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Highlights

� We use vine copula-based quantile regression to produce EAD quantile estimates.

� Our vine copulas effectively model complex dependencies among the predictors for EAD.

� We provide insights into how the predictor effects vary per EAD quantile.

� The proposed model outperforms a linear quantile model on real-life credit card data.
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Abstract

To model the Exposure At Default (EAD) of revolving credit facilities, such as credit cards, most of

the research thus far has employed point estimation approaches, focusing on the central tendency of

the outcomes. However, such approaches may have difficulties coping with the high variance of EAD

data and its non-normal empirical distribution, whilst information on extreme quantiles, rather than

the mean, can have greater implications in practice. Also, many of the input variables used in EAD

models are strongly correlated, which further complicates model building. This paper, therefore,

proposes vine copula-based quantile regression, an interval estimation approach, to model the entire

distribution of EAD and predict its conditional mean and quantiles. This methodology addresses

several drawbacks of classical quantile regression, including quantile crossing and multicollinearity,

and it allows the multi-dimensional dependencies between all variables in any EAD dataset to be

modelled by a suitable series of (either parametric or non-parametric) pair-copulas. Using a large

dataset of credit card accounts, our empirical analysis shows that the proposed non-parametric

model provides better point and interval estimates for EAD, and more accurately reflects its actual

distribution, compared to a selection of other models.

Keywords: Risk analysis, Credit cards, Exposure At Default, Quantile regression, Vine copulas

1. Introduction

Under the Advanced Internal Ratings-Based (A-IRB) approach, the Basel II and III Accords

allow authorised banks to calculate risk-sensitive capital requirements as a function of different

credit risk parameters. The three key parameters are: Probability of Default (PD), i.e. the likelihood
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that a borrower will default or be unable to fulfil their repayment obligations; Exposure At Default

(EAD), i.e. the expected gross exposure of the borrower at the time of default; and Loss Given

Default (LGD), i.e. the percentage of this amount that the lender would not be able to recover. In

credit risk, PD and LGD have thus far been the main centre of attention, whereas EAD has been

studied far less. This paper focuses on the latter.

In the literature, the proposed statistical models for EAD tend to focus on producing accurate

point estimates for the central tendency of the outcomes, i.e. the conditional mean. Unlike interval

estimates, point estimates may, however, prove less useful given the non-normality and high vari-

ance encountered in EAD data (see e.g. Thackham and Ma (2018) and Leow and Crook (2016)).

Furthermore, when estimating potential monetary losses in risk management or the capital required

to absorb them, the most useful information lies in extreme risks in the upper tail area, i.e. higher

quantiles. Therefore, to better understand the EAD distribution, it is important to consider the

estimation of EAD at different quantiles (e.g. 99% value-at-risk), rather than solely at the mean

level. In this paper, we apply two interval estimation methods to EAD modelling: linear quantile

regression (Koenker and Bassett, 1978) and D-vine copula-based quantile regression (Kraus and

Czado, 2017; Schallhorn et al., 2017).

The first of these two approaches is well known and frequently used in predicting conditional

quantiles of a response variable given the values of covariates. It is robust to outliers and het-

eroscedasticity and makes no assumptions about the response distribution. However, two common

pitfalls of using the method are the problem of quantile crossing (i.e. the crossing of regression

lines of different quantile levels, causing interpretation difficulties) and its ability to cope with

correlations between the covariates. The latter is of particular interest because many of the input

variables commonly used in EAD models are strongly correlated with each other. For instance,

Tong et al. (2016), Leow and Crook (2016), and Wattanawongwan et al. (2023) incorporated both

current credit limit and card balance in the models, which can lead to multicollinearity problems

and interpretation issues with the estimated coefficients. In contrast, the D-vine copula-based

quantile regression approach will allow us to tackle those issues, by modelling such dependencies

between the explanatory variables through a series of pair-copulas.

Whereas much of the credit risk literature on EAD modelling has analysed corporate credit

(Gürtler et al., 2018), our models are fitted to a large dataset of credit card defaults, provided by

a large Asian retail lender. For most A-IRB banks, credit cards account for the largest number of

defaults, which are often scarce in practice among other revolving line products (Qi, 2009). This
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enables building more advanced statistical models based on the available default data.

In the analysis, we will identify to what extent the magnitude of predictor effects varies for

different sections of the EAD distribution, i.e. at the mean and different quantile levels. This

is useful to assess risk drivers of the tail risk of EAD. In addition to examining the relationships

between EAD and the covariates, we will also explicitly consider correlations between the covariates

themselves, by utilising vine copulas. We will implement the proposed model using the R package

vinereg (Nagler and Kraus, 2019), which provides various options of copula families including

parametric and non-parametric ones. To empirically test the effectiveness of each quantile model

in the context of EAD modelling, we benchmark them against an OLS model. In so doing, we will

show how the proposed approaches lead to better point and interval estimates.

The rest of the paper is presented as follows. The relevant literature is reviewed under Section 2,

from which the main contributions of the paper are then identified. Section 3 explains the data and

variables used, and Section 4 provides a brief description of vine copulas. Section 5 illustrates how

the statistical models are constructed. The results are analysed in Section 6. Section 7 concludes.

2. Literature review

Our review of the literature begins by reviewing some of the existing work on EAD modelling

and then turns its attention to the methods proposed in the paper. At the end, we will list the

main contributions of our work.

2.1. EAD modelling

For revolving credit products including credit cards, the Basel Accords have suggested an indi-

rect way of calculating EAD by evaluating the Credit Conversion Factor (CCF), i.e. the proportion

of the undrawn amount that will be drawn by the time of default (Valvonis, 2008). Despite its

popularity, such approach has several drawbacks. First, the empirical CCF distribution does not

conform to several statistical distributions and is highly bimodal. Second, its estimates must be

restricted to the [0,1] range. Third, the modelling may struggle to cope with the contracting denom-

inator when the current drawn amount is already close to the limit. For those reasons, alternative

methods have been put forward, which include modelling EAD directly, as a monetary amount (as

opposed to a ratio).

For example, Thackham and Ma (2018) modelled EAD directly (albeit for corporate revolving

facilities) and captured its relationship with the credit limit by considering a three-component
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model, conditioning the EAD target variable on whether the limit was lowered or not. They

used Ordinary Least Squares (OLS) regression to predict the mean level of EAD. Tong et al.

(2016) applied a zero-adjusted gamma distribution under the Generalised Additive Models for

Location, Scale and Shape (GAMLSS) framework (Stasinopoulos et al., 2017), to capture the EAD

distribution observed in a dataset of UK credit card defaults. The proposed model was shown to

outperform several benchmark models (including CCF ones) in terms of the mean level of EAD. Hon

and Bellotti (2016) forecast drawn credit card balances not only at default time but at every time

step, unconditional on a default event occurring. Different methods were compared, including OLS,

two-stage regression (see, for example, Bellotti and Crook (2012)), and random effects panel models

(Bollen and Brand, 2010). Similarly, Leow and Crook (2016) constructed a mixture model that

considers the entire time period up to default. Rather than the balance, they proposed modelling

the limit under the scenario that an account’s borrowing hits the credit limit at least once in

the race to default. Wattanawongwan et al. (2023) later added a similar mixture component to

their GAMLSS models, finding that it further improved the predictive performance. None of these

methods explicitly studied interval estimates, although Tong et al. (2016) and Wattanawongwan

et al. (2023) did model a dispersion parameter.

2.2. Quantile regression

The prediction of conditional quantiles of the response variable given the values of covariates has

found a variety of applications in many domains, including finance, where it became a fundamental

instrument for risk management (Kraus and Czado, 2017; Bouyé and Salmon, 2009). Linear quantile

regression, established by Koenker and Bassett (1978), is a well-known method for estimating the

conditional quantiles. For example, in the consumer credit risk setting, Somers and Whittaker

(2007) previously used quantile regression to model the value distribution of repossessed properties,

which was then used to produce loss given default estimates for mortgage loans.

Modelling EAD with the use of quantile regression would be beneficial in several respects.

Firstly, it considers the entire conditional distribution of EAD, which enables the estimation of

conditional quantiles and confidence intervals, reveals any potential heavy tails and skewness, and

allows for the shape of the distribution to depend on the covariate values. Secondly, it provides a

comprehensive picture of the predictor effects on different quantiles of the EAD distribution, not

only on the mean level. Thirdly, quantile regression is robust to outliers, which are often encountered

in EAD data. Lastly, unlike least squares regression, it does not require the assumptions of a specific
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parametric distribution or constant variance for the response, making it an attractive alternative

to account for heteroscedasticity (Niemierko et al., 2019).

However, classical (linear or non-linear) quantile regression has been criticised for having several

pitfalls. Kraus and Czado (2017) highlighted the problem of quantile crossing; this is where the

regression lines of different quantile levels (with distinctive slopes) cross each other, thus causing

interpretation problems. The method also suffers from multicollinearity, i.e. strong correlation be-

tween the explanatory variables, making the estimated regression coefficients harder to interpret

and unstable with large variances (Bager, 2018). This issue is highly relevant to EAD and other

consumer credit data, since the variables in these settings are often associated with each other,

either directly or indirectly; for instance, banks often actively manage the borrower’s limit amount

according to their balance expenditure, which, vice versa, is constrained by the former. In addition,

quantile regression does not acknowledge multivariate dependencies between the variables of inter-

est, which are needed for credit portfolio risk modelling (Geidosch and Fischer, 2016). Conventional

correlation analysis, assuming the popular, yet restrictive, multivariate Gaussian distribution, is

not appropriate to investigate such underlying dependencies, because it cannot accommodate a

non-linear and asymmetric structure, which has proven important in financial applications (see e.g.

Aas et al. (2009); Geidosch and Fischer (2016)).

2.3. Copulas

Copulas are a more appropriate method to model complex dependence patterns (for standard

references on copula theory, we refer the reader to the books by Joe (1997) and Nelsen (2006)).

Over the past decades, copulas have become increasingly popular in finance and insurance settings

(Nelsen, 2006; Krüger et al., 2018; Calabrese et al., 2019). They allow a multivariate distribu-

tion to be jointly constructed from arbitrary univariate distributions, using an appropriate copula

function. An attractive feature of copulas is that the functional forms of a copula and its com-

ponents (marginal CDFs) can be selected independently. This gives them a key advantage over

a conventional parametric specification (e.g. multivariate Gaussian) where the joint and marginal

distributions must be known a priori. Moreover, various dependence structures between individual

variables can be captured by different copula specifications. For instance, the Clayton copula re-

flects lower tail dependence, whilst the Gumbel copula allows for stronger dependence in the upper

tail area. The Student-t copula is both lower- and upper-tail dependent (governed by the same

parameter). On the other hand, the Gaussian copula has no tail dependence.
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For the bivariate case, there is a rich number of practical and well-studied copulas. However, for

higher dimensions, the application of copulas is challenging. Although multivariate Gaussian and

multivariate t-copulas are widely used (Mashal and Zeevi, 2002), they cannot fully capture different

dependence structures for different pairs of variables; all pairwise relationships are forced to follow

the same copula. Several generalisations of bivariate copulas to higher-dimensional Archimedean

copulas have been put forward (Savu and Trede, 2009), but they impose undesirable constraints

on the parameter estimates (Martey and Attoh-Okine, 2019).

2.4. Vine copulas

Pioneered by Joe (1996) and further developed by Bedford and Cooke (2002) and Aas et al.

(2009), the vine copula overcomes such shortcomings. It is a more natural and flexible way of for-

mulating a high-dimensional copula based on a series of bivariate copulas, or so-called pair-copulas.

This Pair-Copula Construction (PCC) methodology decomposes a multivariate copula density, and

thus a multivariate probability density, into a product of (conditional) bivariate copulas, where all

pair-copulas can be modelled independently from each other. It follows that a suitable bivariate

copula can be freely chosen from a broad set of options to model the different dependence character-

istics (including independence) of each variable pair, providing much greater flexibility in modelling

dependence for high-dimensional data. Through a financial application, Aas et al. (2009) compared

a vine copula containing Student copulas for pairs of stocks with the four-dimensional Student cop-

ula. A likelihood ratio test favoured the pair-copula construction method over the four-dimensional

Student copula. Also, they found that the latter could lead to a large trading portfolio loss due to

its underestimation of tail dependence. In a structural credit risk model setting, similar conclusions

were drawn by Geidosch and Fischer (2016), who demonstrated that the estimation of economic

capital for credit portfolios is more accurate when vines are employed rather than conventional

copulas to model dependencies between latent asset values.

In conclusion, the vine copula provides considerable flexibility in modelling multivariate distribu-

tions by: (1) isolating the marginal and dependence formulations; and (2) matching the dependence

structure of each respective variable pair with the most appropriate bivariate copula. However, this

flexibility comes at a cost, in that the pair-copula construction has no unique representation due

to the substantial number of possible vine structures. To help organise them, Bedford and Cooke

(2002) have introduced the regular vine (R-vine) and illustrated each possible decomposition of

the bivariate copula density as a graphical tree. Two popular subclasses of R-vine were subse-
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quently developed: the Canonical vine (C-vine) and the Drawable vine (D-vine) (Aas et al., 2009).

They have been applied actively in financial and insurance risk management; see, for example,

Nikoloulopoulos et al. (2012). For a more comprehensive treatment of vine copulas, we refer the

reader to Czado (2019).

2.5. Vine copula-based quantile regression

This paper adopts the D-vine copula-based quantile regression model, proposed by Kraus and

Czado (2017) and Schallhorn et al. (2017), to analyse the conditional EAD quantiles, taking into

account the complex high-dimensional interrelationships among EAD and its predictors. The corre-

lations between the predictors themselves are also considered, which are not commonly analysed in

the literature. This interval estimation approach addresses several drawbacks of classical quantile

regression including quantile crossing and multicollinearity problems. It also does not impose a

restrictive linearity assumption on the shape of conditional quantiles and allows for the separation

of marginal and dependence modelling.

The model is fitted using an algorithm developed by Kraus and Czado (2017). This sequentially

fits the D-vine structure with the aim of maximising a conditional likelihood, resulting in auto-

matic forward variable selection. Due to the model construction, the conditional quantiles can be

extracted easily from a series of estimated pair-copulas and do not cross each other. More recently,

Tepegjozova et al. (2022) introduced a two-step ahead forward selection algorithm and extended

the approach to be applicable to both C-vine and D-vine copulas. The analyses in our paper are

restricted, however, to D-vine copulas and do not consider other vine types, such as C-vines or the

more general class of R-vines (Zhu et al., 2021). Although R-vines may offer increased flexibility

in modeling large-volume, high-dimensional data (Dissmann et al., 2013), they produce a huge

number of possible vine structures, and, hence, have seen fewer applications in practice (Yu et al.,

2020). C-vines are used to fit a multi-variable model with a key variable that governs the depen-

dencies and interactions in the dataset (Aas et al., 2009; Yu et al., 2020). D-vine models, having

been more widely used than C-vine models (Martey and Attoh-Okine, 2019), may be preferred to

C-vines when one does not want to assume a key variable that controls the dependencies and little

prior knowledge exists on the dependence structures between variables (Yu et al., 2020). For these

reasons, and since our objective is to find the unknown (nonlinear/non-monotonic) relationships

between variables, the paper excludes C-vines and R-vines, and focuses instead on D-vines.

Although vine copulas have recently been used in other settings such as inventory financing
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(Zhi et al., 2020), to the best of the authors’ knowledge, this paper is the first to propose the vine

copula-based quantile regression framework in any consumer credit risk setting.

2.6. Research contributions

To summarise, the contributions of our research are that: (1) it is the first study to provide

interval estimates and quantile predictions for EAD based on classical linear quantile regression

and a state-of-the-art alternative — vine copula-based quantile regression; (2) we show that, on a

large real-world credit card dataset, the latter model with non-parametric copulas performs better

than the OLS linear model in terms of the point and interval estimates, conditional quantiles,

and the distributions that they produce; (3) our results provide new insights into the predictor

effects at different quantile levels of the EAD distribution, rather than on the mean level only; (4)

we introduce the idea that complex multi-dimensional dependencies among account-level variables

can be effectively modelled using vine copulas, which has further potential applications to other

consumer credit risk parameters such as PD and LGD.

3. Data and variables

The data from which our sample is extracted consists of monthly account-level data for the

consumer credit cards of a large Asian bank, recorded between January 2002 and May 2007. EAD is

measured as the outstanding balance at default, excluding any subsequent interests and additional

fees. The default definition is that borrowers either: (1) missed or could not pay the agreed

minimum payment for 90 consecutive days or more; (2) were declared bankrupt; or (3) the money

they owed was charged off by the bank. Similarly to other work on EAD, we extract only the

defaulted account data, to ensure that the predicted balance is conditional on default. To construct

the sample, we use the standard yearly cohort method (Moral, 2006) and set the reference month

to the 1st November of each year. For each such yearly default cohort, we collect the values of

the covariates a month prior to the reference month, namely in October, whereas the response

value (EAD) is the observed balance in the subsequent month where the default occurs. Accounts

that lack sufficient monthly records to calculate the explanatory variables are omitted. Note that

data from the same lender has also been used by Wattanawongwan et al. (2023) to empirically test

a series of mixture models which, unlike the current paper, do not produce interval estimates or

consider the dependencies between the variables.
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Variable Notation Explanation

Age of account age Months since account has been opened.
Limit l Credit limit, i.e. maximum amount that can be drawn from card.
Balance b Current amount drawn.
Behavioural score bsco Internal score capturing current credit quality of account.
Average paid percentage
past 9 months

paid.per9 Paid percentage is the percentage of last month’s balance paid
by the borrower, i.e. paid amount/balance.

Credit utilisation cu Percentage of the limit drawn by borrower, i.e. balance/limit.
Full payment percentage full.pay.per Percentage of account’s months on book in which borrower has

paid balance in full, i.e. number of full payments / age of account.

Table 1: List of available explanatory variables.

Table 1 lists the explanatory variables; all of these are continuous and were shown to have

a significant relationship with EAD according to previous literature; see e.g. Tong et al. (2016).

After removing a small number of missing value cases, the total number of accounts used in the

analysis is more than 60,000. We randomly divide this dataset into an in-sample training (80%) and

out-of-sample test (20%) set. Note that there is no validation set because the process of selecting

non-parametric distributions and input variables will be performed automatically by the fitting

algorithm applied in the proposed model. Following Van Gestel et al. (2006), outliers are handled

by winsorisation, by truncating outliers at m ± 3s, where m is the median, s = IQR
2×0.6745 , and,

the interquartile range, IQR = Q3 − Q1, with Q1 and Q3 denoting the lower and upper quartile,

respectively (Dekking et al., 2005).

For an exploratory analysis of the distribution of each variable and their bivariate relationships

(revealing some asymmetric and tail dependencies that the vine copula quantile regression ap-

proach should be capable of handling), we refer the reader to the Supplementary Materials, Online

Appendix A.

4. Vine copulas

A brief description of vine copulas is provided in this section. The joint multivariate distri-

bution F of X = (X1, . . . , Xp) can be constructed by utilising Sklar’s theorem (Sklar, 1959): for

the marginal univariate distributions F1, . . . , Fp, there exists a copula function C : [0, 1]p → [0, 1]

such that F (x1, . . . , xp) = C(F1(x1), . . . , Fp(xp)). The copula approach allows the variable margins

Fj , j = 1, . . . , p, to be chosen from arbitrary distributions and modelled independently from their

dependence structure (reflected by a chosen copula C). The copula C is unique when the corre-

sponding cumulative marginal distribution functions in X are continuous. Under further regularity

9

                  



conditions, the joint multivariate density of X can be written as:

f(x1 . . . , xp) = c(F1(x1), . . . , Fp(xp)) ·
p∏

i=1

fi(xi), (1)

where f1, . . . , fp are the marginal densities, and c(u1, . . . , up) = ∂p

∂u1 ···∂up
C(u1, . . . , up) is the cop-

ula density. The p-dimensional density c(u1, . . . , up) can be decomposed into a product of p(p−1)
2

(conditional) bivariate copula densities, or the so-called pair-copula densities (Bedford and Cooke,

2001). Following Aas et al. (2009), a D-vine Pair-Copula Construction (PCC) with order X1 →
X2 → . . .→ Xp of the joint density f can be written as:

f(x1 . . . , xp) =

p∏

k=1

fk(xk)

p−1∏

i=1

p∏

j=i+1

cij|i+1,...,j−1(Fi|i+1,...,j−1(xi|xi+1, . . . , xj−1),

Fj|i+1,...,j−1(xj |xi+1, . . . , xj−1)|xi+1, . . . , xj−1),

(2)

where for a set D ⊂ {1, . . . , p} and i, j ∈ {1, . . . , p}\D, given XD = xD, cij|D(·, ·|xD) is the

(conditional) bivariate copula density associated with the conditional distributions Fi|D(xi|XD =

xD) and Fj|D(xj |XD = xD).

To enable fast, robust, and tractable inference, especially in higher dimensions (Haff et al., 2010;

Stöber et al., 2013), we employ a simplifying assumption for the pair-copulas, i.e. that cij|D does

not depend on the conditioning vector XD, i.e. cij|D(·, ·|xD) = cij|D(·, ·). Haff et al. (2010) argued

that, even when this simplifying assumption is not completely satisfied, using such an assumption

provides a good approximation. Having further analysed simulated and real data applications,

Killiches et al. (2016) suggested that it might actually be beneficial for practical applications to use

simplified vine copulas (i.e. making the simplifying assumption) since these could not only capture

the main dependence features of the data, similarly to how non-simplified vine copulas can, but

they also offer a smoother fit. Especially for models with higher dimensionality, non-simplified

vine copulas can cause numerical intractability and overfitting issues. Note as well that the same

simplifying assumption has been made by several previous papers applying vine copulas such as

Tepegjozova et al. (2022); Martey and Attoh-Okine (2019); Kraus and Czado (2017); Schallhorn

et al. (2017).

If all marginal distributions are uniformly distributed, the PCC is called a D-vine copula. We

exemplify a joint multivariate density for a four-dimensional D-vine copula with order X1 → X2 →
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X3 → X4:

f(x1, x2, x3, x4) =f1(x1) · f2(x2) · f3(x3) · f4(x4) · c12(F1(x1), F2(x2)) · c23(F2(x2), F3(x3))·

c34(F3(x3), F4(x4)) · c13|2(F1|2(x1|x2), F3|2(x3|x2))·

c24|3(F2|3(x2|x3), F4|3(x4|x3)) · c14|23(F1|23(x1|x2, x3), F4|23(x4|x2, x3)).

(3)

This example clearly depicts an advantage of vine copulas, that is, each pair-copula can be chosen

independently from each other to match the dependency pattern between the associated variable

pair seen in the data. The first commonly used class of bivariate copulas are parametric copulas,

which comprise two main families: the elliptical copulas (e.g. Student-t and Gaussian) and the

Archimedean copulas (e.g. Frank, Gumbel, and Joe). However, parametric copulas bear the risk

of being wrongly specified and are likely to be inefficient when handling data-specific dependence

structures such as non-monotonic relationships (Dette et al., 2014). As a remedy, the second class

of non-parametric copulas has been proposed. Penalised and non-penalised Bernstein polynomials

were utilised by Kauermann and Schellhase (2013) and Scheffer and Weiß (2016), respectively,

whilst Nagler and Czado (2016) applied kernel estimators. We adopt the kernel weighted local

likelihood technique, based on a common transformation trick introduced in Nagler et al. (2017),

to estimate non-parametric bivariate copulas, because it has been proved (Nagler et al., 2017) to

perform best among the aforementioned methods if there is a strong tail dependence between the

variables (which is our expected scenario for the EAD dataset).

12 23 34
1 2 3 4    

 Tree 1  13|2    24|3 
12 23 34   Tree 2 

 14|23 
 13|2   24|3  Tree 3 

Figure 1: A four-dimensional D-vine copula with order X1 → X2 → X3 → X4; each edge represents
a pair-copula.

Since the variables of interest, Xj , can be assigned exchangeably, the vine copula structures

are not unique and could be represented in an abundance of combinations, especially for high-

dimensional data. To help organise them, Bedford and Cooke (2002) depicted vine copulas through

a nested sequence of trees known as dependence trees. Figure 1 displays a four-dimensional D-vine

structure from Equation (3). The marginal densities f1, f2, f3, f4 are the nodes in the first tree T1,
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whereas each edge, connected by the nodes, represents a pair-copula. The nodes for a tree Tj+1

are then formed by the edges of a lower tree Tj , j = 1, . . . , p − 2, and the construction of nodes

and edges for the subsequent trees is sequentially performed until the last tree Tp−1. Hence, the

D-vine tree is useful for decomposing the multivariate copula density into a product of bivariate

(conditional) copula densities because the initial tree, T1, can determine the entire structure (Kraus

and Czado, 2017).

The conditional distributions Fi|D(xi|xD) in Equation (2) can be estimated recursively based

on pair-copulas from the respective lower trees (Joe, 1997), as follows:

Fi|D(xi|xD) = hil|D−l
(Fi|D−l

(xi|xD−l
), Fl|D−l

(xl|xD−l
)), (4)

where l ∈ D and D−l := D\{l}, and for i, j 6∈ D and i < j, the h-functions associated with the

(conditional) bivariate copula function Cij|D are defined as hij|D(u, v) =
∂Cij|D(u,v)

∂v and hji|D(u, v) =

∂Cij|D(u,v)

∂u . For example, the first component F1|23(x1|x2, x3) of c14|23 from Tree 3 (in Figure 1) can

be evaluated via the h-functions related to C13|2, C12, and C23 from the first two trees:

F1|23(x1|x2, x3) = h13|2(F1|2(x1|x2), F3|2(x3|x2)) = h13|2(h12(F1(x1), F2(x2)), h32(F3(x3), F2(x2))).

Hence, Equation (4) allows us to estimate the joint multivariate density, f(x1 . . . , xp), in Equa-

tion (2), from the marginal univariate distributions, F1, . . . , Fp, and conditional pair-copulas, Cij .

5. Statistical models

In this section, we explain how to predict the conditional quantile of the response (Exposure

At Default), Y ∼ FY , given the outcome of a set of p continuous covariates, Xj ∼ Fj , j = 1, . . . , p,

from either the proposed D-vine copula-based quantile regression model or a classical linear quantile

regression model. An OLS linear regression is also specified, which will serve as a benchmark for a

subsequent performance comparison.

5.1. D-vine copula-based quantile regression

In the D-vine copula-based quantile regression model (henceforth referred to DVQR), the con-

ditional α quantile, for α ∈ (0, 1), is calculated as:

qα(x1, . . . , xp) := F−1
Y |X1,...,Xp

(α|x1, . . . , xp), (5)
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where FY |X1,...,Xp
is the multivariate joint distribution of Y,X1, . . . , Xp established from a D-vine

copula. By using Sklar’s theorem and the probability integral transform (PIT), V := FY (Y ) and

Uj := Fj(Xj) with corresponding PIT values v := FY (y) and uj := Fj(xj), we obtain:

FY |X1,...,Xp
(y|x1, . . . , xp) =P (Y ≤ y|X1 = x1, . . . , Xp = xp)

=P (FY (y) ≤ v|F1(X1) = u1, . . . , Fp(Xp) = up)

=CV |U1,...,Up
(v|u1, . . . , up).

That is, CV |U1,...,Up
is the conditional distribution of V given (U1, . . . , Up) associated with the

conditional distribution function of Y given (X1, . . . , Xp). Thus, Equation (5) can be expressed as

follows (Kraus and Czado, 2017):

qα(x1, . . . , xp) = F−1
Y (C−1

V |U1,...,Up
(α|u1, . . . , up)) = F−1

Y (C−1
V |U1,...,Up

(α|F1(x1), . . . , Fp(xp))). (6)

Hence, the conditional quantile can be derived by estimating the univariate distributions FY and

Fj and the (p+ 1)-dimensional copula CV,U1,...,Up . This shows that DVQR permits us to separately

model the margins and their dependencies, and does not make any restrictive assumptions on

the shape of conditional quantiles. Note that the closed form of the conditional quantile can be

expressed only in a purely continuous setting. In contrast, if there are discrete variables, we need

to refer to Schallhorn et al. (2017) and compute the conditional quantile by numerically inverting

the conditional distribution function. More specifically, they applied a continuous convolution

approach which transforms discrete variables into continuous variables by adding a small amount

of noise. Nagler et al. (2017) demonstrated that this method results in a valid estimator of discrete-

continuous quantile functions.

The conditional quantile, shown in Equation (6), can be extracted analytically by applying

the recursion in Equation (4) and expressing CV,U1,...,Up in terms of nested h-functions. A four-

dimensional example is provided below.

CV |U1,U2,U3
(v|u1, u2, u3)

= hV,U3|U1,U2(CV |U1,U2
(v|u1, u2), CU3|U1,U2

(u3|u1, u2))

= hV,U3|U1,U2(hV,U2|U1
(CV |U1

(v|u1), CU2|U1
(u2|u1)), hU3,U1|U2

(CU3|U2
(u3|u2), CU1|U2

(u1|u2)))

= hV,U3|U1,U2(hV,U2|U1
(hV,U1(v, u1), hU2,U1(u2, u1)), hU3,U1|U2

(hU3,U2(u3, u2), hU1,U2(u1, u2))),
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the inverted function of which is

C−1
V |U1,U2,U3

(α|u1, u2, u3)

= h−1
V,U1

[h−1
V,U2|U1

{h−1
V,U3|U1,U2

(α, hU3,U1|U2
(hU3,U2(u3, u2), hU1,U2(u1, u2))), hU2,U1(u2, u1)}, u1].

Since C−1
V |U1,...,Up

(α|u1, . . . , up) is monotonically increasing with α, the problem of different α quan-

tile functions crossing each other is naturally eliminated (Kraus and Czado, 2017).

We consider two submodels: parametric DVQR (P-DVQR), in which bivariate copulas are cho-

sen exclusively from parametric families, and non-parametric DVQR (NP-DVQR), where bivariate

copulas are estimated non-parametrically. The estimation of the variable distributions FY and Fj

and the copula CV,U1,...,Up are performed in two steps, using a recent computational method for the

DVQR proposed by Kraus and Czado (2017) and implemented in the R package vinereg (Nagler and

Kraus, 2019). First, the marginal distributions, FY and Fj , are estimated non-parametrically by a

kernel smoothing method (Parzen, 1962). Given a sample (x(1), . . . , x(n)) ∈ Rn, where n is the num-

ber of observations, the estimator is F̂ (x) = 1
n

∑n
i=1K(x−x

(i)

h ), where K(x) :=
∫ x
−∞ k(t)dt with k(·)

being a symmetric probability density function and h > 0 a bandwidth parameter (Parzen, 1962).

Following Kraus and Czado (2017), we determine the value of bandwidth h by using the plugin band-

width from Equation (4) in Duong (2016), which minimises the asymptotic mean integrated squared

error. Subsequently, the estimated F̂Y and F̂j are used to transform the data from their original scale

to pseudo copula data in [0, 1] scale: v̂(i) := F̂Y (y(i)) and û
(i)
j := F̂j(x

(i)
j ), j = 1, . . . , p, i = 1, . . . , n.

In the second step, the multivariate copula CV,U1,...,Up is fitted by a D-vine copula with the

copula data generated from the previous step. Two stages are involved: establishing the dependence

(vine) structure and drawing statistical inferences on pair-copulas. First, the vine is constructed by

fixing the response V at the initial node in the first tree and choosing the order of other covariate

variables Uj with the objective of maximising the predictive strength of the model. The order

(from high to low) of the explanatory power of a covariate is therefore reflected by its position in

the first tree (from left to right). An algorithm similar to a forward stepwise method is employed.

Hence, variable selection is accomplished automatically, by sequentially adding the most influential

covariate that improves the model’s fit, measured by the conditional log-likelihood for the response

given the set of covariates, i.e. cll=
∑n

i=1 log cV |U1,...,Up
(v(i)|u(i)

1 , . . . , u
(i)
p ), where cV |U1,...,Up

is the

copula density associated with CV |U1,...,Up
. This process continues until no additional improvement

can be obtained.
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Second, during this procedure, a bivariate copula selection is performed based on the Akaike

Information Criterion (AIC). More specifically, when a new covariate Uk, k = 2, 3, . . . , p, is being

added to the current D-vine copula with order V → U1 → . . .→ Uk−1, the AIC-optimal pair-copulas

and their parameters (Genest and Favre) are selected from different choices of bivariate copulas.

For parametric copula selection, the AIC-corrected conditional log-likelihood (cllAIC) is computed

as: cllAIC = −2cll + 2|θ̂|, thus penalising the number of copula parameters, |θ̂|. This number of

parameters is taken as the degrees of freedom for P-DVQR, and provides valuable information on

its complexity. For non-parametric copula selection, we follow the computation of Nagler et al.

(2017), who defined cllAIC = −2cll + 2dfe + 2dfe(dfe+1)
n−dfe−1 , where dfe is the effective degrees of freedom

(EDF) (please refer to Kauermann and Schellhase (2013), and Section 5.3.2 in Loader (2006), for

explicit formulas for the EDF). Therefore, both AIC criteria include a penalty term for copula

model complexity. Note that the degrees of freedom do not take the complexity of the kernel

estimators for marginal CDFs into account, as they do not matter for the copula selection.

This process thus determines the pair-copulas between the response and the new covariate,

ĈV,Uk|U1,...,Uk−1
, as well as those among the existing covariates and the new covariate,

ĈU1,Uk|U2,...,Uk−1
, ĈU2,Uk|U3,...,Uk−1

, . . . , ĈUk−1,Uk
. To tackle a wide range of dependencies, we con-

sider the Gaussian (N), Student-t (t), Clayton (C), Gumbel (G), Joe (J), Frank (F), Clayton-

Gumbel (BB1), Joe-Gumbel (BB6), Joe-Clayton (BB7), Joe-Frank (BB8) copulas, and their ro-

tations (Nelsen, 2006), as potential parametric choices; in addition, we consider the independence

copula and a transformation kernel technique for the non-parametric choices (Nagler et al., 2017).

The non-parametric copulas were estimated by a kernel estimator using local polynomial likelihoods

of degree q (Geenens et al., 2017) and the corresponding q × q bandwidth matrix (see page 11 in

Nagler et al. (2017)), which controls the degree of smoothing. These estimated pair-copulas are

the basis of h-functions used to calculate ĈV,U1,...,Up and, hence, the conditional quantile as shown

in Equation (6).

Therefore, the proposed estimation process results in a parsimonious flexible model, avoids

multicollinearity problems, and removes the need for variable transformations due to the relaxed

assumptions on how the covariates influence the response and the flexible distribution class for

marginals. For extensive details, see Kraus and Czado (2017).

15

                  



5.2. Linear quantile regression

The predicted conditional quantile derived from a linear quantile regression (referred to as LQR)

(Koenker and Bassett, 1978) is assumed to be linear in the predictors, i.e. q̂α(x
(i)
1 , . . . , x

(i)
p ) :=

β̂0(α) +
∑p

j=1 β̂j(α)x
(i)
j , where i = 1, . . . , n. It allows each quantile to be modelled individually by

separate regressions. The unknown parameters β̂(α) ∈ Rp+1 are estimated with the minimisation

problem min
β(α)∈Rp+1

ρα(y(i) − (β0(α) +
∑p

j=1 βj(α)x
(i)
j )), where ρα(u) = u(α − I(u < 0)) is an

asymmetric loss or check function and I is an indicator function. In contrast to a symmetrically

quadratic loss function used in the OLS, here, residuals are weighted by an asymmetric loss function

ρα. For upper quantile levels α ∈ (0.5, 1), positive residuals, or equivalently underestimations, are

subjected to heavier loss, by the weight α ∈ (0.5, 1), than negative residuals (overestimations), by

the weight 1− α. This results in an unbiased, consistent, and asymptotically normally distributed

estimator for the α quantile regression (Krüger and Rösch, 2017).

5.3. Linear regression

We introduce the OLS linear regression model (referred to as OLS) as a benchmark model with

the formulation Ŷ |X(i)
1 , . . . , X

(i)
p := β̂0 +

∑p
j=1 β̂jX

(i)
j + ε(i). Here, the errors ε(i) are assumed to

be independent of each other and normally distributed with zero mean and constant variance σ2.

Hence, the conditional Ŷ |X(i)
1 , . . . , X

(i)
p is normally distributed with mean µ(i) = β̂0 +

∑p
j=1 β̂jx

(i)
j

and variance σ2, and q̂α(x
(i)
1 , . . . , x

(i)
p ) := Φ−1 (α|µ(i), σ2), where Φ−1 is the inverse normal CDF.

6. Analyses and results

In this section, we present the following model results: the vine copula structures, the predictor

effects on EAD, EAD quantile distributions, and predictive performance. For an additional analysis

of the OLS and LQR model parameter estimates, we refer the reader to Online Appendix B.

6.1. Vine copula dependence structure

In this subsection, we analyse the selection of vine structure, as well as the set of pair-copulas,

for the D-vine copula-based quantile regression models. As explained earlier, an algorithm similar

to a forward variable selection is used to determine the order of the first tree (and thus the complete

structure) in the D-vine copula, and the best fitting pair-copula for each variable pair is identified

using the AIC criterion.

Figure 2 exhibits the estimated D-vine copula with parametric copulas (P-DVQR), where each

row represents a tree and its respective edges, with the first tree located at the bottom. The
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EAD,age;paid.per9,full.pay.per,cu,bsco,l,b

EAD,paid.per9;full.pay.per,cu,bsco,l,b b,age;paid.per9,full.pay.per,cu,bsco,l

EAD,full.pay.per;cu,bsco,l,b b,paid.per9;full.pay.per,cu,bsco,l l,age;paid.per9,full.pay.per,cu,bsco

EAD,cu;bsco,l,b b,full.pay.per;cu,bsco,l l,paid.per9;full.pay.per,cu,bsco bsco,age;paid.per9,full.pay.per,cu

EAD,bsco;l,b b,cu;bsco,l l,full.pay.per;cu,bsco bsco,paid.per9;full.pay.per,cu cu,age;paid.per9,full.pay.per

EAD,l;b b,bsco;l l,cu;bsco bsco,full.pay.per;cu cu,paid.per9;full.pay.per full.pay.per,age;paid.per9

EAD,b b,l l,bsco bsco,cu cu,full.pay.per full.pay.per,paid.per9 paid.per9,age

Figure 2: Estimated D-vine copula with parametric copulas and contour plots displaying the joint
PDF of variable pairs with the first component on x-axis and the second on y-axis. The scale of
both axes is (-3,3). The order of the D-vine copula is EAD → b → l → bsco → cu → full.pay.per
→ paid.per9 → age.

chosen AIC-optimal pair-copulas result in the presented contour plots, reflecting the joint PDF

of the variable pair. For further detail on their maximum likelihood estimates and Kendall’s tau,

we refer the reader to Online Appendix C, Table C.1. The bottom row of Figure 2 shows all

variables ordered by their explanatory power, the leftmost (rightmost) variable being the strongest
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(weakest) predictor, respectively. Balance thus has the strongest effect on EAD, followed by limit,

rating score, utilisation rate, full payment percentage, paid percentage, and account’s age. The

underlying dependence between EAD and balance (see the plot in the bottom-left corner of Figure 2)

is strongly positive and symmetric, exhibiting both upper and lower tail dependence (as implied

by the choice of the Student-t copula, see Table C.1). That is, balance at default and current

balance are expected to move in the same direction, especially in the tails of their distributions.

Similarly, the conditional dependence between EAD and limit given balance (second to bottom

row of Figure 2) is also captured by the t copula but here the correlation is weaker. Rating score

shows some correlation with EAD as well, with a mild positive upper tail dependence captured

by the Joe-Frank (BB8) copula. The dependencies between EAD and the other covariates are

relatively weak. Several strongly related variable pairs are also found among the explanatory

variables themselves. Balance (now prior to default) and limit are strongly correlated at high

values but only mildly correlated elsewhere (see the second plot at the bottom row of Figure 2).

A similar dependence pattern is seen for full payment percentage versus paid percentage (see the

sixth plot at the bottom row), albeit to a lesser degree. Credit utilisation and credit score are

also strongly related, exhibiting negative upper and lower tail dependencies (see the fourth plot at

the bottom row), higher (lower) card utilisation being indicative of a lower (higher) credit score,

respectively. In summary, many of the selected pair-copulas are not symmetric and exhibit a range

of different tail dependence patterns, which is not surprising for a financial dataset (see e.g. Kraus

and Czado (2017)). Compared to a conventional correlation analysis, copulas thus provide deeper

insights into the relationships between EAD and the other variables of interest.

Since parametric copulas could wrongly specify non-monotonic dependence structures (which,

as Online Appendix A points out, are observed in our EAD dataset), we extend the analysis to

also include non-parametric copulas. Figure 3 displays an estimated D-vine copula with non-

parametric copulas (NP-DVQR). The D-vine order of NP-DVQR resembles that of P-DVQR with

a slight difference in the order of utilisation rate and full payment percentage. None of the pair-

copulas are modelled by the independence copula, which supports the existence of correlations

among all variables of interest. For the most part, the dependence structures of the estimated

non-parametric pair-copulas are similar to their parametric counterparts. However, they reflect

more realistic characteristics of the variables, and thus avoid misspecification. For instance, for the

first two edges in the first tree, pair-copulas are estimated so that EAD most of the time exceeds

the balance prior to default (see the first edge, or lower-left plot, for EAD-b) and balance tends
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EAD,age;paid.per9,cu,full.pay.per,bsco,l,b

EAD,paid.per9;cu,full.pay.per,bsco,l,b b,age;paid.per9,cu,full.pay.per,bsco,l

EAD,cu;full.pay.per,bsco,l,b b,paid.per9;cu,full.pay.per,bsco,l l,age;paid.per9,cu,full.pay.per,bsco

EAD,full.pay.per;bsco,l,b b,cu;full.pay.per,bsco,l l,paid.per9;cu,full.pay.per,bsco bsco,age;paid.per9,cu,full.pay.per

EAD,bsco;l,b b,full.pay.per;bsco,l l,cu;full.pay.per,bsco bsco,paid.per9;cu,full.pay.per full.pay.per,age;paid.per9,cu

EAD,l;b b,bsco;l l,full.pay.per;bsco bsco,cu;full.pay.per full.pay.per,paid.per9;cu cu,age;paid.per9

EAD,b b,l l,bsco bsco,full.pay.per full.pay.per,cu cu,paid.per9 paid.per9,age

Figure 3: Estimated D-vine copula with non-parametric copulas and contour plots displaying the
joint PDF of variable pairs with the first component on x-axis and the second on y-axis. The scale
of both axes is (-3,3). The order of the D-vine copula is EAD → b → l → bsco → full.pay.per →
cu → paid.per9 → age.

to be smaller than limit (see the second edge, b-l), both of which are intuitive. In contrast, the

P-DVQR results did not yet capture that exposure tends to increase in the race to default and that

balance normally stays within limit.
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6.2. Effects of predictors

Figure 4 shows the partial effect plots for the different models, depicting how each predictor

influences the response assuming that all other covariates are fixed at their respective mean levels.

More specifically, they show the marginal effects on the conditional mean, E(Y |X1, . . . , Xp), and

on the 0.025, 0.5 and 0.975 conditional quantiles, qα(x1, . . . , xp), of EAD. The conditional mean

for the quantile regression models is computed based on an average of a series of {1/11, 2/11, . . . ,

10/11} quantiles.
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(a) Partial effect plots for OLS.
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(b) Partial effect plots for LQR.

0 50000 100000 150000 200000
l

E
A

D

0 50000 100000 150000
b

E
A

D

600 700 800
bsco

E
A

D

0.0 0.5 1.0 1.5
cu

E
A

D 0.025
0.5
0.975
mean

(c) Partial effect plots for P-DVQR.
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(d) Partial effect plots for NP-DVQR.

Figure 4: Partial effect plots of a selected set of predictors on the conditional mean and 0.025, 0.5
and 0.975 conditional quantiles of EAD (with the scale of the y-axis omitted for data confidentiality
reasons). The y-axes of all plots share the exact same scale.

In the OLS (top-left panel), the effects on EAD mean are, by definition, all linear; considering

the scale on the y-axis, balance is the variable that has the largest effect. Next, LQR (top-right

panel) is able to provide deeper insights into how these effects further vary depending on the EAD
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quantile of interest, showing that the impact of limit (l), credit score (bsco), and utilisation rate

(cu) on the 0.975 quantile is much stronger than for the lower quantiles. Interestingly, the differing

slopes in the LQR effect plots for limit and balance suggest that whereas limit is a key driver

for the 0.975 quantile, balance is the more important driver for the 0.025 quantile. Also, 95%

prediction intervals can be derived by contrasting the variable effect plots for the 0.025 and 0.975

quantiles. These suggest a much wider prediction interval and, hence, greater variability in EAD

as the credit limit increases (again, keeping other variables constant). Conversely, paid percentage

and full payment percentage, having roughly parallel effect plots, do not appear to impact the

width of the prediction interval by much (and hence, for brevity, their plots are omitted).

The LQR estimates, however, are prone to quantile crossing. In the result plots for limit

and balance, the effect lines indeed cross each other, thus causing interpretation difficulties. For

example, other things being equal, when balance exceeds 75,000, the top-right plot appears to

suggest a lower EAD value at the 0.975 quantile than at the 0.025 quantile, which is clearly counter-

intuitive. The D-vine copula models (DVQR), shown in the bottom panel of the figure, resolve this

problem by computing quantiles from Equation (6) so that none of the effect lines cross each other.

For example, in the effect plots for balance, the quantile order is now preserved. Another advantage

of theirs is that the assumption of linearity is lifted, permitting conditional EAD quantiles to be

non-linearly and non-monotonically related to the covariates. For example, some non-monotonicity

is now observed with regards to the impact of the credit limit. Interestingly, the non-parametric

model (NP-DVQR) is the only to suggest a drop-off in EAD for the subgroup of accounts that were

awarded the highest credit limits (from 200,000 onward) by the bank.

6.3. EAD quantile distributions

Figure 5a compares the density plot for the actual EAD values with those for the point estimates

(conditional EAD mean) produced by each model. Since EAD cannot take negative values, we fit

the probability density function by zero-truncated kernel density estimation with a Gaussian kernel

and weight w(x) = 1
1−Φx,h(0) , where h is the bandwidth and Φ is the cumulative distribution function

of a Gaussian distribution with mean x and standard deviation h. The objective is to truncate

the density on the negative side at zero and up-weight the data that are close to zero. We can see

that the non-parametric DVQR provides the best fit to the empirical distribution, followed by the

parametric DVQR model. Instead, OLS and LQR misspecify and overestimate EAD at the lower

end. Hence, there is a positive gain to using the vine copula models. In the right panel, Figure
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(a) Density plots for the actual vs predicted EAD fit-
ted by zero-truncated weighted kernel density estimates.
Predicted EAD mean is used.
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(b) Density plots of predicted EAD quantiles at 0.025, 0.5
and 0.975 quantile levels fitted by zero-truncated weighted
kernel density estimates.

Figure 5: Density plots of predicted EAD (with the scale of the y-axis omitted for data confiden-
tiality reasons). The y-axes of all plots in panel (b) are all drawn on the same scale.

5b displays the density plots for three different conditional quantiles produced by LQR, P-DVQR

and NP-DVQR. In line with expectation, the upper quantile (0.975) predictions all exhibit a heavy

tail property. Among these, LQR produces the longest upper tail, leading to the largest 97.5%

value-at-risk for EAD.

6.4. Model performance

In order to evaluate how competitive the models are relative to each other, we conduct an

out-of-sample predictive performance test containing ntest data points, where ntest is the sample

size (20%) of the test set. We consider both the quality of the predicted EAD quantiles, as well as

that of the point and interval estimates of EAD.

6.4.1. Accuracy of predicted quantiles

First, we inspect the predictive accuracy of the predicted conditional EAD quantiles at level

α ∈ {0.01, . . . , 0.99}. Unlike the actual values observed in the test set, true regression quantiles

remain unobserved. For that reason, Komunjer (2013) suggested the use of average α-weighted

absolute error, WAE(α), defined as:

WAE(α) =
1

ntest

ntest∑

i=1

ρα(y(i) − q̂(i)
α ),

22

                  



where y(i) is the actual value of EAD for the i-th observation in the test set, q̂
(i)
α = q̂α(x

(i)
1 , . . . , x

(i)
p )

is the predicted conditional α quantile, and ρα(u) = u(α − I(u < 0)) is an asymmetric loss or

check function. A lower WAE(α) denotes better performance. Second, as a counterpart to the

coefficient of determination, the model fit is assessed by a goodness-of-fit measure, R1(α), proposed

by Koenker and Machado (1999):

R1(α) = 1−
∑ntrain

i=1 ρα(y(i) − q̂(i)
α )∑ntrain

i=1 ρα(y(i) − yα)
,

where ntrain is the sample size (80%) of the training set and yα is the alpha quantile of all EAD

values observed in the training set. The larger the R1(α), the better the model fit. Haupt et al.

(2011) stated that WAE(α) and R1(α) seem to be a more natural way to evaluate the fit and

predictive performance for L1-norm based estimations such as quantile regressions rather than R2

and the average absolute or squared errors.
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Figure 6: Performance measurements of the predicted conditional quantiles for OLS, LQR, P-
DVQR and NP-DVQR: weighted absolute error (top) and model fitness (bottom).

Figure 6 thus depicts the performance of the conditional quantile predictions at α ∈ {0.01, . . . ,

0.99} for all four models. Where out-of-sample predictive accuracy is concerned (top panel), LQR

and NP-DVQR produce the lowest weighted absolute errors and substantially outperform OLS for

any quantile other than the median. Between the two vine copula models, the non-parametric

one clearly outperforms the parametric one. A logical explanation for this lies in the presence of

non-monotonic relationships between several pairs of variables in our dataset (see e.g. EAD and

utilisation rate in Figure A.1), which cannot be correctly modelled by a parametric copula (Dette

et al., 2014). This misspecification appears to affect the model, making it perform even worse

than the simple linear model at some of the quantiles. Although being relatively close, NP-DVQR
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performs better for the middle quantile predictions, whereas LQR is superior in the lower and

upper tails. The model fitness results (bottom panel) lead to similar conclusions. In summary, in

order to gain a better model for conditional EAD quantile estimation, one should apply a quantile

regression method, specifically LQR or NP-DVQR, rather than a conventional linear model.

6.4.2. Quality of point and interval estimates

To evaluate the quality of the point estimates at the mean level, we use the mean absolute error

(MAE) as the prediction score metric. In addition, several scoring rules for probabilistic forecasts

are presented to assess the interval estimates and predicted distributions, namely the logarithmic

score (LogS), the quadratic score (QS), the interval score (IS), and the integrated Brier score (IBS).

As pointed out by Chang and Joe (2019), scoring rules such as these are more meaningful than

MAE when there is heteroscedasticity in the conditional distribution. For every observation in the

test set, the conditional expectation of EAD provides the point estimate for the MAE measure. To

produce the interval scores, 95% prediction intervals bounded by the 0.025 and 0.975 quantile levels

are taken as the interval estimates. The performance measures are defined as follows (Gneiting and

Raftery, 2007). Firstly,

MAE =
1

ntest

ntest∑

i=1

|y(i) − ŷ(i)|,

where ŷ(i) is the predicted conditional expectation of EAD. Second, the logarithmic and quadratic

scores measure the quality of the predicted density (the latter incorporating an L2 penalty term),

as follows:

LogS =
1

ntest

ntest∑

i=1

logf̂Y |X(y(i)|x(i)), QS =
1

ntest

ntest∑

i=1

[
2 f̂Y |X(y(i)|x(i))−

∫ ∞

−∞
f̂Y |X(y|x(i))2 dy

]
,

where (x(i), y(i)) are the actual observations and f̂Y |X is the predicted conditional PDF. Third, the

interval score evaluates interval forecasts rewarding narrow prediction intervals whilst penalising

observations falling outside those intervals. Specifically,

IS =
1

ntest

ntest∑

i=1

[
(û(i) − l̂(i)) +

2

α
(l̂(i) − y(i))I{y(i) < l̂(i)}+

2

α
(y(i) − û(i))I{y(i) > û(i)}

]
,

where, for a (1−α)100% prediction interval, l̂(i) and û(i) are the predicted lower and upper bounds

at quantile levels α/2 and 1 − α/2, respectively. We select α = 0.05. Lastly, the integrated Brier
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score provides a performance measure for the predicted cumulative distribution:

IBS =
1

ntest

ntest∑

i=1

∫ ∞

−∞

[
F̂Y |X(y|x(i))− I{y ≥ y(i)}

]2
dy,

where F̂Y |X denotes the predicted conditional CDF.

Table 2 summarises the performance of all models according to these metrics.

Model
MAE ↓ LogS ↑ QS ↑ IS ↓ IBS ↓

Test Train Test Train Test Train Test Train Test Train
OLS 9871 9421 -11.34 -11.21 2.19e-05 2.21e-05 62695 62764 7042 6847
LQR 9322 8863 - - - - 42979 43095 - -
P-DVQR 11400 10975 -10.48 -10.46 8.81e-05 8.91e-05 45689 46048 8677 8500
NP-DVQR 8572 8089 -10.04 -10.03 9.85e-05 9.65e-05 41795 41732 6129 5941

Table 2: Out-of-sample and in-sample performance results, calculated for the test set (20% of the
data) and training set (80%), respectively, for point and interval estimates as well as distributions
(bold face indicates best out-of-sample performance). The arrows indicate that lower values for
MAE, IS and IBS, and higher values for LogS and QS, imply better performance.

Note that, as the predictive density and cumulative distributions of the response for LQR cannot

be extracted analytically, its LogS, QS and IBS were excluded. Compared with OLS, we observe

that LQR produces better point and interval estimates (see lower MAE and IS, respectively). In

particular, the substantial reduction in IS confirms that the linear quantile regression model is

capable of providing a much more reliable prediction interval than the linear model. However,

LQR is itself outperformed by non-parametric DVQR, which yields even better point and interval

estimates. In fact, NP-DVQR exhibits superior performance on all five measures, so it is the

preferred method regardless of the intended model application. Again, to avoid misspecification

of the dependencies, it proves important to use non-parametric DVQR, as P-DVQR shows poorer

performance relative to NP-DVQR. By contrasting in-sample and out-of-sample performance of the

non-parametric copula model against that of the simpler OLS and linear quantile models, we can

see that its increased performance does not come at the expense of potential overfitting. Lastly,

according to the interval scores, the existing heteroscedasticity can be captured by quantile models,

but not OLS. For additional analyses of residual plots, we refer the reader to Online Appendix D.

7. Conclusions and future research

Using a large dataset of credit card defaults, this paper has applied linear and D-vine copula-

based quantile regression models to predict conditional quantiles of the Exposure At Default (EAD),
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i.e. the card balance at default time. Exploratory data analysis revealed that the marginal distribu-

tions of EAD and its covariates are non-normal, have high variance and exhibit heteroscedasticity.

Hence, interval estimate models, such as quantile regression, that make no parametric distribu-

tion assumption and do not require constant variance, are generally more suitable for modelling

such data than point estimate models such as OLS linear regression. Quantile regression models

also have the added advantage of allowing for the variable effects to differ depending on the EAD

quantile of interest. For example, our analyses have shown that the credit limit has a substantially

larger impact on higher EAD quantiles (and thus tail risk) than on its mean or lower quantiles.

Furthermore, we observed an improvement in the predicted conditional quantiles and the point and

interval estimates for EAD when the quantile models are employed instead of the OLS model.

Among the different quantile models tried in the paper, the D-vine copula models have distinct

advantages over the linear quantile model, as they address two problems that may be associated

with classical quantile regression: the occurrence of quantile crossings and multicollinearity prob-

lems. Specifically, the pair-copulas fitted by the newly proposed D-vine quantile regression also

produce deeper insights into the complex high-dimensional dependence structure between EAD

and the covariates, as well as between the covariates themselves. We thus detected several pair-

wise asymmetric and tail dependencies that are overlooked by the other methods, including, for

example, pronounced tail dependence between EAD and the current credit limit. Also, the method

revealed non-linear and non-monotonic predictor effects at several EAD quantile levels. What’s

more, a predictive performance comparison on the real-life data showed that the D-vine copula

quantile regression model with non-parametric copulas outperforms the other models, yielding bet-

ter point and interval estimates for EAD than the linear quantile model, and more closely reflecting

the actual distribution of EAD than the OLS linear model. In summary, we conclude that non-

parametric D-vine copula-based quantile regression is a highly attractive approach when predictions

of conditional quantiles and interval estimates for EAD are required.

A future avenue of research is to model another Basel risk parameter, namely the Loss Given

Default (LGD), using vine copula-based quantile regression. Similarly to EAD data, variables

in LGD datasets are often found to be correlated through asymmetric and non-linear structures,

making conventional correlation analysis unsuitable. Moreover, estimating the upper tail or higher

quantiles of LGD is again more relevant for calculating unexpected losses or required capital than

estimating the average value. By utilising the proposed method to model LGD, we conjecture that

point and interval estimates can be similarly improved. Another interesting avenue is to extend the
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vine copula-based quantile regression to LGD modeling using the two-step ahead forward selection

by Tepegjozova et al. (2022) and again choose an appropriate dependence structure amongst C-vine

and D-vine copulas, or even the more general R-vine copulas.
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