaction partners with potential roles in producing the observed phenotype in a 

CPNE3-dependent manner were predicted by evaluating the effect of candidate knockdown on global 

protein expression of ERBB2 over-expressing clones using TMT LC-MS/MS and Label-Free LC-

MS/IMS/MS (see Chapter 3). The TMT LC-MS/MS proteomic profiling experiments identified a total of 

52 significantly up/ down-regulated (>1.5 fold) changes in protein expression. This included 28 

proteins that have previously been reported to have a causal relevance to breast cancer or the cell 

adhesion phenotype based on a Qiagen Ingenuity Pathway Analysis. The 52 proteins were compared 

to prior data generated through CPNE3 knockdown of ERBB2 over-expressing SKBR3 cells using 

SILAC-based LC-MS/MS to identify 2 proteins, ARGHDIB and KPNA2, differentially regulated by 

CPNE3 in a similar manner in both cell lines. The list of 52 significantly up/ down-regulated proteins 

was mostly enriched for Reactome pathways associated with DNA fragmentation and DNA-induced 

cell senescence, with p-value < 0.05 and FDR < 0.05. The Label-Free LC-MS/IMS/MS proteomic 

profiling experiments identified a total of 40 significantly up/ down-regulated (>1.5 fold) changes in 

protein expression. This included 17 proteins that have previously been reported to have a causal 

relevance to breast cancer or the cell adhesion phenotype based on a Qiagen Ingenuity Pathway 

Analysis. The 40 proteins were compared to prior data generated through CPNE3 knockdown of 

ERBB2 over-expressing SKBR3 cells using SILAC-based LC-MS/MS but identified no proteins 

differentially regulated by CPNE3 in a similar manner in both cell lines. The list of 40 significantly up/ 

down-regulated proteins was mostly enriched for Reactome pathways related to DNA replication. 

However, the results were not statistically significant FDR > 0.05. At first glance, the two datasets lack 
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any shared patterns in altered protein expression. However, Qiagen Ingenuity Pathway Analysis 

identified several proteins with a causal relevance to breast cancer and a known role in cell adhesion 

including the formation, turnover, size and quantity of focal adhesions. This suggests that CPNE3 

may play a role in regulating focal adhesions in ERBB2 over-expressing clones during cell adhesion. 

To reveal functional similarities between the two mass spectrometry datasets, we repeated our 

analysis using a cluster-based dimensionality reduction method to identify the intrinsic dimension of 

each dataset. The dimensionality reduction was intended to provide additional evidence of a 

relationship between CPNE3 and cell adhesion by extracting a minimal dataset of proteins with a 

close expression similarity to CPNE3 using K-means clustering and PCA. According to our results, 

the clusters generated by analysing the data from both mass spectrometry methods demonstrate 

reduced levels of ribonucleoprotein and ribonucleoprotein-associated proteins in response to CPNE3 

knockdown in HMLEC cells. This shared protein expression pattern is not apparent in the initial 

analysis and reveals functional similarities between the two datasets. Ribonucleoproteins are widely 

known to interact with nuclear actin in the nucleus where cytoskeletal components have been 

temporally implicated in gene expression (Percipalle et al., 2003). However, an association also 

occurs in a cell structure that exists only in the early stages of cell spreading known as a spreading 

initiation centre (SIC). SICs are ribonucleoprotein complexes that appear to be surrounded by an actin 

sheath, contain focal adhesion markers and play a role in the initiation of cell spreading (de Hoog et 

al., 2004). This suggests that CPNE3 expression may affect the formation of SICs through reduced 

expression of ribonucleoprotein and ribonucleoprotein-associated proteins, SNRPB, HNRNPU, 

HNRNPD, SNRPD3 and XRN2, revealed by the analysis of TMT-LC-MS/MS data and SYNCRIP, 

HNRNPU, HNRNPH1 and HNRNPR, revealed by Label Free-LC-MS/IMS/MS data.  

Upregulation of several ribonucleoproteins discovered by TMT-LC-MS/MS and Label Free-LC-

MS/IMS/MS is associated with an aggressive phenotype in BRCA patients. HNRNPD has been 

shown to be upregulated in BRCA tissues compared to normal tissues and is associated with high 

cancer stages (J. Zhou et al., 2021). HNRNPU and SYNCRIP have previously been shown to be 

upregulated in BRCA tissues compared to normal tissues and are also associated with high cancer 

stages (J. Zhou et al., 2021). HNRNPH1 is known to function as an oncogene in BRCA progression 
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and is known to result in the production of HER2 splice variants in BRCA (J. Zhou et al., 2021). 

HNRNPR is upregulated in invasive BRCA tissue and has a significant association with high cancer 

stages and lymph node metastases (J. Zhou et al., 2021) and depletion of SNRPD3 has been shown 

to inhibit the proliferation of TNBC cell lines (Koedoot et al., 2021). The aggressive phenotype 

associated with the upregulation of these ribonucleoproteins in BRCA tissues may be reversible 

through the knockdown of CPNE3. The subsequent reduction in ribonucleoprotein expression 

demonstrated by analysis of both data sets would in turn increase cell spreading by interfering with 

the formation of SICs (de Hoog et al., 2004). This is consistent with the lower duration of cell spread 

demonstrated by the CPNE3 knockdown of ERBB2 over-expressing clones compared to parental 

HMLECs during real-time cell adhesion assays. However, it must be noted that the real-time cell 

adhesion assay results had p-value > 0.05 according to a Welch’s unpaired t-test. With this 

background in mind, it is quite clear that these ribonucleoprotein and ribonucleoprotein-associated 

proteins play a role in disease progression and are good candidate biomarkers for HER2-positive 

breast cancer. 

5.3. Characterisation of CPNE3 mediated cell signalling 

The role of CPNE3-related signalling mechanisms in ERBB2-mediated transformation and breast 

tumour progression is currently poorly understood. The present study aimed to elucidate potential 

interaction partners of CPNE3, gain further insight into the possible molecular networks and identify 

putative sites of phosphorylation using data from two patient cohorts comprised of SILAC LC-MS/MS 

data and CPTAC LC-MS/MS data for ERBB2/Her2 overexpressing vs Her2-enriched patients (see 

Chapter 4). The present biostatistical analysis was run using the 52 proteins identified from the TMT 

LC-MS/MS global protein expression profiling to establish pairwise correlations on SILAC LC-MS/MS 

clinical data from a 40-patient discovery cohort. 10 proteins, ATP5B, BOLA2, CACYBP, CANX, 

EIF5A, HSPE1, LRPPRC, PRKCSH, RPL19 and SLC25A3 were found to have statistically significant 

(p-value < 0.05) and strong positive correlations with CPNE3 (r-value > 0.5) for the Her2 positive 

subgroup. Most of these proteins were also identified in a cluster containing 13 highly interconnected 

proteins, ATP5B, ATP5D, BOLA2, CACYBP, CANX, DLD, DHX15, EIF5A, LRPPRC, PRKCSH, 

RHOC, RPL19 and SLC25A3 identified by constructing a biological network with strong correlations 
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(r-value > 0.5) as edges or interconnecting lines in Cytoscape. This included 6 proteins, CANX, DLD, 

LRPPRC, PRKCSH, RHOC and RPL19 observed in all KEGG and Reactome pathways and 

confirmed to have STRING interactions of high confidence score (≥ 0.90). 3 proteins CANX, PRKCSH 

and RPL19 were found to be either singly or doubly phosphorylated with a total of 7 putative sites of 

phosphorylation identified for ERBB2/Her2 overexpressing vs Her2-enriched patient phosphosite 

enrichment data. Notably, amino acid residue S583 of CANX was found to be 2.63-fold singly 

phosphorylated and has been identified as a target site for the activity of in vitro and in vivo kinases, 

ERK1 and Cyclin-dependent kinase 1 (CDK1). The upstream role of ERK1 remains unconfirmed. 

However, the role of CDK1 has been shown by covalent capture of kinase-specific phosphopeptides 

to reveal Cdk1-cyclin B substrates (Blethrow et al., 2008). The interaction of ERBB2 with cyclin-

dependent kinase activity has been investigated using in vivo murine mammary tumour models to 

demonstrate that the function of cyclin D1 mediates transformation by ERBB2 (C. Yang et al., 2004). 

CANX which is a downstream target of CDK1 is upregulated 1.57-fold in ERBB2/Her2 overexpressing 

vs Her2-enriched tumours and 3.129-fold in response to CPNE3 knockdown.  

 

CANX is an endoplasmic reticulum chaperone that controls the flux of Ca2+ ions into mitochondria to 

either increase or decrease the energetic output of the oxidative phosphorylation (OXPHOS) pathway 

and thereby control the energy balance between OXPHOS and glycolysis in cells (Gutiérrez et al., 

2020). Studies into CDK1 and its role in mitochondrial OXPHOS have demonstrated that cyclin 

B1/Cdk1 proteins relocate to the matrix of mitochondria and elevate mitochondrial bioenergetics in 

G2/M transition (Z. Wang et al., 2014). These findings coupled with the downregulation of PYGM, 

glycogen phosphorylase and upregulation of CS, a TCA cycle enzyme suggest that the abrogation of 

CPNE3 expression increases the energetic output of OXPHOS and glycolysis. Albeit, suppressing 

glycogen metabolism via glycogenolysis. This is significant because breast cancer cells have been 

reported to undergo an increase in glycogen stores in response to hypoxia and are known to utilise 

these hypoxic glycogen stores via glycogen phosphorylases to promote metastatic phenotypes 

(Altemus et al., 2019). The present study, therefore, suggests that the knockdown of CPNE3 is a 

plausible method to reverse metastatic phenotypes in breast cancer under hypoxic or post-hypoxic 

conditions. 
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The present study confirmed the constitutive correlations of gene products previously identified by 

TMT LC-MS/MS global protein expression profiling following CPNE3 knockdown by secondary 

biostatistical analysis to establish pairwise correlations on a 75-patient validation cohort of CPTAC 

LC-MS/MS clinical data. 3 proteins, EIF5A, PYGM and HIST1H4A were found to have statistically 

significant (p-value < 0.05) and strong correlations with CPNE3 (r-value > 0.5) for the Her2 positive 

subgroup of the Her2-enriched subtype. 2 of these proteins were also identified in a cluster containing 

17 highly interconnected proteins, AHSG, APRT, ATP5B, ATP5D, CALML3, CANX, CS, DHX15, 

KPNA2, NTMT1, PRKCSH, PYGM, RPL19, RPL32, SLC25A3, SLC25A6 and SLC3A2 identified by 

constructing a biological network with strong correlations (r-value > 0.5) as edges or interconnecting 

lines in Cytoscape. This included 1 protein, PYGM observed in 3 KEGG pathways but lacked STRING 

interactions of high confidence score (≥ 0.90).  

 

The lack of any plausible proteins identified prompted an evaluation of the TNM stages of the CPTAC 

LC-MS/MS patient group. 7 proteins, ERBB2, CS, HIST1H1D, MDH2, PPP6R2, RHOC and SSBP1, 

were found to have statistically significant (p-value < 0.05) and very strong correlations with CPNE3 

(r-value > 0.9) for the Her2 positive Stage IIA subgroup of the Her2-enriched subtype. All were 

identified in a cluster containing 20 highly interconnected proteins, ATP5D, CANX, CS, EIF5A, 

ERRB2, ETFB, HIST1H1C, HIST1H1D, HIST1H1E, HIST1H4A, KPNA2, LRPPRC, MDH2, PPP6R2, 

RHOC, SLC25A3, SLC25A6, SLC3A2  SSBP1 and SSRP1 identified by constructing a biological 

network with strong correlations (r-value > 0.5) as edges or interconnecting lines in Cytoscape. This 

included 2 proteins, CS and MDH2, observed in several KEGG and Reactome pathways and 

confirmed to have STRING interactions of high confidence score (≥ 0.90). HER2 positive Stage IIB 

and IIIA subgroups of the Her2-enriched subtype had 2 proteins, CS and HIST1H4A, that 

demonstrated statistically significant (p-value < 0.05) and very strong correlations with CPNE3 (r-

value > 0.9). Both proteins were identified in a cluster containing 4 highly interconnected proteins, 

CPNE3, CS, HIST1H4 and LRPPRC, identified by constructing a biological network with strong 

correlations (r-value > 0.5) as edges or interconnecting lines in Cytoscape. This included 2 proteins, 

CS and HIST1H4A, observed in all KEGG and Reactome pathways and confirmed to have STRING 
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interactions of high confidence score (≥ 0.90). Taken together the present data found 1 protein 

HIST1H4A to be either singly or doubly phosphorylated with a total of 1 putative site of 

phosphorylation identified for ERBB2/Her2 overexpressing vs Her2-enriched patient phosphosite 

enrichment data. Amino acid residue S47 of HIST1H4A was found to be 3.87-fold singly 

phosphorylated and has been identified as a target site for the activity of in vitro and in vivo kinases.  

 

HIST1H4A is known to be phosphorylated on S47 in vivo and in vitro in a PAK2-dependent manner. 

Furthermore, PAK2 is able to phosphorylate single H4 or the H3-H4 tetramer but not nucleosomal H4. 

The phosphorylation of H4 at S47 has not been directly associated with transcription regulation. 

However, it is known to be preferentially enriched in H3.3-containing nucleosomes that are typically 

deposited into chromatin in a transcription-dependant manner and this demonstrates a novel 

mechanism by which a histone PTM can influence the incorporation of histone variants into chromatin 

resulting in the specialisation of chromatin domains (Kang et al., 2011). Notably, PAK2 does not 

localise to the nucleus upon stimulation of ERBB2/Her2 overexpressing cells (Arias-Romero et al., 

2013). A recent study that investigated E-cadherin mechanosignaling pathways has demonstrated 

that PAK2 is required for glucose uptake and reinforcement of the actin cytoskeleton. This increase in 

mechanosignaling stimulates glucose uptake into the cell which drives OXPHOS to generate ATP and 

provide enough energy to support the actin cytoskeletal rearrangements necessary to resist the 

forces applied to the cell (Campbell et al., 2019). Nevertheless, the present study can only link 

CPNE3 knockdown to an upregulation of H4 and a 3.87-fold higher rate of S47 phosphorylation in 

ERBB2/Her2 overexpressing cells. It remains unknown what the mechanistic implications of the H4 

upregulation in ERBB2/Her2 overexpressing cells could be. However, since S47 is a downstream 

target of PAK2, the mechanistic role might involve glucose uptake and actin remodelling. Therefore, 

linking CPNE3 expression to the regulation of several proteins such as CANX, CS and PYGM that are 

downstream effectors of OXPHOS, and HIST1H4A, a downstream target of OXPHOS implicated 

phosphosignalling.  
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5.4. Combining multiple biomarkers in logistic regression models 

Many potential prognostic and diagnostic biomarkers have been proposed to tackle the problem of 

early detection of cancer and prediction of patient outcomes. However, due to the heterogeneity of 

proteomic datasets generated by different platforms or laboratories, the biomarkers inferred from one 

single patient often lack reproducibility and the intersection of the inferences is small. This motivated 

us to evaluate the diagnostic potential of proteins identified as unique to the HER2-positive subtype 

and correlating to CPNE3 expression by statistical inference. We applied two logistic regression 

models characterised by 6 biomarker combinations on data from the two patient cohorts used for the 

biostatistical inference. The findings of this study suggest that some multiple biomarker combinations 

of CPNE3 and other proteins can perform with high sensitivity and specificity for the detection of 

HER2-positive breast cancer. This is particularly the case for the combination of CPNE3 and CS or 

CPNE3 and CACYBP.  This could be caused by the fact that CPNE3 and either one of these proteins 

has a central role in HER2-positive breast cancer progression. The main influence on the 

performance outcomes of these biomarker combinations that perform as well as ERBB2/Her2 

appears to favour proteins that were upregulated in response to CPNE3 knockdown in ERBB2 

overexpressing HMLECs (Chapter 3).  

A problem that was encountered was a class imbalance in the two datasets. For a binary 

classification model such as logistic regression, the class distribution will often reflect on the 

probabilities of certain predictions made by the model whether true positive, true negative, false 

positive or false negative. This in turn affects the sensitivity or true positive rate (TPR) and the 

specificity or true negative rate (TNR) which are calculated using the true positive, true negative, false 

positive and false negative values. This problem is greatly evident in the validation cohort which has n 

= 6 sample size for cases vs n = 69 for controls. Under such circumstances, a model that predicts all 

cases to be negative or controls, yields an accuracy of 92% and the classifier will tend to predict the 

majority class regardless of the variables or biomarkers used in a multinomial logistic regression. The 

high-performance scores observed for the CPNE3 and CS combination were right on the border of 

significance, as the observed accuracy values of 100% were high enough to demonstrate that the 
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classifier does not simply predict the majority class. This is further demonstrated by an acceptable 

Youden index and RMSE for the cross-validation. 

5.5. Future prospects 

The present study verified previously observed differences in cell adhesion-related gene expression in 

ERBB2 over-expressing HMLECs. Further studies should determine whether ERBB receptor 

triggering with growth factors would yield an upregulation of ITGA6 and ITGB4 following the siRNA-

mediated knockdown of either CPNE3 or ERBB2. Moreover, the detachment and adherence of 

ERBB2 over-expressing clones to an adherent surface should further be evaluated following ERBB 

triggering with growth factors and siRNA-mediated knockdown of CPNE3. Real-time cell adhesion 

assays offer a high degree of sensitivity and a distinct advantage over endpoint methods such as 

MTT assays, which is essential for an assay of this kind. The rate of cell adhesion and spread for 

each of the siRNA treatment conditions evaluated during this study could be determined at various 

concentrations of growth factor treatment using real-time cell adhesion assays. 

 

The present findings propose that CPNE3 expression regulates selected candidates with a role in 

glucose homeostasis in breast cancer and identified downstream interaction partners potentially 

involved in a mechanism of metabolic reprogramming in HER2-positive breast cancer. Future work 

should first validate the differential regulation of these potential downstream effectors by western 

blotting in the knockdown cell lysates. Correlations between potential interaction partners and CPNE3 

expression should be evaluated by immunoblotting in a panel of HMLEC and breast cancer cell lines. 

Work should next focus on the mechanisms of CPNE3 regulation in ERBB2 over-expressing breast 

cancer cell lines and how this can elicit a metabolic reprogramming phenotype. This would involve the 

use of specific signalling (e.g. PI3K and MAPK), proteasomal and translational inhibitors (e.g. CDK1), 

with an assessment of mRNA and protein changes by quantitative real-time polymerase chain 

reaction (qRT-PCR) and immunoblotting, respectively. Integrin α6β4 is known to amplify downstream 

pathways such as PI3K, AKT, MAPK, and the Rho family small GTPases by cooperating with growth 

factor receptors including EGFR, ERBB-2, and c-Met (Stewart & O’Connor, 2015). Since upregulation 
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of CPNE3 expression correlates with reduced expression of integrin α6β4 and upregulation of CANX 

(Chapter 3), this work would establish whether the siRNA-mediated knockdown of CPNE3 leads to 

amplified MAPK/ERK1 signalling particularly targeting CANX at S583 and a potential 

mechanosensing role involving integrin α6β4 amplification of MAPK/ERK1. The integrin chain α6 has 

already been shown to associate with the chaperone CANX prior to integrin assembly (Lenter & 

Vestweber, 1994) and CPNE3 expression could regulate or serve as a marker for integrin assembly, 

particularly at the SIC.  

5.6. Conclusions 

In conclusion, the work presented in this thesis validated previously observed differences in integrin 

α6β4 expression between a parental control HMLEC and its ERBB2 over-expressing derivatives and 

established that acute knockdown of ERBB2 or CPNE3 does not reverse this expression pattern. 

Initially, end point cell adhesion assays were used to evaluate differences in cell adhesion due to 

differences in the expression of ERBB2 or CPNE3 in HMLECs. However, the present findings go 

further to demonstrate that end point cell adhesion assays are inadequate to evaluate a dynamic 

multistage process such as passive in vitro cell adhesion and implements real time cell adhesion 

assays to assess cell adhesion and cell spreading on an adherent surface. The work presented also 

combines two mass spectrometry based targeted proteomics methods, tandem mass tagging (TMT) 

LC-MS/MS on a Thermo Orbitrap LTQ and label-free time of flight liquid chromatography- ion mobility 

tandem mass spectrometry (TOF/LC-MS/IMS/MS) on a Waters SYNAPT G2, to quantify changes in 

global protein expression due to siRNA mediated knockdown of CPNE3 in ERBB2/HER2 

overexpressing HMLECs. Furthermore, candidate biomarkers regulated by CPNE3 expression and 

likely participant in CPNE3 function were identified and their validity supported using statistical 

analysis of candidate biomarker expression in two breast cancer patient cohorts to select the most 

plausible candidates for functional enrichment analysis and phosphopeptide enrichment analysis.  

 

Taken together, real-time cell adhesion or spreading assays, mass spectrometry based proteomic 

workflows, statistical analysis, network construction, causal and functional enrichment analysis have 
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revealed an interesting link between CPNE3 expression and subsets of genes which play an 

important role in metabolism of breast cancer cells and are downstream effectors or targets of 

OXPHOS. Mass spectrometry based proteomic studies of ERBB2 overexpressing HMLECs, and 

breast tumour lines have already provided a wealth of information on the association between ERBB2 

overexpression, CPNE3 expression and genes related to cell adhesion. The results presented here 

provide more insight into the specific role of CPNE3 and link the previously known gene expression in 

ERBB2 overexpressing HMLECs and breast tumour lines to an adaptive mechanosensing related 

metabolic reprogramming and suggest a role for CPNE3 in glucose homeostasis of breast cancer. 
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Appendix Table 3.4.1. 52 proteins identified as up/down regulated in response to CPNE3 knockdown. The table shows a list of up/ down-regulated 
(>1.5 fold) proteins and their molecular functions. The identified proteins were filtered by selecting peptides with a score >20 and below the Mascot 
significance threshold filter of p = 0.05 were included and single peptide identifications required a score equal to or above the Mascot identity threshold 
(Sinclair & Timms, 2011). 25 proteins highlighted in yellow were commonly differentially expressed in response to CPNE3 knockdown in both C3.6 and 
SKBR3 cell lines. 

Protein name  Gene name  Function  
Average ratio (CPNE3kd vs. Ctrl 
(127+129+131)/(126+128+130) 

Histone H3.1  HIST1H3A  DNA binding, cadherin binding, histone binding, protein heterodimerization activity  4.842 
Histone H4  HIST1H4A  DNA binding, histone binding, protein heterodimerization activity, protein domain specific binding, RNA binding  4.074 
Prostaglandin E synthase  PTGES  glutathione binding, prostaglandin-E synthase activity  3.397 
Microsomal glutathione S-
transferase 1  

MGST1  glutathione binding, glutathione peroxidase activity, glutathione transferase activity, protein homodimerization activity  
3.140 

Calnexin  CANX  apolipoprotein binding, calcium ion binding, carbohydrate binding, glycoprotein binding, ionotropic glutamate receptor binding, RNA 
binding, unfolded protein binding  3.129 

ADP/ATP translocase 3  SLC25A6  adenine transmembrane transporter activity, ATP:ADP antiporter activity  2.995 
Citrate synthase, mitochondrial CS  citrate (si)- sythethase activity, RNA binding   2.478 
Thioredoxin-dependent peroxide 
reductase, mitochondrial  

PRDX3  cysteine-type endopeptidase inhibitor activity involved in apoptotic process, alkyl hydroperoxide reductase activity, protein kinase 
binding, thioredoxin peroxidase activity, identical protein binding  

2.443 

Phosphate carrier protein, 
mitochondrial  

SLC25A3  phosphate ion carrier activity, protein complex binding, symporter activity  
2.221 

Single-stranded DNA-binding 
protein, mitochondrial  

SSBP1   chromatin binding, RNA binding, single-stranded DNA binding  
1.992 

Voltage-dependent anion-selective 
channel protein 2  

VDAC2  nucleotide binding, porin activity, voltage-gated anion channel activity  
1.990 

Rho-related GTP-binding protein 
RhoC  

RHOC  GTPase activity, GTP binding, signal transduce activity  
1.973  

Dihydrolipoyl dehydrogenase, 
mitochondrial  

DLD  dihydrolipoyl dehydrogenase activity, flavin adenine dinucleotide binding, lipoamide binding, NAD binding 
1.967 

Leucine-rich PPR motif-containing 
protein, mitochondrial  

LRPPRC  beta-tubulin binding, endonuclease activity, microtubule binding, RNA binding, single-stranded DNA binding, ubiquitin protein ligase 
binding  

1.960 

60 kDa heat shock protein, 
mitochondrial  

CACYBP  apolipoprotein binding, ATPase activity, ATP binding, chaperone binding, DNA replication origin binding, double stranded RNA binding, 
unfolded protein binding, protease binding   

1.892 

10 kDa heat shock protein, 
mitochondrial  

HSPE1  ATP binding, chaperone binding, metal ion binding, RNA binding, unfolded protein binding 
1.713 

4F2 cell-surface antigen heavy 
chain  

SLC3A2  cadherin binding, calcium: sodium antiporter activity, catalytic activity, double-stranded RNA binding, neutral amino acid transmembrane 
transport activity, RNA binding  

1.710 
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Ran-specific GTPase-activating 
protein  

RANBP1  cadherin binding, GDP-dissociation inhibitor activity, GTPase activator activity, Ran GTPase binding  
1.677 

ATP synthase subunit delta, 
mitochondrial  

ATP5D  ATPase activity, proton-transport ATP synthase activity, transmembrane transport activity, transport activity  
1.669 

Malate dehydrogenase, 
mitochondrial  

MDH2  L-malate dehydrogenase activity, malate dehydrogenase (NADP+) activity, protein self-association, RNA binding  
1.664 

Polyubiquitin-C  UBC  protease binding, RNA binding  1.650 
High mobility group protein HMG-
I/HMG-Y  

HMGA1  5'-deoxyribose-5-phosphate lyase activity, AT DNA binding, chromatin binding, DNA-(apurinic or apyrimidinic site) lyase activity, DNA 
binding, enhancer sequence-specific DNA binding, enzyme binding, transcription factor binding  

1.638 

Calmodulin-like protein 3  CALML3  calcium ion binding 1.630 
Alkaline phosphatase, placental 
type  

ALPP alkaline phosphatase activity, magnesium ion binding, zinc ion binding  
1.607 

Histone H1.5  HIST1H1B  chromatin binding, histone deacetylase binding, RNA binding 1.599 
Electron transfer flavoprotein 
subunit beta  

ETFB  electron carrier activity 
1.596 

Catenin beta-1  CTNNB1 alpha-catenin binding, androgen receptor binding, cadherin binding, chromatin binding, estrogen receptor binding, ion channel binding, 
nuclear hormone receptor binging, protein kinase binding, protein phosphokinase binding, I-SMAD binding, RNA polymerase II activating 
transcription factor binding, signal transducer activity, SMAD binding, transcription factor binding. 1.586 

Histone H1.1  HIST1H1A  chromatin DNA binding, heparin binding  
1.583 

Histone H1.4  HIST1H1E  ADP binding, AMP binding, ATP binding, calcium ion binding, chromatin DNA binding, dATP binding, double-stranded DNA binding, GTP 
binding, RNA binding  1.567 

Histone H1.3  HIST1H1D  chromatin DNA binding, RNA binding 1.567 
Histone H1.2  HIST1H1C chromatin DNA binding, RNA binding 1.567 
Protein S100-A10  S100A10  calcium ion binding, ion channel binding, protein homodimerization activity 1.552 
Protein timeless homolog  TIMELESS  protein heterodimerization activity, protein homodimerization activity 1.550 
Eukaryotic translation initiation 
factor 5A-1  

EIF5A  protein N-terminus binding, ribosome binding, RNA binding, translation elongation factor activity, U6 snRNA binding  
1.540 

ATP synthase subunit beta, 
mitochondrial  

ATP5B  angiostatin binding, ATP binding, MHC class I protein binding, proton-transporting ATPase activity, proton-transport ATP synthase 
activity, transmembrane transporter activity, transporter activity 

1.540 

Rho GDP-dissociation inhibitor 2  ARHGDIB  GTPase activator activity, GTPase activity, Rac GTPase binding, Rho GDP-dissociation inhibitor activity  1.539 
BolA-like protein 2  BOLA2  Acts as a cytosolic iron-sulfur (Fe-S) cluster assembly factor that facilitates [2Fe-2S] cluster insertion into a subset of cytosolic proteins 1.538 
Glucosidase 2 subunit beta  PRKCSH  calcium ion binding, ion channel binding, phosphoprotein binding, protein kinase C binding  1.510 
Glycogen phosphorylase, muscle 
form  

PYGM  glycogen phosphorylase activity, nucleotide binding, pyridoxal phosphate binding  
0.661 

Lysine--tRNA ligase  KARS  amino acid binding, ATP binding, lysine-tRNA ligase activity, metal ion binding, tRNA binding  0.650 
60S ribosomal protein L32 RPL32  RNA binding, structural constituent of ribosome  0.640 
N-terminal Xaa-Pro-Lys N-
methyltransferase 1 

NTMT1  histone methyltransferase activity, N-terminal protein N-methyltransferase activity, protein methyltransferase activity 
0.630 

60S ribosomal protein L19  RPL19  5.8S rRNA binding, large ribosomal subunit rRNA binding, RNA binding, structural constituent of ribosome 0.618 
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Serine/threonine-protein 
phosphatase 6 regulatory subunit 2  

PPP6R2  regulatory subunit of protein phosphatase 6 (PP6) 

0.618 

Zinc finger protein 28 homolog  ZFP28  DNA binding, metal ion binding, transcription factor activity, sequence-specific DNA binding 0.598 
Putative pre-mRNA-splicing factor 
ATP-dependent RNA helicase 
DHX15  

DHX15  ATP binding, ATP-dependent RNA helicase activity, double-stranded RNA binding, RNA binding, RNA helicase activity 
0.593 

Copine-3  CPNE3  calcium-dependent phospholipid binding, calcium-dependent protein binding, protein serine/threonine kinase activity, receptor tyrosine 
kinase binding, RNA binding, transporter activity 

0.588 

Importin subunit alpha-1  KPNA2 histone deacetylase binding, nuclear localization sequence binding, protein transporter activity, RNA binding 0.550 
Alpha-2-HS-glycoprotein  AHSG   cysteine-type endopeptidase inhibitor activity, endopeptidase inhibitor activity, kinase inhibitor activity 0.543 
Adenine 
phosphoribosyltransferase  

APRT adenine binding, adenine phosphoribosyltransferase activity, AMP binding  
0.543 

Patatin-like phospholipase domain-
containing protein 7  

PNPLA7 lysophospholipase activity 
0.488 

FACT complex subunit SSRP1  SSRP1 chromatin binding, DNA binding, RNA binding  0.467 
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Appendix Table 3.4.6. 40 proteins identified as up/down regulated in response to CPNE3 knockdown. The table shows a list of up/ down-regulated 
(>1.5-fold) proteins and their molecular functions.  

 

Protein name Gene name Function Expr Fold Change 

Ribosomal protein S21  RPS21  protein N-terminus binding, RNA binding, structural constituent of ribosome 1.723 

Ribosomal protein S15 RPS15  DNA binding, MDM2/MDM4 family protein binding, RNA binding, structural constituent of ribosome, ubiquitin ligase 
inhibitor activity 

0.664 

Actin related protein 2 ACTR2  actin binding, ATP binding, structural constituent of cytoskeleton 0.664 

Archain 1 ARCN1  RNA binding 0.661 

Dihydropyrimidinase like 2 DPYSL2  dihydropyrimidinase activity, identical protein binding, microtubule binding 0.659 

Hypoxia up-regulated 1 HYOU1  ATPase activity, ATP binding, chaperone binding, unfolded protein binding 0.651 

FKBP prolyl isomerase 1A FKBP1A  activin binding, FK506 binding, ion channel binding, macrolide binding, peptidyl-prolyl cis-trans isomerase activity, 
SMAD binding, transforming growth factor beta receptor binding, type I transforming growth factor beta receptor 
binding 

0.650 

Prolyl endopeptidase PREP  endopeptidase activity, oligopeptidase activity, serine-type endopeptidase activity, serine-type peptidase activity 0.638 

Proteasome 20S subunit alpha 4 PSMA4  endopeptidase activity, threonine-type endopeptidase activity 0.634 

Minichromosome maintenance complex component 3 MCM3 ATP binding, DNA binding, DNA helicase activity, DNA replication origin binding, hydrolase activity, single-stranded 
DNA binding 

0.634 

Sorting nexin 6 SNX6  dynactin binding, phosphatidylinositol binding, protein homodimerization activity 0.633 

Tyrosyl-tRNA synthetase 1 YARS1  ATP binding, interleukin-8 receptor binding, RNA binding, tRNA binding, tyrosine-tRNA ligase activity 0.621 

Sosondowah ankyrin repeat domain family member A SOWAHA  n/a 0.616 

Lactate dehydrogenase B LDHB identical protein binding, L-lactate dehydrogenase activity 0.613 

Chloride nucleotide-sensitive channel 1A CLNS1A RNA binding 0.611 

Staphylococcal nuclease and tudor domain containing 1 SND1 cadherin binding, endonuclease activity, endoribonuclease activity, nuclease activity, RISC complex binding, RNA 
binding, transcription coregulator activity 

0.611 

EH domain containing 1 EHD1  ATP binding, cadherin binding, calcium ion binding, GTP binding, identical protein binding, small GTPase binding 0.607 

Non-POU domain containing octamer binding NONO chromatin binding, identical protein binding, nucleic acid binding, RNA binding, transcription regulatory region 
sequence-specific DNA binding 

0.607 

Far upstream element binding protein 3 FUBP3 mRNA binding, RNA binding, single-stranded DNA binding 0.604 

Arrestin domain containing 3 ARRDC3 beta-3 adrenergic receptor binding 0.603 
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Ornithine aminotransferase OAT identical protein binding, ornithine(lysine) transaminase activity, ornithine-oxo-acid transaminase activity, pyridoxal 
phosphate binding 

0.600 

N-acetylated alpha-linked acidic dipeptidase 2 NAALAD2 carboxypeptidase activity, dipeptidase activity, dipeptidyl-peptidase activity, metal ion binding, 
metallocarboxypeptidase activity, serine-type peptidase activity 

0.599 

X-ray repair cross complementing 5 XRCC5 ATPase activity, acting on DNA, ATP binding, damaged DNA binding, DNA binding,  DNA end binding, DNA helicase 
activity, double-stranded DNA binding, enzyme activator activity, protein-containing complex binding, protein C-
terminus binding, RNA binding, telomeric DNA binding, transcription regulatory region sequence-specific DNA binding, 
U3 snoRNA binding, ubiquitin protein ligase binding 

0.580 

Dynein cytoplasmic 1 light intermediate chain 2 DYNC1LI2 ATP binding, dynein heavy chain binding, identical protein binding 0.580 

Proteasome 20S subunit beta 6 PSMB6 cadherin binding, endopeptidase activity, threonine-type endopeptidase activity 0.576 

Creatine kinase, mitochondrial 1B CKMT1A ATP binding, creatine kinase activity, kinase activity 0.571 

Phosphofructokinase, muscle PFKM 6-phosphofructokinase activity, AMP binding, ATP binding, fructose-6-phosphate binding, fructose binding, identical 
protein binding, kinase binding, metal ion binding, monosaccharide binding, protein C-terminus binding 

0.564 

Dolichyl-diphosphooligosaccharide--protein 
glycosyltransferase non-catalytic subunit 

DDOST enzyme activator activity 0.558 

Serpin family A member 2 (gene/pseudogene) SERPINA2 serine-type endopeptidase inhibitor activity 0.557 

RAB39B, member RAS oncogene family RAB39B GTPase activity, GTP binding, myosin V binding 0.557 

Hydroxyacyl-CoA dehydrogenase trifunctional 
multienzyme complex subunit beta 

HADHB 3-hydroxyacyl-CoA dehydrogenase activity, acetyl-CoA C-acyltransferase activity, acetyl-CoA C-myristoyltransferase 
activity, enoyl-CoA hydratase activity, RNA binding 

0.556 

Replication protein A3 RPA3 damaged DNA binding, single-stranded DNA binding 0.540 

Ubiquinol-cytochrome c reductase core protein 2 UQCRC2 metal ion binding, protein-containing complex binding 0.537 

Dpy-30 histone methyltransferase complex regulatory 
subunit 

DPY30 identical protein binding, protein homodimerization activity 0.535 

Polypyrimidine tract binding protein 1 PTBP1 mRNA binding, poly-pyrimidine tract binding, pre-mRNA binding, RNA binding 0.535 

Cullin associated and neddylation dissociated 1 CAND1 TBP-class protein binding 0.534 

Phosphoribosyl pyrophosphate synthetase 1 PRPS1 ATP binding, identical protein binding, kinase activity, magnesium ion binding, protein homodimerization activity, 
ribose phosphate diphosphokinase activity 

0.478 

Ubiquitin C-terminal hydrolase L3 UCHL3 peptidase activity, thiol-dependent deubiquitinase, ubiquitin binding 0.437 

Actinin alpha 2 ACTN2 actin filament binding, calcium ion binding, cytoskeletal protein binding, FATZ binding, identical protein binding, 
integrin binding, ion channel binding, LIM domain binding, nuclear receptor coactivator activity, phosphatidylinositol-
4,5-bisphosphate binding,  protein domain specific binding,  structural constituent of muscle, titin binding, titin Z 
domain binding 

0.421 

Copine 3 CPNE3 calcium-dependent phospholipid binding, calcium-dependent protein binding, metal ion binding, protein 
serine/threonine kinase activity, receptor tyrosine kinase binding, RNA binding 

0.319 
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Appendix Table 3.5.1. 52 proteins identified by PCA and K-means clustering of TMT LC-MS/MS data. The table shows a list of proteins with a high 
expression similarity score to CPNE3 in cluster 4 and their molecular functions. 

 

Protein name Gene name Function Expr Fold Change 

Glutamine--tRNA ligase QARS ATP binding; glutamate-tRNA ligase activity; GTPase binding; identical protein binding; proline-tRNA ligase activity; protein 
homodimerization activity; RNA stem-loop binding; zinc ion binding 

0.813 

Podocan PODN collagen binding 0.778 

Splicing factor, proline- and 
glutamine-rich 

SFPQ chromatin binding; DNA binding; histone deacetylase binding; protein homodimerization activity; RNA binding; transcription cis-
regulatory region binding 

0.774 

Mitogen-activated protein 
kinase kinase kinase kinase 4 

MAP4K4 ATP binding; creatine kinase activity; microtubule binding; protein serine/threonine/tyrosine kinase activity; protein serine/threonine 
kinase activity; protein serine kinase activity 

0.762 

Macrophage migration 
inhibitory factor 

MIF chemoattractant activity; cytokine activity; cytokine receptor binding; dopachrome isomerase activity; identical protein binding; 
phenylpyruvate tautomerase activity; protease binding 

0.758 

AP-1 complex subunit beta-1 AP1B1 clathrin binding; protein kinase binding 0.758 

Eukaryotic initiation factor 
4A-III 

EIF4A3 ATP binding; ATP hydrolysis activity; mRNA binding; poly(A) binding; ribonucleoprotein complex binding; RNA binding; RNA helicase 
activity; RNA stem-loop binding; selenocysteine insertion sequence binding; translation regulator activity 

0.757 

Eukaryotic translation 
initiation factor 4H 

EIF4H cadherin binding; ribosomal small subunit binding; RNA binding; RNA strand annealing activity; RNA strand-exchange activity; 
translation factor activity, RNA binding; translation initiation factor activity 

0.757 

Putative ribosomal RNA 
methyltransferase NOP2 

NOP2 RNA binding; rRNA (cytosine-C5-)-methyltransferase activity 0.756 

DNA-directed RNA 
polymerase II subunit RPB2 

POLR2B chromatin binding; DNA binding; DNA-directed 5'-3' RNA polymerase activity; metal ion binding; ribonucleoside binding; RNA binding 0.754 

Clathrin light chain A CLTA clathrin heavy chain binding; GTPase binding; peptide binding; protein-containing complex binding; structural molecule activity 0.754 

Splicing factor 3B subunit 2 SF3B2 RNA binding 0.751 

60S ribosomal protein L7 RPL7 DNA binding; identical protein binding; mRNA binding; RNA binding; structural constituent of ribosome 0.748 

60S ribosomal protein L6 RPL6 cadherin binding; DNA binding; RNA binding; structural constituent of ribosome 0.746 

Threonine--tRNA ligase, 
cytoplasmic 

TARS ATP binding; identical protein binding; threonine-tRNA ligase activity; tRNA binding; zinc ion binding 0.741 

Glucose-6-phosphate 1-
dehydrogenase 

G6PD glucose-6-phosphate dehydrogenase activity; glucose binding; identical protein binding; NADP binding; protein homodimerization 
activity 

0.735 

60S ribosomal protein L27 RPL27 RNA binding; structural constituent of ribosome 0.732 
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Histidine triad nucleotide-
binding protein 1 

HINT1 adenosine 5'-monophosphoramidase activity; hydrolase activity; nucleotide binding; protein kinase C binding; SUMO-specific 
isopeptidase activity 

0.731 

DNA replication licensing 
factor MCM7 

MCM7 ATP binding; ATP hydrolysis activity; DNA helicase activity; single-stranded DNA binding 0.729 

Small nuclear 
ribonucleoprotein-
associated proteins B and B' 

SNRPB histone pre-mRNA DCP binding; RNA binding; telomerase RNA binding; U1 snRNP binding; U2 snRNP binding 0.722 

Serine/arginine-rich splicing 
factor 3 

SRSF3 phospholipase binding; RNA binding 0.719 

Histidine--tRNA ligase, 
cytoplasmic 

HARS ATP binding; histidine-tRNA ligase activity; identical protein binding; protein homodimerization activity 0.719 

Heterogeneous nuclear 
ribonucleoprotein U 

HNRNPU actin binding; ATP binding; chromatin binding; chromatin DNA binding; DNA binding; double-stranded DNA binding; double-stranded 
RNA binding; identical protein binding; mRNA 3'-UTR binding; poly(A) binding; poly(C) RNA binding; poly(G) binding; pre-mRNA binding; 
promoter-specific chromatin binding; protein-containing complex binding; ribonucleoprotein complex binding; RNA binding; RNA 
polymerase II cis-regulatory region sequence-specific DNA binding; RNA polymerase II complex binding; RNA polymerase II C-terminal 
domain binding; sequence-specific double-stranded DNA binding; single-stranded DNA binding; single-stranded RNA binding; snRNA 
binding; telomerase RNA binding; TFIIH-class transcription factor complex binding; transcription corepressor activity 

0.703 

Heterogeneous nuclear 
ribonucleoprotein D0 

HNRNPD chromatin binding; histone deacetylase binding; minor groove of adenine-thymine-rich DNA binding; mRNA 3'-UTR AU-rich region 
binding; RNA binding; telomeric DNA binding 

0.698 

Small nuclear 
ribonucleoprotein Sm D3 

SNRPD3 enzyme binding; histone pre-mRNA DCP binding; RNA binding; telomerase RNA binding; U7 snRNA binding 0.692 

Serine/threonine-protein 
phosphatase 2A activator 

PPP2R4 ATP binding; peptidyl-prolyl cis-trans isomerase activity; protein homodimerization activity; protein phosphatase 2A binding; protein 
phosphatase regulator activity; protein tyrosine phosphatase activator activity; signaling receptor binding 

0.692 

SUMO-activating enzyme 
subunit 2 

UBA2 ATP binding; magnesium ion binding; protein heterodimerization activity; small protein activating enzyme binding; SUMO activating 
enzyme activity; SUMO binding; transferase activity; ubiquitin-like protein conjugating enzyme binding 

0.691 

Gem-associated protein 4 GEMIN4 ribonucleoprotein complex binding 0.688 

Vacuolar protein sorting-
associated protein 26A 

VPS26A unknown 0.688 

60S ribosomal protein L28 RPL28 RNA binding; structural constituent of ribosome 0.685 

DNA replication licensing 
factor MCM3 

MCM3 ATP binding; ATP hydrolysis activity; DNA binding; DNA helicase activity; single-stranded DNA binding 0.684 

Xaa-Pro dipeptidase PEPD manganese ion binding; metalloaminopeptidase activity; metallocarboxypeptidase activity; peptidase activity; proline dipeptidase 
activity 

0.681 

Serpin H1 SERPINH1 collagen binding; RNA binding; serine-type endopeptidase inhibitor activity; unfolded protein binding 0.677 

Eukaryotic translation 
initiation factor 4 gamma 1 

EIF4G1 ATP binding; eukaryotic initiation factor 4E binding; identical protein binding; molecular adaptor activity; mRNA binding; RNA binding; 
translation factor activity, RNA binding; translation initiation factor activity; translation initiation factor binding 

0.674 

UMP-CMP kinase CMPK1 ATP binding; CMP kinase activity; cytidylate kinase activity; dCMP kinase activity; nucleoside diphosphate kinase activity; nucleoside 
monophosphate kinase activity; UMP kinase activity; uridine kinase activity 

0.670 
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Glycogen phosphorylase, 
muscle form 

PYGM glycogen phosphorylase activity; linear malto-oligosaccharide phosphorylase activity; nucleotide binding; pyridoxal phosphate binding; 
SHG alpha-glucan phosphorylase activity 

0.661 

Lysine--tRNA ligase KARS amino acid binding; ATP adenylyltransferase activity; ATP binding; identical protein binding; lysine-tRNA ligase activity; protein 
homodimerization activity; tRNA binding 

0.650 

60S ribosomal protein L32 RPL32 RNA binding; structural constituent of ribosome 0.640 

Ubiquitin carboxyl-terminal 
hydrolase 5 

USP5 cysteine-type endopeptidase activity; thiol-dependent deubiquitinase; ubiquitin binding; zinc ion binding 0.633 

N-terminal Xaa-Pro-Lys N-
methyltransferase 1 

NTMT1 histone methyltransferase activity; methyltransferase activity; N-terminal protein N-methyltransferase activity; protein 
methyltransferase activity 

0.630 

Chromatin assembly factor 1 
subunit A 

CHAF1A 
chromatin binding; chromo shadow domain binding; identical protein binding; unfolded protein binding 

0.614 

U6 snRNA-associated Sm-
like protein LSm5 

LSM5 
protein heterodimerization activity; RNA binding 

0.601 

Argininosuccinate synthase ASS1 
amino acid binding; argininosuccinate synthase activity; ATP binding; identical protein binding; RNA binding; toxic substance binding 

0.595 

Putative pre-mRNA-splicing 
factor ATP-dependent RNA 
helicase DHX15 

DHX15 

ATP binding; ATP hydrolysis activity; double-stranded RNA binding; RNA binding; RNA helicase activity 

0.593 

Copine-3 CPNE3 calcium-dependent phospholipid binding; calcium-dependent protein binding; metal ion binding; protein serine/threonine kinase 
activity; receptor tyrosine kinase binding; RNA binding 

0.588 

Olfactory receptor 11A1 OR11A1 
G protein-coupled receptor activity; olfactory receptor activity 

0.57 

Importin subunit alpha-1 KPNA2 histone deacetylase binding; nuclear import signal receptor activity; nuclear localization sequence binding; RNA binding 0.55 

Alpha-2-HS-glycoprotein AHSG 
cysteine-type endopeptidase inhibitor activity; endopeptidase inhibitor activity; kinase inhibitor activity 

0.543 

Adenine 
phosphoribosyltransferase 

APRT 
adenine binding; adenine phosphoribosyltransferase activity; AMP binding 

0.543 

5'-3' exoribonuclease 2 XRN2 
3'-5'-exoribonuclease activity; 5'-3' exonuclease activity; 5'-3' exoribonuclease activity; identical protein binding; metal ion binding; 
nuclease activity; RNA binding; transcription termination site sequence-specific DNA binding 

0.531 

FACT complex subunit SSRP1 SSRP1 
DNA binding; histone binding; nucleosome binding; RNA binding 

0.467 

Eukaryotic translation 
initiation factor 3 subunit F 

EIF3F 
identical protein binding; isopeptidase activity; metal-dependent deubiquitinase activity; thiol-dependent deubiquitinase; translation 
initiation factor activity; translation initiation factor binding 

0.451 
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Appendix Table 3.5.4. 44 proteins identified by PCA and K-means clustering of Label Free LC-MS/MS data. The table shows a list of proteins with a 
high expression similarity score to CPNE3 in cluster 1 and their molecular functions. 

 

Protein name Gene name Function Expr Fold Change 

Copine-3 CPNE3 calcium-dependent phospholipid binding; calcium-dependent protein binding; metal ion binding; protein serine/threonine kinase 
activity; receptor tyrosine kinase binding; RNA binding 

0.319 

Alpha-actinin-2 ACTN2 actin filament binding; calcium ion binding; cytoskeletal protein binding; FATZ binding; identical protein binding; integrin binding; 
LIM domain binding; nuclear receptor coactivator activity; phosphatidylinositol-4,5-bisphosphate binding; protein domain 
specific binding; structural constituent of muscle; titin binding; titin Z domain binding; transmembrane transporter binding 

0.421 

26S proteasome regulatory subunit 
10B 

PSMC6 ATP binding; ATP hydrolysis activity; identical protein binding; proteasome-activating activity; protein-macromolecule adaptor 
activity 

0.266 

Ubiquitin carboxyl-terminal 
hydrolase isozyme L3 

UCHL3 NEDD8-specific protease activity; peptidase activity; thiol-dependent deubiquitinase; ubiquitin binding 0.437 

ATP-dependent RNA helicase A DHX9 3'-5' DNA/RNA helicase activity; 3'-5' DNA helicase activity; 3'-5' RNA helicase activity; ATP binding; ATP hydrolysis activity; 
chromatin DNA binding; DNA binding; DNA helicase activity; DNA replication origin binding; double-stranded DNA binding; 
double-stranded RNA binding; importin-alpha family protein binding; metal ion binding; mRNA binding; nucleoside-
triphosphatase activity; nucleoside-triphosphate diphosphatase activity; polysome binding; promoter-specific chromatin binding; 
regulatory region RNA binding; RISC complex binding; RNA binding; RNA helicase activity; RNA polymerase binding; RNA 
polymerase II cis-regulatory region sequence-specific DNA binding; RNA polymerase II complex binding; RNA polymerase II-
specific DNA-binding transcription factor binding; RNA stem-loop binding; sequence-specific mRNA binding; single-stranded 3'-5' 
DNA helicase activity; single-stranded DNA binding; single-stranded RNA binding; siRNA binding; transcription coactivator activity; 
transcription coregulator activity; triplex DNA binding 

0.438 

Heterogeneous nuclear 
ribonucleoprotein Q 

SYNCRIP mRNA 5'-UTR binding; mRNA binding; RNA binding 0.543 

Catenin alpha-1 CTNNA1 actin filament binding; beta-catenin binding; cadherin binding; gamma-catenin binding; identical protein binding; RNA binding; 
structural molecule activity; vinculin binding 

0.387 

Putative heat shock protein HSP 90-
alpha A5 

HSP90AA5P ATP binding; ATP hydrolysis activity; unfolded protein binding 0.518 

Keratin_ type I cytoskeletal 16 KRT16 structural constituent of cytoskeleton 0.396 

Eukaryotic translation initiation 
factor 2 subunit 1 

EIF2S1 ribosome binding; RNA binding; translation initiation factor activity 0.362 

Heterogeneous nuclear 
ribonucleoprotein U 

HNRNPU actin binding; ATP binding; chromatin binding; chromatin DNA binding; DNA binding; double-stranded DNA binding; double-
stranded RNA binding; identical protein binding; mRNA 3'-UTR binding; poly(A) binding; poly(C) RNA binding; poly(G) binding; 
pre-mRNA binding; promoter-specific chromatin binding; protein-containing complex binding; ribonucleoprotein complex 
binding; RNA binding; RNA polymerase II cis-regulatory region sequence-specific DNA binding; RNA polymerase II complex 
binding; RNA polymerase II C-terminal domain binding; sequence-specific double-stranded DNA binding; single-stranded DNA 
binding; single-stranded RNA binding; snRNA binding; telomerase RNA binding; TFIIH-class transcription factor complex binding; 
transcription corepressor activity 

0.483 

Protein Niban 2 NIBAN2 cadherin binding; transcription coactivator activity 0.350 

Elongation factor 2 EEF2 cadherin binding; GTPase activity; GTP binding; protein kinase binding; ribosome binding; RNA binding; translation elongation 
factor activity 

0.437 
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Anterior gradient protein 3 AGR3 dystroglycan binding 0.515 

NEDD8 NEDD8 protein tag; ubiquitin protein ligase binding 0.903 

Methionine aminopeptidase 2 METAP2 aminopeptidase activity; metal ion binding; metalloaminopeptidase activity; metalloexopeptidase activity; RNA binding 0.576 

A-kinase anchor protein 12 AKAP12 adenylate cyclase binding; calmodulin binding; protein kinase A binding 0.554 

Heterogeneous nuclear 
ribonucleoprotein H 

HNRNPH1 identical protein binding; poly(U) RNA binding; RNA binding 0.480 

RNA-binding protein 3 RBM3 ribosomal large subunit binding; RNA binding 0.422 

RE1-silencing transcription factor REST chromatin binding; DNA-binding transcription factor activity; DNA-binding transcription repressor activity, RNA polymerase II-
specific; identical protein binding; metal ion binding; RNA polymerase II cis-regulatory region sequence-specific DNA binding; RNA 
polymerase II core promoter sequence-specific DNA binding; RNA polymerase II-specific DNA-binding transcription factor 
binding; transcription cis-regulatory region binding 

0.343 

Putative UPF0607 protein 
ENSP00000383783 

3 SV unknown 0.432 

Inter-alpha-trypsin inhibitor heavy 
chain H2 

ITIH2 endopeptidase inhibitor activity; hyaluronic acid binding; serine-type endopeptidase inhibitor activity 0.507 

Formin-1 FMN1 actin binding; microtubule binding; SH3 domain binding 0.470 

Adenylate kinase 2_ mitochondrial AK2 adenylate kinase activity; ATP binding 0.482 

Putative protein FAM10A4 ST13P4 heat shock protein binding; protein dimerization activity 0.438 

Armadillo repeat-containing 
protein 8 

ARMC8 proteasomal degradation of the transcription factor HBP1 0.549 

Platelet-activating factor 
acetylhydrolase IB subunit alpha2 

PAFAH1B2 1-alkyl-2-acetylglycerophosphocholine esterase activity; platelet-activating factor acetyltransferase activity; protein-containing 
complex binding; protein heterodimerization activity; protein homodimerization activity 

0.524 

Acetyl-CoA acetyltransferase_ 
mitochondrial 

ACAT1 acetyl-CoA C-acetyltransferase activity; C-acetyltransferase activity; coenzyme A binding; enzyme binding; identical protein 
binding; potassium ion binding 

0.555 

Glycine N-acyltransferase-like 
protein 3 

GLYATL3 glycine N-acyltransferase activity; N-acyltransferase activity 0.553 

Ankyrin repeat and SOCS box 
protein 2 

ASB2 cullin family protein binding 0.577 

Dihydrolipoyl dehydrogenase_ 
mitochondrial 

DLD dihydrolipoyl dehydrogenase activity; flavin adenine dinucleotide binding 0.578 

Protein Atg16l2 ATG16L2 may play a role in regulating epithelial homeostasis in an ATG16L1-dependent manner. 0.567 

S-methyl-5'-thioadenosine 
phosphorylase 

MTAP 1,4-alpha-oligoglucan phosphorylase activity; S-methyl-5-thioadenosine phosphorylase activity 0.524 

Interleukin-18 IL18 cytokine activity; interleukin-18 receptor binding 0.641 

Endoplasmic reticulum resident 
protein 44 

ERP44 protein disulfide isomerase activity 0.638 

DnaJ homolog subfamily A member 
2 

DNAJA2 ATPase activator activity; ATP binding; chaperone binding; Hsp70 protein binding; metal ion binding; unfolded protein binding 0.591 
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Jupiter microtubule associated 
homolog 1 

JPT1 plays a role in the regulation of cell cycle and cell adhesion 0.647 

Protein-L-isoaspartate(D-aspartate) 
O-methyltransferase 

PCMT1 cadherin binding; protein-L-isoaspartate (D-aspartate) O-methyltransferase activity 0.624 

Cadherin-5 CDH5 beta-catenin binding; BMP receptor binding; cadherin binding; calcium ion binding; fibrinogen binding; protein phosphatase 
binding; protein tyrosine kinase binding; signaling receptor binding; transmembrane transporter binding; vascular endothelial 
growth factor receptor 2 binding 

0.609 

Heterogeneous nuclear 
ribonucleoprotein R 

HNRNPR mRNA binding; RNA binding 0.631 

Thioredoxin-like protein 1 TXNL1 disulfide oxidoreductase activity 0.620 

Ubiquitin carboxyl-terminal 
hydrolase 13 

USP13 BAT3 complex binding; chaperone binding; cysteine-type endopeptidase activity; Lys48-specific deubiquitinase activity; 
proteasome binding; thiol-dependent deubiquitinase; ubiquitin binding; ubiquitin-like protein ligase binding; ubiquitin protein 
ligase binding; zinc ion binding 

0.636 

Vitamin D-binding protein GC 
actin binding; calcidiol binding; vitamin D binding; vitamin transmembrane transporter activity 

0.692 

Alpha-enolase ENO1 cadherin binding; DNA-binding transcription repressor activity, RNA polymerase II-specific; GTPase binding; magnesium ion 
binding; phosphopyruvate hydratase activity; protein homodimerization activity; RNA binding; RNA polymerase II transcription 
regulatory region sequence-specific DNA binding; transcription corepressor activity; transcription corepressor binding 

0.739 
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7.2. Supplementary data tables & code files 

 
All supplementary data has been provided separately in the respective data formats. 


