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Abstract

Edge-reinforced random walks are processes with reinforcement, on
which the effect of branching has not been investigated. Our discrete
time model starts with a particle, which branches at a constant rate,
at the vertex of a triangle initialised with edge crossing numbers.
The offspring particles, independently of each other, traverse the in-
cident edges at random, with probabilities proportional to the edge
crossing numbers, correspondingly updated at each traversal. Then
the process repeats. We show the convergence of the proportions of
edge crossings to a random variable using dynamical systems tech-
niques, and prove that two events have positive probability: when
none of the edges is crossed negligibly, and when exactly one is. We
show that all edges are crossed infinitely many times and conjecture
that no two edges can be negligibly crossed.
This conjecture stems from connections between this model and balls
and bins, where balls are added to bins at random, following certain
rules. There is positive feedback when the probability of incoming
balls choosing a bin with m balls is proportional to a power of m,
bigger than 1; no feedback when the power is 1. In a time-dependent
version, the number of balls added at discrete times varies, yielding
different regimes of growth. Generalising results known for two bins
to any number of bins, we investigate the proportion of balls in each
bin, depending on feedback and regime of growth. We focus on the
events of monopoly (eventually one of the bins will receive all incom-
ing balls) and dominance (one of the bins gets all but a negligible
number of balls). When there is no feedback, neither monopoly nor
dominance occur. When feedback is introduced, several regimes are
identified, at which dominance and monopoly occur. While at cer-
tain regimes monopoly does not occur, we conjecture dominance to
always occur.





Impact Statement

Edge-reinforced random walks on graphs are well studied processes
with reinforcement, but the branching of the particles performing the
walk has not yet been investigated. The introduction of this model in
the first part of the present work, opens up a fresh line of investiga-
tion not only interesting for its sheer originality; but because techni-
cally, it pushes the boundaries of how dynamical systems techniques
are implemented into probabilistic work. For example, stochastic ap-
proximation is well known to be successful in unravelling the asymp-
totics of several discrete processes with reinforcement, by borrowing
from continuous dynamical systems techniques that are coupled with
martingales. However, in a branching random walk, the regime of
growth of the particles makes stochastic approximation and other
established approaches not applicable. In this study a new dynami-
cal approach is developed, which does not dodge the discrete setting
of the problem, and takes full advantage of martingale theory and
of the particles’ branching rate. This line of investigation can grow
in many ways, from considering other graphs than the triangle, like
done for standard edge-reinforced random walks; to adding a feed-
back to the model, like done in the balls and bins model, generalised
and studied in the second part of the work.
In terms of potential applications, besides the theoretical develop-
ment of a new stochastic-analytic dynamical approach, it might be
worth taking into consideration the time-dependent balls and bins
model with positive feedback, generalised to an arbitrary finite num-
ber of bins. This model has deep connections with the branching
random walk, and some of the martingale techniques that proved
successful on the former, helped approaching the latter. Generalis-
ing the balls and bins model can find applications in areas that have
traditionally benefited from various types of such models, such as
computer science and economics. In these disciplines the probabilis-
tic understanding of network evolution is crucial. Generalising balls
and bins and studying branching random walks helps the develop-
ment of a toolbox useful to characterise probabilistically the onset
of preferential attachment in the evolving dynamics on networks.
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Chapter 1

Introduction

This first chapter is a general introduction to the two main problems addressed in this
work, following the same order in which they will be studied. We start by introducing
the reader to the area the first problem belongs to, by reviewing some of the literature
on reinforced random walks, and then describe the subject of our study, the edge-
reinforced branching random walk on the triangle, including the corresponding main
results obtained. We next introduce the reader to the area the second problem belongs
to, by similarly reviewing first the literature on balls and bins with positive feedback,
and subsequently describing the generalised balls and bins model with positive feedback,
including the main results obtained.

We conclude this general introduction with a description of the connections be-
tween the two problems; a note for the reader about how to use the Appendix; a brief
commentary on the notation followed.

Each of the two problems will have its own separate technical introduction in the
corresponding part of the work dedicated to it, so as to keep this first chapter as free
of technicalities as possible, allowing for a more immediate understanding.

1.1 Reinforced random walks

Consider a connected locally finite graph and fix a vertex as starting point at time
zero. Select a neighbour to move to, uniformly at random. At time one move to the
neighbour selected. At each discrete time n, repeat the selection process, from the
currently occupied vertex, and move to it at time n+ 1. The sequence of points thus
visited is a random walk on the graph.

Random walks on graphs have been intensively studied for more than a century,
as they arise in many models in mathematics and physics, on top of having important
algorithmic applications. The properties of the graph affect the behaviour of the ran-
dom walk and can be a crucial factor on the types of investigations that can succeed.
The classical theory of random walks typically focused on simple (no multiple edges,
no loops) but infinite graphs, like lattices in various dimensions, and the type of inves-
tigation was qualitative: for example whether the random walk returns to its starting
point almost surely, whether it returns infinitely often, its limiting distribution etc.
In more recent work, questions of more quantitative character have also been studied,
even on more general, but finite graphs: how long it takes to return to the starting
point, how long it takes to visit all vertices, how fast the random walker’s distribution
tends to a limit distribution etc.

Random walks on graphs are Markov chains, and Markov chains are random walks
on directed weighted graphs. Therefore the study of random walks on graphs does
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not differ much from the study of Markov chains. For simplicity let us consider
only random walks on simple and undirected graphs (some of the results we will talk
about do extend to cases when the graph is not simple: sometimes parallel edges
are allowed, sometimes even loops; some results also apply to directed graphs). In
this case, the neighbour is selected uniformly at random in the following sense: if the
graph is unweighted, this means that each neighbour has a probability to be selected
equal to the reciprocal of the degree of the current vertex; if the graph is weighted,
each neighbour has a probability to be selected equal to the weight of the edge the
random walker will have to traverse to reach it, divided by the total weight of all
edges incident to the currently occupied vertex. The former is clearly a particular
case of the latter, if we choose all weights equal to 1, hence all graphs considered will
be weighted (clearly, if parallel edges are allowed, one can go in the opposite direction
too, since they can be used to simulate weights in unweighted graphs).

In 1986 P. Diaconis introduced reinforcement in this model. To be more specific,
linear edge-reinforcement : given a weighted graph (recall that in this literature review
we assume all graphs to be connected, locally finite and simple), a starting point,
and the usual scheme of random selection of a neighbour, it also happens that upon
each traversal of the edge leading to the selected neighbour, the weight of the edge
increases by 1. This means that in the future, it will be more likely that the traversed
edge is going to be crossed than it was in the past. The random walker is self-
interacting : it remembers where it has been, and prefers to cross familiar edges.
Thus the new process, in general, is not Markovian anymore, as it depends on the
whole history. In [9, 13] this model was studied on a finite graph, with all edges’ initial
weights set to 1 (initially fair): almost sure recurrence (the random walker returns to
the stating vertex infinitely often: note that by a standard Borel-Cantelli argument,
this is equivalent to visiting each vertex infinitely often) and the convergence of the
normalised edge occupation vector to a random limit, having density continuous with
respect to the Lebesgue measure on the simplex, were shown. The formula of the
density was also derived explicitly, but this remained unpublished, until about 10
years later, when M. Keane and S. Rolles rederived it in [20]. As to infinite graphs,
P. Diaconis posed the question, of whether on Zd the linear edge-reinforced random
walk (LERRW) almost surely returns to the starting point infinitely often (by random
walk on Zd it is meant a random walk on the d-dimensional lattice graph).

In [35] R. Pemantle, under P. Diaconis’ supervision, introduced the vertex-
reinforced random walk on a graph, where the weights accumulate on the vertices
rather than on the edges. In the most simple version of this model, instead of a
standard weighted graph, we consider a vertex-weighted graph and pick a starting
point: since the weights are not on the edges, but on the vertices, the reinforcement
scheme will be to increase the weight of a vertex every time it gets occupied by the
random walker. From the current vertex, the random walker selects the next vertex
at random among its neighbours. Each neighbour has a probability to be selected
equal to its own weight divided by the total weight of the neighbours.

In more general reinforced random walks the new weight may depend on many
factors: the linear scheme (with respect to the number of edge crossings in the case of
edge-reinforcement, with respect to the number of visits to the vertices in the case of
vertex-reinforcement) of adding 1 (or any fixed constant) when updating the weights
is not the only one that has been studied. Several generalisations of P. Diaconis’
model exploiting different reinforcement schemes received attention over the years:
for example in [11] the ERRW of matrix type is introduced, where the constant added
to the current weight of the traversed edge depends on the edge and how many times
that edge has already been traversed; similar generalisations have been studied for
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vertex-reinforced random walks (see [38]). The field of reinforced processes overall
has grown significantly since 1986 (see [39] and [28] for a general survey), but in this
review we will focus solely on ERRWs.

There is no question that ‘random walks on graphs is one of those notions that tend
to pop up everywhere once you start looking for them’ [26]. Even while shuffling a deck
of cards, for instance, you can construct a graph whose vertices are all permutations
of the deck, and any two of them are adjacent if they come by one shuffle move.
Then repeated shuffle moves correspond to a random walk on this graph (see [12]).
Additionally with ERRWs on graphs we can model self-interaction when exploring
an unknown environment: for instance in [33] LERRWs have been taken as a simple
model for the motion of myxobacteria; these bacteria produce a slime trail and prefer
to glide on the slime produced earlier.

Linear reinforcement is special, since it produces a partially exchangeable process:
if two finite paths are such that every edge in each of them is crossed the same number
of times, then they have the same probability to be the beginning of a LERRW. The
order in which the edges are visited does not matter. In [42, 29] it was proved, thanks
to partial exchangeability, that a LERRW is a mixture of Markov chains both on finite
and infinite graphs respectively. What this means, in layman’s terms, is that there is
a measure in the space of Markov chains such that our process first picks a Markov
chain using this measure (called the mixing measure) and then does the random walk
as per the chain picked. With more recent terminology, we would say that it is a
random walk in a random environment. Partial exchangeability, being a mixture of
Markov chains and recurrence are notions interconnected to each other.

The question P. Diaconis posed on Zd provoked a substantial amount of study on
almost sure recurrence/transience criteria (by transience it is meant that the random
walker returns to the starting point finitely often almost surely) for LERRWs on
infinite graphs. The first of such results was in [36], where a phase transition between
almost sure recurrence and almost sure transience was identified on infinite binary
trees, thanks to the construction of a random environment of Pólya urns for the
LERRW: consider the reinforcement parameter being an arbitrary constant c > 1
instead of 1; it was shown that there is a constant c0 ≈ 4.29 such that if c < c0

there is almost sure transience, if c > c0 there is almost sure recurrence. While
on acyclic graphs (such as trees) recurrence is easier to understand, for graphs with
cycles such as Zd for d ≥ 2 getting results took longer: a first relatively general one
arrived with [43], where it was shown that if the initial weights are sufficiently large
(the reinforcement parameter is, instead, kept to 1) then for any finite tree G, the
LERRW on Z × G is almost surely recurrent. Eventually in [44] recurrence would
be successfully shown in any dimension d for Zd with small enough initial weights
(thus following for any graph having bounded degrees as well). Notably this proof
relied on a connection with certain quantum models, called the hyperbolic σ-model,
that allowed to exploit partial exchangeability to its full potential. Another proof
appeared in [1] immediately after, which does not rely on the quantum model nor on
explicit calculation (see [21] for an account including a light touch introduction to the
quantum model used).

Since in LERRWs the transition probabilities are proportional to the weights, and
we can thus expect the edge crossings to grow proportionally with time, with some
dependence on the initial weights; we would also expect that, with stronger rein-
forcement, preferential attachment arises, meaning that some (random) edge will be
disproportionally visited as time passes: at a large time with probability close to 1 the
walk visits all edges but one a very small number of times. Superlinear reinforcement
schemes (also called strong reinforcement) yield this type of asymptotic behaviour
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indeed: they are defined such that the transition probabilities are proportional to a
function f of the edge crossings, defined on the positive integers and taking values on
the positive reals. The main line of investigation is, in this case, finding the conditions
for which such a reinforcement gets the random walk stuck at some edge. In [11] it
was shown that if the function f grows fast enough, such that

∞∑
n=1

1

f(n)
<∞, H

then the walk on Z almost surely gets eventually trapped in a single edge; if the
series diverges, it is recurrent almost surely (it visits all vertices infinitely often). In
the argument the lack of exchangeability due to a stronger reinforcement scheme im-
poses a change of toolbox: no more random environments, but martingale techniques
combined with Rubin’s construction, which consists of an exponential embedding
of the process which we will describe more in detail in Section 1.3. We will call
strong edge-reinforced random walk (SERRW) those for which Condition H is satis-
fied. When performing the walk on Zd, with d ≥ 2, the analysis gets more difficult.
The bipartite nature of the d-dimensional lattice requires considering

∑∞
n=1

1/f(2n) and∑∞
n=1

1/f(2n+ 1) separately; in [46] it was first shown that if both sums converge (thus
Condition H holds), on Zd the process is almost surely trapped on a single edge. Al-
though the argument extends to any bipartite graph of bounded degree, it would not
work even on a single triangle, thus Sellke states as a conjecture that Condition H
ensures that the process is almost surely trapped on a single (random) edge on the
triangle. Moreover, it was not possible to prove that if both series diverge (and thus
Condition H does not hold), recurrence would follow on Zd: it was only possible to
prove that almost surely the range was infinite and each coordinate, separately, would
vanish infinitely often. In [23] the first significant progress towards settling Sellke’s
conjecture was made, by showing that if we restrict f(n) = nα where α > 1, then for
any graph of bounded degree the SERRW is almost surely trapped on a single edge.
Here the fact that the argument used in [46] generalises to any graph of bounded de-
gree without odd cycles was used. More in general, through the adaptation of Rubin’s
construction used in [11, 46], it was possible to prove, via graph-based techniques and
martingale arguments, that the SERRW on any graph of bounded degree is either
almost surely trapped on a single edge or on an odd cycle. In light of this, the focus
of Sellke’s conjecture on the triangle was crucial: solving the problem on the triangle,
and more in general on odd cycles, would yield the more general claim that if Condi-
tion H holds, on any graph of bounded degree the SERRW is almost surely trapped on
a single edge. Hence we will refer to this claim as Sellke’s conjecture instead. In [24]
martingales techniques combined with stochastic approximations techniques yielded
the sought result on odd cycles for any nondecreasing weight function f satisfying
Condition H. Due to the case analysis required, depending on whether the graph
contains odd cycles or not [25], this is essentially as close as it got to a full proof of
Sellke’s conjecture for the following decade: with a nondecreasing (the actual general
condition is more technical and we omit it) weight function f satisfying Condition
H, the SERRW is almost surely trapped on a single edge of any graph of bounded
degree. Through a alternative approach, using the order statistics on the number of
edges, in [10] Sellke’s conjecture was finally shown (with Condition H needing minor
refinements). We observe that the argument extends to graphs with loops.



5

1.2 Edge-reinforced branching random walks

Let us briefly go back to random walks on graphs and superimpose branching to the
neighbour selecting scheme: assume that at time zero the random walker sponta-
neously dies by producing a certain number µ of descendants, which carry on hopping
at random, independently of each other, to new sites; once on the new site, each
descendant dies, generating other µ > 1 descendants, which will follow the same
scheme, iteratively. Such model is known as a branching random walk (BRW) on
graphs. For simplicity we described only a pure birth version of the model, but in
BRWs the random walkers can also be subject to spontaneous extinction (death with
no descendants); moreover both the reproduction and extinction rate can be depen-
dent on the sites, or be random according to some given distribution (in this case the
model is known as BRW in a random environment). From a general standpoint a
BRW can be seen as a spatial generalisation of the Galton-Watson process, and it has
been extensively studied. Among the applications found, as mentioned in [7], modern
models of disease propagation incorporate spatial interaction by allowing a pathogen
to be passed on only to the neighbours of an infected host [34]; a virus can multiply
at a host cell and then infect any of the neighbouring ones at random [45]; the total
number of infected cells therefore corresponds to the number of distinct sites visited
by a BRW [15]. We will not delve into the vast literature existing on BRWs, as it
would be too dispersive for our scope. The basic question that one answers studying
branching processes is whether it survives, which means that with positive probability
at any time there is someone alive; while we saw that the classical question for random
walks is whether the walker returns (with positive probability or, equivalently, with
probability one) infinitely many times to some fixed site. For BRWs the first question
asks whether there is global survival, that is, with positive probability at any time
there is someone alive somewhere; while the second question deals with local survival,
that is, with positive probability the process returns infinitely many times to some
fixed site. We refer the interested reader to [6] for a survey concerning these aspects.

Conceptually, as a generalisation of random walks on graphs, BRWs are obtained
analogously to how we will obtain our model as a generalisation of ERRWs; more-
over, BRWs make a compelling case for our study. In fact, while BRWs are a well-
established area of research, to the best of our knowledge there has not even been
any attempt to similarly generalise reinforced random walks, before the present work.
Thus, as in the construction of the BRW, we will consider an ERRW to which we su-
perimpose the branching of the random walkers (for simplicity referred to as particles
from now on). In other words we consider particles, which split into µ > 1 offspring
particles, while performing a random walk (on a graph) with an edge-reinforcement
scheme. We call this process an edge-reinforced branching random walk (ERBRW)
on a graph, and we will focus specifically on the triangle, with linear reinforcement.
Since this model evolves with pure birth, we will be concerned only with the study of
localisation.

More formally, define the ERBRW on the triangle (as per the scheme in Figure 1.1)
in the following way: let T (1)

n , T (2)
n , T (3)

n denote the number of edge crossings, N (1)
n ,

N (2)
n , N (3)

n the number of particles at the vertices, at time n. At time 0, we start
with one particle at any of the vertices. This hypothesis is not essential, but we
adopt it for simplicity: our analysis would not change if we started from an arbitrary
distribution of particles at the vertices, since there will always be a positive probability
that these particles gather all at the same vertex after some time. This particle
branches with deterministic constant factor µ > 1, and then the µ offspring particles
choose, independently of each other, the incident edge to traverse, according to a
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linear reinforcement scheme. Before describing the scheme in detail, we make some
comments on two key assumptions.

• We will allow µ to be a noninteger, in which case the interpretation of the
random walkers as particles needs to be replaced by unit and fractional masses
(the unit masses are seen as normal particles, the fractional masses as smaller
particles). To keep this first description of the model as immediate as possible,
we will not treat the details of a nonintegral branching factor, which will be
dealt with in the more technical description given in the introduction to Part I.
Moreover, in the course of this work we will see that there is no substantial loss
of generality in adopting only a particle-like point of view.

• The offspring particles are assumed not lazy : they cannot remain at the vertex
where they already are. Hence we also exclude the presence of loops based at
the vertices of the triangle (it is customary, in the reinforced random walks
literature, to only consider simple graphs). Simulations suggest that adding
loops would not yield a qualitatively different dynamics for an undirected graph.
We leave further details on the triangle with loops to the introduction to Part I.

After the initial particle has branched, the offspring particles, under the assumptions
aforementioned, will travel, independently of each other, through any of the two
incident edges at random, with probability of choosing either one of them proportional
to the positive number of edge crossings initially deterministically assigned T (1)

0 , T (2)

0 ,
T (3)

0 . Once the particles reach the new vertices, the edge crossings of the traversed
edges are updated, and this process repeats. Each particle’s crossing increases the
edge crossings by one. The total number of particles at time n ∈ N0 is then

N (1)

n +N (2)

n +N (3)

n =.. σn = µn,

and if we let the τ0
..= T (1)

0 + T (2)

0 + T (3)

0 , the total number of crossings up to time n is
then

T (1)

n + T (2)

n + T (3)

n =.. τn = τ0 +
n∑
i=1

σi.

For all i ∈ {1, 2, 3}, let

Θ(i)

n
..=

T (i)
n

τn

and

π(i)

n
..=

N (i)
n

σn

be the corresponding proportions of edge crossings and particles at the vertices at
time n; note that as vectors

Θn, πn ∈ {(x, y, z) ∈ [0, 1]3 : x+ y + z = 1}.

For every (x, y) ∈ [0, 1]2 ∩ {0 < x+ y ≤ 1} let

φ(x, y) ..=
xα

xα + yα
.

We define the ERBRW on the triangle with and without feedback as follows.
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N (1)
n N (2)

n

N (3)
n

B(1)

n+1

T (3)
n

B(2)

n+1 T
(1)
nB(3)

n+1T (2)
n

µN (2)
n −B

(2)

n+1

µN (3)
n −B

(3)

n+1µN (1)
n −B

(1)

n+1

Figure 1.1: ERBRW on the triangle

• ERBRW with no feedback : α = 1. Let i 6= j 6= k ∈ {1, 2, 3}, with k referring
to the occupied vertex and i, j referring to the incident edges. Given the past
up to time n, after branching, each particle at the kth vertex, independently of
the others at random, traverses the ith or jth edge at time n+ 1 independently,
with probability proportional to the corresponding number of edge crossings
T (i)
n , T (j)

n , that is with probabilities φ(Θ(i)
n ,Θ

(j)
n ) and φ(Θ(j)

n ,Θ
(i)
n ) respectively,

with α = 1. The number of particles traversing one of the incident edges from
the kth vertex at time n+1, according to the diagram in Figure 1.1, are binomial
random variables denoted as B(k)

n+1, .

• ERBRW with feedback : α > 1. Using the same notation as in the previous
case, given the past up to time n, after branching, each particle at the kth
vertex, independently of the others at random, traverses the ith or jth edge at
time n + 1 independently, with probability proportional to the corresponding
number of edge crossings raised to the power of α > 1, (T (i)

n )α, (T (j)
n )α, that is

with probabilities φ(Θ(i)
n ,Θ

(j)
n ) and φ(Θ(j)

n ,Θ
(i)
n ) respectively, with α > 1. This

corresponds to the branching analogue of the SERRW studied in [23].

The case α > 1 will not be directly studied in this dissertation, which is concerned with
α = 1. The terminology relating to feedback arises from the literature on balls and
bins models, which have connections with ERBRWs on graphs. The choice of starting
the study of the ERBRW on the triangle graph is motivated by the symmetries of
this graph. The equations governing the model inherit this helpful symmetry, along
with the benefits of a low number of degrees of freedom.

In Part I we show three main qualitative localisation results for the ERBRW
with no feedback. Denote, for simplicity of exposition, the standard simplex in three
dimensions as

Σ ..= {(x, y, z) ∈ [0, 1]3 : x+ y + z = 1}.

We will say almost surely, meaning with probability 1, while talking about events,
negligibility means with probability 0. The first result is the following.

Theorem 1.1. There is an almost surely Σ-valued bounded random variable Θ such
that almost surely Θn −→ Θ as n −→∞.

In the context of the ERBRW on the triangle define dominance as the event D
in which the edge crossings along two of the edges become negligible as the time n
grows. Here negligible has the meaning of the corresponding proportions vanishing as
n grows.
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1

1

1

Σ∗

Σ

x1

x2

x3

Figure 1.2: Standard simplex (gray) and its medial triangle (red)

Definition 1.2. Dominance is the event

D ..=
{
∃i ∈ {1, 2, 3} : lim

n−→∞
Θ(i)

n = 1
}
.

Denote the event on which {Θn} approaches an edge of the simplex Σ while being
bounded away from the set of its vertices V as E ..= S∩Dc, where S ..= {Θn −→ ∂Σ}.
Having defined

πΘn
..=

1−Θn

2
,

we anticipate that, in the dynamical interpretation of the random process {(Θn, πn)},
which will be explored in Chapter 2, the distance of πn from πΘn is crucial in gauging
whether the process is close to equilibrium or not. Denoting as ‖·‖1 the `1 norm on R3

(it is computed as the sum of the absolute values of the columns, and will be referred
to as 1-norm for simplicity); we will show in Lemma 4.5 that there is a nonnegative
bounded random variable ` such that almost surely

‖πn − πΘn‖1 −→ `.

Denote

B ..= {Θn is bounded away from ∂Σ},
E>

..= E ∩ {` > 0} = {Θn approaches ∂Σ \ V } ∩ {πn is bounded away from πΘn},
D> ..= D ∩ {` > 0} = {Θn −→ v ∈ V } ∩ {πn is bounded away from πv}.

We now state our second result.

Theorem 1.3. The following hold:

i) P(B) > 0;

ii) P(E>) > 0.

Let Σ∗ be the portion of Σ delimited by its medial triangle, boundary excluded
(that is, the interior of the triangle formed by connecting the midpoints of the edges of
the simplex, as per Figure 1.2). Not only Theorem 1.3 reveals which asymptotic sce-
narios for Θn are nonnegligible, but it has a straightforward corollary, which describes
the asymptotics of πn in those scenarios.
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Corollary 1.4. The following hold:

i) P(πn converges in Σ∗) > 0;

ii) P(πn diverges in Σ) > 0;

iii) P({πn converges in Σ∗} \B) = P(B \ {πn converges in Σ∗}) = 0;

iv) P({πn diverges in Σ} ∩ E>) > 0 and P({πn diverges in Σ} \ (E> ∪ D>)) =
P((E> ∪ D>) \ {πn diverges in Σ}) = 0.

The content of Theorem 1.3 and Corollary 1.4 becomes intuitive if we observe the
two typical outcomes of Python simulations for the ERBRW, shown in Figures 1.3
and 1.4 (the violet dot is the centre of the simplex, about which one reflects any
Θ to get πΘ, upon halving of the reflected point). The two figures depict the two
asymptotics, shown to be nonnegligible.

• Convergence of {Θn} in the interior of the simplex with convergence of {πn}
in the interior of the medial triangle of the simplex. Note that in addition
Corollary 1.4 (iii) states that this is the only possible scenario when either {Θn}
converges in the interior of the simplex or {πn} converges in the interior of the
medial triangle.

• Convergence of {Θn} to the boundary of the simplex (bounded away from the
vertices) with divergence of {πn}. Note that the second part of Corollary 1.4 (iv)
states that we cannot rule out that when {πn} diverges, {Θn} might tend to a
vertex (dominance). However, this scenario does not appear in the simulations,
which is one of the reasons justifying Conjecture 1.7, which in turn would imply
that convergence of {Θn} to the boundary of the simplex (bounded away from
the vertices) is the only possible scenario when {πn} diverges. Note that this
does not rule out convergence of both {πn} to the boundary of the medial
triangle and {Θn} to the boundary of the simplex. This behaviour, however,
does not appear in the simulations, suggesting that the corresponding event may
be negligible.

For the ERBRW on the triangle we also define monopoly as the eventM on which all
but finitely many crossings happen along exactly one edge, or equivalently, eventually
all particles stop crossing two edges.

Definition 1.5. Monopoly is the event

M ..= {∃! i ∈ {1, 2, 3} : T (i)

n −→∞}.

Note that M⊆ D. The third and last result is the following.

Theorem 1.6. Almost surely, for all i ∈ {1, 2, 3}, T (i)
n −→ ∞ as n −→ ∞. In

particular, P(M) = 0.

Conjecture 1.7. Let α = 1. Then P(D) = 0.

We leave further results for the introduction to Part I.
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Figure 1.3: Convergence of Θn (green) and πn (blue) to equilibrium points (Θ, πΘ)
(red)

Figure 1.4: Convergence of Θn (green) to Θ (red) and divergence of πn (blue) about
πΘ (gray)
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1.3 Balls and bins with positive feedback

Balls and bins (BB) is a probabilistic model where balls are added to bins at random,
following certain rules, concerning the number of balls, bins and the probabilistic
laws governing how a ball falls in a specific bin. The classical setting is with two
bins and the arrival of one ball at each discrete time. The most fundamental BB
model with reinforcement is the Pólya urn with two colours. This urn model is in
fact equivalent, upon identifying the colours (say red and white) with the bins, to
throwing balls one at a time, at random, in two bins, with the probability of each ball
landing in one bin proportional to the number of balls already in the bin. Adding
feedback to this model means that the probability of a new ball arriving choosing a
bin to land into, is proportional to a power of α 6= 1 of the balls already in the bin
(or more in general a function f of the number of balls). BB with feedback were
introduced in the mathematical literature by [14]: the case α > 1 is called positive
feedback and the case α < 1 negative feedback. Economists had already used these
models [2], since positive feedback models the tendency, often observed in economic
competition, of fast growth for the company that obtains first a nonnegligible initial
advantage among a small number of companies, to the point of reaching monopoly
or almost; negative feedback models instead a situation in which the competitor that
has an advantage has difficulty keeping it, for example due to inefficiencies [47].

The convergence of the proportion of balls of each colour in a Pólya urn process to
a beta-distributed random variable, as the number of allocated balls tends to infinity,
is a well-known fact [18], which settles the case α = 1 for the classical BB. In [14, §2]
it was shown that for α > 1 the proportion of balls in each of the two bins converges
to either 0 or 1, as the number of allocated balls tends to infinity, a scenario called
dominance. In [19], in the context of modelling neuron growth, a stronger result was
shown: that if α > 1, almost surely one of the (possibly more than two) bins gets all
but finitely many balls, as the number of allocated balls tends to infinity. A scenario
that we will call monopoly. In [32] monopoly was studied more quantitatively for two
bins, showing that ‘it takes a long time before a clear leader emerges, but once it does,
it is likely to stick’ [32, §1]. This was achieved through a technique known as Rubin’s
construction, which consists of embedding the BB process into a continuous time
process, built from exponentially distributed random variables, related to the arrival
times of the balls at each bin. It is the independence and explicit distribution of these
arrival times, which allows studying more quantitative aspects of monopoly. As a
matter of fact, thanks to Rubin’s construction, in [31] the probability of monopoly
of a bin, given its initial number of balls, has also been successfully approximated
by the normal cumulative distribution function for large initial total number of balls.
When α < 1, in [14, §3] it was shown that the number of balls in the bins tends to a
near-equal state, no matter the initial number of balls in the bins.

Generalisations of this model with more than two bins have been studied in [14,
§4], obtaining similar results as in the two bins scenario by standard union bounds. In
[8] preferential attachment has been studied in a model displaying a number of bins
which grows as the balls arrive, one at a time. A second type of generalisations can
also be obtained by considering different feedback functions for each bin, introducing
asymmetry in the model. Very recently in [30] monopoly has been studied for a two
bins asymmetric model, that is with feedbacks α1 and α2, generalising, among other
results, the normal approximation obtained for the symmetric case in [31]. Additional
generalisations can be obtained with various types of constraints on the allocated
number of balls, and more can be said about negative feedback, but in this work we
would like to focus on a third type of generalisation: time-dependent BB, for which
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the number of balls added varies with time.

In all the BB models considered so far, the bins always received one ball at a
time. To explore time-dependence, let us go back to the Pólya urn once more. In
[11, Appendix] a proof of Rubin’s construction is provided, by solving the following
time-dependent scheme for the Pólya urn: instead of adding the classical single ball of
the same colour as the drawn one, σn white balls are added to the urn the nth time a
white ball is drawn, and σ̂n red balls are added the nth time a red ball is drawn, where
{σn} and {σ̂n} are two deterministic integer-valued nonnegative sequences. Rubin’s
construction can be seen as the exponential embedding of this time-dependent model.
Let {τn} be the partial sums of {σn} and let {τ̂n} be the partial sums of {σ̂n}.
Thanks to the embedding, monopoly, which is the event in which a colour is drawn
all but finitely many times, can be studied through the convergence or divergence of∑∞

n=0
1/τn and

∑∞
n=0

1/τ̂n. If both series converge, monopoly is almost sure (with either
colour having a positive probability of being the one eventually always drawn); if both
diverge there is no monopoly; if one diverges and one converges, then monopoly of
the colour corresponding to the convergent series is almost sure. In conclusion, it all
depends on how fast the number of balls added for each colour grows, as this is the
main mechanism providing the advantage necessary to reach a monopolistic regime
in this model. The Rubin’s construction is tailored to this type of time-dependence,
where the time-evolution of the number of balls thrown is coordinated with the arrival
times of the colours drawn.

In [37] a more general time-dependent version of the Pólya urn was studied, which,
rephrased in terms of BB, would be equivalent to having two bins, and at time n the
number of balls that arrives is σn and, in a bulk, all σn balls go in either of the bins,
with probability of choosing a bin proportional to the number of balls in it. This
type of time-dependency is already beyond Rubin’s construction’s reach, because by
using only one sequence {σn} for both bins, some of the coordination between the
time-dependency and the arrival time at the bin chosen is lost. Martingale techniques
come to the rescue. Let τn be the total number of balls in the bins at time n. Then
dominance is almost sure if and only if

∑∞
n=0

σ2
n+1/τ2

n = ∞. Monopoly is harder to
analyse without Rubin’s construction. In [49] it was shown that if

∑∞
n=0

σ2
n+1/τ2

n <∞,
dominance is nonnegligible if and only if

∑∞
n=0

1/τn < ∞. Moreover the study of the
phase transition between no dominance and nonnegligible dominance was found to
be closely related to the phase transition between no monopoly and nonnegligible
monopoly.

In [48] N. Sidorova studied BB with two bins and positive feedback not only
under time-dependence, but with each of the σn balls arriving at time n choosing
independently, rather than in a bulk, to go in either bin; this changes significantly the
evolution of the model. For example, in the model with balls added in a bulk, if σn
grows fast enough, dominance is ensured without the need of any feedback; when the
balls choose the bins independently, dominance never occurs if there is no feedback, no
matter how fast σn grows. In the study of BB we will conduct, we generalise the latter
model to more than two bins, with particular emphasis on dominance and positive
feedback. Before commenting further on the results obtained in [48], we describe this
generalisation more in detail.
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1.4 Generalised balls and bins with positive feed-

back

Let d ≥ 2 be an arbitrary number of bins and let {σn} be an integer-valued positive
sequence, representing the number of added balls at time n ∈ N. Denote by τ0 =
T (1)

0 + . . .+ T (d)

0 the initial total number of balls in the d bins, where T (i)

0 denotes the
initial deterministic positive number of balls in the ith bin. For each n ∈ N, let again

T (1)

n + . . .+ T (d)

n = τn =.. τ0 +
n∑
i=1

σi

be the total number of balls in the bins at time n. Minimal regularity conditions
will be added to {σn}, when considered in full generality, but for the purpose of this
introduction it will be enough to focus on σn = µn, which is the relevant case for the
connections of BB with the ERBRW. Denote by

Θ(i)

n
..=

T (i)
n

τn

the proportion of balls in the ith bin at time n. Clearly they are valued in the standard
simplex in d dimensions

∆d−1 ..= {(x1, . . . , xd) ∈ [0, 1]d : x1 + . . .+ xd = 1}.

Note that, when there is no ambiguity, we will often switch from denoting the com-
ponents with upper indices to denoting them with lower indices, when a time index
is not involved. Let, for every integer 1 ≤ i ≤ d and x ∈ ∆d−1,

ψ(i)(x) ..=
xαi∑d
j=1 x

α
j

.

In a model with no feedback, α = 1; with feedback, α > 1. Given the past up to time
n, each of the σn+1 balls thrown at time n+ 1 will fall, independently of each other at
random, in the ith bin with probability proportional to the number of balls already
in it, T (i)

n , and the number of balls already in it raised to the power of α > 1, (T (i)
n )α,

respectively; that is with probability ψ(i)(Θn). For each integer 1 ≤ i ≤ d consider
the number of balls going in the ith bin at time n+ 1: these random variables jointly
define a multinomial random vector of components denoted as B(i)

n+1 (more technical
details will be given in the introduction to Part II).

In the BB model with d ≥ 2 we define, following the literature, dominance as the
event D on which the number of balls in all but one of the d bins is negligible, as the
number of allocated balls grows to infinity.

Definition 1.8. Dominance is the event

D ..=
{
∃ i ∈ {1, . . . , d} : lim

n→∞
Θ(i)

n = 1
}
.

We also define monopoly as the event M on which eventually all balls are added
to only one of the d bins.

Definition 1.9. Monopoly is the event

M ..= {∃ i ∈ {1, . . . , d} : B(i)

n = σn, ev.} .
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The notation ev. stands for eventually, and means that there is a large enough
time index N ∈ N, such that for all n ≥ N , B(i)

n = σn. Note that M⊆ D.
N. Sidorova showed that, for two bins:

• if there is no feedback, dominance is negligible ([48, Theorem 1.1]);

• if there is positive feedback, dominance is almost sure ([48, Theorem 1.2]).

No particularly strong restrictions are necessary on {σn}: it is assumed either
bounded, or divergent to infinity. In Part II we obtain, as main results, the ex-
tension of these two theorems to d > 2 bins. The first result holds for d > 2 bins with
the same level of generality as for two bins.

Theorem 1.10. Let α = 1. Then Θn converges almost surely to a bounded random
variable Θ and P(D) = 0.

The second result, due to technicalities in the argument arising for d > 2 bins,
requires more restrictions on {σn} than for two bins, and they are set through the
following quantities:

• ρn ..= σn+1

τn
: we assume that {ρn} is either bounded or diverges to infinity;

• θn ..= log τn
αn

: we assume that {σn} is such that θn −→ θ ∈ [0,∞];

• λ ..= lim supn→∞
σn+1σαn−1

σα+1
n

.

Theorem 1.11. Let α > 1. Then:

• if ρn is bounded, P(D) = 1;

• if ρn −→∞, θ = 0 and λ < 1, P(D) = 1.

We do not believe that the additional restrictions θ = 0 and λ < 1 are necessary, as
they arise from technical aspects of the argument.

Conjecture 1.12. Let α > 1. Then if ρn −→∞, P(D) = 1.

As to monopoly, a time-dependent analysis is far more involved with the regularity
of {σn} (captured by λ) and finer details of its rate of growth (captured by ρn and
θn). We will give a more detailed description of our results on monopoly (which
we consider in some sense secondary to those about dominance) and more examples
about the various regimes of growth and the parameters λ and θ, in the introduction
to Part II. For the sake of a good understanding of the connections between BB and
ERBRWs, the reader may feel less overwhelmed if, at a first reading, the focus is kept
on the case in which ρn is bounded. In the rest of this section we will in fact discuss
several regimes of growth, but note that for σn = µn, ρn is bounded since it converges
to a constant; then the regime of growth to which the ERBRW belongs is when ρn
is bounded. We interpret this regime as slow growth, as opposed to, for example,
σn = µµ

n
, which is such that ρn −→ ∞, a regime referred to as fast growth. Given

that the main focus of this introduction is the ERBRW and its connection with BB,
fast growth is a less interesting case at a first reading.

With this in mind, N. Sidorova shows that, for two bins:

• if there is no feedback, monopoly is negligible ([48, Lemma 2.2]);
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• if there is feedback, ρn −→∞, θ = 0 and λ < 1, monopoly is negligible (part of
[48, Theorem 1.4]).

. In [48, Theorem 1.4] she also shows that, for two bins, with positive feedback:

• if ρn is bounded, monopoly is almost sure;

• if ρn −→∞, θ = 0 and λ < 1, monopoly is almost sure.

In Part II we also obtain the extension of these results to d > 2 bins. We start in
reverse order, since the generalisation of the last two results follows directly from
Theorem 1.11, and in fact it can be noted that it states that monopoly is almost sure
in all the regimes in which we showed that dominance is almost sure.

Corollary 1.13. Let α > 1. Then:

• if ρn is bounded, P(M) = 1;

• if ρn −→∞, θ = 0 and λ < 1, P(M) = 1.

We conclude by stating the generalisation of the results about negligible monopoly.

Theorem 1.14. Let α = 1. Then P(M) = 0.

Theorem 1.15. Let α > 1 and θ =∞. Then P(M) = 0.

Theorem 1.16. Let α > 1, ρn −→∞, θ = 0 and λ > 1. Then P(M) = 0.

As anticipated, in the next section, we will only focus on the cases in which ρn
bounded, when referring to the results for BB.

1.5 The connection between ERBRW on graphs

and generalised BB

Note that the event of dominance for BB with d = 3 in Definition 1.8 coincides
with the event of dominance for the ERBRW on the triangle in Definition 1.2, and
corresponds to the random walk getting stuck on an edge, a situation previously
discussed when reviewing SERRW. Similarly the event of monopoly for BB with
d = 3 in Definition 1.9 can be rephrased so as to coincide with the event of monopoly
for the ERBRW on the triangle in Definition 1.5, and corresponds to the random walk
eventually stopping crossing all but one edge. In both models, we are particularly
interested in finding when dominance and monopoly are negligible and when they are
almost sure, depending on the feedback. We now focus on {Θn}, so as to see clearly
the connections between the two models. This connection will not come as a surprise,
if one considers that the BB model is a generalisation of the Pólya urn, which is, in
some sense, the building block of all processes with reinforcement.

Let us begin with d = 2 in BB, and then consider the ERBRW between two
nodes and a double edge, defined along the lines of the ERBRW on the triangle (see
Figure 1.5a; equivalently, if one prefers to also keep, in analogy with the definition
on the triangle, two nontrivial N (i)

n , we can think of it as an ERBRW on the binary
tree of height one in Figure 1.5b, but one must perform the branching and count the
beginning of the discrete times every other move, rather than at every move: starting
from the root in the middle at time 0, the particles branch and choose the incident
edge to cross; once on a leaf, the next time unit starts, and we update the T (i)

n and
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T (2)
n = τn − T (1)
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(b) ERBRW on the binary tree

Figure 1.5: Two bins and ERBRWs
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(a) ERBRW on the triple edge
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(b) ERBRW on the ternary tree

Figure 1.6: Three bins and ERBRWs

N (i)
n ; then they must return to the root node, without increasing the edge crossing

count; there they branch again, and repeat: the successive time unit will start once
they reach again the leaf, so that in the recorded N (i)

n we never see when the vertices
get empty). In both cases the vector of proportions Θn can be studied, by symmetry,
by just focusing on Θ(1)

n since Θ(2)
n = 1 − Θ(1)

n . Both constructions yield the same
stochastic process. We already mentioned that in [48] the sequence of balls thrown in
the bins is very general, and clearly it includes the case σn = µn. The aforementioned
results of no dominance and no monopoly in absence of feedback and dominance and
monopoly with positive feedback apply directly to the ERBRW on the double edge,
with and without feedback.

We can proceed similarly and consider an ERBRW between two nodes and a triple
edge with and without feedback (see Figure 1.6a; equivalently, we can think of it as an
ERBRW on the ternary tree of height one in Figure 1.6b, with the same precautions
as those adopted on the binary tree), and note that it can similarly be identified with
a time-dependent BB model with d = 3, with or without feedback. Hence the need for
the study of a generalised (that is, d > 2) time-dependent BB model, to further the
understanding of these types of ERBRWs. By Proposition 4.48 and Theorem 1.14 (no
dominance nor monopoly in absence of feedback) and Theorem 1.11 and Corollary 1.13
(dominance and monopoly with positive feedback, in particular for σn = µn), imply
that the study of dominance and monopoly for the ERBRW on multiple edges between
two nodes (or equivalently, on d-ary trees of height one) is completed, with and without
feedback.

This connection between the two models can be somehow exploited when ap-
proaching the ERBRW on graphs that do not offer an immediate identification with
BB. The main focus of the present work will be the study of ERBRW on the triangle
with no feedback. Simulations, both with and without feedback, suggest that the
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Figure 1.7: Convergence of Θn (green) to a vertex v (red) of the simplex (dominance)
and divergence of πn (blue) about πv (gray)

results obtained for BB with d = 3 and σn = µn agree with the behaviour displayed
by the random walk on the triangle. This further supports Conjecture 1.7 (which is
stated for the ERBRW with no feedback) and gives rise to a further conjecture for
ERBRW with positive feedback (which we will not treat in this work), well supported
by simulations (see Figure 1.7, a simulation for α = 2).

Conjecture 1.17. Let α > 1. Then, for the ERBRW on the triangle, P(D) = 1.

When studying ERBRWs it will be necessary to complement the general method-
ology developed in the study of BB with a much more dynamical approach. Discrete
dynamical systems have an important role in the heuristics of the arguments for BB,
but martingale theory, like in the case of SERRWs, definitely plays a much more sig-
nificant and decisive role, when carrying out those arguments. For example proving
Theorem 1.10 is fairly easy, due to {Θn} being a martingale in BB. When studying
the ERBRW, this is no longer true, and our main goal will be recovering the almost
sure convergence of {Θn} through an original implementation and development of
discrete dynamical systems techniques in a random setting. The application of dy-
namical systems to reinforced processes is a well established method: a survey on
some of these methods can be found in [39]; among them, stochastic approximation
is well-known for successfully dealing with random perturbations of a dynamical sys-
tem, usually arising as martingale differences. A survey of stochastic approximation
techniques can be found in [4]. This theory traditionally relies on ODE methods, tak-
ing advantage of slowly decaying martingale differences perturbations. The branching
we introduce in the ERRW model, however, makes the martingale increments decay
much faster than what is required to get a good approximation in the continuum via
ODE methods. Thus we develop alternative dynamical techniques, which rely on fast
decreasing martingale perturbations.
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1.6 Note for the reader

In the first part of the work we will study the ERBRW, as we consider generalised BB
(which we actually studied first) as instrumental to it: the study of BB, along with the
simulations, prompted all the conjectures proposed in this work, and set the high-level
structure of the methodology followed in analysing the ERBRW. Nonetheless Parts I
and II can be considered and read independently. The simulations aforementioned
both for the ERBRW and the corresponding dynamical system, are all run with µ = 2,
for 60 iterates.

Due to the overall level of technicality and length, we designed an appendix, where
we moved work that might be considered not essential at a first reading (Part III), or
not original (Part IV), but in some parts, which will be flagged, it will be relied upon.
Chapter A in Part III is original work that offers a window on the inner workings of
our arguments, and might also be relevant for future developments: when necessary
the reader will be referred to it; Chapter B in Part III contains a short heuristic
supplement we will not rely upon directly; Part IV contains some technical results
that come as a straightforward variation of those in [48], and have been included for
self-containedness, due to the arguments significantly relying on them.

1.7 Notation

We will adopt the standard probabilistic notation ev. for eventually and i.o. for in-
finitely often. More formally, given a sequence of events {En} in a probability space
(Ω,F,P), we define the events

{En, ev.} ..=
∞⋃
m=1

⋂
n≥m

En = {ω ∈ Ω, ∃m(ω) ∈ N, ω ∈ En ∀n ≥ m(ω)}

and

{En, i.o.} ..=
∞⋂
m=1

⋃
n≥m

En = {ω ∈ Ω, ∀m ∈ N ∃n(ω) ≥ m, ω ∈ En(ω)}.

Given real-valued random variables X, Y , we will often (especially for random times)
adopt the probabilistic notation X ∧ Y ..= min{X, Y } and X ∨ Y ..= max{X, Y }.

The complementary of an event E ⊂ Ω will always be denoted as Ec. Standard
asymptotic notations such as O, O, Ω, � and ∼ will often be adapted to the proba-
bilistic setting in the following way: Oω, Oω, Ωω, �ω and ∼ω. Throughout this work
such notation always means that, on the event considered, the constants involved in
the standard definition are random: they apply for almost all ω in the event consid-
ered, often with pointwise dependence on ω. For example if T (1)

n = Oω(µn) on Ω, this
means that for almost every ω ∈ Ω, there is a constant C = C(ω) such that

lim sup
n−→∞

∣∣∣∣T (1)
n (ω)

µn

∣∣∣∣ ≤ C(ω).

We will use this notation with some flexibility. In fact the same notation may be used
if, in particular cases, the constant applies uniformly, but only for almost all ω in any
event considered, or if it applies for every ω in the event but not uniformly. It will be
clear from the context and our comments. When we switch to standard notation, it
means that the constant applies uniformly and for all ω on the event considered.
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We will not be overly formal about vector notation. When we use row notation
for inline formulas, we mean the transpose of a column vector, as we will omit the
transpose symbol for simplicity. Thus in inline formulas all row vectors are intended
as column vectors. Also, when using boldface for asymptotic notations and numbers,
we mean that they denote vectors. For example in a 3-dimensional setting 1

3
means

(1
3
, 1

3
, 1

3
), and Θn = Oω(1) means that Θn is an almost surely vanishing 3-dimensional

random vector, that is for every ε > 0, for almost every ω there is N(ω) ∈ N such
that for all n ≥ N(ω), ‖Θn(ω)‖ < ε, for some vector norm ‖ · ‖ which will, depending
on the context, either be the 1-norm or the Euclidean norm.

We leave further comments of more specific notational character to the introduc-
tions to Parts I and II.
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Part I

Edge-reinforced branching random
walk on the triangle
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Chapter 2

Introduction

This introductory chapter provides all the technical details regarding the ERBRW on
the triangle: we first describe the process in terms of a system of iterative equations,
and then perform some manipulations so as to reduce the stochastic iterative scheme
to that of a randomly perturbed deterministic iteration map, which we refer to as
randomly perturbed dynamical system.

This is the general set-up that preludes to the analysis carried out in this part of
the work, concerning the ERBRW on the triangle. We conclude this chapter with a
high-level description of the arguments leading to our main results and a note for the
reader.

2.1 Iterative equations of the model

Let us begin with recalling the probabilistic model of the ERBRW on the triangle
outlined in Chapter 1, so as to add the necessary adjustments concerning the extension
to a possibly nonintegral branching factor µ > 1 and some discussions regarding the
nonlaziness assumption.

At time 0 we start with one particle at any of the vertices, which branches with
deterministic constant factor µ. If µ is not an integer, the interpretation of the random
walkers as particles needs to be replaced by unit and fractional masses. When a
nonintegral branching occurs, the resulting (possibly nonintegral) total mass is seen
as composed of particle-like unit masses (making up the integer part of the total mass)
and an additional fractional mass, which has a particle-like behaviour too. This will
not change the analysis significantly: we identify the unit masses with particles, while
the extra fractional mass is seen as a smaller particle. Although we will always adopt,
as the main point of view in the exposition, the analogy with particles, we will address
explicitly masses only in the isolated instances where the analysis slightly differs.

By the next time unit, the offspring particles (unit and small masses alike) will have
travelled independently through any of the incident edges at random, with probability
of choosing either one of them proportional to the positive number of edge crossings
initially deterministically assigned T (1)

0 , T (2)

0 , T (3)

0 (more in general raised to a power
of α > 1 if the feedback is positive, but we will not study positive feedback in this
part). The offspring particles cannot remain at the same vertex in the next time unit,
thus we forbid loops. Although the assumption that the graph is simple is customary
in the reinforced random walk literature, we would like to note that the model can be
extended to include loops (or even parallel edges, but in the comments that follow we
briefly only address loops). The natural way loops are counted for an edge-reinforced
model on an undirected graph, slightly differs from the graph theoretical convention
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Figure 2.1: ERBRW on the triangle with loops

(where it is customary to count loops twice, as they come with two incidences on the
same vertex). For edge-reinforced random walks it is more natural to count loops
only once, as the probabilities change with the edge crossings. Thus we can think of
a loop as a directed arc, having the same head and tail (see Figure 2.1). We will use
the word edge solely for the triangle’s undirected edges. According to this convention,
loops are at a disadvantage in a triangle. At each vertex, a loop is competing against
two incident edges, which the particles can choose to traverse from both ends. Let
i 6= j 6= k ∈ {1, 2, 3} with k referring to the occupied vertex, i, j referring to the
incident edges and k + 3 referring to the loop based at k. Given the past up to time
n, after branching, at time n + 1 each particle (unit or fractional mass alike) at the
kth vertex, independently of the others at random, traverses the ith or jth edge with
probability ψ(Θ(i)

n ,Θ
(j)
n ,Θ

(k+3)
n ) and ψ(Θ(j)

n ,Θ
(i)
n ,Θ

(k+3)
n ) respectively, while it traverses

the loop with probability ψ(Θ(k+3)
n ,Θ(i)

n ,Θ
(j)
n ), where

ψ(x, y, z) = ψ(x, z, y) =
xα

xα + yα + zα
.

This scheme puts the loops at disadvantage because the edges, once the particles have
branched enough to be scattered among all vertices, can get crossed from both ends.

The resulting dynamics is conjectured to be the following: the loops end up being
traversed negligibly many times, as they attract fewer and fewer particles. At the
same time, as the loops get progressively neglected by the particles, the dynamics on
the triangle evolves the same as that of a model with no loops. Quantitatively, loops
will simply slow down the model’s evolution towards its asymptotic behaviour with
no loops: in the beginning, through appropriate weighting of the loops, particles can
obviously be likely to be attracted to them. However, qualitatively, as the number of
particles grows and starts populating all the vertices due to random fluctuations, the
edges of the triangle, crossed from both ends, get disproportionally more competitive
against the loops. This informal heuristics, confirmed by simulations, suggests that a
model with loops is not much more interesting than a model without loops. Once it
is shown that all loops are negligibly crossed almost surely, it should be possible to
recover Theorems 1.1 and 1.3 and Corollary 1.4, by suitably adapting the arguments;
Conjecture 1.7 and Conjecture 1.17 still seem to apply. Clearly it is possible to add
loops following a different convention, that is allowing them to be traversed from both
ends, thus counting twice, but this would yield a completely different model, which is
out of our scope.
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Going back to the offspring particles on the triangle with no loops, once they
branch and traverse either of the edges, they reach the new vertices, the edge crossings
of the chosen edge are updated, and the process repeats. Each particle’s crossing
increases the edge crossings by one, so unit masses have the same effect, while factional
masses increase the edge crossings by the corresponding fraction of mass, leading to
possibly nonintegral edge crossings T (i)

n in the case of nonintegral µ. The total number
of particles and mass (for nonintegral µ) at time n is clearly still

N (1)

n +N (2)

n +N (3)

n =.. σn = µn,

and the total number of crossings up to time n is still

T (1)

n + T (2)

n + T (3)

n =.. τn = τ0 +
n∑
i=1

σi.

Thus Θ(i)
n and π(i)

n still represent the corresponding proportions of edge crossings and
particles (mass) at the vertices at time n. Recall that we exclusively work with no
feedback, thus

φ(x, y) ..=
x

x+ y

will be the function providing us with the probabilities each particle (mass) has, to
cross the incident edges. Let i 6= j 6= k ∈ {1, 2, 3} with k referring to the occupied
vertex and i, j referring to the incident edges. Given the past up to time n, after
branching, at time n+1 each particle (unit or fractional mass alike) at the kth vertex,
independently of the others at random, traverses the ith or jth edge with probability
φ(Θ(i)

n ,Θ
(j)
n ) and φ(Θ(j)

n ,Θ
(i)
n ) respectively. Since the number of particles traversing one

of the incident edges from the kth vertex at time n + 1( according to the diagram
in Figure 1.1) is a binomial random variables B(k)

n+1, in the case of nonintegral µ
the binomial B(k)

n+1 will denote the total amount of integral mass traversing one of
the incident edges from the kth vertex at time n + 1, and will therefore not be
sufficient to denote the total mass traversing the edge. It will be necessary to add to
the binomial, the fractional mass traversing the corresponding edge, by exploiting a
Bernoulli random variable I (k)

n+1 suitably rescaled to the fraction. We now formalise
this through the model’s equations.

For integral µ, {B(i)

n+1} are binomial random variables distributed, conditionally
on the past, as follows:

B(1)

n+1 ∼ Bin(µN (1)

n , φ(Θ(3)

n ,Θ
(2)

n )) (2.1)

B(2)

n+1 ∼ Bin(µN (2)

n , φ(Θ(1)

n ,Θ
(3)

n )) (2.2)

B(3)

n+1 ∼ Bin(µN (3)

n , φ(Θ(2)

n .Θ
(1)

n )), (2.3)

and are otherwise independent of each other and the past. Denote, as customary, the
supporting probability space (Ω,F,P) endowed with the filtration {Fn}n∈N0 , where
F0 = {∅,Ω}, Fn

..= σ(B1, . . . , Bn) for all n ∈ N and F∞
..= σ (

⋃∞
n=0 Fn). We

will denote by PFn , EFn , VarFn and CovFn the conditional probability, expectation,
variance and covariance respectively.

For nonintegral µ, {B(i)

n+1} are binomial random variables and {I (i)

n+1} are Bernoulli
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random variables distributed, conditionally on the past, as follows:

B(1)

n+1 ∼ Bin(bµN (1)

n c, φ(Θ(3)

n ,Θ
(2)

n )) (2.4)

B(2)

n+1 ∼ Bin(bµN (2)

n c, φ(Θ(1)

n ,Θ
(3)

n )) (2.5)

B(3)

n+1 ∼ Bin(bµN (3)

n c, φ(Θ(2)

n ,Θ
(1)

n )), (2.6)

I (1)

n+1 ∼ Ber(φ(Θ(3)

n ,Θ
(2)

n )) (2.7)

I (2)

n+1 ∼ Ber(φ(Θ(1)

n ,Θ
(3)

n )) (2.8)

I (3)

n+1 ∼ Ber(φ(Θ(2)

n ,Θ
(1)

n )), (2.9)

otherwise independent of each other and the past. Clearly the filtration will be Fn
..=

σ(B1, I1, . . . , Bn, In) instead. As aforementioned, we will add {I (i)

n+1} to the binomials,
upon rescaling by the factors {µN (1)

n }, {µN (2)
n }, {µN (3)

n } respectively, where {·} denotes
the fractional part. This will lead, for nonintegral µ, to the definition of the random
variables

B̃(1)

n+1
..= B(1)

n+1 + {µN (1)

n }I
(1)

n+1 (2.10)

B̃(2)

n+1
..= B(2)

n+1 + {µN (2)

n }I
(2)

n+1, (2.11)

B̃(3)

n+1
..= B(3)

n+1 + {µN (3)

n }I
(3)

n+1. (2.12)

The iterative description of our model, reflected in Figure 1.1, turns into a system of
difference equations (for nonintegral µ, we simply replace B(i)

n+1 with B̃(i)

n+1).

For integral µ we obtain

T (1)

n+1 = T (1)

n + µN (3)

n +B(2)

n+1 −B
(3)

n+1 (2.13)

T (2)

n+1 = T (2)

n + µN (1)

n +B(3)

n+1 −B
(1)

n+1 (2.14)

T (3)

n+1 = T (3)

n + µN (2)

n +B(1)

n+1 −B
(2)

n+1 (2.15)

N (1)

n+1 = µN (2)

n +B(3)

n+1 −B
(2)

n+1 (2.16)

N (2)

n+1 = µN (3)

n +B(1)

n+1 −B
(3)

n+1 (2.17)

N (3)

n+1 = µN (1)

n +B(2)

n+1 −B
(1)

n+1. (2.18)

while for nonintegral µ we obtain the same equations, but with every term B(k)

n+1

replaced by B̃(k)

n+1. For simplicity of exposition, it is best to simply work with only one
notation, with the understanding that when µ is not an integer everywhere a binomial
B(k)

n+1 appears, it should be replaced by B̃(k)

n+1. This will be beneficial since there will

be very few places, in the analysis, where the random variables B̃(k)

n+1 will have to be
dealt with separately, with a specific approach.

These equations can be trivially manipulated to yield the corresponding equations
for the proportions of edge crossings

Θ(1)

n+1 =
τn
τn+1

Θ(1)

n +
σn+1

τn+1

π(3)

n +
1

τn+1

(B(2)

n+1 −B
(3)

n+1)

Θ(2)

n+1 =
τn
τn+1

Θ(2)

n +
σn+1

τn+1

π(1)

n +
1

τn+1

(B(3)

n+1 −B
(1)

n+1)

Θ(3)

n+1 =
τn
τn+1

Θ(3)

n +
σn+1

τn+1

π(2)

n +
1

τn+1

(B(1)

n+1 −B
(2)

n+1),
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and for the proportions of particles (mass) at the vertices

π(1)

n+1 = π(2)

n +
1

σn+1

(B(3)

n+1 −B
(2)

n+1)

π(2)

n+1 = π(3)

n +
1

σn+1

(B(1)

n+1 −B
(3)

n+1)

π(3)

n+1 = π(1)

n +
1

σn+1

(B(2)

n+1 −B
(1)

n+1).

Note that

τn = τ0 +
n∑
i=1

σi = τ0 +
n∑
i=1

µi = τ0 +
1− µn+1

1− µ
− 1 = τ0 +

µ

µ− 1
(µn − 1).

Next we extract the martingale parts by adding and subtracting the conditional ex-
pectations, which happen to be the same for both cases, integral and nonintegral µ.
In fact, conditionally on the corresponding Fn, both B(i)

n+1 and B̃(i)

n+1 have the same
expectation, due to integer part and fractional part adding up to the original total
mass, and the probability parameter of the I (i)

n+1 being the same as that of the bino-
mial. Thus we have another set of equations holding for both integral and nonintegral
µ, with the usual understanding that one must replace the B(i)

n+1 with the B̃(i)

n+1:

Θ(1)

n+1 = Θ(1)

n +
σn+1

τn+1

(−Θ(1)

n + π(2)

n φ(Θ(1)

n ,Θ
(3)

n ) + π(3)

n φ(Θ(1)

n ,Θ
(2)

n )) + S(1)

n+1 (2.19)

Θ(2)

n+1 = Θ(2)

n +
σn+1

τn+1

(−Θ(2)

n + π(3)

n φ(Θ(2)

n ,Θ
(1)

n ) + π(1)

n φ(Θ(2)

n ,Θ
(3)

n )) + S(2)

n+1 (2.20)

Θ(3)

n+1 = Θ(3)

n +
σn+1

τn+1

(−Θ(3)

n + π(1)

n φ(Θ(3)

n ,Θ
(2)

n ) + π(2)

n φ(Θ(3)

n ,Θ
(1)

n )) + S(3)

n+1 (2.21)

π(1)

n+1 = π(3)

n φ(Θ(2)

n ,Θ
(1)

n ) + π(2)

n φ(Θ(3)

n ,Θ
(1)

n ) +R(1)

n+1 (2.22)

π(2)

n+1 = π(1)

n φ(Θ(3)

n ,Θ
(2)

n ) + π(3)

n φ(Θ(1)

n ,Θ
(2)

n ) +R(2)

n+1 (2.23)

π(3)

n+1 = π(2)

n φ(Θ(1)

n ,Θ
(3)

n ) + π(1)

n φ(Θ(2)

n ,Θ
(3)

n ) +R(3)

n+1 (2.24)

where for each n ∈ N0 we have defined

S(1)

n+1
..=

1

τn+1

(B(2)

n+1 − µN (2)

n φ(Θ(1)

n ,Θ
(3)

n )) +
1

τn+1

(µN (3)

n −B
(3)

n+1 − µN (3)

n φ(Θ(1)

n ,Θ
(2)

n ))

(2.25)

S(2)

n+1
..=

1

τn+1

(B(3)

n+1 − µN (3)

n φ(Θ(2)

n ,Θ
(1)

n )) +
1

τn+1

(µN (1)

n −B
(1)

n+1 − µN (1)

n φ(Θ(2)

n ,Θ
(3)

n ))

(2.26)

S(3)

n+1
..=

1

τn+1

(B(1)

n+1 − µN (1)

n φ(Θ(3)

n ,Θ
(2)

n )) +
1

τn+1

(µN (2)

n −B
(2)

n+1 − µN (2)

n φ(Θ(3)

n ,Θ
(1)

n ))

(2.27)

R(1)

n+1
..=

1

σn+1

(B(3)

n+1 − µN (3)

n φ(Θ(2)

n ,Θ
(1)

n )) +
1

σn+1

(µN (2)

n −B
(2)

n+1 − µN (2)

n φ(Θ(3)

n ,Θ
(1)

n ))

(2.28)

R(2)

n+1
..=

1

σn+1

(B(1)

n+1 − µN (1)

n φ(Θ(3)

n ,Θ
(2)

n )) +
1

σn+1

(µN (3)

n −B
(3)

n+1 − µN (3)

n φ(Θ(1)

n ,Θ
(2)

n ))

(2.29)

R(3)

n+1
..=

1

σn+1

(B(2)

n+1 − µN (2)

n φ(Θ(1)

n ,Θ
(3)

n )) +
1

σn+1

(µN (1)

n −B
(1)

n+1 − µN (1)

n φ(Θ(2)

n ,Θ
(3)

n ))

(2.30)
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2.2 Reduction to a perturbed dynamical system

Recall that Σ ..= {p ∈ R3 : p1 +p2 +p3 = 1, p1, p2, p3 ≥ 0}. Let the set of vertices of Σ
be V ..= {v1, v2, v3} (where vi is the ith element of the canonical basis of R3) and the
set of edges (with endpoints removed) of Σ be E ..= {E1, E2, E3} (where Ei denotes
the edge opposite to vi). Let ∂Σ denote the boundary of Σ and Σ̊ the interior of Σ.
Let

Mp
..=

 0 φ(p3, p1) φ(p2, p1)
φ(p3, p2) 0 φ(p1, p2)
φ(p2, p3) φ(p1, p3) 0

 =

 0 p3

p1+p3

p2

p1+p2
p3

p2+p3
0 p1

p1+p2
p2

p2+p3

p1

p1+p3
0

 .

For each Θ ∈ Σ0
..= Σ \ V the matrix MΘ is well defined, (2.19) to (2.24) can be

rewritten as

πn+1 = MΘnπn +Rn+1 (2.31)

Θn+1 = Θn + ρn+1(1−Θn − πn − πn+1) = Θn + ρn+1(1−Θn − πn −MΘnπn) + Sn+1

(2.32)

where
ρn+1

..=
σn+1

τn+1

,

having used the fact that S(i)

n+1 = −ρn+1R
(i)

n+1 for all i ∈ {1, 2, 3}. Note that since
for all i ∈ {1, 2, 3}, T (i)

0 > 0, Θ0 6∈ ∂Σ; also, by (2.13) to (2.15) for all i ∈ {1, 2, 3},
T (i)

n+1 ≥ T (1)
n , hence for all n ∈ N0, Θn 6∈ ∂Σ.

Due to the denominators τn+1 and σn+1, which grow geometrically fast, the mar-
tingale differences will be shown to be negligible to some degree, so by dropping them
from (2.31) and (2.32), one will be left with the predictable component of the pro-
cess. It is a dynamical system that will most likely drive the asymptotic behaviour
of the stochastic process. This observation is at the core of our method. We study
the predictable component of the process as a dynamical system in its own right, and
therefore we change notation from (Θ, π) to (p, q). This yields the discrete nonlinear,
nonautonomous dynamical system

qn+1 = Mpnqn (2.33)

pn+1 = (1− ρn)pn + ρn+1(1− qn − qn+1) (2.34)

well defined on Σ0 × Σ. Note that

ρn =
µn

τ0 − µ
µ−1

+ µn µ
µ−1

−→ ρ ..=
µ− 1

µ

as n −→∞. Replacing ρn by its limit ρ in (2.33) and (2.34) will simplify the analysis
of the dynamical system, so one can study

qn+1 = Mpnqn (2.35)

pn+1 = (1− ρ)pn + ρ(1− qn − qn+1) (2.36)

instead, which is well defined on Σ0 × Σ. Note that (2.36) is a convex combination
of the past (pn) and the update (1 − qn − qn+1). To further simplify this system, we
shall let ρ = 1 in (2.36), so as to suppress the past component of (2.35) and (2.36),
which yields

qn+1 = Mpnqn (2.37)

pn+1 = 1− qn − qn+1. (2.38)
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This iteration is well defined on Σ2
0 and, for every i ∈ {1, 2, 3}, it is well defined

also for p0 ∈ Ei with q0 ∈ Σ0 ∪ {vi}. This represents the starting point of our
analysis. Our main goal is to prove almost sure convergence of the process, via
gaining knowledge of the asymptotic behaviour of the sample paths. However, the
facts proved to obtain almost sure convergence will be powerful enough to yield further
results, involving preferential attachment. This knowledge is indeed very helpful in
ruling out monopoly, in determining which asymptotics are nonnegligible, and is likely
to be the key in proving the conjectured negligibility of dominance.

2.3 Outline of contents

The convergence argument for the stochastic process is better understood by starting
from an overview of the two main results concerning the dynamical systems afore-
mentioned. The first result is its convergence.

Theorem 2.1. For any orbit, {pn} converges to some p∗ ∈ Σ, depending on the initial
condition.

Let qp ..= (1 − p)/2, that is, the halved reflection about 1
3

(the centre of the
simplex). In Remark 3.13 we show that ‖qn− qpn‖1 converges to a limit `, depending
on the initial conditions. For all p ∈ ∂Σ \ V denote e−1(p), the eigenvector of Mp

corresponding to the eigenvalue −1 (in Lemma 3.19 we show all the properties of Mp).
Recall that Σ∗ denotes the portion of Σ delimited by its medial triangle (boundary
excluded), thus its closure Σ

∗
is the medial triangle. We now state our second main

result, following from the convergence of {pn}.

Corollary 2.2. For any orbit, {qn} either converges in Σ
∗

or is asymptotic to the
2-cycle {

qp∗ ±
`

2
e−1(p∗)

}
,

where p∗ ..= limn−→∞ pn and ` ..= limn−→∞ ‖qn− qpn‖1, depending on the initial condi-
tion.

The dynamical system does offer significant challenges, and a large portion of
this part will be dedicated to it. Since the same methods that work for the system
obeying (2.37) and (2.38), with technical adjustments, work also for the one obeying
(2.35) and (2.36) (which is studied in Chapter A, producing analogous results) and
consequently for the more general (2.33) and (2.34); for simplicity we will focus this
outline on (2.37) and (2.38), which is studied in Chapter 3.

We start by identifying the equilibrium points of the system: {(p, qp) : p ∈ Σ}.
We distinguish these equilibria between internal ones (when p 6∈ ∂Σ) and boundary
ones (when p ∈ ∂Σ). The standard stability analysis is not fruitful, due to the num-
ber of dimensions of the system and the density of the equilibrium points. Hence we
introduce a nonnegative potential V (p, q) ..= ‖q − qp‖1. In Section 3.2 it is shown
that this potential yields, loosely speaking, a gradient-like dynamics, since it is nonin-
creasing along the orbit of the dynamical system. However, the iteration map of the
system is not defined on a compact set and the equilibria are dense: therefore most
standard topological dynamical results involving gradient-like systems do not apply
to this specific system. Nonetheless, admitting a potential is still a valuable property
of the system, and it will allow us to build tools to show convergence of the system.
Since the potential is a monotone nonincreasing function on the orbits, it has a limit
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Figure 2.2: Convergence of pn (green) and qn (blue) to internal equilibrium points
(p, qp) (in red)

` ≥ 0. In Proposition 3.15 it is shown that if {pn} is bounded away from ∂Σ, then
the potential decays geometrically along the orbits, and convergence of {(pn, qn)} to
one of the internal equilibrium points follows. In Figure 2.2 it is possible to get an
intuitive understanding of this fact by observing the output of a Python simulation
(µ = 2).

The methodology just described is at the core of our approach. For this system,
finding suitable initial conditions, from which a specific asymptotic behaviour follows,
is infeasible. Rather, we prescribe some generic asymptotic behaviour for {pn} (for
instance being bounded away from ∂Σ) and prove the convergence as a result. Hence
we devise a case analysis of mutually exclusive asymptotic behaviours, and prove
convergence of {pn} for each of them. This cannot be done without understanding
{qn}’s asymptotics. Proposition 3.15 takes care of the case, when {pn} is bounded
away from ∂Σ (and ` = 0). There are two other mutually exclusive cases: {pn}
approaches the boundary with either ` = 0 or ` > 0. In each of these cases we
distinguish between two subcases: convergence to any of the vertices of Σ; existence
of a subsequence of {pn}, bounded away from the vertices of Σ. We also make the
following conjecture, well supported by numerical evidence.

Conjecture 2.3. For any orbit, {pn} never converges to a vertex of the simplex.

This conjecture is not required in order to show convergence of the stochastic
process {Θn}. However, it is a crucial part of a tentative argument for Conjecture 1.7,
which states that {Θn} almost never converges to the vertices of the simplex.

In Section 3.4 it is shown that if ` = 0 and {pn} approaches the boundary, with
a subsequence {pnj} bounded away from the vertices, the system will approach a
boundary equilibrium point based at an edge (recall that the edges Ei have been
defined with the endpoints removed), from which {(pn, qn)} can be shown to converge
to a (possibly different) boundary equilibrium point based on the same edge, that is



30

(p, qp) with p in the edge (thus, not a vertex). This is the conclusion reached with
Theorem 3.27. The build up to this theorem is a list of technical lemmas that deal
with the representation of the dynamical system via eigencoordinates (with respect
to the eigenvectors of Mp, lying on the linear space, to which the simplex is parallel)
and the handling of the error terms arising from the representation. The change
of coordinates captures the oscillatory nature of the dynamical behaviour of {qn},
which contributes to the convergence of {pn} (by looking at Figure 2.2, it is rather
evident that oscillations are also involved when converging to an internal equilibrium;
however, in that case the proof does not need to rely on them). To this argument,
the assumption of the existence of a subsequence of {pn} bounded away from the
vertices is essential: it would not work, by solely relying on an initial condition, close
enough to some suitable boundary equilibrium. Equivalently, it is not known whether
this asymptotic boundary behaviour is actually displayed by the system or not. In
the many simulations we performed, it never appeared. If it does happen for some
initial conditions, the basin of attraction has to necessarily be meagre (this will follow
from Section 3.5). On the other hand, Proposition 3.17 shows that it is possible,
for the case in which {pn} is bounded away from the boundary, to identify an open
neighbourhood of initial conditions in Σ close enough to an internal equilibrium, such
that the system converges to a (possibly different) internal equilibrium.

This discussion brings us to the last question to be answered about the dynamical
system: is the dynamical system also convergent when ` > 0, {pn} approaches the
boundary and there is a subsequence of {pn} bounded away from the vertices? If
yes, is this last hypothesis necessary, or we can identify an open neighbourhood of
initial conditions for the convergence? This is dealt with in Section 3.5, and it is
the case in which the system displays the richest asymptotics, that is convergence
of {pn} in an edge, but divergence of {qn} (more precisely, it is asymptotically 2-
periodic). This is the content of Theorem 3.48, and the build up to this theorem
requires a new toolbox: a complete description of the set of accumulation points of
the orbits, explored through the asymptotics of the system under boundary initial
conditions (that is with p0 ∈ ∂Σ \ V ), which yield boundary orbits (orbits such that
eventually pn ∈ ∂Σ). The study of boundary orbits is conducted in Section 3.5.1
and the results are the following: we have convergence of {pn} within the edge, on
which the initial condition is, away from the vertices; we have either convergence of
{qn} in ∂Σ∗ or asymptotic 2-periodicity of {qn}. In Section 3.5.2 this result is used to
derive the description of the set of accumulation points of regular orbits (that is, such
that eventually pn ∈ Σ̊) approaching the boundary. This set is not very informative
as a whole, but when fixing the specific value of ` > 0 for the orbit considered, it
narrows down to only two possible configurations: for any p chosen on an edge, qn
approaches, oscillating, two points, denoted as q and q̂, which lie on either side of qp
in the direction of the eigenvector of Mp corresponding to the eigenvalue −1 (denoted
as e−1(p), see Figure 2.3 for a Python simulation with µ = 2).

Although the eigenvectors are the key to understanding the system, the oscillations
of {qn} being bounded away from {qpn} makes a change to eigencoordinates not
fruitful, when ` > 0. In Lemma 3.46 the asymptotic oscillations are shown to give rise
to a geometric decay of the component of {pn} that vanishes along the subsequence
aforementioned, and this couples with a geometric upper bound on the increments
of one of the two other components, as shown in Lemma 3.47; all of which yields
convergence of {pn} as per Theorem 3.48, where we feed one estimate into the other,
through a suitably engineered sequence of hitting times. The set-up of this argument
relies only on the initial conditions belonging to a suitably small open neighbourhood
of an oscillatory limit configuration. The existence of such a neighbourhood, starting
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Figure 2.3: Convergence of pn (green) to a boundary limit p (red) and asymptotic
oscillation of qn (blue) about (qp) (red) along the eigendirection e−1(p) (violet)

within which the system tends to a (possibly different) limit configuration of the
same type on the same edge, shows that, as anticipated, it is not possible, for the
limit points in the boundary case ` = 0, to have a fat basin of attraction. Because of
the density of the two sets of accumulation points (the one in the boundary case ` > 0
and the one in the boundary case ` = 0), a contradiction would follow, if this were
true, as the two neighbourhoods would intersect. This suggests that the set of initial
conditions for the boundary case having ` = 0 should be at least meagre, possibly
negligible.

The work in Chapter 3 can be generalised for the dynamical system described by
(2.35) and (2.36): this is done in Chapter A: it has its own challenges, but they are of
technical nature. Generalising the results in Chapter A to the general case described
by (2.33) and (2.34) is trivial and can directly be dealt with while studying the
stochastic process’s sample paths, which is done in Chapter 4. We see the stochastic
process obeying (2.31) and (2.32) with regular initial conditions (that is T (i)

0 > 0 for all
i ∈ {1, 2, 3}) as a randomly perturbed dynamical system, so that its sample paths can
be analysed through the work made on the dynamical system, by taming the random
perturbations coming from the martingale increments Rn+1 and Sn+1. The geometric
growth of the number of particles in the system ensures that a geometrically decaying
upper bound eventually holds for these perturbation terms (Lemma 4.1). This allows
enough control, to be able to proceed pointwise in ω ∈ Ω, with Ω partitioned suitably
into events that match the case analysis of the deterministic system (recall the events
defined in Chapter 1, right after Definition 1.2). In this fashion we prove Theorem 1.1,
stating that {Θn} converges almost surely to a random variable Θ. Although it is
not the main objective of our work, as it is a far easier case to analyse, it is worth
noting that in Section 4.5.1, in analogy with the results obtained for the dynamical
system, we derive convergence of {Θn} also for boundary initial conditions, that is
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when there is exactly one i ∈ {1, 2, 3} such that T (i)

0 = 0: this is the content of
Theorem 4.26. In this case the stochastic process is more rigid. We show that {Θn}
converges almost surely to a point Θ in the edge to which the initial condition Θ0

belongs, and that whether {πn} diverges or converges is almost surely determined
by the initial condition π0 (in particular, if there is a component of π0 − πΘ0 along
e−1(Θ0), {πn} almost surely diverges; otherwise it almost surely converges to πΘ).
Overall Chapter 4 is a further generalisation of the deterministic case previously
discussed, and it is the most technical section, due to how riddled some estimates
get when perturbed. Theoretically speaking, it is a self-contained chapter. However,
we preferred an exposition that relies on the chapters dedicated to the dynamical
system, which have thus been included. This sheds more light on the methodology we
followed, and benefits the reader’s understanding, even though it comes at the price
of a longer presentation.

In Section 4.7 we show that the two asymptotic behaviours of convergence of
{(Θn, πn)} to internal equilibria and convergence of {Θn} only, to the boundary
(away from the vertices) are both nonnegligible events. Informally, we refer to them
as typical. In Figures 1.3 and 1.4 one can observe, by comparison, how well the
process’s typical sample paths align, after a few noticeable initial fluctuations, with
the typical orbits of the dynamical system, which can be observed in Figures 2.2
and 2.3. The approach to this result is algorithmic. An iterative sequence of moves,
each having positive probability, is devised to approach arbitrarily either of the two
limit configurations. We show this by relying on two particular cases:

{
1
3
, 1
3

}
and

{((0, 1/2, 1/2) , (3/4, 1/8, 1/8)) , ((0, 1/2, 1/2) , (1/4, 3/8, 3/8))}, but it could have been any other
configurations of the same type. Theorem 1.3 shows, via a probabilistic argument ex-
ploiting moderate deviations of the binomials from their mean, that it is possible
to get close enough to these configurations at the same time that the negligibility
of the martingale increments kicks in, thus allowing the workings of Proposition 4.8
and Theorem 4.42 (the random analogue of Proposition 3.17 and Theorem 3.48) to
drive the system to the corresponding type of asymptotic behaviour.

In Section 4.8 the properties of the sample paths investigated while studying the
convergence of the stochastic process are combined with a martingale argument (ini-
tially devised for BB) exploiting the predictable quadratic variation, so as to show,
in Theorem 1.6, that almost surely all edges get infinitely many crossings from the
particles. This means that it almost never happens that one or two edges get only
finitely many crossings of particles. Therefore monopoly does not occur.

To conclude, in Section 4.9 we show some progress made towards proving Conjec-
ture 1.7 (negligibility of dominance). The conjecture rests on several grounds: firstly,
simulations support it; next, the connection with BB and Theorem 1.10, stating that
no feedback implies negligible dominance for any number of bins d ≥ 2 (in particular
for d = 3); lastly, the quantitative estimate of Proposition 4.48, obtained through a
bootstrap argument involving martingale theory, coupled with nonautonomous lin-
ear dynamical systems results stemming from the works of Perron, Frobenius and
Poincaré. This estimate in particular suggests that the stochastic process would fol-
low very closely the deterministic dynamical system, when near the vertices. Since
the simulations we performed strongly suggest that the dynamical system does not
tend to the vertices, proving Conjecture 1.7 seems likely to require a deeper study of
the dynamical system near the vertices, so as to show Conjecture 2.3 first. This is
a task, for which we still have to develop the necessary toolbox and it also justifies
keeping the study of the dynamical system conducted in Chapter 3 as the core of the
first part of this dissertation. There is in fact still work to be done on the dynamical
aspects of the problem.
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Due to the challenges offered by the case α = 1, we have not yet attempted the
study of the ERBRW with positive feedback. However, both simulations and the
success in showing Theorem 1.11 for any number of bins d ≥ 2, which applies to
several regimes of growth, including σn = µn, give us confidence that dominance is
almost sure when feedback is added to the ERBRW (Conjecture 1.17).

2.4 Note for the reader

In Section 4.5.1 we focus on the study of the model with boundary initial conditions,
which is much easier. If the reader has no interest in it or does not need the intuition
it provides on the workings of the model, this section can be skipped as it has no
consequences for the study of regular initial conditions, which is the main goal of this
work.

At times, in Section 4.5.2 we will rely on some results in Chapter A: by no means
this requires that the whole of Chapter A be read. The results quoted will suffice,
and it is very likely that, having gone through Chapter 3, the reader will be able to
fill in the gaps without even reading the arguments. At other times the results from
Chapter A are mentioned merely for comparison.
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Chapter 3

The dynamical system with ρ = 1

In this chapter the convergence of {pn} for the dynamical system described by (2.37)
and (2.38) is shown. For one-step iterations arguments, a less cumbersome notation
will sometimes be used, in order to omit the time index, and (2.37) and (2.38) will
often be written as

q̂ = Mpq

p̂ = 1− q − q̂,

where we recall that

Mp
..=

 0 p3

p1+p3

p2

p1+p2
p3

p2+p3
0 p1

p1+p2
p2

p2+p3

p1

p1+p3
0

 .

3.1 Preliminaries

In this section we motivate some preliminary reductions, which can be made in order
to formally simplify the study of the dynamical system. Since for the stochastic
process described by (2.31) and (2.32), Θn ∈ Σ̊ for all n ∈ N0, one could think that
our interest is limited to initial conditions such that p0 6∈ ∂Σ. This seems also a
natural choice for the deterministic dynamical system, being the iteration matrix in
(2.37) not well defined on V ⊂ ∂Σ. However, in general we will consider p0 ∈ Σ0,
especially in Section 3.5.1; the reason is that, as we will see, p0 ∈ ∂Σ \ V yields a
boundary orbit.

Definition 3.1. A boundary orbit is an orbit of the dynamical system {(pn, qn)},
such that eventually pn ∈ ∂Σ \ V .

The importance of boundary orbits arises from being helpful in studying regular
orbits that approach the boundary.

Definition 3.2. A regular orbit is an orbit of the dynamical system {(pn, qn)}, such
that eventually pn ∈ Σ̊.

Regular orbits are the more challenging to study and the more informative about
the stochastic process, and thus the main object of our interest. The following remark
shows what can go wrong when allowing both p0 and q0 in the boundary of the simplex
without any further restrictions.

Remark 3.3. Let p0 ∈ Ei and q0 = vj for some i 6= j ∈ {1, 2, 3}. Then p1 = vk,
with i 6= j 6= k ∈ {1, 2, 3}, which is inadmissible for the iteration scheme described by
(2.37) and (2.38).
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Proof. Without loss of generality, by symmetry, assume i = 1 and j = 2. Let p0 =
(0, p(2)

0 , 1− p
(2)

0 ) and denote a = φ(p(2)

0 , p
(3)

0 ). As

q1 =

 0 1 1
1− a 0 0
a 0 0

0
1
0

 =

1
0
0

 ,

it follows that
p1 = 1− v1 − v2 = v3,

thus (2.37) is inconsistent, since Mv3 is not well-defined.

This justifies why, although for the stochastic process we have that π0 ∈ V , we
cannot assume an arbitrary q0 ∈ V for the dynamical system, if we let p0 be on
the boundary of the simplex. There is only one case, which does not lead to an
inconsistent iteration, and the resulting orbit is quite trivial, as it can be seen from
the following remark.

Remark 3.4. Let p0 ∈ Ei and q0 = vi for some i ∈ {1, 2, 3}. Then pn = p0 for all
n ∈ N and qn is 2-periodic.

Proof. Without loss of generality, by symmetry, assume i = 1. Let p0 = (0, p(2)

0 , 1−p
(2)

0 )
and denote a = p(2)

0 . As

q1 =

 0 1 1
1− a 0 0
a 0 0

1
0
0

 =

 0
1− a
a

 ,

it follows that

p1 = 1− v1 −

 0
1− a
a

 =

 0
a

1− a

 = p0

and

q2 =

 0 1 1
1− a 0 0
a 0 0

 0
1− a
a

 =

1
0
0

 = q0.

By induction this shows that qn is 2-periodic, with pn fixed.

The same happens, with one-step delay, to any initial condition p0 6∈ ∂Σ and
q0 ∈ V . The vertex pushes p1 to the correct edge, so as to start the 2-cycle, as the
following remark shows.

Remark 3.5. Let p0 6∈ ∂Σ and q0 ∈ V . Then pn = p1 for all n ∈ N and qn is
2-periodic.

Proof. By symmetry, without loss of generality, this can be shown by perform-
ing the computation for this specific starting point q0 = (1, 0, 0). Since q1 =
(0, φ(p(3)

0 , p
(2)

0 ), φ(p(2)

0 , p
(3)

0 )) = (0, 1− a, a), where we defined a ..= φ(p(2)

0 , p
(3)

0 ), and since
p0 6∈ ∂Σ, we have that 0 < a < 1. It follows that p1 = 1− q1− q0 = (0, a, 1− a) ∈ ∂Σ.
Then

Mp1 =

 0 1 1
1− a 0 0
a 0 0


and as a result q2 = q0. Thus p2 = 1 − q2 − q1 = 1 − q0 − q1 = p1 and q3 = q2. The
orbit {(pn, qn)} is an eventual 2-cycle, since except for (p0, q0), it oscillates between
the values (p1, q1) and (p1, q0) previously determined.
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Since q0 ∈ V yields only boundary orbits, whose asymptotic behaviour is easily
computed in any case except for the nonadmissible one, we can assume q0 6∈ V and
avoid unnecessary technicalities in various hypotheses of our claims, when dealing
with regular orbits. Furthermore, it is easy to show that p0 ∈ ∂Σ \ V always yields
boundary orbits, when q0 is admissible, so when dealing with regular orbits we can
assume p0 6∈ ∂Σ.

Remark 3.6. Let p0 ∈ Ei for some i ∈ {1, 2, 3} and q0 6= vj for every j ∈ {1, 2, 3} \
{i}. Then p(i)

n = 0 for all n ∈ N.

Proof. By symmetry, without loss of generality, assume that i = 1, that is p0 ∈ E1,
which is equivalent to p(1)

0 = 0 and 0 < p(2)

0 < 1. Then since q0 6= v1,

p1 = 1− q0 −

 0 1 1
1− p(2)

0 0 0
p(2)

0 0 0

 q0.

From the form taken by Mp0 , it follows immediately that p(1)

1 = 0. Therefore, by
induction, it follows that for all n ∈ N0, p(1)

n = 0, that is we are in presence of a
boundary orbit on the edge E1.

When p0 6∈ ∂Σ, we can also assume q0 6∈ ∂Σ, since the case with q0 on an edge
reduces to the case where q0 is in the interior.

Remark 3.7. Let p0 6∈ ∂Σ and q0 ∈ Ei for some i ∈ {1, 2, 3}. Then p1 6∈ ∂Σ and
q1 6∈ ∂Σ.

Proof. By symmetry, without loss of generality, we can show the claim via explicit
calculation for q0 = (0, a, 1 − a), with 0 < a < 1. Since p0 6∈ ∂Σ, it follows that
q1 6∈ ∂Σ because

q1 =

aφ(p(3)

0 , p
(1)

0 ) + (1− a)φ(p(2)

0 , p
(1)

0 )
(1− a)φ(p(1)

0 , p
(2)

0 )
aφ(p(1)

0 , p
(3)

0 )


and φ(p(i)

0 , p
(j)

0 ) = 0 if and only if p(i)

0 = 0 (which is not allowed). Hence

p1 = 1− q1 − q0 =

1− aφ(p(3)

0 , p
(1)

0 )− (1− a)φ(p(2)

0 , p
(1)

0 )
(1− a)φ(p(2)

0 , p
(1)

0 )
aφ(p(3)

0 , p
(1)

0 )

 6∈ ∂Σ,

since φ(p(i)

0 , p
(j)

0 ) = 1 if and only if p(j)

0 = 0 (which is not allowed) and therefore the
convex combination subtracted to 1 in the first component is subunitary (while the
other terms are nonzero).

As a result the case when p0 6∈ ∂Σ and q0 ∈ ∂Σ\V has been reduced to that of an
orbit not starting at the boundary, since one can relabel (p1, q1) as (p0, q0) and then
apply the following remark.

Remark 3.8. If p0 6∈ ∂Σ and q0 6∈ ∂Σ, then pn 6∈ ∂Σ and qn 6∈ ∂Σ for all n ∈ N.

Proof. It is enough to show that if for some n ∈ N0, pn 6∈ ∂Σ and qn 6∈ ∂Σ, then
pn+1 6∈ ∂Σ and qn+1 6∈ ∂Σ. First note that

qn+1 =

φ(p(3)
n , p

(1)
n )q(2)

n + φ(p(2)
n , p

(1)
n )q(3)

n

φ(p(3)
n , p

(2)
n )q(1)

n + φ(p(1)
n , p

(2)
n )q(3)

n

φ(p(2)
n , p

(3)
n )q(1)

n + φ(p(1)
n , p

(3)
n )q(2)

n

 6∈ ∂Σ,
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which follows from φ(p(i)
n , p

(j)
n ) = 0 if and only if p(i)

n = 0 (which is not the case) and
q(i)
n 6= 0 for all i ∈ {1, 2, 3}. Denote by J a 3 by 3 matrix of ones and define

Mpn
..= J − I −Mpn =

 0 φ(p(1)
n , p

(3)
n ) φ(p(1)

n , p
(2)
n )

φ(p(2)
n , p

(3)
n ) 0 φ(p(2)

n , p
(1)
n )

φ(p(3)
n , p

(2)
n ) φ(p(3)

n , p
(1)
n ) 0

 .

Then
pn+1 = 1− (Mpn + I)qn = Jqn − (Mpn + I)qn = Mpnqn.

Since Mpn has the same entries as Mpn , but swapped within the columns, pn+1 6∈ ∂Σ
for the same reasoning applied to qn+1. The claim now follows by induction, from the
initial conditions given.

Unless otherwise stated, all orbits will be considered having regular initial condi-
tions.

Definition 3.9. We call regular initial conditions, those yielding regular orbits, and
boundary initial conditions, those yielding boundary orbits.

Remark 3.10. As a result of these introductory remarks, not only p0 6∈ ∂Σ and q0 6∈
∂Σ are regular initial conditions, but studying the system for such initial conditions
is equivalent to studying it for all regular initial conditions.

We conclude with a general property which will be exploited later on.

Remark 3.11. If pn+1 − pn −→ 0 as n −→ ∞ and pn does not converge to any of
the vertices, then there is a subsequence {pnj}j∈N bounded away from V .

Proof. By contradiction, if there is no such subsequence, since pn does not converge
to any of the vertices (by hypothesis) but any of its subsequences approaches the set
of vertices V (by contradiction), we can extract two disjoint subsequences {pnk}k∈N
and {pnl}l∈N from {pn}n∈N, such that

{pn}n∈N = {pnk}k∈N ∪ {pnl}l∈N,

pnk −→ vi for some i ∈ {1, 2, 3} (by boundedness) and pnl −→ V \ {vi}. Since pn
is either pnk for some k, or pnl for some l, there are infinitely many k and lk such
that pnlk = pnk+1. For any ε fixed, by the hypothesis pn+1 − pn −→ 0, for all k large
enough ‖pnlk −pnk‖1 < ε. But the 1-distance between V \{vi} (which pnl approaches)
and vi (which pnk approaches) is 2. Since ε is arbitrary, we have a contradiction.

3.2 Fixed points and potential function

From (2.37) and (2.38) it is immediate to derive the fixed point equations, which are

q = Mpq

p = 1− 2q,

and yield a dense set of equilibrium points {(p, qp) : p ∈ Σ0}, where

qp ..=
1− p

2
.

Verifying that Mpqp = qp is a straightforward computation (see Lemma 3.19 (a)). The
whole analysis of this system’s asymptotic behaviour will revolve around the fixed
points, which are of two types: internal equilibria (p 6∈ ∂Σ) and boundary equilibria
(p ∈ ∂Σ). Under the assumptions made, orbits never get stuck at equilibria, as we
show in the following remark.
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Remark 3.12. If p0 ∈ Σ0 and qp0 6= q0 ∈ Σ0, then for all p ∈ Σ0, (pn, qn) 6= (p, qp)
for all n ∈ N.

Proof. If qn+1 = qpn+1 for some n ∈ N0, then by rearranging (2.38) we obtain

qn = 1− pn+1 − qn+1 = 1− pn+1 − qpn+1 = qpn+1 .

Since then qpn+1 = Mpnqpn+1 , it follows that qpn+1 is an eigenvector for the eigenvalue
1 of Mpn . Also, it is normalised with respect to the 1-norm and it is a nonnegative
vector (all of its components are nonnegative). Since 1 is a simple eigenvalue for the
matrix Mp for any p ∈ Σ0, the corresponding eigenspace is the eigenline with direction
qp (see Lemma 3.19 for the computations relative to these elementary facts about the
matrix). This implies that pn = pn+1. More precisely, rewriting as {tqpn , t ∈ R} the
eigenspace spanned by qpn , qpn+1 = Mpnqpn+1 if and only if qpn+1 = tqpn , with t 6= 0,
as ‖qpn+1‖1 = ‖qpn‖1 = 1. Taking norms yields 1 = ‖qpn+1‖1 = |t|‖qpn‖1 = |t|. Since
q(i)
pn+1
≥ 0 and q(i)

pn ≥ 0 for all i ∈ {1, 2, 3}, we have that t > 0 and therefore t = 1,
which results in qpn+1 = qpn , which is equivalent to pn = pn+1.

Iterating this argument backwards implies that (p0, q0) is an equilibrium configu-
ration (precisely, (pn+1, qpn+1)), a contradiction.

Let V (p, q) ..= ‖q − qp‖1. Since by (2.38) it holds that

qp̂ ..=
1− p̂

2
=
q̂ + q

2
, (3.1)

one can rewrite

q̂ − qp̂ = q̂ − q̂ + q

2
=
q̂ − q

2
=
q̂ − qp − (q − qp)

2
=
Mp(q − qp)− (q − qp)

2
.

Hence

q̂ − qp̂ =
Mp − I

2
(q − qp). (3.2)

Denote Lp ..= Mp−I
2

.

Remark 3.13. Since ‖Lp‖1 = 1 for all p ∈ Σ0, taking the norm on both sides of (3.2)
yields V (p̂, q̂) ≤ V (p, q), and therefore the continuous nonnegative function V (p, q)
is nonincreasing along the orbits of the dynamical system, and defines a Lyapunov
potential function for this system as a result. Moreover, since V (p, q) is nonnegative
and nonincreasing, it immediately follows that there is 0 ≤ ` ∈ R, dependent on the
initial conditions, such that V (pn, qn) −→ ` as n −→∞.

Loosely speaking, dynamical systems admitting a potential are often referred to
as gradient-like. Note that in Chapter 1 we have already anticipated the existence of
such limit also for the stochastic process, and we denoted it, for simplicity, with the
same letter ` used in this section, for the deterministic dynamical system. Clearly,
in that case ` is a random variable, while in this case it is deterministic: the fact
that we are using the same notation does not mean that, if the initial conditions
(p0, q0) = (Θ0, π0), then the limit ` in the two cases is the same; it simply means that
both quantities have analogous roles in the convergence arguments for the dynamical
system and the stochastic process, and this is regardless of initial conditions, as long
as they are regular.
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Lemma 3.14. For every p 6∈ ∂Σ and q 6= qp,

V (p̂, q̂) < V (p, q).

Therefore, the potential is eventually strictly decreasing along the regular orbits of the
dynamical system.

Proof. If q = qp, then q̂ = q = qp and p̂ = p. Therefore, V (p̂, q̂) = V (p, q) = 0.
Assume q 6= qp. By (3.2), V (p̂, q̂) < V (p, q) if and only if∥∥∥∥Lp q − qp

‖q − qp‖1

∥∥∥∥
1

< 1.

To show this we will consider the action of Lp on the intersection of the 1-norm unit
sphere S2

1 with the plane Π0 of Cartesian equation x+ y + z = 0, where

v ..=
q − qp
‖q − qp‖1

lies. In particular it is enough to show that for every p 6∈ ∂Σ and v ∈ S2
1 ∩Π0 one has

‖Lpv‖1 < 1. Note that (see Figure 3.1) the intersection aforementioned is a regular
hexagon with set of vertices{(

0,
1

2
,−1

2

)
,

(
1

2
,
1

2
, 0

)
,

(
−1

2
, 0,

1

2

)
,

(
0,−1

2
,
1

2

)
,

(
1

2
,−1

2
, 0

)
,

(
1

2
, 0,−1

2

)}
.

As a consequence of the linearity of Lp, the claim is proved if one can show that
each of these vertices is shrunk strictly inside the hexagonal portion of the plane. By
symmetry, without loss of generality, this can be shown by performing the calculation
explicitly for the vertex v = (1/2, 0,−1/2). First compute

Lpv =
1

4

 −1− p2

p1+p2
p3

p3+p2
− p1

p1+p2

1 + p2

p2+p3


and then consider that since p 6∈ ∂Σ,

‖Lpv‖1 =
1

4

(
2 +

p2

p1 + p2

+
p2

p2 + p3

+

∣∣∣∣ p3

p3 + p2

− p1

p1 + p2

∣∣∣∣)

=


1
2

(
1 + p2

p1+p2

)
< 1, p3

p3+p2
≥ p1

p1+p2

1
2

(
1 + p2

p2+p3

)
< 1, p3

p3+p2
< p1

p1+p2

(3.3)

because of the fact that none of the coordinates of p 6∈ ∂Σ is zero. Note that since by
Remark 3.8 pn 6∈ ∂Σ for all n ∈ N0 and by Remark 3.12 qn 6= qpn , we can conclude that
the potential is strictly decreasing along the orbits (that is, V is a strict Lyapunov
potential function for the dynamical system).

Overall there are three mutually exclusive asymptotic scenarios, in each of which
it is possible to prove that {pn} converges (whereas {qn} may or may not):

• {pn} is bounded away from the boundary (Section 3.3);

• ` = 0 and {pn} is not bounded away from the boundary (Section 3.4);

• ` > 0 and {pn} is not bounded away from the boundary (Section 3.5).
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1
1

1

x1
x2

x3

Figure 3.1: S2
1 ∩ Π0

3.3 Convergence bounded away from the bound-

ary

The main goal of this section is showing convergence of the dynamical system when
{pn} is known to be bounded away from the boundary of the simplex.

Proposition 3.15. If {pn} is bounded away from ∂Σ, there is a constant 0 < c < 1,
dependent on the initial conditions, such that

V (pn+1, qn+1) < cV (pn, qn).

Hence
` ..= lim

n−→∞
V (pn, qn) = 0,

and the dynamical system converges to an internal equilibrium.

Proof. By pn bounded away from ∂Σ it is meant that for all n, pn ∈ Σε, for some
ε > 0 small enough, where the compact Σε ⊂ Σ is defined as Σε

..= {x ∈ Σ : xi ≥
ε, ∀ i ∈ {1, 2, 3}}. Note that the definition of Σε is one of those cases, mentioned in
the introduction, in which the notation for the components switches from upper to
lower index, in absence of time index.

If {pn} is bounded away from the boundary then the functions φi,j(pn) ..=
φ(p(i)

n , p
(j)
n ) will be bounded away from 1 (since the value 1 and 0 are attained only at

boundary points, as we saw in deriving (3.3)), so the constant c, applying uniformly
on Σε, can be found by upper-bounding (3.3), rather than with 1, with

c ..= max
i 6=j∈{1,2,3}

max
p∈Σε

φ(pi, pj)

which is well defined for every ε > 0 small enough, by the continuity of φ and the
compactness of Σε. From the geometric decaying upper bound on V (pn, qn) it follows
that

` ..= lim
n−→∞

V (pn, qn) = 0.

To show convergence of the dynamical system to an internal equilibrium, first of
all observe that

p̂− p = 2qp − q − q̂ = Mp(qp − q) + qp − q

and therefore, since ‖Mp‖1 = 1, it follows that

‖p̂− p‖1 ≤ 2V (p, q). (3.4)
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Figure 3.2: Internal equilibria

The geometric decay of V (pn, qn) ensured by {pn} being bounded away from ∂Σ
implies that

∞∑
n=0

V (pn, qn) <∞.

Then
∞∑
n=0

‖pn+1 − pn‖1 <∞

and the convergence of {pn} follows immediately. Since ` = 0, the convergence of pn
to some limit p∗ bounded away from the boundary, implies the convergence of qn to
qp∗ bounded away from the boundary (as they belong to Σ∗, more precisely to the
transformation of Σε through the homothety (1− p)/2, see Figure 3.2).

Remark 3.16. Clearly the same would hold if {pn} could only eventually (that is
for all n large enough only) be bounded away from the boundary. The only difference
would be that the constant 0 < c < 1 such that V (pn+1, qn+1) < cV (pn, qn) holds only
eventually, which is enough to yield convergence of {(pn, qn)}. However, note that by
Remarks 3.4 and 3.6 we cannot have such case, where p0 ∈ ∂Σ and at some later time
n, pn 6∈ ∂Σ.

The following proposition and corollary show that internal equilibria are stable,
implying that convergence bounded away from the boundary can also be ensured
with suitable initial conditions, close enough to one of the internal equilibria. From a
technical standpoint, these last two results will be mainly relied upon in Section 3.4,
specifically Lemma 3.24. More in general, they provide a deeper understanding of the
dynamical system.

Denote by B(p, r) ⊂ R3 the ball centered at p having radius r in the distance dist
generated by the 1-norm. Define U((p, q), r, r′) ..= B(p, r)×B(q, r′) and U((p, q), r) ..=
U((p, q), r, r).

Proposition 3.17. For every p 6∈ ∂Σ and a small enough 0 < ε′ < dist(p, ∂Σ),
there is a δ′ > 0 suitably smaller than ε′ such that, if (p0, q0) ∈ U((p, qp), δ

′) then
(pn, qn) ∈ U((p, qp), ε

′, ε′/2) for all n ∈ N.
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Proof. Given p and ε′ as in the statement, let 0 < δ′ < ε′ (it will be further restricted
if necessary). By Proposition 3.15 and (3.2) it is known that since B(p, ε′) is bounded
away from ∂Σ, for all (p′, q′) ∈ U((p, qp), ε

′), ‖Lp′(q − qp′)‖1 ≤ c‖q − qp′‖1 for some
0 < c < 1. Further restrict δ′ < (1 − c)ε′/4, and consider (p0, q0) ∈ U((p, qp), δ

′).
The following claim will be shown by induction: for all n ∈ N, pn ∈ B(p, ε′) and
qn ∈ B(qp, ε

′/2). Consider that

‖q0 − qp0‖1 ≤ ‖q0 − qp‖1 + ‖qp − qp0‖1 = ‖q0 − qp‖1 +
‖p− p0‖1

2
<

3

2
δ′.

Therefore

‖q1 − qp1‖1 = ‖Lp0(q0 − qp0)‖1 ≤ c‖q0 − qp0‖1 =
3

2
cδ′.

Recall that for all n, ‖pn+1 − pn‖1 ≤ 2‖qn − qpn‖1 by (3.4), hence ‖p1 − p0‖1 < 3δ′.
As a consequence, noting that qp1 − qp = (p− p1)/2,

‖p1 − p‖1 ≤ ‖p1 − p0‖1 + ‖p0 − p‖1 < 4δ′ < (1− c)ε′ < ε′

‖q1 − qp‖1 ≤ ‖q1 − qp1‖1 + ‖qp1 − qp‖1 ≤
3

2
cδ′ +

‖p1 − p‖1

2
≤ 3

2
cδ′ + 2δ′ < 2δ′(1 + c)

< (1− c)(1 + c)
ε′

2
= (1− c2)

ε′

2
<
ε′

2
.

This immediately implies that we can use again the geometric decay of the potential:

‖q2 − qp2‖1 = ‖Lp1(q1 − qp1)‖1 ≤ c‖q1 − qp1‖1 ≤ c2‖q0 − qp0‖1 <
3

2
c2δ′.

For n = 1, it has been shown that if (p0, q0) ∈ U((p, qp), δ
′), where δ′ < (1 − c)ε′/4,

with c being the subunitary constant uniformly holding on B(p, ε′), then ‖q1−qp1‖1 <
3cδ′/2, ‖p1 − p‖1 < 4δ′, p1 ∈ B(p, ε′), ‖q1 − qp‖1 ≤ 3cδ′/2 + 2δ′ < 2δ′(1 + c),
q1 ∈ B(qp, ε

′/2). Assume as induction hypothesis that

‖qn − qpn‖1 <
3

2
cnδ′,

that

‖pn − p‖1 < 4δ′
n−1∑
i=0

ci,

so that pn ∈ B(p, ε′), and

‖qn − qp‖1 < 2δ′
n∑
i=0

ci,

so that qn ∈ B(qp, ε
′/2), and consider pn+1. Since

‖pn+1 − p‖1 ≤ ‖pn+1 − pn‖1 + ‖pn − p‖1 ≤ 2‖qn − qpn‖1 + ‖pn − p‖1 <

3cnδ′ + 4δ′
n−1∑
i=0

ci < 4δ′
n∑
i=0

ci,

this shows that pn+1 ∈ B(p, ε′) since

4δ′
n∑
i=0

ci < 4δ′
∞∑
i=0

ci = 4
δ′

1− c
< ε′
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by hypothesis, and therefore it also follows that

‖qn+1 − qpn+1‖1 < c‖qn − qpn‖1 <
3

2
cn+1δ′.

Since

‖qn+1 − qp‖1 ≤ ‖qn+1 − qpn+1‖1 + ‖qpn+1 − qp‖1 ≤
3

2
cn+1δ′ +

‖pn+1 − p‖1

2

≤ 3

2
cn+1δ′ + 2δ′

n∑
i=0

ci < 2δ′
n+1∑
i=0

ci,

this shows that qn+1 ∈ B(qp, ε
′/2) since

2δ′
n+1∑
i=0

ci < 2δ′
∞∑
i=0

ci = 2
δ′

1− c
<
ε′

2

by hypothesis.

By Proposition 3.17, once the system is confined in such a neighbourhood of some
internal equilibrium (p, qp) bounded away from the boundary, the final convergence
claim in Proposition 3.15 can be enacted, immediately yielding the following.

Corollary 3.18. If (p0, q0) is close enough to an internal equilibrium (p, qp), the
system converges to a (possibly different) internal equilibrium.

Proposition 3.17 is not strong enough to ensure that the limit is the same (p, qp),
by the density of the set {(p, qp) : p ∈ Σ} ⊂ Σ2.

3.4 Convergence to the boundary with ` = 0

The main goal of this section is to show that if {pn} approaches the boundary and the
limit of the potential ` ..= limn−→∞ V (pn, qn) = 0, the dynamical system converges.

First of all note that by the remarks made at the opening of this chapter, ` = 0
is not possible for any type of boundary orbit having qn entering a 2-cycle. Since
all other boundary cases are trivial, we can work under regular initial conditions as
usual. In this case, assuming that there is no convergence to the vertex (if it were,
there would be nothing to prove, since pn would tend to a vertex v ∈ V and qn to
qv due to ` = 0), by Remark 3.11 (which applies by (3.4) and ` = 0) there will
be a subsequence {pnj}j∈N bounded away from the vertices and, by assumption, not
bounded away from the boundary. Extracting a convergent subsubsequence {pnjl}l∈N
by boundedness of {pn}, relabelling it with {nk}, we can assume that there is a
subsequence {pnk}k∈N bounded away from the vertices and convergent to a point in
an edge. By symmetry, without loss of generality, assume this subsequence to converge
to p∗ ∈ E1, with δ/2 ≤ p(2)

∗ ≤ 1− δ/2 for some δ > 0 small enough fixed. Then p(1)
nk
−→ 0

as k −→ ∞ and p(2)
nk

is eventually bounded away from 0 and 1. In this section we
will look at qn− qpn ∈ Π0 through a change to eigencoordinates derived from the two
eigenvectors of the matrix Mpn that span Π0. Since ‖qn − qpn‖1 −→ 0, there will be
a small enough δ > 0 fixed and an ε > 0 arbitrarily small, dependent on δ, such that
for some large enough K ∈ N, for all k > K,

(pnk , qnk) ∈K∗
ε, δ

2

..=

{
(p, q) ∈ Σ2 : 0 < p1 ≤ ε,

δ

2
≤ p2 ≤ 1− δ

2
, 0 < |α|, |β| ≤ ε

}
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Figure 3.3: K∗
ε, δ

8

as the Cartesian product of the dark gray and the red regions

because both eigencoordinates of qn − qpn , which are denoted as αn, βn, will vanish
as n −→ ∞, and therefore eventually |αn| ∈ {0 < α ≤ ε, α ∈ R} and |βn| ∈ {0 <
β ≤ ε, β ∈ R} for any arbitrary ε > 0 (we will define precisely the eigensystem for
these eigencoordinates in Lemma 3.19). We will also make use of a similarly defined
set K∗

ε, δ
8

and we will also need the set

Kε, δ
8

..=

{
p ∈ Σ : 0 < p1 ≤ ε,

δ

8
≤ p2 ≤ 1− δ

8

}
.

When it does not create confusion, ε or δ/8 or both, will be dropped from the notation
referring to these two sets. We will also adopt the following notation.

• f(p) = O(g(p1)) if for ε small enough f(p)/g(p1) is well defined and bounded in
Kε, δ

8
.

• f(p, α, β) = O(g1(p1, α, β), . . . , gk(p1, α, β)) if for a sufficiently small ε

f(p1, p2, 1− p1 − p2, α, β)

|g1(p1, α, β)|+ . . .+ |gk(p1, α, β)|

is well-defined and bounded on K∗
ε, δ

8

.

• r ..= (p1, α, β).

Note that from the given definition, assuming well-definedness whenever necessary,
the usual rules hold.

• O(f(r))±O(g(r)) = O(f(r), g(r)).

• O(f(r))O(g(r)) = O(f(r)g(r)).

• if f(r) = O(g(r)) with g(r) = O(h(r)), then f(r) = O(h(r)).

• if f(r) = O(g(r), h(r)) with with g(r) = O(m(r)), then f(r) = O(m(r), h(r)),
and so on.

The following lemma shows all the elementary properties of the matrix Mp that will
be useful.
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Lemma 3.19. Let p = (p1, p2, p3) ∈ Σ0.

a) Mp has eigenvalue 1 with eigenvector qp;

b) Mp has two further real eigenvalues −1 ≤ λ−1(p) ≤ λ0(p) ≤ 0;

c) Mp is invariant on the plane Π0 in R3 having equation x+ y + z = 0;

d) If p 6= 1
3

then λ−1(p) 6= λ0(p) and the corresponding eigenvectors e−1(p), e0(p)
lie in Π0;

e) If p = 1
3

then λ−1(p) = λ0(p) = λ ..= −1
2
, having geometric multiplicity 2 and

eigenspace Π0;

f) If p ∈ ∂Σ \ V then λ−1(p) = −1 and λ0(p) = 0. In particular if p1 = 0 then
the corresponding eigenvectors can be chosen to be e−1(p) = (−1, 1− p2, p2) and
e0(p) = (0, 1,−1);

g) λ0(p) = −2p1 +O(p2
1) and λ−1(p) = −1 + 2p1 +O(p2

1) as p1 −→ 0;

h) e−1(p) and e0(p) can be chosen to depend smoothly on p and having the norm
bounded away from zero on Kε, δ

8
for ε small enough.

Proof.

a) Each column of Mp adds up to 1, and therefore its transpose M ′
p has rows adding

up to 1, which means that M ′
p has eigenvalue 1 with eigenvector 1. Thus Mp

has an eigenvalue of 1, since a matrix and its transpose have the same spectrum.
By inspection it is easy to guess that qp is the eigenvector of the eigenvalue 1
for Mp. This is equivalent to calculating Mpqp = qp (a posteriori the calculation
makes finding first the eigenvalue of 1 redundant). By symmetry, it is enough to
show the calculation for the first component only, without loss of generality:

(Mpqp)
(1) =

p3

p1 + p3

1− p2

2
+

p2

p1 + p2

1− p3

2
=

p3

1− p2

1− p2

2
+

p2

1− p3

1− p3

2

=
p3

2
+
p2

2
=

1− p1

2
= q(1)

p .

b) Note that the trace tr(Mp) = 0 and the determinant

det(Mp) = 2
p1p2p3

(p1 + p3)(p1 + p2)(p2 + p3)
,

thus from (a) one can conclude that λ1 + λ2 = −1 and that

λ1λ2 =
2p1p2p3

(p1 + p3)(p1 + p2)(p2 + p3)
.

From (a) it is also already known that the characteristic polynomial pMp(λ) is a
monic cubic having a factor λ− 1, hence it is of the form (λ− 1)qMp(λ), where
qMp(λ) is a monic (otherwise the product would not be monic) quadratic, having
roots λ1 and λ2, and therefore

qMp(λ) = λ2 + λ+
2p1p2p3

(p1 + p3)(p1 + p2)(p2 + p3)
.

As a result the discriminant of qMp is

1− 8p1p2p3

(p1 + p3)(p1 + p2)(p2 + p3)
,



46

hence the remaining two eigenvalues will be real if and only if it is shown that
for all p1, p2, p3 ≥ 0 such that p1 + p2 + p3 = 1,

p1p2p3

(p1 + p3)(p1 + p2)(p2 + p3)
≤ 1

8
.

Since then none of the pi can be zero, under the standard simplex’ constraint
this inequality is equivalent to

1

p1

+
1

p2

+
1

p3

≥ 9. (3.5)

This can be seen by noting that on the simplex

p1p2p3

(p1 + p3)(p1 + p2)(p2 + p3)
=

p1p2p3

(1− p1)(1− p2)(1− p3)

=
1(

1
p1
− 1
)(

1
p2
− 1
)(

1
p3
− 1
) ,

and then taking the reciprocal yields(
1

p1

− 1

)(
1

p2

− 1

)(
1

p3

− 1

)
≥ 8.

Multiplying out and rearranging yields

1

p1p2p3

− 1

p1p2

− 1

p2p3

− 1

p1p3

+
1

p1

+
1

p2

+
1

p3

≥ 9.

Under the simplex’ constraint

1

p1p2p3

− 1

p1p2

− 1

p2p3

− 1

p1p3

=
1− p1 − p2 − p3

p1p2p3

= 0,

hence the claim. Applying the Lagrange multipliers method (denoting the mul-
tiplier with m) to the left-hand side of (3.5) under the simplex constraint, yields
−p−2

i = m for all i ∈ {1, 2, 3}, since the gradient of the constraint is 1. Hence
p1 = p2 = p3 = 1/

√
−m, which yields pi = 1/3 for all i ∈ {1, 2, 3} under the sim-

plex constraints. This is a minimum (attaining a value of 9) since the function
p−1

1 + p−1
2 + p−1

3 has positive definite Hessian
2
p3

1
0 0

0 2
p3

2
0

0 0 2
p3

3


for all p inside the simplex, and therefore it is convex on the interior of the stan-
dard simplex. To conclude there is only one such point at which the inequality
becomes equality, the equilibrium of the simplex 1

3
. On the boundary ∂Σ0 this

does not happen since the original expression has the numerator p1p2p3 = 0,
hence the expression is zero, which is obviously less than 1/8. Hence the eigen-
values λ1 and λ2 are always real and distinct for all p 6= 1

3
, while they are

equal to −1/2 at 1
3
. This proves then the first part of (d) and (e). Also, since

λ1 + λ2 = −1 and λ1λ2 ≥ 0, it follows that they are both nonpositive and in
particular λ1, λ2 ∈ [−1, 0]. For the inequality see (g).
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c) Since M ′
p has eigenvalue 1 with eigenvector 1, the span of the eigenvectors cor-

responding to λ1 and λ2 is the orthogonal complement of the span of 1, that is
Π0. Hence Mp is invariant on Π0. This also proves the second part of (d) and
(e).

d) Already partially proved in (b) and (c).

e) Since

M 1
3

=
1

2

0 1 1
1 0 1
1 1 0

 ,

the eigenspace equation

M1
3
v = −1

2
v

is equivalent to the equation v1 + v2 + v3 = 0, hence the geometric multiplicity
of −1/2 is 2.

f) Assume p ∈ E1, then p1 = 0, thus

Mp =

 0 1 1
1− p2 0 0
p2 0 0

 .

From (b) it is also known that λ1 + λ2 = −1 and λ1λ2 = 0, which implies that
λ−1(p) ..= λ1 = −1 and λ0(p) ..= λ2 = 0. The eigenspace equations are then:

• Mpv = 0, which yields v1 = 0 and v2 = −v3, which yields the eigenvector of
λ0(p), e0(p) = (0, 1,−1);

• Mpv = −v, which yields (1− a)v1 = −v2 and av1 = −v3 (the third equation
v1 + v2 + v3 = 0 is obtained from those two by addition hence it is omitted).
Fixing v1 = −1 yields the eigenvector of λ−1(p), e−1(p) = (−1, 1− p2, p2).

g) We derive the smallest eigenvalue first, by directly solving the characteristic
polynomial, that is the quadratic qMp(λ), for p1 ∈ (0, ε] with ε arbitrarily small,
and p2 ∈ [δ/8, 1− δ/8] with δ > 0 small enough fixed. From

qMp(λ) = λ2 + λ+
2p1p2(1− p1 − p2)

(1− p1)(1− p2)(p1 + p2)

and expanding in Taylor series the factor (1− p1)−1 = 1 +O(p1), it follows that

2p1p2(1− p1 − p2)

(1− p1)(1− p2)(p1 + p2)
=

2p1p2

(1− p2)(p1 + p2)
− 2p1p

2
2

(1− p2)(p1 + p2)
+O(p2

1)

= 2p1p2

(
1

(1− p2)(p1 + p2)
− p2

(1− p2)(p1 + p2)

)
+O(p2

1) =
2p1p2

p1 + p2

+O(p2
1)

=
2p1(p2 + p1 − p1)

p1 + p2

+O(p2
1) = 2p1 +O(p2

1),

and therefore the eigenvalues are solutions of λ2 + λ+ 2p1 +O(p2
1), yielding

λ0(p) =
−1 +

√
1− 8p1 +O(p2

1)

2
.

Expanding in Taylor series the square root yields

λ0(p) =
−1 + 1− 4p1 +O(p2

1)

2
= −2p1 +O(p2

1).

Since λ−1(p) = −1−λ0(p) = −1− 2p1 +O(p2
1), the result follows. Note that the

calculation also shows that λ0(p) > λ−1(p) away from 1
3
.
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h) By a standard application of the Implicit Function Theorem, it is possible to show
that simple eigenvalues and eigenvectors of Mp (under any smooth normalisation
condition given) depend smoothly on the parameter p ∈Kε, δ

8
, because the term

φ(pi, pj) in the matrix varies smoothly for p ∈ Σ0, and p is bounded away from 1
3

(since p ∈Kε, δ
8
, it follows that p1 ∈ (0, ε] for ε sufficiently small to be determined

and δ fixed small enough). For an ε small enough, we show the claim for each
eigenpair, by considering all p close enough to an arbitrary p∗ ∈ E1 ∩K, where
from now on we denote K ..= Kε, δ

8
. The eigenpair considered will be either

the one with eigenvalue approaching 0 (denoted with index i = 1) or the one
approaching −1 (denoted with index i = 2) on the edge (which is E1 as always,
without loss of generality) as p −→ p∗, since there is nothing to prove for the
eigenpair with eigenvalue of 1. This relabelling of the eigenpairs is only adopted
in this argument, for the sake of consistency with the expression of their norm,
as it will soon be clear. Thus for i ∈ {1, 2}, the eigenpair will be denoted
(λ(p), e(p)) ..= (λi(p), ei(p)), with

λi(p) =

{
λ0(p), i = 1

λ−1(p), i = 2
,

and

ei(p) =

{
e0(p), i = 1

e−1(p), i = 2
.

Since i is fixed, and the proof is the same for both indices, upon the relabelling
performed, the index will be omitted in the notation of λ and e from now on.
Consider that

Mp∗e(p
∗) = λ(p∗)e(p∗)

with ‖e(p∗)‖2 bounded away from 0 uniformly on E1 ∩K. In fact on the edge,
we adopt an indexing consistent with the one established for p ∈K, that is with
i = 1 denoting the eigenpair relative to 0, i = 2 that relative to −1. On the
boundary the representation chosen in (f) always yields

‖e0(p∗)‖2
2 ≡ 2 ≡ 2[1− p∗1 + (p∗1)2]

for i = 1 (trivially due to p∗1 = 0; it will be clear in a moment that the reason for
this trivial expression is simply to write one proof that works for both i ∈ {1, 2}
without changes) and

‖e−1(p∗)‖2
2 = 2[1− p∗2 + (p∗2)2] > 2

δ

8

(
1 +

δ

8

)
for i = 2. Then we need to solve for

Mpe(p) = λ(p)e(p)

e(p∗)′e(p) = e(p∗) · e(p) = 2[1− p∗i + (p∗i )
2],

where ′ in the normalisation condition denotes the transpose, having written the
inner product via matrix multiplication. Denote

F (e, λ, p) ..=

(
Mpe− λe

e(p∗) · e− 2[1− p∗i + (p∗i )
2]

)
.
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The problem of showing smoothness can be rephrased as finding a smooth func-
tion (e(p), λ(p)) such that F (e(p), λ(p), p) = 0. F is smooth, so we calculate the
Jacobian

∂F

∂(e, λ)
(e, λ, p) =

(
Mp − λI −e
e(p∗)′ 0

)
and denote

Jp∗ ..=
∂F

∂(e, λ)
(e, λ, p)

∣∣∣∣
p=p∗

=

(
Mp∗ − λ(p∗)I −e(p∗)

e(p∗)′ 0

)
.

We show that Jp∗ is invertible, by showing that its kernel is null. This follows by
contradiction. Let the kernel’s equation Jp∗W = 0 hold for a vector 0 6= W =
(E,Λ) ∈ R3+1 (there is no risk of ambiguity with E, the set of edges for the
simplex in this context). The equation is equivalent to

Mp∗E − λ(p∗)E − Λe(p∗) = 0

e(p∗) · E = 0.

If E 6= 0, the second condition implies orthogonality, and thus linear indepen-
dence, of E and e(p∗). Thus we can rewrite Mp∗ in a new basis B (there is no
risk of ambiguity with B, the event when the stochastic process is bounded away
from the boundary of the simplex) whose first two elements are e(p∗) and E, in
this order. Since Mp∗e(p

∗) = λ(p∗)e(p∗) and Mp∗E = Λe(p∗) + λ(p∗)E,

[Mp∗ ]B =


λ(p∗) Λ ∗ . . . ∗

0 λ(p∗) ∗ . . . ∗
0 0 ∗ . . . ∗
...

...
...

0 0 ∗ . . . ∗


and therefore, from the determinant formula of block-upper-triangular matrices,
it follows that λ(p∗) is at least a double root of the characteristic polynomial of
Mp∗ . However it is known that it is a simple eigenvalue, hence a contradiction.
So E = 0. But then Λe(p∗) = 0, which implies Λ = 0. Hence W = 0 and
therefore Jp∗ is invertible. The invertibility of Jp∗ implies, by the Implicit Func-
tion Theorem, that the equation F (e, λ, p) = 0 has a unique smooth solution
(e(p), λ(p)) defined on an open neighbourhood of p∗ small enough. Note that
since ‖e(p∗)‖1 ≥ ‖e(p∗)‖2, using the Cauchy-Schwarz inequality in the normali-
sation condition of the problem yields

2(1− p∗i + (p∗i )
2) = e(p∗) · e(p) ≤ ‖e(p∗)‖2‖e(p)‖2 ≤ ‖e(p∗)‖1‖e(p)‖1 = 2‖e(p)‖1,

which bounds away from zero the 1-norm of the eigenvector e(p) varying
smoothly near p∗. We conclude by noting that since p∗ ∈ E1 ∩K is arbitrary,
the smooth solution is unique and the boundedness away from 0 of its norm is
uniform, the local solution extends to the whole of Kε, δ

8
for some ε small enough,

due to the set being simply connected and relatively compact.

We now describe in more detail the eigencoordinates, which will be used. For
each p ∈ Σ0 fix e−1(p) and e0(p) as usual. From Lemma 3.19 (e, d) we have the
unique representation of q − qp = αe0(p) + βe−1(p), with (α, β) ∈ R2 denoting the

new eigencoordinates. Upon one iterate with Mp, denote q̂ − qp̂ = α̂e0(p̂) + β̂e−1(p̂).
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Lemma 3.20.

α̂ = α
λ0(p)− 1

2

∣∣∣∣e(i)

0 (p) e(i)

−1(p̂)
e(j)

0 (p) e(j)

−1(p̂)

∣∣∣∣∣∣∣∣e(i)

0 (p̂) e(i)

−1(p̂)
e(j)

0 (p̂) e(j)

−1(p̂)

∣∣∣∣ + β
λ−1(p)− 1

2

∣∣∣∣e(i)

−1(p) e(i)

−1(p̂)
e(j)

−1(p) e(j)

−1(p̂)

∣∣∣∣∣∣∣∣e(i)

0 (p̂) e(i)

−1(p̂)
e(j)

0 (p̂) e(j)

−1(p̂)

∣∣∣∣ (3.6)

β̂ = α
λ0(p)− 1

2

∣∣∣∣e(i)

0 (p̂) e(i)

0 (p)
e(j)

0 (p̂) e(j)

0 (p)

∣∣∣∣∣∣∣∣e(i)

0 (p̂) e(i)

−1(p̂)
e(j)

0 (p̂) e(j)

−1(p̂)

∣∣∣∣ + β
λ−1(p)− 1

2

∣∣∣∣e(i)

0 (p̂) e(i)

−1(p)
e(j)

0 (p̂) e(j)

−1(p)

∣∣∣∣∣∣∣∣e(i)

0 (p̂) e(i)

−1(p̂)
e(j)

0 (p̂) e(j)

−1(p̂)

∣∣∣∣ (3.7)

Proof. From (3.2), a system of three linear equations in two variables follows,

α̂e0(p̂) + β̂e−1(p̂) = α
λ0(p)− 1

2
e0(p) + β

λ−1(p)− 1

2
e−1(p)

with (α̂, β̂) ∈ R2. The system can be solved by picking any two of the three equations.
Since the vectors, which will give the coefficients to the matrix of this linear system
of two equations, are e0(p̂) and e−1(p̂), and since they are linearly independent, the
matrix will have nonzero determinant, being the absolute value of its determinant
always equal to the absolute value of one of the coordinates of the vector product
e0(p̂) × e−1(p̂). Since all of the coordinates of the vector product are identical and
therefore nonzero (because of linear independence and nondegeneracy of the eigen-
vectors, which lie in Π0, which has normal vector 1, to which the vector product will
be parallel) and since they can be computed, in absolute value, from selecting rows
i 6= j ∈ {1, 2, 3} from the matrix (e0(p̂)|e−1(p̂)); we have that, for any i 6= j ∈ {1, 2, 3}
chosen, the linear system can be reduced to(

e(i)

0 (p̂) e(i)

−1(p̂)
e(j)

0 (p̂) e(j)

−1(p̂)

)(
α̂

β̂

)
=

(
αλ0(p)−1

2
e(i)

0 (p) + β λ−1(p)−1
2

e(i)

−1(p)

αλ0(p)−1
2

e(j)

0 (p) + β λ−1(p)−1
2

e(j)

−1(p)

)
.

This system has unique solution, which can be calculated by Cramer’s rule,

α̂ =

∣∣∣∣∣αλ0(p)−1
2

e(i)

0 (p) + β λ−1(p)−1
2

e(i)

−1(p) e(i)

−1(p̂)

αλ0(p)−1
2

e(j)

0 (p) + β λ−1(p)−1
2

e(j)

−1(p) e(j)

−1(p̂)

∣∣∣∣∣∣∣∣∣e(i)

0 (p̂) e(i)

−1(p̂)
e(j)

0 (p̂) e(j)

−1(p̂)

∣∣∣∣
β̂ =

∣∣∣∣∣e(i)

0 (p̂) αλ0(p)−1
2

e(i)

0 (p) + β λ−1(p)−1
2

e(i)

−1(p)

e(j)

0 (p̂) αλ0(p)−1
2

e(j)

0 (p) + β λ−1(p)−1
2

e(j)

−1(p)

∣∣∣∣∣∣∣∣∣e(i)

0 (p̂) e(i)

−1(p̂)
e(j)

0 (p̂) e(j)

−1(p̂)

∣∣∣∣ ,

which yields the iteration given in (3.6) and (3.7). The ratios of the determinants
do not depend on the choice of i 6= j because of the aforementioned fact that all
coordinates of the vector product are equal; also, the same change of sign will appear,
if anywhere, both at the numerator and the denominator, and will therefore ultimately
cancel out; moreover, all vectors involved lie in Π0, so for k 6= i 6= j, e0(p̂)(k) =
−e0(p̂)(i) − e0(p̂)(j), e0(p)(k) = −e0(p)(i) − e0(p)(j), e−1(p̂)(k) = −e−1(p̂)(i) − e−1(p̂)(j),
e−1(p)(k) = −e−1(p)(i) − e−1(p)(j), meaning that the system is overdetermined by an
equation, which is linear combination of the other two.
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We proceed to expand in Taylor series about (p1, α, β) = (0, 0, 0) the iteration for
the eigencoordinates achieved in Lemma 3.20 and the standard iteration for p. We
start with p. Since it belongs to the simplex, p3 = 1 − p1 − p2, so for simplicity we
perform the analysis only on the first two components.

Lemma 3.21.

p̂1 = p1 + ρ1(r) (3.8)

p̂2 = p2 − 2(1− p2)p1β + ρ2(r), (3.9)

where ρ1(r) = O(βp1, αp1) and ρ2(r) = O(α, βp2
1).

Proof. Since

p̂− p = 1− p− q̂ − q = 2qp −Mpq − q = −(Mp + I)(q − qp),

we have that
p̂ = p− α(1 + λ0(p))e0(p)− β(1 + λ−1(p))e−1(p), (3.10)

from which, reading off the first two components and applying Lemma 3.19 (f, g, h),
it follows that

p̂1 = p1 − α(1 + λ0(p))e(1)

0 (p)− β(1 + λ−1(p))e(1)

−1(p)

= p1 − α(1− 2p1 +O(p2
1))O(p1)− β(2p1 +O(p2

1))(−1 +O(p1))

= p1 +O(αp1, βp1)

p̂2 = p2 − α(1 + λ0(p))e(2)

0 (p)− β(1 + λ−1(p))e(2)

−1(p)

= p2 − α(1− 2p1 +O(p2
1))(1 +O(p1))− β(2p1 +O(p2

1))(1− p2 +O(p1))

= p2 − 2(1− p2)p1β +O(α, βp2
1),

having used, in the second step of both equations, the smoothness of the eigenvectors
to linearise as p approaches the edge E1 and the relative compactness of K∗

ε, δ
8

to

estimate uniformly the Jacobian terms appearing in

e0(p) = e0((0, p2, 1− p2) + (p1, 0,−p1)) = e0((0, p2, 1− p2)) +O(‖(p1, 0,−p1)‖1)
= (0, 1,−1) +O(p1),

e−1(p) = e−1((0, p2, 1− p2) + (p1, 0,−p1)) = e−1((0, p2, 1− p2)) +O(‖(p1, 0,−p1)‖1)
= (−1, 1− p2, p2) +O(p1).

Lemma 3.22.

α̂ = −α
2

(1 + ρ3(r)) + ρ4(r) (3.11)

β̂ = −β(1− p1) + ρ5(r), (3.12)

where ρ3(r) = O(α, p1), ρ4(r) = O(βα, β2p1), ρ5(r) = O(α2, αβ, β2p1, βp
2
1).

Proof. By Lemma 3.21 it follows that p̂ = p + O(α, βp1), since trivially both ρ1(r)
and ρ2(r) are O(α, βp1), so

p̂1 = p1 +O(α, βp1)

p̂2 = p2 +O(βp1) +O(α, βp1) = O(α, βp1)

p̂3 = 1− p̂1 − p̂2 = 1− p1 − p2 +O(α, βp1) = p3 +O(α, βp1).
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We can plug these estimates, along with that of Lemma 3.19 (g), in (3.6) and (3.7)
obtained in Lemma 3.20; more specifically we can plug them in the terms next to α and
β in (3.6) and (3.7). This yields, due to smoothness of the eigenvectors’ components
and relative compactness of K∗

ε, δ
8

, the following estimates for those terms involved in

(3.6): ∣∣∣∣e(i)

0 (p) e(i)

−1(p) +O(α, βp1)
e(j)

0 (p) e(j)

−1(p) +O(α, βp1)

∣∣∣∣∣∣∣∣e(i)

0 (p) +O(α, βp1) e(i)

−1(p) +O(α, βp1)
e(j)

0 (p) +O(α, βp1) e(j)

−1(p) +O(α, βp1)

∣∣∣∣ =

∣∣∣∣e(i)

0 (p) e(i)

−1(p)
e(j)

0 (p) e(j)

−1(p)

∣∣∣∣+O(α, βp1)∣∣∣∣e(i)

0 (p) e(i)

−1(p)
e(j)

0 (p) e(j)

−1(p)

∣∣∣∣+O(α, βp1)

;

∣∣∣∣e(i)

−1(p) e(i)

−1(p) +O(α, βp1)
e(j)

−1(p) e(j)

−1(p) +O(α, βp1)

∣∣∣∣∣∣∣∣e(i)

0 (p) +O(α, βp1) e(i)

−1(p) +O(α, βp1)
e(j)

0 (p) +O(α, βp1) e(j)

−1(p) +O(α, βp1)

∣∣∣∣ =

∣∣∣∣e(i)

−1(p) e(i)

−1(p)
e(j)

−1(p) e(j)

−1(p)

∣∣∣∣+O(α, βp1)∣∣∣∣e(i)

0 (p) e(i)

−1(p)
e(j)

0 (p) e(j)

−1(p)

∣∣∣∣+O(α, βp1)

.

Hence (3.6) becomes

α̂ = α

(
−1

2
+O(p1)

)
(1 +O(α, βp1))

+ β (−1 +O(p1))
0 +O(α, βp1)∣∣∣∣e(i)

0 (p) e(i)

−1(p)
e(j)

0 (p) e(j)

−1(p)

∣∣∣∣+O(α, βp1)

= α

(
−1

2
+O(p1)

)
(1 +O(α, βp1)) + β (−1 +O(p1))O(α, βp1)

= α

(
−1

2
+O(α, p1)

)
+ βO(α, βp1) = −α

2
(1 +O(α, p1)) +O(βα, β2p1).

Doing the same with the corresponding terms in (3.7) yields the following estimates:∣∣∣∣e(i)

0 (p) +O(α, βp1) e(i)

0 (p)
e(j)

0 (p) +O(α, βp1) e(j)

0 (p)

∣∣∣∣∣∣∣∣e(i)

0 (p) +O(α, βp1) e(i)

−1(p) +O(α, βp1)
e(j)

0 (p) +O(α, βp1) e(j)

−1(p) +O(α, βp1)

∣∣∣∣ =

∣∣∣∣e(i)

0 (p) e(i)

0 (p)
e(j)

0 (p) e(j)

0 (p)

∣∣∣∣+O(α, βp1)∣∣∣∣e(i)

0 (p) e(i)

−1(p)
e(j)

0 (p) e(j)

−1(p)

∣∣∣∣+O(α, βp1)

;

∣∣∣∣e(i)

0 (p) +O(α, βp1) e(i)

−1(p)
e(j)

0 (p) +O(α, βp1) e(j)

−1(p)

∣∣∣∣∣∣∣∣e(i)

0 (p) +O(α, βp1) e(i)

−1(p) +O(α, βp1)
e(j)

0 (p) +O(α, βp1) e(j)

−1(p) +O(α, βp1)

∣∣∣∣ =

∣∣∣∣e(i)

0 (p) e(i)

−1(p)
e(j)

0 (p) e(j)

−1(p)

∣∣∣∣+O(α, βp1)∣∣∣∣e(i)

0 (p) e(i)

−1(p)
e(j)

0 (p) e(j)

−1(p)

∣∣∣∣+O(α, βp1)

.

Hence (3.7) becomes

β̂ = α

(
−1

2
+O(p1)

)
(0 +O(α, βp1)) + β

(
−1 + p1 +O(p2

1)
)

(1 +O(α, βp1))

= αO(α, βp1) + β(−1 + p1 +O(p2
1) +O(α, βp1)) = αO(α, βp1)

+ β(−1 + p1 +O(α, βp1, p
2
1)) = O(α2, αβp1)− β(1− p1) +O(αβ, β2p1, βp

2
1)

= −β(1− p1) +O(α2, αβ, β2p1, βp
2
1).

Note that often we have implicitly used the fact that the determinant in the denomi-
nators is bounded away from zero.
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Lemma 3.23. Let the constant θ ..= 1/16. There is c > 0 such that for all sufficiently
small ε > 0, on the closure K

∗
ε, δ

8
it holds that

|ρ1(r)| < θp1

|ρ2(r)| < c|α|+ p1|β|
|ρ3(r)| < θ

|ρ4(r)| < θ|α|+ θp1|β|
|ρ5(r)| < θ|α|+ θp1|β|.

Proof. Start with any given ε > 0 suitably small, so as to have well-definedness of all
quantities involved, to possibly be further reduced, and δ > 0 fixed, small enough to
have all quantities involved well-defined too. To simplify the notation, since we will
exclusively work on K

∗
ε, δ

8
, we will denote K∗ ..= K∗

ε, δ
8

.

Starting with ρ1, by Lemma 3.21 it holds that on K
∗

there is a constant c1 > 0,
such that |ρ1(r)| ≤ c1p1(|α|+ |β|). If now one further restricts ε < θ/(2c1), it follows
that c1p1(|α| + |β|) < θp1, since c1(|α| + |β|) ≤ 2εc1 < 1, thus yielding the desired
estimate. Note that further restricting ε is consistent with c1, because the same
constant upper bound applies, being δ fixed, when K

∗
gets smaller, as ε gets possibly

reduced in the future steps.
Moving on to ρ2, by Lemma 3.21 it holds that on K

∗
there is a constant c2 > 0,

such that |ρ2(r)| ≤ c2(|α| + |β|p2
1). Define c ..= c2 and further restrict ε < 1/c if

necessary. Then c2(|α| + |β|p2
1) < c|α| + |β|p1, since cp1 ≤ cε < 1. Similarly to

the previous step, this bound is consistent with further reducing ε in future steps if
necessary.

As to ρ3(r), by Lemma 3.22 we know that on K
∗

there is a constant c3 > 0, such
that |ρ3(r)| ≤ c3(|α| + p1). Similarly to what done previously, further restrict ε <
θ/(2c3) if necessary, then it follows that c3(|α|+ p1) ≤ 2c3ε < θ, yielding |ρ3(r)| ≤ θ.

For ρ4(r), by Lemma 3.22 it is known that on K
∗

there is a constant c4 > 0, such
that |ρ4(r)| ≤ c4(|β||α|+β2p1) = c4|β|(|α|+|β|p1). Similarly to what done in previous
steps, further restrict ε < θ/c4 if necessary, then it follows that c4|β| ≤ c4ε < θ, yielding
|ρ4(r)| < θ(|α|+ |β|p1).

Lastly ρ5(r). By Lemma 3.22 it holds that on K
∗

there is a constant c5 > 0, such
that |ρ5(r)| ≤ c5(α2 + |β||α|+ β2p1 + |β|p2

1) = c5(|α|+ |β|)|α|+ c5(|β|+ p1)p1|β|. As
always, further restrict ε < θ/(2c5) if necessary. Then it follows that c5(|α| + |β|) ≤
2c5ε < θ and c5(p1 + |β|) ≤ 2c5ε < θ, yielding |ρ5(r)| < θ|α|+ θ|β|p1).

All in all, starting from a given ε defining constants c1, c, c3, c4, c5, possibly further
restricted such that

ε < min

{
θ

2c1

,
1

c
,
θ

2c3

,
θ

c4

,
θ

2c5

}
,

all obtained five estimates will hold on K
∗
ε, δ

8
.

For further arguments it will be necessary to add the requirement to ε that, given
δ, c, θ,

ε < min

{
θ,
δ(1− 2θ)

16(3 + c)

}
and that ε be so small, that K2ε, δ

8
does not intersects E2 nor E3, and every point in

K2ε, δ
8

is closer to E1 than to E2 and E3 (in 1-norm).

Consider now the orbit {(pn, qn)} as described at the beginning of this section, and
recall that the subsequence {pnk}k∈N was, by construction, bounded away from the
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vertices and convergent to p∗ ∈ E1. For each n one will have rn ..= (p(1)
n , p

(2)
n , αn, βn)

(note that the lower index has been moved to an upper one to allow the index n for
the orbit’s time, as usual). For every k ≥ K, define the times

τk ..= inf

{
n > nk : Θ(2)

n 6∈
[
δ

8
, 1− δ

8

]}
∈ N ∪∞.

We already saw that there will be an arbitrarily large K such that for m ..= nk, for
any k ≥ K, p(2)

m ∈ [δ/2, 1− δ/2] and |αn|, |βn| < ε for all n ≥ m (that is, the subsequence
of the orbit is in K∗

ε, δ
2

). It is left to show that, by choosing a suitable k ≥ K large

enough, and letting m = nk, we can have p(1)
n < ε for all m ≤ n < τk, on top of

the previous conditions. In order to do this, we will add one more requirement on
K: since ` = 0, ‖pn+1 − pn‖1 −→ 0, we can choose K large enough, such that for all
k ≥ K,

|p(2)

nk
− p(2)

∗ | <
1

2
min

{
p(2)

∗ −
δ

8
, 1− δ

8
− p(2)

∗

}
and for any n ≥ nK ,

‖pn+1 − pn‖1 <
1

2
min

{
p(2)

∗ −
δ

8
, 1− δ

8
− p(2)

∗

}
.

This assumption ensures that for all k ≥ K, τnk > nk + 1 (so that there is always
some nk < n < τk), since

p(2)

nk+1 ≤ |p
(2)

nk+1− p(2)

nk
|+ |p(2)

nk
− p(2)

∗ |+ p(2)

∗ < min

{
p(2)

∗ −
δ

8
, 1− δ

8
− p(2)

∗

}
+ p(2)

∗ ≤ 1− δ

8

and

p(2)

nk+1 ≥ p(2)

∗ − |p
(2)

nk+1 − p(2)

nk
+ p(2)

nk
− p(2)

∗ | ≥ p(2)

∗ −
(
|p(2)

nk+1 − p(2)

nk
|+ |p(2)

nk
− p(2)

∗ |
)

> p(2)

∗ −min

{
p(2)

∗ −
δ

8
, 1− δ

8
− p(2)

∗

}
≥ δ

8
.

Lemma 3.24. There exists a k ≥ K large enough such that, having defined m ..= nk,
for all m ≤ n < τk, p(1)

n ≤ ε.

Proof. For n = nk it is trivial. For n > nk one needs to distinguish between two cases
and proceed by contradiction. The core of the argument is the same for both cases,
only the preparation slightly differs.

If τk ∈ N for all k ≥ K, suppose by contradiction that there is a subsequence
{kr} (with kr ≥ K for all r ∈ N) such that for every r, for some nkr < n < τkr ,
p(1)
n > ε. This implies that we can construct a subsequence {pnr} for which p(1)

nr > ε
and p(2)

nr ∈ [δ/8, 1 − δ/8]. From this subsequence, a subsubsequence {pnrl} can be

extracted - denote it {pnl} for simplicity - such that p(1)

nl−1 ≤ ε and ε < p(1)
nl
< 2ε.

This is true because, looking back at the original sequence, at least p(1)
nkrl
≤ ε, so the

sequence exits (0, ε] after having been inside the interval for at least one time, and
one can choose nl to be the first time of exit from (0, ε] for every l. Furthermore,
the vanishing potential implies ‖pn − pn−1‖1 −→ 0 by (3.4), so for all l large enough,
|p(1)
nl
− p(1)

nl−1| ≤ ‖pnl − pnl−1‖1 < ε, hence

ε < p(1)

nl
≤ |p(1)

nl
− p(1)

nl−1|+ p(1)

nl−1 < 2ε.
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ε

1

δ
8

1− δ
8

1

1

pnl−1
pnl

p1

p2

p3

Figure 3.4: Rε, δ
8

in green

At the same time, by construction δ/8 < p(2)
nl
< 1− δ/8, since nkrl < nl < τ

krl
. Consider

now the set {(p, qp) : p ∈ R} where R = Rε, δ
8

..= K2ε, δ
8
\Kε, δ

8
(see Figure 3.4).

By construction of ε, every p ∈ R does not lie on ∂Σ and it is closer to E1 than to
the other two edges. Note that pnl ∈ R̊. For every p, fixing a small enough ε′ <
ε = dist(R,E1)/2 (recall that we work in 1-norm), letting c the positive subunitary
constant such that ‖Lp(q − qp)‖1 ≤ c‖q − qp‖1 for all p ∈ R (following the same
construction and definitions as in Lemma 3.14, it is known that this constant holds
uniformly on the whole compact set Σε′

..= {p ∈ Σ : pi ≥ ε′, ∀ i ∈ {1, 2, 3}},
so in particular it is uniform on R ⊂ Σε′ by construction of ε); one can set δ′ ..=
(1 − c)ε′/8. Then since ‖qn − qpn‖1 −→ 0, for some large enough l̄, (pnl̄ , qnl̄) ∈
U((pnl̄ , qpnl̄ ), δ

′), hence by Proposition 3.17 it is known that for all n ≥ nl̄, pn ∈
B(pnl̄ , ε

′). Indeed Proposition 3.17 applies, since by construction ε′ < dist(R, ∂Σ),

and therefore for every p ∈ R, ε′ < dist(p, ∂Σ). But then eventually dist(pn, E1) ≥
dist(B(pnl̄ , ε

′), E1) ≥ dist(R,E1) − ε′ > 2ε − ε = ε. This is in contradiction with
p(1)
nk
−→ 0.
If for some k̄ ≥ K, τk̄ =∞, then for all k ≥ k̄, τk =∞. Suppose again, by the same

construction as above, that, by contradiction, there is a subsequence {pnr} for which
p(1)
nr > ε, with nr > nkr and kr ≥ k̄ for all r ∈ N. Note that this time it automatically

holds that p(2)
nr ∈ [δ/8, 1− δ/8] (since all τkr =∞ for all kr ≥ k̄, p(2)

n ∈ [δ/8, 1− δ/8] for all
n ≥ nk̄, in particular the last condition imposed on K is not necessary for this case).
This case only differs in that it does not require any degree of control on p(2)

n , and it
is now clear that we can just proceed as in the previous case. Another subsequence
{pnrl} can be extracted - denote it simply {pnl} as before - such that p(1)

nl−1 ≤ ε and
p(1)
nl
> ε}. Hence ε < p(1)

nl
< 2ε, along with δ/8 < p(2)

nl
< 1 − δ/8. From here on the

previous argument takes care of things.

In the following all the proofs are made with respect to the large enough m = nk,
with k ≥ K, existing by Lemma 3.24, and therefore the corresponding τk will be
simply denoted as τ .

Lemma 3.25. For all m ≤ n ≤ τ ,

|αn| ≤ max

{(
3

4

)n−m
|αm|, p(1)

n |βn|

}
.
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Proof. Proceed by induction. If n = m, the statement |αm| ≤ max{|αm|, p(1)
m |βm|} is

trivially true by definition of m and K
∗
ε, δ

2
. If n = m+ 1 < τ , recall that by (3.11) in

Lemma 3.22 and Lemma 3.23 on K
∗ ..= K

∗
ε, δ

8
it holds that

|αm+1| ≤
|αm|

2
(1 + |ρ3(rm)|) + |ρ4(rm)| ≤ |αm|

2
(1 + θ) + θ|αm|+ θp(1)

m |βm|,

which applies by definition of m. Then it follows that

|αm+1| ≤ |αm|
1 + 3θ

2
+ θp(1)

m |βm|.

If |αm| ≥ p(1)
m |βm|, then

|αm+1| ≤ |αm|
1 + 3θ

2
+ θ|αm| =

1 + 5θ

2
|αm| ≤

3

4
|αm|,

as θ < 1/10 and 1/10 is the value, at which the equation (1 + 5x)/2 = 3/4 holds (with
the left-hand side being increasing). If instead |αm| < p(1)

m |βm|, then it holds that

|αm+1| ≤ p(1)

m |βm|
1 + 3θ

2
+ θp(1)

m |βm| =
1 + 5θ

2
p(1)

m |βm|. (3.13)

By definition of m and by (3.8) in Lemma 3.21, and by Lemma 3.23,

p(1)

m+1 ≥ p(1)

m − |ρ1(rm)| ≥ p(1)

m − θp(1)

m = (1− θ)p(1)

m , (3.14)

since at time m the orbit is in K
∗
, so the lemmas apply. Note also that, since by

hypothesis |αm| < p(1)
m |βm| < |βm| and since by assumption ε ≤ θ, by definition of m,

it follows that p(1)
m < ε ≤ θ. This yields, by applying (3.12) and Lemma 3.23, that

|βm+1| ≥ |βm|(1−p(1)

m )−|ρ5(rm)| > |βm|(1−p(1)

m )−θ|αm|−θp(1)

m |βm| ≥ |βm|(1−θ)−2θ|βm|,

which yields
|βm+1| ≥ |βm|(1− 3θ). (3.15)

Then plugging the bounds in (3.14) and (3.15) into (3.13) yields

αm+1 ≤
1 + 5θ

2

p(1)

m+1|βm+1|
(1− θ)(1− 3θ)

< p(1)

m+1|βm+1|,

since (1+5x)/[2(1−x)(1−3x)] = 1 holds only at (13−
√

145)/12 > (13−
√

147)/12 =
(13− 7

√
3)/12 > [13− 7(1 + 3/4)]/12 =.. θ for x < 1/3, and the function (1 + 5x)/[2(1−

x)(1− 3x)] is monotone increasing on that interval.
Assume now the hypothesis for any m + 1 ≤ n < τ . This time, when carrying

on with the inductive step, it will not be possible to appeal to the definition of m,
but it will be necessary to rely on Lemma 3.24, which ensures that (pn, qn) ∈ K

∗

and therefore makes it possible for the same lemmas we just used to apply, in the
corresponding parts of the induction step. First we have

|αn+1| ≤ |αn|
1 + 3θ

2
+ θp(1)

n |βn|

by (3.11) in Lemma 3.22 and Lemma 3.23. Next, if (3/4)n−m|αm| ≥ p(1)
n |βn|, the

induction hypothesis reads

|αn| ≤
(

3

4

)n−m
|αm| = max

{(
3

4

)n−m
|αm|, pn|βn|

}
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and then

|αn+1| ≤
(

3

4

)n−m
1 + 3θ

2
|αm|+

(
3

4

)n−m
θ|αm| =

(
3

4

)n−m
1 + 5θ

2
|αm|

≤
(

3

4

)n+1−m

|αm|.

If instead (3/4)n−m|αm| < p(1)
n |βn|, then by the induction hypothesis it holds that

|αn+1| ≤
1 + 3θ

2
max

{(
3

4

)n−m
|αm|, p(1)

n |βn|

}
+ θp(1)

m |βm| =
1 + 5θ

2
p(1)

m |βm|. (3.16)

By (3.8) and Lemma 3.23

p(1)

n+1 ≥ (1− θ)p(1)

n . (3.17)

Note also that since in this case (3/4)n−m|αm| < p(1)
n |βn|, the induction hypothesis reads

|αn| ≤ p(1)
n |βn| and by construction ε ≤ θ; it follows by Lemma 3.24 that p(1)

n < ε ≤ θ.
Both facts yield |αn| ≤ θ|βn|, and therefore by applying (3.12) and Lemma 3.23, we
have that

|βn+1| > |βn|(1− 3θ). (3.18)

Then plugging the bounds (3.17) and (3.18) into (3.16) yields

αn+1 ≤
1 + 5θ

2

p(1)

n+1|βn+1|
(1− θ)(1− 3θ)

< p(1)

n+1|βn+1|,

which proves that

|αn+1| ≤ max

{(
3

4

)n+1−m

|αm|, p(1)

n+1|βn+1|

}
.

Let

σ ..= inf

{
n ≥ m :

(
3

4

)n−m
|αm| ≤ p(1)

n |βn|

}
∈ N ∪∞.

Lemma 3.26.

a) If τ <∞, then σ < τ and p(2)
σ ∈ [δ/4, 1− δ/4];

b) If σ <∞, then for all σ ≤ n ≤ τ ,(
3

4

)n−m
|αm| ≤ p(1)

n |βn|.

Proof.

a) For all m ≤ n ≤ σ ∧ τ , by definition of σ, p(1)
n |βn| < (3/4)n−m|αm| and as a result

by Lemma 3.25, αn ≤ (3/4)n−m|αm|. By (3.9), Lemma 3.23 and Lemma 3.24
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(this last one used, as in the previous Lemma 3.25, to ensure that the bounds
on the errors in Lemma 3.23 hold) it follows that

|p(2)

σ∧τ − p(2)

m | ≤
σ∧τ−1∑
n=m

|p(2)

n+1 − p(2)

n | =
σ∧τ−1∑
n=m

|2(1− p(2)

n )p(1)

n βn − ρ2(rn)|

< 2
σ∧τ−1∑
n=m

p(1)

n |βn|+
σ∧τ−1∑
n=m

c|αn|+ p(1)

n |βn| = 3
σ∧τ−1∑
n=m

p(1)

n |βn|

+ c
σ∧τ−1∑
n=m

|αn| ≤ (3 + c)|αm|
σ∧τ−1∑
n=m

(
3

4

)n−m
≤ (3 + c)|αm|

∞∑
i=0

(
3

4

)i
= 4(3 + c)|αm| < 4(3 + c)ε < 4(3 + c)

δ(1− 2θ)

16(3 + c)
<
δ

4
.

Since p(2)
m ∈ [δ/2, 1− δ/2], having travelled a distance less than δ/4, it follows that

p(2)

σ∧τ ∈ [δ/4, 1− δ/4] ⊂ [δ/8, 1− δ/8], hence σ ∧ τ 6= τ , otherwise by definition of τ ,
p(2)

σ∧τ would not belong to [δ/8, 1 − δ/8]. Hence σ ∧ τ = σ, that is σ < τ , and in
particular p(2)

σ ∈ [δ/4, 1− δ/4].

b) Note that by definition of σ, the case n = σ is trivially true. If σ < ∞, σ < τ ,
because if τ =∞, σ < τ =∞; whereas by part (a) if τ <∞, then σ < τ . Hence
one can only assume the claim to be true up to some σ < n < τ . Recall that the
steps in Lemma 3.25 apply again and produce (3.17), that is p(1)

n+1 ≥ (1− θ)p(1)
n ,

and (3.18), that is |βn+1| ≥ (1 − 3θ)|βn|. This last equation is still true for n,
since the induction hypothesis (3/4)n−m|αm| ≤ p(1)

n |βn| and Lemma 3.25 imply
that |αn| ≤ p(1)

n |βn|, which is the key to the relevant estimate in order to get the
result. Putting these facts altogether yields that

p(1)

n+1|βn+1| ≥ (1− θ)(1− 3θ)p(1)

n |βn| ≥ (1− θ)(1− 3θ)

(
3

4

)n−m
|αm|

>

(
3

4

)n+1−m

|αm|,

where the induction hypothesis has been used in the second last inequality, and
the last inequality follows from (1− x)(1− 3x) being decreasing at the left of 2/3
(the vertex of the parabola) and hitting 3/4 at (4−

√
13)/6 > θ, since

√
13 < 361/100

because 130000 < 130321 = 3612, and therefore (4−
√

13)/6 > (4− 361/100)/6 =
13/200 > 1/16, since the last inequality is equivalent to 208 > 200.

Theorem 3.27. τ =∞ and the dynamical system converges.

Proof. Suppose first that σ =∞. By Lemma 3.26 (a), if τ <∞, σ < τ <∞ against
the hypothesis, hence τ = ∞. By (3.9) and Lemmas 3.23 to 3.25 and the definition
of σ it follows that

∞∑
n=m

|p(2)

n+1 − p(2)

n | =
∞∑
n=m

|2(1− p(2)

n )p(1)

n βn + ρ2(rn)| ≤ 3
∞∑
n=m

p(1)

n |βn|+ c

∞∑
n=m

|αn|

≤ (3 + c)|αm|
∞∑
n=m

(
3

4

)n−m
≤ 4(3 + c)ε <

δ

4
,

so p(2)
n converges within [δ/4, 1 − δ/4] ⊂ [δ/8, 1 − δ/8]. The existence of a subsequence

pnj −→ p∗ ∈ E1 ∩ Kε, δ
8
, ensures that ε can be chosen arbitrarily small, and by
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Lemma 3.24 this means that p(1)
n can be chosen to stay arbitrarily small while p(2)

n

converges within [δ/8, 1− δ/8]. All of this implies that pn is eventually inside Kε, δ
8

with

ε arbitrarily small, while p(2)
n converges. Since ε is arbitrary, p(1)

n −→ 0 and therefore
pn −→ p∗ ∈ E1 ∩Kε, δ

8
.

Suppose now that σ <∞. By Lemma 3.26 (b), σ < τ . By (3.12) in Lemma 3.22
for any σ ≤ k < τ

βk+1 + (−1)k−σβσ =
k∑

n=σ

(−1)k−n(βn+1 + βn) =
k∑

n=σ

(−1)k−n(βnp
(1)

n + ρ5(rn)).

By the definition of σ, Lemmas 3.23 to 3.25 and Lemma 3.26 (b) for all σ ≤ n ≤ k,

|ρ5(rn)| < θ|αn|+ θp(1)

n |βn| ≤ 2θp(1)

n |βn|,

since |αn| ≤ p(1)
n |βn| = max{(3/4)n−m|αm|, p(1)

n |βn|}. It follows that {βn}kn=σ has an
alternating sign (the sign of two consecutive terms flips, whenever the previous term
is nonzero, that is; zero terms do not provide contribution to the sum we are trying
to estimate with this argument, which is

∑k
n=σ p

(1)
n |βn|) since

βn+1βn = (−1 + p(1)

n )β2
n + ρ5(rn)βn ≤ (−1 + p(1)

n )β2
n + |ρ5(rn)||βn|

≤ (−1 + p(1)

n + 2θp(1)

n )β2
n < [−1 + θ(1 + 2θ)]β2

n < 0

by Lemma 3.24, and by the fact that ε ≤ θ < 1/(1 + 2θ), since for 0 ≤ x < 1/2 the
function x(1 + 2x) < 1 and θ ∈ (0, 1/2). Since for all k ≥ m, |βk| < ε, and the sign
alternates as aforementioned,

2ε > |βk+1 + (−1)k−σβσ| =

∣∣∣∣∣
k∑

n=σ

(−1)k−n(βnp
(1)

n + ρ5(rn))

∣∣∣∣∣ =

∣∣∣∣∣
k∑

n=σ

(−1)k−nsign(βn)|βn|p(1)

n

+
k∑

n=σ

(−1)k−nρ5(rn)

∣∣∣∣∣ =

∣∣∣∣∣
k∑

n=σ

sign(βk)|βn|p(1)

n +
k∑

n=σ

(−1)k−nρ5(rn)

∣∣∣∣∣ ≥
k∑

n=σ

|βn|p(1)

n

−

∣∣∣∣∣
k∑

n=σ

(−1)k−nρ5(rn)

∣∣∣∣∣ ≥
k∑

n=σ

|βn|p(1)

n −
k∑

n=σ

|ρ5(rn)| ≥ (1− 2θ)
k∑

n=σ

|βn|p(1)

n ≥ 0.

In conclusion it has been shown that

k∑
n=σ

p(1)

n |βn| <
2ε

1− 2θ
. (3.19)

The main argument for this case can now start, by showing that τ = ∞. Suppose,
by contradiction, τ < ∞. Then we can use (3.19) with k = τ − 1, and therefore
by (3.9) in Lemma 3.21, Lemmas 3.23 to 3.26 we obtain, by the same estimate as
in the previous case (σ = ∞; more precisely Lemma 3.26 (a) ensures σ < τ , while
Lemma 3.26 (b) ensures (3/4)n−m|αm| ≤ p(1)

n |βn|) and the definition of σ, that

|p(2)

σ − p(2)

τ | ≤
τ−1∑
n=σ

|p(2)

n+1 − p(2)

n | ≤ 3
τ−1∑
n=σ

p(1)

n |βn|+ c
τ−1∑
n=σ

|αn| ≤ 3
τ−1∑
n=σ

p(1)

n |βn|

+ c
τ−1∑
n=σ

max

{(
3

4

)n−m
|αm|, p(1)

n |βn|

}
= 3

τ−1∑
n=σ

p(1)

n |βn|+ c
τ−1∑
n=σ

p(1)

n |βn|

= (3 + c)
τ−1∑
n=σ

p(1)

n |βn| ≤
(3 + c)2ε

1− 2θ
<
δ

8
.
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But if τ < ∞ by Lemma 3.26 (a), p(2)
σ ∈ [δ/4, 1 − δ/4], and since it has just been

proved that p(2)
τ has travelled a distance less than δ/8, this yields that p(2)

τ ∈ [δ/8, 1− δ/8]
in contradiction with the definition of τ . Hence τ = ∞. Then again, by (3.9) in
Lemma 3.21, Lemmas 3.23 to 3.25 and Lemma 3.26 (b) it follows that

∞∑
n=σ

|p(2)

n+1 − p(2)

n | =
∞∑
n=σ

|2(1− p(2)

n )p(1)

n βn + ρ2(rn)| ≤ 3
∞∑
n=σ

p(1)

n |βn|+ c

∞∑
n=σ

|αn|

≤ 3
∞∑
n=σ

p(1)

n |βn|+ c

∞∑
n=σ

|αn| ≤ 3
∞∑
n=σ

p(1)

n |βn|

+ c
∞∑
n=σ

max

{(
3

4

)n−m
|αm|, p(1)

n |βn|

}
= 3

∞∑
n=σ

p(1)

n |βn|+ c

∞∑
n=σ

p(1)

n |βn|

= (3 + c)
∞∑
n=σ

p(1)

n |βn| ≤
2ε(3 + c)

1− 2θ
≤ δ

8
<∞.

The last step follows from (3.19) holding uniformly for any k ≥ σ, since now τ =∞.
This yields the convergence of p(2)

n within [δ/8, 1 − δ/8], and by the same reasoning as
in the previous case (σ = ∞), exploiting ε being arbitrarily small, this results again
in the convergence of pn inside the edge.

In both cases, convergence of {pn} to p∗ ∈ E1 implies convergence of {qn} to qp∗ ,
since ` = 0, and therefore convergence of the whole orbit.

Remark 3.28. Repeating this argument for p∗ ∈ Ei with i ∈ {2, 3}, by exploiting the
symmetry of the model, defining σ and τ accordingly in terms of the corresponding
coordinates and showing an analogous version of Theorem 3.27 for i ∈ {2, 3}, yields
convergence of any orbit approaching the boundary with ` = 0.

3.5 Convergence to the boundary with ` > 0

The main goal of this section is to show that if {pn} approaches the boundary and the
limit of the potential ` ..= limn−→∞ V (pn, qn) > 0, the dynamical system converges.
Compared with the case studied in Section 3.4, a key feature of the case with ` > 0
is that the orbit does not admit a subsequence {pnj}j∈N bounded away from the
boundary, as otherwise we would have ` = 0, due to the geometric decay of the
decreasing potential along this subsequence, ensured by Proposition 3.15. This will
simplify certain arguments, compared to those in Section 3.4. In particular, results
the likes of Lemma 3.24 will not be needed. On the other hand, the lack of information
about the set of accumulation points for the orbits (which is quite trivial when ` = 0:
they are the equilibria, including boundary ones) will complicate the analysis, which
requires an explicit study of the set of accumulation points of the orbit.

3.5.1 Convergence of boundary orbits

Even though we seek to understand regular orbits, the description of their set of ac-
cumulation points, if they approach the boundary, comes from the study of boundary
orbits, which can be reduced to the case of pn ∈ Ei for some i ∈ {1, 2, 3}, for all
n ∈ N0, with q0 ∈ Σ0

..= Σ \ V . The requirement on q0 follows by Remarks 3.3
and 3.4: recall that if p0 ∈ Ei and q0 = vk for k 6= i, the iteration is inconsistent,
while if q0 = vi, then pn = p0 and {qn} is 2-periodic.
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Lemma 3.29. Let p0 ∈ Ei for some i ∈ {1, 2, 3}. Then there exists p∗ ∈ Ei such that
pn −→ p∗ as n −→∞.

Proof. By symmetry, without loss of generality, assume i = 1, that is p0 ∈ E1, or
equivalently p(1)

0 = 0 and 0 < p(2)

0 < 1. Then

p1 = 1− q0 −

 0 1 1
1− p(2)

0 0 0
p(2)

0 0 0

 q0.

It follows immediately from the form taken by Mp0 that p(1)

1 = 0 and therefore, by
induction, that for all n ∈ N0, p(1)

n = 0. Thus we are in presence of a boundary orbit.
We can also see that

p(2)

1 = 1− q(2)

0 − (1− p(2)

0 )q(1)

0 > 0,

since 0 < p(2)

0 < 1, and therefore, by induction, 0 < p(2)
n < 1 for all n ∈ N. We can

conclude that for all n ∈ N0,

Mpn =

 0 1 1
1− p(2)

n 0 0
p(2)
n 0 0

 .

Given these facts, we show convergence by estimating p(2)

n+1 − p(2)
n . Note that

p(2)

n+1 − p(2)

n = 1− (1− p(2)

n )q(1)

n − q(2)

n − p(2)

n = (1− p(2)

n )(1− q(1)

n )− q(2)

n

= (1− p(2)

n )(1− q(1)

n )− (1− p(2)

n−1)q(1)

n−1.

Since p(1)
n = 0, we have that q(1)

n−1 = 1 − q(1)
n for all n ∈ N; therefore, factoring this

quantity out, yields that

p(2)

n+1 − p(2)

n = −(1− q(1)

n )(p(2)

n − p
(2)

n−1). (3.20)

Note that (3.20) implies that

|p(2)

n+1 − p(2)

n | ≤ |p(2)

n − p
(2)

n−1|,

so the increments of p(2)
n are monotone decreasing with an alternating sign (whenever

the sign does not alternate, we are in the trivial case of the increments being eventually
identically zero, which is a trivial case of convergence). Note also that the argument
so far makes no hypotheses on q0 ∈ Σ0. Iterating once more yields

p(2)

n+1 − p(2)

n = (1− q(1)

n )(1− q(1)

n−1)(p(2)

n−1 − p
(2)

n−2) = q(1)

n (1− q(1)

n )(p(2)

n−1 − p
(2)

n−2),

which implies that

|p(2)

n+1 − p(2)

n | ≤
1

4
|p(2)

n−1 − p
(2)

n−2|

and thus |p(2)

n+1 − p(2)
n | −→ 0. By the Leibniz test of convergence

∞∑
n=0

(p(2)

n+1 − p(2)

n ) <∞,

hence p(2)
n converges to some p(2)

∗ . It is left to show that 0 < p(2)
∗ < 1. Since pn ∈ E1

for all n and since p(2)

k − p
(2)

k−1 alternates the sign while vanishing monotonically, by
the formula

p(2)

∗ − p
(2)

0 = p(2)

∗ − p(2)

n +
n∑
k=1

(p(2)

k − p
(2)

k−1) = O(1) +
n∑
k=1

(p(2)

k − p
(2)

k−1), (3.21)

which holds since |p(2)
∗ − p(2)

n | −→ 0 as n −→ ∞, the claim follows by exhaustion of
the following three cases.
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• If p(2)

1 = p(2)

0 , by (3.20) all increments are identically zero, so p(2)
n = p(2)

0 for all
n and therefore pn = p0 for all n, which is the trivial case of convergence to
p∗ = p0 ∈ E1 previously mentioned.

• If p(2)

1 > p(2)

0 , due to the monotonicity and alternating of the signs,

0 ≤
n∑
k=1

p(2)

k − p
(2)

k−1 ≤ p(2)

1 − p
(2)

0 ,

and since n can be chosen arbitrarily large in (3.21), this implies that

0 ≤ p(2)

∗ − p
(2)

0 ≤ p(2)

1 − p
(2)

0 ,

hence p∗ ∈ E1.

• If p(2)

1 < p(2)

0 , due to the monotonicity and alternating of the signs,

p(2)

1 − p
(2)

0 ≤
n∑
k=1

p(2)

k − p
(2)

k−1 ≤ 0,

and since n can be chosen arbitrarily large in (3.21), this implies that

p(2)

1 − p
(2)

0 ≤ p(2)

∗ − p
(2)

0 ≤ 0,

hence p∗ ∈ E1.

Fundamental to the key geometric ideas behind Corollary 3.30 is that for all p ∈ Ei,
e0(p) is constant and always parallel to the edge Ei (see Lemma 3.19 (f)). Recall that
as e1(p) we can take qp (see Lemma 3.19 (a)).

Corollary 3.30. If p0 ∈ Ei, then for all q0 ∈ Σ0 there exists limn−→∞ pn =.. p∗ ∈ Ei
and β ≥ 0 (dependent on the initial conditions) such that the set of accumula-
tion points of the boundary orbit is {(p∗, qp∗ ± βe−1(p∗))}. Moreover, letting ` ..=
limn−→∞ V (pn, qn) yields β = `/2.

Proof. By symmetry, without loss of generality set i = 1. Note that

Φ(p, q) ..=

(
1− q −Mpq

Mpq

)
is continuous on E1 × Σ0. By Lemma 3.29 as n −→∞,

(I +Mpn)qn = 1− pn+1 −→ 1− p∗ = 2qp∗

so
I +Mpn

2
qn −→ qp∗

and therefore
I +Mp∗

2
(qn − qp∗) −→ 0,

since(
I +Mpn

2
− I +Mp∗

2

)
qn +

I +Mp∗

2
qn =

I +Mpn

2
qn −→ qp∗ =

I +Mp∗

2
qp∗ ,
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and by continuity
I +Mpn

2
− I +Mp∗

2
−→ 0.

This means that qn − qp∗ either becomes aligned with e−1(p∗) or it vanishes as n −→
∞ (in which case β = 0). Note that ‖qn − qp∗‖1 converges by the monotonicity
of the potential, which, although not strictly, still applies to boundary orbits by
Remark 3.13. Since V (pn, qn) −→ ` ≥ 0, ‖qn − qp∗‖1 −→ `, which determines β,
because ‖e−1(p∗)‖1 = 2 for all p∗ ∈ E1. If ` = 0, β = 0. Indeed, if ` > 0, ‖qn−qp∗‖1 =
‖βne−1(p∗)+O(1)‖1 −→ ` > 0. If βn −→ 0, we would have a contradiction with ` > 0,
so βn 6−→ 0. If |βn| does not converge, by boundedness there would be two convergent
subsequences |βnj | −→ β̃ and |βnk | −→ β̄, with β̃ 6= β̄. But ‖βnje−1(p∗) + O(1)‖1 −→
‖β̃e−1(p∗)‖1 = 2β̃ and ‖βnke−1(p∗) + O(1)‖1 −→ ‖β̄e−1(p∗)‖1 = 2β̄. Both limit values
must be equal to `, hence β̃ = β̄ = `/2. Hence {|βn|} converges to β = `/2 > 0, and
thus its accumulation points are {±β}. This yields the claim.

We can now exploit Lemma 3.29 to show that for a boundary orbit, {qn} is asymp-
totically 2-periodic whenever q0 − qp0 is not aligned with e0(p0).

Proposition 3.31. If p0 ∈ Ei, then for all q0 ∈ Σ0 there exists limn−→∞ pn = p∗ ∈ Ei
and β ≥ 0 (dependent on the initial conditions) such that the boundary orbit ap-
proaches the 2-cycle {(p∗, qp∗ ± βe−1(p∗))}, with β = |β0|, where q0 = qp0 +α0e0(p0) +
β0e−1(p0).

Proof. By Corollary 3.30 it is known that the set of accumulation points is as per
the claim, we only need to show that the orbit alternates between the two ac-
cumulation points. We will adopt the boundary eigenvectors as per Lemma 3.19
and, by symmetry, we will assume p∗ ∈ E1, without loss of generality. Recall that
e0(pn) = e0

..= (0, 1,−1) for all n ∈ N0 and e−1(pn) = (−1, 1− p(2)
n , p

(2)
n ), so that

e−1(pn+1)− e−1(pn) = (p(2)

n+1 − p(2)

n )e0.

Then since qpn = e1(pn) and qn − qpn = αne0 + βne−1(pn) for all n, for a boundary
orbit (3.2) reads as

αn+1e0 + βn+1e−1(pn+1) = −αn
2
e0 − βne−1(pn),

which yields

−βn+1 = βn

αn+1 + (1− p(2)

n+1)βn+1 = −αn
2
− (1− p(2)

n )βn

−αn+1 + p(2)

n+1βn+1 =
αn
2
− p(2)

n βn.

The first equation plugged into the second makes the latter a scalar multiple of the
third equation, so the system is consistent and overdetermined, and we solve it by
keeping only the first and the third equation, and use the first equation to simplify
the third, obtaining

αn+1 = −αn
2

+ βn(p(2)

n − p
(2)

n+1) (3.22)

βn+1 = −βn. (3.23)
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Using (3.1) we can also rewrite pn+1 − pn in eigencoordinates as

pn+1 − pn = −2(qpn+1 − qpn) = −2

(
qn+1 + qn

2
− qpn

)
= −((Mpn + I)qn − 2qpn)

= −((Mpn + I)qn − (Mpn + I)qpn) = −(Mpn + I)(qn − qpn) = −αne0.

Due to (Mpn + I)e−1(pn) = 0, we obtain p(2)

n+1 − p(2)
n = −αn, which turns (3.22)

and (3.23) into the system

αn+1 =

(
βn −

1

2

)
αn (3.24)

βn+1 = −βn. (3.25)

By (3.25), βn oscillates between β0 and −β0. If we can show that αn −→ 0, we have
the asymptotic 2-periodicity claimed. We will actually show the stronger fact, that
the asymptotic 2-cycle is approached with a geometric decay of the eigencoordinate
αn. Since ‖e−1(p)‖2 =

√
2
√

1− p(2)
n + (p(2)

n )2 and the parabola 3/4 ≤ x2 − x + 1 < 1
for 0 < x < 1 (the minimum is at 1/2),√

3

2
≤ ‖e−1(p)‖2 ≤

√
2,

|βn|
√

3

2
≤ |βn|‖e−1(pn)‖ = ‖βne−1(pn)‖2 ≤

1√
2

where the last inequality on the right comes from the geometry of the simplex: since
e0(pn) is parallel to E1, if ‖βne−1(pn)‖2 > 1/

√
2, then qn 6∈ Σ. As a brief explanation of

this elementary geometric fact, note that for boundary orbits with pn ∈ E1, qpn is on
the line, parallel to E1, joining (1/2, 0, 1/2) to (1/2, 1/2, 0); this line passes through the
midpoint of (1, 0, 0) + e−1(pn), hence ‖βne−1(pn)‖2 <

√
2/2, where

√
2 is the Euclidean

length of the edge of the simplex (half of the edge being the largest, which the projec-
tion ‖βne−1(pn)‖2 can be, due to the geometric properties of the simplex). Therefore
|βn| < 1/

√
3. Thus we use this estimate in the two-steps iteration obtained for αn, by

iterating (3.24) once more and plugging (3.25) in it. This yields that

αn+1 =

(
βn −

1

2

)(
βn−1 −

1

2

)
αn−1 = −

(
βn−1 +

1

2

)(
βn−1 −

1

2

)
αn−1

= −
(
β2
n−1 −

1

4

)
αn−1.

It follows that

|αn+1| <
∣∣∣∣β2
n−1 −

1

4

∣∣∣∣ |αn−1| <
1

12
|αn−1|. (3.26)

Denote M ..= max{|α0|, |α1|}, then it is easy to see that by induction,

|α2k| <
(

1

12

)k
|α0|

and

|α2k+1| <
(

1

12

)k
|α1|,
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so a common geometrically decaying upper bound can be found as

|αn| <
(

1

12

)bn
2
c

M,

hence

|αn| < M

(
1

2
√

3

)n
, (3.27)

yielding a geometrically decaying upper bound on the first eigencoordinate. That
β = β0, is obvious by the alternating βn coordinate. In particular, β = 0 if and
only if q0 = qp0 + α0e0(p0) for some real α0 (hence, these are the initial conditions of
boundary orbits having ` = 0).

Remark 3.32. The geometric upper bound on the decay of |αn| for a boundary orbit,
expressed in (3.27), is uniform, since M ..= max{|α0|, |α1|} holds uniformly by the
boundedness of the simplex. Hence there exists a uniform constant M̃ such that, for
any boundary orbit,

|αn| < M̃

(
1

2
√

3

)n
(3.28)

The following is immediate from Proposition 3.31. Recall that Σ∗ denotes the
medial triangle in Σ (boundary excluded).

Corollary 3.33. If p0 ∈ Ei and q0 = qp0 + α0e0(p0) + β0e−1(p0) ∈ Σ0, pn −→ p∗ ∈
Ei, while {qn} either converges to qp∗ ∈ ∂Σ∗ if β0 = 0 or approaches the 2-cycle
{(p∗, qp∗ ± βe−1(p∗))}, with β = |β0|.

3.5.2 Structure of the set of accumulation points

In this section we study the set of accumulation points of regular orbits approach-
ing the boundary, and therefore assume p0 6∈ ∂Σ. It will be useful to describe the
dynamical system in terms of its iteration map Φ(p, q), which is continuous on Σ2

0:(
pn+1

qn+1

)
= Φ(pn, qn) =

(
Φp(pn, qn)
Φq(pn, qn)

)
..=

(
1− qn −Mpnqn

Mpnqn

)
Boundary orbits are the main tool to finding the structure of the set of accumulation
points of regular orbits characterised by ` > 0. Not only, but for a truly informative
characterisation, particular attention must be paid to the asymptotics of a regular
orbit approaching the set of vertices V . To this end, it is useful to define, for any
i 6= j 6= k, e−1(vi) ..= vj − vk. Even though the matrix Mvi is not well defined, e−1(vi)
artificially defined as such, will play the role of the corresponding eigenvector e−1(p)
(well defined on the edges), in capturing the direction of the asymptotic oscillations
of {qn}, for an orbit such that {pn} approaches the vertices. We will see that if {pn}
approaches the vertices, the orbit has, along a subsequence, an asymptotics analogous
to that of boundary orbits.

Lemma 3.34. Let {(pn, qn)} be an orbit, such that {pn} is not bounded away from
a vertex, that is such that there is {nk}k∈N, with pnk −→ vi for some i ∈ {1, 2, 3}.
Then the set of accumulation points of {(pnk , qnk)} and {(pnk+1, qnk+1)} is a subset of{

(vi, qvi ± `
2
e−1(vi))

}
. Moreover, if {nk} is such that also {qnk} converges, {qnk−1},

{qnk}, and {qnk+1} asymptotically oscillate between q∗ = qvi ± `
2
e−1(vi) and q̂∗ =

qvi ∓ `
2
e−1(vi), while {pnk} and {pnk+1} all tend to vi, that is (pnk , qnk) −→ (vi, q∗)

and (pnk+1, qnk+1) −→ (vi, q̂∗).
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Proof. By symmetry assume i = 2, without loss of generality. Let an arbitrary
convergent subsubsequence (pnkl , qnkl ) −→ (v2, q∗) as l −→ ∞. We do not know
if there actually are convergent subsequences {pnkl} that tend to the vertices (we will
later conjecture that there are not), but we will show that if there are, they must have
the same type of accumulation points as those of boundary orbits, by determining the
form of q∗, for now left unknown. Relabel as {nr} the subsubsequence {nkl}. Note
that

qnr + qnr−1 = 1− pnr −→ (1, 0, 1),

which implies that
q(2)

nr −→ 0 = q(2)

∗ ,

while for i ∈ {1, 3},
q(i)

nr + q(i)

nr−1 −→ 1

as r −→ ∞. Since V (pnr , qnr) −→ V (v2, q∗) = ` one can fully determine q∗. Indeed
qv2 = (1/2, 0, 1/2) and

` = V (v2, q∗) = |q(1)

∗ − q(1)

v2
|+ |q(2)

∗ − q(2)

v2
|+ |q(1)

∗ − q(1)

v2
| = 2|q(1)

∗ − q(1)

v2
| = 2|q(3)

∗ − q(3)

v2
|,

thus ∣∣∣∣q(3)

∗ −
1

2

∣∣∣∣ =
`

2
.

Hence either q(3)
∗ = (1+`)/2 or q(3)

∗ = (1−`)/2, that is either q∗ = ((1+`)/2, 0, (1−`)/2)
or q∗ = ((1− `)/2, 0, (1+ `)/2). Without loss of generality, assume the latter scenario.
Since it has been shown that

q(i)

nr + q(i)

nr−1 −→

{
0, i = 2

1, i 6= 2,

trivially qnr−1 −→ ((1 + `)/2, 0, (1 − `)/2) =.. q̂∗, the complementary form of q∗.
Slightly less trivially, the same holds for qnr+1 (this part, technically not necessary at
this point, will be of use when starting from an arbitrary convergent subsubsequence
of {(pnk+1, qnk+1)}, but we anticipate it now, so as to avoid repeating the start of the
argument twice). As r −→∞,

q(1)

nr+1 =
p(3)
nr

p(1)
nr + p(3)

nr

q(2)

nr +
p(2)
nr

p(1)
nr + p(2)

nr

q(3)

nr −→
1 + `

2
,

because even though its limit does not exist,

0 ≤
p(3)
nr

p(1)
nr + p(3)

nr

≤ 1,

and multiplied by q(2)
nr −→ 0, the term vanishes, while

p(2)
nr

p(1)
nr + p(2)

nr

−→ 1

and q(3)
nr −→ (1 + `)/2. As r −→∞,

q(2)

nr+1 =
p(3)
nr

p(2)
nr + p(3)

nr

q(1)

nr +
p(1)
nr

p(1)
nr + p(2)

nr

q(3)

nr −→ 0,

since both terms next to q(1)
nr and q(3)

nr vanish. Therefore, qnr+1 −→ q̂∗, and as a result,
also pnr+1 −→ v2 and qpnr+1 −→ qv2 = (1/2, 0, 1/2) as r −→∞.
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We only showed the form of the possible accumulation points for {(pnk , qnk)}, but
that it is the same for {(pnk+1, qnk+1)} follows by simply noting that, if we started
with an arbitrary convergent subsubsequence denoted as (pnr+1, qnr+1) −→ (p∗, q̂∗),
with p∗ and q̂∗ to be determined; knowing by hypothesis that pnr −→ v2, would imply,
through (2.34), that qnr −→ 1− v2 − q̂∗ =.. q∗. Thus we obtain (pnr , qnr) −→ (v2, q∗)
and we can proceed, through the same argument as above, with showing that the
form of q∗ and q̂∗ is as per the claim, thus obtaining that p∗ = v2. The second part of
the claim trivially follows by taking nr = nk in the argument above.

Next we show that regular orbits such that {pn} approaches the boundary with
` > 0, behave asymptotically like boundary orbits. Recall that if ` > 0, an orbit
cannot have any subsequence bounded away from the boundary ∂Σ.

Proposition 3.35. Let {(pn, qn)} be an orbit such that ` > 0. The set of accumulation
points of the orbit is a subset of

{(p, qp ± βe−1(p)) : p ∈ ∂Σ, β > 0, V (p, qp ± βe−1(p)) = `} .

Proof. Recall that if the orbit is not bounded away from the boundary and ` > 0,
then for every {nk}, pnk −→ ∂Σ, since there is no subsequence bounded away from
the boundary. By boundedness, consider (pnk , qnk) −→ (p∗0, q

∗
0) as k −→∞. If p∗0 ∈ V

by Lemma 3.34, one gets the type of limit points claimed, with β = `/2. Hence let us
assume p∗0 6∈ V . Then p∗0 ∈ Ei for some i ∈ {1, 2, 3}. By symmetry, without loss of
generality, assume i = 1. We need to prove that q∗0 is of the form qp∗0±βe−1(p∗0), where
β > 0 is such that V (p∗0, qp∗0 ± βe−1(p∗0)) = `. Consider then {(pnk−1, qnk−1)}, which
has a convergent subsequence (pnks−1, qnks−1) −→ (p∗1, q

∗
1) as s −→∞. For simplicity,

denote nr ..= nks−1. The key idea is that also p∗1 6∈ V , as by Lemma 3.34, if p∗1 = vi, for
some i ∈ {1, 2, 3}, (pnr , qnr) −→ (vi, q

∗
1) as r −→∞, where q∗1−qvi is in the eigenspace

spanned by e−1(vi); then it must follow that (pnr+1, qnr+1) −→ (vi, q̂
∗
1), where q̂∗1

denotes the point complementary to q∗1, as described in the proof of Lemma 3.34.
The contradiction is the following: since nr + 1 = nks , on one hand we concluded that
pnks −→ vi ∈ V , whereas it was assumed pnk −→ p∗0 6∈ V .

We obtained that p∗1 is not a vertex. Thus using the fact that Φ is continuous at
(p∗1, q

∗
1) yields

Φ(p∗1, q
∗
1) = Φ

(
lim
r→∞

(pnr , qnr)
)

= lim
r→∞

Φ (pnr , qnr) = lim
r→∞

(pnr+1, qnr+1) = lim
r→∞

(pnks , qnks )

= (p∗0, q
∗
0),

which also means that p∗1 ∈ E1, being on the boundary. This argument can be
iterated and applied to (pnr , qnr) −→ (p∗1, q

∗
1) as r −→ ∞; that is, we consider a

convergent subsequence of {(pnr−1, qnr−1)}, (pnrj−1, qnrj−1) −→ (p∗2, q
∗
2) as j −→ ∞,

which can be relabelled as nl ..= nrj − 1 and then, via the same argument, prove that
Φ(p∗2, q

∗
2) = (p∗1, q

∗
1). This yields Φ2(p∗2, q

∗
2) = (p∗0, q

∗
0). The iteration of this procedure

through subsequences m times, produces the finite segment of a boundary orbit, as
Φm(p∗m, q

∗
m) = (p∗0, q

∗
0), and p∗m ∈ E1 for any m ∈ N.

Finally we show that q∗0 is on the eigenspace spanned by e−1(p∗0), which will be
done by using the same eigencoordinates as in the proof of Proposition 3.31. Recall
that, as a consequence of the notation set at the beginning of this section, via the
iteration map Φ = (Φp,Φq), for all 0 ≤ k ≤ m,

Φk =

(
(Φk)p
(Φk)q

)
,
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hence
(Φm)q(p

∗
m, q

∗
m)− q(Φm)p(p∗m,q

∗
m) = q∗0 − qp∗0 = α0e0 + β0e−1(p∗0).

We can choose m arbitrarily large, with p∗m ∈ E1 and q∗m ∈ Σ. Thus by Remark 3.32,
which ensures a uniform geometric upper bound on the decay of the α-eigencoordinate,
iterating m times from q∗m − qp∗m to q∗0 − qp∗0 , will imply that α0 = 0. Indeed by

Remark 3.32, after m iterates, |α0| < M̃(2
√

3)−m for every m, and m grows as we
iterate the previous argument, so that this upper bound vanishes uniformly, implying
that α0 = 0 as m is arbitrary. The claim now follows trivially.

Note that if {(pn, qn)} is such that ` = 0, Proposition 3.35 follows trivially by
taking β = 0 and ` = 0, that is the accumulation points are in {(p, qp) : p ∈ Σ}.

Remark 3.36. Consider an orbit such that ` > 0 and, for some {nk}k∈N, pnk −→
p∗ ∈ Ei for some i ∈ {1, 2, 3}. The set of accumulation points of {(pnk , qnk)} and
{(pnk+1, qnk+1)} is a subset of {(p∗, qp∗ ± βe−1(p∗)) : β > 0, V (p∗, qp∗ ± βe−1(p∗)) =
`}. Moreover if {nk} is such that also {qnk} converges, {qnk} and its shift {qnk+1}
asymptotically oscillate between q∗ = qp∗ ± βe−1(p∗) and q̂∗ = qp∗ ∓ βe−1(p∗), that is
if (pnk , qnk) −→ (p∗, q∗), then (pnk+1, qnk+1) −→ (p∗, q̂∗) as k −→∞.

Proof. We will exploit the continuity of Φ on Ei × Σ. Starting with pnk −→ p∗ ∈
Ei, we must extract any convergent subsubsequence {(pnkl , qnkl )}l∈N and check its
limit. Relabel it with {nr} for simplicity. For the q-component’s shift we have, by
Proposition 3.35, that q∗ = qp∗ ± βe−1(p∗). Since

qp∗ ∓ βe−1(p∗) = q̂∗ ..= Mp∗q∗ = Mp∗(qp∗ ± βe−1(p∗)),

by (2.33); the continuity and the hypothesis pnr −→ p∗ ∈ Ei imply that if qnr −→ q∗,
then qnr+1 = Mpnr qnr −→ q̂∗. Hence if we start with an arbitrary subsubsequence
{(pnr+1, qnr+1)}r∈N, convergent to some (p, q̂∗) to be determined under the hypothesis
given, having pnr −→ p∗ ∈ Ei, by (2.34) it follows that qnr −→ 1 − p∗ − q =.. q∗.
We can repeat the argument above by applying Proposition 3.35 and (2.33) to show
the claimed form of q∗ and q̂∗. For the p-component’s shift, since q∗ + q̂∗ = 2qp∗ , if
pnr −→ p∗, having already shown that qnr −→ q∗ and qnr+1 −→ q̂∗, by (2.34) it follows
that

pnr+1 = 1− qnr+1 − qnr −→ 1− q̂∗ − q∗ = 1− 2qp∗ = p∗.

Hence if we start with an arbitrary subsubsequence {(pnr+1, qnr+1)}r∈N convergent to
some (p, q̂∗), with only p left to be determined, it follows that p = p∗. The rest of the
claim is trivial by taking nr = nk.

Corollary 3.37. Let {(pn, qn)} be an orbit. Then pn+1 − pn −→ 0 as n −→∞.

Proof. If ` = 0 the claim follows from (3.4) in Proposition 3.15. Assume ` > 0 and
denote dn ..= pn+1 − pn. The claim is equivalent to showing that dn −→ 0. Since dn
is bounded, if every convergent subsequence dnk converges to 0, then dn converges
to 0. Consider then a convergent subsequence dnk −→ d. We will now show that
by Lemma 3.34 and Remark 3.36, d = 0. There are in fact two cases, depending on
whether {(pnk , qnk)} converges or not.

• If {(pnk , qnk)} converges, it could be that {pnk} tends to a vertex or to a point
inside an edge. If it is a vertex, pnk −→ vi ∈ V for some i ∈ {1, 2, 3} by
Lemma 3.34 and pnk+1 −→ vi too, as k −→ ∞, and therefore dnk −→ 0. If it
is not a vertex, pnk −→ p∗ ∈ Ei for some i ∈ {1, 2, 3}, then by Remark 3.36,
pnk+1 −→ p∗ too. Hence dnk −→ 0. In any case, d = 0.
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• If {(pnk , qnk)} does not converge, by boundedness one can pick a subsubsequence
{(pnkr , qnkr )} that does converge. Since dnk −→ d, also dnkr −→ d as r −→ ∞.
However, the previous argument applies to dnkr , since (pnkr , qnkr ) converges,
thus falling back in the previous case. Thus dnkr vanishes as r −→∞. It follows
that d = 0 by the uniqueness of the limit.

Remark 3.38. Let {(pn, qn)} be an orbit with {pn} not convergent to any of the
vertices. By Corollary 3.37 and Remark 3.11, there is a subsequence of {pn} bounded
away from V .

The following claim is trivially true if ` = 0.

Corollary 3.39. Let {(pn, qn)} be an orbit such that ` > 0, that is V (pn, qn) =
‖αne0(pn) + βne−1(pn)‖1 −→ ` > 0. Then αn −→ 0 and |βn| −→ `/2 as n −→∞.

Proof. For the first part of the statement, following as always the notation of
Lemma 3.19, consider that in eigencoordinates (3.10) holds, which we rearrange as

pn+1 − pn = −αn(1 + λ0(pn))e0(pn)− βn(1 + λ−1(pn))e−1(pn),

and consider that as pn −→ ∂Σ, 1 + λ−1(pn) −→ 0 and 1 + λ0(pn) −→ 1. As a direct
result of Corollary 3.37 and Lemma 3.19 (h), one sees that αn −→ 0 as n −→∞ (this
is trivially true also if ` = 0).

As to the second part of the statement, since {|βn|} is bounded, consider any
convergent subsequence |βnj | −→ `′. Assume by contradiction that `′ 6= `/2. Since
{pnj} is bounded, extract a convergent subsubsequence {pnjl}. Relabel it with {nk}
for simplicity. Since the potential limit along this orbit is ` > 0, we have that pnk −→
p∗ ∈ ∂Σ by Proposition 3.15, under the assumption that |βnk | −→ `′ 6= `/2. If p∗ ∈ V ,
then by Lemma 3.34, |βnk | −→ `/2, and therefore p∗ ∈ Ei for some i ∈ {1, 2, 3}. By
symmetry, without loss of generality, assume i = 1. Then by the smoothness of the
eigenvectors proved in Lemma 3.19 (h), it is known that e0(pnk) −→ (0, 1,−1) =
e0(p∗), with e0(pnk) − e0(p∗) = O(pnk

− p∗) and e−1(pnk) −→ (−1, 1 − p(2)
∗ , p

(2)
∗ ) =

e−1(p∗), with e−1(pnk)− e−1(p∗) = O(pnk
− p∗). Thus

‖αnke0(pnk) + βnke−1(pnk)‖1 =

‖αnk [e0(pnk)− e0(p∗)] + βnk [e−1(pnk)− e−1(p∗)] + αnke0(p∗) + βnke−1(p∗)‖1 =

‖O(pnk
− p∗) + αnke0(p∗) + βnke−1(p∗)‖1 = ‖O(1) + βnke−1(p∗)‖1,

since αn −→ 0 by the first part of this argument. Thus

V (pnk , qnk) = ‖αnke0(pnk) + βnke−1(pnk)‖1 = ‖O(1) + βnke−1(p∗)‖1.

If, as assumed, |βnk | −→ `′ 6= `/2, this would imply that

0← V (pnk , qnk)−` = ‖O(1)+βnke−1(p∗)‖1−` = |βnk |‖O(1)+e−1(p∗)‖1−`→ 2`′−` 6= 0,

because `′ 6= 0 (otherwise V (pnk , qnk) −→ 0, as k −→ ∞, against the hypothesis).
Thus we showed that `′ = `/2, implying that |βnj | −→ `/2. Since {|βnj |} is an arbitrary
convergent subsequence of the bounded sequence {|βn|}, we must have that |βn| −→
`/2.

Remark 3.40. For any orbit, ` < 1, since by (3.1), for all n ∈ N,

V (pn, qn) ..= ‖qn − qpn‖1 =
‖qn − qn−1‖1

2
≤ ‖qn‖1 + ‖qn−1‖1

2
≤ 1,

and by Lemma 3.14, for all n ∈ N,

V (pn+1, qn+1) = ‖qn+1 − qpn+1‖1 < ‖qn − qpn‖1 = V (pn, qn).
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3.5.3 Convergence of regular orbits

Let us start with an approach similar to that of Section 3.4, by defining a set on the
boundary such that, if eventually {(pn, qn)} enters it, convergence of {pn} follows.
The additional complication will be controlling {qn}, whose oscillations will drive the
convergence of {pn}, which in turn helps with controlling the said oscillations.

If an orbit {(pn, qn)} having ` > 0 is such that pn −→ vi for some i ∈ {1, 2, 3},
there is nothing to prove in terms of convergence of {pn}. Moreover, by Lemma 3.34,
taking nk = n, either qn −→ qvi − `

2
e−1(vi) for n even and qn −→ qvi + `

2
e−1(vi)

for n odd or vice versa, that is, asymptotic 2-periodicity of {qn} follows. If an orbit
with ` > 0 is such that pn does not converge to any vertex, by Remark 3.38 and
the boundedness of pn, there will be a subsequence {pnj}j∈N bounded away from the
vertices. Extracting a convergent subsubsequence {pnjl}l∈N by boundedness of pn,
relabel it with {nk}, we can assume that there is a subsequence {pnk} bounded away
from the vertices, and there is p∗ ∈ Ei for some i ∈ {1, 2, 3}, such that pnk −→ p∗, as
k −→∞. Because of the structure of the accumulation points of {(pn, qn)} proved in
Proposition 3.35, the properties of the shift of {(pnk , qnk)} shown in Remark 3.36, and
Corollary 3.39, by the geometry of the simplex and Remark 3.40, it will be possible
to fix such a subsequence so that qnk −→ q∗ ..= qp∗ + `

2
e−1(p∗) as k −→ ∞ too. As

always, by symmetry, without loss of generality we will assume i = 1 in all arguments
that will follow. Let us start with fixing δ > 0 small enough (it will be necessary to
further reduce it later on) so that δ < p(2)

∗ < 1− δ, δ < q(1)
∗ < 1/2− δ, δ < q(2)

∗ < 1− δ
and q(3)

∗ > δ. There will be an ε′ small enough and K large enough such that, having
defined m ..= nK , if p(1)

m , |αm|, ||βm| − `/2| ≤ ε′, then δ ≤ p(2)
m ≤ 1− δ, δ ≤ q(1)

m ≤ 1/2− δ,
δ ≤ q(2)

m ≤ 1 − δ and q(3)
m ≤ δ (see Figure 3.5 for a graphical intuitive representation)

and |αn|, ||βn| − `/2| ≤ ε′ for all n ≥ m (αn and βn refer to the eigencoordinates of
qn − qpn as usual). Also, since ‖q − qp‖1 ≤ 2 (due to the diameter of the simplex
in 1-norm) by Lemma 3.19 (g, h) there is a constant B > 1 large enough such that
|β| < B, and then by (3.10) for any δ fixed small enough, there is a ε < δ small
enough (to be further restricted) such that,

‖p̂− p‖1 ≤ 3|α|+B
‖e−1(p)‖1

2
(1 + λ−1(p)) ≤ 3|α|+Bp1‖e−1(p)‖1(1 +O(p1))

≤ 3B(|α|+ p1)

for all p1 < ε. Define ε′ < ε/(12B) (ε′ will be further restricted). Having defined

K`ε′,δ ..=

{
(p, q) ∈ Σ2 : 0 < p(1), |α|,

∣∣∣∣|β| − `

2

∣∣∣∣ ≤ ε′, δ ≤ p(2) ≤ 1− δ
}
,

and similarly K`ε,δ′ , where δ′ ..= δ/2, we can conclude that, by construction of m,

(pm, qm) ∈ K`ε′,δ with δ < q(1)
m < 1/2− δ and

‖pm+1 − pm‖1 < 6Bε′ <
ε

2
, (3.29)

thus ensuring,

p(1)

m+1 ≤ p(1)

m + ‖pm+1 − pm‖1 < ε′ +
ε

2
< ε. (3.30)

p(2)

m+1 ≤ p(2)

m + ‖pm+1 − pm‖1 < 1− δ +
ε

2
< 1− δ′, (3.31)

p(2)

m+1 ≥ p(2)

m − ‖pm+1 − pm‖1 > δ − ε

2
> δ′. (3.32)
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ε′
1
2

1

δ 1− δ

1

p∗
qp∗

q∗

q̂∗

α

β

ε′

p1

p2

p3

Figure 3.5: K`ε′,δ: in gray the coordinates for p, in red the eigencordinates for q, with

q∗ = qp∗ + `
2
e−1(p∗), q̂∗ = qp∗ − `

2
e−1(p∗)

When there is no ambiguity we will often simplify the notation as K ..= K`ε′,δ ⊂
K∗ ..= K`ε,δ′ . Before expressing all the conditions on how small δ, ε′ and ε need to be,
we will establish a few iterative formulas.

Remark 3.41. For all n ≥ 0, p(1)

n+1 ≤ 2p(1)
n .

Proof. Since for all n ≥ 0,

p(1)

n+1 = p(1)

n

(
q(2)
n

1− p(2)
n

+
q(3)
n

p(1)
n + p(2)

n

)
= p(1)

n

(
q(2)
n

q(2)

n−1 + q(2)
n

+
q(3)
n

q(3)

n−1 + q(3)
n

)
,

the claim follows.

Remark 3.42. For any n ≥ 0,

p(1)

n+2 = p(1)

n+1[(1− q(1)

n+1)ϑn+1 − p(1)

n+1ϑn+1 + p(1)

n ϑ
′
n+1],

where

ϑn+1
..=

1

(1− p(1)
n )

(
1− p(2)

n

1− p(2)

n+1

+
p(2)
n

p(1)

n+1 + p(2)

n+1

)
=

1

1− p(1)
m

(
2 +

p(2)

m+1 − p(2)
m

1− p(2)

m+1

+
p(2)
m − p

(2)

m+1

p(1)

m+1 + p(2)

m+1

−
p(1)

m+1

p(1)

m+1 + p(2)

m+1

)
, (3.33)

ϑ′n+1
..= − q(1)

n

(1− p(2)

n+1)(1− p(1)
n )

+
q(2)
n

(1− p(2)

n+1)(1− p(3)
n )

+
q(3)
n

(p(1)

n+1 + p(2)

n+1)(1− p(2)
n )

.

(3.34)

Proof. For any n ≥ 0,

p(1)

n+2 = p(1)

n+1

(
q(2)

n+1

1− p(2)

n+1

+
q(3)

n+1

p(1)

n+1 + p(2)

n+1

)

= p(1)

n+1

 1−p(1)
n −p

(2)
n

1−p(1)
n

q(1)
n + p

(1)
n

p
(1)
n +p

(2)
n

q(3)
n

1− p(2)

n+1

+

p
(2)
n

1−p(1)
n

q(1)
n + p

(1)
n

1−p(2)
n

q(2)
n

p(1)

n+1 + p(2)

n+1


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and therefore, rearranging the factor in the bracket as

1− p(2)
n

(1− p(1)
n )(1− p(2)

n+1)
q(1)

n −
p(1)
n

(1− p(1)
n )(1− p(2)

n+1)
q(1)

n +
p(1)
n

(p(1)
n + p(2)

n )(1− p(2)

n+1)
q(3)

n

+
p(2)
n

(1− p(1)
n )(p(1)

n+1 + p(2)

n+1)
q(1)

n +
p(1)
n

(1− p(2)
n )(p(1)

n+1 + p(2)

n+1)
q(2)

n =
1− p(2)

n

(1− p(1)
n )(1− p(2)

n+1)
q(1)

n

+
p(2)
n

(1− p(1)
n )(p(1)

n+1 + p(2)

n+1)
q(1)

n −
p(1)
n

(1− p(1)
n )(1− p(2)

n+1)
q(1)

n +
p(1)
n

(1− p(2)
n )(p(1)

n+1 + p(2)

n+1)
q(2)

n

+
p(1)
n

(p(1)
n + p(2)

n )(1− p(2)

n+1)
q(3)

n = q(1)

n ϑn+1 + p(1)

n ϑ
′
n+1

and, by rearranging the first component of (2.38), using q(1)
n = 1 − q(1)

n+1 − p
(1)

n+1, the
claim follows.

Remark 3.43. For any n ≥ 0,

p(2)

n+2 − p
(2)

n+1 = −q(1)

n

(
p(2)

n+1 − p(2)

n + ηn+1 − η′n+1 − ηn + η′′n+1 + η′′′n+1

)
,

where

ηn ..=
p(2)
n p

(1)
n

1− p(1)
n

(3.35)

η′n+1
..=

q(2)
n

q(1)
n

p(2)

n+1

p(1)

n+1 + p(2)

n+1

p(1)
n

1− p(2)
n

(3.36)

η′′n+1
..= p(2)

n

p(1)

n+1

p(1)

n+1 + p(2)

n+1

(3.37)

η′′′n+1 = p(2)

n

p(1)

n+1

p(1)

n+1 + p(2)

n+1

p(1)
n

1− p(1)
n

. (3.38)

Proof.

p(2)

n+2 − p
(2)

n+1 =
p(2)

n+1

1− p(1)

n+1

q(1)

n+1 +
p(2)

n+1

p(1)

n+1 + p(2)

n+1

q(3)

n+1 − p
(2)

n+1 = p(2)

n+1

(
q(1)

n+1

1− p(1)

n+1

− 1

)
+

p(2)

n+1

p(1)

n+1 + p(2)

n+1

(
q(1)

n

p(2)
n

1− p(1)
n

+ q(2)

n

p(1)
n

1− p(2)
n

)
= p(2)

n+1

[
− q(1)

n

1− p(1)

n+1

+
p(1)
n

(p(1)

n+1 + p(2)

n+1)(1− p(2)
n )

q(2)

n

]
+ p(2)

n

q(1)
n

1− p(1)
n

p(2)

n+1

p(1)

n+1 + p(2)

n+1

= −q(1)

n[
p(2)

n+1

1− p(1)

n+1

− q(2)
n

q(1)
n

p(2)

n+1

p(1)

n+1 + p(2)

n+1

p(1)
n

1− p(2)
n

− p(2)

n

p(2)

n+1

(p(1)

n+1 + p(2)

n+1)(1− p(1)
n )

]
= −q(1)

n

[
p(2)

n+1 +
p(2)

n+1p
(1)

n+1

1− p(1)

n+1

− q(2)
n

q(1)
n

p(2)

n+1

p(1)

n+1 + p(2)

n+1

p(1)
n

1− p(2)
n

− p(2)

n

(
1−

p(1)

n+1

p(1)

n+1 + p(2)

n+1

)(
1 +

p(1)
n

1− p(1)
n

)]
.

Thus the claim follows.

The fixed small enough parameter δ will, in addition, be required to satisfy δ < 1/45.
Define

γ = γ(δ′) ..=
√

1− 4(δ′)2 + 144(δ′)3.
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Note that the constant γ is positive subunitary, since γ′ ..= γ2 = 1−4(δ′)2 +144(δ′)3 is
too, because the polynomial −4x2 +144x3 is negative monotone decreasing on (0, 1/90)
with minimum at 1/54 > 1/90 of value −1/2187. Require

ε < min

{
(δ′)5,

δ′(1− γ2)

4

}
.

Define

D ..= 4 +
1

δ′

(
2 +

1

δ′

)
and let Γ be a constant such that

0 < Γ <
c

1−δ′ − 1

D
,

where 0 < 1 − δ′ < c < 1 is another constant such that c(1 − δ′)−1 > 1, which is
consistent since 0 < 1− δ′ < 1 (no confusion can arise with the constant c introduced
in Section 3.4). Define λ ..= max{γ, c} and further restrict

ε′ < min

{
ε

12B
,
ε

8

1− γ2

D
,
δΓλ(1− λ)

2(2 + Γ)

}
.

This has ultimately determined the size of K (the smaller set we need, to kick start
the arguments in the lemmas that will follow) while K∗ (the larger set, on which all
constants defined so far exist and apply uniformly, as the orbit travels through it) had
been already previously fixed to determine the constants necessary to define K.

Lemma 3.44. Let γ′ ..= γ2, assume that pm+l ≤ 2(γ′)b
l
2
cp(1)
m for all 0 ≤ l ≤ 2k − b,

where b ∈ {0, 1}. For all b ≤ j ≤ 2k,

δ′ < q(1)

m+2k−j <
1

2
− δ′

if j is even and
1

2
+ δ′ < q(1)

m+2k−j < 1− δ′

if j is odd.

Proof. Iterate the first component of (2.38) after rearranging it as

q(1)

m+l = 1− p(1)

m+l − q
(1)

m+l−1.

It yields

q(1)

m+l =

{
q(1)
m +

∑l
j=1(−1)j+1p(1)

m+j l even

1− q(1)
m +

∑l
j=1(−1)jp(1)

m+j l odd.
(3.39)

Recall that by construction

ε <
δ′(1− γ′)

4
.

Since q(1)
m < 1/2− δ,

q(1)

m+2k−j = q(1)

m +

2k−j∑
l=1

(−1)l+1p(1)

m+l <
1

2
− δ +

2k−j∑
l=1

p(1)

m+l <
1

2
− δ + 4p(1)

m

b 2k−j
2
c∑

l=0

(γ′)l

<
1

2
− δ + 4

ε

1− γ′
<

1

2
− δ′ (3.40)
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for all even b ≤ j ≤ 2k (with the bound for j = 2k holding also with δ, by adopting
empty sum convention) and

q(1)

m+2k−j = 1− q(1)

m +

2k−j∑
l=1

(−1)lp(1)

m+l >
1

2
+ δ −

2k−j∑
l=1

p(1)

m+l >
1

2
+ δ − 4ε′

b 2k−j
2
c∑

l=0

(γ′)l

>
1

2
+ δ − 4

ε

1− γ′
>

1

2
+ δ′ (3.41)

for all odd b ≤ j ≤ 2k. Similarly, since δ < q(1)
m < 1− δ,

q(1)

m+2k−j = q(1)

m +

2k−j∑
l=1

(−1)l+1p(1)

m+l <
1

2
− δ +

2k−j∑
l=1

p(1)

m+l > δ − 4p(1)

m

b 2k−j
2
c∑

l=0

(γ′)l

> δ − 4
ε

1− γ′
> δ′ (3.42)

for all even b ≤ j ≤ 2k and

q(1)

m+2k−j = 1− q(1)

m +

2k−j∑
l=1

(−1)lp(1)

m+l < 1− δ +

2k−j∑
l=1

p(1)

m+l < 1− δ + 4ε′
b 2k−j

2
c∑

l=0

(γ′)l

< 1− δ + 4
ε

1− γ′
< 1− δ′ (3.43)

for all odd b ≤ j ≤ 2k.

Lemma 3.45. Let γ′ ..= γ2, assume that pm+l ≤ 2(γ′)b
l
2
cp(1)
m for all 0 ≤ l ≤ 2k − b,

where b ∈ {0, 1}, and δ′ < p(2)

m+l < 1− δ′. For all b ≤ j ≤ 2k − 1,

|p(2)

m+2k−j − pm+2k−j−1| < ε

Proof. Recall that

ε′ <
ε

8D
(1− γ′).

Iterate Remark 3.43, setting n = m+ 2(k − 1)− j, down to time m, it yields

|p(2)

m+2k−j − p
(2)

m+2k−j−1| ≤ |p
(2)

m+1 − p(2)

m |+
2k−j−1∑
l=1

Em+l <
ε

2
+

2k−2∑
l=1

Em+l,

where Em+l
..= ηm+l +η′m+l +ηm+l−1 +η′′m+l +η′′′m+l. Note that the hypotheses allow to

apply Lemma 3.44, thus δ′ < q(1)

m+l−1 < 1− δ′ for all 1 ≤ l ≤ 2k − j − 1. This implies
that, by using Remark 3.41 and the assumptions, for all 1 ≤ l ≤ 2k − j − 1,

ηm+l−1 < p(1)

m+l−1 < 2(γ′)b
l−1
2
cp(1)

m (3.44)

ηm+l < 2p(1)

m+l−1 < 4(γ′)b
l−1
2
cp(1)

m (3.45)

η′m+l <
1

(δ′)2
p(1)

m+l−1 < 2
1

(δ′)2
(γ′)b

l−1
2
cp(1)

m (3.46)

η′′m+l <
2

δ′
p(1)

m+l−1 <
4

δ′
(γ′)b

l−1
2
cp(1)

m (3.47)

η′′′m+l < p(1)

m+l−1 < 2(γ′)b
l−1
2
cp(1)

m . (3.48)

Hence
Em+l < 2D(γ′)b

l−1
2
cp(1)

m , (3.49)
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which yields a bound uniform in k on the increments of the p(2)-component:

|p(2)

m+2k−1 − p
(2)

m+2k−2| <
ε

2
+ 2Dε′

∞∑
l=1

(γ′)b
l−1
2
c =

ε

2
+ 4D

ε′

1− γ′
<
ε

2
+
ε

2
< ε. (3.50)

Define the hitting time

σ ..= inf

{
n ≥ m : p(2)

n 6∈
[
δ

2
, 1− δ

2

]}
∈ N ∪∞.

Note that σ > m+ 1 by construction of m.

Lemma 3.46. For all m ≤ n ≤ σ, p(1)
n ≤ 2γn−m−1p(1)

m .

Proof. Let γ2 = γ′(δ′) ..= 1− 4(δ′)2 + 341(δ′)3, we will first show that for every k ≥ 0
such that m+ 2k < σ,

p(1)

m+2k ≤ 2(γ′)kp(1)

m (3.51)

p(1)

m+2k+1 ≤ 2(γ′)kp(1)

m (3.52)

and if σ = m + 2k̄ for some k̄ > 0, we leave (3.52) for k = k̄ out. Recall that by
construction δ′ < 1/90,

ε < δ′
1− γ′

4
and

ε′ <
ε

8

1− γ′

D
.

Using Remark 3.41 with n = m yields the first odd case for k = 0 (the even one being
trivial):

p(1)

m+1 ≤ 2p(1)

m .

Let n = m in (3.33) and (3.34) and apply the hypothesis made in (3.30) to (3.32), and
|p(2)

m+1 − p(2)
m | < ε/2, which follows from (3.29). Then the following estimates follow:

|ϑm+1| =
1

1− p(1)
m

(
1− p(2)

m

1− p(2)

m+1

+
p(2)
m

p(1)

m+1 + p(2)

m+1

)
≤ 2

δ′(1− ε)
(3.53)

|ϑm+1| ≤ 2 + 2
p(1)
m

1− p(1)
m

+
|p(2)

m+1 − p(2)
m |

(1− p(1)
m )(1− p(2)

m+1)
+

|p(2)
m − p

(2)

m+1|
(1− p(1)

m )(p(1)

m+1 + p(2)

m+1)

+
p(1)

m+1

(1− p(1)
m )(p(1)

m+1 + p(2)

m+1)
≤ 2 + 2

p(1)
m

1− p(1)
m

+ 3
ε

δ′(1− ε)
≤ 2 +

ε

1− ε

(
2 +

3

δ′

)
(3.54)

|ϑ′m+1| ≤
1

(1− p(2)

m+1)(1− p(1)
m )

+
1

(1− p(2)

m+1)(p(1)
m + p(2)

m )
+

1

(p(1)

m+1 + p(2)

m+1)(1− p(2)
m )

≤ 1

δ′

(
1

1− ε
+

2

δ′ + ε

)
. (3.55)

Plug the estimates (3.53) to (3.55) into Remark 3.42 applied to n = m, it yields

p(1)

m+2 ≤ p(1)

m+1

[
2(1− q(1)

m+1) +
ε

1− ε

(
2 +

3

δ′

)
+ p(1)

m+1

2

δ′(1− ε)
+ p(1)

m

1

δ′(
1

1− ε
+

2

δ′ + ε

)]
≤ p(1)

m+1

[
2(1− q(1)

m+1) + ε

(
2

1− ε
+

2

δ′ + ε
+

6

δ′(1− ε)

)]
.
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Since by construction ε < (δ′)5 < 1/905 and recalling that since q(1)
m < 1/2− δ, we have

q(1)

m+1 = 1− p(1)

m+1 − q(1)

m > 1− ε− 1

2
+ δ >

1

2
+ δ′,

which yields

p(1)

m+2 ≤ 2p(1)

m

[
2(1− q(1)

m+1) + ε

(
4

δ′
+

6

(δ′)2

)]
< 2p(1)

m

[
1− 2δ′ + 10

ε

(δ′)2

]
< 2p(1)

m

[
1− 2δ′ + 10(δ′)3

]
.

Note that γ′ = 1 − 4(δ′)2 + 144(δ′)3 > 1 − 2δ′ + 10(δ′)3 for all positive δ′, because
the difference 1− 4x2 + 144x3 − (1− 2x + 10x3) = 2(x− 2x2 + 67x3) is nonnegative
increasing on the positive reals, having derivative 2(1 − 4x + 201x2) > 0, due to
negative discriminant of the parabola. Thus we have shown that p(1)

m+2 ≤ 2γ′p(1)
m . Note

that the constant γ′ holds uniformly for pm ∈ K, pm+1 ∈ K∗ by the steps above. This
has been ensured by pm ∈ K and the initial tuning of the constants involved in the
definition of the set K. The case k = 1 is not concluded yet though, as if σ > m+ 2,
we will have to do one more step. This will allow us to see clearly how this argument
iterates and the pattern that arises, especially how the constant γ′ arises. By the
geometric decay proved so far,

p(1)

m+2 < 2γ′p(1)

m < 2ε′ < ε, (3.56)

and by the definition of σ, δ′ < p(2)

m+2 < 1 − δ′; thus the same estimates in (3.53)
and (3.55) apply to ϑm+2 and ϑ′m+2, with the due shift of time indices. However,
(3.54) does not apply automatically, since nothing guarantees that the same bound
applies on the shifted increments of the p(2)-component. Let us first assume that
indeed, also |p(2)

m+2 − p
(2)

m+1| < ε holds and therefore, that also (3.54) applies with the
due shift of indices. Then plugging them into Remark 3.42, applied to n = m + 1,
yields

p(1)

m+3 ≤ p(1)

m+2

[
2(1− q(1)

m+2) + 10
ε

(δ′)2

]
= p(1)

m+2

[
2(p(1)

m+2 + q(1)

m+1) + 10
ε

(δ′)2

]
≤ p(1)

m+1

[
2(1− q(1)

m+1) + 10
ε

(δ′)2

] [
2q(1)

m+1 + ε

(
2 +

10

(δ′)2

)]
= p(1)

m+1

[
4q(1)

m+1(1− q(1)

m+1) + ε

(
4(1− q(1)

m+1) +
20

(δ′)2

)
+ ε2 10

(δ′)2

(
2 +

10

(δ′)2

)]
< 2p(1)

m

[
1− 4δ2 + ε

24

(δ′)2
+ ε2 120

(δ′)4

]
< 2p(1)

m

[
1− 4(δ′)2 + 24(δ′)3 + 120(δ′)6

]
< 2p(1)

m

[
1− 4(δ′)2 + 144(δ′)3

]
,

hence p(1)

m+3 ≤ 2γ′p(1)
m , which completes the claim for k = 1 (and σ > m+ 2). We now

show that the upper bound on the p(2)-component indeed keeps applying uniformly,
by using Remark 3.43 for n = m, which yields the upper bound

|p(2)

m+2 − p
(2)

m+1| < |p
(2)

m+1 − p(2)

m |+ Em+1, (3.57)

where Em+1
..= ηm+1 + η′m+1 + ηm + η′′m+1 + η′′′m+1. Since p(1)

m+2 < 2γ′p(1)
m < 2ε′ < ε, by

the definition of σ, which ensures δ′ < p(2)

m+2 < 1− δ′, and by exploiting Remark 3.41
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with n = m, we can estimate

ηm =
p(2)
m p

(1)
m

p(2)
m + p(3)

m

< p(1)

m (3.58)

ηm+1 =
p(2)

m+1p
(1)

m+1

p(2)

m+1 + p(3)

m+1

< 2p(1)

m (3.59)

η′m+1
..=

q(2)
m

q(1)
m

p(2)

m+1

p(1)

m+1 + p(2)

m+1

p(1)
m

1− p(2)
m

<
1

(δ′)2
p(1)

m (3.60)

η′′m+1
..= p(2)

m

p(1)

m+1

p(1)

m+1 + p(2)

m+1

<
2

δ′
p(1)

m (3.61)

η′′′m+1 = p(2)

m

p(1)

m+1

p(1)

m+1 + p(2)

m+1

p(1)
m

p(2)
m + p(3)

m

< p(1)

m . (3.62)

These estimates yield
Em+1 ≤ Dp(1)

m .

Since by construction

ε′ <
ε

8

1− γ′

D
,

Em+1 <
ε

8
(1− γ′) < ε

8
,

and as a result of |p(2)

m+1 − p(2)
m | < ε/2, which yields

|p(2)

m+2 − p
(2)

m+1| <
ε

2
+
ε

8
< ε.

Apart from this first instances in the base cases, this estimate will be less immediate
in the later steps and we will rely on Lemma 3.45.

To summarise what has been proved in this two-steps argument, there is a constant
γ′ holding uniformly on K∗ for both cases, σ = m+ 2 and σ > m+ 2. In the first case
p(1)

m+1 < 2(γ′)0p(1)
m (case k = 0) and p(1)

m+2 < 2γ′p(1)
m (half case k = 1); in the second case

both p(1)

m+1 < 2(γ′)0p(1)
m (case k = 0), and p(1)

m+2 < 2γ′p(1)
m and p(1)

m+3 < 2γ′p(1)
m (full case

k = 1). Before proceeding with iterating this two-steps geometric decay, note that
the estimate on q(1)

n ’s oscillations above and below 1/2 has to iterate at each step. For
example, for the next step it will hold because

q(1)

m+2 = 1− p(1)

m+2 − q
(1)

m+1 < 1−
(

1

2
+ δ′

)
=

1

2
− δ′.

Apart from these first few steps, this condition will not be so immediate to verify,
because geometric terms will start adding up, and we will rely on Lemma 3.44. Assume
that m + 3 < n < σ for some n and let us prove the claim for n + 1. There are two
cases to consider: the even step n = m+ 2k − 1 to n+ 1 = m+ 2k first and the odd
step n = m+ 2k to n+ 1 = m+ 2k+ 1 afterwards, for all k ∈ N such that n is in the
mentioned range.

• In the even step one has the induction hypothesis that for all 1 ≤ j ≤ 2k,

p(1)

m+2k−j < 2(γ′)b
2k−j

2
cp(1)

m (3.63)

and it needs to be shown (3.51), that is p(1)

m+2k < 2(γ′)kp(1)
m . As to the oscillations

of q(1)
n , they are δ′-bounded away from 1/2 in the correct order, thanks to the

induction hypothesis and Lemma 3.44 applied with b = 1:

q(1)

m+2k−j <
1

2
− δ′
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for all even 1 ≤ j ≤ 2k (with bounds for j = 2k holding also with δ) and

q(1)

m+2k−j >
1

2
+ δ′

for all odd 1 ≤ j ≤ 2k. All that remains to be shown, is that

p(1)

m+2k < γ′p(1)

m+2k−2,

by using

q(1)

m+2k−1 >
1

2
+ δ′.

Since by the geometric decay ensured by (3.63),

p(1)

m+2k−1 < 2(γ′)k−1p(1)

m

which ensures (3.56) up to p(1)

m+2k−1, and since σ > m + 2k − 1 implies δ′ <
p(2)

m+2k−1 < 1 − δ′; the estimates in (3.53) to (3.55) apply also to ϑm+2k−1 and
ϑ′m+2k−1 (with the due shift of time indices) since by Lemma 3.45 with b = 1
it holds that |p(2)

m+2k−1 − p
(2)

m+2k−1| < ε. We will assume this for now and show
it after the conclusion of this case. By plugging the aforementioned estimates
into Remark 3.42 applied to n = m + 2k − 2 yields the same estimate as that
obtained for p(1)

m+2:

p(1)

m+2k ≤ p(1)

m+2k−1

[
2(1− q(1)

m+2k−1) + ε

(
4

δ′
+

6

(δ′)2

)]
< p(1)

m+2k−1[1− 2δ′ + 10(δ′)3]

< γ′p(1)

m+2k−1

resulting into (3.51) by (3.63).

• In the odd step one has (3.63) holding for all 0 ≤ j ≤ 2k, and it needs to be
proved (3.52), that is p(1)

m+2k+1 < 2(γ′)kp(1)
m . For the oscillations of q(1) we proceed

similarly but, again, with a different range for j, by exploiting Lemma 3.44 with
b = 0:

q(1)

m+2k−j <
1

2
− δ′

for all even 0 ≤ j ≤ 2k (with bounds for j = 2k holding also with δ) and

q(1)

m+2k−j >
1

2
+ δ′

for all odd 0 ≤ j ≤ 2k. All that remains to show is that

p(1)

m+2k+1 < γ′p(1)

m+2k−1

by using

q(1)

m+2k−1 >
1

2
+ δ′.

Since by the geometric decay ensured by (3.63) in the new range of indices,

p(1)

m+2k−1 < 2(γ′)k−1p(1)

m ,

ensuring (3.56) up to p(1)

m+2k−1, and σ > m+ 2k implies δ′ < p(2)

m+2k < 1− δ′, the
estimates in (3.53) to (3.55) apply also to ϑm+2k and ϑ′m+2k (with the due shift
of time indices) since by Lemma 3.45 with b = 0, we have |p(2)

m+2k−p
(2)

m+2k−1| < ε;,
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also the previous step’s estimates for ϑm+2k−1 and ϑ′m+2k−1 keep applying, and
they are vital, since in this step the bound needed is yielded by iterating the
previous step into the current one, producing a two-step estimate, necessary
because a one step estimate would not yield a subunitary constant, due to
q(1)

m+2k <
1/2−δ′, and thus 2(1−q(1)

m+2k) > 1. Therefore, by plugging the extended
estimates into Remark 3.42 applied to n = m + 2k − 1, and also using the old
estimates from the previous even step, yields the same estimate as that obtained
for p(1)

m+3:

p(1)

m+2k+1 ≤ p(1)

m+2k−1

[
2(1− q(1)

m+2k−1) + 10
ε

(δ′)2

] [
2qm+2k−1ε

(
2 +

10

(δ′)2

)]
< p(1)

m+2k−1[1− 4(δ′)2 + 144(δ′)3] < γ′p(1)

m+2k−1,

resulting into (3.52) by (3.63) in the new range of indices.

Having proved the two-steps claim, we can easily derive the main claim by simply
setting γ ..=

√
γ′, so as to express the two-steps geometric decaying upper bound as a

one-step geometric decaying one. It has been shown that for all integers 1 ≤ l ≤ σ−m,

p(1)

m+l < 2(γ′)b
l
2
cp(1)

m .

Since ⌊
l

2

⌋
≥ l − 1

2
,

it follows that

p(1)

m+l < 2
√
γ′
l−1
p(1)

m ,

hence for the uniform constant γ, we have that for all m < n ≤ σ,

p(1)

n < 2γn−m−1p(1)

m .

For any τ ≥ m, define

ζ ..= inf

{
n > τ :

|p(2)

n+1 − p(2)
n |

p(1)
n

<
1

Γ

}
.

Lemma 3.47. Suppose there exists m ≤ τ < σ such that

p(1)
τ

|p(2)

τ+1 − p
(2)
τ |
≤ Γ.

Then for all τ ≤ n ≤ ζ ∧ σ,

|p(2)

n+1 − p(2)

n | < cn−m|p(2)

m+1 − p(2)

m |.

Proof. We show the claim for τ = m, as it extends trivially. Clearly the claim is
trivially true for n = m. If ζ = m + 1, ζ ∧ σ = m + 1, and we need to show it for
n = m + 1. It is known that p(1)

m ≤ Γ|p(2)

m+1 − p(2)
m | by hypothesis and p(1)

m+1 < 2p(1)
m by
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Remark 3.41 with n = m, along with the hypotheses (3.30) to (3.32) by construction
of m. Then (3.58) to (3.62) apply, and it follows that

ηm < p(1)

m < Γ|p(2)

m+1 − p(2)

m |
ηm+1 < 2p(1)

m < 2Γ|p(2)

m+1 − p(2)

m |

η′m+1 <
1

(δ′)2
p(1)

m <
Γ

(δ′)2
|p(2)

m+1 − p(2)

m |

η′′m+1 <
2

δ′
p(1)

m <
2

δ′
Γ|p(2)

m+1 − p(2)

m |

η′′′m+1 < p(1)

m < Γ|p(2)

m+1 − p(2)

m |.

Plugging these estimate into Remark 3.43 with n = m yields

|p(2)

m+2 − p
(2)

m+1| ≤ q(1)

m [1 + ΓD] |p(2)

m+1 − p(2)

m |,

since by construction

1 + ΓD <
c

1− δ′
,

q(1)

m [1 + ΓD] ≤ q(1)
m c

1− δ′
≤ c

and it follows that
|p(2)

m+2 − p
(2)

m+1| ≤ c|p(2)

m+1 − p(2)

m |,
which completes the claim, and can be also regarded as the first step of the induction
argument for ζ ∧ σ > m+ 1.

Assuming now ζ > m + 1, ζ ∧ σ > m + 1, thus the claim will be shown for all
m + 1 < n ≤ ζ ∧ σ, by induction. Assuming, for any m ≤ n < ζ ∧ σ, |p(2)

n+1 − p(2)
n | <

cn−m|p(2)

m+1−p(2)
m |, we need to show that |p(2)

n+2−p
(2)

n+1| < cn−m+1|p(2)

m+1−p(2)
m |. Here it will

be crucial to remember that in Lemma 3.46 we ensured the boundedness of q(1) away
from the boundary of the simplex, in order to obtain the validity of the constants
involved, in the coming steps. This means that again, in parallel with the iteration of
p(2)’s increments’ geometrically decaying upper bound, one will have to control q(1), in
order to iterate the estimate on η′n. Recall that δ′ < δ < q(1)

m < 1− δ < 1− δ′. Since
for all m < n ≤ ζ ∧ σ, by Lemma 3.46 it holds that p(1)

n < 2γn−m−1ε, or equivalently
p(1)

m+k < 2γk−1ε for all k ∈ N such that n = m + k is within the bounds above; by
(3.39), for all suitable k

q(1)

m+k ≥

{
q(1)
m −

∑k
j=1 p

(1)

m+j ≥ δ − 2ε
∑k

j=1 γ
j−1 > δ − 2 ε

1−γ > δ′ k even,

1− q(1)
m −

∑k
j=1 p

(1)

m+j ≥ δ − 2ε
∑k

j=1 γ
j−1 ≥ δ − 2 ε

1−γ > δ′ k odd,

since ε < δ′(1− γ)/2, as by construction ε < δ′(1− γ2)/4 and (1− γ2)/4 ≤ (1− γ)/2,
being this inequality equivalent to 0 ≤ (γ − 1)2. This ensures that upper bounding
the reciprocals of q(1) appearing in η′n with δ′ can carry on during the induction step.
As to lower bounding it with 1− δ′, one can proceed analogously:

q(1)

m+k ≤


q(1)
m +

∑k
j=1 p

(1)

m+j ≤ 1− δ + 2ε
∑k

j=1 γ
j−1 < 1− δ + 2 ε

1−γ < 1− δ′

k even,

1− q(1)
m +

∑k
j=1 p

(1)

m+j ≤ 1− δ + 2ε
∑k

j=1 γ
j−1 < 1− δ + 2 ε

1−γ < 1− δ′

k odd.

Recall that the inductive hypothesis is that, changing from n to m + k indexing, for
some k ≥ 0 such that m + k + 1 < ζ ∧ σ, |p(2)

m+k+1 − p
(2)

m+k| < ck|p(2)

m+1 − p(2)
m | and it
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needs to be shown that |p(2)

m+k+2 − p(2)

m+k+1| < ck+1|p(2)

m+1 − p(2)
m |, and it will be done

by showing that |p(2)

m+k+2 − p(2)

m+k+1| < c|p(2)

m+k+1 − p(2)

m+k|. Since by the definition of
σ it still holds that δ′ ≤ p(2)

m+k+1 ≤ 1 − δ′, by the definition of ζ it still holds that
p(1)

m+k ≤ Γ|p(2)

m+k+1− p
(2)

m+k| and the geometric decay of the first component ensures the
bounds on qm+k and q(1)

m+k+1 as above. Then it follows that

ηm+k < p(1)

m+k < Γ|p(2)

m+k+1 − p
(2)

m+k|
ηm+k+1 < 2p(1)

m+k < 2Γ|p(2)

m+k+1 − p
(2)

m+k|

η′m+k+1 <
1

(δ′)2
p(1)

m+k <
1

(δ′)2
Γ|p(2)

m+k+1 − p
(2)

m+k|

η′′m+k+1 <
2

δ′
p(1)

m+k <
2

δ′
Γ|p(2)

m+k+1 − p
(2)

m+k|

η′′′m+k+1 < p(1)

m+k < Γ|p(2)

m+k+1 − p
(2)

m+k|.

Hence
|p(2)

m+k+2 − p
(2)

m+k+1| ≤ q(1)

m+k (1 + ΓD) |p(2)

m+k+1 − p
(2)

m+k|,

since by construction

1 + ΓD <
c

1− δ′
,

q(1)

m+k(1 + ΓD) < q(1)

m+k

c

1− δ′
= c

q(1)

m+k

1− δ′
≤ c,

and it follows that

|p(2)

m+k+2 − p
(2)

m+k+1| ≤ c|p(2)

m+k+1 − p
(2)

m+k|.

By the induction hypothesis this implies

|p(2)

m+k+2 − p
(2)

m+k+1| ≤ cck|p(2)

m+1 − p(2)

m | = ck+1|p(2)

m+1 − p(2)

m |.

For m < τ < σ the proof is very similar: (pτ , qτ ) ∈ K∗ by Lemma 3.46 and definition
of m and σ. Thus all the estimate for the base case apply with τ instead of m, and
the inductive step is the same.

Theorem 3.48. {pn} converges to p∗ ∈ E1.

Proof. Define ζ0
..= m, and a doubly sequence of hitting times {ζi}, {τi} for all i ∈ N

along with the usual hitting time σ:

τi ..= inf

{
n ≥ ζi−1 :

|p(2)

n+1 − p(2)
n |

p(1)
n

≥ 1

Γ

}
∈ N ∪∞

ζi ..= inf

{
n ≥ τi :

|p(2)

n+1 − p(2)
n |

p(1)
n

<
1

Γ

}
∈ N ∪∞.

Note that for all i ∈ N such that ζi−1 < ∞, τi > ζi−1, and for all i ∈ N such that
τi < ∞, ζi > τi. We prove by contradiction that σ = ∞. Assume that σ < ∞, then
by convention ∞∧ σ = σ, thus by empty sum convention we have that the sum

|p(2)

σ − p(2)

m | ≤
∞∑
i=0

τi+1∧σ−1∑
n=ζi∧σ

|p(2)

n+1 − p(2)

n |+
ζi+1∧σ−1∑
n=τi+1∧σ

|p(2)

n+1 − p(2)

n |


is a finite sum, as either ζī ≤ σ < τī+1 or τī ≤ σ < ζī for some ī ≥ 0.
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In the case ζī ≤ σ < τī+1, for all ζī ≤ n ≤ σ, |p(2)

n+1−p(2)
n | < Γ−1p(1)

n . By Lemma 3.46
the geometric decaying upper bound on the first component carries on at least until
p(1)
σ , which means that for all ζī ≤ n < σ,

|p(2)

n+1 − p(2)

n | < Γ−1p(1)

n < 2Γ−1λn−m−1p(1)

m <
2

Γ
λn−m−1ε′ <

(
1 +

2

Γ

)
λn−m−1ε′

and the same argument applies for all ζi ≤ n < τi+1 for all i < ī, if there are any. For
all τī ≤ n < ζī, if there are any, a different argument is needed (and similarly for all
τi ≤ n < ζi, for i < ī, if there are any). In fact in this case, rearranging the condition
in the hitting time’s definition, for all τī ≤ n < ζī one has that

p(1)
n

|p(2)

n+1 − p
(2)
n |
≤ Γ,

which is the type of condition in Lemma 3.47. This condition, for n = τī, yields that
we can apply Lemma 3.47 started at τ = τī, implying that

|p(2)

n+1 − p(2)

n | < λn−τī−1+1|p(2)

τī−1
− p(2)

τī−1−1|

for all τī ≤ n ≤ ζī = ζī∧σ. Observe that |p(2)
τī
−p(2)

τī−1| falls in the range treated earlier,
hence

|p(2)

τī
− p(2)

τī−1| <
(

1 +
2

Γ

)
λτī−1−m−1ε′,

and therefore (note that it is for this very step that 1+2/Γ has been introduced instead
of keeping working with just 2/Γ)

|p(2)

n+1 − p(2)

n | < λn−τī+1|p(2)

τī
− p(2)

τī−1| < λn−τī+1

(
1 +

2

Γ

)
λτī−1−m−1ε′

=

(
1 +

2

Γ

)
λn−m−1ε′.

In the case τī ≤ σ < ζī, we proceed similarly, but the other way around: for all
τī ≤ n < σ = ζī ∧ σ and τi ≤ n ≤ ζi = ζi ∧ σ, for all i < ī, if there are any,
|p(2)

n+1 − p(2)
n | < (1 + 2/Γ)λn−m−1ε′ by Lemma 3.47; while, if there are any, for all

ζi−1 ≤ n < τi, for all i ≤ ī, |p(2)

n+1 − p(2)
n | < (1 + 2/Γ)λn−m−1ε′ by Lemma 3.46.

In both cases the conclusion is always that for every m ≤ n < σ,

|p(2)

n+1 − p(2)

n | <
(

1 +
2

Γ

)
λn−m−1ε′.

Therefore, by construction,

|p(2)

σ − p(2)

m | ≤
σ−1∑
n=m

|p(2)

n+1 − p(2)

n | <
(

1 +
2

Γ

)
ε′

σ−1∑
n=m

λn−m−1 =

(
1 +

2

Γ

)
ε′

λ

σ−m−1∑
i=0

λi

<

(
1 +

2

Γ

)
ε′

λ

∞∑
i=0

λi = ε′
2 + Γ

Γλ(1− λ)
<
δ

2
.

The contradiction is that, since p(2)
m ∈ [δ, 1− δ] then having p(2)

σ travelled less than δ/2
away from p(2)

m , we have that

p(2)

σ ∈
[
δ

2
, 1− δ

2

]
,
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in contradiction with the very own definition of σ. Since σ = ∞, p(1)
n −→ 0 as

n −→ ∞. As to {p(2)
n }, one can repeat the two cases argument for any n (essentially

by replacing σ with n and n with k for previous time indices, when necessary), getting
in any case the geometric estimate

|p(2)

n+1 − p(2)

n | <
(

1 +
2

Γ

)
λn−m−1ε′,

which yields
∞∑
n=m

|p(2)

n+1 − p(2)

n | <∞.

Therefore p(2)
n −→ p(2)

∗ ∈ [δ/2, 1− δ/2], yielding convergence of pn −→ p∗ ∈ E1.

Corollary 3.49. As {pn} converges to p∗ ∈ E1, {qn} is asymptotically 2-periodic to
{qp∗ ± `

2
e−1(p∗)}.

Proof. The asymptotic 2-periodicity of the {qn} follows directly from Theorem 3.48,
Corollary 3.39 and Remark 3.36. Indeed, by Theorem 3.48 and Corollary 3.39, it is
known that pm+l converges to p∗ ∈ E1, with αm+l −→ 0 and |βm+l| −→ `/2 as l −→∞.
Thus

qm+l − qpm+l
= αm+le0(pm+l) + βm+le−1(pm+l) = O(1) + βm+le−1(p∗),

and therefore by Lemma 3.19 (h) we have that

qm+l = qp∗ + βm+le−1(p∗) + O(1)

with |βm+l| −→ `/2. By Remark 3.36 it is also known that if qm+2k −→ qp∗ − `
2
e−1(p∗)

as k −→ ∞, then qm+2k+1 −→ qp∗ + `
2
e−1(p∗) as k −→ ∞. This is the only option

as in the argument of Lemma 3.46 it has been shown how the even shifts of the
q(1)-component stay below 1/2 and the odd ones stay above (and this carries on for
all k now that by Theorem 3.48 it is known that σ = ∞). Hence the asymptotic
2-periodicity of qm+k as k −→∞ follows.

Note that the arguments, up to Theorem 3.48, rely entirely on the conditions
related to hitting the set K suitably small, hence they can be entirely rephrased in
terms of initial conditions alone, eliminating the assumption of ` > 0 and noncon-
vergence to the vertices. In particular, the value of ` is crucial, only in defining the
shape and size of the set K and K∗, and knowing ` > 0 is only required to ensure that
(pm, qm) ∈ K for some m large enough. Besides, ` is only necessary in Corollary 3.49.
But one could alternatively start with initial condition (p0, q0) ∈ K so defined and
proceed with the same arguments. The only thing that would change is that in Corol-
lary 3.49, when trying to show the asymptotic 2-periodicity of {qn}, we would not
know that |βn| −→ `/2, but only that αn −→ 0 and that {qn} diverges, since in the
argument of Lemma 3.44 it has been shown how the {q(1)

n } alternates between values
below 1/2, bounded away from 0 and 1/2, and above 1/2, bounded away from 1 and 1/2
(and this carries on for all k now that by Theorem 3.48 it is known that σ = ∞).
Hence by setting m = 0 in the arguments of Section 3.5.3 up to Theorem 3.48 leads
to the following remark.

Remark 3.50. Let (p0, q0) ∈ K`ε′,δ for any fixed admissible value ` > 0. Then by
Theorem 3.48, there exists p∗ ∈ E1, such that pn −→ p∗ and {qn} diverges.
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The same is not true for the argument in Section 3.4, where determining ` = 0 in
advance is essential for the system not to jump back, infinitely often, in a part of the
simplex bounded away from the boundary. In Section 3.4 the asymptotic assumptions,
as already mentioned, are more essential than to the argument shown in this section,
and cannot be reinterpreted in terms of initial conditions alone.

Remark 3.51. If p∗ ∈ Ei for i ∈ {2, 3} one can proceed by exploiting the symmetry of
the model, define σ, ζi and τi accordingly in terms of the corresponding coordinates,
and show an analogous version of Theorem 3.48 and Remark 3.50 for i ∈ {2, 3}
as well, thus yielding convergence of {pn} to some p∗ ∈ ∂Σ \ V and asymptotic 2-
periodicity of {qn(ω)} to {qp∗± `

2
e−1(p∗)} for any orbit having ` > 0 and a subsequence

bounded away from the vertices.

3.6 Convergence of the dynamical system

In this section we put together all the convergence results gathered so far, so as to
show, firstly, the convergence of {pn}, secondly, that {qn} may or may not converge.

Proof of Theorem 2.1. Let p0 6∈ ∂Σ. By Lemma 3.14 the limit ` of the potential
function exists. If {pn} is bounded away from the boundary, it converges by Proposi-
tion 3.15. If ` = 0 and {pn} is not bounded away from the boundary, it converges by
Remark 3.28. If ` > 0 and {pn} is not bounded away from the boundary, it converges
by Remark 3.51. By mutual exclusion the only case left is convergence to a vertex.
Let p0 ∈ ∂Σ \ V and q0 ∈ Σ0. Then {pn} converges by Lemma 3.29. Let p0 ∈ Ei and
q0 = vi. Then {pn} converges by Remark 3.4. There are no cases left, as both p0 ∈ V
and p0 ∈ Ei with q0 ∈ V \ {vi} are not admissible, as discussed in the preliminaries
to this chapter.

Proof of Corollary 2.2. Let p0 6∈ ∂Σ. By Lemma 3.14 the limit ` of the potential
function exists. By Theorem 2.1 if ` = 0, the convergence to Σ

∗
is trivial. If ` > 0,

the convergence to the limit 2-cycle follows either by Remark 3.51 if p∗ ∈ V , or by the
introductory remarks to Section 3.5.3. Let p0 ∈ ∂Σ\V and q0 ∈ Σ0. Then {qn} either
converges in ∂Σ∗ ⊂ Σ

∗
or is asymptotic to a 2-cycle by Corollary 3.33. Let p0 ∈ Ei

and q0 = vi. Then {qn} is 2-periodic by Remark 3.4, and thus trivially asymptotic to
a 2-cycle. There are no cases left, as both p0 ∈ V and p0 ∈ Ei with q0 ∈ V \ {vi} are
not admissible, as discussed in the preliminaries to this chapter.
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Chapter 4

The ERBRW stochastic process

In this section we turn to the stochastic process described by (2.31) and (2.32) seen as
a randomly perturbed dynamical system, taking full advantage of the tools developed
by studying the deterministic dynamical system (as explained in the introduction,
we will not rely directly on the results of Chapters A and 3, but on the methods
established to derive them). For one-step iterations arguments, a less cumbersome
notation will sometimes be used, in order to omit the time index, and (2.31) and (2.32)
will often be written as

π̂ = MΘπ + R̂

Θ̂ = (1− ρ̂)Θ + ρ̂(1− π − π̂),

where we recall that

MΘ
..=

 0 Θ3

Θ1+Θ3

Θ2

Θ1+Θ2
Θ3

Θ2+Θ3
0 Θ1

Θ1+Θ2
Θ2

Θ2+Θ3

Θ1

Θ1+Θ3
0

 .

The main goal of this chapter is to prove the almost sure convergence of the
{Θn} to a random variable Θ, that is Theorem 1.1, based on the fast decay of the
random perturbation coming from the martingale increments {R(i)

n }i. As per the
construction of the model, we always assume regular initial conditions, that is Θ0 6∈
∂Σ. Nonetheless, in Section 4.5.1 we will also study the model given boundary initial
conditions, referring to Θ0 ∈ Ei for some i ∈ {1, 2, 3}, since it is simpler and provides
some intuition about the model with regular initial conditions.

4.1 Preliminaries

One of the main tools that relates the stochastic process’ asymptotics to the dynamical
system’s, is the fast decay of the perturbation terms {R(i)

n }i extracted in the Doob’s
decomposition.

Lemma 4.1. For any 1 < ν <
√
µ fixed, we have that almost surely, eventually

|R(i)
n | ≤ ν−n for all i ∈ {1, 2, 3}.

Proof. Without loss of generality, the claim will be shown for i = 1. Recall that by
(2.28)

R(1)

n+1
..=

1

σn+1

[(
B(3)

n+1 − EFnB
(3)

n+1

)
−
(
B(2)

n+1 − EFnB
(2)

n+1

)]
,
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where conditionally on Fn

B(3)

n+1 ∼ Bin

(
µN (3)

n ,
Θ(2)
n

Θ(1)
n + Θ(2)

n

)
B(2)

n+1, ∼ Bin

(
µN (2)

n ,
Θ(1)
n

Θ(1)
n + Θ(3)

n

)
.

If µ is nonintegral, we would have to replace B(3)

n+1 and B(2)

n+1 with B̃(3)

n+1 and B̃(2)

n+1,
obtaining the corresponding expression for R(1)

n+1, where we recall that

B̃(3)

n+1 ∼ Bin

(
bµN (3)

n c,
Θ(2)
n

Θ(1)
n + Θ(2)

n

)
+ {µN (3)

n }Ber

(
Θ(2)
n

Θ(1)
n + Θ(2)

n

)
B̃(2)

n+1 ∼ Bin

(
bµN (2)

n c,
Θ(1)
n

Θ(1)
n + Θ(3)

n

)
+ {µN (2)

n }Ber

(
Θ(1)
n

Θ(1)
n + Θ(3)

n

)
.

In both cases (for nonintegral µ it is crucial that, by the specification of the model,
the Bernoulli random variables are independent from the binomials conditionally on
Fn) by the Cauchy-Schwarz inequality

EFn

[
R(1)

n+1

]2
=

1

σ2
n+1

[
VarFn B

(3)

n+1 + VarFn B
(2)

n+1 − 2 CovFn

(
B(3)

n+1, B
(2)

n+1

)]
≤ 1

σ2
n+1

[
VarFn B

(3)

n+1 + VarFn B
(2)

n+1 + 2
√

VarFn B
(3)

n+1 VarFn B
(2)

n+1

]
≤ 1

σ2
n+1

(
σn+1

4
+
σn+1

4
+ 2

√(σn+1

4

)2
)

=
1

σn+1

=
1

µn+1
,

since for all i ∈ {1, 2, 3}, µN (i)
n ≤ µσn = σn+1. With B̃(3)

n+1 and B̃(2)

n+1 the same bound
would follow, by simply observing that for i ∈ {2, 3} the conditional variances of
the independent Bernoulli elements are multiplied by the factors {µN (i)

n }2 ≤ {µN (i)
n },

from which it follows that VarFn B̃
(3)

n+1 ≤ VarFn B
(3)

n+1 and VarFn B̃
(2)

n+1 ≤ VarFn B
(2)

n+1.
We conclude that

EFn−1 [R(1)

n ]
2 ≤ µ−n,

where µ > 1. By the conditional Markov’s inequality it follows that for any constant
1 < ν <

√
µ, having set γ ..= ν2/µ < 1,

PFn−1

(
|R(1)

n | ≥ ν−n
)
≤ ν2nEFn−1 [R(1)

n ]
2 ≤ γn,

which implies, by Lévy’s extension of Borel-Cantelli Lemma, that

P
(
|R(1)

n | ≥ ν−n, i.o.
)

= 0,

as
∑

n γ
n <∞. Recall that the probabilistic notation i.o. means infinitely often and

ev. means eventually. Thus P (|R(1)
n | < ν−n, ev.) = 1.

Lemma 4.1 is the key to generalise the results obtained in Chapters A and 3.
Since ‖Rn‖1 =

∑
i |R(i)

n |, one can restate Lemma 4.1 as P (‖Rn‖1 < 3ν−n, ev.) = 1, or
equivalently that for almost every ω ∈ Ω, there is a random time m = m(ω) ∈ N such
that ‖Rn‖1 < 3ν−n for all n ≥ m. We stress that there will be no need to take the
earliest such time, in the approach we will adopt.

There is a deterministic perturbation, coming from having a time-dependent ρn
instead of its limit ρ, when adapting the arguments established for the deterministic
dynamical system. This perturbation is geometric too.
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Remark 4.2.

ρn − ρ = O
(

1

µn

)
.

Proof.

ρn − ρ ..=
σn
τn
− µ− 1

µ
=

µn

τ0 + µ
µ−1

(µn − 1)
− µ− 1

µ
=

1
τ0
µn

+ µ
µ−1
− µ

µn(µ−1)

− µ− 1

µ

=
µ− 1

µ

 1

1 + 1
µn

(
τ0
µ−1
µ
− 1
) − 1

 =
µ− 1

µ

1
µn

(
1− τ0

µ−1
µ

)
1 + 1

µn

(
τ0
µ−1
µ
− 1
) .

Finally, it is easy to show the result corresponding to Remark 3.11 within the
random setting. Recall that D = {ω ∈ Ω,∃ v ∈ V, Θn −→ v} is the event of
dominance, and note that we will often omit the dependence on ω from Θn(ω) and
πn(ω) for simplicity, when the randomness is obvious and plays no particular role in
the argument. For clarity, we show this transition in the conclusion of the following
remark, which could be rewritten without any reference to ω, except for the first line.

Remark 4.3. For any ω ∈ Dc such that Θn+1 − Θn −→ 0 as n −→ ∞, there is a
subsequence {Θnj}j∈N bounded away from V .

Proof. By contradiction, if for some ω ∈ Dc there is no such subsequence, since
{Θn(ω)} does not converge to any of the vertices (by hypothesis) but any of its
subsequences approaches the set of vertices V (by contradiction), we can extract two
disjoint subsequences {Θnk(ω)}k∈N and {Θnl(ω)}l∈N from {Θn(ω)} such that

{Θn(ω)} = {Θnk(ω)} ∪ {Θnl(ω)},

Θnk(ω) −→ vi for some i ∈ {1, 2, 3} (by boundedness) and Θnl(ω) −→ V \{vi}. Since
Θn(ω) is either Θnk(ω) for some k, or Θnl(ω) for some l, for the ω fixed, there is a
subsubsequence {Θnlk

}k∈N such that for infinitely many k, Θnlk
= Θnk+1. For any ε

fixed, by the hypothesis Θn+1−Θn −→ 0, for all k large enough ‖Θnlk
−Θnk‖1 < ε. But

the 1-distance between V \{vi} (which Θnl approaches) and vi (which Θnk approaches)
is 2. Since ε is arbitrary, we have a contradiction.

4.2 Fixed points and potential

The equilibrium points for the deterministic dynamical system will be still very useful
for the study of the stochastic process. Therefore, we let

πΘ
..=

1−Θ

2
,

and we will refer to them, with abuse of language, as fixed points of the stochastic
process, since they satisfy πΘ = MΘπΘ. The same potential function, which translates
into the new notation as V (Θ, π) ..= ‖π−πΘ‖1, is also of use, but monotonicity is lost
due to the random perturbations, although its convergence property can be recovered.
For this reason, with abuse of language, we will still refer to it as a potential. Note
that in the new notation, (A.1) and (3.1) read as

πΘ̂ =
1− Θ̂

2
= (1− ρ̂)

1−Θ

2
+
ρ̂

2
(π + π̂) = (1− ρ̂)πΘ +

ρ̂

2
(π + π̂). (4.1)
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Thus (A.2) and (3.2) are perturbed, since

π̂ − πΘ̂ =

(
1− ρ̂

2

)
π̂ − ρ̂

2
π −

(
1− ρ̂

2

)
πΘ +

ρ̂

2
πΘ =

(
1− ρ̂

2

)
MΘπ +

(
1− ρ̂

2

)
R̂

−
(

1− ρ̂

2

)
πΘ −

ρ̂

2
(π − πΘ) =

(
1− ρ̂

2

)
(MΘπ − πΘ) +

(
1− ρ̂

2

)
R̂

− ρ̂

2
(π − πΘ) =

(
1− ρ̂

2

)
MΘ(π − πΘ)− ρ̂

2
(π − πΘ) +

(
1− ρ̂

2

)
R̂.

Hence

π̂ − πΘ̂ = LΘ(π − πΘ) +

(
1− ρ̂

2

)
R̂, (4.2)

where

LΘ
..=

(
1− ρ̂

2

)
MΘ −

ρ̂

2
I,

and ‖LΘ‖1 ≤ 1 as in Sections A.2 and 3.2. Denote, for any given ω ∈ Ω and the
corresponding sample path {(Θn(ω), πn(ω))} (often denoted simply as (Θn, πn)), vn ..=
πn − πΘn . Then V (Θn, πn) = ‖vn‖1. Note that the iterative scheme (4.2), which in
the new notation reads as

vn+1 = LΘnvn +
(

1− ρn+1

2

)
Rn+1,

started at any given time m̄, can be compared with the iterative scheme v̄n+1 = LΘn v̄n
started at v̄m̄ ..= vm̄. Denote, for any n ≥ m̄, V (Θn, πn) ..= ‖v̄n‖1.

Remark 4.4. For any given 1 < ν <
√
µ, for almost every ω ∈ Ω, let m = m(ω) ∈ N

such that ‖Rk‖1 < 3ν−k for all k ≥ m. Then for every m̄ ≥ m, uniformly in n ≥ m̄,

|V (Θn+1, πn+1)− V (Θn+1, πn+1)| ≤ 3

ν(ν − 1)

1

νm̄
.

Proof. The existence of m ∈ N for almost every such ω and ν fixed is ensured by
Lemma 4.1. Define, for any k ≤ n,

Pn,k ..=
n−k∏
i=0

LΘn−i = LΘn . . . LΘk .

Having that v̄n+1 = Pn,m̄vm̄, it holds that

vn+1 = v̄n+1 +
n+1∑

k=m̄+1

(
1− ρk+1

2

)
Pn,kRk.

Since ‖LΘi‖1 ≤ 1, by submultiplicativity of the matrix norm ‖Pn,k‖1 ≤ 1, thus

‖vn+1 − v̄n+1‖1 ≤
n+1∑

k=m̄+1

(
1− ρk+1

2

)
‖Pn,k‖1‖Rk‖1 < 3

n+1∑
k=m̄+1

ν−k = 3
ν−m̄−1 − ν−n−2

1− ν−1

=
3

ν − 1

1

νm̄

(
1− 1

νn−m̄+1

)
<

3

ν − 1

1

νm̄

and therefore, uniformly in n ≥ m̄,

|V (Θn+1, πn+1)− V (Θn+1, πn+1)| ..= |‖vn+1‖1 − ‖v̄n+1‖1| ≤ ‖vn+1 − v̄n+1‖1

≤ 3

ν − 1

1

νm̄
.
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Lemma 4.5. There is a random variable ` : Ω −→ [0, 2] such that almost surely,
V (Θn, πn) −→ ` as n −→∞.

Proof. Fix any given 1 < ν <
√
µ. For almost every fixed ω ∈ Ω, for which there is

a finite time m = m(ω) such that for all k > m, ‖Rk(ω)‖1 < 3ν−k (by Lemma 4.1),
suppose (by contradiction) that V (Θn, πn) = ‖vn‖1 does not converge. In other words,
suppose that for some δ > 0, there are subsequences {nj} and {nk} such that

|‖vnj+1‖1 − ‖vnk+1‖1| > δ. (4.3)

Let

m̄ ≥ max

{
m,

log 9
δ(ν−1)

log ν

}
.

By Remark 4.4, uniformly in n ≥ m̄

|V (Θn+1, πn+1)− V (Θn+1, πn+1)| ≤ 3

ν − 1

1

νm̄
<
δ

3
,

where the last inequality follows by construction of m̄. Thus it is possible to choose
J,K large enough, such that for all j ≥ J and k ≥ K, nj, nk ≥ m̄, that is
|‖vnk+1‖1 − ‖v̄nk+1‖1| < δ/3 and |‖vnj+1‖1 − ‖v̄nj+1‖1| < δ/3. By Remark A.6 (which
guarantees, upon translating it into this section’s notation, that ‖v̄n‖1 is nonnega-
tive nonincreasing, and therefore implies that it is a convergent, and thus Cauchy,
sequence) it is possible to choose - by taking the maximum - J,K to be also large
enough to ensure that nj, nk ≥ N for all j ≥ J and k ≥ K, where N is such that
for all n, n′ ≥ N , |‖v̄n‖1 − ‖v̄n′‖1| < δ/3. Therefore, |‖v̄nj+1‖1 − ‖v̄nk+1‖1| < δ/3 for all
j ≥ J and k ≥ K. We have reached a contradiction with (4.3) for almost every ω
considered, since we have shown that eventually

|V (Θnj+1, πnj+1)− V (Θnk+1, πnk+1)| ..= |‖vnj+1‖1 − ‖vnk+1‖1| ≤ |‖vnk+1‖1 − ‖v̄nk+1‖1|

+ |‖vnj+1‖1 − ‖v̄nj+1‖1|+ |‖v̄nj+1‖1 − ‖v̄nk+1‖1| < 3
δ

3
= δ.

In conclusion, for almost every ω ∈ Ω, `∗(ω) ..= limn−→∞ V (Θn, πn) exists and 0 ≤
`∗ ≤ 2 (since 2 is the diameter of Σ in the 1-norm). We can thus define `(ω) ..=
lim supn−→∞ V (Θn(ω), πn(ω)) for all ω ∈ Ω, which will be bounded between 0 and 2
as well, and F∞-measurable, thus resulting to be a well defined random variable on
(Ω,F,P).

As already mentioned in Chapter 1, we will partition the sample space Ω into three
main events: D ..= {∃v ∈ V : Θn −→ v}, E ..= S ∩ Dc where S ..= {Θn −→ ∂Σ}, and
B ..= {Θn bounded away from ∂Σ}. Since B ⊆ Dc and since S ∪B = Ω, because Θn

either approaches the boundary of the simplex or is bounded away from it, it follows
that E∪B = (S∩Dc)∪B = (S∪B)∩ (Dc∪B) = Ω∩Dc = Dc. Thus the following
remark holds.

Remark 4.6. D, E, B, form a partitioning of Ω.

We can also consider a different partitioning of Ω given by the two events {` = 0}
and {` > 0}. Finally consider the following events:

• B0
..= B ∩ {` = 0}, B>

..= B ∩ {` > 0};

• E0
..= E ∩ {` = 0}, E> ..= E ∩ {` > 0};
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• D0
..= D ∩ {` = 0}, D> ..= D ∩ {` > 0}.

We will work on each event separately, showing that for almost every ω in each event
{Θn(ω)} converges, yielding almost sure convergence of {Θn} to a random variable
Θ.

4.3 Convergence on B

The main goal of this section is showing that the stochastic process {(Θn, πn)} con-
verges almost surely on B.

Proposition 4.7. P(B \B0) = 0 and thus, for almost every ω ∈B, the sample path
{(Θn(ω), πn(ω))} converges to an internal equilibrium.

Proof. We prove first the almost sure convergence of Θn. Consider that

Θn+1 −Θn = ρn+1(1−Θn − πn+1 − πn) = ρn+1(2πΘn − πn+1 − πn)

= −ρn+1(MΘn + I)vn − ρn+1Rn+1

and therefore

‖Θn+1 −Θn‖1 ≤ 2‖vn‖1 + ‖Rn+1‖1. (4.4)

We will use (4.4), which holds in general, to show that for almost every ω ∈B,∑
k

‖Θk+1 −Θk‖1 <∞,

which implies directly that since

Θn+1 = Θm +
n∑

k=m

(Θk+1 −Θk),

Θn converges as n −→ ∞, where m = m(ω) ∈ N exists by Lemma 4.1, and is a
random time such that, given a fixed 1 < ν <

√
µ and for almost every ω, for all

k ≥ m, ‖Rk‖1 ≤ 3ν−k. By (4.4)

n∑
k=m

‖Θk+1 −Θk‖1 ≤ 2
n∑

k=m

‖vk‖1 +
n+1∑

k=m+1

‖Rk‖1

and
∑

k ‖Rk‖1 <∞ due to Lemma 4.1, so we only need to prove that
∑

k ‖vk‖1 <∞.
To this end, note that for any fixed ω ∈ B, there is ε = ε(ω) such that Θn ∈ Σε for all
n ∈ N, where Σε is defined as in Lemma 3.14. Consider that, upon translating it into
this section’s notation, the estimate of (A.3) in Lemma A.8 still applies to LΘn , having
the time-dependent 0 < ρn+1 < 1 instead of ρ, by Remark 4.2. Then, translating
Lemma A.8 in the notation we set for this section, we have that ‖LΘnvn‖1 < c‖vn‖1

for some 0 ≤ c(ω) < 1. Hence by taking norms in (4.2) and by the triangle inequality,
one gets

‖vn+1‖1 < c‖vn‖1 + ‖Rn+1‖1. (4.5)

For all n ≥ m, (4.5) reads

‖vn+1‖1 < c‖vn‖1 + 3ν−n−1. (4.6)
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Let λ ..= max{c, ν−1} and iterate the bound of (4.6) down to time m, starting at any
n > m, yielding

‖vn+1‖1 ≤ cn−m+1‖vm‖1 + 3
n+1∑

k=m+1

cn−k+1ν−k ≤ λn−m+1‖vm‖1 + 3
n+1∑

k=m+1

λn−k+1λk

= λn−m+1‖vm‖1 + 3(n−m)λn+1.

By the boundedness of vm, following from the boundedness of Σ, one sees that on B,
‖vk‖1 = Oω(kλk), hence

∑
k ‖vk‖1 <∞. This shows that:

• ‖vk‖1 vanishes for almost all ω ∈ B, and hence that P(B \B0) = 0, because
by construction on B \B0 we have that ‖vk‖1 does not vanish;

• Θn converges to some Θ 6∈ ∂Σ (indeed by definition of B the limit cannot be on
the boundary), thus yielding convergence of πn to πΘ ∈ Σ∗ (recall that Σ∗ is the
interior of the medial triangle of the simplex), since ‖vn‖1 = ‖πn − πΘn‖1 −→ 0
as n −→∞.

The argument of Proposition 3.17 is robust under geometric perturbations, and
can be adjusted to the random setting as follows. As we continue working in 1-norm,
in the following U((Θ, π), r, r′) ..= B(Θ, r)×B(π, r′) and dist(·, ·) are with respect to
the 1-norm, and U((Θ, π), r) ..= U((Θ, π), r, r), having denoted by B(Θ, r) the ball
centred at Θ of radius r, with respect to the distance generated by the 1-norm.

Proposition 4.8. For every 1 < ν <
√
µ, Θ 6∈ ∂Σ and a small enough 0 < ε′ <

dist(Θ, ∂Σ) given, there is a δ′ > 0 small enough such that, if for ω ∈ Ω fixed there
is a finite m = m(ω) large enough, such that ‖Rn+1‖1 < 3ν−n−1 for all n ≥ m,
3ν−m < δ′ and (Θm(ω), πm(ω)) ∈ U((Θ, πΘ), δ′); then

(Θn(ω), πn(ω)) ∈ U
(

(Θ, πΘ), ε′,
ε′

2

)
for all n > m.

Proof. Given Θ and ε′ as in the statement, let 0 < δ′ < ε′ (it will be further restricted
if necessary); by (4.5) in Proposition 4.7 it is known that since B(Θ, ε′) is bounded
away from ∂Σ, for all (Θ′, π′) ∈ U((Θ, πΘ), ε′), ‖LΘ′(π−πΘ′)‖1 ≤ c‖π−πΘ′‖1 + ‖R̂‖1

for some 0 < c < 1. Denote by λ ..= max{c, ν−1}. Further restrict, given 1 < ν <
√
µ,

δ′ <
ε′

3
1−λ2 + ν

ν−1

.

For almost every fixed ω ∈ Ω, the time m = m(ω) ∈ N is well defined by Lemma 4.1
and the monotonicity of ν−n. If (Θm(ω), πm(ω)) ∈ U((Θ, πΘ), δ′) we will show by
induction that for all n ≥ m+ 1, Θn ∈ B(Θ, ε′) and πn ∈ B(πΘ, ε

′/2).
Consider that

‖πm − πΘm‖1 ≤ ‖πm − πΘ‖1 + ‖πΘ − πΘm‖1 = ‖πm − πΘ‖1 +
‖Θ−Θm‖1

2
<

3

2
δ′.

Then since 3ν−m < δ′

‖πm+1 − πΘm+1‖1 ≤ ‖LΘm(πm − πΘm)‖1 + ‖Rm+1‖1 ≤ c‖πm − πΘm‖1 + 3ν−m−1

<
3

2
cδ′ + δ′ν−1 ≤ 3δ′

2
2λ1.
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Recall that for all n, ‖Θn+1−Θn‖1 ≤ 2‖πn−πΘn‖1 +‖Rn+1‖1 by (4.4), hence ‖Θm+1−
Θm‖1 < 3δ′ + 3ν−m−1. As a consequence, noting that πΘm+1 − πΘ = (Θ−Θm+1)/2,

‖Θm+1−Θ‖1 ≤ ‖Θm+1−Θm‖1+‖Θm−Θ‖1 < 3δ′+3ν−m−1+δ′ < 3δ′(1λ0)+δ′(1+ν−1)

which implies in particular by construction of δ′ that

‖Θm+1 −Θ‖1 < δ′(3 + 1 + ν−1) < δ′
(

3

(1− λ)2
+

ν

ν − 1

)
< ε′,

and

‖πm+1 − πΘ‖1 ≤ ‖πm+1 − πΘm+1‖1 + ‖πΘm+1 − πΘ‖1 = ‖πm+1 − πΘm+1‖1

+
‖Θm+1 −Θ‖1

2
≤ 3

2
δ′2λ1 +

3

2
δ′1λ0 +

δ′

2
(1 + ν−1),

which implies in particular that

‖πm+1 − πΘ‖1 ≤
δ′

2

(
3(1λ0 + 2λ1) + (1 + ν−1)

)
<
δ′

2

(
3

(1− λ)2
+

ν

ν − 1

)
<
ε′

2
.

It immediately follows, by exploiting again the geometric decay by the constant factor
c, still valid by the previous estimates, that

‖πm+2 − πΘm+2‖1 ≤ ‖LΘm+1(πm+1 − πΘm+1)‖1 + ‖Rm+2‖1 ≤ c‖πm+1 − πΘm+1‖1

+ ‖Rm+2‖1 ≤ c2‖πm − πΘm‖1 + c‖Rm+1‖1 + ‖Rm+2‖1

<
3

2
c2δ′ + 3cν−m−1 + 3ν−m−2 <

3

2
c2δ′ + δ′cν−1 + δ′ν−2 <

3δ′

2
3λ2.

To sum up what proved for k = 1, it has been shown that if (Θm, πm) ∈ U((Θ, πΘ), δ′),
with c being the subunitary constant uniformly holding on B(Θ, ε′), then

‖πm+1 − πΘm+1‖1 <
3

2
δ′(2λ1),

‖Θm+1 −Θ‖1 < 3δ′(1λ0) + δ′(1 + ν−1),

so that Θm+1 ∈ B(Θ, ε′), and

‖πm+1 − πΘ‖1 ≤
3

2
δ′(2λ1 + 1λ0) +

δ′

2
(1 + ν−1),

so that πm+1 ∈ B(πΘ, ε
′/2).

Assume as induction hypothesis that

‖πm+k − πΘm+k
‖1 <

3

2
δ′(k + 1)λk,

that

‖Θm+k −Θ‖1 < 3δ′
k∑
i=0

iλi−1 + δ′
k∑
i=0

ν−i,

so that Θm+k ∈ B(Θ, ε′), and

‖πm+k − πΘ‖1 <
3

2
δ′

k+1∑
i=0

iλi−1 +
δ′

2

k∑
i=0

ν−i
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so that πm+k ∈ B(Θ, ε′/2), and consider Θm+k+1. Since

‖Θm+k+1 −Θ‖1 ≤ ‖Θm+k+1 −Θm+k‖1 + ‖Θm+k −Θ‖1 ≤ 2‖πm+k − πΘm+k
‖1

+ ‖Rm+k+1‖1 + ‖Θm+k −Θ‖1 < 3δ′(k + 1)λk + δ′ν−k−1

+ 3δ′
k∑
i=0

iλi−1 + δ′
k∑
i=0

ν−i = 3δ′
k+1∑
i=0

iλi−1 + δ′
k+1∑
i=0

ν−i,

this shows that Θm+k+1 ∈ B(Θ, ε′), since

‖Θm+k+1 −Θ‖1 < δ′

(
3
∞∑
i=0

iλi−1 +
∞∑
i=0

ν−i

)
= δ′

(
3

(1− λ)2
+

ν

ν − 1

)
< ε′

by construction of δ′, and therefore it also holds that

‖πm+k+1 − πΘm+k+1
‖1 < ‖LΘm+k

(πm+k − πΘm+k
)‖1 + ‖Rm+k+1‖1 < c‖πm+k − πΘm+k

‖1

+ δ′ν−k−1 <
3

2
cδ′(k + 1)λk + δ′ν−k−1 ≤ 3

2
δ′(k + 1)λk+1 + δ′λk+1

<
3

2
δ′(k + 2)λk+1.

Since

‖πm+k+1 − πΘ‖1 ≤ ‖πm+k+1 − πΘm+k+1
‖1 + ‖πΘm+k+1

− πΘ‖1 ≤
3

2
δ′(k + 2)λk+1

+
1

2
‖Θm+k+1 −Θ‖1 <

3

2
δ′(k + 2)λk+1 +

3

2
δ′

k+1∑
i=0

iλi−1 +
δ′

2

k+1∑
i=0

ν−i

=
3

2
δ′

k+2∑
i=0

iλi−1 +
δ′

2

k+1∑
i=0

ν−i,

this shows that πm+k+1 ∈ B(πΘ, ε
′/2), since

‖πm+k+1 − πΘ‖1 <
δ′

2

(
3
∞∑
i=0

iλi−1 +
∞∑
i=0

ν−i

)
=
δ′

2

(
3

(1− λ)2
+

ν

ν − 1

)
<
ε′

2

by hypothesis.

Corollary 4.9. For almost all ω ∈ Ω, by Lemma 4.1 there is a random time m =
m(ω) ∈ N large enough such that if (Θm(ω), πm(ω)) is close enough to an internal
equilibrium (Θ, πΘ), by Propositions 4.7 and 4.8 the stochastic process converges to a
random internal equilibrium.

4.4 Convergence on E0

The main goal of this section is showing that the stochastic process {(Θn, πn)} con-
verges almost surely on E0.

For almost every ω ∈ E0 fixed, ‖Θn+1 − Θn‖1 −→ 0 as n −→ ∞, by (4.4) (which
holds in general, not just on B, where it has been used so far) and Lemma 4.1.
By Remark 4.3 it follows that for almost every ω ∈ E0 there is a subsequence
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{Θnj}j∈N bounded away from the vertices. By boundedness, this implies the ex-
istence of a subsubsequence {Θnjl

} (relabelled with nk for simplicity) such that
Θnk(ω) −→ Θ∗(ω) ∈ Ei for some i ∈ {1, 2, 3}, for almost every ω ∈E0. Define

E
(i)

0
..= {ω ∈E0 : ∃{nk}k∈N, Θnk(ω) −→ Θ∗(ω) ∈ Ei as k −→∞}.

Then we have that

P

(
E0 \

3⋃
i=1

E
(i)

0

)
= 0.

By symmetry, we will show the argument of convergence on E
(1)

0 without loss of
generality. For almost every ω ∈ E

(1)

0 , Θ(1)
nk
−→ 0 as k −→ ∞, while {Θ(2)

nk
}k∈N is

bounded away from 0 and 1. Since on E
(1)

0 , ‖πn − πΘn‖1 −→ 0, and for almost every
such ω by Lemma 4.1 there is an m̄ = m̄(ω) such that for any fixed 1 < ν <

√
µ,

3ν−m̄ < ε and |R(i)
n | < ν−n for all i ∈ {1, 2, 3} and n ≥ m̄; there will be, in conclusion,

a large enough K such that, for any k ≥ K = K(ω), nk ≥ m̄ and for any sufficiently
small enough δ > 0, δ = δ(ω), and an arbitrarily small ε > 0, dependent on δ,
(Θnk , πnk , Rnk+1) belongs to

K∗
ε, δ

2

..=

{
(Θ, π, R̂) ∈ Σ2 × Π0 : 0 < Θ1 ≤ ε,

δ

2
≤ Θ2 ≤ 1− δ

2
, 0 ≤ |α|, |β|, ‖R̂‖1 ≤ ε

}

where, for each Θ ∈ Σ0, the usual notation for the eigenvectors spanning Π0 from
Lemma 3.19 has been adopted, leading to the representation π − πΘ = αe0(Θ) +
βe−1(Θ), so that αn and βn are eigencoordinates for πn−πΘn . Since πn(ω)−πΘn(ω) −→
0 and the norm of the linearly independent eigenvectors is bounded away from zero,
for any ε > 0 eventually |αn| ∈ {0 < α ≤ ε, α ∈ R} and |βn| ∈ {0 < β ≤ ε, β ∈ R}.
Define a similar set K∗

ε, δ
8

and denote

Kε, δ
8

..=

{
(Θ, R̂) ∈ Σ× Π0 : 0 < Θ1 ≤ ε,

δ

8
≤ Θ2 ≤ 1− δ

8
, 0 ≤ ‖R̂‖1 ≤ ε

}
.

Note that ignoring the R̂ coordinate in the Cartesian product, the intuitive picture
for these sets is related to Figure 3.3.

We will adopt the same modified O-notation as in Section 3.4, that is f(Θ) =
O(g(Θ1)) if for ε > 0 small enough f(Θ)/g(Θ1) is well-defined and bounded on Kε, δ

8
.

We will also adapt it to the new set of variables when necessary: f(Θ, α, β, R̂) =
O(g1(Θ1, α, β, ‖R̂‖1), . . . , gk(Θ1, α, β, ‖R̂‖1)) if, for sufficiently small ε > 0,

f(Θ, α, β, R̂)

|g1(Θ1, α, β, ‖R̂‖1)|+ . . .+ |gk(Θ1, α, β, ‖R̂‖1)|

is well-defined and bounded on K∗
ε, δ

8

. Denote rn ..= (Θ(1)
n ,Θ

(2)
n , αn, βn, ‖Rn+1‖1).
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Lemma 4.10.

α̂ =

α

[(
1− ρ̂

2

)
λ0(Θ)− ρ̂

2

] ∣∣∣∣e(i)

0 (Θ) e(i)

−1(Θ̂)

e(j)

0 (Θ) e(j)

−1(Θ̂)

∣∣∣∣∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ̂)

e(j)

0 (Θ̂) e(j)

−1(Θ̂)

∣∣∣∣
+ β

[(
1− ρ̂

2

)
λ−1(Θ)− ρ̂

2

] ∣∣∣∣e(i)

−1(Θ) e(i)

−1(Θ̂)

e(j)

−1(Θ) e(j)

−1(Θ̂)

∣∣∣∣∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ̂)

e(j)

0 (Θ̂) e(j)

−1(Θ̂)

∣∣∣∣ +

(
1− ρ̂

2

) ∣∣∣∣R̂(i) e(i)

−1(Θ̂)

R̂(j) e(j)

−1(Θ̂)

∣∣∣∣∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ̂)

e(j)

0 (Θ̂) e(j)

−1(Θ̂)

∣∣∣∣ (4.7)

β̂ =

α

[(
1− ρ̂

2

)
λ0(Θ)− ρ̂

2

] ∣∣∣∣e(i)

0 (Θ̂) e(i)

0 (Θ)

e(j)

0 (Θ̂) e(j)

0 (Θ)

∣∣∣∣∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ̂)

e(j)

0 (Θ̂) e(j)

−1(Θ̂)

∣∣∣∣
+ β

[(
1− ρ̂

2

)
λ−1(Θ)− ρ̂

2

] ∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ)

e(j)

0 (Θ̂) e(j)

−1(Θ)

∣∣∣∣∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ̂)

e(j)

0 (Θ̂) e(j)

−1(Θ̂)

∣∣∣∣ +

(
1− ρ̂

2

) ∣∣∣∣e(i)

0 (Θ̂) R̂(i)

e(j)

0 (Θ̂) R̂(j)

∣∣∣∣∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ̂)

e(j)

0 (Θ̂) e(j)

−1(Θ̂)

∣∣∣∣ (4.8)

Proof. By (4.2) we obtain a system of three linear equations in two variables (α̂, β̂) ∈
R2,

α̂e0(Θ̂) + β̂e−1(Θ̂) = α

[(
1− ρ̂

2

)
λ0(Θ)− ρ̂

2

]
e0(Θ) + β

[(
1− ρ̂

2

)
λ−1(Θ)− ρ̂

2

]
e−1(Θ)

+

(
1− ρ̂

2

)
R̂,

which can therefore be solved by picking any two of the three equations as in
Lemma 3.20. For any i 6= j chosen, the linear system(

e(i)

0 (Θ̂) e(i)

−1(Θ̂)

e(j)

0 (Θ̂) e(j)

−1(Θ̂)

)(
α̂

β̂

)
=(

α
[(

1− ρ̂
2

)
λ0(Θ)− ρ̂

2

]
e(i)

0 (Θ) + β
[(

1− ρ̂
2

)
λ−1(Θ)− ρ̂

2

]
e(i)

−1(Θ) +
(
1− ρ̂

2

)
R̂(i)

α
[(

1− ρ̂
2

)
λ0(Θ)− ρ̂

2

]
e(j)

0 (Θ) + β
[(

1− ρ̂
2

)
λ−1(Θ)− ρ̂

2

]
e(j)

−1(Θ) +
(
1− ρ̂

2

)
R̂(j)

)
is solved similarly to how it has been done in Lemma 3.20, via Cramer’s rule,

α̂ =∣∣∣∣α [(1− ρ̂
2

)
λ0(Θ)− ρ̂

2

]
e(i)

0 (Θ) + β
[(

1− ρ̂
2

)
λ−1(Θ)− ρ̂

2

]
e(i)

−1(Θ) +
(
1− ρ̂

2

)
R̂(i) e(i)

−1(Θ̂)

α
[(

1− ρ̂
2

)
λ0(Θ)− ρ̂

2

]
e(j)

0 (Θ) + β
[(

1− ρ̂
2

)
λ−1(Θ)− ρ̂

2

]
e(j)

−1(Θ) +
(
1− ρ̂

2

)
R̂(j) e(j)

−1(Θ̂)

∣∣∣∣∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ̂)

e(j)

0 (Θ̂) e(j)

−1(Θ̂)

∣∣∣∣
β̂ =∣∣∣∣e(i)

0 (Θ̂) α
[(

1− ρ̂
2

)
λ0(Θ)− ρ̂

2

]
e(i)

0 (Θ) + β
[(

1− ρ̂
2

)
λ−1(Θ)− ρ̂

2

]
e(i)

−1(Θ) +
(
1− ρ̂

2

)
R̂(i)

e(j)

0 (Θ̂) α
[(

1− ρ̂
2

)
λ0(Θ)− ρ̂

2

]
e(j)

0 (Θ) + β
[(

1− ρ̂
2

)
λ−1(Θ)− ρ̂

2

]
e(j)

−1(Θ) +
(
1− ρ̂

2

)
R̂(j)

∣∣∣∣∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ̂)

e(j)

0 (Θ̂) e(j)

−1(Θ̂)

∣∣∣∣ ,
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yielding the claim. The ratios of the determinants do not depend on the choice of
i 6= j, because R̂ ∈ Π0, and therefore for k 6= i 6= j, R̂k = −R̂i− R̂j. This means that
the concluding remarks of Lemma 3.20 also apply to this system.

Lemma 4.11.

Θ̂1 = Θ1 + ρ1(r) (4.9)

Θ̂2 = Θ2 − 2ρ̂(1−Θ2)Θ1β + ρ2(r), (4.10)

where ρ1(r) = O(βΘ1, αΘ1, ‖R̂‖1) and ρ2(r) = O(α, βΘ2
1, ‖R̂‖1).

Proof. Since

Θ̂−Θ = ρ̂(1−Θ− π̂ − π) = ρ̂(2πΘ −MΘπ − R̂− π) = −ρ̂(MΘ + I)(π − πΘ)− ρ̂R̂,

one has that

Θ̂ = Θ− ρ̂α(1 + λ0(Θ))e0(Θ)− ρ̂β(1 + λ−1(Θ))e−1(Θ)− ρ̂R̂, (4.11)

from which, reading off the first two components and applying Lemma 3.19 (f, g, h),
it follows that

Θ̂1 = Θ1 − ρ̂α(1− 2Θ1 +O(Θ2
1))O(Θ1)− ρ̂β(2Θ1 +O(Θ2

1))(−1 +O(Θ1))− ρ̂R̂1

= Θ1 +O(αΘ1, βΘ1)− ρ̂R̂1

Θ̂2 = Θ2 − ρ̂α(1− 2Θ1 +O(Θ2
1))(1 +O(Θ1))− ρ̂β(2Θ1 +O(Θ2

1))(1−Θ2 +O(Θ1))

− ρ̂R̂2 = Θ2 − 2ρ̂(1−Θ2)Θ1β +O(α, βΘ2
1)− ρ̂R̂2,

having used the smoothness of the eigenvectors to linearise as Θ approaches the edge
E1, and the relative compactness of K∗

ε, δ
8

to estimate uniformly the Jacobian term as

in the concluding remark of Lemma 3.21.

Lemma 4.12.

α̂ = − ρ̂
2
α(1 + ρ3(r)) + ρ4(r) (4.12)

β̂ = −β [1− (2− ρ̂) Θ1] + ρ5(r), (4.13)

where ρ3(r) = O(α,Θ1, ‖R̂‖1), ρ4(r) = O(βα, β2Θ1, ‖R̂‖1), ρ5(r) =
O(α2, αβ, β2Θ1, βΘ2

1, ‖R̂‖1).

Proof. By Lemma 4.11 it follows that Θ̂ = Θ + O(α, βΘ1, ‖R̂‖1), because Θ̂3 =
1− Θ̂1 − Θ̂2 = 1−Θ1 −Θ2 +O(α, βΘ1) + ρ̂(R̂1 + R̂2) = Θ3 +O(α, βΘ1)− ρ̂R̂3. We
plug this estimate, along with that of Lemma 3.19 (g), in the terms next to α and
β, in (4.7) and (4.8). This yields, due to smoothness of the eigenvectors’ components
and relative compactness of K∗

ε, δ
8

, the following estimates for those terms involved in

(4.7):
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∣∣∣∣e(i)

0 (Θ) e(i)

−1(Θ̂)

e(j)

0 (Θ) e(j)

−1(Θ̂)

∣∣∣∣∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ̂)

e(j)

0 (Θ̂) e(j)

−1(Θ̂)

∣∣∣∣ =

∣∣∣∣e(i)

0 (Θ) e(i)

−1(Θ)
e(j)

0 (Θ) e(j)

−1(Θ)

∣∣∣∣+O(α, βΘ1, ‖R̂‖1)∣∣∣∣e(i)

0 (Θ) e(i)

−1(Θ)
e(j)

0 (Θ) e(j)

−1(Θ)

∣∣∣∣+O(α, βΘ1, ‖R̂‖1)∣∣∣∣e(i)

−1(Θ) e(i)

−1(Θ̂)

e(j)

−1(Θ) e(j)

−1(Θ̂)

∣∣∣∣∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ̂)

e(j)

0 (Θ̂) e(j)

−1(Θ̂)

∣∣∣∣ =

∣∣∣∣e(i)

−1(Θ) e(i)

−1(Θ)
e(j)

−1(Θ) e(j)

−1(Θ)

∣∣∣∣+O(α, βΘ1, ‖R̂‖1)∣∣∣∣e(i)

0 (Θ) e(i)

−1(Θ)
e(j)

0 (Θ) e(j)

−1(Θ)

∣∣∣∣+O(α, βΘ1, ‖R̂‖1)∣∣∣∣∣∣∣∣∣

∣∣∣∣R̂(i) e(i)

−1(Θ̂)

R̂(j) e(j)

−1(Θ̂)

∣∣∣∣∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ̂)

e(j)

0 (Θ̂) e(j)

−1(Θ̂)

∣∣∣∣

∣∣∣∣∣∣∣∣∣ ≤
‖R̂‖1‖e−1(Θ̂)‖1∣∣∣∣∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ̂)

e(j)

0 (Θ̂) e(j)

−1(Θ̂)

∣∣∣∣∣∣∣∣ = O(‖R̂‖1),

where the last estimate follows by Hadamard’s inequality (which holds for the Eu-
clidean norm), the fact that the Euclidean norm is always smaller than the 1-norm,
the boundedness away from zero of the determinant in the denominator, the fact that
‖e−1(Θ̂)‖1 approaches 2 as Θ̂ approaches the boundary and Lemma 3.19 (h). Hence
(4.7) becomes

α̂ = α

(
− ρ̂

2
+O(Θ1)

)
(1 +O(α, βΘ1, ‖R̂‖1))

+ β

(
−
(

1− ρ̂

2

)
− ρ̂

2
+O(Θ1)

)
O(α, βΘ1, ‖R̂‖1) +O(‖R̂‖1)

= α

(
− ρ̂

2
+O(Θ1)

)
(1 +O(α, βΘ1, ‖R̂‖1)) + β (−1 +O(Θ1))O(α, βΘ1, ‖R̂‖1)

+O(‖R̂‖1) = α

(
− ρ̂

2
+O(α,Θ1, ‖R̂‖1)

)
+ βO(α, βΘ1, ‖R̂‖1) +O(‖R̂‖1)

= − ρ̂
2
α(1 +O(α,Θ1, ‖R̂‖1)) +O(βα, β2Θ1, ‖R̂‖1).

Doing the same with the corresponding terms in (4.8) yields

∣∣∣∣e(i)

0 (Θ̂) e(i)

0 (Θ)

e(j)

0 (Θ̂) e(j)

0 (Θ)

∣∣∣∣∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ̂)

e(j)

0 (Θ̂) e(j)

−1(Θ̂)

∣∣∣∣ =

∣∣∣∣e(i)

0 (Θ) e(i)

0 (Θ)
e(j)

0 (Θ) e(j)

0 (Θ)

∣∣∣∣+O(α, βΘ1, ‖R̂‖1)∣∣∣∣e(i)

0 (Θ) e(i)

−1(Θ)
e(j)

0 (Θ) e(j)

−1(Θ)

∣∣∣∣+O(α, βΘ1, ‖R̂‖1)∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ)

e(j)

0 (Θ̂) e(j)

−1(Θ)

∣∣∣∣∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ̂)

e(j)

0 (Θ̂) e(j)

−1(Θ̂)

∣∣∣∣ =

∣∣∣∣e(i)

0 (Θ) e(i)

−1(Θ)
e(j)

0 (Θ) e(j)

−1(Θ)

∣∣∣∣+O(α, βΘ1, ‖R̂‖1)∣∣∣∣e(i)

0 (Θ) e(i)

−1(Θ)
e(j)

0 (Θ) e(j)

−1(Θ)

∣∣∣∣+O(α, βΘ1, ‖R̂‖1)∣∣∣∣∣∣∣∣∣

∣∣∣∣e(i)

0 (Θ̂) R̂(i)

e(j)

0 (Θ̂) R̂(j)

∣∣∣∣∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ̂)

e(j)

0 (Θ̂) e(j)

−1(Θ̂)

∣∣∣∣

∣∣∣∣∣∣∣∣∣ ≤
‖e0(Θ̂)‖1‖R̂‖1∣∣∣∣∣∣∣∣e(i)

0 (Θ̂) e(i)

−1(Θ̂)

e(j)

0 (Θ̂) e(j)

−1(Θ̂)

∣∣∣∣∣∣∣∣ = O(‖R̂‖1),
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hence equation (4.8) becomes

β̂ = α

(
− ρ̂

2
+O(Θ1)

)
O(α, βΘ1, ‖R̂‖1)

+ β

[(
1− ρ̂

2

)(
−1 + 2Θ1 +O(Θ2

1)
)
− ρ̂

2

]
(1 +O(α, βΘ1, ‖R̂‖1)) +O(‖R̂‖1)

= O(α2, αβΘ1, α‖R̂‖1) + β
[
−1 + (2− ρ̂) Θ1 +O(Θ2

1) +O(α, βΘ1, ‖R̂‖1)
]

+O(‖R̂‖1) = O(α2, αβΘ1, α‖R̂‖1)− β [1− (2− ρ̂) Θ1]

+O(αβ, β2Θ1, βΘ2
1, β‖R̂‖1) +O(‖R̂‖1) = −β [1− (2− ρ̂) Θ1]

+O(α2, αβ, β2Θ1, βΘ2
1, ‖R̂‖1),

having again used the determinant in the denominators being bounded away from
zero.

The constant 1 < ν <
√
µ has yet to be fixed in its range of validity: its choice

will depend on µ > 1, entailing some additional technicalities. Let

ν = ν(µ) ..=

{
7
5
, µ ≥ 2

µ
1
2
−ϑ, 1 < µ < 2,

then ϑ = ϑ(µ) can be determined such that 0 < ϑ < 1/2 and such that the conditions
listed in the next lemma hold. To give some intuition, note that if µ ≥ 2 the choice
of ν is consistent with the fact that, in Lemmas 4.16 and 4.17 and Theorem 4.18,
for µ ≥ 2 it will be required that ν is greater than 4/3. This is the easiest case, as
it is possible to identify a value, 4/3, with respect to which all the estimates, which
we will derive, hold uniformly for all µ ≥ 2. Now, 7/5 satisfies both being greater
than 4/3 (as 21 > 20) and smaller than

√
2 (since 50 > 49 is equivalent to 5

√
2 > 7).

Since
√
µ ≥

√
2 in this case, 1 < 4/3 < 7/5 <

√
2 ≤ √µ, ν = 7/5 is a consistent

choice. As to the case 1 < µ < 2, the choice will be less explicit, as it depends on
µ through the function ϑ(µ), which, in Chapter B, we determine constructively to
be possible to be fixed as the constant 1/12, on the grounds of slightly more relaxed
conditions than those seen for µ ≥ 2, which are still sufficient for the arguments
of Lemmas 4.16 and 4.17 and Theorem 4.18 nonetheless. In proving the following
lemma we avoid the constructive approach, for the sake of brevity, since it is possible
to verify the claim through mere computations. These are beneficial for the reader, as
they allow to familiarise with the quantities involved, which at this stage might feel
somehow detached from the context. However they will be the key to the arguments
aforementioned.

Lemma 4.13. Let η = η(µ) ..= min {ρ, 1− ρ} and

ν = ν(µ) ..=

{
7
5
, µ ≥ 2

µ
5
12 , 1 < µ < 2.

Let 0 < θ < 1/2 be

θ ..=


1
16
, µ ≥ 2

2+ 1
3√µ

3− 1
µ

− 1 1 < µ < 2.

Let

a = a(θ, µ) ..=
ρ+ η + (4 + ρ+ η)θ

2



99

and

b = b(θ, µ) ..=
a(θ, µ)

d(θ, µ)
,

where

d = d(θ, µ) ..=

[
1−

(
1− 1

3
√
µ

)
θ

] [
1− 2

2− ρ+ η + 2θ

3(1 + 3
√
µ)

( 3
√
µ− 1)θ

]
.

Then for all µ > 1, 0 < a < b < 1 and d > a > 1
ν
.

Proof. Note that

η = η(µ) ..= min {ρ, 1− ρ} =

{
1− ρ, µ ≥ 2

ρ, 1 < µ < 2,

since for all µ > 1, µ ≥ 2 is equivalent to 1− ρ ≤ ρ, as ρ = (µ− 1)/µ, thus implying
also that µ < 2 is equivalent to ρ < 1 − ρ. Note that 0 < θ < 1/2: this is trivial for
µ ≥ 2, while for 1 < µ < 2 it follows from

θ <
2 + 1

3− 1
− 1 =

1

2

and

θ >
2 + 1

3√2

3− 1
2

− 1 =
4

5
+

2

5 3
√

2
− 1 >

4

5
+

1

5
− 1 = 0.

This implies the positivity of the two factors appearing in d.

• Since µ > 1,
(
1− 1/ 3

√
µ
)
θ < θ < 1/2, thus the first factor is positive.

• Since
2− ρ+ η = 2− ρ+ min {ρ, 1− ρ} ≤ 2,

we have that

2
2− ρ+ η + 2θ

3(1 + 3
√
µ)

( 3
√
µ− 1)θ <

2

3
2θ(1 + θ)

3
√
µ− 1

1 + 3
√
µ
<

3
√
µ− 1

1 + 3
√
µ
< 1

due to the parabola 2x(1 + x) being increasing in (0, 1/2) and valued 0 at 0 and
3/2 at 1/2; thus the second factor is positive too.

The constant θ = θ(µ) has been constructed along with ϑ(µ), such that, for all µ ≥ 2,
0 < a < 3/4, 0 < b < 1 and 3/4 > 1/ν; while for all 1 < µ < 2 it only satisfies the less
restrictive conditions 0 < a < b < 1 and a > 1/ν. That this is true for all µ ≥ 2, is
easily seen. In this case, if θ < (13−

√
145)/12 < 1/12,

a ≤ 1 + 5θ

2
<

3

4

and, since 1− 1/ 3
√
µ < 1 and since we have just verified that

2
2− ρ+ η + 2θ

3(1 + 3
√
µ)

( 3
√
µ− 1)θ <

4

3
θ(1 + θ) <

8

3
θ < 3θ,

d > (1− θ)(1− 3θ), thus implying

b ≤ 1 + 5θ

2(1− θ)(1− 3θ)
< 1.
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The estimate on a follows because at 1/10 > (13 −
√

145)/12, it holds that (1 +
5x)/2 = 3/4 and the slope of the line on the left-hand side of this equation is positive.
The estimate on b follows since the function (1 + 5x)/(2(1 − x)(1 − 3x)) = 1 at
(13−

√
145)/12 > 1/13 (which is verified by rearranging and squaring both sides), and

on (0, 1/3), the function is monotone increasing due to its derivative being [3(3− 2x−
5x2)]/[2(1− x)2(1− 3x)2] and the concave quadratic 3− 2x− 5x2 having roots at −1
and 3/5. Thus θ = 1/16 satisfies the requirements. The value of θ chosen draws also
motivation from another requirement that will be crucial in Lemma 4.17: it ensures
that d > (1−θ)(1−3θ) > 3/4, because the convex parabola (1−x)(1−3x) is subunitary,
decreasing for 0 < x < 2/3 (note that the vertex of the parabola is exactly at 2/3) and
hits 3/4 at (4−

√
13)/6 > 1/16 (seen by rearranging and squaring both sides).

We now show that all the conditions are met also for 1 < µ < 2. First of all
we show that a > 1/ν. Since in this case η(µ) = ρ = 1 − 1/µ, 2 + ρ = 3 − 1/µ, by
construction

a = ρ+ (2 + ρ)

(
2 + 1

3
√
µ

3− 1
µ

− 1

)
= −2 +

(
3− 1

µ

) 2 + 1
3
√
µ

3− 1
µ

=
1

3
√
µ
>

1

µ
5
12

=..
1

ν
.

Secondly, we show that 0 < a < b < 1. Note, from the previous line, that a = 1/ 3
√
µ;

clearly 0 < a < 1, since 1 < µ < 2; as to 0 < b < 1, it is equivalent to 0 < a/d < 1
and since a = 1/ 3

√
µ, we can just show that 0 < 1/d < 3

√
µ, in order to yield the

claim. We already verified the positivity, while the upper bound is verified by showing
equivalently that

3

2

1 + 3
√
µ

3
√
µ− 1

>
θ (2− ρ+ η + 2θ)

1− 1
3
√
µ
[
1−
(

1− 1
3√µ

)
θ
] ,

which holds, since the denominator of the right-hand side is positive. Recalling that
2− ρ+ η = 2 and that all fractions have positive numerators and denominators, due
to θ < 1/2 and µ > 1,

θ (2− ρ+ η + 2θ)

1− 1
3
√
µ
[
1−
(

1− 1
3√µ

)
θ
] =

2θ(1 + θ)

1− 1
3
√
µ
[
1−
(

1− 1
3√µ

)
θ
] < 3

2

1

1− 1
3
√
µ
[
1− 1

2

(
1− 1

3√µ

)] =
3

2

1

1− 2
3
√
µ+1

=
3

2

1 + 3
√
µ

3
√
µ− 1

.

Note that d > a holds automatically since it follows from b = a/d < 1. This will be
crucial for Lemma 4.17.

The index K will be required to be large enough, to ensure that ρ−η < ρn+1 < ρ+η
for all n ≥ nK .

Lemma 4.14. Let the positive constant

c̃ ..=
2

3

(√
2− 1

)
.

There exists c > 0 and M ≥ 1 such that for all sufficiently small ε, on the closure
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K
∗
ε, δ

8
it holds that

|ρ1(r)| <
(

1− 1
3
√
µ

)
θΘ1 +M‖R̂‖1

|ρ2(r)| < c|α|+ Θ1|β|+M‖R̂‖1

|ρ3(r)| < c̃θ +M‖R̂‖1

|ρ4(r)| < c̃θ(|α|+ Θ1|β|) +M‖R̂‖1

|ρ5(r)| < θ

2ν
(|α|+ Θ1|β|) +M‖R̂‖1.

Proof. Let δ > 0 fixed small enough, and ε > 0 arbitrarily small (possibly dependent
on δ and to be further reduced) so as to ensure well-definedness of all quantities
involved. We will work exclusively on K

∗
ε, δ

8
, so denote K

∗ ..= K
∗
ε, δ

8
.

Starting with ρ1, by Lemma 4.11 it holds that on K
∗

there is some c1 > 0, such
that |ρ1(r)| ≤ c1Θ1(|α|+ |β|) + c1‖R̂‖1. If now we further restrict

ε <

(
1− 1

3
√
µ

)
θ

2c1

,

it follows that

c1Θ1(|α|+ |β|) + c1‖R̂‖1 <

(
1− 1

3
√
µ

)
θΘ1 + c1‖R̂‖1,

since

c1(|α|+ |β|) ≤ 2εc1 <

(
1− 1

3
√
µ

)
θ,

yielding the desired estimate. Further restricting ε is consistent with c1, as the same
constant upper bound applies on the new K

∗
, as it shrinks, being δ fixed, as explained

in Lemma 3.23 (this mention will be implicit in subsequent steps).
Moving on to ρ2, by Lemma 4.11 it holds that on K

∗
there is some c2 > 0, such

that |ρ2(r)| ≤ c2(|α|+ |β|Θ2
1) + c2‖R̂‖1. Let c ..= c2 and further restrict ε < 1/c. Then

c2(|α|+ |β|Θ2
1) + c2‖R̂‖1 < c(|α|+ ‖R̂‖1) + |β|Θ1, since cΘ1 ≤ cε < 1.

As to ρ3(r), by Lemma 4.12 it holds that on K
∗

there is some c3 > 0, such that
|ρ3(r)| ≤ c3(|α| + Θ1) + c3‖R̂‖1. We add the restriction ε < c̃θ/(2c3), then it follows
that c3(|α|+ Θ1) ≤ 2c3ε < c̃θ, yielding |ρ3(r)| ≤ c̃θ + c3‖R̂‖1.

For ρ4(r), by Lemma 4.12 it holds that on K
∗

there is some c4 > 0, such that
|ρ4(r)| ≤ c4(|β||α|+β2Θ1)+ c4‖R̂‖1 = c4|β|(|α|+ |β|Θ1)+ c4‖R̂‖1. Further restricting
ε < c̃θ/c4, it follows that c4|β| ≤ c4ε < c̃θ, yielding |ρ4(r)| < c̃θ(|α|+ |β|Θ1) + c4‖R̂‖1.

Lastly ρ5(r). By Lemma 4.12 it holds that on K
∗

there is some c5 > 0, such that
|ρ5(r)| ≤ c5(α2+|β||α|+β2Θ1+|β|Θ2

1)+c5‖R̂‖1 = c5(|α|+|β|)|α|+c5(|β|+Θ1)Θ1|β|+
c5‖R̂‖1. Further restricting ε < θ/(4c5ν), it follows that c5(|α|+ |β|) ≤ 2c5ε < θ/(2ν)
and c5(Θ1 + |β|) ≤ 2c5ε < θ/(2ν), yielding

|ρ5(r)| < θ

2ν
(|α|+ |β|Θ1) + c5‖R̂‖1.

All in all, from a given initial ε defining constants c1, c, c3, c4, c5, we further
restrict it so that

ε ≤ min

{(
1− 1

3
√
µ

)
θ

2c1

,
1

c
,
c̃θ

2c3

,
c̃θ

c4

,
θ

4c5ν

}
,

and denote M ..= max{1, c1, c, c3, c4, c5}. Then all previous five estimates will hold
on the newly constructed K

∗
.
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It will be necessary, for further arguments, to add restrictions on ε, given δ, ν, c,
c̃, ci, M , θ. To sum up all those added so far and the ones that will be needed from
this point on:

ε < min

{
1

18
,
2θ

3

3
√
µ− 1

1 + 3
√
µ
,

(
1− 1

3
√
µ

)
θ

2c1

,
1

c
,
c̃θ

2c3

,
c̃θ

c4

,
θ

2c5

,
δ

A
,
δ

B

}
,

where

A ..= 4

[
(3 + c)

(
1

1− a
+

dν

(1− d)(dν − 1)2

)
+

1

ν − 1

(
1 +

3cν

ν − 1

)]
,

B ..= 8

[
(3 + c)

(
ι
2 + ν

(ν−1)2

1− θ
+ 4

ν

(ν − 1)2

)
+

1

ν − 1

(
1 +

3ν

ν − 1

)]

and ι ..= k̄ + 1 ∈ N, where

k̄ ..= max

{
k ∈ N : (aν)k <

6

θν
(k + 1)

}
,

and is finite due to aν > 1 by Lemma 4.13. This definition ensures that for all k ≥ ι

(aν)k ≥ 6(k + 1)

θν
.

Finally, we will add the implicit condition, given the fixed δ = δ(ω), that ε be small
enough to allow K2ε, δ

8
to not intersect E2 and E3, and every point in K2ε, δ

8
to be

closer to E1 than to E2 and E3. This construction of ε is consistent with all the
constants already defined, since further reducing ε at any step necessary, keeps the
new set within the one constructed out of the previous more relaxed ε, and therefore
the constants keep holding uniformly.

Consider now, for any fixed ω ∈E
(1)

0 , the random times

τk ..= inf

{
n > nk : Θ(2)

n 6∈
[
δ

8
, 1− δ

8

]}
∈ N ∪∞.

We already saw that there is an arbitrarily large K = K(ω) such that for m = nk, for
any k ≥ K, Θ(2)

m ∈ [δ/2, 1− δ/2], |αn|, |βn| < ε for all n ≥ m and ‖Rn+1‖1 < 3ν−n−1 < ε
for all n ≥ m (that is the subsequence of the orbit is in K∗

ε, δ
2

). It is left to show that we

can satisfy, by choosing a suitable k large enough, letting m = nk, also that Θ(1)
n < ε

for all m ≤ n < τk. In order to do this we will put on K one more requirement: since
on {` = 0}, ‖Θn+1 − Θn‖1 −→ 0, we can choose K = K(ω) large enough, such that
for all k ≥ K,

|Θ(2)

nk
−Θ(2)

∗ | <
1

2
min

{
Θ(2)

∗ −
δ

8
, 1− δ

8
−Θ(2)

∗

}
and for any n ≥ nK ,

‖Θn+1 −Θn‖1 <
1

2
min

{
Θ(2)

∗ −
δ

8
, 1− δ

8
−Θ(2)

∗

}
.

This assumption ensures that for all k ≥ K, τnk > nk + 1 (so that there is always
some nk < n < τk), since

Θ(2)

nk+1 ≤ |Θ
(2)

nk+1−Θ(2)

nk
|+|Θ(2)

nk
−Θ(2)

∗ |+Θ(2)

∗ < min

{
Θ(2)

∗ −
δ

8
, 1− δ

8
−Θ(2)

∗

}
+Θ(2)

∗ ≤ 1−δ
8
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and

Θ(2)

nk+1 ≥ Θ(2)

∗ − |Θ
(2)

nk+1 −Θ(2)

nk
+ Θ(2)

nk
−Θ(2)

∗ | ≥ Θ(2)

∗ −
(
|Θ(2)

nk+1 −Θ(2)

nk
|+ |Θ(2)

nk
−Θ(2)

∗ |
)

> Θ(2)

∗ −min

{
Θ(2)

∗ −
δ

8
, 1− δ

8
−Θ(2)

∗

}
≥ δ

8
.

Additionally, since with all parameters set as such, the subsequence of the orbit stays
in the set K∗

ε, δ
8

, the constant M always holds, and therefore we can take the index K

large enough, such that

3
M

νnK
< ε.

Lemma 4.15. For almost every ω ∈ E
(1)

0 , there exists k = k(ω) ≥ K large enough
such that, letting m = m(ω) ..= nk, for all m ≤ n < τk, Θ(1)

n ≤ ε.

Proof. For n = nk it is trivial. For n > nk one needs to distinguish between two cases
and proceed by contradiction. The core of the argument is the same for both events,
only the preparation slightly differs.

If ω ∈E
(1)

0 is such that τk ∈ N for all k ≥ K, suppose by contradiction that there
is a subsequence {kr}r∈N (with kr ≥ K) such that for all r, for some nkr < n < τkr ,
Θ(1)
n > ε. This implies that there is a subsequence {Θnr} for which Θ(1)

nr > ε and
Θ(2)
nr ∈ [δ/8, 1− δ/8]. From this subsequence, for almost every such ω, a subsubsequence
{Θnrs}s∈N can be extracted - denote it {Θnl} for simplicity - such that Θ(1)

nl−1 ≤ ε and
ε < Θ(1)

nl
< 2ε. This is true because for every ω considered, at least Θ(1)

nkrs
≤ ε, so the

sequence exits (0, ε] after having been inside the interval at least one time, and one
can choose nl as the first time of exit from (0, ε]. Furthermore, for every ω considered
the potential vanishes, thus for almost every ω considered ‖Θn − Θn−1‖1 −→ 0 by
(4.4) and Lemma 4.1. Thus for all l large enough, |Θ(1)

nl
−Θ(1)

nl−1| ≤ ‖Θnl−Θnl−1‖1 < ε,
and therefore for almost every ω considered,

ε < Θ(1)

nl
≤ |Θ(1)

nl
−Θ(1)

nl−1|+ Θ(1)

nl−1 < 2ε.

At the same time, by construction δ/8 < Θ(2)
nl
< 1−δ/8, since nkrs < nl < τ

krs
. Consider

now the set {(Θ, πΘ) : Θ ∈ R} where R = Rε, δ
8

..= K2ε, δ
8
\Kε, δ

8
. By construction of

ε, every Θ ∈ R does not lie on ∂Σ and it is closer to E1 than to the other two edges.
Note that Θnl ∈ R̊. For every Θ, fixing a small enough ε′ < ε = dist(R,E1)/2 (since
we are working as usual in 1-norm), letting c the positive subunitary constant such
that ‖LΘ(π − πΘ)‖1 ≤ c‖π − πΘ‖1 for all Θ ∈ R (following the same construction as
in Lemma 4.5, it is known that this constant holds uniformly on the whole compact
Σε′ , so in particular it is uniform on R ⊂ Σε′); one can set, by recalling that λ ..=
max{c, ν−1},

δ′ ..=
ε′

3
1−λ2 + ν

ν−1

.

Then since ‖πn−πΘn‖1 −→ 0, for some large enough l̄, (Θnl̄
, πnl̄) ∈ U((Θnl̄

, πΘnl̄
), δ′),

hence by Proposition 4.8 it is known that for almost every ω considered, for all n ≥ nl̄,
Θn ∈ B(Θnl̄

, ε′). Indeed the proposition applies since by construction ε′ < dist(R, ∂Σ)

and therefore for every Θ ∈ R, ε′ < dist(Θ, ∂Σ). But then eventually dist(Θn, E1) ≥
dist(B(Θnl̄

, ε′), E1) ≥ dist(R,E1) − ε′ > 2ε − ε = ε, which is in contradiction, for
almost every ω considered, with Θ(1)

nk
−→ 0.

If ω ∈ E
(1)

0 is such that for some k̄ ≥ K, τk̄ = ∞, then for all k ≥ k̄, τk = ∞.
Suppose again, by the same construction as above, that, by contradiction, there is a
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subsequence {Θnr}, for which Θ(1)
nr > ε, nr > nkr for all r ∈ N, kr ≥ k̄. Note that

this time it automatically holds that Θ(2)
nr ∈ [δ/8, 1 − δ/8] (since all τkr = ∞ for all

kr ≥ k̄, Θ(2)
n ∈ [δ/8, 1− δ/8] for all n ≥ nk̄, in particular the last condition imposed on

K is not necessary for this case). This case does not require any degree of control
on the Θ(2)-component, and we can just proceed as in the previous case. Another
subsubsequence {Θnl}l∈N can be extracted such that Θ(1)

nl−1 ≤ ε and ε < Θ(1)
nl
< 2ε}

along with δ/8 < Θ(2)
nl
< 1− δ/8. It is clear enough that the previous argument can be

repeated verbatim.

In the following all the proofs are made with respect to the large enough m = nk,
with k ≥ K, existing by Lemma 4.15, and therefore the corresponding τk will be
simply denoted as τ .

Lemma 4.16. For almost every ω ∈E
(1)

0 , for all m ≤ n ≤ τ ,

|αn| ≤ max
{
an−mε,Θ(1)

n |βn|
}

+ 9M
n−m
νn

.

Proof. Proceed by induction. If n = m, the statement |αm| ≤ max{ε,Θ(1)
m |βm|} = ε

is trivially true for all µ > 1 by the definition of the time m and of K∗
ε, δ

2

.

If n = m + 1 < τ , recall that for almost every ω ∈ E
(1)

0 , being (Θm, πm, Rm+1) ∈
K
∗ ..= K

∗
ε, δ

8
, by (4.12) and Lemma 4.14 it holds that

|αm+1| ≤ ρm+1
|αm|

2
(1 + |ρ3(rm)|) + |ρ4(rm)| ≤ ρ+ η

2
|αm|

(
1 + θ +

3M

νm+1

)
+ θ|αm|

+ θΘ(1)

m |βm|+
3M

νm+1
,

which applies by definition of m. Then from 3Mν−m < ε and |αm| ≤ ε it follows that

|αm+1| ≤ ε

(
ρ+ η + (2 + ρ+ η)θ

2

)
+ θΘ(1)

m |βm|+
(

1 +
ε

2

) 3M

νm+1
.

If ε ≥ Θ(1)
m |βm|, then

|αm+1| ≤ ε

(
ρ+ η + (2 + ρ+ η)θ

2

)
+ θε+

(
1 +

ε

2

) 3M

νm+1
< aε+

9M

νm+1
,

since 1 + ε/2 < 3. In principle, one should now consider the scenario when instead
ε < Θ(1)

m |βm| and proceed with showing the claim again, however, due to the definition
of the time m and of the set K∗, we know that Θ(1)

m |βm| ≤ ε2 < ε. So, and this holds
specifically for the times m and m+ 1, there is no need to do so. It will be necessary,
however, when performing the induction step past the (m+ 1)st time.

Assume now the hypothesis for any m+ 1 ≤ n < τ . This time in carrying out the
inductive step, it will not be possible to appeal only to the definition of m, but it will
be necessary to rely on Lemma 4.15 as well, which ensures that (Θn, πn, Rn+1) ∈K

∗

for almost every ω ∈E
(1)

0 , and therefore ensures that the same lemmas aforementioned
apply in the corresponding steps of the remaining part of the argument. The constants
involved in the error terms will require different estimates, depending on whether
µ ≥ 2 or 1 < µ < 2. Recall that in Lemma 4.14 we denoted

c̃ ..=
2

3

(√
2− 1

)
< 1.
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If µ ≥ 2, for almost every ω ∈E
(1)

0 , we have that

|αn+1| ≤
ρ+ η

2
|αn|

(
1 + c̃θ +

3M

νn+1

)
+ c̃θ|αn|+ c̃θΘ(1)

n |βn|+
3M

νn+1

< |αn|
ρ+ η + (2 + ρ+ η)θ

2
+ θΘ(1)

n |βn|+
(

1 +
ε

2

) 3M

νn+1

by (4.12) and Lemma 4.14. By induction hypothesis, for almost every ω ∈ E
(1)

0 , it
follows that

|αn| < max
{
an−mε,Θ(1)

n |βn|
}

+ 9M
n−m
νn

.

If ω is such that an−mε ≥ Θ(1)
n |βn|,

|αn| < an−mε+ 9M
n−m
νn

,

and then

|αn+1| < an−m
ρ+ η + (2 + ρ+ η)θ

2
ε+ 9M

1 + 3θ

2

n−m
νn

+ an−mθε

+
(

1 +
ε

2

) 3M

νn+1
= an−m

ρ+ η + (4 + ρ+ η)θ

2
ε+

1 + 3θ

2

9M(n−m)

νn

+
(

1 +
ε

2

) 3M

νn+1
≤ an+1−mε+

9M(n−m)

νn+1
+
(

1 +
ε

2

) 3M

νn+1

< an+1−mε+
9M(n−m+ 1)

νn+1
,

since by construction (1 + 3θ)/2 < 5/7 = 1/ν (as (1 + 3/16)/2 = 19/32 < 20/32 = 5/8) and
1 + ε/2 < 3. If instead ω is such that an−mε < Θ(1)

n |βn|, then the induction hypothesis
becomes

|αn| < Θ(1)

n |βn|+ 9M
n−m
νn

,

and therefore

|αn+1| ≤
ρ+ η

2
Θ(1)

n |βn|
(

1 + c̃θ +
3M

νn+1

)
+ 9M

ρ+ η

2

(
1 + c̃θ +

3M

νn+1

)
n−m
νn

+ 2c̃θΘ(1)

n |βn|+ c̃θ9M
n−m
νn

+
3M

νn+1
≤ ρ+ η

2
Θ(1)

n |βn|(1 + θ) + 2θΘ(1)

n |βn|

+
ε2

2

3M

νn+1
+

9ν

2

(
1 + 3c̃θ +

ε

ν

)
M
n−m
νn+1

+
3M

νn+1
≤ aΘ(1)

n |βn|

+
27

4
(1 + 2θ)M

n−m
νn+1

+

(
1 +

ε2

2

)
3M

νn+1
.

The last inequality follows since ε < 1/18 < θ and 3c̃ < 1 implies

1 + 3c̃θ +
ε

ν
< 1 + θ +

5

9
θ = 1 +

12

7
θ < 1 + 2θ,

and 9ν/2 = 63/10 < 6.75 = 27/4. Thus θ = 1/16 yields

27

4
(1 + 2θ) < 8,

implying

|αn+1| ≤ aΘ(1)

m |βm|+
8M(n−m)

νn+1
+

(
1 +

ε2

2

)
3M

νn+1
. (4.14)
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By (4.9) and Lemma 4.14, for almost every ω ∈E
(1)

0 ,

Θ(1)

n ≤
Θ(1)

n+1 + 3M
νn+1

1−
(

1− 1
3
√
µ

)
θ
. (4.15)

Note also that for almost every such ω, the induction hypothesis implies that |αn| ≤
ε|βn|+9M(n−m)/νn by Lemma 4.15. This yields, by applying (4.13) and Lemma 4.14,
that

|βn+1| ≥ |βn| (1− (2− ρ+ η)Θ(1)

n )− |ρ5(rn)| > |βn| (1− (2− ρ+ η)ε)

− θ

2ν
|αn| −

θ

2ν
Θ(1)

n |βn| −
3M

νn+1
> |βn| (1− (2− ρ+ η)ε)− 2εθ|βn|

− θ

2

9M(n−m)

νn+1
− 3M

νn+1
≥ |βn|

[
1− 2

2− ρ+ η + 2θ

3(1 + 3
√
µ)

( 3
√
µ− 1)θ

]
− θ

2

9M(n−m)

νn+1

− 3M

νn+1
,

hence

|βn| <
|βn+1|+ θ

2
9M(n−m)
νn+1 + 3M

νn+1

1− 22−ρ+η+2θ
3(1+ 3

√
µ)

( 3
√
µ− 1)θ

. (4.16)

Thus plugging the bounds in (4.15) and (4.16) into (4.14) yields that

αn+1 ≤ b

(
Θ(1)

n+1 +
3M

νn+1

)(
|βn+1|+

9M(n−m)

νn+1
+

3M

νn+1

)
+

8M(n−m)

νn+1

+

(
1 +

ε2

2

)
3M

νn+1
< Θ(1)

n+1|βn+1|+
(

8 + 9Θ(1)

n+1 + 27
M

νn+1

)
M(n−m)

νn+1

+

(
1 +

ε2

2
+ Θ(1)

n+1 + |βn+1|+
3M

νn+1

)
3M

νn+1
< Θ(1)

n+1|βn+1|+
9M(n−m)

νn+1
+

9M

νn+1

= Θ(1)

n+1|βn+1|+
9M(n−m+ 1)

νn+1
, (4.17)

where the last inequality follows from

8 + 9Θ(1)

n+1 + 27
M

νn+1
< 8 + 9ε+

9ε

νn−m+1
≤ 8 + 9ε

(
1 +

1

ν

)
< 8 + 18ε < 9

due to ε < 1/18, and

1 +
ε2

2
+ Θ(1)

n+1 + |βn+1|+
3M

νn+1
< 1 + 3ε+

ε

νn−m+1
≤ 1 + ε

(
3 +

1

ν

)
< 1 + 4ε < 3

due to ε < 1/2. In conclusion, we showed that

|αn+1| ≤ max
{
an+1−mε,Θ(1)

n+1|βn+1|
}

+ 9M
n+ 1−m
νn+1

.

If 1 < µ < 2, we start again with

|αn+1| ≤
ρ+ η

2
|αn|

(
1 + c̃θ +

3M

νn+1

)
+ c̃θ|αn|+ c̃θΘ(1)

n |βn|+
3M

νn+1
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by (4.12) and Lemma 4.14, but keep c̃ in the estimate, as θ is possibly not as small as
in the case µ ≥ 2. Next, by the usual induction hypothesis holding for almost every
ω ∈E

(1)

0 , if ω is such that an−mε ≥ Θ(1)
n |βn|,

|αn| < an−mε+ 9M
n−m
νn

and then we have that

|αn+1| ≤ an−m
ρ+ η

2
ε

(
1 + c̃θ +

3M

νn+1

)
+ 9M

ρ+ η

2

(
1 + c̃θ +

3M

νn+1

)
n−m
νn

+ 2c̃θan−mε+ 9c̃θM
n−m
νn

+
3M

νn+1
< an−m

ρ+ η + (4 + ρ+ η)θ

2
ε

+
9

2

(
1 + 3c̃θ +

ε

ν

)M(n−m)

νn
+
(

1 +
ε

2

) 3M

νn+1
≤ an+1−mε

+
9M(n−m)

νn+1
+

9M

νn+1
= an+1−mε+

9M(n−m+ 1)

νn+1
,

where the last inequality follows since by construction 1 + ε/2 < 3 and, having ε < 1/18

for 1 < µ < 2 by construction as well,

1 + 3c̃θ + ε
ν

2
<

1

ν
.

This claim is easily verified by recalling the definitions of all constants involved for
this range of µ. It is equivalent to ν + 3c̃θν + ε < 2, which is equivalent to

µ
5
12 + (

√
2− 1)

(
2 + 1

3
√
µ

3− 1
µ

− 1

)
+ ε < 2.

Hence we only need to verify that

ε < 2− µ
5
12 − (

√
2− 1)

(
2 + 1

3
√
µ

3− 1
µ

− 1

)
.

We can simply find a lower bound for the right-hand side, which exceeds 1/18 > ε.
Then noting that

2− µ
5
12 − (

√
2− 1)

(
2 + 1

3
√
µ

3− 1
µ

− 1

)
> 2− 2

5
12 −

√
2− 1

2
> 2−

√
2−
√

2− 1

2
=

5− 3
√

2

2
>

5− 9
2

2
=

1

4
>

1

18
,

the claim follows.
If instead ω is such that an−mε < Θ(1)

n |βn|, then the induction hypothesis yields

|αn| < Θ(1)

n |βn|+ 9M
n−m
νn

for almost every such ω, and therefore

|αn+1| ≤
ρ+ η

2
Θ(1)

n |βn|
(

1 + c̃θ +
3M

νn+1

)
+ 9M

ρ+ η

2

(
1 + c̃θ +

3M

νn+1

)
n−m
νn

+ 2c̃θΘ(1)

n |βn|+ c̃θ9M
n−m
νn

+
3M

νn+1
≤ ρ+ η

2
Θ(1)

n |βn|(1 + θ) + 2θΘ(1)

n |βn|

+
ε2

2

3M

νn+1
+

9ν

2

(
1 + 3c̃θ +

ε

ν

)
M
n−m
νn+1

+
3M

νn+1
,
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yielding (4.14), by factoring out all the Θ(1)
n |βn| and estimating c̃ < 1 only in the

corresponding term. This follows since for 1 < µ < 2,

9ν

2

(
1 + 3c̃θ +

ε

ν

)
=

9

2
µ

5
12

[
1 + 2(

√
2− 1)

(
2 + 1

3
√
µ

3− 1
µ

− 1

)]
+

9ε

2
,

which is, by the condition aforementioned, strictly less than 8 as 9ε/2 < 1/4 and the
convex function added to it achieves its maximum on [1, 2] at 2 with value

9

2
2

5
12

[
1 + 2(

√
2− 1)

(
2 + 1

3√2

3− 1
2

− 1

)]
=

9

2
7
12

(
9− 2

√
2

5

)
< 8− 1

4
=

31

4
.

The last inequality holds true, since it is equivalent to(
9− 2

√
2

5

)12

<

(
31

36

)12

27

and while (9 − 2
√

2)/5 < (9 − 14/5)/5 = 31/25 (whose power of 12 is easily verified to
be less than 14), 31/36 > 5/6, (whose power of 12 multiplied by 27 is easily verified to
be larger than 14). The convexity of

f(x) = x
5
12

[
1 + 2(

√
2− 1)

(
2 + 1

3√x

3− 1
x

− 1

)]
= x

5
12

[
3− 2

√
2 + 2(

√
2− 1)

(
2 + 1

3√x

3− 1
x

)]

(and thus of 9f(x)/2) on [1, 2] follows easily from computing f ′′(x) to be

5

12x
7
12

[
3− 2

√
2 + 2(

√
2− 1)

(
2 + 1

3√x

3− 1
x

)]
−2(
√

2−1)x
5
12

1

3x
4
3

(
3− 1

x

)
+ 1

x2

(
2 + 1

3√x

)
(
3− 1

x

)2 .

Setting f ′′(x) > 0 and rearranging by first multiplying both sides by x
7
12 and then

multiplying out the factor of x thus produced in the subtracted term yields, by finally
moving the subtracted term to the right-hand side and dividing both sides by 2(

√
2−

1), equivalently,

5

12

(
3− 2

√
2

2(
√

2− 1)
+

2 + 1
3√x

3− 1
x

)
>

1
3√x + 2

3x 3√x + 2
x(

3− 1
x

)2 .

At last, multiplying both sides by the quadratic denominator yields

5

12

3− 2
√

2

2(
√

2− 1)

(
3− 1

x

)2

+ 6− 2

x
+

3
3
√
x
− 1

x 3
√
x
,

which rearranged gives

6 +
5

12

3− 2
√

2

2(
√

2− 1)

(
3− 1

x

)2

> − 2
3
√
x

+
4

x
+

5

3x 3
√
x
.

Finally, noting that the left-hand side is greater than 6, while the right-hand side
is less than 6, we can easily conclude that f ′′(x) > 0 is verified for all 1 ≤ x ≤ 2.
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The fact that the convex function 9f/2 has maximum at x = 2 follows directly from
convexity and the fact that

9

2
7
12

[
1 + 2(

√
2− 1)

(
2 + 1

3√2

3− 1
2

− 1

)]
=

9

2
f(2) >

9

2
f(1) =

9√
2
.

This is seen by rearranging the inequality into

1 +
4

5
(
√

2− 1)

(
3

4
+

1
3
√

2

)
>

12
√

2

and noting that, since 3
√

2 < 4, the left-hand side is greater than 1 + 4(
√

2 − 1)/5,
which is in turn, given that

√
2 > 7/5, greater than 33/25, which, raised to the power

of 12, is trivially greater than 2. Having recovered (4.14), from now on one can
conclude the same as for µ ≥ 2: by (4.9) and Lemma 4.14 we have (4.15) and again,
since under this case the induction hypothesis implies |αn| ≤ ε|βn| + 9M(n−m)ν−n

by Lemma 4.15, we can apply (4.13) and Lemma 4.14, to get (4.16); plugging the
bounds (4.15) and (4.16) into (4.14) yields (4.17) by the same estimates as for the
case µ ≥ 2.

Let

D ..=
dνε

(dν − 1)2
,

which is well-defined since by Lemma 4.13, d > a > 1/ν. Let also

Dm,n
..=

n∑
j=m

dn−j
j −m
νj

.

For all ω ∈E
(1)

0 , define the stopping time

σ ..= inf
{
n ≥ m : an−mε+Ddn−m ≤ Θ(1)

n |βn|+ 9MεDm,n

}
∈ N ∪∞.

Lemma 4.17.

a) For almost every ω ∈E
(1)

0 ∩ {τ <∞}, σ < τ and Θ(2)
σ ∈ [δ/4, 1− δ/4];

b) For almost every ω ∈E
(1)

0 ∩ {σ <∞}, for all σ ≤ n ≤ τ

an−mε+Ddn−m ≤ Θ(1)

n |βn|+ 9MεDm,n.

Proof.

a) For every ω ∈E
(1)

0 ∩ {τ <∞}, if ω is such that σ = m the claim is trivial, since
by definition of m, for almost every such ω, Θ(2)

σ ∈ [δ/2, 1 − δ/2] ⊂ [δ/4, 1 − δ/4] ⊂
[δ/8, 1 − δ/8]. Also τ > m = σ by definition. If ω is such that σ > m, for all
m ≤ n < σ ∧ τ , by definition of σ,

Θ(1)

n |βn| < an−mε+Ddn−m − 9MεDm,n.

Note that

Dm,n =
dn−m

νm

n∑
j=m

j −m
(dν)j−m

<
dn−m

νm
dν

(dν − 1)2
,
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since dν > 1 implies

∞∑
k=0

k

(dν)k
=

1

dν

∞∑
k=1

k

(dν)k−1
=

1

dν
(
1− 1

dν

)2 =
dν

(dν − 1)2
,

and therefore

9MεDm,n <
9Mεdn−m

νm
dν

(dν − 1)2
< dn−m

3dνε2

(dν − 1)2
< Ddn−m,

since 3ε2 < ε as ε < 1/3. This implies that Ddn−m−9MεDm,n > 0, and therefore

Θ(1)

n |βn| < an−mε+Ddn−m

and

max
{
an−mε,Θ(1)

n |βn|
}
< max

{
an−mε, an−mε+Ddn−m

}
= an−mε+Ddn−m.

As a result, by Lemma 4.16, for almost every such ω,

|αn| ≤ an−mε+Ddn−m + 9M
n−m
νn

,

which implies that

|αn| < an−mε+Ddn−m + 3ε
n−m
νn−m

.

By (4.10), Lemmas 4.14 and 4.15 (Lemma 4.15 is used as in Lemma 4.16, to
ensure that the bounds on the errors hold even after time m) for almost every
such ω it follows that

|Θ(2)

σ∧τ −Θ(2)

m | ≤
σ∧τ−1∑
n=m

|Θ(2)

n+1 −Θ(2)

n | =
σ∧τ−1∑
n=m

|2ρn+1(1−Θ(2)

n )Θ(1)

n βn − ρ2(rn)|

< 2
σ∧τ−1∑
n=m

Θ(1)

n |βn|+
σ∧τ−1∑
n=m

c|αn|+ Θ(1)

n |βn|+
3M

νn+1

≤ 3
σ∧τ−1∑
n=m

Θ(1)

n |βn|+ c

σ∧τ−1∑
n=m

|αn|+ ε

σ∧τ−1∑
n=m

1

νn−m+1

< (3 + c)ε
σ∧τ−1∑
n=m

an−m + (3 + c)D
σ∧τ−1∑
n=m

dn−m + 3cε
σ∧τ−1∑
n=m

n−m
νn−m

+ ε

σ∧τ−1∑
n=m

1

νn−m+1
≤ (3 + c)ε

∞∑
i=0

ai + (3 + c)D
∞∑
i=0

di + 3cε
∞∑
i=0

i

νi

+ ε

∞∑
i=1

1

νi
= ε

[
3 + c

1− a
+

3 + c

1− d
dν

(dν − 1)2
+ 3c

1
ν(

1− 1
ν

)2 +
1
ν

1− 1
ν

]

= ε
A

4
<
δ

4
,

since by construction ε < δ/A. Since Θ(2)
m ∈ [δ/2, 1 − δ/2] and for almost every

ω ∈ E
(1)

0 the travelled distance has been less than δ/4, it follows that for almost
every such ω, Θ(2)

σ∧τ ∈ [δ/4, 1 − δ/4] ⊂ [δ/8, 1 − δ/8]. This implies that for almost
every ω ∈E

(1)

0 , σ ∧ τ 6= τ (by definition of τ , if σ ∧ τ = τ , Θ(2)

σ∧τ 6∈ [δ/8, 1− δ/8], so
if there were a nonnegligible event in E

(1)

0 such that σ∧τ = τ , we would reach an
almost sure contradiction on E

(1)

0 ). Hence for almost every ω ∈ E
(1)

0 , σ ∧ τ = σ,
that is σ < τ , and in particular Θ(2)

σ ∈ [δ/4, 1− δ/4].
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b) Note first that for almost every ω ∈ E
(1)

0 ∩ {σ < ∞}, σ(ω) < τ(ω), because for
every ω ∈ E

(1)

0 ∩ {σ < ∞} ∩ {τ = ∞}, trivially σ(ω) < τ(ω) = ∞; whereas by
part (a) for almost every ω ∈ E

(1)

0 ∩ {τ < ∞}, σ < τ , thus implying that for
almost every ω ∈ E

(1)

0 ∩ {σ < ∞} ∩ {τ < ∞}, σ(ω) < τ(ω). Hence the remark
follows. We can thus consider, for almost every ω ∈E

(1)

0 ∩ {σ <∞}, σ ≤ n ≤ τ .
Note that by definition of σ, the case n = σ ≥ m is trivially true. Assume the
claim to be true up to some σ < n < τ . The steps in Lemma 4.16 yielding (4.15)
and (4.16) can be reproduced now under the induction hypothesis

an−mε+Ddn−m ≤ Θ(1)

n |βn|+ 9MεDm,n,

which implies, due to Ddn−m − 9MεDm,n > 0, that an−mε < Θ(1)
n |βn| and there-

fore, being max{an−mε,Θ(1)
n |βn|} = Θ(1)

n |βn|, by Lemma 4.16 we have that

|αn| ≤ Θ(1)

n |βn|+ 9M
n−m
νn

.

This ensures that (4.15) and (4.16) can be derived again as in Lemma 4.16. By
using θ < 1/2, 9θ/2 < 9/4 < 3 in (4.16) and by (4.15), we have that, rearranging,(

Θ(1)

n+1 +
3M

νn+1

)(
|βn+1|+ 3M

n−m+ 1

νn+1

)
≥ dΘ(1)

n |βn|

≥ d
(
an−mε+Ddn−m − 9MεDm,n

)
> an+1−mε+Ddn−m+1 − 9MεdDm,n,

where the induction hypothesis has been used in the second last inequality, and
the last inequality follows from Lemma 4.13, in particular from d > a. On the
other hand note that(

Θ(1)

n+1 +
3M

νn+1

)(
|βn+1|+ 3M

n−m+ 1

νn+1

)
< Θ(1)

n+1|βn+1|+ 3Mε
(n−m+ 1)

νn+1(
1 +

1

n−m+ 1
+

1

νn−m+1

)
< Θ(1)

n+1|βn+1|+ 9εM
(n−m+ 1)

νn+1
.

Hence putting the two results together and rearranging, yields the inequality

an+1−mε+Ddn−m+1 < Θ(1)

n+1|βn+1|+ 9εM

(
dDm,n +

(n−m+ 1)

νn+1

)
.

Note that

dDm,n +
(n−m+ 1)

νn+1
=

n∑
j=m

dn−j+1 j −m
νj

+
(n−m+ 1)

νn+1
= Dm,n+1

and thus the induction step is complete, as we have shown that

an+1−mε+Ddn−m+1 < Θ(1)

n+1|βn+1|+ 9εMDm,n+1.

Theorem 4.18. For almost all ω ∈E
(1)

0 , τ =∞ and the sample path {(Θn(ω), πn(ω))}
converges to (Θ∗(ω), πΘ∗(ω)).

Proof. We start with partitioning E
(1)

0 = (E(1)

0 ∩ {σ =∞})∪ (E(1)

0 ∩ {σ <∞}), where
σ is the stopping time defined just before the previous lemma.
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Consider first ω ∈ E
(1)

0 ∩ {σ = ∞}. By Lemma 4.17 (a), for almost every ω ∈
E

(1)

0 ∩ {τ < ∞}, σ(ω) < τ(ω) < ∞, hence E
(1)

0 ∩ {σ = ∞} ∩ {τ < ∞} is negligible,
and we can focus only on ω ∈ E0 ∩ {σ = ∞} ∩ {τ = ∞}. By Lemmas 4.11 and 4.14
to 4.16 and the definition of σ, we can estimate as in Lemma 4.17 (a) for all n ≥ m,
yielding

∞∑
n=m

|Θ(2)

n+1 −Θ(2)

n | =
∞∑
n=m

|2ρn+1(1−Θ(2)

n )Θ(1)

n βn + ρ2(rn)|

< 3
∞∑
n=m

Θ(1)

n |βn|+ c

∞∑
n=m

|αn|+ ε
∞∑
n=m

1

νn−m+1
<
δ

4
.

Therefore for almost every such ω, Θ(2)
n converges within [δ/4, 1− δ/4] ⊂ [δ/8, 1− δ/8]. We

know that for almost every ω, there is a subsequence Θnk(ω) −→ Θ∗(ω) ∈ E1 ∩Kε, δ
8
,

and also that ε > 0 can be chosen arbitrarily small, which, by Lemma 4.15 applied
with τ = ∞, means that for almost every such ω, Θ(1)

n (ω) is eventually arbitrarily
small. Therefore, for almost every ω ∈ E

(1)

0 ∩ {σ = ∞} ∩ {τ = ∞} fixed, eventually
Θn(ω) does not exit any set Kε, δ

8
with ε is arbitrarily small and δ = δ(ω) fixed small

enough, while Θ(2)
n (ω) −→ Θ(2)

∗ (ω) ∈ [δ/8, 1− δ/8]. Thus Θ(1)
n (ω) −→ 0, finally implying

that Θn(ω) −→ Θ∗(ω) ∈ E1 ∩Kε, δ
8
. Then the convergence of πn(ω) −→ πΘ∗(ω) for

almost every such ω trivially follows from `(ω) = 0 for all ω ∈E0.
Consider now ω ∈ E

(1)

0 ∩ {σ <∞}. By Lemma 4.17 (b), for almost every such ω,
σ < τ . Note that by (4.13), βn+1 + βn = (2− ρn+1)Θ(1)

n βn + ρ5(rn), and that for any
integers q ≥ p,

q∑
n=p

(−1)q−n(βn+1 + βn) = βq+1 + (−1)q−pβp.

Thus for any σ ≤ k < τ ,

βk+1+(−1)k−σβσ =
k∑

n=σ

(−1)k−n(βn+1+βn) =
k∑

n=σ

(−1)k−n [(2− ρn+1) βnΘ(1)

n + ρ5(rn)] .

(4.18)
By definition of σ, Lemmas 4.14 to 4.16 and Lemma 4.17 (b) for all σ ≤ n ≤ k, for
almost every such ω,

|ρ5(rn)| < θ

2ν
|αn|+

θ

2ν
Θ(1)

n |βn|+
3M

νn+1
≤ θ

ν
Θ(1)

n |βn|+ 3M
n−m+ 1

νn+1
.

Indeed, being 9MεDm,n −Ddn−m < 0, it holds that

|αn| ≤ max
{
an−mε,Θ(1)

n |βn|
}

+ 9M
n−m
νn

≤ max{Θ(1)

n |βn|+ 9MεDm,n −Ddn−m,Θ(1)

n |βn|}+ 9M
n−m
νn

= Θ(1)

n |βn|+ 9M
n−m
νn

,

then 9θ/(2ν) < 3/ν implies the claim. As ν > 1, we can conclude that

|ρ5(rn)| < θΘ(1)

n |βn|+ 3M
n−m+ 1

νn+1
, (4.19)

We now use (4.19) to show that {βn}kn=σ has either alternating sign or an almost
geometric decay, and that the transitions between the two regimes are such that it
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will be possible to bound, uniformly in k, the term
∑k

n=σ Θ(1)
n |βn| appearing in (4.18).

First note that by (4.13) and (4.19) and Lemma 4.15, for almost every ω considered,

βn+1βn = (−1 + (2− ρn+1) Θ(1)

n ) β2
n + βnρ5(rn) ≤ (−1 + 2Θ(1)

n ) β2
n

+ |βn||ρ5(rn)| ≤ (−1 + 2Θ(1)

n ) β2
n + θΘ(1)

n β
2
n + 3M |βn|

n−m+ 1

νn+1

<

[
−1 +

4

3
θ + θ2

]
β2
n + 3M |βn|

n−m+ 1

νn+1
,

as Θ(1)
n < ε < 2θ/3 by construction. If

3M
n−m+ 1

νn+1
≤ θ

6
|βn|,

then it follows that (as long as βn 6= 0, because in this case the term would not even
count in the contributions to the series we are trying to estimate, so we would just
skip to the next nonzero one)

βn+1βn <

[
−1 +

(
4

3
+

1

6

)
θ + θ2

]
β2
n =

(
−1 +

3

2
θ + θ2

)
β2
n < 0,

since for all 0 < x < 1/2 the parabola −1 + 3x/2 + x2 is increasing, valued −1 at 0
and 0 at 1/2. By Lemma 4.13 this fact implies that for all choices of θ, depending on
µ > 1, the factor is strictly negative. Which means that the sign of the βn alternates
at this time. If

3M
n−m+ 1

νn+1
>
θ

6
|βn|,

it is possible to estimate

|βn| <
18M

θ

n−m+ 1

νn+1
< 4

n−m+ 1

νn−m+1
,

which produces an almost geometric upper bound, implying, were it to continue, the
convergence of the series we are seeking to estimate. We then need to control the
number of transitions between one regime and the other. Recall that we are working
for all σ ≤ n ≤ k < τ , and define two new stopping times sequences for all σ ≤ n < τ
as follows: for all

ω ∈ N≤ ..=

{
3M

σ −m+ 1

νσ+1
≤ θ

6
|βσ|
}
∩ {σ <∞} ∩E(1)

0 ,

denote η0
..= σ and for all i ∈ N define

ηi ..= inf

{
n ≥ σi : 3M

n−m+ 1

νn+1
≤ θ

6
|βn|
}

and

σi ..= inf

{
n ≥ ηi−1 : 3M

n−m+ 1

νn+1
>
θ

6
|βn|
}

;

for all

ω ∈ N>
..=

{
3M

σ −m+ 1

νσ+1
>
θ

6
|βσ|
}
∩ {σ <∞} ∩E(1)

0 ,

for all i ∈ N denote σ0
..= σ and define

ηi ..= inf

{
n ≥ σi−1 : 3M

n−m+ 1

νn+1
≤ θ

6
|βn|
}
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and

σi ..= inf

{
n ≥ ηi : 3M

n−m+ 1

νn+1
>
θ

6
|βn|
}
.

The crucial fact is then the following: that the condition

|βn| <
18M

θ

n−m+ 1

νn+1

defining the σi random times can be combined with Lemma 4.17 (b), which ensures
that for almost every ω ∈ E

(1)

0 ∩ {σ < ∞}, |βn| ≥ Θ(1)
n |βn| ≥ an−mε + Ddn−m −

9MεDm,n, for all σ ≤ n ≤ k < τ , for all k. For the range of n considered then this
yields

an−mε+Ddn−m − 9MεDm,n <
18M

θ

n−m+ 1

νn+1
.

Recall that by construction Ddn−m − 9MεDm,n > 0, thus implying

an−mε <
18M

θ

n−m+ 1

νn+1
<

6ε

θ

n−m+ 1

νn−m+1
=

6ε

θν

n−m+ 1

νn−m
.

If we rearrange this, we get

(aν)n−m <
6(n−m+ 1)

θν
.

This condition cannot be satisfied infinitely often, as by Lemma 4.13, aν > 1 and we
would have an exponential sequence upper-bounded by a linear one. Let

n̄ ..= min

{
m ≤ n ∈ N : ∀ j ≥ n, (aν)j−m ≥ 6(j −m+ 1)

θν

}
.

Note that n̄−m = ι. For almost every ω ∈E
(1)

0 ∩{σ <∞}, there will be a uniformly
bounded random time ī = ī(ω) < ι such that: on N≤, ι = ηī < ∞ and σī+1 = ∞
and for all i ≥ ī + 1 ηi = σi = ∞; on N>, ι = ηī < ∞ and σī = ∞ and for all
i ≥ ī+ 1 ηi = σi =∞. On both events, the number of transitions between oscillatory
and almost geometric decay is bounded by ι, which is deterministic. This observation
allows us to work on E

(1)

0 ∩ {σ < ∞} = N≤ ∪ N>, and we will show that for almost
every ω in this partitioning, τ(ω) =∞. It is enough to show this in full detail on N>

as the argument is similar on N≤, with the corresponding ordering of the ηi and σi
random times.

Since for almost every ω ∈ N>, for all k ≥ m, |βk| < ε, and the sign alternates as
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aforementioned, for all ηi ≤ n ≤ k∧ (σi−1), for all 1 ≤ i ≤ ī, by (4.18) it follows that

|βk∧(σi−1)+1 + (−1)k∧(σi−1)−ηiβηi | =

∣∣∣∣∣
k∧(σi−1)∑
n=ηi

(−1)k∧(σi−1)−n[(2− ρn+1)Θ(1)

n βn + ρ5(rn)]

∣∣∣∣∣
=
∣∣∣ k∧(σi−1)∑

n=ηi

(−1)k∧(σi−1)−nsign(βn)|βn|(2− ρn+1)Θ(1)

n +

k∧(σi−1)∑
n=ηi

(−1)k∧(σi−1)−nρ5(rn)
∣∣∣

=

∣∣∣∣∣∣
k∧(σi−1)∑
n=ηi

sign(βk∧(σi−1))|βn|Θ(1)

n (2− ρn+1) +

k∧(σi−1)∑
n=ηi

(−1)k∧(σi−1)−nρ5(rn)

∣∣∣∣∣∣
≥

k∧(σi−1)∑
n=ηi

(2− ρn+1)|βn|Θ(1)

n −

∣∣∣∣∣∣
k∧(σi−1)∑
n=ηi

(−1)k∧(σi−1)−nρ5(rn)

∣∣∣∣∣∣
≥

k∧(σi−1)∑
n=ηi

|βn|Θ(1)

n −
k∧(σi−1)∑
n=ηi

|ρ5(rn)| ≥ (1− θ)
k∧(σi−1)∑
n=ηi

|βn|Θ(1)

n − 3M

k∧(σi−1)∑
n=ηi

n−m+ 1

νn+1

≥ (1− θ)
k∧(σi−1)∑
n=ηi

|βn|Θ(1)

n − ε
k∧(σi−1)∑
n=ηi

n−m+ 1

νn−m+1
,

where the second last inequality follows by (4.19). Since

|βk∧(σi−1)+1 + (−1)k∧(σi−1)−ηiβηi | < 2ε,

by rearranging we can conclude that

k∧(σi−1)∑
n=ηi

Θ(1)

n |βn| <
2 +

∑k∧(σi−1)
n=ηi

n−m+1
νn−m+1

1− θ
ε. (4.20)

It is known that we have finitely many sums of this type, and the number of them is
uniformly upper-bounded by ι. As to the other sums, the estimate is simpler, since
for all ηi−1 ≤ n ≤ k ∧ (ηi − 1), for all 1 ≤ i ≤ ī,

k∧(ηi−1)∑
n=σi−1

Θ(1)

n |βn| < 4ε

k∧(ηi−1)∑
n=σi−1

n−m+ 1

νn−m+1
. (4.21)

In conclusion, for any σ ≤ k < τ we have an upper bound uniform both in k and in
ω, achieved by splitting the whole series into these segments, and adding up the two
estimates’ contributions:

k∑
n=σ

Θ(1)

n |βn| < ιε
2 +

∑∞
n=m

n−m+1
νn−m+1

1− θ
+4ε

∞∑
n=m

n−m+ 1

νn−m+1
= ε

(
ι
2 + ν

(ν−1)2

1− 2θ
+4

ν

(ν − 1)2

)
.

As mentioned earlier, for almost every ω ∈ N≤, for all ηi−1 ≤ n ≤ k ∧ (σi − 1), for all
1 ≤ i ≤ ī, one can proceed with estimating in the same way, to get (4.20), but with
the appropriate indexing of the random times, that is

k∧(σi−1)∑
n=ηi−1

Θ(1)

n |βn| <
2 +

∑k∧(σi−1)
n=ηi−1

n−m+1
νn−m+1

1− θ
ε.
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One derives similarly also (4.21) for all ηi ≤ n ≤ k ∧ (σi − 1), for all 1 ≤ i ≤ ī:

k∧(ηi−1)∑
n=σi

Θ(1)

n |βn| < 4ε

k∧(ηi−1)∑
n=σi

n−m+ 1

νn−m+1
.

This shows that the bound

k∑
n=σ

Θ(1)

n |βn| < ε

(
ι
2 + ν

(ν−1)2

1− θ
+ 4

ν

(ν − 1)2

)
(4.22)

applies uniformly in m ≤ k < τ ∈ N ∪∞ and for almost every ω ∈E
(1)

0 ∩ {σ <∞}.
Thanks to these results we now show that E(1)

0 ∩{σ <∞}∩{τ <∞} is negligible.
For almost every fixed ω ∈ E

(1)

0 ∩ {σ < ∞} ∩ {τ < ∞} one can use (4.22) with
k = τ − 1, and by Lemmas 4.11 and 4.14 to 4.17, one has the following (recall that
σ < τ is ensured by Lemma 4.17 (a), while an−mε < Θ(1)

n |βn| is shown as in Lemma 4.17
(b)):

|Θ(2)

σ −Θ(2)

τ | ≤
τ−1∑
n=σ

|Θ(2)

n+1 −Θ(2)

n | ≤ 3
τ−1∑
n=σ

Θ(1)

n |βn|+ c

τ−1∑
n=σ

|αn|+ ε
τ−1∑
n=σ

1

νn−m+1

≤ 3
τ−1∑
n=σ

Θ(1)

n |βn|+ c
τ−1∑
n=σ

max
{
an−mε,Θ(1)

n |βn|
}

+ 3ε
n−m
νn−m

+ ε
τ−1∑
n=σ

1

νn−m+1
< (3 + c)

τ−1∑
n=σ

Θ(1)

n |βn|+ 3ε
∞∑
n=m

n−m
νn−m

+ ε
∞∑
n=m

1

νn−m+1

≤ (3 + c)ε

(
ι
2 + ν

(ν−1)2

1− θ
+ 4

ν

(ν − 1)2

)
+ 3ε

ν

(ν − 1)2
+ ε

1

ν − 1

= ε
B

8
<
δ

8
.

But since ω ∈E
(1)

0 ∩{τ <∞}, by Lemma 4.17 (a), Θ(2)
σ ∈ [δ/4, 1− δ/4] for almost every

such ω, and since it has just been proved that Θ(2)
τ has travelled a distance less than δ/8

for almost all ω ∈E
(1)

0 ∩{σ <∞}∩{τ <∞}, Θ(2)
τ ∈ [δ/8, 1− δ/8] for almost every such

ω, that is an almost sure contradiction with the definition of τ . Hence the considered
event must be negligible. Thus we can consider just E0 ∩ {σ < ∞} ∩ {τ = ∞}. We
can perform the same exact estimates as above (except invoking Lemma 4.17 (a) of
course): thanks to Lemmas 4.11 and 4.14 to 4.16, and Lemma 4.17 (b), it holds that
for almost every ω ∈E0 ∩ {σ <∞} ∩ {τ =∞},
∞∑
n=σ

|Θ(2)

n+1 −Θ(2)

n | < (3 + c)
∞∑
n=σ

Θ(1)

n |βn|+ 3ε
∞∑
n=m

n−m
νn−m

+ ε
∞∑
n=m

1

νn−m+1
≤ ε

B

8
<
δ

8
.

The last step follows from (4.22) holding uniformly for any k ≥ σ. This finally
yields the convergence of Θ(2)

n in [δ/8, 1 − δ/8] for almost every ω ∈ E
(1)

0 by definition
of τ . Exploiting again ε being arbitrarily small, as we did on E

(1)

0 ∩ {σ = ∞}, we
conclude that Θ(1)

n vanishes. Thus similarly, for almost every ω ∈E
(1)

0 ∩{σ <∞}, the
convergence of Θn to some Θ∗ ∈ E1 implies the convergence of πn to πΘ∗ .

Remark 4.19. On E
(i)

0 with i ∈ {2, 3} one can proceed by exploiting the symmetry
of the model, define σ and τ accordingly in terms of the corresponding coordinates,
and show an analogous version of Theorem 4.18 for i ∈ {2, 3} as well, thus yielding
convergence of sample paths for almost every ω ∈E0.
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4.5 Convergence on E>

The main goal of this section is to show that {Θn} converges almost surely on E>. Let
us start with an introductory remark corresponding to the one opening Section 3.5,
but adapted to the random setting.

Remark 4.20. For almost every ω ∈ {` > 0}, there is no subsequence {Θnk}k∈N
bounded away from ∂Σ. Thus Θn −→ ∂Σ almost surely on {` > 0}.

Proof. Consider that for almost every ω ∈ {` > 0}, ‖vn‖1 −→ ` by Lemma 4.5, and by
Lemma 4.1 we also have that ‖Rn+1‖1 −→ 0 for almost all ω ∈ {` > 0}, as n −→∞.
Assume by contradiction that there is a nonnegligible event A ⊆ {` > 0} on which
a subsequence {Θnk}k∈N is bounded away from the boundary. For almost all ω ∈ A,
at the times {nk}, we would be able to apply (4.5) from Proposition 4.7, with some
constant 0 < c(ω) < 1, yielding

‖vnk+1‖1 < c‖vnk‖1 + ‖Rnk+1‖1.

Taking the limit as k −→ ∞ on both sides yields ` ≤ c`, which implies that c = 1
for almost all ω ∈ A, since ` > 0. Thus a contradiction has been reached.

Define the event

V ..=
{
∃{nk}k∈N, ∃v ∈ V : lim

k−→∞
Θnk = v

}
⊇ D.

Note that V =
⋃3
i=1 V

(i), where for every i ∈ {1, 2, 3} we define

V(i) ..=
{
∃{nk}k∈N : lim

k−→∞
Θnk = vi

}
.

The following lemma corresponds to Lemma 3.34. For reasons that will soon be clear,
we anticipate its proof in this part of the section.

Lemma 4.21. For almost every fixed ω ∈ V and any subsequence {nk}, such
that Θnk(ω) −→ v ∈ V , the set of accumulation points of {(Θnk−1, πnk−1)},
{(Θnk , πnk)} and {(Θnk+1, πnk+1)} is a subset of

{
(v, πv ± `

2
e−1(v))

}
. Moreover, if

the considered ω and {nk} are such that also {πnk} converges, {πnk−1}, {πnk} and
{πnk+1} asymptotically oscillate between π∗ = πv ± `

2
e−1(v) and π̂∗ = πv ∓ `

2
e−1(v),

while {Θnk−1},{Θnk},{Θnk+1} all tend to v: that is (Θnk−1, πnk−1) −→ (v, π̂∗),
(Θnk , πnk) −→ (v, π∗) and (Θnk+1, πnk+1) −→ (v, π̂∗) as k −→∞.

Proof. By symmetry, without loss of generality, assume that ω ∈V(2) and let {nkl}l∈N
be such that (Θnkl

, πnkl ) −→ (v2, π∗) as l −→ ∞. For simplicity relabel as nr the
subsubsequence {nkl}. The first part of the argument is the same as in Lemma A.26,
with p,q replaced by Θ,π and the ρ coefficient being now time-dependent. Briefly,
note that, by (2.32), as r −→∞,

(1− ρnr)Θ
(1)

nr−1 + ρnr(1− π
(1)

nr−1 − π(1)

nr ) −→ 0 (4.23)

(1− ρnr)Θ
(2)

nr−1 + ρnr(1− π
(2)

nr−1 − π(2)

nr ) −→ 1 (4.24)

(1− ρnr)Θ
(3)

nr−1 + ρnr(1− π
(3)

nr−1 − π(3)

nr ) −→ 0, (4.25)

and therefore (4.24) implies that π(2)

nr−1 + π(2)
nr −→ 0, since 0 ≤ π(2)

nr−1 ≤ 1. Hence,
π(2)
nr −→ 0 = π(2)

∗ and Θ(2)

nr−1 −→ 1, which also implies that for i ∈ {1, 3}, Θ(i)

nr−1 −→ 0,
that is Θnr−1 −→ v2 too. (4.23) and (4.25) directly imply also that for i ∈ {1, 3},
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π(i)
nr +π(i)

nr−1 −→ 1 as r −→∞, then for all i ∈ {1, 3}, 1−π(i)
nr−π

(i)

nr−1 −→ 0 as r −→∞.
Since by Lemma 4.5 for almost all ω ∈ V(2), V (Θnr , πnr) −→ V (v2, π∗) = `(ω),
one can determine π∗. Indeed the definition of the potential has not changed from
Lemma 3.34 so, by the same argument from the corresponding part, we have that
either π∗ = ((1 + `)/2, 0, (1 − `)/2) or π∗ = ((1 − `)/2, 0, (1 + `)/2). Without loss of
generality, assume the latter scenario. Then since it has been shown that

π(i)

nr + π(i)

nr−1 −→

{
0, i = 2

1, i 6= 2
,

quite trivially πnr−1 −→ ((1 + `)/2, 0, (1− `)/2) =.. π̂∗, the complementary form of π∗.
The same holds for πnr+1.

The argument now slightly differs from the one in Lemmas A.26 and 3.34, due
to the presence of perturbation terms, which, however, vanish almost surely by
Lemma 4.1 and therefore do not significantly change the proof of the last fact. As
r −→∞, R(1)

nr+1 −→ 0 almost surely, so by (2.31),

π(1)

nr+1 =
Θ(3)
nr

Θ(1)
nr + Θ(3)

nr

π(2)

nr +
Θ(2)
nr

Θ(1)
nr + Θ(2)

nr

π(3)

nr +R(1)

nr+1 −→
1 + `

2
,

because

0 ≤
Θ(3)
nr

Θ(1)
nr + Θ(3)

nr

≤ 1,

and π(2)
nr −→ 0 for almost every ω ∈V(2), while

Θ(2)
nr

Θ(1)
nr + Θ(2)

nr

−→ 1,

and π(3)
nr −→ (1 + `)/2 for almost every ω ∈V(2). By (2.31),

π(2)

nr+1 =
Θ(3)
nr

Θ(2)
nr + Θ(3)

nr

π(1)

nr +
Θ(1)
nr

Θ(1)
nr + Θ(2)

nr

π(3)

nr +R(2)

nr+1 −→ 0

as both terms next to π(1)
nr and π(3)

nr , along with R(2)
nr , vanish for almost every ω ∈V(2).

Therefore πnr+1 −→ π̂∗ and πnr + πnr+1 −→ (1, 0, 1) for almost every ω ∈ V(2). As a
result

Θnr+1 = (1− ρnr+1)Θnr + ρnr+1[1− (πnr +πnr+1)] −→ (1− ρ)v2 + ρ(1− (1, 0, 1)) = v2

and πΘnr+1 −→ πv2 = (1/2, 0, 1/2) as r −→ ∞, for almost every ω ∈ V(2). As
in Lemma A.26, we now start from an arbitrary convergent subsubsequence of
{Θnk+1(ω), πnk+1(ω)} and of {Θnk−1, πnk−1}. We will denote them {Θnr+1, πnr+1} and
{Θnr−1, πnr−1}, and their limit will be, in each case separately, denoted as (Θ∗, π̂∗), to
be determined. The underlying hypothesis is that for the ω considered Θnr(ω) −→ v.
In the case of the convergent forward shift subsubsequence, by (2.32) we can see that

πnr =
(1− ρnr+1)Θnr −Θnr+1

ρnr+1

+ 1− πnr+1 −→
(1− ρ)v −Θ∗

ρ
+ 1− π̂∗ =.. π∗,

so we have that (Θnr , πnr) −→ (v, π∗) and we obtain, through the same argument
as the one shown above, that the forms of π∗ and π̂∗ are the claimed ones, and
that Θ∗ = v for almost every ω considered. We proceed similarly in the case of the
convergent backward shift subsubsequence. By (2.32), we can see that

πnr =
(1− ρnr)Θnr−1 −Θnr

ρnr
+ 1− πnr −→

(1− ρnr)Θ∗ − v
ρnr

+ 1− π̂∗ =.. π∗,

so (Θnr , πnr) −→ (v, π∗), and we can repeat the same strategy just discussed in the
previous case. The second part of the claim trivially follows by taking nr = nk in the
argument above.
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4.5.1 Convergence with boundary initial conditions

In this section the probabilistic model is forced to admit boundary initial conditions,
to briefly study its corresponding asymptotic behaviour. Although the main objective
of our analysis is the model having Θ0 6∈ ∂Σ (regular initial conditions), it is interesting
to study, like we did for the dynamical system in Section 3.5, also the evolution of
the stochastic process with boundary initial conditions. The asymptotic behaviours
we will observe give precious intuition regarding the regular case. At the same time,
the system is much more rigid, with boundary initial conditions, hence the results are
easier to obtain.

Lemma 4.22. Let Θ0 ∈ Ei for some i ∈ {1, 2, 3}. Then for almost all ω ∈ Ω there
exists Θ∗(ω) ∈ Ei, such that Θn(ω) −→ Θ∗(ω) as n −→∞.

Proof. Without loss of generality, by symmetry, assume i = 1, that is Θ0 ∈ E1, or
equivalently Θ(1)

0 = 0 and 0 < Θ(2)

0 < 1. It follows immediately, from the form taken
by MΘ0 , similarly to the initial part of the proof of Lemma 3.29, that

π1 =

 0 1 1
1−Θ(2)

0 0 0
Θ(2)

0 0 0

 π0 +R1 =

 π(2)

0 + π(3)

0 +R(1)

1

(1−Θ(2)

0 )π(1)

0 +R(2)

1

Θ(2)

0 π
(1)

0 +R(3)

1

 .

However, since B(2)

1 ∼ Bin(µN (2)

0 , 0) and B(3)

1 ∼ Bin(µN (3)

0 , 1), as Θ(1)

0 = 0, B(2)

1 = 0
and B(3)

1 = µN (3)

0 almost surely. Then (2.28) implies that almost surely

R(1)

1 =
B(3)

1 − µN
(3)

0

σ1

+
µN (2)

0 −B
(2)

1 − µN
(2)

0

σ1

= 0.

It follows that almost surely

Θ(1)

1 = (1− ρ1)Θ(1)

0 + ρ1(1− π(1)

0 − π
(2)

0 − π
(3)

0 ) = 0

and therefore, by induction, one has that almost surely Θ(1)
n = 0 for all n ∈ N. Note

also that almost surely, as a consequence of R(1)
n = 0 for all n ∈ N and Rn ∈ Π0

..=
{x ∈ R3 : x1 + x2 + x3 = 0}, we have that R(3)

n = −R(2)
n almost surely. Due to this

fact, MΘn has the same form as MΘ0 for all n, almost surely, and it follows that

πn+1 =

 0 1 1
1−Θ(2)

n 0 0
Θ(2)
n 0 0

 πn +Rn+1 =

 π(2)
n + π(3)

n

(1−Θ(2)
n )π(1)

n +R(2)

n+1

Θ(2)
n π

(1)
n −R

(2)

n+1

 .

Therefore, by (2.32)

Θ(2)

n+1 −Θ(2)

n = ρn+1[1−Θ(2)

n − (1−Θ(2)

n )π(1)

n −R
(2)

n+1 − π(2)

n ]

= ρn+1

[
(1−Θ(2)

n )(1− π(1)

n )− π(2)

n −R
(2)

n+1

]
= ρn+1[(1−Θ(2)

n )(1− π(1)

n )

− (1−Θ(2)

n−1)π(1)

n−1 −R(2)

n −R
(2)

n+1].

Since almost surely Θ(1)
n = 0 for all n, by (2.32) we also have that almost surely

π(1)

n−1 = 1− π(1)
n for all n ∈ N, and thus that

Θ(2)

n+1 −Θ(2)

n = −ρn+1(1− π(1)

n )(Θ(2)

n −Θ(2)

n−1 + rn), (4.26)

where rn ..= R(2)
n + R(2)

n+1. Note that by Remark 4.2, there is a deterministic m̃ large
enough, such that for all n ≥ m̃,

ρn+1 < ρ+
1− ρ

2
= ρ̃ ..=

ρ+ 1

2
< 1,
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hence ρn+1(1− π(1)
n ) < ρ̃ for all n ≥ m̃.

We show that Θ(2)
n converges almost surely, by showing that for almost all ω ∈ Ω,

∞∑
k=0

|Θ(2)

k+1 −Θ(2)

k | <∞.

Fix 1 < ν <
√
µ, by Lemma 4.1 for almost all ω ∈ Ω, there is m̄ = m̄(ω) such that for

all n ≥ m̄, |R(2)
n | ≤ ν−n. Let m = m(ω) ..= max{m̃, m̄(ω)}. For all n ≥ m we iterate

(4.26) down to m, and it follows that

Θ(2)

n+1 −Θ(2)

n = (−1)n−mρ̃n−m
n∏

k=m+1

(1− π(1)

k )(Θ(2)

m+1 −Θ(2)

m )

+
n∑

k=m+1

(−1)n−k+1ρ̃n−k+1

n∏
j=k+1

(1− π(1)

k )rk,

and since for almost all ω for all n ≥ m, |rn| ≤ |R(2)

n+1| + |R(2)
n | ≤ 2ν−n, if we define

λ ..= max{ρ̃, ν−1}, the following estimate holds,

|Θ(2)

n+1 −Θ(2)

n | ≤ ρ̃n−m|Θ(2)

m+1 −Θ(2)

m |+
n∑

k=m+1

ρ̃n−k+1|rk| ≤ ρ̃n−m|Θ(2)

m+1 −Θ(2)

m |

+ 2
n∑

k=m+1

ρ̃n−k+1

νk
≤ λn−m|Θ(2)

m+1 −Θ(2)

m |+ 2
n∑

k=m+1

λn−k+1λk

= λn−m|Θ(2)

m+1 −Θ(2)

m |+ 2(n−m)λn+1

= nλn
(

2λ
(

1− m

n

)
+
|Θ(2)

m+1 −Θ(2)
m |

nλm

)
.

Thus Θ(2)

n+1 − Θ(2)
n = Oω(nλn), which shows the claim of convergence of the series

of absolute increments. Since for all n, Θ(1)
n = 0 almost surely, the almost sure

convergence of Θ(2)
n implies the almost sure convergence of Θn to some Θ∗ in the

closure of E1.

Note that Lemma 4.22 already implies almost sure convergence of the stochastic
process with boundary initial conditions. However, due to the perturbations, we lost
the alternating series estimate of Lemma 3.29, and as a result we cannot exclude the
vertices on Ei from being possible candidates for the limit of a boundary sample path.
For this reason, we needed to prove Lemma 4.21 earlier than we did with Lemma 3.34
in Section 3.5. We can now exploit it to make progress in understanding the sample
paths of {πn}.

Corollary 4.23. If Θ0 ∈ Ei, then for all π0 ∈ Σ and almost every ω ∈ Ω, the set of
accumulation points of the sample paths is {(Θ∗, πΘ∗ ± βe−1(Θ∗))} for some Θ∗ ∈ Ei

and β ≥ 0. Moreover, β = `(ω)/2.

Proof. If ω ∈ D, Θn −→ Θ∗ ∈ V , and the claim follows from Lemma 4.21. Assume
ω ∈ Dc, and without loss of generality, by symmetry, let i = 1. In this case by
Lemma 4.22 the limit Θ∗ ∈ E1, and we can exploit continuity of the nonautonomous
iteration map

Φn+1(Θ, π) ..=

(
(1− ρn+1)Θ + ρn+1(1− π −MΘπ)

MΘπ

)
+

(
−ρn+1Rn+1

Rn+1

)
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on E1 × Σ. Using 1−Θn = 2πΘn and rearranging (2.32) we obtain

(I +MΘn)πn = 2πΘn −
(

1

ρn+1

(Θn+1 −Θn) +Rn+1

)
.

By Lemmas 4.1 and 4.22, almost surely Θn+1 − Θn, Rn+1 −→ 0 as n −→ ∞, thus
implying that (I +MΘn)πn −→ 2πΘ∗ almost surely. It then follows that

I +MΘn

2
πn −→ πΘ∗

and therefore
I +MΘ∗

2
(πn − πΘ∗) −→ 0

almost surely, as

I +MΘn

2
πn − πΘ∗ =

[
I +MΘn

2
− I +MΘ∗

2

]
πn +

I +MΘ∗

2
(πn − πΘ∗)

and almost surely
I +MΘn

2
πn − πΘ∗ −→ 0,

while [
I +MΘn

2
− I +MΘ∗

2

]
−→ 0

by continuity. Thus we conclude that, like on D, for almost all ω ∈ Dc, πn − πΘ∗

either becomes aligned with e−1(Θ∗) as n −→ ∞ or vanishes (in which case β = 0).
Lemma 4.5 ensures, even though without monotonicity, the existence of the limit ` for
V (Θn, πn) also for boundary sample paths (indeed, note that the proof of Lemma 4.5
does not make any hypothesis such as Θ0 being in the interior of the simplex). There-
fore one can proceed to determine β as in Corollary 3.30. It suffices to change the
notation in p, q to Θ, π; then the argument is exactly the same, and there is no need
to repeat it here.

Proposition 4.24. If Θ0 ∈ Ei, then for all π0 ∈ Σ and for almost all ω ∈ Ω, there
exists Θ∗ ∈ Ei and β ≥ 0 such that the boundary sample path approaches the 2-cycle
{(Θ∗, πΘ∗ ± βe−1(Θ∗))}, with β = |β0|, where π0 = πΘ0 + α0e0(Θ0) + β0e−1(Θ0).

Proof. We only need to show the cycling between the two accumulation points, since
Proposition 4.7 ensures that the set of accumulation points is as per the claim. Unlike
in Proposition 3.31, we need to consider the vertex as a possible accumulation point.
However, whether Θ∗ is a vertex or not, with the usual choice of eigenvectors intro-
duced in Proposition 3.31 and Lemma 3.34, which extends to the vertices as well, as
far as e−1 is concerned, we have

e−1(Θn+1)− e−1(Θn) = (Θ(2)

n+1 −Θ(2)

n )e0.

Then for a boundary sample path (4.2) reads

αn+1e0 + βn+1e−1(Θn+1) = −ρn+1

2
αne0 − βne−1(Θn) +

(
1− ρn+1

2

)
Rn+1, (4.27)

which yields, being R(1)

n+1 = 0 and R(3)

n+1 = −R(2)

n+1 for all n as shown in Lemma 4.22,

−βn+1 = βn

αn+1 + (1−Θ(2)

n )βn+1 = −ρn+1

2
αn − βn(1−Θ(2)

n ) +
(

1− ρn+1

2

)
R(2)

n+1

−αn+1 + Θ(2)

n βn+1 =
ρn+1

2
αn − βnΘ(2)

n −
(

1− ρn+1

2

)
R(2)

n+1
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for almost all ω ∈ Ω. The first equation plugged into the second makes the latter a
scalar multiple of the third, so, as in Proposition 3.31, we keep only the first and the
third equation. Simplifying the third equation by means of the first yields

αn+1 = −ρn+1

2
αn + βn(Θ(2)

n −Θ(2)

n+1) +R(2)

n+1 (4.28)

βn+1 = −βn. (4.29)

We can also rewrite Θn+1 − Θn in eigencoordinates by rearranging (2.32) and using
πn − πΘn = αne0(Θn) + βne−1(Θn). It yields

Θn+1 −Θn = ρn+1(2πΘn − πn+1 − πn) = −ρn+1 [(MΘn + I)(πn − πΘn) +Rn+1]

= −ρn+1(αne0 +Rn+1),

which implies that Θ(2)

n+1 − Θ(2)
n = −ρn+1

(
αn +R(2)

n+1

)
, which turns (4.28) and (4.29)

into the following system, almost surely,

αn+1 = ρn+1

(
βn −

1

2

)
αn +

[
1 + ρn+1

(
βn −

1

2

)]
R(2)

n+1 (4.30)

βn+1 = −βn. (4.31)

These equations hold almost surely, so by (4.31) it is clear that almost surely βn
oscillates between β0 and −β0. The asymptotic 2-periodicity will follow from showing
that αn vanishes almost surely. The same estimates of Corollary 3.30 leading to
|βn| < 1/

√
3 apply and allow us to prove this claim. We iterate (4.30) once more and

plug it into (4.31), yielding

αn+1 = ρn+1ρn

(
βn −

1

2

)(
βn−1 −

1

2

)
αn−1 + ρn+1

(
βn −

1

2

)[
1 + ρn

(
βn−1 −

1

2

)]
R(2)

n

+

[
1 + ρn+1

(
βn −

1

2

)]
R(2)

n+1 = −ρn+1ρn

(
βn−1 +

1

2

)(
βn−1 −

1

2

)
αn−1

− ρn+1

(
βn−1 +

1

2

)[
1 + ρn

(
βn−1 −

1

2

)]
R(2)

n −
[
1 + ρn+1

(
βn−1 +

1

2

)]
R(2)

n+1

= −ρn+1ρn

(
β2
n−1 −

1

4

)
αn−1 + rn+1,

where

rn+1
..= −ρn+1

(
βn−1 +

1

2

)[
1 + ρn

(
βn−1 −

1

2

)]
R(2)

n −
[
1 + ρn+1

(
βn−1 +

1

2

)]
R(2)

n+1.

Note that for all n ≥ m, since∣∣∣∣βn−1 ±
1

2

∣∣∣∣ < 1√
3

+
1

2
<

2√
3
<

4

3
,

|rn+1| <
∣∣∣∣βn−1 +

1

2

∣∣∣∣ [1 +

∣∣∣∣βn−1 −
1

2

∣∣∣∣] |R(2)

n |+
[
1 +

∣∣∣∣βn−1 +
1

2

∣∣∣∣] |R(2)

n+1| <
(

1 +
4

3

)2
1

νn
.

This leads to

|αn+1| < ρ̃2

∣∣∣∣β2
n−1 −

1

4

∣∣∣∣ |αn−1|+ |rn+1| <
1

12
|αn−1|+

6

νn
.

Recall that, in Lemma 4.22, we showed that:
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• By Remark 4.2, there is a deterministic m̃ large enough, such that ρn+1 < ρ̃ < 1
for all n ≥ m̃ and for all fixed 1 < ν <

√
µ;

• By Lemma 4.1 for almost all ω ∈ Ω, there is m̄ = m̄(ω), such that for all n ≥ m̄,
|R(2)

n | ≤ ν−n.

Thus let m = m(ω) ≥ max{m̃, m̄(ω)}. For all n > m,

|αn+1| <
1

12
|αn−1|+

6

νn
. (4.32)

Set λ ..= max{1/12, ν−1}. Then for any k ∈ N, if n+ 1 = m+ 2k, iterating (4.32) down
to m yields

|αm+2k| <
1

12k
|αm|+ 6

k−1∑
j=0

1

12j
1

νm+2k−1−2j
< λk|αm|+ 6λm+2k−1

k−1∑
j=0

λ−j

= λk|αm|+ 6λm+2k−1 1− λ−k

1− λ−1
= λk|αm|+ 6

λm+2k−1

λk−1

1− λk

1− λ

< λk|αm|+ 6
λm+k

1− λ
= λk

(
|αm|+ 6

λm

1− λ

)
.

Similarly, if n+ 1 = m+ 2k + 1, iterating (4.32) down to m+ 1 yields

|αm+2k+1| <
1

12k
|αm+1|+ 6

k−1∑
j=0

1

12j
1

νm+2k−2j
=

1

12k
|αm+1|+ 6

k−1∑
j=0

1

12j
1

νm+1+2k−1−2j

< λk
(
|αm+1|+ 6

λm+1

1− λ

)
< λk

(
|αm+1|+ 6

λm

1− λ

)
.

Let M ..= max{|αm|, |αm+1|}. Then for all n > m,

|αn+1| <
(
M + 6

λm

1− λ

)
λb

n+1−m
2
c <

1√
λ
m

(
M + 6

λm

1− λ

)√
λ
n+1

= Oω
(
λb

n+1
2
c
)
.

Thus for all n > m,

|αn| <
1√
λ
m

(
M + 6

λm

1− λ

)√
λ
n
. (4.33)

This yields a geometrically decaying upper bound on the first eigencoordinate. That
β = |β0| almost surely, is obvious by the alternating βn coordinate. In particular,
almost surely, β = 0 if and only if π0 = πΘ0 + α0e0(Θ0) for some real α0.

Remark 4.25. The geometric upper bound on the decay of |αn| for a boundary sample
path is uniform on the simplex, by the same reasoning as in Remark 3.32, hence there
exist a constant M̃ , dependent on ω ∈ Ω, such that for almost all ω,

|αn| < M̃
√
λ
n
. (4.34)

Equivalently, αn = Oω
(√

λ
n
)

.

Theorem 4.26. If Θ0 ∈ Ei for any i ∈ {1, 2, 3}, {Θn} converges almost surely to an
almost surely Ei-valued bounded random variable Θ.
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Proof. For almost every ω ∈ Ω, {Θn(ω)} converges to Θ∗(ω) ∈ Ei by Lemma 4.22,
thus by defining Θ(j)(ω) ..= lim supn−→∞Θ(j)

n (ω) for all j ∈ {1, 2, 3}, we obtain a
random variable Θ to which {Θn} converges almost surely, which is well defined on
(Ω,F, {Fn},P), since it is F∞-measurable, and is almost surely Ei-valued, since by
construction P(ω : Θ(ω) = Θ∗(ω)) = 1.

The following is an immediate consequence of Theorem 4.26 and Corollary 4.23.
Recall that Σ∗ denotes the medial triangle in Σ (boundary excluded).

Corollary 4.27. Let Θ0 ∈ Ei for any i ∈ {1, 2, 3} and π0 = πΘ0 + α0e0(Θ0) +
β0e−1(Θ0). Then {πn} either almost surely diverges if |β0| > 0, or almost surely
converges to πΘ (which is almost surely ∂Σ∗-valued) if β0 = 0, where Θ denotes the
almost sure limit of {Θn}.

4.5.2 Structure of the set of accumulation points

In this section we go back to regular initial conditions. Unlike in Section 3.5.2, we
will not make direct use of the results in Section 4.5.1, since in Proposition 4.29 we
will be able to rely directly on the dynamical behaviour of deterministic boundary
orbits to understand sample paths approaching the boundary. It is useful to describe
the stochastic process as a dynamical system having nonautonomous iteration map
Φn+1, including a random perturbation part, which is vanishing by Lemma 4.1. The
iteration map has almost sure limit Φ, which is continuous on Σ0 × Σ:

(
Θn+1

πn+1

)
= Φn+1(Θn, πn) =

(
(Φn+1)Θ(Θn, πn)
(Φn+1)π(Θn, πn)

)
..=

(
(1− ρn+1)Θn + ρn+1(1− πn −MΘnπn)

MΘnπn

)
+

(
−ρn+1Rn+1

Rn+1

)
,

where

Φn+1(Θ, π) ..=

(
(1− ρn+1)Θ + ρn+1(1− π −MΘπ)

MΘπ

)
+

(
−ρn+1Rn+1

Rn+1

)
−→

(
(1− ρ)Θ + ρ(1− π −MΘπ)

MΘπ

)
=.. Φ(Θ, π).

Remark 4.28. For almost every ω ∈ Ω fixed, the limit map Φ is a uniform limit for
Φn+1 with respect to the variables Θ and π and the 1-norm.

Proof. By Remark 4.2, the boundedness of Σ and Lemma 4.1, we have that

sup
Σ0×Σ

‖Φ (Θ, π)− Φn+1 (Θ, π) ‖1 ≤ 2 (|ρ− ρn+1|+ ‖Rn+1‖1) = Oω
(

1

µn
+

1

νn

)
.

The limit is possibly pointwise in ω, since the random time, at which the geometric
upper bound starts being active as per Lemma 4.1, has not been shown uniformly
bounded.

Proposition 4.29. For almost every ω ∈ {` > 0}, the set of accumulation points of
the sample path {(Θn(ω), πn(ω))} is a subset of

{(Θ, πθ ± βe−1(Θ)) : Θ ∈ ∂Σ, V (Θ, πΘ ± βe−1(Θ)) = `(ω)} .
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Proof. First recall that by Remark 4.20 for almost all ω ∈ {` > 0}, for every {nk},
Θnk −→ ∂Σ. Consider any convergent (Θnk , πnk) −→ (Θ∗0, π

∗
0) as k −→ ∞, for some

Θ∗0 ∈ ∂Σ, π∗0 ∈ Σ. If ω is such that Θ∗0 ∈ V , then ω ∈ V, so by Lemma 4.21, for
almost every such ω,

π∗0 = πΘ∗0
± `(ω)

2
e−1(Θ∗0);

since then, due to ‖e−1(Θ∗0)‖1 = 2,

‖π∗0 − πΘ∗0
‖1 =

∥∥∥∥`(ω)

2
e−1(Θ∗0)

∥∥∥∥
1

= `(ω),

the claim follows. If ω is such that Θ∗0 6∈ V , then Θ∗0(ω) ∈ Ei for some i ∈ {1, 2, 3}.
We need to show that for almost every such ω, π∗0 is of the form πΘ∗0

± βe−1(Θ∗0),
where β > 0 is such that V (Θ∗0, πΘ∗0

± βe−1(Θ∗0)) = `(ω). For every such ω, con-
sider then {(Θnk−1, πnk−1)}k∈N, which, by boundedness, has a convergent subsequence
(Θnks−1, πnks−1) −→ (Θ∗1, π

∗
1) as s −→ ∞. For simplicity denote nr ..= nks − 1. We

claim that for almost every such ω, Θ∗1(ω) 6∈ V . In fact if such ω’s constitute a non-
negligible event on which the subsequential limit Θ∗1 ∈ V , for almost every such ω in
the nonnegligible event, for some v ∈ V , (Θnr , πnr) −→ (v, π∗1) as r −→ ∞, where
π∗1 − πv is in the eigenspace spanned by e−1(v); then by Lemma 4.21, it must follow
that for almost every such ω in this nonnegligible event, (Θnr+1, πnr+1) −→ (v, π̂∗1),
where π̂∗1 denotes the point complementary to π∗1, as per the notation in Lemma 4.21.
The contradiction for almost all such ω’s is thus reached, since nr + 1 = nks , so we
concluded that with positive probability Θnks

−→ v ∈ V , while it was assumed that
Θnk −→ Θ∗0 6∈ V for all considered ω.

Since for almost every ω considered, Θ∗1(ω) is not a vertex, the limit map Φ is
continuous at (Θ∗1, π

∗
1), therefore for almost every such ω,

Φ(Θ∗1, π
∗
1) = Φ

(
lim
r→∞

(Θnr , πnr)
)

= lim
r→∞

Φ (Θnr , πnr) = lim
r→∞

Φnr+1 (Θnr , πnr)

= lim
r→∞

(Θnr+1, πnr+1) = lim
s→∞

(Θnks
, πnks ) = (Θ∗0, π

∗
0),

where the crucial part is the third equality, which is the main difference from Proposi-
tions A.27 and 3.35, and it follows by Remark 4.28. Indeed, as r −→∞, by Lemma 4.1
and Remark 4.2, for some 1 < ν <

√
µ fixed, for almost every ω,

‖Φ (Θnr , πnr)− Φnr+1 (Θnr , πnr) ‖1 = Oω
(

1

µnr
+

1

νnr

)
and since both Φ (Θnr , πnr) , and Φnr+1 (Θnr , πnr) have a well defined limit, then both
limits must be the same, for almost every such ω. In conclusion, for almost every
such ω, we can treat the sequence of limit points yielded by iterating this procedure
(exactly as done in Propositions A.27 and 3.35), as a deterministic finite segment
of boundary orbit, since the limit map Φ is the same iteration map as Φρ, used in
Section A.5: Φm(Θ∗m, π

∗
m) = (Θ∗0, π

∗
0), and Θ∗m ∈ E1 for any m. We can see that π∗0

is on the eigenspace spanned by e−1(Θ∗0) for almost every such ω in eigencoordinates,
exactly as in the conclusion of Propositions A.27 and 3.35, by formally changing the p,
q notation into the Θ, π one. It is worth noting that we did not need to use the results
about boundary sample paths, in particular Proposition 4.24 and Remark 4.25. It was
enough to rely on the limit deterministic map’s driving force, to show that |α0| = 0,
where π∗0 − πΘ∗0

= α0e0 + β0e−1(Θ∗0). Working pointwise in ω, this leaves only two
choices for β0 on the eigenline: the values ±β, such that V (Θ∗0, πΘ∗0

± βe−1(Θ∗0)) =
`(ω).
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Note that for almost every ω ∈ {` = 0}, Proposition 4.29 follows trivially with
β = 0, that is {(Θ, πΘ) : Θ ∈ Σ}.

Remark 4.30. For every fixed ω ∈ E>, consider any {nk}k∈N such that {Θnk} con-
verges, that is Θnk(ω) −→ Θ∗(ω) ∈ Ei for some i ∈ {1, 2, 3}. For almost every such
ω, the set of accumulation points of {(Θnk , πnk)} and {(Θnk+1, πnk+1)} is a subset of
{(Θ∗, πΘ∗ ± βe−1(Θ∗)) : β = β(ω) > 0, V (Θ∗, πΘ∗ ± βe−1(Θ∗)) = `(ω)}. Moreover,
for almost every such ω for which also {πnk} converges, {πnk} and its shift {πnk+1}
asymptotically oscillate between π∗ = πΘ∗ ± βe−1(Θ∗) and π̂∗ = πΘ∗ ∓ βe−1(Θ∗), that
is, if the considered ω is such that (Θnk , πnk) −→ (Θ∗, π∗), then for almost every such
ω, (Θnk+1, πnk+1) −→ (Θ∗, π̂∗) as k −→∞.

Proof. We exploit the continuity of the limit map Φ on Ei × Σ. Starting with
Θnk −→ Θ∗ ∈ Ei, to find the accumulation points we must extract any conver-
gent {(Θnkl

, πnkl )}l∈N and check its limit. To simplify the notation we relabel it as
{(Θnr , πnr)}. For the π-component’s shifts we have that by Proposition 4.29, for
almost every ω ∈E>, π∗ = πΘ∗ ± βe−1(Θ∗). Since

πΘ∗ ∓ βe−1(Θ∗) = π̂∗ ..= MΘ∗π∗ = MΘ∗(πΘ∗ ± βe−1(Θ∗)),

(2.31), Lemma 4.1, and Remark 4.28 imply that, for almost every ω such that
Θnr −→ Θ∗ ∈ Ei and πnr −→ π∗, we have that πnr+1 = MΘnrπnr + Rnr+1 −→
π̂∗. Therefore, like in Remark A.28, we start with an arbitrary subsubsequence
{(Θnr+1(ω), πnr+1(ω))}r∈N convergent to some (Θ, π̂∗), both to be determined un-
der the hypothesis given. Having that Θnr(ω) −→ Θ∗(ω) ∈ Ei, by (2.32) we know
that

πnr =
(1− ρnr+1)Θnr −Θnr+1

ρnr+1

+ 1− πnr+1 −→
(1− ρ)Θ∗ −Θ

ρ
+ 1− π̂∗ =.. π∗.

We can repeat the argument above by applying Proposition 4.29 and (2.31), so as to
show the claimed form of π∗ and π̂∗ for almost every ω considered.

For the Θ-component’s shift, since π∗ + π̂∗ = 2πΘ∗ , and having already showed
that for almost every ω considered πnr −→ π∗ and πnr+1 −→ π̂∗; if Θnr −→ Θ∗, then
by (2.32) it follows that

Θnr+1 = (1− ρnr+1)Θnr + ρnr+1(1− πnr+1 − πnr) −→ (1− ρ)Θ∗ + ρ[1− (π∗ + π̂∗)]

= Θ∗,

as 1− (π∗+ π̂∗) = 1−2πΘ∗ = Θ∗. Hence if we start with an arbitrary subsubsequence
{(Θnr+1(ω), πnr+1(ω))}r∈N convergent to some (Θ, π̂∗) with only Θ left to be deter-
mined, it follows that Θ = Θ∗ for almost every ω considered. The rest of the claim is
trivial by taking nr = nk.

Note that Remark 4.30 trivially holds also for ω ∈ E0, with ` = 0, π∗ = π̂∗ =
πΘ∗ , β = 0. The next corollary can be proved as its deterministic counterparts
Corollary 3.37, the only difference being that some steps hold only almost surely.

Corollary 4.31. For almost all ω ∈ {` > 0}, Θn+1 −Θn −→ 0 as n −→∞.

Proof. Denote dn ..= Θn+1 − Θn. The claim is equivalent to showing that dn −→ 0
for almost every such ω. Since dn is bounded, if every convergent subsequence dnk
converges to 0, then dn converges to 0. Consider then a convergent subsequence
dnk −→ d. We will show that by Lemma 4.21 and Remark 4.30, d = 0. There are in
fact two cases, depending on whether {(Θnk , πnk)} converges or not.
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• If ω is such that {(Θnk , πnk)} converges, it could be that Θnk tends to a vertex
or inside an edge. If it is a vertex, Θnk −→ v ∈ V by Lemma 4.21 as k −→ ∞,
Θnk+1 −→ v too for almost every such ω and therefore dnk −→ 0 for almost
every such ω. If it is not a vertex Θnk −→ Θ∗ ∈ Ei for some i ∈ {1, 2, 3}, then
by Remark 4.30 Θnk+1 −→ Θ∗ too for almost every such ω. Hence dnk −→ 0.
In any case, d = 0.

• If ω is such that {(Θnk , πnk)} does not converge, by boundedness again one
can pick a subsubsequence (Θnkr

, πnkr ) that does so. Since dnk −→ d, also
dnkr −→ d as r −→ ∞. However the previous argument applies to dnkr since
(Θnkr

, πnkr ) converges, thus falling into the previous case, and therefore dnkr
vanishes for almost every such ω as r −→ ∞. Then for almost every such ω,
0 = d = limk−→∞ dnk = limr−→∞ dnkr .

Note that for almost every ω ∈ {` = 0}, Corollary 4.31 follows trivially from (4.4)
and Lemma 4.1.

Remark 4.32. For almost all ω ∈E>, by Remark 4.3 and Corollary 4.31 there exists
a subsequence of {Θn} bounded away from V .

The following claim holds trivially also on {` = 0}.

Corollary 4.33. For almost every ω ∈ {` > 0}, as n −→ ∞, αn −→ 0 and |βn| −→
`/2.

Proof. We first show that αn vanishes. Considering that in eigencoordinates (4.11)
holds, which can be rearranged as

Θn+1 −Θn = −ρn+1(αn(1 + λ0(Θn))e0(Θn) + βn(1 + λ−1(Θn))e−1(Θn) +Rn+1),

and considering that for almost every ω ∈ {` > 0} by Remark 4.20, Θn −→ ∂Σ and,
as a result, by Lemma 3.19 (f), 1 + λ−1(Θn) −→ 0 and 1 + λ0(Θn) −→ 1, and by
Lemma 4.1, Rn+1 −→ 0; by Corollary 4.31 and Lemma 3.19 (h) it follows that for
almost every such ω, αn −→ 0 as n −→∞.

We now show that |βn(ω)| −→ `(ω)/2 for almost every ω ∈ {` > 0}. Since |βn|
is bounded, consider any convergent subsequence |βnj(ω)| −→ `′(ω). Assume by
contradiction that `′(ω) 6= `(ω)/2 for all ω belonging to a nonnegligible event in {` > 0}.
Since Θnj is bounded, extract a convergent subsubsequence {Θnjl

}l∈N. Relabel it with
{nk} for simplicity. Since for almost every ω considered the potential limit along this
orbit is `(ω) > 0, we have Θnk(ω) −→ Θ∗(ω) ∈ ∂Σ by Remark 4.3, and |βnk(ω)| −→
`′(ω) 6= `(ω)/2 by assumption. Recall that by Remark 4.20, P({` > 0}\(E>∪D>)) = 0.
So we only need to consider two events: the one for which ω is such that Θ∗(ω) ∈ V
and the one for which Θ∗(ω) belongs to ∂Σ \ V . If ω is such that Θ∗(ω) ∈ V ,
|βnk(ω)| −→ `(ω)/2 for almost every such ω by Lemma 4.21. Since {nk} is a subsequence
of {nj}, and |βnj(ω)| −→ `′(ω), this leaves only a negligible event, on which we could
escape a contradiction with the assumption `′(ω) 6= `(ω)/2. If ω is such that Θ∗(ω)
belongs to Ei for some i ∈ {1, 2, 3} (recall that ∂Σ \ V is partitioned into E1, E2,
E3), by symmetry, without loss of generality, consider any such ω belonging to the
event for which i = 1. We show the argument explicitly only on this event, as on
the events, for which i = 2 and i = 3, the argument is the same, upon interchanging
the coordinates according to the symmetry of the model. For ω such that i = 1
fixed, by the smoothness of the eigenvectors proved in Lemma 3.19 (h), it is known
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that e0(Θnk) −→ (0, 1,−1) = e0(Θ∗) with e0(Θnk) − e0(Θ∗) = O(Θnk
−Θ∗), and

e−1(Θnk) −→ (−1, 1−Θ(2)
∗ ,Θ

(2)
∗ ) =.. e−1(Θ∗) with e−1(Θnk)−e−1(Θ∗) = O(Θnk

−Θ∗).
Thus

‖αnke0(Θnk) + βnke−1(Θnk)‖1 = ‖αnk [e0(Θnk)− e0(Θ∗)] + βnk [e−1(Θnk)− e−1(Θ∗)]

+ αnke0(Θ∗) + βnke−1(Θ∗)‖1 = ‖O(Θnk
−Θ∗) + αnke0(Θ∗) + βnke−1(Θ∗)‖1

= ‖Oω(1) + βnke−1(Θ∗)‖1,

since αn −→ 0 for almost every ω considered. Thus

V (Θnk , πnk) = ‖Oω(1) + βnke−1(Θ∗)‖1.

Since ω was assumed such that |βnj(ω)| −→ `′(ω) 6= `(ω)/2, being {nk} a subsequence
of {nj}, also |βnk(ω)| −→ `′(ω), and this would imply that

0← V (Θnk , πnk)−` = ‖Oω(1)+βnke−1(Θ∗)‖1−` = |βnk |‖Oω(1)+e−1(Θ∗)‖1−`→ 2`′−`

because `′ 6= 0 (otherwise V (Θnk , πnk) −→ 0, as k −→ ∞, but ω ∈ {` > 0}). Thus
for almost every ω considered, 2`′(ω)− `(ω) = 0, or equivalently `′(ω) = `(ω)/2, which
leaves only a negligible event on which we could escape a contradiction with the
assumption `′(ω) 6= `(ω)/2. We have thus shown that for almost every ω ∈ {` > 0},
`′(ω) = `(ω)/2, where `′(ω) is the limit of an arbitrary convergent subsequence {|βnj |}.
Since for almost every ω ∈ {` > 0}, any convergent subsequence {|βnj(ω)|} of the
bounded sequence {|βn(ω)|} tends to `(ω)/2, it follows that for almost every such ω,
|βn(ω)| −→ `(ω)/2.

For almost every ω ∈ E> fixed, by Remark 4.32 it follows that there is a subse-
quence {Θnj}j∈N bounded away from the vertices. By boundedness, this implies the
existence of a subsubsequence {Θnjl

}l∈N (relabelled with nk for simplicity) such that
Θnk(ω) −→ Θ∗(ω) ∈ Ei for some i ∈ {1, 2, 3}, for almost every ω ∈E>. Define

E
(i)

>
..= {ω ∈E> : ∃{nk}k∈N, Θnk(ω) −→ Θ∗(ω) ∈ Ei as k −→∞}.

Thus

P

(
E> \

3⋃
i=1

E
(i)

>

)
= 0.

By symmetry, similarly to what done on E0, without loss of generality, we will show
arguments that apply almost surely on E> only on E

(1)

0 . The following is the first such
example.

Remark 4.34. For almost every ω ∈E>, ` < 1.

Proof. Without loss of generality, let ω ∈ E
(1)

> , so that there is {nk} such that
Θnk(ω) −→ Θ∗(ω) ∈ E1. By Remark 4.30 and Corollary 4.33, for almost ev-
ery such ω, the limit points of {πnk} and {πnk+1} are, without loss of generality,
π∗ = πΘ∗ − βe−1(Θ∗) and π̂∗ = πΘ∗ + βe−1(Θ∗), with β = `(ω)/2. Note that π(1)

Θ∗
= 1/2

and that π(1)

Θnk+1
= (1 − Θ(1)

nk+1)/2 < 1/2 for all k ∈ N, since Θ(1)

nk+1 > 0 by definition

of the model. Note also that for all k large enough, due to the nonzero angle that
the eigendirection of e−1(Θ∗) forms with E2 and E3, and due to β > 0 and the el-
ementary geometry of the simplex (see Figure 3.5), we have that π(1)

nk
− π(1)

Θnk
> 0,

π(2)
nk
−π(2)

Θnk
< 0, −(π(1)

nk
−π(1)

Θnk
+π(2)

nk
−π(2)

Θnk
) = π(3)

nk
−π(3)

Θnk
< 0, and π(1)

nk+1−π
(1)

Θnk+1
< 0,
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π(2)

nk+1 − π(2)

Θnk+1
> 0, −(π(1)

nk+1 − π(1)

Θnk+1
+ π(2)

nk+1 − π(2)

Θnk+1
) = π(3)

nk+1 − π(3)

Θnk+1
> 0.

Therefore,

‖πnk+1 − πΘnk+1‖1 =
∑

i∈{1,2,3}

|π(i)

nk+1 − π
(i)

Θnk+1
| = −(π(1)

nk+1 − π
(1)

Θnk+1
) + π(2)

nk+1 − π
(2)

Θnk+1

− (π(1)

nk+1 − π
(1)

Θnk+1
+ π(2)

nk+1 − π
(2)

Θnk+1
) = 2(π(1)

Θnk+1
− π(1)

nk+1) < 2 · 1

2
= 1.

By Lemma 4.1 and Corollary 4.33, for almost every such ω, we can fix 1 < ν <
√
µ

and let m = nk̄, with k̄ large enough, such that for all n ≥ m, ‖Rn+1‖1 < 3ν−n−1 and
πn 6= πΘn ; then for all n ≥ m̄ ≥ m,

|V (Θn+1, πn+1)− V (Θn+1, πn+1)| ≤ 3

ν − 1

1

νm̄

by Remark 4.4. Lemma A.8, rephrased in Θ, π notation instead of p, q notation and
with a time-dependent parameter ρn+1 instead of ρ (it is trivial to verify that these are
only formal changes and do not alter the substance of the argument of the lemma),
applies to V (Θn+1, πn+1). Indeed Θn 6∈ ∂Σ for all n, according to the model. Thus we
can conclude that V (Θn, πn) is strictly decreasing for all n ≥ m, and is subunitary at
time m (recall that at time m, we define V (Θm, πm) ..= V (Θm, πm), as per definition
in Remark 4.4). We show that this set-up implies that for almost every considered ω,
V (Θn(ω), πn(ω)) can only converge to subunitary values of `(ω).

Assume by contradiction that `(ω) ≥ 1 for all ω belonging to a nonnegligible
subset of E(1)

> . For every such ω in the nonnegligible event, define

0 < δ <
6

ν − 1

small enough, such that V (Θm, πm) ≤ 1− δ. The parameter δ exists by the previous
part of this argument. By monotonicity, for every such ω, V (Θn+1, πn+1) < 1− δ, for
all n ≥ m. There exists m′ > m large enough such that, for almost every such ω,
for all n ≥ m′, |V (Θn+1, πn+1)− V (Θn+1, πn+1)| > δ/2, since if ` ≥ 1, there will be m′

such that for all n ≥ m′, V (Θn+1, πn+1) > 1− δ/2 for almost every ω considered. Let

m̄ ..= max

{
m′,

log 6
(ν−1)δ

log ν

}
.

By construction of m̄, for all n ≥ m̄,

|V (Θn+1, πn+1)− V (Θn+1, πn+1)| ≤ 3

ν − 1

1

νm̄
≤ δ

2
,

since

m̄ ≥
log 6

(ν−1)δ

log ν
,

and therefore

νm̄ ≥ ν
log 6

(ν−1)δ
log ν =

(
elog ν

) log 6
(ν−1)δ
log ν =

6

(ν − 1)δ
.

However m̄ ≥ m′, so the inequality should be reversed and strict, which leaves us with
a contradiction, which we could only escape on a negligible event. Hence the subset,
assumed nonnegligible, must actually be negligible.
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4.5.3 Convergence with regular initial conditions

We proceed with considering, without loss of generality, only ω ∈ E
(1)

> , for which,
following the same line of reasoning at the start of Section 3.5.3, there exists {nk}k∈N
such that {Θnk(ω)} is bounded away from the vertices, and for some Θ∗(ω) ∈ E1,
Θnk(ω) −→ Θ∗(ω) as k −→ ∞. Because of the almost sure structure of the ac-
cumulation points of the sample paths {(Θn(ω), πn(ω))} proved in Proposition 4.29,
the properties of the shift of {(Θnk(ω), πnk(ω))} shown in Remark 4.30, and Corol-
lary 4.33, by the geometry of the simplex and Remark 4.34, it will be possible to fix
such a subsequence, so that

πnk(ω) −→ π∗(ω) ..= πΘ∗(ω) +
`

2
e−1(Θ∗(ω))

as k −→ ∞. Let us fix δ = δ(ω) > 0 small enough, so that δ < Θ(2)
∗ (ω) < 1− δ, δ <

π(1)
∗ (ω) < 1/2−δ, π(3)

∗ (ω) > δ. There will be an ε′ = ε′(ω) small enough and K = K(ω)
large enough such that, having defined m ..= nK , if Θ(1)

m (ω), |αm(ω)|, ||βm(ω)|−`(ω)/2| ≤
ε′, then δ ≤ Θ(2)

m (ω) ≤ 1 − δ, δ ≤ π(1)
m (ω) ≤ 1/2 − δ, δ ≤ π(2)

m (ω) ≤ 1 − δ, π(3)
m (ω) ≥ δ

and |αn|, ||βn| − `/2| ≤ ε′ for all n ≥ m for almost every ω. Recall that αn and βn
refer to the eigencoordinates of πn − πΘn . Moreover, since ‖π − πΘ‖1 ≤ 2 (due to the
diameter of the simplex in 1-norm) by Lemma 3.19 (g, h) there is a constant B > 1
large enough such that |β| < B, and then by (4.11) for any δ fixed small enough,
there is a ε < δ small enough (to be further restricted) such that,

‖Θ̂−Θ‖1 ≤ 3|α|+B
‖e−1(Θ)‖1

2
(1 + λ−1(Θ)) + ‖R̂‖1

≤ 3|α|+BΘ1‖e−1(Θ)‖1(1 +O(Θ1)) + ‖R̂‖1 ≤ 3B(|α|+ Θ1) + ‖R̂‖1

for all Θ1 < ε. Recalling that ρ̃ ..= (1 + ρ)/2, define

R ..= 1 + ρ̃

(
2

δ
− 1

)
and

ε′ < min

{
ε

R
,

ε

2(6B + 1)

}
(ε′ is to be further restricted too). Finally define

K`ε′,δ ..=

{
(Θ, π) ∈ Σ2 : 0 < Θ(1), |α|,

∣∣∣∣|β| − `

2

∣∣∣∣ ≤ ε′, δ ≤ Θ(2) ≤ 1− δ
}
,

and similarly K`ε,δ′ . Note that there is a large enough m̄ = m̄(ω) ∈ N such that

3ν−m̄ < ε′ and for all n ≥ m̄, for all i ∈ {1, 2, 3}, |R(i)

n+1| < ν−n−1 by Lemma 4.1,
0 < ρ/2 < ρn+1 < ρ̃ < 1, ρn+1/ρn < 3/2 (as it tends to 1) and ρn+1 − ρn < ε (as it
converges). Then by additionally requiring K to be large enough such that m(ω) ..=
nK(ω) ≥ m̄(ω), we ensure that for almost every ω ∈E

(1)

> , (Θm(ω), πm(ω)) ∈ K`ε′,δ with

π(1)
m < 1/2 − δ and for all n ≥ m, for all i ∈ {1, 2, 3}, |R(i)

n+1| < ν−n−1 < ε′/3. By
construction

‖Θm+1 −Θm‖1 < (6B + 1)ε′ <
ε

2
, (4.35)

thus ensuring, having defined δ′ ..= δ/2, that

Θ(1)

m+1 ≤ Θ(1)

m + ‖Θm+1 −Θm‖1 < ε′ +
ε

2
< ε, (4.36)

Θ(2)

m+1 ≤ Θ(2)

m + ‖Θm+1 −Θm‖1 < 1− δ +
ε

2
< 1− δ′, (4.37)

Θ(2)

m+1 ≥ Θ(2)

m − ‖Θm+1 −Θm‖1 > δ − ε

2
> δ′. (4.38)
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When there is no ambiguity, we will often simplify the notation as K ..= K`ε′,δ ⊂ K∗ ..=

K`ε,δ′ and omit ω as customary. Through these parameters, these sets are clearly

defined pointwise for almost every ω ∈ E
(1)

> . The intuitive picture to always keep in
mind is Figure 3.5.

On E
(1)

> we define the stopping time

σ ..= inf

{
n > m+ 1 : Θ(2)

n 6∈
[
δ

2
, 1− δ

2

]}
∈ N ∪∞.

We derive some iterative formulas and bounds.

Remark 4.35. For almost every ω ∈E
(1)

> and m ≤ n < σ,

Θ(1)

n+1 < RΘ(1)

n +
1

νn+1
.

Proof. Since for any m ≤ n < σ,

1−π(1)

n+1−π(1)

n = Θ(1)

n

(
π(2)
n

1−Θ(2)
n

+
π(3)
n

1−Θ(3)
n

)
−R(1)

n+1 <
2

δ
(1−π(1)

n )−R(1)

n+1 ≤
2

δ
−R(1)

n+1,

hence, being δ < 1/2,

Θ(1)

n+1 ≤ (1− ρn+1)Θ(1)

n +
2ρn+1

δ
Θ(1)

n + ρn+1|R(1)

n+1| =
[
1 + ρn+1

(
2

δ
− 1

)]
Θ(1)

n

+ ρn+1|R(1)

n+1|.

Hence the claim follows by definition of m.

The next two remarks establish two more iterative formulas.

Remark 4.36. For any n ≥ 0,

Θ(1)

n+2 = Θ(1)

n+1

{
(1− ρn+2) + ρn+2

[
(1− π(1)

n+1)ϑn+1 −Θ(1)

n+1ρn+1ϑn+1 + Θ(1)

n ϑ
′′
n+1 + rn+1

]}
− ρn+2R

(1)

n+2,

where ϑn+1 and ϑ′n+1 are defined as in (3.33) and (3.34) in Remark 3.42 (with the
usual formal change from p, q notation to Θ, π notation),

ϑ′′n+1
..=

1− ρn+1

ρn+1

ϑn+1 + ϑ′n+1 (4.39)

and

rn+1
..= −R(1)

n+1ϑn+1 +
R(2)

n+1

1−Θ(2)

n+1

+
R(3)

n+1

Θ(1)

n+1 + Θ(2)

n+1

. (4.40)

Proof. For any n ≥ 0,

Θ(1)

n+2 = (1− ρn+2)Θ(1)

n+1 + ρn+2Θ(1)

n+1

(
π(2)

n+1

1−Θ(2)

n+1

+
π(3)

n+1

Θ(1)

n+1 + Θ(2)

n+1

)
− ρn+2R

(1)

n+2

= Θ(1)

n+1

{
(1− ρn+2) + ρn+2

(
π(1)

n ϑn+1 + Θ(1)

n ϑ
′
n+1 +

R(2)

n+1

1−Θ(2)

n+1

+
R(3)

n+1

Θ(1)

n+1 + Θ(2)

n+1

)}
− ρn+2R

(1)

n+2,

by the second step (in which we rearranged the factor in the brackets) in the proof of
Remark 3.42, and since by (2.32)

π(1)

n = (1− π(1)

n+1) +
1− ρn+1

ρn+1

Θ(1)

n −
1

ρn+1

Θ(1)

n+1 −R
(1)

n+1,

the claim follows.
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Remark 4.37. For any n ≥ 0,

Θ(2)

n+2−Θ(2)

n+1 = −ρn+2π
(1)

n

(
Θ(2)

n+1 −Θ(2)

n + ξn+1 + ξ′n+1 − η′n+1 − ηn + η′′n+1 + η′′′n+1 + r′n+1

)
where ηn, η′n+1, η′′n+1 and η′′′n+1 are defined as (3.35) to (3.38) in Remark 3.43 (with
the usual formal change from p, q notation to Θ, π notation) and

ξn+1
..= Θ(1)

n+1

Θ(2)

n+1

1−Θ(1)

n+1

(
1 +

1
ρn+1
− 1

π(1)
n

)

ξ′n+1
..= Θ(1)

n Θ(2)

n+1

1− 1
ρn+1

π(1)
n (1−Θ(1)

n+1)

r′n+1
..= −

R(3)

n+1

π(1)
n (Θ(1)

n+1 + Θ(2)

n+1)
+

R(2)

n+2

π(1)
n Θ(2)

n+1

.

Proof. For all n ≥ 0,

Θ(2)

n+2 −Θ(2)

n+1 = ρn+2

(
Θ(2)

n+1

1−Θ(1)

n+1

π(1)

n+1 +
Θ(2)

n+1

Θ(1)

n+1 + Θ(2)

n+1

π(3)

n+1 −R
(2)

n+2 −Θ(2)

n+1

)
= ρn+2

[
Θ(2)

n+1

(
π(1)

n+1

1−Θ(1)

n+1

− 1−
R(2)

n+2

Θ(2)

n+1

)
+

Θ(2)

n+1

Θ(1)

n+1 + Θ(2)

n+1

(
π(1)

n

Θ(2)
n

1−Θ(1)
n

+ π(2)

n

Θ(1)
n

1−Θ(2)
n

+R(3)

n+1

)]
= ρn+2

{
Θ(2)

n+1

[
π(1)

n+1

1−Θ(1)

n+1

− 1 +
Θ(1)
n

(Θ(1)

n+1 + Θ(2)

n+1)(1−Θ(2)
n )

π(2)

n +
R(3)

n+1

Θ(1)

n+1 + Θ(2)

n+1

−
R(2)

n+2

Θ(2)

n+1

]
+ Θ(2)

n

π(1)
n

1−Θ(1)
n

Θ(2)

n+1

Θ(1)

n+1 + Θ(2)

n+1

}
= ρn+2

{
Θ(2)

n+1

[
− π(1)

n −Θ(1)

n+1

π(1)
n + 1

ρn+1
− 1

1−Θ(1)

n+1

−Θ(1)

n

1− 1
ρn+1

1−Θ(1)

n+1

+
Θ(1)
n

(Θ(1)

n+1 + Θ(2)

n+1)(1−Θ(2)
n )

π(2)

n +
R(3)

n+1

Θ(1)

n+1 + Θ(2)

n+1

−
R(2)

n+2

Θ(2)

n+1

]
+ Θ(2)

n π
(1)

n

(
1 +

Θ(1)
n

1−Θ(1)
n

)(
1−

Θ(1)

n+1

Θ(1)

n+1 + Θ(2)

n+1

)}
= −ρn+2π

(1)

n

[
Θ(2)

n+1 −Θ(2)

n

+ Θ(1)

n+1

Θ(2)

n+1

1−Θ(1)

n+1

(
1 +

1
ρn+1
− 1

π(1)
n

)
+ Θ(1)

n Θ(2)

n+1

1− 1
ρn+1

π(1)
n (1−Θ(1)

n+1)

−Θ(1)

n

Θ(2)

n+1

(Θ(1)

n+1 + Θ(2)

n+1)(1−Θ(2)
n )

π(2)
n

π(1)
n

−Θ(2)

n

Θ(1)
n

1−Θ(1)
n

+ Θ(1)

n+1

Θ(2)
n

Θ(1)

n+1 + Θ(2)

n+1

+ Θ(2)

n

Θ(1)
n

1−Θ(1)
n

Θ(1)

n+1

Θ(1)

n+1 + Θ(2)

n+1

−
R(3)

n+1

π(1)
n (Θ(1)

n+1 + Θ(2)

n+1)
+

R(2)

n+2

π(1)
n Θ(2)

n+1

]
,

since by (2.32),

1− π(1)

n+1 = π(1)

n +

(
1− 1

ρn+1

)
Θ(1)

n +
Θ(1)

n+1

ρn+1

,

and therefore

π(1)

n+1

1−Θ(1)

n+1

− 1 = −
1− π(1)

n+1

1−Θ(1)

n+1

+
Θ(1)

n+1

1−Θn+1(1)

= − π(1)
n

1−Θ(1)

n+1

−
1− 1

ρn+1

1−Θ(1)

n+1

Θ(1)

n

−
Θ(1)

n+1

ρn+1(1−Θ(1)

n+1)
+

Θ(1)

n+1

1−Θ(1)

n+1

= −π(1)

n −Θ(1)

n+1

π(1)
n + 1

ρn+1
− 1

1−Θ(1)

n+1

−Θ(1)

n

1− 1
ρn+1

1−Θ(1)

n+1

.

Thus the claim follows.
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Fix a small enough

δ < min

{
4

105
ρ3, 2 3

√
1− ρ̃
3 + 8

ρ

}
and define

γ = γ(δ′) ..=

√
max

{
1− ρ2(δ′)2 +

35

ρ
(δ′)3,

1

ν

}
.

The constant γ is positive subunitary, since γ′ ..= γ2 = max{1−ρ2(δ′)2+35(δ′)3/ρ, ν−1}
is. Indeed 0 < ν−1 < 1 and 0 < 1 − ρ2(δ′)2 + 35(δ′)3/ρ < 1 since −ρx2 + 35x3/ρ is
negative monotone decreasing on (0, 2ρ3/105) and it takes minimum at 2ρ3/105 of
value −212ρ8/1053 > −212/1053. Recall that

R ..= 1 + ρ̃

(
2

δ
− 1

)
.

Further require

ε < min

(δ′)5,
ρδ′(1− γ2)

8
(
R + 1

1−γ2

) , ρδ′

4

(
1 +

R+ 1
1−γ2

1−γ

)
 .

Define also

D ..= 2

[
R

(
R +

1

1− γ2

)
+ 1

](
1 +

1

δ′ρ

)
+

(
R +

1

1− γ2

)[
2 +

1

δ′

(
2

ρ
− 1

)
+

1

(δ′)2

]
+

2

(δ′)2

D̃ = 4 +
1

δ′

(
4

ρ
− 1

)
+

3

(δ′)2

and let Γ be a constant such that

0 < Γ <
δ′

D̃(1− δ′)
,

λ ..= max{γ, ρ̃} and

R̃ ..= R2 +
R

1− γ2
+ 1.

Finally further restrict

ε′ < min

{
ε

R + 3
1−γ2

,
ε

2(6B + 1)
,
ε(1− γ2)

4D
,
δΓλ(1− λ)

2(R̃ + Γ)

}
.

This has ultimately determined the size of K (the smaller set needed to kick start
the arguments in the lemmas that will follow) while K∗ (the larger set, on which all
constants defined so far exist, and apply uniformly as the orbit travels through it)
had been already previously fixed, to determine the constants necessary to define K.

Lemma 4.38. For all ω ∈E
(1)

> such that for all 0 ≤ l ≤ 2k − b,

Θ(1)

m+l ≤ (γ′)b
l
2
c
(

Θ(1)

m +
3

νm(1− γ′)

)
,
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where b ∈ {0, 1}, it holds that for all b ≤ j ≤ 2k,

δ′ < π(1)

m+2k−j <
1

2
− δ′

if j is even and

1

2
+ δ′ < π(1)

m+2k−j < 1− δ′

if j is odd.

Proof. Iterate the first component of (2.32) after rearranging it as

π(1)

m+l = 1− π(1)

m+l−1 +
1− ρm+l

ρm+l

Θ(1)

m+l−1 −
1

ρm+l

Θ(1)

m+l.

It yields

π(1)

m+l =

=

π
(1)
m −

1−ρm+1

ρm+1
Θ(1)
m +

∑l−1
j=1(−1)j+1

(
1

ρm+j
+

1−ρm+j+1

ρm+j+1

)
Θ(1)

m+j − 1
ρm+l

Θ(1)

m+l l even

1− π(1)
m + 1−ρm+1

ρm+1
Θ(1)
m +

∑l−1
j=1(−1)j

(
1

ρm+j
+

1−ρm+j+1

ρm+j+1

)
Θ(1)

m+j − 1
ρm+l

Θ(1)

m+l l odd.

(4.41)

Recall that by construction

ε <
ρδ′(1− γ′)

8
(
R + 1

1−γ′

) .
Then since π(1)

m < 1/2− δ,

π(1)

m+2k−j = π(1)

m −
1− ρm+1

ρm+1

Θ(1)

m +

2k−j−1∑
l=1

(−1)l+1

(
1

ρm+l

+
1− ρm+l+1

ρm+l+1

)
Θ(1)

m+l

− 1

ρm+2k−j
Θ(1)

m+2k−j <
1

2
− δ +

4

ρ

2k−j∑
l=0

Θ(1)

m+l <
1

2
− δ +

8

ρ

(
R +

1

1− γ′

)
ε

b 2k−j
2
c∑

l=0

(γ′)l

<
1

2
− δ +

8

ρ

(
R +

1

1− γ′

)
ε

1− γ′
<

1

2
− δ′ (4.42)

for all even b ≤ j ≤ 2k (with the bound for j = 2k holding also with δ, by adopting
empty sum convention) and

π(1)

m+2k−j = 1− π(1)

m +
1− ρm+1

ρm+1

Θ(1)

m +

2k−j−1∑
l=1

(−1)l
(

1

ρm+l

+
1− ρm+l+1

ρm+l+1

)
Θ(1)

m+l

− 1

ρm+2k−j
Θ(1)

m+2k−j >
1

2
+ δ − 4

ρ

2k−j∑
l=0

Θ(1)

m+l >
1

2
+ δ − 8

ρ

(
R +

1

1− γ′

)
ε

b 2k−j
2
c∑

l=0

(γ′)l

>
1

2
+ δ − 8

ρ

(
R +

1

1− γ′

)
ε

1− γ′
>

1

2
+ δ′ (4.43)
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for all odd b ≤ j ≤ 2k. Similarly, since δ < π(1)
m < 1− δ,

π(1)

m+2k−j = π(1)

m −
1− ρm+1

ρm+1

Θ(1)

m +

2k−j−1∑
l=1

(−1)l+1

(
1

ρm+l

+
1− ρm+l+1

ρm+l+1

)
Θ(1)

m+l

− 1

ρm+2k−j
Θ(1)

m+2k−j > δ − 4

ρ

2k−j∑
l=0

Θ(1)

m+l > δ − 8

ρ

(
R +

1

1− γ′

)
ε

b 2k−j
2
c∑

l=0

(γ′)l

> δ − 8

ρ

(
R +

1

1− γ′

)
ε

1− γ′
> δ′ (4.44)

for all even b ≤ j ≤ 2k and

π(1)

m+2k−j = 1− π(1)

m +
1− ρm+1

ρm+1

Θ(1)

m +

2k−j−1∑
l=1

(−1)l
(

1

ρm+l

+
1− ρm+l+1

ρm+l+1

)
Θ(1)

m+l

− 1

ρm+2k−j
Θ(1)

m+2k−j < 1− δ +
4

ρ

2k−j∑
l=0

Θ(1)

m+l < 1− δ +
8

ρ

(
R +

1

1− γ′

)
ε

b 2k−j
2
c∑

l=0

(γ′)l

< 1− δ +
8

ρ

(
R +

1

1− γ′

)
ε

1− γ′
< 1− δ′ (4.45)

for all odd b ≤ j ≤ 2k.

Lemma 4.39. For all ω ∈E
(1)

> such that for all 0 ≤ l ≤ 2k − b,

Θ(1)

m+l ≤ (γ′)b
l
2
c
(

Θ(1)

m +
3

νm(1− γ′)

)
,

where b ∈ {0, 1}, and δ′ < Θ(2)

m+l < 1− δ′, it holds that for all b ≤ j ≤ 2k − 1,

|Θ(2)

m+2k−j −Θ(2)

m+2k−j−1| < ε.

Proof. Recall that

ε′ <
ε(1− γ′)

4D
.

Iterate Remark 4.37 setting n = m+ 2(k − 1)− j down to time m, it yields

|Θ(2)

m+2k−j −Θ(2)

m+2k−j−1| ≤ |Θ
(2)

m+1 −Θ(2)

m |+
2k−j−1∑
l=1

Em+l <
ε

2
+

2k−2∑
l=1

Em+l,

where Em+l
..= ξm+l + ξ′m+l + ηm+l + η′m+l + ηm+l−1 + η′′m+l + η′′′m+l + |r′m+l|. Note

that the hypotheses allow to apply Lemma 4.38, thus δ′ < π(1)

m+l−1 < 1 − δ′ for all
1 ≤ l ≤ 2k − j − 1. This implies that, using Remark 4.35 and the assumptions, for
all 1 ≤ l ≤ 2k − j − 1,

ηm+l−1 < Θ(1)

m+l−1 < (γ′)b
l−1
2
c
(
R +

1

1− γ′

)
ε′ (4.46)

ηm+l < RΘ(1)

m+l−1 +
1

νm+l
<

[
R

(
R +

1

1− γ′

)
+ (γ′)l−b

l−1
2
c
]

(γ′)b
l−1
2
cε′ (4.47)

η′m+l <
Θ(1)

m+l−1

(δ′)2
<

1

(δ′)2
(γ′)b

l−1
2
c
(
R +

1

1− γ′

)
ε′ (4.48)

η′′m+l <
1

δ′

(
RΘ(1)

m+l−1 +
1

νm+l

)
<

1

δ′

[
R

(
R +

1

1− γ′

)
+ (γ′)l−b

l−1
2
c
]

(γ′)b
l−1
2
cε′

(4.49)

η′′′m+l < Θ(1)

m+l−1 < (γ′)b
l−1
2
c
(
R +

1

1− γ′

)
ε′, (4.50)
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and similarly we can estimate the three error terms

ξm+l <

[
1 +

1

δ′

(
2

ρ
− 1

)](
RΘ(1)

m+l−1 +
1

νm+l

)
<

[
1 +

1

δ′

(
2

ρ
− 1

)][
R

(
R +

1

1− γ′

)
+ (γ′)l−b

l−1
2
c
]

(γ′)b
l−1
2
cε′ (4.51)

ξ′m+l <
1

δ′

(
2

ρ
− 1

)(
R +

1

1− γ′

)
(γ′)b

l−1
2
cε′ (4.52)

|r′m+l| ≤
|R(3)

m+l|
π(1)

m+l−1(Θ(1)

m+l + Θ(2)

m+l)
+
|R(2)

m+l+1|
π(1)

m+l−1Θ(2)

m+l

<
2

(δ′)2νm+l
<

2(γ′)l

(δ′)2
ε′. (4.53)

Hence
Em+l ≤ D(γ′)b

l−1
2
cε′, (4.54)

which yields a bound uniform in k on the increments of the Θ(2)-component,

|Θ(2)

m+2k−1 −Θ(2)

m+2k−2| <
ε

2
+Dε′

∞∑
l=1

(γ′)b
l−1
2
c =

ε

2
+ 2D

ε′

1− γ′
<
ε

2
+
ε

2
< ε. (4.55)

Lemma 4.40. For almost every ω ∈E
(1)

> , for all m+ 1 ≤ n ≤ σ,

Θ(1)

n ≤ γn−m−1

(
RΘ(1)

m +
3

νm(1− γ2)

)
.

Proof. Recall that

γ′ ..= γ2 = max

{
1− ρ2 (δ′)2

ρ2
+

35

ρ
(δ′)3,

1

ν

}
.

We will first show, by adopting empty sum convention, that for almost all ω ∈ E
(1)

> ,
for every k ≥ 0 such that m+ 2k ≤ σ,

Θ(1)

m+2k ≤ (γ′)kRΘ(1)

m +
1

νm

(
3

2k−1∑
l=k+1

(γ′)l + 2(γ′)2k

)
(4.56)

Θ(1)

m+2k+1 ≤ (γ′)kRΘ(1)

m +
1

νm

(
3

2k∑
l=k+1

(γ′)l + (γ′)2k+1

)
(4.57)

and, if m+ 2k = σ, we only show the claim up to (4.56). Recall that by construction

δ′ < min

{
2

105
ρ3, 3

√
1− ρ̃
3 + 8

ρ

}

and

ε < min

(δ′)5,
ρδ′(1− γ′)

8
(
R + 1

1−γ′

)
 .

Recall also that

ε′ < min

{
ε

R + 3
1−γ′

,
ε(1− γ′)

4D

}
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and 3ν−m < ε′. Choosing n = m in Remark 4.35 yields (4.57) for k = 0 (for k = 0,
(4.56) is trivial, since R > 1): for almost every ω ∈E

(1)

> ,

Θ(1)

m+1 < RΘ(1)

m +
1

νm+1
< RΘ(1)

m +
γ′

νm
.

Let n = m in (3.33) and (3.34) (after changing formally to Θ, π notation) and apply
the hypotheses made in (4.36) to (4.38), and |Θ(2)

m+1 − Θ(2)
m | < ε/2, which follows from

(4.35), and is crucial to (4.59), the same way it was to (3.54). Then the estimates
(3.53) to (3.55) follow, as in the corresponding step at the beginning of Lemmas A.38
and 3.46, for almost every ω ∈E

(1)

> :

|ϑm+1| ≤
2

δ′(1− ε)
, (4.58)

|ϑm+1| ≤ 2 +
ε

1− ε

(
2 +

3

δ′

)
, (4.59)

|ϑ′m+1| ≤
1

δ′

(
1

1− ε
+

2

δ′ + ε

)
. (4.60)

Plugging (4.58) to (4.60) into (4.39) applied to n = m, yields

|ϑ′′m+1| ≤
(

2

ρ
− 1

)
|ϑm+1|+ |ϑ′m+1| ≤

(
2

ρ
− 1

)
2

δ′(1− ε)
+

1

δ′

(
1

1− ε
+

2

δ′ + ε

)
and therefore, for almost every ω ∈E

(1)

> ,

|ϑ′′m+1| <
1

δ′

[(
4

ρ
− 1

)
1

1− ε
+

2

δ′

]
. (4.61)

By plugging (4.58) into (4.40) applied to n = m, yields

|rm+1| ≤
1

νm+1

(
|ϑm+1|+

2

δ′

)
≤ 1

νm+1

(
2

δ′(1− ε)
+

2

δ′

)
,

thus yielding, for almost every ω ∈E
(1)

> , that

|rm+1| <
4

δ′(1− ε)νm+1
. (4.62)

Plug the estimates (4.58) to (4.62) into Remark 4.36 applied to n = m, it yields

Θ(1)

m+2 ≤ Θ(1)

m+1

{
(1− ρm+2) + ρm+2

[
2(1− π(1)

m+1) +
ε

1− ε

(
2 +

3

δ′

)
+

Θ(1)

m+1

ρm+1

2

δ′(1− ε)

+
Θ(1)
m

δ′

[(
4

ρ
− 1

)
1

1− ε
+

2

δ′

]
+ |rm+1|

]}
+ |R(1)

m+2| ≤ Θ(1)

m+1

{
(1− ρm+2)

+ ρm+2

[
2(1− π(1)

m+1) + ε

{
1

1− ε

(
2 +

3

δ′

)
+

2

ρ

2

δ′(1− ε)
+

1

δ′

[(
4

ρ
− 1

)
1

1− ε
+

2

δ′

]}
+

4

δ′(1− ε)νm+1

]}
+

1

νm+2
< Θ(1)

m+1

{
(1− ρm+2) + ρm+2

[
2(1− π(1)

m+1)

+ 2ε

(
1

1− ε
+

(
4

ρ
+ 1

)
1

δ′(1− ε)
+

1

(δ′)2

)
+

4

δ′(1− ε)
ε′
]}

+
1

νm+2

≤ Θ(1)

m+1

{
(1− ρm+2) + 2ρm+2(1− π(1)

m+1) + 2ε

(
1

1− ε
+ 2

(
1 +

2

ρ

)
1

δ′(1− ε)
+

1

(δ′)2

)}
+

1

νm+2
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for almost every ω ∈ E
(1)

> . In the last inequality we used ε′ < ε/2. Recall that
ε < (δ′)5 < 25/1055. Then π(1)

m < 1/2− δ implies that for almost every ω ∈E
(1)

> ,

π(1)

m+1 = 1− π(1)

m +
1− ρm+1

ρm+1

Θ(1)

m −
1

ρm+1

Θ(1)

m+1 >
1

2
+ δ − 2

ρ
Θ(1)

m −
2

ρ

(
RΘ(1)

m +
1

νm+1

)
>

1

2
+ δ − 4

ρ
(R + 1) ε >

1

2
+ δ′

by construction of ε. Since

(1− ρm+2) + 2ρm+2(1− π(1)

m+1) + 2ε

(
1

1− ε
+ 2

(
1 +

2

ρ

)
1

δ′(1− ε)
+

1

(δ′)2

)
< 1− ρm+2 + 2ρm+2(1− π(1)

m+1) + 2ε

(
1

δ′
+

(
3 +

4

ρ

)
1

(δ′)2

)
< 1− 2ρm+2δ

′

+ 4

(
1 +

1

ρ

)
ε

(δ′)2
< 1− ρδ′ + 8

ρ
(δ′)3,

by (4.56) applied to k = 1, for almost every ω ∈E
(1)

> we have that

Θ(1)

m+2 < Θ(1)

m+1

(
1− ρδ′ + 8

ρ
(δ′)3

)
+

1

νm+2
≤ γ′Θ(1)

m+1 +
1

νm+2
< Rγ′Θ(1)

m +
γ′

νm+1

+
1

νm+2
< Rγ′Θ(1)

m +
2

νm
(γ′)2.

Note that for any δ′ > 0, γ′ ≥ 1 − ρ2(δ′)2 + 35(δ′)3/ρ > 1 − ρδ′ + 8(δ′)3/ρ since it is
equivalent to ρ− ρ2δ′+ 27(δ′)2/ρ > 0, and ρ− ρ2x+ 27x2/ρ > 0 is a convex parabola
with symmetry axis parallel to the y-axis taking value ρ > 0 at 0 and having negative
discriminant ρ4− 108/ρ (since ρ < 1, the discriminant is less than −107). If ω ∈E

(1)

> is
such that σ > m+ 2, the case k = 1 is not yet concluded. By the geometric decaying
upper bound proved so far and the construction of ε′, for almost every ω considered

Θ(1)

m+2 <

(
R +

3

1− γ′

)
ε′ < ε.

By the definition of σ and the fact that δ′ < p(2)

m+2 < 1− δ′, also the same estimates in
(4.58) and (4.60) to (4.62) apply, for almost every such ω, to ϑm+2, ϑ′m+2, ϑ′′m+2 and
rm+2, with the due shift of time indices. However, (4.59) does not apply automatically
since nothing guarantees that the same bound applies on the shifted increments of the
Θ(2)-component. Let us first assume that indeed it also holds that |Θ(2)

m+2−Θ(2)

m+1| < ε
for almost every ω considered, and therefore that also (4.59) applies for almost every
ω considered, with the due shift of indices. Plugging these into Remark 4.36 applied
to n = m+ 1, and recalling that for all n ≥ m, ρn+1/ρn < 3/2 and ρn+1− ρn < ε, yields
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that

Θ(1)

m+3 ≤ Θ(1)

m+2

[
1− ρm+3 + 2ρm+3(1− π(1)

m+2) + 4

(
1 +

1

ρ

)
ε

(δ′)2

]
+ ρm+3|R(1)

m+3|

< Θ(1)

m+2

[
1− ρm+3 + 2ρm+3

(
π(1)

m+1 −
1− ρm+2

ρm+2

Θ(1)

m+1 +
1

ρm+2

Θ(1)

m+2

)
+

8

ρ

ε

(δ′)2

]
+

1

νm+3

≤
{

Θ(1)

m+1

[
1− ρm+2 + 2ρm+2(1− π(1)

m+1) +
8

ρ

ε

(δ′)2

]
+

1

νm+2

}[
1− ρm+3 + 2ρm+3π

(1)

m+1

+ 3Θ(1)

m+2 +
8

ρ

ε

(δ′)2

]
+

1

νm+3
<

{
Θ(1)

m+1

[
1− ρm+2 + 2ρm+2(1− π(1)

m+1) +
8

ρ

ε

(δ′)2

]
+

1

νm+2

}[
1− ρm+3 + 2ρm+3π

(1)

m+1 + ε

(
3 +

8

ρ(δ′)2

)]
+

1

νm+3
< Θ(1)

m+1

[
1− ρm+2

+ 2ρm+2(1− π(1)

m+1) +
8

ρ

1ε

(δ′)2

][
1− ρm+3 + 2ρm+3π

(1)

m+1 + ε

(
3 +

8

ρ(δ′)2

)]
+

1

νm+2

[
1− ρm+3 + 2ρm+3π

(1)

m+1 + (δ′)5

(
3 +

8

ρ(δ′)2

)]
+

1

νm+3

< Θ(1)

m+1

[
1− ρm+2 + 2ρm+2(1− π(1)

m+1) +
8

ρ

ε

(δ′)2

] [
3− ρm+3 − 2δ′ + ε

(
3 +

8

ρ(δ′)2

)]
+

2

νm+2
+

1

νm+3
< Θ(1)

m+1

[
1− ρm+2ρm+3 + 4ρm+2ρm+3π

(1)

m+1(1− π(1)

m+1)

+ (ρm+3 − ρm+2)(2π(1)

m+1 − 1) + ε

(
3 +

8

ρ(δ′)2

)
+

24

ρ

ε

(δ′)2
+ ε2 8

ρ(δ′)2

(
3 +

8

ρ(δ′)2

)]
+

2

νm+2
+

1

νm+3

for almost every ω considered, since the condition

δ < 2 3

√
1− ρ̃
3 + 8

ρ

ensures

1− ρm+3 + 2ρm+3π
(1)

m+1 + (δ′)5

(
3 +

8

ρ(δ′)2

)
< 1 + ρ̃+

(
3 +

8

ρ

)
δ′3 < 2.

Noting that for almost every ω considered

1− ρm+2ρm+3 + 4ρm+2ρm+3π
(1)

m+1(1− π(1)

m+1) + (ρm+3 − ρm+2)(2π(1)

m+1 − 1)

+ ε

(
3 +

8

ρ(δ′)2

)
+

24

ρ

ε

(δ′)2
+ ε2 8

ρ(δ′)2

(
3 +

8

ρ(δ′)2

)
≤ 1− ρ2(δ′)2 + (δ′)5

+ 3(δ′)5 +
32

ρ
(δ′)3 +

24

ρ
(δ′)8 + (δ′)6 64

ρ2
< 1− ρ2(δ′)2 + (δ′)3

[
32

ρ
+ 4(δ′)2

+
64

ρ2
(δ′)3 +

24

ρ
(δ′)5

]
≤ 1− ρ2(δ′)2 +

35

ρ
(δ′)3,

we can conclude that (4.57) holds for almost every ω ∈E
(1)

> considered, for k = 1:

Θ(1)

m+3 < Θ(1)

m+1

(
1− ρ2(δ′)2 +

35

ρ
(δ′)3

)
+

2

νm+2
+

1

νm+3

< γ′Θ(1)

m+1 +
2

νm+2
+

1

νm+3
< γ′RΘ(1)

m +
1

νm
(
3(γ′)2 + (γ′)3

)
.
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We now show that the upper bound on the Θ(2)-component keeps applying for almost
every ω considered, by using Remark 4.37 applied to n = m, yielding the upper bound
corresponding to Lemma 3.45 by defining Em+1

..= ξm+1 + ξ′m+1 + ηm+1 + η′m+1 + ηm +
η′′m+1 + η′′′m+1 + |r′m+1|, that is

|Θ(2)

m+2 −Θ(2)

m+1| ≤ |Θ
(2)

m+1 −Θ(2)

m |+ Em+1.

Since, as previously mentioned, for almost every ω considered, Θ(1)

m+2 < ε, by the defi-
nition of σ, which ensures that also δ′ < Θ(2)

m+1 < 1−δ′, and by exploiting Remark 4.35
applied to n = m, we can estimate

ηm =
Θ(2)
m Θ(1)

m

Θ(2)
m + Θ(3)

m

< Θ(1)

m (4.63)

ηm+1 =
Θ(2)

m+1Θ(1)

m+1

Θ(2)

m+1 + Θ(3)

m+1

< RΘ(1)

m +
1

νm+1
(4.64)

η′m+1
..=

π(2)
m

π(1)
m

Θ(2)

m+1

Θ(1)

m+1 + Θ(2)

m+1

Θ(1)
m

1−Θ(2)
m

<
1

(δ′)2
Θ(1)

m (4.65)

η′′m+1
..= Θ(2)

m

Θ(1)

m+1

Θ(1)

m+1 + Θ(2)

m+1

<
1− δ′

δ′

(
RΘ(1)

m +
1

νm+1

)
<

1

δ′

(
RΘ(1)

m +
1

νm+1

)
(4.66)

η′′′m+1 = Θ(2)

m

Θ(1)

m+1

Θ(1)

m+1 + Θ(2)

m+1

Θ(1)
m

Θ(2)
m + Θ(3)

m

< Θ(1)

m (4.67)

ξm+1 =
Θ(2)

m+1

Θ(2)

m+1 + Θ(3)

m+1

(
1 +

1
ρm+1

− 1

π(1)
m

)
Θ(1)

m+1 <

[
1 +

1

δ′

(
2

ρ
− 1

)](
RΘ(1)

m +
1

νm+1

)
(4.68)

ξ′m+1 =
Θ(2)

m+1

Θ(2)

m+1 + Θ(3)

m+1

1
ρm+1

− 1

π(1)
m

Θ(1)

m <
1

δ′

(
2

ρ
− 1

)
Θ(1)

m (4.69)

|r′m+1| ≤
|R(3)

m+1|
π(1)
m (Θ(1)

m+1 + Θ(2)

m+1)
+
|R(2)

m+2|
π(1)
m Θ(2)

m+1

≤ 2

(δ′)2νm+1
(4.70)

for almost every ω considered. Then by recalling that Θ(1)
m , ν

−m < ε′ and R > 1, we
have that for almost every ω considered

Em+1 <

[
2 +

1

δ′

(
2

ρ
− 1

)
+

3

(δ′)2
+ (R + 1)

(
1 +

2

δ′ρ

)]
ε′ < Dε′.

Therefore, by construction of ε′ we get, for almost every ω ∈E
(1)

> considered, that

Em+1 ≤
ε

4
.

Since |Θ(2)

m+1 −Θ(2)
m | < ε/2, this yields that for almost every ω considered

|Θ(2)

m+2 −Θ(2)

m+1| <
ε

2
+
ε

4
< ε.

Apart from the base cases, this estimate will be less immediate in further steps and
we will rely on Lemma 4.39.

To summarise what we proved in this two steps argument: there is a constant γ′ =
γ′(δ′, ν) holding uniformly on K∗ almost surely on both events in E

(1)

> : {σ = m + 2}
and {σ > m + 2}. For almost every ω in the first event, Θ(1)

m+1 < (γ′)0RΘ(1)
m + γ′ν−m
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(case k = 0), and Θ(1)

m+2 < γ′RΘ(1)
m + 2(γ′)2ν−m) (half case k = 1); for almost every

ω in the second event both Θ(1)

m+1 < (γ′)0RΘ(1)
m + γ′ν−m) (case k = 0), and Θ(1)

m+2 <
γ′RΘ(1)

m + 2(γ′)2ν−m) and Θ(1)

m+3 < γ′RΘ(1)
m + ν−m(3(γ′)2 + (γ′)3) (full case k = 1).

Note, before proceeding, that the estimate on π(1)
n ’s oscillations above and below 1/2

has to iterate at each step. For example, for the next step it will hold for almost every
ω ∈E

(1)

> considered, because for all j ∈ N,

1

ρm+j

,
1− ρm+j

ρm+j

,
1

ρm+j

+
1− ρm+j+1

ρm+j+1

<
4

ρ
,

hence

π(1)

m+2 = 1− π(1)

m+1 +
1− ρm+2

ρm+2

Θ(1)

m+1 −
1

ρm+2

Θ(1)

m+2 = π(1)

m −
1− ρm+1

ρm+1

Θ(1)

m +
1

ρm+1

Θ(1)

m+1

+
1− ρm+2

ρm+2

Θ(1)

m+1 −
1

ρm+2

Θ(1)

m+2 <
1

2
− δ +

1− ρm+1

ρm+1

Θ(1)

m +

(
1

ρm+1

+
1− ρm+2

ρm+2

)
Θ(1)

m+1 +
1

ρm+2

Θ(1)

m+2 <
1

2
− δ +

4

ρ

[
2

(
RΘ(1)

m +
1

νm

)
+ γ′

(
RΘ(1)

m +
1

νm

)]
<

1

2
− δ +

8

ρ
(R + 1)ε(1 + γ′) <

1

2
− δ′

by construction of ε. If ω ∈ E
(1)

> is such that m + 3 < n < σ, we show the claim for
n+1. There are two steps to perform, each requiring a separate argument, depending
on ω: the even step from n = m + 2k − 1 to n + 1 = m + 2k and the odd step from
n = m + 2k to n + 1 = m + 2k + 1, for all k ∈ N such that n is in the mentioned
range.

• In the even step, putting (4.56) and (4.57) together, one has the induction
hypothesis that for almost every ω ∈E

(1)

> considered, for all 1 ≤ j ≤ 2k − 1,

Θ(1)

m+2k−j <

(γ′)b
2k−j

2
cRΘ(1)

m + 1
νm

(
3
∑2k−j−1

l=b 2k−j
2
c+1

(γ′)l + 2(γ′)2k−j
)
, j even

(γ′)b
2k−j

2
cRΘ(1)

m + 1
νm

(
3
∑2k−j−1

l=b 2k−j
2
c+1

(γ′)l + (γ′)2k−j
)
, j odd

(4.71)
so that for almost every ω considered

Θ(1)

m+2k−j < (γ′)b
2k−j

2
c

(
RΘ(1)

m +
3

νm

2k−j∑
l=1

(γ′)l

)
< (γ′)b

2k−j
2
c
(
R +

1

1− γ′

)
ε′,

(4.72)
and (4.56) needs to be shown. As to the oscillations of π(1), they are δ′-bounded
away from 1/2 in the correct order, for almost every ω considered, thanks to
(4.72), which allows the use of Lemma 4.38 with b = 1. For almost every ω
considered,

π(1)

m+2k−j <
1

2
− δ′

for all even 1 ≤ j ≤ 2k (with the bound for j = 2k holding also with δ by
adopting empty sum convention) and

π(1)

m+2k−j >
1

2
+ δ′

for all odd 1 ≤ j ≤ 2k (with bound for j = 2k holding also with δ
by adopting empty sum convention). All that remains to be shown is that
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Θ(1)

m+2k < γ′Θ(1)

m+2k−1 + ρ̃ν−m−2k, by using π(1)

m+2k−1 >
1/2 + δ′ for almost every ω

considered. Since (4.71) holds, implying

Θ(1)

m+2k−1 < (γ′)k−1RΘ(1)

m +
1

νm

3

2(k−1)∑
l=k

(γ′)l + (γ′)2k−1


for almost every ω ∈ E

(1)

> considered, and since ω is such that σ > m + 2k − 1,
which implies that δ′ < Θ(2)

m+2k−1 < 1−δ′; the estimates in (4.58) to (4.61) apply
also to ϑm+2k−1, ϑ′m+2k−1 and ϑ′′m+2k−1 (with the due shift of time indices) for
almost every ω considered, because by Lemma 4.39 with b = 1 we know that
|Θ(2)

m+2k−1 − Θ(2)

m+2k−1| < ε, for almost every ω ∈ E
(1)

> considered. Plugging the
aforementioned estimates into Remark 4.36 applied to n = m + 2k − 2, yields
the same estimate as that obtained for Θ(1)

m+2 earlier, that is,

Θ(1)

m+2k < Θ(1)

m+2k−1

{
(1− ρm+2k) + 2ρm+2k(1− π(1)

m+2k−1) + 2ε

(
1

1− ε

+
2

δ′(1− ε)

(
1 +

2

ρ

)
+

1

(δ′)2

)}
+

1

νm+2k
< Θ(1)

m+2k−1

(
1− ρδ′ + 8

ρ
(δ′)3

)
+

1

νm+2k
< γ′Θ(1)

m+2k−1 +
(γ′)2k

νm
< γ′(γ′)k−1RΘ(1)

m

+
γ′

νm

3

2(k−1)∑
l=k

(γ′)l + (γ′)2k−1

+
(γ′)2k

νm

= (γ′)kRΘ(1)

m +
1

νm

(
3

2k−1∑
l=k+1

(γ′)l + 2(γ′)2k

)

for almost every ω ∈E
(1)

> considered, which is (4.56).

• In the odd step one has the induction hypothesis (4.72) for all 0 ≤ j ≤ 2k − 1,
since we have just shown, for almost every ω ∈ E

(1)

> considered, (4.56) for the
even step, so that the new range is extended by one index, and we need to show
(4.57). For the oscillations of π(1), we proceed similarly to the even step but
with a different range for j, by exploiting Lemma 4.38 applied with b = 0. For
almost every ω ∈E

(1)

> considered

π(1)

m+2k−j <
1

2
− δ′

for all even 0 ≤ j ≤ 2k (with the bound for j = 2k holding also with δ by
adopting empty sum convention) and

π(1)

m+2k−j >
1

2
+ δ′

for all odd 0 ≤ j ≤ 2k (with bound for j = 2k holding also with δ, by adopting
empty sum convention). All that has to be shown explicitly is that for almost
every ω ∈E

(1)

> considered

θ(1)

m+2k+1 < γ′θ(1)

m+2k−1 +
2

νm+2k
+

1

νm+2k+1
,

by using

π(1)

m+2k−1 >
1

2
+ δ′.
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Since, like in the even step, (4.71) holds, implying

Θ(1)

m+2k−1 < (γ′)k−1RΘ(1)

m +
1

νm

3

2(k−1)∑
l=k

(γ′)l + (γ′)2k−1


for almost every ω ∈ E

(1)

> considered, and since ω is such that σ > m + 2k,
implying that δ′ < Θ(2)

m+2k < 1− δ′; the estimates in (4.58) to (4.61) apply up to
ϑm+2k, ϑ

′
m+2k and ϑ′′m+2k (with the due shift of time indices), since Lemma 4.39

with b = 0 ensures that for almost every ω considered |Θ(2)

m+2k − Θ(2)

m+2k| < ε
as well; we will use explicitly also the previous step’s estimates for ϑm+2k−1

and ϑ′m+2k−1. They are vital, since in this step the bound needed is yielded by
iterating the previous even step into the current odd one, producing a two-step
estimate, because a one-step estimate would not yield a subunitary constant due
to π(1)

m+2k <
1/2−δ′, which would imply 2(1−π(1)

m+2k) > 1. Therefore, by plugging
these estimates into Remark 4.36 applied to n = m+ 2k− 1, and also using the
estimate from the previous even step, yields the estimate corresponding to the
one obtained for Θ(1)

m+3:

Θ(1)

m+2k+1 < Θ(1)

m+2k−1

[
1− ρm+2k + 2ρm+2k(1− π(1)

m+2k−1) +
8

ρ

ε

(δ′)2

]
[
1− ρm+2k+1 + 2ρm+2k+1π

(1)

m+2k−1 + ε

(
3 +

8

ρ(δ′)2

)]
+

1

νm+2k

[
1− ρm+2k+1 + 2ρm+2k+1π

(1)

m+2k−1 + (δ′)5

(
3 +

8

ρ(δ′)2

)]
+

1

νm+2k+1
< γ′Θ(1)

m+2k−1 +
2

νm+2k
+

1

νm+2k+1
< γ′(γ′)k−1RΘ(1)

m +
1

νm
γ′3

2(k−1)∑
l=k

(γ′)l + (γ′)2k−1

+ 2
1

νm+2k
+

1

νm+2k+1

< (γ′)kRΘ(1)

m +
1

νm

(
3

2k−1∑
l=k+1

(γ′)l + (γ′)2k+1

)
,

which is, for almost every ω ∈E
(1)

> considered, the sought estimate: (4.57).

We conclude that, by factoring out (γ′)k, (4.56) and (4.57) yield

Θ(1)

m+2k < (γ′)k
(
RΘm +

3

νm(1− γ′)

)
Θ(1)

m+2k+1 < (γ′)k
(
RΘm +

3

νm(1− γ′)

)
.

Recall that γ ..=
√
γ′. We have shown that for almost every ω ∈ E

(1)

> , for all integers
1 ≤ l ≤ σ −m,

Θ(1)

m+l < (γ′)b
l
2
c
(
RΘ(1)

m +
3

νm(1− γ′)

)
.

Since ⌊
l

2

⌋
≥ l − 1

2
,

it follows that
(γ′)b

l
2
c <

√
γ′
l−1
.
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Then the two-steps geometric decaying upper bound can be expressed as a one-step
geometric decaying upper bound. It has been shown that for almost every ω ∈ E

(1)

> ,
for all integers 1 ≤ l ≤ σ −m,

Θ(1)

m+l < γl−1

(
RΘ(1)

m +
3

νm(1− γ2)

)
.

Hence for almost every ω ∈E
(1)

> , for all m ≤ n ≤ σ,

Θ(1)

n < γn−m−1

(
RΘ(1)

m +
3

νm(1− γ2)

)
.

For every ω ∈E
(1)

> fixed, for any τ ≥ m define a hitting time

ζ ..= inf

{
n > τ :

|Θ(2)

n+1 −Θ(2)
n |

RΘ(1)
n + ν−n−1

<
1

Γ

}
.

Lemma 4.41. For almost every ω ∈E
(1)

> such that there exists a time m(ω) ≤ τ(ω) <
σ(ω), such that

RΘ(1)

τ(ω)(ω) + ν−τ−1

|Θ(2)

τ(ω)+1(ω)−Θ(2)

τ(ω)(ω)|
≤ Γ,

it holds that for all τ(ω) ≤ n ≤ ζ(ω) ∧ σ(ω),

|Θ(2)

n+1(ω)−Θ(2)

n (ω)| < ρ̃n−m|Θ(2)

m+1(ω)−Θ(2)

m (ω)|.

Proof. We show the claim for almost every ω ∈ E
(1)

> ∩ {τ = m} first. For every ω
considered, ζ = m + 1, thus ζ ∧ σ = m + 1; for almost every ω considered it is also
known that:

• Θ(1)

m+1 < RΘ(1)
m + ν−m−1 by Remark 4.35 with n = m holds;

• the condition RΘ(1)
m + ν−m−1 ≤ Γ|Θ(2)

m+1 −Θ(2)
m | is satisfied;

• the hypotheses made in (4.36) to (4.38) are satisfied.

Since trivially both Θ(1)
m , ν

−m−1 < RΘ(1)
m + ν−m−1 as R > 1, by (4.63) to (4.67) it

follows, for almost every ω considered, that

ηm < Θ(1)

m < Γ|Θ(2)

m+1 −Θ(2)

m |

ηm+1 < RΘ(1)

m +
1

νm+1
< Γ|Θ(2)

m+1 −Θ(2)

m |

η′m+1 <
1

(δ′)2
Θ(1)

m <
Γ

(δ′)2
|Θ(2)

m+1 −Θ(2)

m |

η′′m+1 <
1

δ′

(
RΘ(1)

m +
1

νm+1

)
<

1

δ′
Γ|Θ(2)

m+1 −Θ(2)

m |

η′′′m+1 < Θ(1)

m < Γ|Θ(2)

m+1 −Θ(2)

m |

ξm+1 <

[
1 +

1

δ′

(
2

ρ
− 1

)](
RΘ(1)

m +
1

νm+1

)
<

[
1 +

1

δ′

(
2

ρ
− 1

)]
Γ|Θ(2)

m+1 −Θ(2)

m |

ξ′m+1 <
1

δ′

(
2

ρ
− 1

)
Θ(1)

m <
1

δ′

(
2

ρ
− 1

)
Γ|Θ(2)

m+1 −Θ(2)

m |

|r′m+1| <
2

(δ′)2νm+1
<

2

(δ′)2
Γ|Θ(2)

m+1 −Θ(2)

m |
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Plugging these estimates into Remark 4.37 applied to n = m yields, for almost every
ω considered,

|Θ(2)

m+2 −Θ(2)

m+1| < ρ̃π(1)

m

(
1 + ΓD̃

)
|Θ(2)

m+1 −Θ(2)

m |.

Since by construction Γ < δ′/[D̃(1− δ′)],

π(1)

m (1 + ΓD̃) < π(1)

m

(
1 +

δ′

1− δ′

)
=

π(1)
m

1− δ′
≤ 1,

and therefore it follows that

|Θ(2)

m+2 −Θ(2)

m+1| ≤ ρ̃|Θ(2)

m+1 −Θ(2)

m |

for almost every ω considered, and the first step of the induction is complete.
If ω is such that ζ(ω) > m+ 1, then ζ(ω) ∧ σ(ω) > m+ 1. We have already seen,

in the previous step, that δ′ < δ < π(1)
m < 1 − δ < 1 − δ′ is crucial for the argument,

so we will have to make sure it iterates for almost every ω considered. Recall that

ε <
ρδ′

4

(
1 +

R+ 1
1−γ2

1−γ

) .
Since for all m < n ≤ ζ(ω) ∧ σ(ω), by Lemma 4.40, it holds that for almost every
such ω, Θ(1)

n < γn−m−1 (RΘ(1)
m + 3ν−m/(1− γ)), or equivalently

Θ(1)

m+k < γk−1

(
RΘ(1)

m +
3

νm(1− γ2)

)
< γk−1

(
R +

1

1− γ2

)
ε′

for all k ∈ N such that n = m + k is within the bounds above; by (4.41), for almost
every ω considered, for all such k’s

π(1)

m+k ≥



π(1)
m − 4

ρ

∑k
j=0 Θ(1)

m+j ≥ δ − 4
ρ
ε
(

1 +
(
R + 1

1−γ2

)∑k
j=0 γ

j
)

> δ − 4
ρ
ε

(
1 +

R+ 1
1−γ2

1−γ

)
> δ′, k even

1− π(1)
m − 4

ρ

∑k
j=0 Θ(1)

m+j ≥ δ − 4
ρ
ε
(

1 +
(
R + 1

1−γ2

)∑k
j=0 γ

j
)

≥ δ − 4
ρ
ε

(
1 +

R+ 1
1−γ2

1−γ

)
> δ′, k odd.

by construction of ε. This ensures that when estimating η′n, ξn, ξ′n and r′n with the
constants, which upper bound the reciprocals of the π(1)-component, can carry out
during the induction step, for almost every ω considered. As to the constant, which
lower bound the reciprocals involving the π(1)-component, one can proceed analogously
for almost every ω considered:

π(1)

m+k ≤



π(1)
m + 4

ρ

∑k
j=0 Θ(1)

m+j ≤ 1− δ + 4
ρ
ε
(

1 +
(
R + 1

1−γ2

)∑k
j=0 γ

j
)

< 1− δ + 4
ρ
ε

(
1 +

R+ 1
1−γ2

1−γ

)
< 1− δ′, k even

1− q(1)
m + 2−ρ

ρ

∑k
j=0 p

(1)

m+j ≤ 1− δ + 4
ρ
ε
(

1 +
(
R + 1

1−γ2

)∑k
j=0 γ

j
)

< 1− δ + 4
ρ
ε

(
1 +

R+ 1
1−γ2

1−γ

)
< 1− δ′, k odd.

The inductive hypothesis is then that, for almost every ω considered, for some k ≥ 0
such that m(ω)+k+1 < ζ(ω)∧σ(ω), |Θ(2)

m+k+1−Θ(2)

m+k| < ρ̃k|Θ(2)

m+1−Θ(2)
m |, and it needs
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to be shown that |Θ(2)

m+k+2 − Θ(2)

m+k+1| < ρ̃k+1|Θ(2)

m+1 − Θ(2)
m | for almost every such ω,

which will be done by showing that |Θ(2)

m+k+2−Θ(2)

m+k+1| < ρ̃|Θ(2)

m+k+1−Θ(2)

m+k| for almost
every such ω. Since by the definition of σ, it still holds that δ′ ≤ Θ(2)

m+k+1 ≤ 1 − δ′,
by the definition of ζ it still holds that RΘ(1)

m+k + νm+k+1 ≤ Γ|Θ(2)

m+k+1 − Θ(2)

m+k|, and
the geometric decaying upper bound of Lemma 4.40 ensures the bounds on π(1)

m+k and
π(1)

m+k+1 for almost every ω considered; it follows that for almost every ω considered,

ηm+k < Θ(1)

m+k < Γ|Θ(2)

m+k+1 −Θ(2)

m+k|

ηm+k+1 < RΘ(1)

m+k +
1

νm+k+1
< Γ|Θ(2)

m+k+1 −Θ(2)

m+k|

η′m+k+1 <
1

(δ′)2
Θ(1)

m+k <
Γ

(δ′)2
|Θ(2)

m+k+1 −Θ(2)

m+k|

η′′m+k+1 <
1

δ′

(
RΘ(1)

m+k +
1

νm+k+1

)
<

1

δ′
Γ|Θ(2)

m+k+1 −Θ(2)

m+k|

η′′′m+k+1 < Θ(1)

m+k < Γ|Θ(2)

m+k+1 −Θ(2)

m+k|

ξm+k+1 <

[
1 +

1

δ′

(
2

ρ
− 1

)](
RΘ(1)

m+k +
1

νm+k+1

)
<

[
1 +

1

δ′

(
2

ρ
− 1

)]
Γ|Θ(2)

m+k+1 −Θ(2)

m+k|

ξ′m+k+1 <
1

δ′

(
2

ρ
− 1

)
Θ(1)

m+k <
1

δ′

(
2

ρ
− 1

)
Γ|Θ(2)

m+k+1 −Θ(2)

m+k|

|r′m+k+1| <
2

(δ′)2νm+k+1
<

2

(δ′)2
Γ|Θ(2)

m+k+1 −Θ(2)

m+k|.

Plugging these estimates into Remark 4.37 applied to n = m + k yields, for almost
every ω considered,

|Θ(2)

m+k+2 −Θ(2)

m+k+1| < ρ̃π(1)

m+k

(
1 + ΓD̃

)
|Θ(2)

m+k+1 −Θ(2)

m+k|.

Since by construction Γ < δ′/[D̃(1− δ′)],

π(1)

m+k(1 + ΓD̃) < π(1)

m+k

(
1 +

δ′

1− δ′

)
=
π(1)

m+k

1− δ′
≤ 1

for almost every ω considered, and therefore it follows that

|Θ(2)

m+k+2 −Θ(2)

m+k+1| ≤ ρ̃|Θ(2)

m+k+1 −Θ(2)

m+k|

for almost every ω considered, and the induction is complete.
If ω ∈ E

(1)

> ∩ {m < τ < σ}, one proceeds analogously: since (Θτ , πτ ) ∈ K∗
by Lemma 4.40 and definition of m and σ, all the estimates of the base case just
completed apply with τ instead of m, and the inductive step stays the same.

Theorem 4.42. For almost every ω ∈E
(1)

> , Θn(ω) −→ Θ∗(ω) ∈ E1.

Proof. On E
(1)

> , define ζ0
..= m, and a doubly sequence of (possibly infinite) hitting

times {ζi}, {τi} for all i ∈ N, and the usual stopping time σ:

τi ..= inf

{
n ≥ ζi−1 :

|Θ(2)

n+1 −Θ(2)
n |

RΘ(1)
n + ν−n−1

≥ 1

Γ

}
∈ N ∪∞

ζi ..= inf

{
n ≥ τi :

|Θ(2)

n+1 −Θ(2)
n |

RΘ(1)
n + ν−n−1

<
1

Γ

}
∈ N ∪∞.
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Note that for all i ∈ N and considered ω, such that ζi−1(ω) <∞, τi(ω) > ζi−1(ω), and
for all i ∈ N and considered ω, such that τi(ω) < ∞, ζi(ω) > τi(ω). We prove first
that σ =∞ for almost every ω ∈E

(1)

> . To this end, we work first on E
(1)

> ∩ {σ <∞},
and show that it is a negligible event, by reaching a contradiction for almost every
ω in it. For any ω ∈ E

(1)

> ∩ {σ < ∞}, ∞∧ σ = σ by convention, thus by also using
empty sum convention, we have that the sum

|Θ(2)

σ −Θ(2)

m | ≤
∞∑
i=0

τi+1∧σ−1∑
n=ζi∧σ

|Θ(2)

n+1 −Θ(2)

n |+
ζi+1∧σ−1∑
n=τi+1∧σ

|Θ(2)

n+1 −Θ(2)

n |


is a finite sum, since ω is such that there is a ī(ω) ∈ N, for which either ζī ≤ σ < τī+1

or τī ≤ σ < ζī. Therefore, these two events partition E
(1)

> ∩ {σ <∞}.
In the part of the event where ζī ≤ σ < τī+1, for all ζī ≤ n ≤ σ, |Θ(2)

n+1 − Θ(2)
n | <

Γ−1(RΘ(1)
n + ν−n−1). By Lemma 4.40, the almost sure geometric decay of the Θ(1)-

component carries on at least until Θ(1)
σ , which means that for almost all ω considered,

for all ζī ≤ n < σ,

|Θ(2)

n+1 −Θ(2)

n | < Γ−1

[
RΘ(1)

n +
1

νn+1

]
< Γ−1

[
Rγn−m−1

(
RΘ(1)

m +
3

1− γ2
ν−m

)
+

1

νn−m−1

1

νm + 2

]
< Γ−1λn−m−1

[
R

(
RΘ(1)

m +
ν−m

1− γ2

)
+

1

νm

]
< Γ−1λn−m−1

[
R2Θ(1)

m +

(
R

1− γ2
+ 1

)
ν−m

]
<
R̃

Γ
λn−m−1ε′

<

(
1 +

R̃

Γ

)
λn−m−1ε′,

and the same argument applies for all ζi ≤ n < τi+1 for all i < ī, if there are any. On
the other hand, for all τī ≤ n < ζī, a different argument is needed (and similarly for
all τi ≤ n < ζi for i < ī, if there are any). In fact, for the ω considered, rearranging
the condition in the hitting times definition, for all τī ≤ n < ζī one has that

Θ(1)
n

|Θ(2)

n+1 −Θ(2)
n |
≤ Γ,

which is the type of condition relating to Lemma 4.41. This condition, for n = τi,
yields that we can apply Lemma 4.41 for almost all ω considered, implying that

|Θ(2)

n+1 −Θ(2)

n | < λn−τī+1|Θ(2)

τī
−Θ(2)

τī−1|

for all τī ≤ n ≤ ζī = ζī ∧ σ. Observe that |Θ(2)
τī
− Θ(2)

τī−1| falls in the range treated
earlier, hence

|Θ(2)

τī
−Θ(2)

τī−1| <

(
1 +

R̃

Γ

)
λτī−1−mε′,

and therefore (note that it is for this very step that the addition 1 + R̃/Γ has been
introduced) for almost every ω considered

|Θ(2)

n+1 −Θ(2)

n | < λn−τī+1|Θ(2)

τī
−Θ(2)

τī−1| < λn−τī+1

(
1 +

R̃

Γ

)
λτī−1−m−1ε′

=

(
1 +

R̃

Γ

)
λn−m−1ε′.
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In the part of the event where τī ≤ σ < ζī, one proceeds the other way around,
for almost every ω considered: for all τī ≤ n < σ = ζī ∧ σ and τi ≤ n ≤ ζi = ζi ∧ σ for
all i < ī (if there are any), |Θ(2)

n+1 − Θ(2)
n | < (1 + R̃/Γ)λn−m−1ε′ by Lemma 4.41; while

for all ζī−1 ≤ n < τī for all i ≤ ī, |Θ(2)

n+1 −Θ(2)
n | < (1 + R̃/Γ)λn−m−1ε′ by Lemma 4.40.

In conclusion, for almost every ω ∈E
(1)

> ∩ {σ <∞}, for every m ≤ n < σ,

|Θ(2)

n+1 −Θ(2)

n | <

(
1 +

R̃

Γ

)
λn−m−1ε′.

Therefore, since by construction

ε′ <
δΓλ(1− λ)

2(R̃ + Γ)
,

|Θ(2)

σ −Θ(2)

m | ≤
σ−1∑
n=m

|Θ(2)

n+1 −Θ(2)

n | <

(
1 +

R̃

Γ

)
ε′

σ−1∑
n=m

λn−m−1 =

(
1 +

R̃

Γ

)
ε′

λ

σ−m−1∑
i=0

λi

<

(
1 +

R̃

C

)
ε′

λ

∞∑
i=0

λi = ε′
R̃ + Γ

Γλ(1− λ)
<
δ

2
.

For almost every ω ∈ E
(1)

> ∩ {σ < ∞}, one has reached a contradiction, since for
almost every ω in the event, Θ(2)

m ∈ [δ, 1− δ], and having Θ(2)
σ travelled less than δ/2

away from Θ(2)
m , for almost every such ω, we have that

Θ(2)

σ ∈
[
δ

2
, 1− δ

2

]
,

against the very definition of σ. The contradiction can only be escaped on a negligible
event. Thus P(E(1)

> ∩ {σ <∞}) = 0.
Since σ(ω) =∞ for almost every ω ∈ E

(1)

> , Θ(1)
n −→ 0 for almost every such ω by

Lemma 4.40. As to Θ(2)
n , one can apply the strategy already used in the argument

by contradiction, but for any n (replace σ with n and n with k for previous time
indices, when necessary), getting - with respect to any possible realisation of the
doubly sequence of random times, which defines some event in E

(1)

> - the geometric
estimate

|Θ(2)

n+1 −Θ(2)

n | <

(
1 +

R̃

Γ

)
λn−m−1ε′

for almost every ω considered. This yields

∞∑
n=m

|Θ(2)

n+1 −Θ(2)

n | <∞.

Therefore Θ(2)
n −→ Θ(2)

∗ ∈ [δ/2, 1 − δ/2] for almost every ω considered, yielding overall
convergence of Θn −→ Θ∗ ∈ E1 for almost every ω ∈E

(1)

> .

Corollary 4.43. For almost every ω ∈ E
(1)

> , as {Θn(ω)} converges to some Θ∗(ω) ∈
E1, {πn(ω)} is asymptotically 2-periodic to {πΘ∗ ± `

2
e−1(Θ∗)}.

Proof. Recall that for almost every ω ∈E
(1)

> , by definition of m(ω), π(1)
m (ω) < 1/2− δ.

By Theorem 4.42 and Corollary 4.33, it is known that for almost every ω ∈ E
(1)

> ,



149

{Θm+r(ω)} converges to some Θ∗(ω) ∈ E1, with αm+r −→ 0 and |βm+r| −→ `/2 as
r −→∞ for almost every such ω, where

πm+r − πΘm+r = αm+re0(Θm+r) + βm+re−1(Θm+r) = Oω(1) + βm+re−1(Θ∗).

Hence by Lemma 3.19 (h), we have that

πm+r = πΘ∗ + βm+re−1(Θ∗) + Oω(1)

with |βm+r| −→ `/2. By Remark 4.30 it is also known that if ω is such that πm+2k −→
πΘ∗− `

2
e−1(Θ∗) as k −→∞, then for almost every such ω, πm+2k+1 −→ πΘ∗+

`
2
e−1(Θ∗)

as k −→∞. This is the only option for the sample path considered, as in the argument
of Lemma 4.40 (precisely in the inductive step) it has been shown how the even shifts
of the π(1)-component, starting from m(ω), stay below 1/2, and the odd ones stay
above (and this now trivially carries on for all k, since σ = ∞ for almost all such ω,
by the argument in Theorem 4.42). Hence we obtain the asymptotic 2-periodicity of
πm+r as r −→∞, for almost every ω ∈E

(1)

> .

Remark 4.44. On E
(i)

> with i ∈ {2, 3} one can proceed by exploiting the symmetry of
the model, define σ, ζi and τi accordingly in terms of the corresponding coordinates,
and show an analogous version of Theorem 4.42 for i ∈ {2, 3} as well, thus yielding
convergence of {Θn(ω)} to some Θ∗(ω) ∈ ∂Σ \ V and asymptotic 2-periodicity of
{πn(ω)} to {πΘ∗ ± `

2
e−1(Θ∗)}, for almost every ω ∈E>.

4.6 Convergence of the stochastic process

In this section we put together all the convergence results gathered so far, so as to
show firstly, the almost sure convergence of {Θn}, secondly, that {πn} may or may
not converge, depending on the event considered.

Proof of Theorem 1.1. For every ω ∈ D, Θn converges to one of the vertices by defini-
tion ofD, that is Θ∗(ω) = vi ∈ V for some i ∈ {1, 2, 3}. For almost every ω ∈ B, Θn(ω)
converges within the interior of the simplex by Proposition 4.7, so Θ∗(ω) ∈ Σ̊. For al-
most every ω ∈E0, Θn(ω) converges within an edge of the simplex by Remark 4.19, so
Θ∗(ω) ∈ ∂Σ\V . For almost every ω ∈E>, Θn converges within an edge of the simplex
by Remark 4.44, so again Θ∗(ω) ∈ ∂Σ \ V . These sample paths’ limits, denoted as
Θ∗(ω) ..= limn−→∞Θn(ω), are defined almost everywhere, since D, B, E0, E>, almost
surely partition Ω. Thus we can define, componentwise for all ω ∈ Ω, the random
variables Θ(i)(ω) ..= lim supn−→∞Θ(i)

n (ω) for all i ∈ {1, 2, 3}. Then by construction,
the stochastic process Θn converges almost surely to the random variable Θ, which
is well-defined in (Ω,F, {Fn},P) by the standard theory, since Θ is F∞-measurable
and almost surely Σ-valued, since by construction P(ω : Θ(ω) = Θ∗(ω)) = 1.

Recall that Σ∗ denotes the portion of Σ delimited by its medial triangle (boundary
excluded).

Corollary 4.45. Almost surely {πn} does not converge to any vertex of Σ.

Proof. For almost all ω ∈ {` = 0}, {πn} converges in Σ
∗

(which is bounded away
from V ), since for every Θ ∈ Σ, πΘ ∈ Σ

∗
, and for all such ω, πn − πΘn −→ 0,

with Θn converging for almost every ω by Theorem 1.1. For almost every ω ∈ D>,
{πn} diverges by Lemma 4.21. For almost every ω ∈ B, ` = 0 by Proposition 4.7,
so it is only left to consider ω ∈ E>. For almost every such ω, {πn} diverges by
Remark 4.44.
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4.7 Typical asymptotic behaviours of the ERBRW

The main result of this section is Theorem 1.3, through which it is shown that two
typical asymptotics of the model are nonnegligible: convergence to an internal equi-
librium (Θ, πΘ), and convergence of {Θn} to the boundary (with {πn} diverging).

We first start by showing, in two lemmas, that with positive probability, in a large
enough (finite) number of moves, the process can get arbitrarily close to an internal
equilibrium configuration and to an oscillatory boundary configuration. This can be
done by following a suitable algorithm (whose steps have positive probability), which
forces the system as close to either of the configurations, as many steps are run. For
ease,

C0
..=

{(
1

3
,
1

3

)}
will be chosen for the internal equilibrium configuration and

C> ..=

{((
0,

1

2
,
1

2

)
,

(
1

4
,
3

8
,
3

8

))
,

((
0,

1

2
,
1

2

)
,

(
3

4
,
1

8
,
1

8

))}
will be chosen for the oscillatory configuration at the boundary. Consider firstly,
keeping Figure 1.1 in mind, that with positive probability all particles can be, at
some finite time, at vertex 1 (this argument is obviously symmetric, but for simplicity
we base it at vertex 1). Indeed, since for all i ∈ {1, 2, 3}, T (i)

0 > 0, if the initial
particle is not there at time zero, there is a positive probability φ(Θ(i)

0 ,Θ
(j)

0 )µ (with
i, j depending on which vertex one starts with) that after branching, all particles go
to vertex 1. More generally, at any time m, when particles are more spread out,
there is a positive probability that they all go to vertex 1: first, conditionally on Fm,

there is a positive probability φ(Θ(3)
m ,Θ

(2)
m )µN

(1)
m φ(Θ(1)

m ,Θ
(3)
m )µN

(2)
m φ(Θ(1)

m ,Θ
(2)
m )µN

(3)
m that

at time m + 1, after branching, all the particles in vertex 1 go to vertex 2, those in
vertex 2 go to vertex 3 and those in vertex 3 go to vertex 2, merging with those that
previously were in vertex 1. Similarly, once the particles are all in vertex 2 or vertex
3, conditionally on this event, there is a positive probability (based on the updated
parameters entering the binomials’ probability parameters) that, after branching, all
particles go to vertex 1 from both vertex 2 and vertex 3. Since vertex 1 had no
particles at time m + 1, at time m + 2 all particles are in vertex 1. It is clear, after
this first discussion, that using the binomials’ probability parameters and conditioning
on previous events, the particles can make any prescribed move (in accordance to the
model) across the triangle, after each branching, with positive probability, so we will
omit, for simplicity, the specific probability and conditioning performed at each step.
Since with positive probability at some time the system can be forced to have all
particles in vertex 1, we will assume this, without loss of generality, to be the starting
point for the algorithm that takes us to any configuration sought (let us call this Step
0 ). Without loss of generality, we can also assume, due to previous considerations,
that m ≥ 0, the starting time of the algorithm, is chosen large enough so that the
divisions in Step 1-2 produce all nonzero quotients (this will simply make the intuition
behind the algorithm easier, it is not a necessary assumption). Do not confuse this
deterministic m with the random time m(ω) in the previous sections: from now on m
will solely denote a deterministic starting time for our algorithm. The role of m(ω)
will later on be taken up by N . Finally, as customary, for simplicity of exposition,
we will always adopt the particle-like point of view, rather than the mass-like one.
This will come with no loss of generality, since all Euclidean division involved in the
argument naturally extend to divisions with nonintegral dividend, by allowing for a
nonintegral remainder.
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Lemma 4.46. With positive probability, at a time large enough the stochastic process
is arbitrarily close to the configuration C0.

Proof.

• Step 1 Starting with all particles at vertex 1 at some time m, with positive
probability each of these moves can be performed iteratively after they branch
and become µN (1)

m particles: divide these particles in three lots (possibly with
remainder), that is µN (1)

m = 3qm + rm, with rm ∈ {0, 1, 2} and qm ≥ 0, and
send 2qm to vertex 3, qm + rm to vertex 2. After this is done, N (1)

m+1 = 0,
N (2)

m+1 = qm + rm, N (3)

m+1 = 2qm.

• Step 2 Then they branch, so that in vertex 1 there is nothing, in vertex 2 there
are µqm + µrm particles and in vertex 3, 2µqm. Divide now the µrm particles
into three lots again: µrm = 3q′m+1 + rm+1, with rm+1 ∈ {0, 1, 2} and q′m+1 ≥ 0.
Denote qm+1 = µqm. From vertex 2 send qm+1 + q′m+1 + rm+1 to vertex 3, and
2q′m+1 to vertex 1. While these particles are travelling along the edges (this
clause means simply that we always refer to the number of particles before the
movements had begun: even though we have to state the moves sequentially,
according to the model they happen all simultaneously), from vertex 3 send
qm+1 particles to vertex 1 and qm+1 to vertex 2. Then N (1)

m+2 = qm+1 + 2q′m+1,
N (2)

m+2 = qm+1 and N (3)

m+2 = qm+1 + q′m+1 + rm+1.

• Step 3 The particles now branch again, so we end up with µqm+1 + 2µq′m+1

particles in vertex 1, µqm+1 in vertex 2 and µqm+1 +µq′m+1 +µrm+1 in vertex 3.
Divide µrm+1 into three lots again: µrm+1 = 3q′m+2 +rm+2 with rm+2 ∈ {0, 1, 2},
q′m+2 ≥ 0. From vertex 2 send all the µqm+1 particles to vertex 3, where we send
also µq′m+1 from vertex 1. While these particles are travelling along the edges,
from vertex 1 send all the remaining µqm+1 +µq′m+1 to vertex 2 and from vertex
3 send q′m+2 + rm+2 to vertex 2 as well. While these particles are travelling
along the edges, the µqm+1 + µq′m+1 + 2q′m+2 particles still remaining in vertex
3 go to vertex 1. Denote qm+2 = µqm+1 + µq′m+1. Then, with all edge crossing
updated accordingly, N (1)

m+3 = qm+2 + 2q′m+2, N (2)

m+3 = qm+2 + q′m+2 + rm+2 and
N (3)

m+3 = qm+2. This is the same partitioning of the imbalance as the previous
one, but mirrored with respect to the second and the third vertex. Hence one
only needs to show one more step, with the mirrored moves, and then cycle
between these last two sets of moves to keep the imbalance between the vertices
uniformly bounded.

• Step 4 The particles now branch, so there are µqm+2 +2µq′m+2 particles in vertex
1, µqm+2 +µq′m+2 +µrm+2 in vertex 2 and µqm+2 in vertex 3. Divide µrm+2 into
three lots again: µrm+2 = 3q′m+3+rm+3 with rm+3 ∈ {0, 1, 2}, q′m+3 ≥ 0. We now
mirror the moves from Step 3 : from vertex 1 send µq′m+2 particles to vertex 2,
where we also send all the µqm+2 particles from vertex 3. While these particles
are travelling along the edges, from vertex 2 send the q′m+3 + rm+3 particles
just divided to vertex 3, where we also send all the remaining µqm+2 + µq′m+2

from vertex 1. While these particles are travelling along the edges, send all the
remaining µqm+2 + µq′m+2 + 2q′m+3 particles from vertex 2 to vertex 1. Denote
qm+3 = µqm+2 + µq′m+2. Thus, with all edge crossings updated accordingly, we
have N (1)

m+4 = qm+3 + 2q′m+3, N (2)

m+4 = qm+3 and N (3)

m+4 = qm+3 + q′m+3 + rm+3. Go
back to Step 3 (obviously replacing the previous time index with the current
one and repeat).
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We now state more rigorously the cycle, implementing also a stopping condition
for an arbitrarily small ε > 0 fixed.

After Step1-2 are executed, let the time variable n = m+1 and repeat the following
steps:

• Step 3 The particles branch, so we end up with µqn + 2µq′n particles in vertex
1, µqn in vertex 2 and µqn + µq′n + µrn in vertex 3. Divide µrn into three
lots: µrn = 3q′n+1 + rn+1 with rn+1 ∈ {0, 1, 2}, q′n+1 ≥ 0. From vertex 2
send all the µqn particles to vertex 3, where we send also µq′n from vertex 1.
From vertex 1 send all the remaining µqn + µq′n to vertex 2, from vertex 3 send
q′n+1 + rn+1 to vertex 2 as well, while the remaining µqn + µq′n + 2q′n+1 go to
vertex 1. Denote qn+1 = µqn + µq′n. Then, with all edge crossing updated
accordingly, N (1)

n+2 = qn+1 + 2q′n+1, N (2)

n+2 = qn+1 + q′n+1 + rn+1 and N (3)

n+2 = qn+1.
If ‖πn+2 − 1

3
‖1 < ε and ‖Θn+2 − 1

3
‖1 < ε: stop. Otherwise: go to Step 4.

• Step 4 The particles now branch, so there are µqn+1 +2µq′n+1 particles in vertex
1, µqn+1 + µq′n+1 + µrn+1 in vertex 2 and µqn+1 in vertex 3. Divide µrn+1 into
three lots again: µrn+1 = 3q′n+2 + rn+2 with rn+2 ∈ {0, 1, 2}, q′n+2 ≥ 0. We now
mirror the moves from Step 3 : from vertex 1 send µq′n+1 particles to vertex 2,
were we also send all the µqn+1 particles from vertex 3. From vertex 2 send the
q′n+2+rn+2 particles just divided to vertex 3, where we also send all the remaining
µqn+1 +µq′n+1 from vertex 1. Lastly send all the remaining µqn+1 +µq′n+1 +2q′n+2

particles from vertex 2 to vertex 1. Denote qn+2 = µqn+1 +µq′n+1. Thus, with all
edge crossings updated accordingly, we have N (1)

n+3 = qn+2 + 2q′n+2, N (2)

n+3 = qn+2

and N (3)

n+3 = qn+2 + q′n+2 + rn+2. If ‖πn+3− 1
3
‖1 < ε and ‖Θn+3− 1

3
‖1 < ε: stop.

Otherwise: n← n+ 2 and go to Step 3.

It is clear from this algorithm that the largest imbalance between the {N (i)

n+1} is even-
tually less than 3q′n + rn = µrn−1 ≤ 2µ thanks to redistributing the newly generated
quotients step after step. The largest imbalance between the increments of the {T (i)

n+1},
when updating them, is 2µ2. Indeed within the cycle, when redistributing the terms,
either we send µqn+ q′n+1 +rn+1 particles through edge 1, µqn+2µq′n+2q′n+1 particles
through edge 2 and µqn + µq′n particles through edge 3 in Step3 (in this case the
largest imbalance is bounded by 3µq′n + 3q′n+1 + rn+1 = 3µq′n + µrn = µ2rn−1 ≤ 2µ2);
or we send corresponding quantities in the successive step, but in a mirrored fashion:
µqn+1 + q′n+2 + rn+2 particles through edge 1, µqn+1 + µq′n+1 particles through edge 2
and µqn+1 +2µq′n+1 +2q′n+2 particles through edge 3 (in this case the largest imbalance
is bounded by 3µq′n+1 + 3q′n+2 + rn+2 = 3µq′n+1 + µrn+1 = µ2rn ≤ 2µ2). Hence∥∥∥∥πn − 1

3

∥∥∥∥
1

=
∑
i

∣∣∣∣π(i)

n −
1

3

∣∣∣∣ =
∑
i

∣∣∣∣3N (i)
n − σn
3σn

∣∣∣∣ =
∑
i

∣∣∣∣3N (i)
n −

∑
j N

(j)
n

3σn

∣∣∣∣
≤ 1

3σn

∑
i,j

|N (i)

n −N (j)

n | =
2

3σn

∑
i>j

|N (i)

n −N (j)

n | ≤
12

3σn
µ =

2µ

σn
−→ 0

and similarly, no matter what T (i)
m one starts with, eventually the largest imbalance

between the increments ∆T (i)
n

..= T (i)

n+1 − T (i)
n ≤ 2µ2, and therefore∥∥∥∥Θn −

1

3

∥∥∥∥
1

=
∑
i

∣∣∣∣Θ(i)

n −
1

3

∣∣∣∣ =
∑
i

∣∣∣∣3T (i)
n − τn
3τn

∣∣∣∣ =
∑
i

∣∣∣∣3T (i)
n −

∑
j T

(j)
n

3τn

∣∣∣∣
≤ 1

3τn

∑
i,j

|T (i)

n − T (j)

n | =
2

3τn

∑
i>j

|T (i)

n − T (j)

n |
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=
2

3τn

∑
i>j

∣∣∣∣∣T (i)

m − T (j)

m +
n−1∑
k=m

∆T (i)

k −∆T (j)

k

∣∣∣∣∣ ≤ 2

3τn

∑
i>j

|T (i)

m − T (j)

m |

+
2

3τn

∑
i>j

∣∣∣∣∣
n−1∑
k=m

∆T (i)

k −∆T (j)

k

∣∣∣∣∣ ≤ 2

3τn

∑
i>j

|T (i)

m − T (j)

m |

+
2

3τn

n−1∑
k=m

∑
i>j

∣∣∆T (i)

k −∆T (j)

k

∣∣ ≤ 2

3τn

∑
i>j

|T (i)

m − T (j)

m |+
12

3τn

n−1∑
k=m

µ2

≤ 2

3τn

∑
i>j

|T (i)

m − T (j)

m |+
4µ2(n−m)

τn
−→ 0

as m is fixed and τn ∼ µn+1/(µ − 1). These considerations prove that the algorithm
eventually stops and we are therefore arbitrarily close to the equilibrium sought. Also,
it shows that, given the initial conditions T (i)

m , there is a deterministic N > m, such
that ever after both Θn and πn) are ε-close to C0 as long as the index is large enough
and n = N satisfies

2
µ

σn
< ε

2

3τn

∑
i>j

|T (i)

m − T (j)

m |+
4µ2(n−m)

τn
< ε,

with σn = µn and τn = τ0 + µ(µn − 1)/(µ− 1) by definition.

We now describe the algorithm to approach the configuration C>.

Lemma 4.47. With positive probability, at a time large enough the stochastic process
is arbitrarily close to C>.

Proof.

• Step 1 Starting with all particles at vertex 1 at some time m, after they branch
and become µN (1)

m particles, divide them in eight lots (possibly with remainder),
that is µN (1)

m = 8qm + rm, with 0 ≤ rm ≤ 7 and qm ≥ 0, and send 8qm to vertex
3, 8qm + rm to vertex 2. After this N (1)

m+1 = 0, N (2)

m+1 = 8qm + rm, N (3)

m+1 = 8qm.

• Step 2 Then they branch, so that in vertex 1 there is nothing, in vertex 2 there
are 8µqm + µrm particles and in vertex 3, 8µqm. Divide now the µrm particles
in eight lots: µrm = 8q′m+1 + rm+1, with 0 ≤ rm+1 ≤ 7 and q′m+1 ≥ 0. Denote
qm+1 = µqm. Send to vertex 1, qm+1 + 2q′m+1 particles from vertex 2 and qm+1

from vertex 3. While these particles are travelling along the edges, from vertex 3
send the remaining 3qm+1 particles to vertex 2 while from vertex 2 the remaining
3qm+1 + 6q′m+1 particles are sent to vertex 3. Then N (1)

m+2 = 2qm+1 + 2q′m+1,
N (2)

m+2 = 3qm+1 and N (3)

m+2 = 3qm+1 + 6q′m+1 + rm+1.

• Step 3 The particles now branch again, so we end up with 2µqm+1 + 2µq′m+1

particles in vertex 1, 3µqm+1 in vertex 2 and 3µqm+1 +6µq′m+1 +µrm+1 in vertex
3. Divide µrm+1 into eight lots again: µrm+1 = 8q′m+2 +rm+2 with 0 ≤ rm+2 ≤ 7,
q′m+2 ≥ 0. From vertex 2 send all the 3µqm+1 particles to vertex 1, where we
send also 3µqm+1 + 6µq′m+1 + 6q′m+2 from vertex 3. While these particles are
travelling along the edges, from vertex 1 send µqm+1 + µq′m+1 to vertex 3 and
µqm+1 +µq′m+1 to vertex 2. While these particles are travelling along the edges,
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the 2q′m+2 + rm+2 particles still remaining in vertex 3 go to vertex 2. Denote
qm+2 = µqm+1 + µq′m+1. Then, with all the edge crossings updated accordingly,
N (1)

m+3 = 6qm+2 +6q′m+2, N (2)

m+3 = qm+2 +2q′m+2 +rm+2 and N (3)

m+3 = qm+2. This is
the same partitioning of the imbalance as the previous one, but mirrored with
respect to the second and the third vertex. Hence one only needs to do one
more step, with the mirrored moves, and then cycle between these last two sets
of moves to keep the imbalance between the vertices uniformly bounded. Note
that only remainder terms were send through edge 1 (which is the edge whose
edge crossings proportion will have to be proved vanishing).

• Step 4 The particles now branch, so there are 6µqm+2+6µq′m+2 particles in vertex
1, µqm+2 + 2µq′m+2 + µrm+2 in vertex 2 and µqm+2 in vertex 3. Divide µrm+2

into eight lots again: µrm+2 = 8q′m+3 + rm+3 with 0 ≤ rm+3 ≤ 7, q′m+3 ≥ 0. We
now mirror the moves from Step 3 to produce an oscillation, while sending only
remainder terms through edge 1: from vertex 1 send 3µqm+2 + 3µq′m+2 particles
to vertex 2 and 3µqm+2 +3µq′m+2 to vertex 3. While these particles are travelling
along the edges, send all the µqm+2 particles in vertex 3 and µqm+2 + 2µq′m+2

of the particles in vertex 2, to vertex 1. While these particles are travelling
along the edges, from vertex 2 send the remaining 6q′m+3 + rm+3 particles just
divided to vertex 3. Denote qm+3 = µqm+2 + µq′m+2. Thus, with all the edge
crossings updated accordingly, we have N (1)

m+4 = 2qm+3 + 2q′m+3, N (2)

m+4 = 3qm+3

and N (3)

m+4 = 3qm+3 + 6q′m+3 + rm+3. Go back to Step 3 (replacing the previus
time index with the current one and repeat).

We now state more rigorously the cycle, implementing also a stopping condition
for an arbitrarily small ε > 0 fixed.

After Step1-2 are executed let the time variable n = m+1 and repeat the following
steps:

• Step 3 The particles branch, so we end up with 2µqn + 2µq′n particles in vertex
1, 3µqn in vertex 2 and 3µqn + 6µq′n + µrn in vertex 3. Divide µrn into eight
lots again: µrn = 8q′n+1 + rn+1 with 0 ≤ rn+1 ≤ 7, q′n+1 ≥ 0. From vertex 2
send all the 3µqn particles to vertex 1, where we send also 3µqn + 6µq′n + 6q′n+1

from vertex 3. While these particles are travelling along the edges, from vertex
1 send µqn+µq′n to vertex 3 and µqn+µq′n to vertex 2. While these particles are
travelling along the edges, the 2q′n+1 + rn+1 particles still remaining in vertex 3
go to vertex 2. Denote qn+1 = µqn + µq′n. Then, with all edge crossing updated
accordingly, N (1)

n+2 = 6qn+1 +6q′n+1, N (2)

n+2 = qn+1 +2q′n+1 +rn+1 and N (3)

n+2 = qn+1.
Go to Step 4.

• Step 4 The particles now branch, so there are 6µqn+1+6µq′n+1 particles in vertex
1, µqn+1 + 2µq′n+1 + µrn+1 in vertex 2 and µqn+1 in vertex 3. Divide µrn+1 into
eight lots again: µrn+1 = 8q′n+2 + rn+2 with 0 ≤ rn+2 ≤ 7, q′n+2 ≥ 0. We
now mirror the moves from Step 3 to produce an oscillation, while sending only
remainder terms through edge 1: from vertex 1 send 3µqn+1 + 3µq′n+1 particles
to vertex 2 and 3µqn+1 +3µq′n+1 to vertex 3. While these particles are travelling
along the edges, send all the µqn+1 particles in vertex 3 and µqn+1 + 2µq′n+1 of
the particles in vertex 2 to vertex 1. While these particles are travelling along
the edges, from vertex 2 send the remaining 6q′n+2 + rn+2 particles just divided
to vertex 3. Denote qn+2 = µqn+1 + µq′n+1. Thus, with all the edge crossings
updated accordingly, we have N (1)

n+3 = 2qn+2 + 2q′n+2, N (2)

n+3 = 3qn+2 and N (3)

n+3 =
3qn+2 + 6q′n+2 + rn+2. If ‖πn+2− (3/4, 1/8, 1/8)‖1 < ε and ‖Θn+2− (0, 1/2, 1/2)‖1 < ε
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and ‖πn+3 − (1/4, 3/8, 3/8)‖1 < ε and ‖Θn+3 − (0, 1/2, 1/2)‖1 < ε: stop. Otherwise:
n← n+ 2 and go to Step 3.

The algorithm eventually stops because it is such that ‖πm+2k+1−(3/4, 1/8, 1/8)‖1 −→ 0
and ‖πm+2k−(1/4, 3/8, 3/8)‖1 −→ 0, while ‖Θm+k−(0, 1/2, 1/2)‖1 −→ 0 if let run without
stopping condition (meaning, as k −→∞). This can be seen as follows:∥∥∥∥πm+2k+1 −

(
3

4
,
1

8
,
1

8

)∥∥∥∥
1
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∣∣∣∣8qm+2k−1 + 8q′m+2k−1 − 8qm+2k−1 − 8q′m+2k−1 − rm+2k−1

4σm+2k

∣∣∣∣
+

∣∣∣∣24qm+2k−1 − 24qm+2k−1 − 24q′m+2k−1 − 3rm+2k−1

8σm+2k

∣∣∣∣
+

∣∣∣∣24qm+2k−1 + 48q′m+2k−1 + 8rm+2k−1 − 24qm+2k−1 − 24q′m+2k−1 − 3rm+2k−1

8σm+2k

∣∣∣∣
=
rm+2k−1

4σm+2k

+
24q′m+2k−1 + 3rm+2k−1

8σm+2k

+
24q′m+2k−1 + 5rm+2k−1

8σm+2k

=
rm+2k−1

4σm+2k−1

+
3µrm+2k−2

8σm+2k

+
3µrm+2k−2 + 2rm+2k−1

8σm+2k

≤ 7

4σm+2k

+
21µ

8σm+2k

+
21µ+ 14

8σm+2k

−→ 0.

Lastly it is easy to see that Θ(1)
n −→ 0, since for n = m+ 2k, edge 1 is traversed only

by 2q′m+2k + rm+2k < 8q′m+2k + rm+2k = µrm+2k−1 ≤ 7µ particles, so ∆T (1)
n < 7µ; for
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n = m+ 2k+ 1, edge 1 is traversed only by 6q′m+2k+1 + rm+2k+1 < 8q′m+2k+1 + rm+2k =
µrm+2k ≤ 7µ particles, so ∆T (1)

n < 7µ again. Hence eventually ∆T (1)
n < 7µ, and

therefore

Θ(1)

n =
T (1)

m+1 +
∑n−1

k=m+1 ∆T (1)

k

τn
≤
T (1)

m+1

τn
+

∑n−1
k=m+1 ∆T (1)

k

τn
≤
T (1)

m+1

τn
+

7µ(n−m)

τn
−→ 0

due to the geometric asymptotics of τn and m being fixed. Now, having Θ(1)
n −→ 0,

to show that the other two components tend to 1/2, it is enough to show that |Θ(2)
n −

Θ(3)
n | −→ 0, as all components add up to 1. Since for n = m+ 2k, edge 2 is traversed

by 3µqm+2k +6µq′m+2k +6q′m+2k+1 +µqm+2k +µq′m+2k = 4µqm+2k +7µq′m+2k +6q′m+2k+1

particles and edge 3 by 3µqm+2k + µqm+2k + µq′m+2k = 4µqm+2k + µq′m+2k particles, it
follows that

|∆T (2)

n −∆T (3)

n | = 6µq′m+2k + 6q′m+2k+1 ≤ µ2rm+2k−1 + µrm+2k ≤ 7(µ2 + µ);

for n = m + 2k + 1, edge 2 is traversed by 3µqm+2k+1 + 3µq′m+2k+1 + µqm+2k+1 =
4µqm+2k+1 + 3µq′m+2k+1 particles and edge 3 by 3µqm+2k+1 + 3µq′m+2k+1 + µqm+2k+1 +
2µq′m+2k+1 = 4µqm+2k+1 + 5µq′m+2k+1 particles, so it follows that

|∆T (2)

n −∆T (3)

n | = 2µq′m+2k+1 ≤ µ2rm+2k ≤ 7µ2 < 7(µ2 + µ).

In conclusion

|Θ(2)

n −Θ(3)

n | =

∣∣∣∣∣T
(2)

m+1 − T
(3)

m+1 +
∑n−1

k=m+1 ∆T (2)

k −∆T (3)

k

τn

∣∣∣∣∣ ≤ |T (2)

m+1 − T
(3)

m+1|
τn

+

∑n−1
k=m+1 |∆T

(2)

k −∆T (3)

k |
τn

≤
|T (2)

m+1 − T
(3)

m+1|
τn

+
7(µ2 + µ)(n−m)

τn
−→ 0.

Similarly to the conclusion of Lemma 4.46, this also shows that, given the initial
conditions T (i)

m , there is a deterministic N > m, such that ever after both Θn and πn
are ε-close to C>.

Since the algorithms in Lemmas 4.46 and 4.47 have been proved to force the system
arbitrarily close to either of the two configurations in finite time; it is now enough to
show that the asymptotic behaviour expected of the stochastic process follows almost
surely in each of the two events, defined via the corresponding algorithm. This fact
will be at the base of proving Theorem 1.3, which claims the following:

i) P(B) > 0;

ii) P(E>) > 0.

Let us denote by AN
ε (C0) and AN

ε (C>) the events defined by performing N steps of
either of the algorithms introduced in Lemmas 4.46 and 4.47 respectively, to force
the system to be at least ε-close to either C0 or C>, with N large enough, such that
ε > 0 is so small, that we can proceed either with the argument of Proposition 4.8 or
with that of Theorem 4.42, if we were given that, for all n ≥ N , for all i ∈ {1, 2, 3},
|R(i)

n+1| < ν−n−1 (that is, the deterministic N takes on the role of the random m(ω)
in Chapter 4). Clearly we are meant to proceed with Proposition 4.8 if the limiting
configuration is C0: in this case ε must meet the conditions of δ′ in Proposition 4.8,
with respect to a suitable ε′ fixed so that B(1

3
, ε′) does not intersect ∂Σ. We proceed

with Theorem 4.42 if the limiting configuration is C>: in this case ε must meet all the
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conditions of ε′ in Section 4.5.3, with respect to a suitable δ fixed, so that all the condi-
tions put on δ in Section 4.5.3 apply with respect to Θ∗ = (0, 1/2, 1/2), π∗ = (1/4, 3/8, 3/8),
π̂∗ = (3/4, 1/8, 1/8). Indeed Proposition 4.8 and Theorem 4.42 have as initial condition,
that the system is close to either of the two types of configurations respectively, at the
same time that the geometric decaying upper bound on the martingale increments
starts holding. In the context of those theorems the time constraint on when the mar-
tingale increments start being geometrically upper bounded is avoided by proceeding
pointwise in ω and relying on Lemma 4.1. But in the present context, that approach
is not viable, as we are trying to show that the two typical asymptotic behaviours
are nonnegligible. Rather, we have just the initial condition, to which the system is
driven as close as long is the running time of the algorithm. However the driving force
of the geometric decay is actually the branching of the particles, that is the factor 1/σn
involved in the formula of R(i)

n+1. This is the fundamental fact behind our confidence
that, with positive probability, we can force the system until a time large enough is
reached, at which the geometrically decaying upper bound has already started ap-
plying. As a last remark, before proceeding with the proof, one should note that
the strategy just described would not work for the nonoscillatory boundary limiting
point, say, for example, ((0, 1/2, 1/2) , (1/2, 1/4, 1/4)). Devising an algorithm to force the
system near this point is not the issue: the proof of the convergence to such type of
limit points relies more fundamentally than the others on the asymptotic definition of
the event considered, namely, it requires knowledge that ω ∈ {` = 0} where ` is the
limit of the potential. For this reason we will not prove that the system converges to
nonoscillatory boundary limit points with positive probability. Moreover, on top of
such theoretical grounds, the simulations do not show this behaviour at all, suggest-
ing that it may be a negligible event for the stochastic process after all. To keep the
notation as simple as possible, we will not repeat the following argument twice, once
for AN

ε (C0) and once for AN
ε (C>), since, except for the conclusion, it is the same;

hence we abuse the notation and simply write AN
ε denoting either of the two.

Proof of Theorem 1.3.

Step 1. Define

AN
..=
⋂
n≥N

An,

where

An ..=
3⋂
i=1

A(i)

n ∩ A
(i)

n

and, denoting the complementary binomials as B
(i)

n+1
..= µN (i)

n −B
(i)

n+1 for i ∈ {1, 2, 3},

A(1)

n =

{
|B(1)

n+1 − µN (1)
n φ(Θ(3)

n ,Θ
(2)
n )|

σn+1

<
1

2νn+1

}
,

A(2)

n =

{
|B(2)

n+1 − µN (2)
n φ(Θ(1)

n ,Θ
(3)
n )|

σn+1

<
1

2νn+1

}
,

A(3)

n =

{
|B(3)

n+1 − µN (1)
n φ(Θ(2)

n ,Θ
(1)
n )|

σn+1

<
1

2νn+1

}
,
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A
(1)

n =

{
|B(1)

n+1 − µN (1)
n φ(Θ(2)

n ,Θ
(3)
n )|

σn+1

<
1

2νn+1

}
,

A
(2)

n =

{
|B(2)

n+1 − µN (2)
n φ(Θ(3)

n ,Θ
(1)
n )|

σn+1

<
1

2νn+1

}
,

A
(3)

n =

{
|B(3)

n+1 − µN (3)
n φ(Θ(1)

n ,Θ
(2)
n )|

σn+1

<
1

2νn+1

}
.

For nonintegral µ, the argument will have all B(i)

n+1 replaced by B̃(i)

n+1 in the corre-
sponding positions. Since by Lemmas 4.46 and 4.47, P(AN

ε ) > 0, we can show that
P(AN

ε ∩AN) = P(AN |AN
ε )P(AN

ε ) > 0, since on this event, the arguments of Propo-
sition 4.8 and Theorem 4.42 can be started, each with respect to the corresponding
limiting configuration considered implicitly in the notation AN

ε (C0 or C>). This boils
down to showing that P(AN |AN

ε ) > 0. Denote by Ac
N the complement of AN . By

the monotonicity of the (conditional) probability measure,

P(AN |AN
ε ) = P

(⋂
n≥N

An

∣∣∣AN
ε

)
= lim

M−→∞
P

(
M⋂
n=N

An

∣∣∣AN
ε

)
. (4.73)

Since by simply prescribing values for the binomial, as shown in the algorithmic part,
it trivially holds that P

(
AN ∩AN

ε

)
= P

(
AN |AN

ε

)
P
(
AN
ε

)
> 0, one can write

P

(
M⋂
n=N

An

∣∣∣AN
ε

)
= P

(
M⋂
n=N

An

∣∣∣AN
ε

)
=

P
(⋂M

n=N+1An ∩ (AN ∩AN
ε )
)

P (AN ∩AN
ε )

P
(
AN ∩AN

ε

)
P (AN

ε )

= P

(
M⋂

n=N+1

An

∣∣∣AN ∩AN
ε

)
P
(
AN

∣∣∣AN
ε

)
.

As long as we consider finitely many moves, preforming sequentially one move at a
time, one can always ensure by induction that, for every n ≤ k ≤M ,

P

(
k⋂

n=N

An ∩AN
ε

)
= P

(
Ak

∣∣∣ k−1⋂
n=N

An ∩AN
ε

)
P

(
k−1⋂
n=N

An ∩AN
ε

)
> 0.

Therefore, if we denote for all k ≥ N ,

ANk
..=

k⋂
n=N

An ∩AN
ε ,

it we can see by induction that iterating yields

P

(
M⋂
n=N

An

∣∣∣AN
ε

)
=

M∏
k=N+1

P
(
Ak

∣∣∣ANk−1

)
P
(
AN

∣∣∣AN
ε

)
.

If we also denote ANN−1
..= AN

ε , we can express it in a more compact way:

P

(
M⋂
n=N

An

∣∣∣AN
ε

)
=

M∏
k=N

P
(
Ak

∣∣∣ANk−1

)
=

M∏
k=N

[
1− P

(
Ack

∣∣∣ANk−1

)]
.
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Step 2. In the last identity of Step 1, we expressed the probability using the comple-
mentary event, because it is easier to match the standard notation used for infinite
products. Since we need to show that

0 < lim
M−→∞

M∏
k=N

[
1− P

(
Ack

∣∣∣ANk−1

)]
=

∞∏
k=N

[
1− P

(
Ack

∣∣∣ANk−1

)]
, (4.74)

one can simply apply the standard theory of infinite products of the form
∏∞

k=N(1−pk)
with 0 < pk < 1, and it is a well known elementary fact that

∏∞
k=N(1− pk) = 0 if and

only if
∑∞

k=N pk =∞. In conclusion it is enough to show that

∞∑
k=N

P
(
Ack

∣∣∣ANk−1

)
<∞, (4.75)

in order to have P(AN |AN
ε ) > 0, which is the claim sought. We will do so by showing

the geometric decay of the probabilities P
(
Ack

∣∣∣ANk−1

)
. First of all note that Ack =⋃3

i=1A
(i)c
k ∪ A

(i)c

k , so

P
(
Ack

∣∣∣ANk−1

)
≤

3∑
i=1

P
(
A(i)c
k

∣∣∣ANk−1

)
+ P

(
A

(i)c

k

∣∣∣ANk−1

)
=

3∑
i=1

E
[
PFk

(
A(i)c
k

) ∣∣∣ANk−1

]
+ E

[
PFk

(
A

(i)c

k

) ∣∣∣ANk−1

]
. (4.76)

In this step we show that the identity follows by the tower property. In fact note
that the events ANk−1 are Fk-measurable, so Gk

..= σ
(
ANk−1

)
⊆ Fk; let Ik be any of the

indicator functions 1
A

(i)c
k

or 1
A

(i)c
k

, where i ∈ {1, 2, 3}; the identity then follows if we

show that
E
(
Ik|ANk−1

)
= E

(
EFkIk|ANk−1

)
. (4.77)

This follows from the tower property applied to E(Ik|Fk|Gk), which ensures that

E(Ik|Fk|Gk) = EGk(Ik) = 1ANk−1
E
[
Ik|ANk−1

]
+ 1(ANk−1)cE

[
Ik|(ANk−1)c

]
.

On the other hand

E(Ik|Fk|Gk) = EGk(EFkIk) = 1ANk−1
E(EFkIk|ANk−1) + 1(ANk−1)cE(EFkIk|(ANk−1)c).

Choosing ω ∈ ANk−1 turns the identity

1ANk−1
E
[
Ik|ANk−1

]
+ 1(ANk−1)cE

[
Ik|(ANk−1)c

]
= 1ANk−1

E
[
EFkIk|ANk−1

]
+ 1(ANk−1)cE

[
EFkIk|(ANk−1)c

]
into (4.77).

Step 3. As a result of (4.77) in Step 2, it will be enough to bound geometrically all

the terms PFk

(
A(i)c
k

)
and PFk

(
A

(i)c

k

)
. The argument will not differ for any of these

terms, since they are all of the same form, for what the argument is concerned. Hence
we proceed with

PFk

(
A(1)c
k

)
= PFk

(
|B(1)

k+1 − µN
(1)

k φ(Θ(3)

k ,Θ
(2)

k )|
σk+1

≥ 1

2νk+1

)
.
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It is possible to further simplify this expression. For brevity, denote P (i,j)

k
..=

φ(Θ(i)

k ,Θ
(j)

k ). Since

PFk

(
|B(1)

k+1 − µN
(1)

k P (3,2)

k |
σk+1

≥ 1

2νk+1

)
= PFk

(
B(1)

k+1 − µN
(1)

k P (3,2)

k ≥ σk+1

2νk+1

)
+ PFk

(
B(1)

k+1 − µN
(1)

k P (3,2)

k ≤ − σk+1

2νk+1

)
= PFk

(
B(1)

k+1 ≥ µN (1)

k P (3,2)

k +
σk+1

2νk+1

)
+ PFk

(
µN (1)

k − (B(1)

k+1 − µN
(1)

k P (3,2)

k ) ≥ µN (1)

k +
σk+1

2νk+1

)
= PFk

(
B(1)

k+1 ≥ µN (1)

k P (3,2)

k +
σk+1

2νk+1

)
+ PFk

(
B

(1)

k+1 ≥ µN (1)

k P (2,3)

k +
σk+1

2νk+1

)
= PFk

(
B(1)

k+1 − µN
(1)

k P (3,2)

k

σk+1

≥ 1

2νk+1

)
+ PFk

(
B

(1)

k+1 − µN
(1)

k P (2,3)

k

σk+1

≥ 1

2νk+1

)
and the two terms obtained can be dealt with similarly, it is enough to show the
argument for the geometric decay of

PFk

(
B(1)

k+1 − µN
(1)

k P (3,2)

k

σk+1

≥ 1

2νk+1

)
.

The main strategy in this step will be to find a Chernoff bound at a moderate devia-
tions regime from the conditional mean. Rewrite the term as

PFk

(
X (1)

k+1√
σk+1

≥
√
σk+1

2νk+1

)
,

where X (1)

k+1
..= B(1)

k+1 − µN (1)

k P (3,2)

k and therefore EFkX
(1)

k+1 = 0 and VarFk X
(1)

k+1 =
µN (1)

k P (3,2)

k P (2,3)

k . Clearly for nonintegral µ the only difference is that, having de-
noted X̃ (1)

k+1
..= B̃(1)

k+1 − µN (1)

k P (3,2)

k , VarFk X̃
(1)

k+1 = (bµN (1)

k c + {µN (1)

k }2)P (3,2)

k P (2,3)

k ≤
µN (1)

k P (3,2)

k P (2,3)

k . Recall that 1 < ν <
√
µ, thus

√
σk+1

νk+1
= ηk+1,

with η ..=
√
µ/ν > 1. Therefore for any λ ∈ R,

PFk

(
X (1)

k+1√
σk+1

≥ ηk+1

2

)
= PFk

(
exp

(
λ

√
σk+1

X (1)

k+1

)
≥ exp

(
λ

2
ηk+1

))
≤ exp

(
−λ

2
ηk+1

)
EFk

(
exp

(
λ

√
σk+1

X (1)

k+1

))
.

Denote the conditional generating function term as

ΦFk

(
λ

√
σk+1

)
..= EFk

(
exp

(
λ

√
σk+1

X (1)

k+1

))
.

For nonintegral µ, having to use X̃ (1)

k+1 instead of X (1)

k+1, we will denote it as Φ̃Fk .
Note that λ/√σk+1 −→ 0 as k −→ ∞. The main idea here is that by the elementary
properties of moment generating functions and the mean and variance of X (1)

k+1, it is
known that

ΦFk (0) = 1, ΦFk (0)′ = 0, ΦFk (0)′′ = µN (1)

k P (3,2)

k P (2,3)

k .
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Hence, as k −→∞, we should be able to exploit

ΦFk

(
λ

√
σk+1

)
≈ 1 +

1

2
µN (1)

k P (3,2)

k P (2,3)

k

(
λ

√
σk+1

)2

= 1 +
π(1)

k

2
P (3,2)

k P (2,3)

k λ2 = O(1),

to conclude that this factor is indeed harmless to the overall bound (the conclusion
of this heuristic argument for nonintegral µ yields similarly Φ̃Fk(

λ/√σk+1) = O(1), due
to the estimate on the variance aforementioned). More rigorously, we can compute
directly the conditional moment generating function:

ΦFk

(
λ

√
σk+1

)
=

(
P (3,2)

k exp

(
λ

√
σk+1

)
+ P (2,3)

k

)µN(1)
k

exp

(
− λ
√
σk+1

µN (1)

k P (3,2)

k

)
= exp

{
µN (1)

k log

[
P (3,2)

k exp

(
λ

√
σk+1

)
+ P (2,3)

k

]
− λ
√
σk+1

µN (1)

k P (3,2)

k

}
.

For nonintegral µ, one can exploit the conditional independence of the Bernoulli from
the binomial term, which yields

Φ̃Fk

(
λ

√
σk+1

)
= exp

{
bµN (1)

k c log

[
P (3,2)

k exp

(
λ

√
σk+1

)
+ P (2,3)

k

]
+ log

[
P (3,2)

k exp

(
λ{µN (1)

k }√
σk+1

)
+ P (2,3)

k

]
− λ
√
σk+1

µN (1)

k P (3,2)

k

}
.

Expanding in Taylor series to the second order at the origin, the exponential firstly
and the logarithm secondly, yields

log

(
P (3,2)

k exp

(
λ

√
σk+1

)
+ P (2,3)

k

)
= log

[
P (3,2)

k + P (3,2)

k

(
λ

√
σk+1

+
λ2

2σk+1

+O

 λ3

σ
3
2
k+1

)+ P (2,3)

k

]
= log

[
1 + P (3,2)

k

 λ
√
σk+1

+
λ2

2σk+1

+O

 λ3

σ
3
2
k+1

]

= P (3,2)

k

 λ
√
σk+1

+
λ2

2σk+1

+O

 λ3

σ
3
2
k+1

− 1

2

(
P (3,2)

k

)2

(
λ

√
σk+1

+
λ2

2σk+1

+O

 λ3

σ
3
2
k+1

)2

+O

((
P (3,2)

k

)3

 λ
√
σk+1

+
λ2

2σk+1

+O

 λ3

σ
3
2
k+1

3)

= P (3,2)

k

λ
√
σk+1

+ P (3,2)

k

λ2

2σk+1

−
(
P (3,2)

k

)2 λ2

2σk+1

+O

 λ3

σ
3
2
k+1


= P (3,2)

k

λ
√
σk+1

+
[
P (3,2)

k −
(
P (3,2)

k

)2
] λ2

2σk+1

+O

 λ3

σ
3
2
k+1


= P (3,2)

k

λ
√
σk+1

+ P (3,2)

k P (2,3)

k

λ2

2σk+1

+O

 λ3

σ
3
2
k+1

 ,
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and similarly, since {µN (1)

k } ≤ 1,

log

[
P (3,2)

k exp

(
λ{µN (1)

k }√
σk+1

)
+ P (2,3)

k

]
=

P (3,2)

k

λ{µN (1)

k }√
σk+1

+ P (3,2)

k P (2,3)

k

λ2{µN (1)

k }2

2σk+1

+O

 λ3

σ
3
2
k+1

 .

Plugging this expansions in yields, uniformly on the probability space, that

ΦFk

(
λ

√
σk+1

)
= exp

[
µN (1)

k P (3,2)

k

λ
√
σk+1

+ µN (1)

k P (3,2)

k P (2,3)

k

λ2

2σk+1

+O

λ3µN (1)

k

σ
3
2
k+1


− λ
√
σk+1

µN (1)

k P (3,2)

k

]
= exp

[
µN (1)

k P (3,2)

k P (2,3)

k

λ2

2σk+1

+O

λ3µN (1)

k

σ
3
2
k+1

]

= exp

[
π(1)

k P
(3,2)

k P (2,3)

k

λ2

2
+O

(
λ3π(1)

k√
σk+1

)]
≤ exp

[
λ2

8
+O

(
λ3

√
σk+1

)]
= e+ O(1)

and

Φ̃Fk

(
λ

√
σk+1

)
= exp

[
bµN (1)

k cP
(3,2)

k

λ
√
σk+1

+ bµN (1)

k cP
(3,2)

k P (2,3)

k

λ2

2σk+1

+ P (3,2)

k

λ{µN (1)

k }√
σk+1

+ P (3,2)

k P (2,3)

k

λ2{µN (1)

k }2

2σk+1

+O

λ3µN (1)

k

σ
3
2
k+1

− λ
√
σk+1

µN (1)

k P (3,2)

k

]
=

exp

[
(bµN (1)

k c+ {µN (1)

k }
2)P (3,2)

k P (2,3)

k

λ2

2σk+1

+O

λ3µN (1)

k

σ
3
2
k+1

]

≤ exp

[
π(1)

k P
(3,2)

k P (2,3)

k

λ2

2
+O

(
λ3π(1)

k√
σk+1

)]
≤ exp

[
λ2

8
+O

(
λ3

√
σk+1

)]
= e+ O(1),

having chosen λ = 2
√

2. Hence for both integral and nonintegral µ (we adopt as main
notation that of the integral case, as usual)

PFk

(
B(1)

k+1 − µN
(1)

k P (3,2)

k

σk+1

≥ 1

2νk+1

)
= O

(
exp

(
−
√

2ηk+1
))

.

In these estimates only the following fact have been used: 0 ≤ π(i)

k ≤ 1, 0 ≤ P (i,j)

k ≤ 1,
0 ≤ P (i,j)

k P (j,i)

k ≤ 1/4 and all asymptotic behaviours are deterministically driven by
σk+1 = µk+1. Thus the same estimates can be performed on the complementary
binomial:

PFk

(
B

(1)

k+1 − µN
(1)

k P (2,3)

k

σk+1

≥ 1

2νk+1

)
= O

(
exp

(
−
√

2ηk+1
))

.

Therefore

PFk

(
A(1)c
k

)
= 2O

(
exp

(
−
√

2ηk+1
))

= O
(

exp
(
−
√

2ηk+1
))

.

The same argument, extending similarly to all other binomials, yields that for all
i ∈ {1, 2, 3},

PFk

(
A(i)c
k

)
= O

(
exp

(
−
√

2ηk+1
))

, PFk

(
A

(i)c

k

)
= O

(
exp

(
−
√

2ηk+1
))

.
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Step 4. Plugging the geometric estimates obtained in Step 3 in (4.76) yields

P
(
Ack

∣∣∣ANk−1

)
≤

3∑
i=1

E
[
PFk

(
A(i)c
k

) ∣∣∣ANk−1

]
+ E

[
PFk

(
A

(i)c

k

) ∣∣∣ANk−1

]
= 6E

[
O
(
e−
√

2ηk+1
) ∣∣∣ANk−1

]
= O

(
e−
√

2ηk+1
)
,

due to the uniformity of the O-constant on the probability space. As η > 1, we obtain
(4.75) and thus (4.74). Hence using (4.73) we have obtained P(AN |AN

ε ) > 0.

Step 5. In Step 1 we argued that this implies that P(AN
ε ∩AN) > 0, so if we now

note that

{|R(i)

n+1| < ν−n−1, ∀i ∈ {1, 2, 3}} ⊇ An,

it follows that ⋂
n≥N

{|R(i)

n+1| < ν−n−1, ∀i ∈ {1, 2, 3}} ⊇
⋂
n≥N

An = AN ,

and therefore

P
(
|R(i)

n+1| < ν−n−1, ∀i ∈ {1, 2, 3}, ∀n ≥ N |AN
ε

)
≥ P(AN |AN

ε ) > 0.

In conclusion

P
(
{|R(i)

n+1| < ν−n−1, ∀i ∈ {1, 2, 3}, ∀n ≥ N} ∩AN
ε

)
> 0,

so there is a nonnegligible event on which we can repeat:

i) The argument of Proposition 4.8, when we take AN
ε = AN

ε (C0), yielding non-
negligible convergence to an internal equilibrium point.

ii) The argument of Theorem 4.42, when we take AN
ε = AN

ε (C>), yielding nonneg-
ligible convergence to the boundary for {Θn}, while it stays bounded away from
the vertices.

By Theorem 1.3, {Θn} converges with positive probability both in Σ̊ and ∂Σ.
Equivalently, both of the following events have positive probability: all three edges of
the triangle are asymptotically nonnegligibly crossed by the particles and exactly one
edge is asymptotically negligibly crossed.

We now prove Corollary 1.4, in which the following is claimed:

i) P(πn converges in Σ∗) > 0.

ii) P(πn diverges in Σ) > 0.

iii) P({πn converges in Σ∗} \B) = P(B \ {πn converges in Σ∗}) = 0.

iv) P({πn diverges in Σ} ∩ E>) > 0 and P({πn diverges in Σ} \ (E> ∪ D>)) =
P((E> ∪ D>) \ {πn diverges in Σ}) = 0.

Proof of Corollary 1.4.



164

i) By the conclusion of the argument in Theorem 1.3 (i), when using Propo-
sition 4.8 at C0, we can set up the constants ε and δ such that {πn(ω)}
converges within a neighbourhood of 1

3
small enough to be contained in

Σ∗, for almost every ω in the nonnegligible event

{|R(i)

n+1| < ν−n−1, ∀i ∈ {1, 2, 3}, ∀n ≥ N} ∩AN
ε (C0).

ii) By the conclusion of the argument in Theorem 1.3 (ii), when using Theo-
rem 4.42 at C>, even though we do not know the value of `, similarly to
how argued in Remark 3.50, we can set up the constants ε and δ such that
{πn(ω)} diverges, due to the almost sure oscillations of π(1)

n (ω) following
from Lemma 4.38 (which ensures that almost surely π(1)

n alternates between
values less than 1/2, bounded away from 0 and 1/2, and values larger than
1/2, bounded away from 1/2 and 1), for almost every ω in the nonnegligible
event

{|R(i)

n+1| < ν−n−1, ∀i ∈ {1, 2, 3}, ∀n ≥ N} ∩AN
ε (C>).

iii) Assume that P(N) > 0, where N ..= {πn converges in Σ∗} \B, by contra-
diction. By Remark 4.6, N ⊆E∪D. Thus every ω ∈ N is such that either
ω ∈E or ω ∈ D. Then we have the following cases.

• ω ∈ E0, which leads to an almost sure contradiction, since by
Theorem 4.18 and Remark 4.19, almost every such ω is such that
(Θn(ω), πn(ω)) −→ (Θ∗(ω), πΘ∗(ω)), with Θ∗(ω) ∈ ∂Σ, implying that
πΘ∗(ω) ∈ ∂Σ∗, against the hypothesis that {πn(ω)} converges in Σ∗

(recall that this set is defined with its boundary excluded).

• ω ∈ E>, which leads to an almost sure contradiction, since by Corol-
lary 4.43 and Remark 4.44, for almost every such ω, we have asymp-
totic 2-periodicity of {πn(ω)}, that is it has two distinct limit points,
and therefore it diverges.

• ω ∈ D, which leads to an almost sure contradiction, since by
Lemma 4.21, for almost every ω, {πn(ω)} only admits limit points
in ∂Σ.

It follows that N is a negligible event. Moreover, P(B \
{πn converges in Σ∗}) = 0 directly by Proposition 4.7, where, among other
things, we showed that for almost every ω ∈B, {πn(ω)} converges in Σ∗.

iv) P({πn diverges in Σ} ∩ E>) > 0 trivially follows from Theorem 1.3 (ii),
Corollary 1.4 (ii) and Corollary 4.43 and Remark 4.44 (the last two ensuring
that for almost every ω ∈E>, we have asymptotic 2-periodicity of {πn(ω)}).
In order to show that P({πn diverges in Σ} \ (E> ∪ D>)) = 0, assume by
contradiction that P(N) > 0, where N ..= {πn diverges in Σ} \ (E> ∪ D>).
By Remark 4.6, N ⊆ E0 ∪ D0 ∪B. Thus every ω ∈ N is such that either
ω ∈E0 ∪ D0 or ω ∈B. Then we have the following cases.

• ω ∈ E0 ∪ D0, which leads to an almost sure contradiction since by
Theorem 4.18 and Remark 4.19 and definition of D0, for almost every
such ω, (Θn(ω), πn(ω)) −→ (Θ∗(ω), πΘ∗(ω)), with Θ∗(ω) ∈ ∂Σ. Thus
{πn(ω)} converges.

• ω ∈B, which leads to an almost sure contradiction, since by Proposi-
tion 4.7, for almost every such ω, (Θn(ω), πn(ω)) −→ (Θ∗(ω), πΘ∗(ω)),

with Θ∗(ω) ∈ Σ̊. Thus {πn(ω)} converges.
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Moreover, P((E> ∪ D>) \ {πn diverges in Σ}) = 0, since:

• by Corollary 4.43 and Remark 4.44, for almost every ω ∈E>, we have
asymptotic 2-periodicity of {πn(ω)}, and therefore divergence in Σ;

• by Lemma 4.21, for almost every ω ∈ D>, {πn(ω)} diverges in Σ.

4.8 No monopoly

In this section we show the negligibility of monopoly, which is, as per Definition 1.5,
the eventM on which all but finitely many crossings happen along exactly one edge.

Proof of Theorem 1.6. If we can show the stronger claim, that all three edges are
crossed infinitely many times, then monopoly does not occur. Via martingale argu-
ments we focus on showing that for all i ∈ {1, 2, 3}, T (i)

n −→ ∞ as n −→ ∞. By
symmetry, without loss of generality, assume the index considered to be i = 1.

Denote B
(3)

n+1 = µN (3)
n − B(3)

n+1 ∼ Bin(µN (3)
n , P (1,2)

n ) and recall B(2)

n+1 ∼
Bin(µN (2)

n , P (1,3)
n ) conditionally on Fn, where P (1,2)

n
..= Θ(1)

n /(Θ
(1)
n + Θ(2)

n ) and P (1,3)
n

..=
Θ(1)
n /(Θ

(1)
n + Θ(3)

n ). Then

T (1)

n+1 = T (1)

n +B(2)

n+1 − µN (2)

n P (1,3)

n +B
(3)

n+1 − µN (3)

n P (1,2)

n + µN (2)

n P (1,3)

n + µN (3)

n P (1,2)

n

= T (1)

0 +
n+1∑
k=1

B(2)

k − µN
(2)

k−1P
(1,3)

k−1 +
n+1∑
k=1

B
(3)

k − µN
(3)

k−1P
(1,2)

k−1 +
n∑
k=0

µN (2)

k P (1,3)

k

+
n∑
k=0

µN (3)

k P (1,2)

k =.. T (1)

0 +M (2)

n+1 +M
(3)

n+1 + Y (2)

n+1 + Y
(3)

n+1.

For nonintegral µ we will have B̃
(3)

n+1 = µN (3)
n − B̃(3)

n+1 ∼ Bin(bµN (3)
n c, P (1,2)

n ) +

{µN (3)
n }Ber(P (1,2)

n ) and B̃(2)

n+1 ∼ Bin(bµN (2)
n c, P (1,3)

n ) + {µN (2)
n }Ber(P (1,3)

n ) conditionally
on Fn, thus getting the corresponding decomposition

T (1)

n+1 = T (1)

0 + M̃ (2)

n+1 + M̃
(3)

n+1 + Y (2)

n+1 + Y
(3)

n+1,

where M̃ (2)

n+1
..=
∑n+1

k=1 B̃
(2)

k − µN
(2)

k−1P
(1,3)

k−1 and M̃
(3)

n+1
..=
∑n+1

k=1 B̃
(3)

k − µN
(3)

k−1P
(1,2)

k−1 .

The first step to prove that T (1)
n −→∞ almost surely is to show that Y (2)

n +Y
(3)

n −→
∞ almost surely. Note that both P (1,2)

k , P (1,3)

k ≥ Θ(1)

k and T (1)

k ≥ 1 for all k ≥ 0, so

Y (2)

n +Y
(3)

n ≥
n∑
k=0

µ(N (2)

k +N (3)

k )Θ(1)

k =
n∑
k=0

σk+1

τk

(
N (2)

k

σk
+
N (3)

k

σk

)
T (1)

k ≥
n∑
k=0

σk+1

τk
(π(2)

k +π(3)

k ).

Since µ > 1,
σk+1

τk
=

µk+1

τ0 + µµ
k−1
µ−1

−→ µ− 1 > 0,

hence by limit comparison,

n∑
k=0

σk+1

τk
(π(2)

k + π(3)

k ) =∞

if
n∑
k=0

(1− π(1)

k ) =∞.
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Therefore, to show that almost surely Y (2)
n + Y

(3)

n −→ ∞, it is enough to ensure
that almost surely π(1)

k X−→ 1, meaning that almost surely there is a subsequence π(1)

kj
bounded away from 1: this follows by Corollary 4.45. Finally, by showing that

{Y (2)

n + Y
(3)

n −→∞} ⊂ {T (1)

n −→∞}, (4.78)

it will follow that almost surely T (1)
n −→∞. By repeating a similar argument for the

other two components, it will follow that P(M) = 0. To show the inclusion, assume

Y (2)
n + Y

(3)

n −→∞ and consider that

〈M (2)〉n =
n∑
k=0

µN (2)

k P (1,3)

k (1−P (1,3)

k ) ≤ Y (2)

n ,
〈
M

(3)
〉
n

=
n∑
k=0

µN (3)

k P (1,2)

k (1−P (1,2)

k ) ≤ Y
(3)

n

with all the possible cases being the following: 〈M (2)〉n and
〈
M

(3)
〉
n

both converge,

one converges and the other diverges, or both diverge. Before proceeding, note that〈
M̃ (2)

〉
n

=
n∑
k=0

(bµN (2)

k c+ {µN (2)

k }
2)P (1,3)

k (1− P (1,3)

k ) ≤ 〈M (2)〉n〈
M̃

(3)
〉
n

=
n∑
k=0

(bµN (3)

k c+ {µN (3)

k }
2)P (1,2)

k (1− P (1,2)

k ) ≤
〈
M

(3)
〉
n
,

and therefore, the same argument we are about to show holds for nonintegral µ. Thus
we explicitly treat only the integral case, from now on.

The standard theory of the angle bracket process applies. Recall that:

• if 〈M (i)〉n converges, then M (i)
n converges almost surely by [50, §12.13];

• if 〈M (i)〉n diverges, then M
(i)
n /

〈
M (i)

〉
n

vanishes by [50, §12.14].

Therefore we have the following cases.

Case 1. If both 〈M (2)〉n and
〈
M

(3)
〉
n

converge, then both martingales M (2)
n and M

(3)

n

converges, yielding T (1)
n = T (1)

0 +M (2)
n +M

(3)

n + Y (2)
n + Y

(3)

n −→∞.

Case 2. If only one of them converges, assume, by symmetry, without loss of gener-

ality, that
〈
M

(3)
〉
n

is the convergent one. Then M
(3)

n converge. On the other hand

〈M (2)〉n −→ ∞, which implies M
(2)
n /

〈
M (2)

〉
n
−→ 0, hence M

(2)
n /Y (2)

n −→ 0 by the in-

equality aforementioned, and also M (2)
n /(Y (2)

n + Y
(3)

n ) −→ 0. In conclusion, on this
event

T (1)

n =

(
T (1)

0

Y (2)
n + Y

(3)

n

+
M (2)

n

Y (2)
n + Y

(3)

n

+
M

(3)

n

Y (2)
n + Y

(3)

n

+ 1

)
(Y (2)

n + Y
(3)

n )

= (1 + Oω(1))
(
Y (2)

n + Y
(3)

n

)
−→∞,

because trivially, since M
(3)

n converges, M
(3)

n /(Y
(2)
n + Y

(3)

n ) −→ 0.

Case 3. If both 〈M (2)〉n and
〈
M

(3)
〉
n

diverge, by a similar factorisation as in the

previous case, and exploiting the same argument just used for M (2)
n , also for M

(3)

n , one
reaches the same conclusion.
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Hence (4.78) has been proved and the claim follows. The argument extends by sym-
metry to all components of Tn, by noting that

〈M (i)〉n =
〈
M

(i)
〉
n
,

and that for each component, the cases are all the same, with the predictable parts
diverging almost surely, as πn never converges to any of the vertices by Corollary 4.45.

4.9 No dominance conjecture

In this section we discuss Conjecture 1.7, asserting that P(D) = 0, where we defined
the event of dominance D as the event, on which the edge crossings along two of the
edges become eventually negligible (see Definition 1.2). The conjecture is based on
three grounds:

• It holds for the generalised balls and bins model (Theorem 1.10), which has a
special connection with this model.

• It is numerically supported by simulations of (2.31) and (2.32). In particular,
simulating the dynamical systems (2.33) and (2.34) and (2.35) and (2.36) results
in only two asymptotic behaviours, the typical ones corresponding to Section 4.7,
exemplified by Figures 2.2 and 2.3 (hence we conjecture also that {pn} in (2.33)
and (2.34) and (2.35) and (2.36) does not converge to the vertices).

• The martingale increments {R(i)
n }i not only satisfy Lemma 4.1, but if the system

approaches the corner, they can be shown to become negligible, compared to
the terms in what we could call the deterministic part of (2.31) and (2.32). This
suggests that it should be possible, for almost all ω ∈ D, to show a contradic-
tion by exploiting the asymptotic behaviour of the dynamical system, which is
conjectured to not converge to the vertices.

In the following proposition we make some progress, by proving the negligibility of
the martingale increments near the vertices (for simplicity, we will only treat the case
of integral µ, but the result follows also for nonintegral µ). Partition the event of
dominance as D =

⋃3
i=1D

(i) =
⋃3
i=1D

(i)

0 ∪ D(i)

> , where D(i) ..= {Θn −→ vi}, and the
indices 0 and > denote the usual intersection with the events, on which the values of
` are, respectively, 0 and greater than 0.

Proposition 4.48. For every i, j, k ∈ {1, 2, 3}, i 6= j 6= k, for almost every ω ∈ D(i)

0 ,
R(i)

n+1 = Oω(Θ(j)
n ) and R(i)

n+1 = Oω(Θ(k)
n ).

Proof. By symmetry, without loss of generality, it will suffice to show the argument for
i = 2. In Theorem 1.6 it has been shown how, as n −→∞, T (1)

n = (1 + Oω(1))(Y (2)
n +

Y
(3)

n ), where Y (2)
n

..=
∑n

k=0 µN
(2)

k P (1,3)

k , Y
(3)

n =
∑n

k=0 µN
(3)

k P (1,2)

k . There the initial index
m was zero, but it can be taken to be arbitrary in general, and the (1 + Oω(1))

factor holds as n −→∞, for m fixed. Similarly T (3)
n = (1 + Oω(1))(Y

(2)

n + Y (1)
n ), where

Y
(2)

n
..=
∑n

k=0 µN
(2)

k P (3,1)

k , Y (1)
n =

∑n
k=0 µN

(1)

k P (3,2)

k . Theorem 1.6 shows that T (i)
n −→∞

for all i ∈ {1, 2, 3}, but more can be said, given this estimate, and the knowledge of
the almost sure limit points of the stochastic process. Due to the asymptotic nature
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of the argument, it will be crucial to observe that the deterministic coefficients that
will appear in the summations

σk+1

τk
=

µk+1

τ0 + µK+1

µ−1
− µ

µ−1

=
µ− 1

1 + τ0(µ−1)
µk+1 − 1

µk

= (µ− 1)

(
1 +O

(
1

µk

))
(4.79)

and

σk+1

τk−1

=
µk+1

τ0 + µk

µ−1
− µ

µ−1

=
µ(µ− 1)

1 + τ0(µ−1)
µk
− 1

µk−1

= µ(µ− 1)

(
1 +O

(
1

µk

))
. (4.80)

We will rely on Perron-Frobenius Theorems, with the argument shown only for the
first component, since for the third it is analogous. Start with

T (1)

n+1 = (1 + Oω(1))

(
n∑
k=0

µN (2)

k P (1,3)

k + µN (3)

k P (1,2)

k

)

= (1 + Oω(1))

(
n∑

k=m

µN (2)

k P (1,3)

k + µN (3)

k P (1,2)

k

)

= (1 + Oω(1))
n∑

k=m

σk+1

τk

(
π(2)

k

Θ(1)

k + Θ(3)

k

+
π(3)

k

Θ(2)

k + Θ(1)

k

)
T (1)

k ≥
n∑

k=m

ζkT
(1)

k ,

where
σk+1

τk
(1 + Oω(1))

(
π(2)

k

Θ(1)

k + Θ(3)

k

+
π(3)

k

Θ(2)

k + Θ(1)

k

)
>
µ− 1

2
− εk =.. ζk

for some εk(ω) = Oω(1) slow enough (compared to the sample path taken for almost
every ω on the event, pointwise), since on D(2)

0 the coefficient π(3)

k tends to 1/2 and
Θ(2)

k +Θ(1)

k −→ 1, but it is not known whether π(2)

k /(Θ
(1)

k +Θ(3)

k ) is even bounded, hence
the inequality sign. The term, which T (1)

n+1 majorises,
∑n

k=m ζkT
(1)

k , is generated by
the following dynamical system. Take Tm = T (1)

m > 1 as initial value, and set Sm = 0,
then the summation is the first component of the orbit of the 2-dimensional dynamical
system

Tn+1 = Sn + ζnTn

Sn+1 = Sn + ζnTn

for all n ≥ m. In matrix form:(
Tn+1

Sn+1

)
=

(
ζn 1
ζn 1

)(
Tn
Sn

)
.

Denote the iteration matrix An and let Xn = (Tn, Sn). What is needed, is the asymp-
totics of Xn+1 = AnXn, specifically of its first component, keeping in mind that in
our case, Xn is a positive vector (and each of its components are unbounded). It will
now be shown that this system the hypotheses of the various strengthened forms of
the weak Perron-Frobenius Theorem (see [40] for some background, and in particular
Theorem 1.3, which will be used). We will derive two mutually exclusive asymptotics
for it, and then apply the information about the specific orbit we have on D(2)

0 , so as
to narrow down the slowest possible asymptotic regime of growth for Tn+1 (since T (1)

n+1

is lower bounded by the dynamics of Tn+1, the asymptotics for the latter will yield a
lower bound asymptotics for the former). First of all, note that the matrix An −→ A,
where, denoting ζ ..= µ− 1,

A =

(
ζ 1
ζ 1

)
.
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The characteristic polynomial of An and A are pn(λ) = λ[λ − (1 + ζn)] and p(λ) =
λ[λ− (1 + ζ)], yielding two simple eigenvalues λ+ = ζ+ 1 = (µ+ 1)/2 > 1 and λ− = 0
respectively. Similarly for An, and by continuity of simple eigenvalues it is known
that λ+

n −→ λ+, while λ−n = 0 for all n. The corresponding eigenvectors of A can be
chosen to be e+ = (1, 1) (this is the Perron eigenvector) and e− = (1,−ζ) (note that
coming from the eigenspace equation y = −ζx, this eigenvector is never nonnegative,
being ζ = µ− 1 > 0). In [40, Theorem 1.3] it is shown that for a nonnegative matrix
An −→ A as such (that is with distinct eigenvalues), and a nonnegative orbit Xn

generated, like ours, by the iteration scheme, either Xn is eventually zero (which is
not our case, being unbounded on the considered event); or the limit (which exist by
[40, Theorem 1.2]) of n

√
‖Xn‖1 (any norm in general, but in this case it is simpler to

work in 1-norm) is an eigenvalue of A, with a nonnegative eigenvector, which only
leaves the option

lim
n−→∞

n
√
‖Xn‖1 =

µ+ 1

2
,

due to the zero eigenvalue not having a nonnegative eigenvector. If one notes that
Sn = Tn, then this says that

µ+ 1

2
= lim

n−→∞
n
√

2|Tn| = lim
n−→∞

n
√
Tn.

This does not allow for a regime as slow as
√
µn, since for all µ > 1, µ + 1 > 2

√
µ.

Hence for any µ > 1 fixed, there is some positive p = p(µ) smaller than 1/2, such that

Tn = Ωω(µ( 1
2

+p)n). Indeed if for every 0 < p < 1/2 given, there is a subsequence {nj},
such that Tnj < µ( 1

2
+p)nj , then choose any

p̄ <
log µ+1

2

log µ
− 1

2
.

This choice is feasible, since the term on the right-hand side is positive for all µ > 1,
because this term being positive is equivalent to µ+ 1 > 2

√
µ, via taking logarithms.

It should be noted that p̄ has been defined so that µ
1
2

+p̄ < (µ+ 1)/2. It follows that

µ+ 1

2
= lim

n−→∞
n
√
Tn ≤ lim

j−→∞

nj

√
µ( 1

2
+p̄)nj = µ

1
2

+p̄ <
µ+ 1

2
,

which is a contradiction. Thus the claim, that T (1)
n = Ωω(µ( 1

2
+p)n) has been proved

(since T (1)
n ≥ Tn).

Before concluding, we would like to stress that this stronger estimate on D(2)

0 , that
for every µ > 1 there is a p = p(µ) small enough (choose it at least smaller than

1/2) such that µ( 1
2

+p)n = Oω(T (1)
n ) (and the same of course holding for T (3)

n ), can be
bootstrapped. We will show how the bootstrapping works in the conclusion to this
section, after this proof.

The claim that R(2)

n+1 = Oω(Θ(1)
n ) and R(2)

n+1 = Oω(Θ(3)
n ) now easily follows. This is

only shown for the index i = 1, as the method is similar for i = 3. By Lemma 4.1,
R(2)

n+1 = Oω(ν−n−1) = Oω(ν−n) for any 1 < ν <
√
µ, while Θ(1)

n = T
(1)
n /τn ∼ (µ −

1)T (1)
n /µn+1 and since µ(1/2+p)n = Oω(T (1)

n ), it follows that

1

µ( 1
2
−p)n

=
µ( 1

2
+p)n

µn
= Oω

(
T (1)
n

µn

)
= Oω

(
µ

µ− 1
Θ(1)

n

)
= Oω (Θ(1)

n ) .

Hence by choosing ν = µ
1−p

2 , noting that ν > µ1/2−p, it follows that

R(2)

n+1 = Oω

(
1

µ
(1−p)

2
n

)
= Oω

(
1

µ( 1
2
−p)n

)
= Oω (Θ(1)

n ) . (4.81)
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It should now be clear the reason for strengthening the initial estimate by this ad-
ditional power of p: the separation given by the square root regime alone does not
allow for room in between the possible regimes upper-bounding R(2)

n+1 and the ones
lower-bounding Θ(1)

n and Θ(3)
n .

We conclude with discussing how further bootstrapping could be used to improve
the estimates (4.81), and possibly make the negligibility obtained in Proposition 4.48
stronger, if needed, when analysing the stochastic process as a perturbed dynamical
system on D(2)

0 .Since we showed that almost surely, eventually, the martingale in-
crement perturbations, appearing in the expression for π(2)

n , become negligible with
respect to the main terms involving Θ(1)

n and Θ(3)
n , it is possible to conclude that on

D(2)

0 , for every k ≥ m,

π(2)

k = π(1)

k−1

Θ(3)

k−1

Θ(2)

k−1 + Θ(3)

k−1

+ π(3)

k−1

Θ(1)

k−1

Θ(2)

k−1 + Θ(1)

k−1

+R(2)

k

=

(
π(1)

k−1

Θ(2)

k−1 + Θ(3)

k−1

Θ(3)

k−1 +
π(3)

k−1

Θ(2)

k−1 + Θ(1)

k−1

Θ(1)

k−1

)
(1 + r(2)

k ),

where

r(2)

k =
R(2)

k

π
(1)
k−1

Θ
(2)
k−1+Θ

(3)
k−1

Θ(3)

k−1 +
π

(3)
k−1

Θ
(2)
k−1+Θ

(1)
k−1

Θ(1)

k−1

=

Oω
(

1

µ
(1−p)

2 k

)
Ωω

(
1

µ(
1
2−p)k

) = Oω
(

1

µ
p
2
k

)
,

due to the previous quantitative estimates made on Θ(1)
n and Θ(3)

n , and the fact that
Θ(2)
n −→ 1 and π(1)

n + π(3)
n −→ 1. Thus

π(2)

k =

(
1 +Oω

(
1

µ
p
2
k

))(
π(1)

k−1

Θ(2)

k−1 + Θ(3)

k−1

Θ(3)

k−1 +
π(3)

k−1

Θ(2)

k−1 + Θ(1)

k−1

Θ(1)

k−1

)
. (4.82)

Consider T (1,3)

n+1 . We can verify that the same asymptotics hold, through the same
martingale theory used for T (1)

n and T (3)
n , by simply repeating the steps in the second

part of Proposition 4.48, that is

T (1,3)

n+1 = (1 + Oω(1))(Y (2)

n + Y
(2)

n + Y (1)

n + Y
(3)

n ).

Noting that

Y (2)

n + Y
(2)

n =
n∑
k=0

µN (2)

k =
n∑
k=0

σk+1π
(2)

k ,

we have that

T (1,3)

n+1 = (1 + Oω(1))

[
n∑

k=m

σk+1π
(2)

k +
n∑

k=m

σk+1

τk

(
π(3)

k

Θ(1)

k + Θ(2)

k

T (1)

k +
π(1)

k

Θ(3)

k + Θ(2)

k

T (3)

k

)]
.
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By applying (4.82), the following asymptotics follow:

T (1,3)

n+1 = (1 + Oω(1))

( n∑
k=m

σk+1

(
1 +Oω

(
1

µ
p
2
k

))(
π(3)

k−1

Θ(2)

k−1 + Θ(1)

k−1

Θ(1)

k−1

+
π(1)

k−1

Θ(2)

k−1 + Θ(3)

k−1

Θ(3)

k−1

)
+

n∑
k=m

σk+1

(
π(3)

k

Θ(2)

k + Θ(1)

k

Θ(1)

k +
π(1)

k

Θ(2)

k + Θ(3)

k

Θ(3)

k

))
= (1 + Oω(1))

( n∑
k=m

σk+1

τk−1

(
1 +Oω

(
1

µ
p
2
k

))(
π(3)

k−1

Θ(2)

k−1 + Θ(1)

k−1

T (1)

k−1

+
π(1)

k−1

Θ(2)

k−1 + Θ(3)

k−1

T (3)

k−1

)
+

n∑
k=m

σk+1

τk

(
π(3)

k

Θ(2)

k + Θ(1)

k

T (1)

k +
π(1)

k

Θ(2)

k + Θ(3)

k

T (3)

k

))

= (1 + Oω(1))

( n∑
k=m+1

σk+1

τk−1

(
1 +Oω

(
1

µ
p
2
k

))(
π(3)

k−1

Θ(2)

k−1 + Θ(1)

k−1

T (1)

k−1

+
π(1)

k−1

Θ(2)

k−1 + Θ(3)

k−1

T (3)

k−1

)
+

n∑
k=m

σk+1

τk

(
π(3)

k

Θ(2)

k + Θ(1)

k

T (1)

k +
π(1)

k

Θ(2)

k + Θ(3)

k

T (3)

k

))

= (1 + Oω(1))

( n−1∑
k=m

[
σk+2

τk

(
1 +Oω

(
1

µ
p
2
k

))
+
σk+1

τk

](
π(3)

k

Θ(2)

k + Θ(1)

k

T (1)

k

+
π(1)

k

Θ(2)

k + Θ(3)

k

T (3)

k

)
+
σn+1

τn

(
π(3)
n

Θ(2)
n + Θ(1)

n

T (1)

n +
π(1)
n

Θ(2)
n + Θ(3)

n

T (3)

n

))
≥

n−1∑
k=m

ξkT
(1,3)

k + ζnT
(1,3)

n .

Recalling that by (4.79) and (4.80),

σk+2

τk
+
σk+1

τk
= µ(µ− 1)

(
1 +O

(
1

µk

))
+ (µ− 1)

(
1 +O

(
1

µk

))
= (µ2 − 1)

(
1 +O

(
1

µk

))
,

we have that the term in the summations can be rewritten as

(1 + Oω(1))

[
σk+2

τk

(
1 +Oω

(
1

µ
p
2
k

))
+
σk+1

τk

](
π(3)

k

Θ(2)

k + Θ(1)

k

T (1)

k +
π(1)

k

Θ(2)

k + Θ(3)

k

T (3)

k

)
= (1 + Oω(1))

[
(µ2 − 1)

(
1 +O

(
1

µk

))
+Oω

(
1

µ
p
2
k

)]((
1

2
+ Oω(1)

)
T (1)

k

+

(
1

2
+ Oω(1)

)
T (3)

k

)
=

(
µ2 − 1

2
− εk

)
T (1,3)

k =.. ξkT
(1,3)

k ,

while the term outside the summation can similarly be rewritten as

(1 + Oω(1))
σn+1

τn

(
π(3)
n

Θ(2)
n + Θ(1)

n

T (1)

n +
π(1)
n

Θ(2)
n + Θ(3)

n

T (3)

n

)
≥
(
µ− 1

2
− εn

)
T (1,3)

n =.. ζnT
(1,3)

n .

Let ξ ..= (µ2 − 1)/2 and ζ ..= (µ − 1)/2 and note that T (1,3)
n is unbounded on D(2)

0 , as
it tends to infinity. As previously, the term which T (1,3)

n+1 majorises,
∑n−1

k=m ξkT
(1,3)

k +
ζnT

(1,3)
n , is generated by the following dynamical system, with Tm = T (1,3)

m > 1 and



172

Sm = 0, taken as initial values, and the summation resulting from the first component
of the orbit of

Tn+1 = Sn + ζnTn

Sn+1 = Sn + ξnTn

for all n ≥ m, which can be rewritten in matrix form as(
Tn+1

Sn+1

)
=

(
ζn 1
ξn 1

)(
Tn
Sn

)
.

Denote the iteration matrix An and let Xn = (Tn, Sn). We need to improve on the
asymptotic growth of Xn+1 = AnXn, specifically of its first component, keeping in
mind that in our case Xn is a positive vector (and each of its components diverge).
We will achieve this improvement by bootstrapping again through [40, Theorem 1.3].
This is not the most powerful tool available for dynamical systems: better asymptotic
growth could be achieved by exploiting results such as Benzaid-Lutz Theorem. How-
ever our current lack of understanding of the speed of convergence of the residual error
term 1+Oω(1), and the speed with which the random coefficients next to T (1)

k and T (3)

k

tend to 1/2, make it difficult to apply such tools, which we therefore omit to describe
(the curious reader is referred to [5] and [17, §8.4, Theorem 8.25] for background).

First of all note that the matrix An −→ A, where

A =

(
ζ 1
ξ 1

)
.

Since µ2 > µ for all µ > 1, ξ > ζ > 0 and therefore, starting at m large enough, one
can assume ξn > ζn. The characteristic polynomial of An and A are pn(λ) = λ2− (1+
ζn)λ+ ζn− ξn and p(λ) = λ2− (1 + ζ)λ+ ζ − ξ, yielding two simple eigenvalues λ±n =
[(ζn + 1) ±

√
(ζn + 1)2 + 4(ξn − ζn)]/2 and λ± = [(ζ + 1) ±

√
(ζ + 1)2 + 4(ξ − ζ)]/2

respectively. Note that

λ± =

µ+1
2
±
√(

µ+1
2

)2
+ 2(µ2 − µ)

2
.

Hence λ+ > (µ + 1)/2 (this is the Perron eigenvalue), and also |λ+| > |λ−|, with
λ− < 0. The corresponding eigenvectors ofA can be chosen to be e± = (1, λ±−ζ), with
λ+ − ζ > 1 (this is the Perron eigenvector) and λ− − ζ < 0. Hence the improvement
achieved is that the existing limit limn−→∞

n
√
‖Xn‖1 = λ+ > (µ + 1)/2 and similarly

limn−→∞
n
√
Tn = λ+ > (µ + 1)/2, which allows for a less restrictive choice of p in the

estimated regime of growth of T (1,3)
n .

Arguments similar to those exploited in Proposition 4.48, should be possible also
on D(i)

> , but they will be technically more difficult, due to the oscillations of πn.
Complementing these findings with a deeper understanding of the dynamical system
obeying (2.33) and (2.34), and its behaviour with pn near the vertices, is likely the next
step to succeed in showing that dominance is negligible. Simulations support that the
dynamical system does not converge to the vertices, motivating Conjecture 2.3.
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Part II

Generalised balls and bins with
positive feedback
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Chapter 5

Introduction

This introductory chapter is dedicated to generalised BB with positive feedback: we
first describe the stochastic process, providing all the details missing from Chapter 1,
in terms of a system of iterative equations, and then explain a heuristic argument
regarding the onset of dominance. This heuristics is clearly reminiscent of the reduc-
tion to a randomly perturbed dynamical system exploited in Part I, but the approach
followed will not rely directly on dynamical systems techniques. Indeed it will be
much more natural to rely on martingales instead, due to how they arise from the
iterative scheme.

The chapter goes on with a detailed description of our results and concludes with
a note for the reader, regarding the relative material in the Appendix, and the intro-
duction of further notation, in view of the more sophisticated use of martingales in
this part of the dissertation.

5.1 Iterative equations of the model

Let us start by recalling the probabilistic time-dependent model of generalised BB
with positive feedback. Recall that d ≥ 2 denotes the arbitrary number of bins and
that {σn} is the integer-valued positive sequence, representing the number of added
balls at times n ∈ N. Recall that T (i)

0 denotes the initial deterministic positive number
of balls in the ith bin. For each n ∈ N0, let again

T (1)

n + . . .+ T (d)

n =.. τn = τ0 +
n∑
i=1

σi

be the total number of balls in the bins at time n. Finally recall that

Θ(i)

n
..=

T (i)
n

τn

is the proportion of balls in the ith bin at time n. The vector Θn is valued in the
standard simplex in d dimensions

∆d−1 ..= {(x1, . . . , xd) ∈ [0, 1]d : x1 + . . .+ xd = 1},

so we let, for every integer 1 ≤ i ≤ d, and x ∈ ∆d−1,

ψ(i)(x) ..=
xαi∑d
j=1 x

α
j

.
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Note that for simplicity, when there is no ambiguity, we switch from an upper index
notation for the components, to a lower index notation, if the time index is not
involved. In a model with no feedback, we set α = 1, but, unlike for the ERBRW, in
our study of generalised BB we will focus mainly on the model with feedback, that is
α > 1, which is the more challenging one.

Given the past up to time n, each of the σn+1 balls, which are added to the
ith bin independently of each other at random at time n + 1, will fall in the bin
with probability proportional to the number of balls already inside, T (i)

n , that is with
probability ψ(i)(Θn). The number of balls going in the ith bin at time n+ 1 will be a
random variable denoted as B(i)

n+1. More precisely, according to this model, for every
integer 1 ≤ i ≤ d,

T (i)

n+1 = T (i)

n +B(i)

n+1 (5.1)

where, conditionally on the past, the random number of balls, which independently
of each other are added to the ith bin at time n + 1, will be modelled as a binomial
random variable B(i)

n+1 ∼ Bin(σn+1, P
(i)
n ), where σn+1 is the size and P (i)

n
..= ψ(i)(Θn)

the probability parameter of the binomial. Therefore the random vector Bn+1 having
d components B(i)

n+1 is, by construction, a multinomial random vector of size σn+1 and
vector Pn = ψ(Θn) = (ψ(1)(Θn), . . . , ψ(d)(Θn)) of probability parameters (we will use
the notation Bn+1 ∼ Multin(σn+1, Pn)). This is true because a multinomial random
vector can be seen as a random vector having binomials as marginals, which share the
same size and have probability parameters adding up to one, constrained to always
add up to the common size. Since in the BB model by construction

B(i)

n+1 = σn+1 −
∑
j 6=i

B(j)

n+1

and
d∑
i=1

ψ(i)(x) = 1

for every x ∈ ∆d−1, the claim that Bn+1 is a multinomial random vector of size σn+1

and vector of probabilities Pn = ψ(Θn) given the past, follows for every n ≥ 0. We also
note that Bn+1 is independent of Fn = σ(B1, ..., Bn). Recall that as usual {Fn}n∈N0

will be the natural filtration on the probability space (Ω,F,P), with F0 = {∅,Ω} and
F∞

..= σ (
⋃∞
n=0 Fn); we will denote by PFn , EFn , VarFn and CovFn the conditional

probability, expectation, variance and covariance.
Lastly we introduce the normalized fluctuations of B(i)

n . For every i ∈ {1, 2, . . . , d},
let

ε(i)

n+1
..=

B(i)

n+1 − σn+1P
(i)
n√

σn+1P
(i)
n (1− P (i)

n )
.

Clearly EFnB
(i)

n+1 = σn+1P
(i)
n and VarFn B

(i)

n+1 = σn+1P
(i)
n (1−P (i)

n ), so EFnε
(i)

n+1 = 0 and
EFn(ε(i)

n+1)2 = 1.
In this model only two assumptions will be made on the sequence of number of

balls added at time n:

σn is either bounded or diverges to infinity, S

ρn ..=
σn+1

τn
is either bounded or diverges to infinity. R

Even though in Chapter 1 we motivated the study of generalisations of BB models
with their connection to the ERBRWs, it is also true that in this part of our work,
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we study these models rather independently, trying to generalise results that hold for
any number of bins d to as many regimes of growth of {σn} as possible. Indeed, many
technicalities that we will face will arise from regimes quite different from σn = µn,
and we will spend no little effort to resolve them (in this sense, Proposition 8.4 will
be emblematic). In considering these assumptions, the reader might find helpful to
consider a few key examples regarding Assumption R, which gauges how fast the
number of balls added grows. If {σn} is bounded, clearly ρn vanishes. Similarly, by
the power sum formula, if {σn} is polynomial ρn vanishes too. If {σn} is exponential,
say σn = µn for some integer µ > 1, then by the geometric formula the limit is the
constant µ− 1 > 0. We interpret all such regimes as slow growth, being ρn bounded.
As an instance of fast growth, one can take σn = µµ

n
, for which ρn diverges to infinity,

since eventually τn ≤ (n+ 1)µµ
n

and therefore ρn ≥ µ(µ−1)µn/(n+ 1) −→∞.
We now derive the fundamental iterative equation obeyed by the model. It will

be useful, for simplicity, to adopt for a moment a vector notation, instead of a com-
ponentwise one, and thus rewrite (5.1) as Tn+1 = Tn + Bn+1. Then divide both sides
by τn+1, yielding

Tn+1

τn+1

=
Tn +Bn+1

τn+1

=
τnΘn +Bn+1

τn+1

.

Thus we conclude that

Θn+1 =
τn
τn+1

Θn +
1

τn+1

Bn+1. (5.2)

We can also rewrite (5.2) componentwise, and by exploiting the random fluctuations,
it follows that for every i ∈ {1, . . . , d}

Θ(i)

n+1 =
τn
τn+1

Θ(i)

n +
1

τn+1

(
σn+1P

(i)

n + ε(i)

n+1

√
σn+1P

(i)
n (1− P (i)

n )

)
and therefore

Θ(i)

n+1 =
τn
τn+1

Θ(i)

n +
σn+1

τn+1

P (i)

n +
ε(i)

n+1

τn+1

√
σn+1P

(i)
n (1− P (i)

n ). (5.3)

5.2 A useful heuristics for dominance

The main objective in this part of our work is finding the probability, for any d > 2 and
depending on the feedback and regime of growth of {σn}, of the events of dominance
and monopoly, which are respectively defined as the events D, such that all but one
of the proportions of balls in the bins are negligible, and M such that all but one
of the bins eventually stops receiving balls, as per Definitions 1.8 and 1.9. The main
focus will be on dominance. An interesting heuristic approach to describing the onset
of dominance is the following: in (5.2) we can extract the martingale differences by
adding and subtracting σn+1Pn to the multinomials, so as to get

Θn+1 =
τn
τn+1

Θn +
σn+1

τn+1

Pn +
Bn+1 − σn+1Pn

τn
.

One expects negligibility of the martingale differences, so by neglecting them we are
left with the dynamical system Θn+1 = ψn(Θn), where

ψn(x) ..=
τn
τn+1

x+
σn+1

τn+1

ψ(x),

and ψ(x) ..= (ψ(1)(x), . . . , ψ(d)(x)).
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With α = 1, by (5.2), {Θn} is a martingale, thus almost sure convergence of
{Θn} with no feedback is established by Doob’s Forward Convergence Theorem. Can
convergence be to the vertices of the simplex, with positive probability? Note that
with no feedback, the iteration map ψn(x) is the identity map; therefore heuristically,
starting within the simplex, {Θn} should quickly converge to points within the simplex
because the iteration map, which broadly speaking drives the deterministic system,
does not have any destabilising effect. Thus one would expect no dominance for α = 1.

With α > 1, the system has an iteration map, whose equilibrium points are char-
acterised by the fixed point equation x = ψn(x), which is equivalent to the equation

xi =
xαi∑d
j=1 x

α
j

,

whose solutions on the simplex are the vertices and the centres of the l-faces for
l ∈ {1, . . . , d− 2}

El ..=

(
1

l + 1
, . . . ,

1

l + 1︸ ︷︷ ︸
l+1

, 0, . . . , 0︸ ︷︷ ︸
d−l−1

)
,

with the centre of the simplex denoted as E ..= Ed−1 = 1
d

(we call these centres
equilibria due to this dynamical interpretation). If the Jacobian matrix has eigen-
values with modulus greater than 1 at the equilibria of the simplex, one expects the
dynamical system not to converge to these equilibria. If the vertices are stable un-
der this dynamics, then they are the likely candidates for the limit of {Θn}. This
interpretation is obviously very loose, since the system is nonautonomous. However,
particularly instructive can be the case for d = 2, studied in [48]. Here one can effort-
lessly overcome the difficulty of extending the Jacobian test for stability, as we can
perform cobwebbing. In this case we only consider the first component of Θn: due to
symmetry, the system is essentially univariate. The map ψ(1)

n (x) is then the convex
combination of the identity map and the function

ψ(1)(x) ..=
xα1

xα1 + (1− x1)α

through the coefficients τn/τn+1 and σn+1/τn+1. This observation makes us rely less on the
Jacobian criterion, since we can see through cobwebbing, where the iteration map leads
the system, even as it varies. Although the convex combination is time dependent,
the graph of ψ(1)

n will always maintain its qualitative profile (see Figure 5.1), and
therefore cobwebbing takes the systems away from 1/2, towards either 0 or 1. The
time-dependency entails that the speed, at which this happens, varies; thus, when
considering the original stochastic process, the control over the neglected random
fluctuations enters the picture, especially close to 1/2. One must ensure that they
do not overpower the destabilizing effect that the feedback introduces, when close to
the equilibrium. The case d = 2 is very fortunate: thanks to the symmetry, it is
essentially univariate, and it has no such issue as partial equilibria of the bins, which
significantly complicate the analysis, as we will see in Chapter 8. Nonetheless, it is
this heuristic approach, which inspires the overall strategy we will follow, when trying
to prove almost sure dominance for d > 2 bins in Theorem 1.11.

5.3 Outline of contents

We start with an overview of the results concerning dominance, which is the main focus
of this part. In Chapter 7, Theorem 1.10 shows that dominance is negligible if α = 1.
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1
2

1

1
2

1

Figure 5.1: ψ(1) (red) and ψ(1)
n (blue) and cobwebbing

The result follows from the convergence of martingales, as previously mentioned, and
the fact that with no feedback, the regime is nonmonopolistic (Theorem 1.14). In
Chapter 9, Theorem 1.11 shows that when α > 1, dominance is almost sure if:

• ρn is bounded (σn = µn belongs to this rate of growth, which is therefore the
one we are more interested into, being the regime of the ERBRW);

• ρn −→∞, θ ..= limn→∞
log τn
αn

= 0, λ ..= lim supn→∞
σn+1σαn−1

σα+1
n

< 1.

Even though with feedback {Θn} is no longer a martingale, in the argument we exploit
martingale techniques on the Doob’s decomposition of {Θn}. In addition, we rely on
two key facts.

• {Θn} undergoes infinitesimal deviations from the equilibria of the simplex under
positive feedback (Proposition 8.4, proved in Chapter 8). This means that Θn is
almost never eventually confined in a δn-neighbourhood of the equilibria {El},
where δn will be a suitably defined vanishing positive sequence. These deviations
are exploited to start the inductive argument of the theorem, which shows that
one by one, all components of Θn vanish, except the last one.

• In both cases (ρn is bounded and ρn −→ ∞ with θ = 0, λ < 1), we have
that if i ∈ {1, . . . , d} is such that Θ(i)

n −→ 0 as n −→ ∞, then T (i)
n is bounded

(respectively Lemmas E.2 and F.1). This allows quantitative estimates on the
vanishing rate of Θ(i)

n that are exploited in the inductive argument of the the-
orem, so as to ensure that from one step to the next, the components of Θn,
which have been shown to be vanishing, do so at a fast enough rate. This part
of the argument is highly technical, and we rely on applications of the implicit
function theorem to carry out the induction step (Lemma 9.1).

These two facts combined, place Θn where, informally speaking, the iteration map
ψn further pushes it away from the equilibria, towards some vertex, as we described
in the heuristic section. In Conjecture 1.12 we claim that the conditions θ = 0 and
λ < 1 are not necessary. One ground for this conjecture is [48, Theorem 1.2], that is
the fact that for d = 2 bins, this has already been proved; a second ground is that the
issue arising in the higher-dimensional setting seems to be more of technical nature.
Although in the argument of Theorem 1.11 described above we rely on Lemmas E.2
and F.1, this reliance could be relaxed.
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Before moving on to describing the results concerning monopoly, it is perhaps
useful to provide a more intuitive interpretation of the parameters involved in these
arguments. Recall that {ρn} divides the various regimes of growth of {σn} in two
categories: slow groth when it is bounded, fast growth when it diverges to infinity.
We think of the quantity λ as a regularity parameter. For example, if it is a limit, for
ρn −→ ∞ and θ = 0 it is always zero (see [48, Lemma 6.1]). To get λ large, one can
think of irregular examples, such as

σn =

{
µn, n ≡ 0 mod(3)

1, n ≡ 1, 2 mod(3)
,

where µ > 1, in which case it is not even finite, since for all k ∈ N, λ3k+1 =
σ3k+2σ

α
3kσ
−α−1
3k+1 = µ3αk. Note that we implicitly made one additional regularity as-

sumption, namely the existence of θ ..= limn→∞ α
−n log τn ∈ [0,∞]. If it exists, θ is

a parameter which reveals finer details of the regime of growth of fast growing {σn},
since the logarithm allows to discern between different rates of fast growth. For exam-
ple, all slow regimes previously mentioned yield θ = 0, but a fast regime like σn = µµ

n

for µ > 1, does not necessarily imply θ =∞. In fact, note that whenever ρn −→ ∞,
τn ∼ σn because

σn
τn

=
1

1− 1
ρn−1

−→ 1,

as n −→ ∞. Therefore, having denoted θn ..= α−n log τn so that θ = limn−→∞ θn, we
can see that θn ∼ (µ/α)n log µ. Then if µ < α, one has that θ = 0; if µ = α, θ = logα;
if µ > α, θ =∞.

The assumption on the existence of the limit of θn ..= α−n log τn is crucial only for
the study of monopoly, to which we now briefly turn our attention to. We consider
these results as secondary, so we will not describe the arguments with as much detail
as we did for those concerning dominance. Extending the results for d = 2, we recall
that we show that for d > 2 monopoly almost never occurs in the following scenarios:

• if there is no feedback, by Theorem 1.14;

• if there is feedback, in supercritical regime, that is θ =∞ (and thus ρn −→∞),
by Theorem 1.15;

• if there is feedback, in subcritical regime (that is θ = 0) with ρn diverging to
infinity and λ > 1, by Theorem 1.16.

The proof of these results can be found in Chapter C, and they are a straightforward
adaptation from the corresponding results in [48]. In Corollary 1.13 we show that with
positive feedback, monopoly occurs almost surely in all regimes of growth covered by
Theorem 1.11, that is when:

• ρn is bounded;

• ρn −→∞, θ = 0 and λ < 1.

We did not conduct the study of monopoly for d > 2 under the critical regime
(α > 1, θ ∈ (0,∞)), due to our main focus being the application of this approach to
the ERBRW. The reader with a keen interest in BB models will find beneficial reading
[48, §1], as it contains interesting heuristic remarks regarding monopoly, which we did
not discuss here, and [48, §8], which offers an in depth study of monopoly in the
critical regime for d = 2. Also, note that we did not study the case of negative
feedback (0 < α < 1) under time-dependence.
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5.4 Note for the reader

Part IV contains several technical results that are vital to the main arguments of our
proofs, but they are not an original contribution of the present work. They are in the
appendix, as they have easily been adapted from the corresponding results shown in
[48]. They are included for self-containedness.

5.5 Notation

To conclude we mention some additional notation which we will adopt throughout
this part.

• We will denote [d] ..= {i ∈ N : 1 ≤ i ≤ d}.

• The Euclidean norm will be denoted as ‖ · ‖.

• The Hilbert space of square integrable random variables L2(Ω,F,P) will be
denoted simply by L2. For a random variable X the notation X ∈ L2(G) for
some sub-σ-algebra G of F, means that almost surely EGX

2 < ∞, where EG

denotes the expectation conditional on the sub-σ-algebra G, and is therefore
a random variable itself. When a sequence of random variables Xn ∈ L2(G)
converges to a random variableX in L2(G), this means by definition that almost
surely limn−→∞ EG(Xn −X)2 = 0.

• To say that a random variable X is measurable with respect to a sub-σ-algebra
G of F, we will use the notation X ∈ mG.
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Chapter 6

No monopoly

In this section we show a fundamental condition for nonmonopolistic regimes, which
we adapt from [48, Lemma 2.1].

Lemma 6.1. Assume
∞∑
n=0

σn+1

ταn
=∞.

Then P(∀i ∈ [d], T (i)
n −→∞) = 1, and therefore P(M) = 0.

Proof. For the second part it is sufficient to note that

Mc =

(
d⋃
i=1

{T (i)

n = σn, ev.}

)c

=
d⋂
i=1

{T (i)

n = σn, ev.}c =
d⋂
i=1

{T (i)

n < σn, i.o.}

= {∀ i ∈ [d], T (i)

n < σn, i.o.} ⊃ {∀ i ∈ [d], T (i)

n →∞} .

Then P(∀i ∈ [d], T (i)
n →∞) = 1 directly implies P(M) = 0. We will focus on showing

that
∞∑
n=0

σn+1

ταn
=∞

implies P(∀i ∈ [d], T (i)
n → ∞) = 1 by a componentwise martingale argument. Note

that for every i ∈ [d],

T (i)

n = T (i)

0 +
n∑
j=1

B(i)

j = T (i)

0 +M (i)

n + Y (i)

n ,

where

M (i)

n
..=

n∑
j=1

(B(i)

j − σjP
(i)

j−1)

with M (i)

0 = 0, and

Y (i)

n
..=

n∑
j=1

σjP
(i)

j−1

with Y (i)

0 = 0. Note that for every i ∈ [d], Y (i)
n almost surely diverges to infinity under

the assumption that
∞∑
n=0

σn+1

ταn
=∞.
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In fact by (8.1) and the nondecreasing monotonicity of T (i)
n ≥ 1,

Y (i)

n =
n∑
j=1

σjψ
(i)(Θj−1) ≥

n∑
j=1

σj(Θ
(i)

j−1)α =
n∑
j=1

σj(T
(i)

j−1)α

ταj−1

≥
n∑
j=1

σj
ταj−1

=
n∑
k=0

σk+1

ταk
.

(6.1)
Therefore, proving that

{∀ i ∈ [d], Y (i)

n →∞} ⊆ {∀ i ∈ [d], T (i)

n →∞}

would yield the claim. In order to do so, first we will show that M (i)
n is a centred

Fn-martingale; next, by exploiting the angle bracket process, we show that Y (i)
n →∞

implies T (i)
n →∞.

Step 1. Clearly M (i)
n is trivially adapted to {Fn} as B(i)

n is too. Since EFj−1
B(i)

j =

σjP
(i)

j−1 and P (i)

j−1 ∈ mFj−1, by the tower property it holds that

EM (i)

n =
n∑
j=1

E(B(i)

j − σjP
(i)

j−1) =
n∑
j=1

EEFj−1
(B(i)

j − σjP
(i)

j−1) = 0,

thus M (i)
n is centred. Moreover, for every n,

E|M (i)

n | ≤
n∑
j=1

E|B(i)

j − σjP
(i)

j−1| =
n∑
j=1

EEFj−1
|B(i)

j − σjP
(i)

j−1| ≤

n∑
j=1

EEFj−1
(B(i)

j + σjP
(i)

j−1) = 2
n∑
j=1

σjEP (i)

j−1 ≤ 2
n∑
j=1

σj = 2(τn − τ0) <∞.

Lastly, since B(i)

j ∈ mFn−1 and P (i)

j−1 ∈ mFn−1 for all 1 ≤ j ≤ n,

EFn−1M
(i)

n =
n∑
j=1

EFn−1(B(i)

j − σjP
(i)

j−1) = 0 +
n−1∑
j=1

(B(i)

j − σjP
(i)

j−1) = M (i)

n−1,

so for every i ∈ [d], M (i)
n is an Fn-martingale.

Step 2. Consider that M (i)
n ∈L2. Indeed

E(M (i)

n )2 = E(M (i)

n −M
(i)

n−1 +M (i)

n−1 −M
(i)

0 )2 = E(M (i)

n −M
(i)

n−1)2 + E(M (i)

n−1)2

+ 2E
[
(M (i)

n −M
(i)

n−1)(M (i)

n−1 −M
(i)

0 )
]

= E(M (i)

n −M
(i)

n−1)2 + E(M (i)

n−1)2,

since

E
[
(M (i)

n −M
(i)

n−1)(M (i)

n−1 −M
(i)

0 )
]

= EEFn−1

[
(M (i)

n −M
(i)

n−1)(M (i)

n−1 −M
(i)

0 )
]

and

EFn−1

[
(M (i)

n −M
(i)

n−1)(M (i)

n−1 −M
(i)

0 )
]

= (M (i)

n−1 −M
(i)

0 )EFn−1(M (i)

n −M
(i)

n−1) = 0

by the martingale property. Hence

E(M (i)

n )2 = E(M (i)

n −M
(i)

n−1)2 + E(M (i)

n−1)2 = E(M (i)

n−1)2 + EEFn−1(M (i)

n −M
(i)

n−1)2

= E(M (i)

n−1)2 + EEFn−1

(
B(i)

n − σnP
(i)

n−1

)2
= E(M (i)

n−1)2 + EVarFn−1 B
(i)

n

= E(M (i)

n−1)2 + σnE
[
P (i)

n−1(1− P (i)

n−1)
]
≤ E(M (i)

n−1)2 + σn.
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By iterating n times E(M (i)
n )2 − E(M (i)

n−1)2 ≤ σn, and adding up all inequalities, we
obtain

E(M (i)

n )2 ≤
n∑
j=1

σj = τn − τ0 <∞.

Then the angle bracket process is well defined as the previsible part of the Doob’s
decomposition of the submartingale (M (i)

n )2 and denoted as

〈M (i)〉n ..=
n∑
j=1

EFj−1
(M (i)

j −M
(i)

j−1)2 =
n∑
j=1

EFj−1
(B(i)

j − σjP
(i)

j−1)2 =
n∑
j=1

VarFj−1
B(i)

j

=
n∑
j=1

σjP
(i)

j−1(1− P (i)

j−1) ≤ Y (i)

n .

The standard theory of the angle bracket process now applies. Recall the following
facts:

• if 〈M (i)〉n converges, then M (i)
n converges almost surely by [50, §12.13];

• if 〈M (i)〉n diverges, then M
(i)
n /

〈
M (i)

〉
n

vanishes by [50, §12.14].

By (6.1), the assumption of the claim implies that Y (i)
n −→∞. We have two cases to

inspect.

Case 1. If 〈M (i)〉n converges, then M (i)
n converges, and T (i)

n = T (i)

0 +M (i)
n +Y (i)

n −→∞;

Case 2. If 〈M (i)〉n diverges, then M
(i)
n /

〈
M (i)

〉
n

vanishes, and therefore

T (i)

n = Y (i)

n

(
1 +

T (i)

0

Y (i)
n

+
M (i)

n

Y (i)
n

)
= Y (i)

n (1 + 2Oω(1)) −→∞,

since ∣∣∣∣M (i)
n

Y (i)
n

∣∣∣∣ =
|M (i)

n |
Y (i)
n

≤ |M (i)
n |

〈M (i)〉n
=

∣∣∣∣ M (i)
n

〈M (i)〉n

∣∣∣∣ −→ 0

and therefore M
(i)
n /Y (i)

n vanishes.

Hence T (i)
n −→∞.

This lemma yields the three main results on the negligibility of monopoly. The
proofs are found in Chapter C. Recall that θn ..= α−n log τn and assume limn→∞ θn =..

θ ∈ R ∪∞.

• Since by Lemma C.1,
∑∞

n=1
σn/τn = ∞, Theorem 1.14 exploits Lemma 6.1 to

show that if there is no feedback, monopoly is negligible.

• When α > 1 and θ = ∞, recall that the model is said to be in supercritical
regime. In this regime Theorem 1.15 exploits Lemma 6.1 to show the negligi-
bility of monopoly.

• When α > 1 and θ = 0, recall that the model is said to be in subcritical regime.
In this regime, Theorem 1.16 exploits Lemma 6.1 to show that if

1 < λ ..= lim sup
n−→∞

σn+1σ
α
n−1

σα+1
n

,

monopoly is negligible.
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Chapter 7

No dominance

In this chapter we prove that dominance is negligible in absence of feedback.

Proof of Theorem 1.10. Since Θn ∈ ∆d−1, 0 ≤ ‖Θn‖ ≤ 1, so Θn is bounded. By (5.2),
it can be seen that Θn is a martingale:

EFn−1(Θn) =
τn−1

τn
EFn−1(Θn−1) +

1

τn
EFn−1(Bn) =

τn−1

τn
Θn−1 +

σn
τn
Pn−1

=
τn−1

τn
Θn−1 +

σn
τn

Θn−1 = Θn−1,

since Θn−1 ∈ mFn−1 and Pn−1 = ψ(Θn−1) = Θn−1, because α = 1 and τn−1 +σn = τn.
By Doob’s forward convergence theorem, Θn converges almost surely to a bounded
random variable Θ.

To show that dominance is negligible, we actually show a stronger claim: that
the event, on which any of the proportions of balls in the bins vanishes, is negligible.
Define the event

D̃ ..= {∃i ∈ [d] : Θ(i) = 0} =
d⋃
i=1

D̃i

where D̃i ..= {Θ(i) = 0}. Note that D ⊆ D̃. We show that P(D̃) = 0. This holds, since
for every i ∈ [d], on the event D̃i,

∑
j 6=i Θ

(j)
n can be seen as the proportion of a second

bin (resulting from merging all the d − 1 bins other than the ith, which vanishes)
approaching unity. In fact since α = 1, trivially

Θn = ψ(Θn) ..=
1∑d

j=1 Θ(j)
n

Θ(1)
n
...

Θ(d)
n

 =
1

Θ(i)
n +

(∑
j 6=i Θ

(j)
n

)
Θ(1)

n
...

Θ(d)
n

 .

In this sense, D̃ can be seen as the event of dominance in the two bins model, so by
Theorem D.1, P(D̃) = 0. Hence 0 ≤ P(D) ≤ P(D̃) = 0, and the claim follows.

Note that for α > 1 merging d − 1 bins as in Theorem 1.10, would not yield a
probabilistic model equivalent to the two bins model, because in general

d∑
j=1

(Θ(j)

n )
α 6= (Θ(i)

n )
α

+

(∑
j 6=i

Θ(j)

n

)α

.
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Chapter 8

Getting away from the equilibrium

This chapter is dedicated to deriving a key result for the BB process with positive
feedback: that, informally speaking, the vector of proportions Θn does not get stuck
in any of the equilibrium points (geometrically, recall that by equilibria we refer to
the centres of the faces of the unit simplex). This fact will be the key to reach a
proof of dominance in presence of feedback, recalling that dominance consists in Θn

converging to the vertices of the simplex.

8.1 Preliminaries

Let us begin this section with deriving some facts about the components ψ(i) of the
vector field ψ : ∆d−1 −→ ∆d−1, with α > 1. They will be frequently used throughout
the rest of the chapter. The first fact is a straightforward bound for ψ(i) on ∆d−1,
obtained via the Lagrange multipliers method (since Θn ∈ ∆d−1 will be the argument
of ψ(i) in all proofs, all arguments denoted as x belong to the simplex).

Remark 8.1. For every i ∈ [d]

xαi ≤ ψ(i)(x) ≤ dα−1xαi (8.1)

on ∆d−1.

Proof. Consider the denominator of ψ(i),

f(x) =
∑
j

xαj ,

and find its extrema on [0, 1]d, subject to the constraint

g(x) =
∑
j

xj − 1 = 0.

Then the Lagrangian is

L(x, λ) = f(x)− λg(x) =
∑
j

(xαj − λxj)

and

∇L =


αxα−1

1 − λ
...

αxα−1
d − λ

1−
∑

j xj

 .
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On [0, 1]d, the equation ∇L = 0 yields the solution
x1
...
xd
λ

 =


1
d
...
1
d
α

dα−1

 .

Note that f is continuous on the compact ∆d−1, and therefore it will have two extrema.
Since the Lagrange multipliers provide only one solution, the second extremal value
must be on the boundary. But α > 1 and 0 ≤ xi ≤ 1, so it is obvious that it will
be the maximum value 1 to be on the boundary, at each vertex of ∆d−1. Then it
is possible to conclude that what has been found earlier are the coordinates of the
minimum, which yield the value

f

(
1

d

)
=

1

dα−1
.

Thus
1

dα−1
≤ f(x) ≤ 1.

In conclusion

ψ(i)(x) =
xαi
f(x)

≥ xαi

and

ψ(i)(x) =
xαi
f(x)

≤ dα−1xαi .

The second fact is about the regularity of ψ. Explicit calculation of the partial
derivatives shows that the restriction of ψ on ∆̊d−1 is smooth and, since α > 1, it
is continuously differentiable at ∂∆d−1, but not necessarily twice differentiable. The
partial derivatives are indeed continuous on the whole ∆d−1, and no issues arise in
further differentiating as no component vanishes there:

∂xjψ
(i)(x) =


αxα−1

i

∑
k 6=i x

α
k

(
∑
k x

α
k)

2 , if i = j

−αxαi
xα−1
j

(
∑
k x

α
k)

2 , if i 6= j.
(8.2)

However for some values of α the off-diagonal derivatives show irregularities, al-
ready as of the second derivative. For example for α = 5/3, at

Ed−2
..=

(
1

d− 1
, . . . ,

1

d− 1
, 0

)
∈ ∂∆d−1,

the derivative ∂2
xd
ψ(1)(Ed−2) does not exist. Indeed, since ∂xdψ

(1)(Ed−2) = 0, the limit
defining ∂2

xd
ψ(1)(Ed−2) simplifies to

−α lim
h→0±

1
(d−1)α

hα−1

(
∑d−1
k=1

1
(d−1)α

+hα)
2

h
= − 5

3(d− 1)
5
3

lim
h→0±

h−
1
3(

1

(d−1)
2
3

+ h
5
3

)2 = ∓∞.

As a result, at the boundary, we can only rely on continuous differentiability of ψ in
general, not twice differentiability.
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We now briefly introduce the main result of this chapter, Proposition 8.4, the
main tool which, by iteration, leads to proving almost sure dominance with feedback
in the following chapter, by Theorem 1.11, whose argument relies on Θn almost never
eventually being confined to a small δn-neighbourhood of the equilibrium E of the
simplex (or centre, geometrically speaking) and of the partial equilibrium points in
its lower-dimensional faces, and this fact is ensured by Proposition 8.4. To get a
mental picture, for example, in ∆2 we have the equilibrium 1

3
to look for, and then in

the 1-faces (its edges in this case) there are the partial equilibria (1/2, 1/2, 0), (1/2, 0, 1/2)
and (0, 1/2, 1/2). A generic vanishing positive valued δn such that

∞∑
n=0

σn+1

τn+1

δn <∞,

as adopted in [48, Proposition 4.1] will not suffice for any d > 2, because the argument
around partial equilibria is far more problematic: the case d = 2 is the only one that
does not have partial equilibria, and in this sense it is fortunate. The general meaning
of the lemma that will follow is to ensure that it is possible to choose a more specific

δn ..=
1

τ rn
(8.3)

for some 0 < r < 1/2 instead, so that the argument of Proposition 8.4 succeeds for all
d > 2 and all regimes of growth satisfying Assumptions S and R (the second of these
conditions will play a significant role also in Theorem 1.11). The introduction of the
parameter r is related to both Proposition 8.4 and Theorem 1.11; in Proposition 8.4
it will be further restricted to a range of values so that the argument makes it through
all regimes of growth.

Lemma 8.2. Let 0 < r < 1/2, then

∞∑
n=0

σn+1

τn+1τ rn
<∞.

Proof. The two cases given by Assumption R need to be treated separately.

• If ρn is bounded by some ρ > 0, then noting that

σn+1

τn+1τ rn
=

(
σn+1

τ 1+r
n+1

)(
τ 1+r
n+1

τ 1+r
n

)
=
σn+1

τ 1+r
n+1

(
τn + σn+1

τn

)1+r

=
σn+1

τ 1+r
n+1

(1 + ρn)1+r,

we obtain
∞∑
n=0

σn+1

τn+1τ rn
<
∞∑
n=0

σn+1

τ 1+r
n+1

(1 + ρn)1+r ≤ (1 + ρ)1+r

∞∑
n=0

σn+1

τ 1+r
n+1

≤ (1 + ρ)1+r

∫ ∞
τ0

dx

x1+r

=
(1 + ρ)1+r

rτ r0
<∞.

• If ρn −→ ∞, note that for any constant b > 1, there will be an m̄ > 0, such
that for all n > m̄, ρn > b. Then it follows that σn+1 > bτn for all n > m̄, and
therefore τn > σn > bτn−1, which yields, by induction,

τn > bn−m̄τm̄.

Consequently, the sum can be estimated as follows. Since br > 1,

∞∑
n=0

σn+1

τn+1τ rn
<
∞∑
n=0

1

τ rn
≤

∞∑
n=0

1

(bn−m̄τm̄)r
<
bm̄

τ rm̄

∞∑
n=0

1

brn
=
bm̄

τ rm̄

1

1− 1
br

<∞.
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We conclude this section by briefly showing an elementary fact, which will be used
in Proposition 8.4.

Remark 8.3. For any γ > 1, uniformly in n > nm > m and assuming that m =
O(nm) as m −→∞,

n∑
k=m+1

1

kγ+O(1)
∼ 1

(γ − 1)mγ−1+O(1)

Proof. The claim follows from integral estimates. Note that γ > 1 implies that
γ + O(1) > 1, for all m large enough. Hence on one hand, abusing a little the
notation, as m = O(n),

n∑
k=m+1

1

kγ+O(1)
≥
∫ n

m+1

dx

xγ+O(1)
=

1

(γ − 1)mγ−1+O(1)

(
(1 + O(1))

(
m

m+ 1

)γ−1+O(1)

− (1 + O(1))
(m
n

)γ−1+O(1)
)

=

1

(γ − 1)mγ−1+O(1)
(1 + O(1)),

on the other hand

n∑
k=m+1

1

kγ+O(1)
≤ 1

(m+ 1)γ+O(1)
+

∫ n+1

m+2

dx

(x− 1)γ+O(1)
=

1

(m+ 1)γ+O(1)
+

1

(γ − 1)mγ−1+O(1)
(1 + O(1)) =

1

(γ − 1)(m)γ−1+O(1)

(
(γ − 1)mγ−1+O(1)

(m+ 1)γ+O(1)
+ 1 + O(1)

)
=

1

(γ − 1)(m)γ−1+O(1)
(1 + O(1)) ,

and therefore
n∑

k=m+1

1

kγ+O(1)
∼ 1

(γ − 1)(m)γ−1+O(1)
.

8.2 Infinitesimal deviations from the equilibria in

presence of feedback

This section is dedicated to showing Proposition 8.4: that is, we show that Θn is almost
never eventually confined in a δn-neighbourhood of the equilibrium point of the l-faces
of ∆d−1, where l ∈ [d − 1]. By symmetry, without loss of generality, the equilibria
we will choose to illustrate the argument in Theorem 1.11, are those belonging to the
face obtained by intersecting the hyperplanes Hl+1

..= {xd = . . . = xl+2 = 0} with the
simplex: ∆d−1 ∩Hl+1. Therefore, in Proposition 8.4 a generic partial equilibrium of
an l-face will be

El ..=

(
1

l + 1
, . . . ,

1

l + 1︸ ︷︷ ︸
l+1

, 0, . . . , 0︸ ︷︷ ︸
d−l−1

)
.

The full equilibrium point of ∆d−1 is denoted as E ..= Ed−1 = 1
d

.
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Proposition 8.4. Let α > 1,

rα ..= max

{
1

4
,

1

2α

}
and

δn ..=
1

τ rn
,

where

rα < r <
1

2
.

Then for every l ∈ [d− 1],

P(‖Θn − El‖ > δn, i.o.) = 1.

Proof.

Step 1. Since

{‖Θn − El‖ > δn, i.o.}c = {‖Θn − El‖ ≤ δn, ev.} ,

we can equivalently show that

P(‖Θn − El‖ ≤ δn, ev.) = 0,

but since

{‖Θn − El‖ ≤ δn, ev.} =
∞⋃
m=1

⋂
n≥m

{‖Θn − El‖ ≤ δn}

and ⋂
n≥m

{‖Θn − El‖ ≤ δn} ⊆
⋂

n≥m+1

{‖Θn − El‖ ≤ δn} ,

by monotonicity

∞⋃
m=1

⋂
n≥m

{‖Θn − El‖ ≤ δn} = lim
m→∞

⋂
n≥m

{‖Θn − El‖ ≤ δn} .

Hence by the monotone continuity of the probability measure, we have that

P

(
lim
m→∞

⋂
n≥m

{‖Θn − El‖ ≤ δn}

)
= lim

m→∞
P (‖Θn − El‖ ≤ δn ∀n ≥ m) .

All in all, defining
Hl
m

..= {‖Θn − El‖ ≤ δn, ∀n ≥ m} ,

we will prove the claim by showing that as m −→∞,

P(Hl
m)→ 0.

Step 2. We prove that this probability vanishes by rewriting Θ(1)
n − 1/(l + 1) on the

event Hm, by iterating (5.2) and (5.3), with the help of the multivariate Mean Value
Theorem applied to P (1)

n
..= ψ(1)(Θn−1), and Taylor approximations at El. We will

then achieve an iterative multiplicative representation of Θ(1)
n − 1/(l + 1) in terms of

Θ(1)
m − 1/(l + 1), which by a suitable probabilistic argument, will be crucial in the
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estimation of P(Hl
m). Before proceeding, we would like to mention that a vector-

valued approach is in theory also possible, and it might even look like a more natural
way of generalising the argument in [48, Proposition 4.1]: it would require exploiting
a vector-valued generalization of the multivariate mean value theorem, using matrices
in the iteration suitably diagonalised, in order to highlight the deterministic scales
involved. However it turns out far more problematic. Even though such approach
succeeds for l = d− 1 with exponential growth, uniformity of the results with respect
to all parameters involved fails when l < d − 1 and already with the exponential
regime.

Consider now the vector field ψ : ∆d−1 −→ ∆d−1 as defined at the beginning of
this section through its components ψ(i)(x). For i = 1, we can apply the standard
multivariate Mean Value Theorem. For every Θn−1 ∈ ∆d−1, there exists a point

ξΘn−1 = tΘn−1 + (1− t)El,

corresponding to some parameter t ∈ (0, 1), such that

ψ(1)(Θn−1)− ψ(1)(El) = ∇ψ(1)(ξΘn−1)· (Θn−1 − El),

where · denotes the scalar product. Since by definition P (1)

n−1 = ψ(1)(Θn−1) and
ψ(1)(El) = 1/(l + 1), the equation can be rewritten as

P (1)

n−1 =
1

l + 1
+∇ψ(1)(ξΘn−1)· (Θn−1 − El). (8.4)

Plugging (8.4) into (5.3) with i = 1, after subtracting 1/(l+ 1) both sides, yields that
uniformly in n > m and ω ∈ Ω,

Θ(1)

n −
1

l + 1
=
τn−1

τn
Θ(1)

n−1 +
σn
τn
P (1)

n−1 −
1

l + 1
+
ε(1)
n

τn

√
σnP

(1)

n−1(1− P (1)

n−1) =

τn−1

τn
Θ(1)

n−1 +
σn
τn

(
1

l + 1
+∇ψ(1)(ξΘn−1)· (Θn−1 − El)

)
− 1

l + 1
+

ε(1)
n

τn

√
σnP

(1)

n−1(1− P (1)

n−1) =
τn−1

τn
Θ(1)

n−1 +
σn

(l + 1)τn
+
σn
τn

l+1∑
j=1

ψ(1)

xj
(ξΘn−1)

(
Θ(j)

n−1 −
1

l + 1

)

+
σn
τn

d∑
j=l+2

ψ(1)

xj
(ξΘn−1)Θ(j)

n−1 −
1

l + 1
+
ε(1)
n

τn

√
σnP

(1)

n−1(1− P (1)

n−1) =

τn−1

τn
Θ(1)

n−1 −
τn−1

(l + 1)τn
+
σn
τn

l+1∑
j=1

ψ(1)

xj
(ξΘn−1)

(
Θ(j)

n−1 −
1

l + 1

)
+
σn
τn

d∑
j=l+2

ψ(1)

xj
(ξΘn−1)Θ(j)

n−1

+
ε(1)
n

τn

√
σnP

(1)

n−1(1− P (1)

n−1),

so

Θ(1)

n −
1

l + 1
=

τn−1

τn

(
Θ(1)

n−1 −
1

l + 1

)
+
σn
τn

l+1∑
j=1

ψ(1)

xj
(ξΘn−1)

(
Θ(j)

n−1 −
1

l + 1

)
+
σn
τn

d∑
j=l+2

ψ(1)

xj
(ξΘn−1)Θ(j)

n−1

+
ε(1)
n

τn

√
σnP

(1)

n−1(1− P (1)

n−1). (8.5)
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Since on the event Hl
m it holds that ‖Θ(1)

n − 1/(l + 1)‖ ≤ δn for all n ≥ m, and δn → 0,
some of the terms can be approximated via first degree Taylor expansion of ψ(1)(x)
and ψ(1)

xj
(x) at El, as n −→ ∞, uniformly on Hl

m. For the moment, the place holder
notation for Θn−1 will be x. The dependence on ξx is in a certain sense negligible on
Hl
m as m → ∞: since ξx is on a segment joining x and El, and since ‖ξx − El‖ → 0

on Hl
m, as m → ∞, we have that ξx ≈ El, with error deterministically bounded

by δn. More formally, since ψ(1) is continuously differentiable at El for all l and on
the simplex, the constant Taylor approximation will have a uniform error estimate
on Hl

m. Specifically, by the remainder theorem (in Lagrange form), since all partial
derivatives (which we will compute explicitly) are continuous over a compact set, they
all achieve a maximum, and therefore there will be a constant bounding ‖∇ψ(1)(ζx)‖
over the simplex (ζx denotes a point on the segment joining El and x, so it is in the
simplex and the previous bound applies). Then, by the Cauchy-Schwartz inequality,

|∇ψ(1)(ζx) · (x− El)| ≤ ‖∇ψ(1)(ζx)‖‖x− El‖ = O (‖x− El‖) ,

so

ψ(1)(x) = ψ(1)(El) +O (‖x− El‖) =
1

l + 1
+O (δn−1)

and P (1)

n−1 = 1/(l + 1) +O (δn−1). Therefore as n −→∞, uniformly on ω ∈ Hl
m

√
P (1)

n−1(1− P (1)

n−1) =

√(
1

l + 1
+O (δn−1)

)(
l

l + 1
+O (δn−1)

)
=√

l

(l + 1)2
+O (δn−1) =

√
l +O (δn−1)

l + 1
=

√
l + O(1)

l + 1

Since ψ may not be twice differentiable at points in the boundary like El when l < d−1,
its linear approximation will be expressed without uniform estimate of the error, that
is with Peano form of the remainder:

ψ(1)(x) = ψ(1)(El) +∇ψ(1)(El) · (x− El) + O (‖x− El‖) .

While this method does not interfere with approximating P (1)

n−1, and yields a uniform
estimate of the error, it prevents us from approximating some of the partial derivatives
ψ(1)
xj

(x) for j > l + 1 at El, as m → ∞, with a uniform bound on the error. Thus
via a different argument, we will show that continuity of those partial derivatives will
suffice in achieving a weaker (yet strong enough) uniform bound on the error, which
will play an important role, especially when 1 < α < 2. Consider that by direct
calculation and continuity, it holds that

lim
m→∞

ψ(i)

xj
(ξx) = ψ(i)

xj
(El) =



α(E(i)

l )α−1
∑
k 6=i(E

(k)
l )α(∑

k(E
(k)
l )α

)2 = lα
l+1
, if i = j ≤ l + 1

α(E(i)

l )α−1
∑
k 6=i(E

(k)
l )α(∑

k(E
(k)
l )α

)2 = 0, if i = j > l + 1

−α(E(i)

l )α
(E

(j)
l )α−1(∑

k(E
(k)
l )α

)2 = − α
l+1
, if i 6= j, i, j ≤ l + 1

−α(E(i)

l )α
(E

(j)
l )α−1(∑

k(E
(k)
l )α

)2 = 0, if i 6= j, i or j > l + 1,
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so, specifically for i = 1,

lim
m→∞

ψ(1)

xj
(ξx) = ψ(1)

xj
(El) =



α(E(1)

l )α−1
∑
k 6=1(E

(k)
l )α(∑

k(E
(k)
l )α

)2 = lα
l+1
, if 1 = j

−α(E(1)

l )α
(E

(j)
l )α−1(∑

k(E
(k)
l )α

)2 = − α
l+1
, if 1 6= j ≤ l + 1

−α(E(1)

l )α
(E

(j)
l )α−1(∑

k(E
(k)
l )α

)2 = 0, if 1 6= j > l + 1.

Therefore, as m→∞,

ψ(1)

xj
(ξx) =


lα
l+1

+ O(1), if 1 = j

− α
l+1

+ O(1), if 1 6= j ≤ l + 1

O(1), if 1 6= j > l + 1.

Recall that the placeholder x stands for Θn−1, and recall that since

‖ξΘn−1 − El‖ ≤ ‖Θn−1 − El‖ ≤ δn−1

for all n ≥ m on Hl
m, we have that ξx −→ El. For some of the derivatives, an estimate

of the error linear in δn−1 can be derived through Taylor expansion at El, uniformly
on Hl

m. Namely, when j ≤ l + 1, the continuous differentiability at El of ψ(1)
xj

(ξx)
ensures that by first degree Taylor expansion ψ(1)

xj
(ξx) = ψ(1)

xj
(El)+∇ψ(1)

xj
(ζx) · (ξx − El)

(with ζx in the segment joining El and ξx) and therefore

ψ(1)

xj
(ξx) = ψ(1)

xj
(El) +O (‖ξx − El‖) =

{
lα
l+1

+O(δn−1), if 1 = j

− α
l+1

+O(δn−1), if 1 6= j ≤ l + 1.

We can easily show, by direct calculation of the derivatives, that all components of
∇ψ(1)

xj
are continuous at El when j ≤ l + 1, and therefore there is a compact set on

which all partial derivatives are continuous, and to which the segment joining El and
ξx belongs (which is the requirement for the uniform estimate of the remainder):

∂xsψ
(i)

xj
(x) =



αxα−2
i

∑
k 6=i x

α
k((α−1)

∑
k x

α
k−2αxαi )

(
∑
k x

α
k)

3 , if i = j = s

α2xα−1
i xα−1

s (
∑
k x

α
k−2

∑
k 6=i x

α
k)

(
∑
k x

α
k)

3 , if i = j 6= s

α2xα−1
i xα−1

j (2xαi −
∑
k x

α
k)

(
∑
k x

α
k)

3 , if s = i 6= j

αxαi x
α−2
j (2αxαj −(α−1)

∑
k x

α
k)

(
∑
k x

α
k)

3 , if i 6= j = s

2α2xαi x
α−1
j xα−1

s

(
∑
k x

α
k)

3 , if s 6= i 6= j 6= s,

so specifically

∂xsψ
(1)

xj
(x) =



αxα−2
1

∑
k 6=1 x

α
k((α−1)

∑
k x

α
k−2αxα1 )

(
∑
k x

α
k)

3 , if 1 = j = s

α2xα−1
1 xα−1

s (
∑
k x

α
k−2

∑
k 6=i x

α
k)

(
∑
k x

α
k)

3 , if 1 = j 6= s

α2xα−1
1 xα−1

j (2xα1−
∑
k x

α
k)

(
∑
k x

α
k)

3 , if s = 1 6= j

αxα1 x
α−2
j (2αxαj −(α−1)

∑
k x

α
k)

(
∑
k x

α
k)

3 , if 1 6= j = s

2α2xα1 x
α−1
j xα−1

s

(
∑
k x

α
k)

3 , if s 6= 1 6= j 6= s.
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However, when j > l + 1, a weaker nonlinear estimate of the error in terms of δn−1

uniform on Hl
m can be derived, recalling the main steps of the proof of (8.1) regarding

the denominator of ψ(1). Indeed, since

ψ(1)

xj
(ξx) = −α(ξ(1)

x )α
(ξ(j)
x )α−1(∑
k(ξ

(k)
x )α

)2 ,

since E(k)

l = 0 for all k > l + 1, and since ξx has all coordinates nonnegative and
subunitary, as it belongs to the simplex, it follows that

|ψ(1)

xj
(ξx)| = α(ξ(1)

x )α
(ξ(j)
x )α−1(∑
k(ξ

(k)
x )α

)2 ≤ αd2(α−1)(ξ(1)

x )α(ξ(j)

x )α−1 ≤ αd2(α−1)|ξ(j)

x − E
(j)

l |
α−1

≤ αd2(α−1) ‖ξx − El‖α−1 = O(δα−1
n−1).

This plays a significant role only when 1 < α < 2, as in all other cases the uniform
bound (at least linear) would be automatically recovered. Since for α ≥ 2 no such issue
arises, and the above calculation shows that all, which follows, can be easily adjusted
just by replacing the O(δα−1

j ) terms with O(δj), the discussion will be mainly, and
implicitly, concerned with 1 < α < 2, without loss of generality. To sum up, going
back to the Θn−1 notation, uniformly in ω ∈ Hl

m we have that

ψ(1)

xj
(ξΘn−1) =


lα
l+1

+O(δn−1), if 1 = j

− α
l+1

+O(δn−1), if 1 6= j ≤ l + 1

O(δα−1
n−1), if 1 6= j > l + 1.

(8.6)

This result will be plugged in (8.5), which we first rewrite as:

Θ(1)

n −
1

l + 1
=
τn−1

τn

(
Θ(1)

n−1 −
1

l + 1

)
+
σn
τn
ψ(1)

x1
(ξΘn−1)

(
Θ(1)

n−1 −
1

l + 1

)
+
σn
τn

l+1∑
j=2

ψ(1)

xj
(ξΘn−1)

(
Θ(j)

n−1 −
1

l + 1

)
+
σn
τn

d∑
j=l+2

ψ(1)

xj
(ξΘn−1)Θ(j)

n−1

+
ε(1)
n

τn

√
σnP

(1)

n−1(1− P (1)

n−1) =

(
τn−1

τn
+
σn
τn
ψ(1)

x1
(ξΘn−1)

)(
Θ(1)

n−1 −
1

l + 1

)
+
σn
τn

l+1∑
j=2

ψ(1)

xj
(ξΘn−1)

(
Θ(j)

n−1 −
1

l + 1

)
+
σn
τn

d∑
j=l+2

ψ(1)

xj
(ξΘn−1)Θ(j)

n−1

+
ε(1)
n

τn

√
σnP

(1)

n−1(1− P (1)

n−1).

We now apply the Taylor remainder theorem in Lagrange form, so as to express the
partial derivatives, separate the main part from the negligible one, rearrange the main
part suitably and proceed with the iteration. Uniformly on the probability space and
n > m,

Θ(1)

n −
1

l + 1
=

(
τn−1

τn
+
σn
τn

(
lα

l + 1
+∇ψ(1)

x1
(ζ1

Θn−1
) · (ξΘn−1 − El)

))(
Θ(1)

n−1 −
1

l + 1

)
− σn
τn

l+1∑
j=2

(
α

l + 1
−∇ψ(1)

xj
(ζjΘn−1

) · (ξΘn−1 − El)
)(

Θ(j)

n−1 −
1

l + 1

)
+

σn
τn

d∑
j=l+2

ψ(1)

xj
(ξΘn−1)Θ(j)

n−1 +

√
σn
τn

ε(1)

n

√
P (1)

n−1(1− P (1)

n−1). (8.7)
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Since

l+1∑
j=2

(
α

l + 1
−∇ψ(1)

xj
(ζjΘn−1

) · (ξΘn−1 − El)
)(

Θ(j)

n−1 −
1

l + 1

)
=

α

l + 1

l+1∑
j=2

(
Θ(j)

n−1 −
1

l + 1

)
−

l+1∑
j=2

∇ψ(1)

xj
(ζjΘn−1

) · (ξΘn−1 − El)
(

Θ(j)

n−1 −
1

l + 1

)
and

α

l + 1

l+1∑
j=2

(
Θ(j)

n−1 −
1

l + 1

)
=

α

l + 1

(
1−Θ(1)

n−1 −
d∑

j=l+2

Θ(j)

n−1 −
l

l + 1

)
=

− α

l + 1

(
d∑

j=l+2

Θ(j)

n−1

)
− α

l + 1

(
Θ(1)

n−1 −
1

l + 1

)
,

from (8.7) it follows that

Θ(1)

n −
1

l + 1
=

(
τn−1

τn
+
σn
τn

lα

l + 1
+
σn
τn
∇ψ(1)

x1
(ζ1

Θn−1
) · (ξΘn−1 − El)

)(
Θ(1)

n−1 −
1

l + 1

)
− σn
τn

α

l + 1

l+1∑
j=2

(
Θ(j)

n−1 −
1

l + 1

)
+
σn
τn

l+1∑
j=2

∇ψ(1)

xj
(ζjΘn−1

) · (ξΘn−1 − El)
(

Θ(j)

n−1 −
1

l + 1

)

+
σn
τn

d∑
j=l+2

ψ(1)

xj
(ξΘn−1)Θ(j)

n−1 +

√
σn
τn

ε(1)

n

√
P (1)

n−1(1− P (1)

n−1) =
σn
τn

α

l + 1

(
d∑

j=l+2

Θ(j)

n−1

)

+

(
τn−1

τn
+
σn
τn

lα

l + 1
+
σn
τn
∇ψ(1)

x1
(ζ1

Θn−1
) · (ξΘn−1 − El)

)(
Θ(1)

n−1 −
1

l + 1

)
+
σn
τn

α

l + 1

(
Θ(1)

n−1 −
1

l + 1

)
+
σn
τn

l+1∑
j=2

∇ψ(1)

xj
(ζjΘn−1

) · (ξΘn−1 − El)
(

Θ(j)

n−1 −
1

l + 1

)

+
σn
τn

d∑
j=l+2

ψ(1)

xj
(ξΘn−1)Θ(j)

n−1 +

√
σn
τn

ε(1)

n

√
P (1)

n−1(1− P (1)

n−1)

=

(
τn−1 + ασn

τn
+
σn
τn
∇ψ(1)

x1
(ζ1

Θn−1
) · (ξΘn−1 − El)

)(
Θ(1)

n−1 −
1

l + 1

)
+
σn
τn

l+1∑
j=2

∇ψ(1)

xj
(ζjΘn−1

) · (ξΘn−1 − El)
(

Θ(j)

n−1 −
1

l + 1

)
+

α

l + 1

σn
τn

d∑
j=l+2

Θ(j)

n−1

+
σn
τn

d∑
j=l+2

ψ(1)

xj
(ξΘn−1)Θ(j)

n−1 +

√
σn
τn

ε(1)

n

√
P (1)

n−1(1− P (1)

n−1).

Define

kj(Θj) ..=
τj + ασj+1

τj+1

+
σj+1

τj+1

∇ψ(1)

x1
(ζ1

Θj
) · (ξΘj − El) =

τj + ασj+1

τj+1

(
1 +

σj+1

τj + ασj+1

∇ψ(1)

x1
(ζ1

Θj
) · (ξΘj − El)

)
=(

τj + ασj+1

τj+1

)(
1 +

σj+1

τj + ασj+1

O(δj)

)
,
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for i ∈ {2, . . . , l + 1} we have that

λij(Θj) ..= ∇ψ(1)

xi
(ζ iΘj) · (ξΘj − El) = O(δj), (8.8)

and for i ∈ {l + 2, . . . , d} we have that

νij(Θj) ..= ψ(1)

xi
(ξΘj) = O(δα−1

j ), (8.9)

as j −→∞, uniformly in ω ∈ Hl
m, by (8.6). Then the basic iteration step is

Θ(1)

n −
1

l + 1
= kn−1(Θn−1)

(
Θ(1)

n−1 −
1

l + 1

)
+
σn
τn

l+1∑
j=2

λjn−1(Θn−1)

(
Θ(j)

n−1 −
1

l + 1

)

+
α

l + 1

σn
τn

d∑
j=l+2

Θ(j)

n−1 +
σn
τn

d∑
j=l+2

νjn−1(Θn−1)Θ(j)

n−1 +

√
σn
τn

ε(1)

n

√
P (1)

n−1(1− P (1)

n−1).

(8.10)

Iterating (8.10) n−m times yields, using empty sum and empty product conventions,

Θ(1)

n −
1

l + 1
=

n−1∏
j=m

kj(Θj)

(
Θ(1)

m −
1

l + 1

)
+

n∑
k=m+1

n−1∏
j=k

kj(Θj)
σk
τk

l+1∑
i=2

λik−1(Θk−1)

(
Θ(i)

k−1 −
1

l + 1

)
+

n∑
k=m+1

n−1∏
j=k

kj(Θj)
σk
τk

d∑
i=l+2

νik−1(Θk−1)Θ(i)

k−1 +
α

l + 1

n∑
k=m+1

n−1∏
j=k

kj(Θj)
σk
τk

d∑
i=l+2

Θ(i)

k−1 +
n∑

k=m+1

n−1∏
j=k

kj(Θj)

√
σk
τk

ε(1)

k

√
P (1)

k−1(1− P (1)

k−1). (8.11)

On a side note, the fact that in the case l = d− 1, (8.7) yields

Θ(1)

n −
1

d
=

(
τn−1

τn
+
σn
τn

(
(d− 1)α

d
+∇ψ(1)

x1
(ζ1

Θn−1
) · (ξΘn−1 − Ed−1)

))(
Θ(1)

n−1 −
1

d

)

− σn
τn

d∑
j=2

(α
d
−∇ψ(1)

xj
(ζjΘn−1

) · (ξΘn−1 − Ed−1)
)(

Θ(j)

n−1 −
1

d

)
+

√
σnP

(1)

n−1(1− P (1)

n−1)

τn
ε(1)

n

=

(
τn−1

τn
+
σn
τn

(
(d− 1)α

d
+∇ψ(1)

x1
(ζ1

Θn−1
) · (ξΘn−1 − Ed−1)

))(
Θ(1)

n−1 −
1

d

)
− α

d

σn
τn

d∑
j=2

(
Θ(j)

n−1 −
1

d

)
+
σn
τn

d∑
j=2

∇ψ(1)

xj
(ζjΘn−1

) · (ξΘn−1 − Ed−1)

(
Θ(j)

n−1 −
1

d

)
+

√
σn
τn

ε(1)

n

√
P (1)

n−1(1− P (1)

n−1),

combined with the fact that

d∑
j=2

(
Θ(j)

n−1 −
1

d

)
=

(
1−Θ(1)

n−1 −
d− 1

d

)
= −

(
Θ(1)

n−1 −
1

d

)
,
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implies that

Θ(1)

n −
1

d
=

(
τn−1

τn
+
σn
τn

(
(d− 1)α

d
+∇ψ(1)

x1
(ζ1

Θn−1
) · (ξΘn−1 − Ed−1)

))(
Θ(1)

n−1 −
1

d

)
+
α

d

σn
τn

(
Θ(1)

n−1 −
1

d

)
+
σn
τn

d∑
j=2

∇ψ(1)

xj
(ζjΘn−1

) · (ξΘn−1 − Ed−1)

(
Θ(j)

n−1 −
1

d

)
+

√
σn
τn

ε(1)

n

√
P (1)

n−1(1− P (1)

n−1) =

(
τn−1 + ασn

τn
+
σn
τn
∇ψ(1)

x1
(ζ1

Θn−1
) · (ξΘn−1 − Ed−1)

)
(

Θ(1)

n−1 −
1

d

)
+
σn
τn

d∑
j=2

∇ψ(1)

xj
(ζjΘn−1

) · (ξΘn−1 − Ed−1)

(
Θ(j)

n−1 −
1

d

)
+

√
σn
τn

ε(1)

n

√
P (1)

n−1(1− P (1)

n−1),

so defining similarly λij(Θj) for i ∈ {2, . . . , d}, the iterative formula is the same, with
two of the four series missing, which is compatible with the empty sum convention.
The two series left will be dealt with in the same way as the corresponding ones in
the more general case, since the same asymptotics hold, thanks to the regularity of
the function ψ(1), and its derivatives, at the full equilibrium E. Therefore, in what
follows, no distinction will need to be made between the two cases. We now go back
to developing the iteration formula.

Since ∏n−1
j=k kj(Θj)∏n−1
j=m kj(Θj)

=
1∏k−1

j=m kj(Θj)
,

it follows that factoring it out in (8.11) yields

Θ(1)

n −
1

l + 1
=

n−1∏
j=m

kj(Θj)

[
Θ(1)

m −
1

l + 1
+

n∑
k=m+1

1∏k−1
j=m kj(Θj)

σk
τk

l+1∑
i=2

λik−1(Θk−1)

(
Θ(i)

k−1 −
1

l + 1

)
+

n∑
k=m+1

1∏k−1
j=m kj(Θj)

σk
τk

d∑
i=l+2

νik−1(Θk−1)Θ(i)

k−1+

α

l + 1

n∑
k=m+1

1∏k−1
j=m kj(Θj)

σk
τk

d∑
i=l+2

Θ(i)

k−1 +
n∑

k=m+1

1∏k−1
j=m kj(Θj)

√
σk
τk

ε(1)

k

√
P (1)

k−1(1− P (1)

k−1)

]
.

(8.12)

Note that having defined

πm,k ..=
k−1∏
j=m

τj + ασj+1

τj+1

,

we have that

k−1∏
j=m

kj(Θj) =
k−1∏
j=m

τj + ασj+1

τj+1

k−1∏
j=m

(
1 +

σj+1

τj + ασj+1

O(δj)

)
= πm,k(1 + O(1)) (8.13)

as m −→∞ uniformly in ω ∈ Hl
m and k ≥ m. This follows, since by Lemma 8.2,

k−1∏
j=m

(
1 +

σj+1

τj + ασj+1

O(δj)

)
= exp

k−1∑
j=m

log

(
1 +

σj+1

τj + ασj+1

O(δj)

)
,
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which can be derived by noting that as

σj+1

τj + ασj+1

O(δj) = O(1),

by linear Taylor expansion

k−1∑
j=m

log

(
1 +

σj+1

τj + ασj+1

O(δj)

)
=

k−1∑
j=m

σj+1

τj + ασj+1

O(δj) +
k−1∑
j=m

O

(
σj+1

τj + ασj+1

O(δj)

)
,

and since
∞∑
j=0

σj+1

τj + ασj+1

δj <

∞∑
j=0

σj+1

τj+1

δj <∞,

as m −→∞ uniformly in ω ∈ Hl
m and k ≥ m we have that

k−1∑
j=m

log

(
1 +

σj+1

τj + ασj+1

O(δj)

)
= O(1).

In conclusion plugging (8.13) into (8.12) yields

Θ(1)

n −
1

l + 1
=

πm,n(1 + O(1))

[
Θ(1)

m −
1

l + 1
+

n∑
k=m+1

σk
πm,kτk

l+1∑
i=2

λik−1(Θk−1)

(
Θ(i)

k−1 −
1

l + 1

)

+
n∑

k=m+1

σk
πm,kτk

d∑
i=l+2

νik−1(Θk−1)Θ(i)

k−1 +
α

l + 1

n∑
k=m+1

σk
πm,kτk

d∑
i=l+2

Θ(i)

k−1

+
n∑

k=m+1

√
σk

πm,kτk
ε(1)

k

√
P (1)

k−1(1− P (1)

k−1)

]
,

which we can rearrange into the full iteration formula,holding uniformly in n > m
and ω ∈ Hl

m, as m −→∞:

Θ(1)

n −
1

l + 1
=

πm,n(1 + O(1))

[
Θ(1)

m −
1

l + 1
+

l+1∑
i=2

n∑
k=m+1

σk
πm,kτk

λik−1(Θk−1)

(
Θ(i)

k−1 −
1

l + 1

)

+
d∑

i=l+2

n∑
k=m+1

σk
πm,kτk

νik−1(Θk−1)Θ(i)

k−1 +
α

l + 1

d∑
i=l+2

n∑
k=m+1

σk
πm,kτk

Θ(i)

k−1

+

√
l + O(1)

l + 1

n∑
k=m+1

√
σk

πm,kτk
ε(1)

k

]
.

(8.14)

Step 3. In this step we focus on the term

n∑
k=m+1

√
σk

τkπm,k
ε(1)

k ,

we find a uniform estimate for the approximation error of a normalized binomial
random variable approaching a standard normal, and show asymptotic normality of
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this term. The characteristic function, denoted as φ, will be our main tool. Given
binomial random variables distributed with size n and probability parameter p, Bn ∼
Bin(n, p), where

0 <
1

2(l + 1)
< p <

3

2(l + 1)
< 1,

define

Xn
..=

Bn − np√
np(1− p)

,

and recall that

φBn(t) =
(
1− p+ peit

)n
.

Then it holds that

φXn(t) ..= EeitXn = E exp

{
i
t(Bn − np)√
np(1− p)

}
= exp

{
−i tnp√

np(1− p)

}

· E exp

{
i

t√
np(1− p)

Bn

}
= exp

{
−i tnp√

np(1− p)

}
φBn

(
t√

np(1− p)

)

= exp

{
−i tnp√

np(1− p)

}(
1− p+ p exp

it√
np(1− p)

)n

= exp

{
−i tnp√

np(1− p)

}
exp

{
n log

(
1− p+ p exp

it√
np(1− p)

)}

= exp

[
n log

(
1− p+ p exp

it√
np(1− p)

)
− i tnp√

np(1− p)

]
.

We expand in series the complex exponential as n −→∞, assuming that t belongs to
a bounded interval of R: t will be kept in the O estimate, so as to preserve uniformity
of the final result with respect to t in the bounded interval n −→ ∞ (because of the
obvious explicit bounds that have been imposed on p, all p-terms will be absorbed in
the O-constant):

exp
it√

np(1− p)
= 1 +

it√
np(1− p)

− t2

2np(1− p)
+O

(
t3

n
√
n

)
.

Then

φXn(t) = exp

[
n log

(
1 +

√
pit√

n(1− p)
− t2

2n(1− p)
+O

(
t3

n
√
n

))
− i tnp√

np(1− p)

]
.
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Expanding in series the logarithm yields

log

(
1 +

√
pit√

n(1− p)
− t2

2n(1− p)
+O

(
t3

n
√
n

))
=

√
pit√

n(1− p)
− t2

2n(1− p)

+O
(

t3

n
√
n

)
− 1

2

( √
pit√

n(1− p)
− t2

2n(1− p)
+O

(
t3

n
√
n

))2

+O

( √
pit√

n(1− p)
− t2

2n(1− p)
+O

(
t3

n
√
n

))3

=

√
pit√

n(1− p)
− t2

2n(1− p)
+O

(
t3

n
√
n

)
+

pt2

2n(1− p)
+O

(
t3

n
√
n

)
=

√
pit√

n(1− p)
− t2

2n
+O

(
t3

n
√
n

)
,

as the whole term satisfies

O

( √
pit√

n(1− p)
− t2

2n(1− p)
+O

(
t3

n
√
n

))3

= O
(

t3

n
√
n

)
,

and so do the ones that have been neglected from the square of the trinomial. We
plug also this expansion in, and it yields that, as n −→ ∞, uniformly in t in the
bounded interval and 1/[2(l + 2)] < p < l/[2(l + 1)],

φXn(t) = exp

[ √
npit√

(1− p)
− t2

2
+ nO

(
t3

n
√
n

)
− i tnp√

np(1− p)

]

= exp

[
−t

2

2
+ nO

(
t3

n
√
n

)]
. (8.15)

The uniformity with respect to the parameters in the intervals chosen make this result
flexible enough, to be applied to the series, which now we turn our attention to. Note
that ε(1)

k has the same structure as Xk, with B(1)

k ∼ Bin(σk, P
(1)

k−1) instead of Bk, and
therefore size σk instead of size k (σk, unlike k, might or might not tend to infinity,
hence the necessity of the error term) and probability parameter P (1)

k−1 instead of p.
This justifies the choice of the interval for the parameters: since uniformly on the
event Hl

m, |P (1)

k−1−1/(l+1)| = O(δk−1), a natural range for the probability parameter,
on which uniformity is necessary, is any interval containing 1/(l + 1) and excluding
0 and 1. The next step is to study the characteristic function, conditionally on Fk−1

(which gives information about P (1)

k−1), of ε(1)

k . A technicality is necessary here, since

while onHl
m, P (1)

k−1 will eventually fall in the range that ensures the convergence result,
a modified version of ε(1)

k needs to be constructed (all the while remaining asymptoti-
cally equivalent to the original), in order to allow taking conditional expectation and
working out the conditional characteristic function, since in Ω there will be also events
on which P (1)

k−1 drops out of the range fixed for the parameters. As m −→ ∞, due

to asymptotic equivalence, the iterative expression of Θn − 1/(l + 1), as on Hl
m, will

not be affected. We take care of this technicality by defining independent random
variables

B0
k ∼ Bin

(
σr,

1

l + 1

)
,

and consequently defining

ε0
k

..=
B0
k −

σk
l+1√

lσk
l+1

.
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Denote
ε̂k ..= ε(1)

k 1{|P (1)
k−1−

1
l+1
|< 1

2(l+1)

} + ε0
k1
{
|P (1)
k−1−

1
l+1
|≥ 1

2(l+1)

}.
Since on Hl

m we have that ∣∣∣∣P (1)

k−1 −
1

l + 1

∣∣∣∣ = O(δm),

it follows that as m −→∞, on Hl
m we have that∣∣∣∣P (1)

k−1 −
1

l + 1

∣∣∣∣ < 1

2(l + 1)

for all k ≥ m + 1, since δm −→ 0. Therefore as m −→ ∞, on Hl
m we have that

ε̂k ≡ ε(1)

k uniformly in k > m, which means that as m −→ ∞, uniformly in ω ∈ Hl
m

and n > m,

Θ(1)

n −
1

l + 1

= πm,n(1 + O(1))

[
Θ(1)

m −
1

l + 1
+

l+1∑
i=2

n∑
k=m+1

σk
πm,kτk

λik−1(Θk−1)

(
Θ(i)

k−1 −
1

l + 1

)

+
d∑

i=l+2

n∑
k=m+1

σk
πm,kτk

νik−1(Θk−1)Θ(i)

k−1 +
α

l + 1

d∑
i=l+2

n∑
k=m+1

σk
πm,kτk

Θ(i)

k−1

+

√
l + O(1)

l + 1

n∑
k=m+1

√
σk

πm,kτk
ε̂k

]
.

(8.16)

Since all the probability parameters involved in ε̂k, P
(1)

k−1 are in the range chosen
uniformly on the probability space as k −→ ∞; since 1 ≤ σk−1 is either divergent or
bounded by Assumption S, and:

• if σk−1 is divergent, all calculations done on the conditional characteristic func-
tion are going to be analogous to those for the unconditional one (see [51] for some
background on the concept of conditional characteristic function introduced by
Loève), as k −→∞, uniformly in ω and t in the bounded interval, conditionally
on Fk−1;

• if σk−1 is bounded, then all O-estimates apply trivially uniformly in k, ω and t
in the bounded interval;

we can conclude, by applying (8.15), that as k −→ ∞, uniformly in ω and t in the
bounded interval,

φε̂kFk−1
(t) = exp

[
−t

2

2
+ σkO

(
t3

σk
√
σk

)]
. (8.17)

We apply (8.17) to work out

φ

∑n
k=m+1

√
σk

τkπm,k
ε̂k

Fm
(t)

as m −→ ∞, pointwise in t. The goal is to asymptotically obtain a standard normal
characteristic function, and to do so, it will be clear that it is necessary to divide

n∑
k=m+1

√
σk

τkπm,k
ε̂k
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by the following deterministic scale, which ensures unitary variance of the term:

µm,n ..=

√√√√ n∑
k=m+1

σk
τ 2
kπ

2
m,k

.

Denote

Nm,n
..=

1

µm,n

n∑
k=m+1

√
σk

τkπm,k
ε̂k.

Then for every fixed t,

φ
Nm,n
Fm

(t) = EFm exp

{
i
t

µm,n

n∑
k=m+1

√
σk

τkπm,k
ε̂k

}
=

EFmEFm+1 . . .EFn−1 exp

{
i
t

µm,n

n∑
k=m+1

√
σk

τkπm,k
ε̂k

}
=

EFm . . .EFn−1

n∏
k=m+1

exp

{
i
t

µm,n

√
σk

τkπm,k
ε̂k

}
=

EFm . . .EFn−2

n−1∏
k=m+1

exp

{
i
t

µm,n

√
σk

τkπm,k
ε̂k

}
EFn−1 exp

{
i
t

µm,n

√
σn

τnπm,n
ε̂n

}
=

. . . =
n∏

k=m+1

EFk−1
exp

{
i
t

µm,n

√
σk

τkπm,k
ε̂k

}
,

yielding

φ
Nm,n
Fm

(t) =
n∏

k=m+1

φε̂kFk−1
(sk) , (8.18)

where

sk ..=
t

µm,n

√
σk

τkπm,k
.

Note that for every m+ 1 ≤ k ≤ n,

|sk| =
|t|

√
σk

τkπm,k√∑n
j=m+1

σj
τ2
j π

2
m,j

≤
|t|

√
σk

τkπm,k√
σk

τkπm,k

= |t|,

thus as m −→∞, sk always belongs to the fixed bounded interval [−t, t], and therefore
by (8.17), which applies to (8.18) via the dummy variable t = sk for all k, it is possible
to conclude that as m −→∞, pointwise in t,

φ
Nm,n
Fm

(t) =
n∏

k=m+1

φε̂kFk−1
(sk) =

n∏
k=m+1

exp

[
−s

2
k

2
+ σkO

(
s3
k

σk
√
σk

)]

= exp
n∑

k=m+1

[
−s

2
k

2
+ σkO

(
s3
k

σk
√
σk

)]
= exp−

∑n
k=m+1

(
t

µm,n

√
σk

τkπm,k

)2

2

exp
n∑

k=m+1

σkO


(

t
µm,n

√
σk

τkπm,k

)3

σk
√
σk

 = exp− t2

2µ2
m,n

n∑
k=m+1

σk
τ 2
kπ

2
m,k

exp
1

µ3
m,n

n∑
k=m+1

σk
τ 3
kπ

3
m,k

O
(
t3
)

= exp−t
2

2
exp

1

µ3
m,n

n∑
k=m+1

σk
τ 3
kπ

3
m,k

O (1) .
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To achieve asymptotic normality, we only need to show that, regardless of whether
{σk} is bounded or divergent to infinity, by Assumption S,

1

µ3
m,n

n∑
k=m+1

σk
τ 3
kπ

3
m,k

−→ 0.

We anticipate that this result ceases to be uniform in n in the bounded scenario.
Indeed the bounded scenario will require negligibility ofm with respect to n. Therefore
we will introduce a new notation, n = nm, such that m = O(nm) (for instance, we can
choose nm = m2 or an even faster regime, depending on an other condition, which
will be introduced later) in the final step (we will keep the notation n until then).
Once this is done, we will have shown that uniformly on the probability space and
conditionally on Fm,

Nm,nm
w−→N(0, 1) (8.19)

as m −→∞.

Case 1. Assume σk −→∞. Since uniformly in m for nonnegative xi

(
m∑
i=1

xi

) 3
2

=
m∑
i=1

xi

(
m∑
i=1

xi

) 1
2

≥
m∑
i=1

xi (xi)
1
2 =

m∑
i=1

x
3
2
i ,

it follows that

µ3
m,n =

(
n∑

k=m+1

σk
π2
m,kτ

2
k

) 3
2

≥
n∑

k=m+1

σ
3
2
k

π3
m,kτ

3
k

≥ min
m<k≤n

√
σk

n∑
k=m+1

σk
π3
m,kτ

3
k

,

therefore, as m −→∞ uniformly in n,

1

µ3
m,n

n∑
k=m+1

σk
π3
m,kτ

3
k

≤ max
m<k≤n

1
√
σk
−→ 0,

and the claim follows.

Case 2. Assume that there is a constant σ bounding {σk}. In this case it holds that

(1 + O(1))

(
k

m

)α−1
σ

+O(1)

≤ πm,k ≤ (1 + O(1))

(
k

m

)σ(α−1)+O(1)

. (8.20)

We show (8.20) after the conclusion is reached. If one assumes it for now, since by
Remark 8.3, for any γ > 1, uniformly in n > nm > m such that m = O(nn), it holds
that

n∑
k=m+1

1

kγ+O(1)
∼ 1

(γ − 1)mγ−1+O(1)
,
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it follows that, as k ≤ τk ≤ τ0 + kσ,

µ3
m,n ≥

(
n∑

k=m+1

σk

(1 + O(1))
(
k
m

)2σ(α−1)+O(1)
τ 2
k

) 3
2

= m3σ(α−1)+O(1)

(
n∑

k=m+1

1

(1 + O(1))k2σ(α−1)+O(1)(τ0 + kσ)2

) 3
2

= (1 + O(1))m3σ(α−1)+O(1)

(
n∑

k=m+1

1

k2σ(α−1)+O(1)k2σ2(1 + O(1))

) 3
2

∼ m3σ(α−1) + O(1)

σ3

(
n∑

k=m+1

1

k2σ(α−1)+2+O(1)

) 3
2

∼ m3σ(α−1)+O(1)

σ3(2σ(α− 1) + 1)
3
2

(
1

m2σ(α−1)+1+O(1)

) 3
2

=
1

σ3(2σ(α− 1) + 1)
3
2

1

m
3
2

+O(1)
,

and
n∑

k=m+1

σk
π3
m,kτ

3
k

≤
n∑

k=m+1

σ

(1 + O(1))
(
k
m

)3α−1
σ

+O(1)
k3

= (1 + O(1))σm3α−1
σ

+O(1)

n∑
k=m+1

1

k3α−1
σ

+3+O(1)
∼ σm3α−1

σ
+O(1)

3α−1
σ

+ 2

1

m3α−1
σ

+2+O(1)

=
σ

3α−1
σ

+ 2

1

m2+O(1)

as m −→ ∞ uniformly in n ≥ m2 (choosing nm = m2 is just an arbitrary choice, so
as to avoid carrying on with the condition m = O(nm)). Hence

1

µ3
m,n

n∑
k=m+1

σk
π3
m,kτ

3
k

≤

∑n
k=m+1

σ

(1+O(1))( k
m)

3α−1
σ +O(1)

k3(∑n
k=m+1

σk

(1+O(1))( k
m)

2σ(α−1)+O(1)
τ2
k

) 3
2

∼
σ

3α−1
σ

+2
1

m2+O(1)

1

σ3(2σ(α−1)+1)
3
2

1

m
3
2 +O(1)

=
σ5(2σ(α− 1) + 1)

3
2

3(α− 1) + 2σ

1

m
1
2

+O(1)
−→ 0

as m −→∞, uniformly in n ≥ m2.

The argument used to show (8.20) goes as follows.

πm,k = exp
k∑

j=m+1

log

(
1 + (α− 1)

σj
τj

)
≤ exp

k∑
j=m+1

log

(
1 + (α− 1)

σ

j

)
=

exp
k∑

j=m+1

[
(α− 1)

σ

j
+O

(
1

j2

)]
= exp

{
[(α− 1)σ + O(1)]

k∑
j=m+1

1

j

}
.

Since
k∑

j=m+1

1

j
≥
∫ k

m+1

dx

x
= log k − log(m+ 1)

and
k∑

j=m+1

1

j
≤ 1

m+ 1
+

∫ k+1

m+2

dx

x− 1
=

1

m+ 1
+ log k − log(m+ 1),
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it follows that

0 ≤
k∑

j=m+1

1

j
− (log k − log(m+ 1)) ≤ 1

m+ 1
.

Since log(m+ 1) = logm+ log(1 + 1/m),

− log

(
1 +

1

m

)
≤

k∑
j=m+1

1

j
− (log k − logm) ≤ 1

m+ 1
− log

(
1 +

1

m

)
,

then by using the series expansion of the logarithm, we have that

− 1

m
+O

(
1

m2

)
≤

k∑
j=m+1

1

j
− (log k − logm) ≤ 1

m+ 1
− 1

m
+O

(
1

m2

)
= − 1

m(m+ 1)
+O

(
1

m2

)
= O

(
1

m2

)
,

yielding
k∑

j=m+1

1

j
= log k − logm+O

(
1

m

)
uniformly in k > m+ 1, as m −→∞. Therefore

πm,k ≤ exp{[(α− 1)σ + O(1)] (log k − logm+ O(1))}

= exp

{
[(α− 1)σ + O(1)]

(
log

k

m
+ O(1)

)}
= exp

{
[(α− 1)σ + O(1)]

(
log

k

m

)
expO(1)

}
= (1 + O(1))

k(α−1)σ+O(1)

m(α−1)σ+O(1)
.

Similarly, since σj ≥ 1,

πm,k ≥ exp
k∑

j=m+1

log

(
1 +

α− 1

τ0 + jσ

)
= exp

k∑
j=m+1

(
α− 1

σ + O(1)

1

j

)
+O

(
1

j2

)

= exp

(
α− 1

σ
+ O(1)

) k∑
j=m+1

1

j
= exp

(
α− 1

σ
+ O(1)

)(
log

k

m
+ O(1)

)

= (1 + O(1))
k
α−1
σ

+O(1)

m
α−1
σ

+O(1)
.

Step 4. The inductive formula will be, from now on, rewritten uniformly in n ≥ m2

and ω ∈ Hl
m, as

Θ(1)

n −
1

l + 1
=

µm,nπm,n(1 + O(1))

[(
Θ(1)
m − 1

l+1

)
µm,n

+
l+1∑
i=2

1

µm,n

n∑
k=m+1

σk
πm,kτk

λik−1(Θk−1)

(
Θ(i)

k−1 −
1

l + 1

)

+
d∑

i=l+2

1

µm,n

n∑
k=m+1

σk
πm,kτk

νik−1(Θk−1)Θ(i)

k−1 +
α

l + 1

d∑
i=l+2

1

µm,n

n∑
k=m+1

σk
πm,kτk

Θ(i)

k−1

+

√
l + O(1)

l + 1
Nm,n

]
(8.21)
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as m −→ ∞. The aim of this step is to prove that, apart from the Fm-independent
standard normal term and the Fm-measurable ones, every other Fm-non-measurable
term in the right-hand side of (8.21) vanishes, almost surely, on Hl

m as m −→ ∞,
uniformly in n ≥ m2. The way this argument will be carried out depends on As-
sumption R, that is depending on whether ρn ..= σn+1/τn is bounded or it diverges to
infinity. We recall that, intuitively, we understand this assumption as distinguishing
between slow growth of the first regime (since ρn < ρ implies σn + 1 < ρτn and so
τn < τn+1 = τn + σn+1 < (ρ + 1)τn, which implies τn+1 � τn) and fast growth of the
second regime (since ρn −→ ∞ implies that σn+1 ∼ τn+1, as it will be shown later,
τn = O(σn+1), and it follows that τn = O(τn+1)). To be precise, the argument for
slow growth, which relies on Lemma E.2, also applies to fast growth, when λ < 1 and
θ = 0, through Lemma F.1. Indeed it is based on the fact that the vanishing bins will
almost surely get a finite amount of balls. This may not happen, in general, for fast
growth. Thus, even if for the particular case of fast growth just mentioned it would
be possible to proceed in a similar way, the argument used for fast growth as a whole,
will not need any such additional assumptions, which would lead to loss of generality.
Instead, we will exploit (5.3) on the vanishing components of Θn, to modify (8.21)
in such a way, so as to exploit how small these vanishing bins’ random fluctuations’
almost sure bound, provided by Lemma E.3, becomes, compared to the size of the
other terms in the summation. Let us first define some quantities to reduce the length
of (8.21): for all i ∈ {2, . . . , l + 1},

R(i)

m,n
..=

1

µm,n

n∑
k=m+1

σk
πm,kτk

λik−1(Θk−1)

(
Θ(i)

k−1 −
1

l + 1

)
,

while for all i ∈ {l + 2, . . . , d},

S(i)

m,n
..=

1

µm,n

n∑
k=m+1

σk
πm,kτk

νik−1(Θk−1)Θ(i)

k−1

and

T (i)

m,n
..=

1

µm,n

n∑
k=m+1

σk
πm,kτk

Θ(i)

k−1.

Denote εm,n ..= µm,nπm,n and define the Fm-measurable term

Am,n ..=

(
Θ(1)
m − 1

l+1

)
µm,n

.

Then we can rewrite (8.21) as

Θ(1)

n −
1

l + 1
=

(1 + O(1))εm,n

[
Am,n +

l+1∑
i=2

R(i)

m,n +
d∑

i=l+2

S(i)

m,n +
α

l + 1

d∑
i=l+2

T (i)

m,n +

√
l + O(1)

l + 1
Nm,n

]
.

(8.22)

The idea of what we are going to do now is, in both cases arising from Assumption
R, whenever necessary, to split the measurable term of the series (or something very
similar to it), carrying most of the size, from its nonmeasurable remainder, obtaining
an Fm-non-measurable tail of the series, which is then proved to be almost surely
vanishing on the event considered.
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Case 1. If ρn is bounded, denote with ρ the positive constant such that ρn ≤ ρ for
all n, and start by showing that R(i)

m,n and S(i)
m,n vanish uniformly. Since

|R(i)

m,n| ≤
1

µm,n

n∑
k=m+1

σk
πm,kτk

O(δ2
k−1)

uniformly on Hl
m by (8.8), for some positive constant C and m large enough we have

that

|R(i)

m,n| ≤
C

µm,n

n∑
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σk
πm,kτk

δ2
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C

µm,n
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σk
πm,kτkτ 2r
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.
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τ 2r
k

=
1

τ 2r
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,

it follows that
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C

µm,n

n∑
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σk
πm,kτkτ 2r
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C
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τ 2r
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σk
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1+2r
k

≤ C(1 + ρ)2r

µm,n

n∑
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σk

τ 1+2r
k

≤ C(1 + ρ)2r

µm,n

∫ ∞
τm

dx

x1+2r
,

because πm,k > 1, so

|R(i)

m,n| ≤
C(1 + ρ)2r

2rµm,n

1

τ 2r
m

. (8.23)

We need to show that this upper bound vanishes, and this requires a lower bound on
µm,n. Note first that

πm,k = exp
k∑

j=m+1

log

(
1 + (α− 1)

σj
τj

)
≤ exp

{
(α− 1)

k∑
j=m+1

σj
τj

}
≤

exp

{
(α− 1)

∫ τk

τm

dx

x

}
= exp{(α− 1)(log τk − log τm)} =

(
τk
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1

τ 2α
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1
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>
1
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,

it follows that
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τm

dx

x2α
=

τα−1
m

(1 + ρ)α

√
1

2α− 1

(
1

τ 2α−1
m

− 1

τ 2α−1
n

)
=

τα−1
m

(1 + ρ)α
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2
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(
τm
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,

which yields

µm,n ≥
1 + O(1)

(1 + ρ)α
√

2α− 1
√
τm
, (8.24)
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since τk −→ ∞ monotonically and m = O(n) (usual abuse of notation), thus τm =
O(τn). Since rα < r < 1/2 implies 1/4 < r < 1/2, which ensures 2r > 1/2, one gets, by
plugging (8.24) into (8.23), that as m −→∞, uniformly on Hl

m and n ≥ m2

|R(i)

m,n| ≤
C(1 + ρ)2r

2rµm,n

1

τ 2r
m

≤
(1 + O(1))C(1 + ρ)α+2r

√
2α− 1

√
τm

2rτ 2r
m

−→ 0.

Proceed similarly for S(i)
m,n by using (8.9) instead. This yields

S(i)

m,n =
1

µm,n

n∑
k=m+1

σk
πm,kτk

O(δαk−1),

so for some other constant, which we will keep denoting informally as C, and by using
(8.24) again, it follows that

|S(i)

m,n| ≤
C

µm,n

n∑
k=m+1

σk
πm,kτkταrk−1

=
C

µm,n

n∑
k=m+1

σk
πm,kτk

(1 + ρk−1)αr

ταrk
≤

C(1 + ρ)αr

µm,n

n∑
k=m+1

σk

πm,kτ
1+αr
k

≤ C(1 + ρ)αr

µm,n

n∑
k=m+1

σk

τ 1+αr
k

≤ C(1 + ρ)αr

µm,n

∫ ∞
τm

dx

x1+αr

=
C(1 + ρ)αr

αr

1

µm,nταrm
≤ C(1 + ρ)αr

αr

(1 + O(1))(1 + ρ)α
√

2α− 1
√
τm

ταrm
−→ 0,

since rα < r < 1/2 ensures that αr > 1/2.

Lastly, for the last series T (i)
m,n, consider that for every m, Hl

m ⊆{
∀ l + 2 ≤ i ≤ d, Θ(i)

j −→ 0, as j −→∞
}

, and therefore by Lemma E.2, for almost

every ω ∈ Hl
m, {T (i)

j (ω)}i are bounded for all l + 2 ≤ i ≤ d. Since {T (i)

j (ω)}i are
nondecreasing (in j) and integer valued, they are bounded for all l+ 2 ≤ i ≤ d if and
only if there is M = M(ω) ∈ N such that for all l+ 2 ≤ i ≤ d and for all j ≥ k ≥M ,
T (i)

j (ω)− T (i)

k (ω) = 0. Thus if we rewrite, by adding and subtracting the same term,

T (i)

m,n =
1

µm,n

n∑
k=m+1

σk
πm,kτk

Θ(i)

k−1 −
1

µm,n

n∑
k=m+1

σk
πm,kτk

T (i)
m

τk−1

+
1

µm,n

n∑
k=m+1

σk
πm,kτk

T (i)
m

τk−1

=
1

µm,n

n∑
k=m+1

σk
πm,kτk

T (i)

k−1 − T (i)
m

τk−1

+
1

µm,n

n∑
k=m+1

σk
πm,kτk

T (i)
m

τk−1

,

since for all m ≥M ,

T (i)

m,n =
1

µm,n

n∑
k=m+1

σk
πm,kτk

T (i)
m

τk−1

∈ mFm,

this term will not affect the asymptotic distribution of Nm,n conditionally on Fm,
as it will be eventually known (in the worst case, except for a negligible event) as
m −→∞. Thus

T (i)

m,n =
1

µm,n

n∑
k=m+1

σk
πm,kτk

T (i)
m

τk−1

+ Oω(1).

In conclusion, following the asymptotic negligibility ofR(i)
m,n and S(i)

m,n, and the eventual
Fm-measurability of T (i)

m,n, as m −→∞; through the definition of

τ ∗m,n
..=

l+1∑
i=2

R(i)

m,n +
d∑

i=l+2

S(i)

m,n +
α

l + 1

d∑
i=l+2

1

µm,n

n∑
k=m+1

σk
πm,kτk

T (i)

k−1 − T (i)
m

τk−1

,
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which vanishes almost surely on Hl
m as m −→∞; (8.22) can be rewritten as

Θ(1)

n −
1

l + 1
= (1 + O(1))εm,n

[
Am,n +

α

l + 1

d∑
i=l+2

1

µm,n

n∑
k=m+1

σk
πm,kτk

T (i)
m

τk−1

+

√
l + O(1)

l + 1
Nm,n + τ ∗m,n

]
,

and therefore by defining a Fm-measurable term

A∗m,n
..= Am,n +

α

l + 1

d∑
i=l+2

1

µm,n

n∑
k=m+1

σk
πm,kτk

T (i)
m

τk−1

and
η∗m,n

..= 1Hlmτ
∗
m,n,

in the case when ρn is bounded, almost surely on Hl
m as m −→ ∞, uniformly in

n > m, (8.22) takes the form

Θ(1)

n −
1

l + 1
= (1 + O(1))εm,n

[
A∗m,n +

√
l + O(1)

l + 1
Nm,n + η∗m,n

]
, (8.25)

where η∗m,n −→ 0 almost surely on the probability space.

Case 2. If ρn −→∞, note that then σn ∼ τn, since

τn
σn

= 1 +
τn−1

σn
= 1 +

1

ρn−1

−→ 1

and σn−1 = O(σn), as
σn−1

σn
≤ τn−1

σn
=

1

ρn−1

−→ 0.

This gives us rather detailed information about the asymptotic behaviour of the de-
terministic scales. As to πm,k, we can show that there are constant 1 < p < q such
that, for all m large enough,

pk−m ≤ πm,k ≤ qk−m. (8.26)

We can see the upper bound by using log(1 + x) ≤ x for all x > 1 and σj < τj. Then

πm,k = exp
k∑

j=m+1

log

(
1 + (α− 1)

σj
τj

)
≤ exp

{
(α− 1)

k∑
j=m+1

σj
τj

}

≤ exp{(α− 1)
k∑

j=m+1

1} = exp{(α− 1)(k −m)} = qk−m,

where q ..= exp(α−1) > 1. We can see the lower bound, by using log(1+x) ≥ x/(1+x),
along with the fact that since σj ∼ τj, for m large enough σj/τj > 1/α, so

πm,k ≥ exp

{
(α− 1)

k∑
j=m+1

σj
τj

1 + (α− 1)
σj
τj

}
≥ exp

{
(α− 1)

k∑
j=m+1

σj
τj

1 + (α− 1)

}

= exp

{
α− 1

α

k∑
j=m+1

σj
τj

}
> exp

{
α− 1

α2
(k −m)

}
= pk−m,
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where p ..= exp[(α− 1)/α2] > 1. As to µm,n, in this case it is enough to note that, by
keeping only the first term of µm,n,

µm,n ≥
√
σm+1

πm,m+1τm+1

∼ 1

α
√
τm+1

>
1

(α + 1)
√
τm+1

, (8.27)

since in this regime, having τm = O(τm+1) and σm+1 ∼ τm+1,

πm,m+1 =
τm + ασm+1

τm+1

−→ α. (8.28)

We now move on to studying the three series as in the previous scenario. Consider
first that

R(i)

m,n = r(i)

m,n +
1

µm,n

n∑
k=m+2

σk
πm,kτk

λik−1(Θk−1)

(
Θ(i)

k−1 −
1

l + 1

)
,

where

r(i)

m,n =
σm+1

µm,nπm,m+1τm+1

λim(Θm)

(
Θ(i)

m −
1

l + 1

)
∈ mFm.

The necessity of keeping the measurable term will be clear from the argument showing
that the Fm-non-measurable part vanishes on Hl

m. This follows since for some con-
stant, which we denote always by C, by (8.8), (8.26) and (8.27) and

√
σm+1 ∼

√
τm+1,∣∣∣∣ 1

µm,n

n∑
k=m+2

σk
πm,kτk

λik−1(Θk−1)

(
Θ(i)

k−1 −
1

l + 1

)∣∣∣∣ ≤ C

µm,n

n∑
k=m+2

σk
πm,kτk

δ2
k−1

=
C

µm,n

n∑
k=m+2

σk
πm,kτkτ 2r

k−1

≤ Cπm,m+1τm+1√
σm+1τ 2r

m+1

n∑
k=m+2

σk
πm,kτk

≤ C(α + 1)τm+1

τ
2r+ 1

2
m+1

n∑
k=m+2

σk
πm,kτk

≤ C(α + 1)τm+1

τ
2r+ 1

2
m+1

n∑
k=m+2

1

pk−m
≤ C(α + 1)p

(p− 1)τ
2r− 1

2
m+1

−→ 0

as m −→ ∞, uniformly in n > m (since r > rα ensures that 2r + 1/2 > 1) and
uniformly on Hl

m. Therefore on Hl
m,

R(i)

m,n = r(i)

m,n + O(1).

The reason for extracting the measurable term is to avoid having the ratio
√
τm+1/τ2r

m

at the end of the second line in the estimates above. This ratio would be problematic,
at this regime of growth. Similarly,

S(i)

m,n = s(i)

m,n +
1

µm,n

n∑
k=m+2

σk
πm,kτk

νik−1(Θk−1)Θ(i)

k−1,

where

s(i)

m,n
..=

1

µm,n

σm+1

πm,m+1τk
νim(Θm)Θ(i)

m ∈ mFm.

By a similar argument, since for some constant, which we denote again by C, by (8.9),
(8.26) and (8.27) and the fact that

√
σm+1 ∼

√
τm+1, we have that

1

µm,n

n∑
k=m+2

σk
πm,kτk

νik−1(Θk−1)Θ(i)

k−1 ≤
C

µm,n

n∑
k=m+2

σk
πm,kτk

δαk−1

=
C

µm,n

n∑
k=m+2

σk
πm,kτkτ 2r

k−1

≤ Cπm,m+1τm+1√
σm+1ταrm+1

n∑
k=m+2

σk
πm,kτk

≤ C(α + 1)
τm+1

τ
αr+ 1

2
m+1

n∑
k=m+2

σk
πm,kτk

≤ C(α + 1)
τm+1

τ
αr+ 1

2
m+1

n∑
k=m+2

1

pk−m
≤ C(α + 1)p

(p− 1)τ
αr− 1

2
m+1

−→ 0
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as m −→ ∞ uniformly in n > m (since r > rα ensures that αr + 1/2 > 1), and
uniformly on Hl

m. Thus

S(i)

m,n = s(i)

m,n + O(1).

As to T (i)
m,n, this term is more problematic than the others, also in the fast growth

scenario. First consider the series

∞∑
j=1

σjP
(i)

j−1,

and partition the event Hl
m into

E
(i)

0
..= Hl

m ∩

{
∞∑
j=1

σjP
(i)

j−1 <∞

}

and

E(i)

∞
..= Hl

m ∩

{
∞∑
j=1

σjP
(i)

j−1 =∞

}
.

Rewrite the series

T (i)

m,n =
1

µm,n

σm+1

πm,m+1τm+1

Θ(i)

m +
1

µm,n

n∑
k=m+2

σk
πm,kτk

Θ(i)

k−1.

• On E
(i)

0 define

S(i) ..=
∞∑
j=1

σjP
(i)

j−1 ∈ R.

Consider that by (5.2) multiplied both side by τn+1 we get

T (i)

n+1 = T (i)

n + ε(i)

n+1

√
σn+1P

(i)
n (1− P (i)

n ) + σn+1P
(i)

n ,

so iterating this equation for every k > m+ 1 yields

T (i)

k−1 = T (i)

m +
k−1∑

j=m+1

ε(i)

j

√
σjP

(i)

j−1(1− P (i)

j−1) +
k−1∑

j=m+1

σjP
(i)

j−1.

By Lemma E.3 and (8.1), almost surely on E
(i)

0 , for m large enough, we have that∣∣∣∣ k−1∑
j=m+1

ε(i)

j

√
σjP

(i)

j−1(1− P (i)

j−1)

∣∣∣∣ ≤ √σk−1

k−1∑
j=m+1

j
√
P (i)

j−1 ≤

d
α−1

2
√
σk−1

k−1∑
j=m+1

j(Θ(i)

j−1)
α
2 ≤ d

α−1
2
√
σk−1

k−1∑
j=m+1

j

τ
αr
2
j−1

≤ d
α−1

2

√
σk−1

τ
αr
4
m

k−1∑
j=m+1

j

τ
αr
4
j−1

,

since, having σj = O(σj+1), eventually σj+1 > σj and therefore, for m large
enough, σk−1 > σk−2 > . . . > σm+1. By the ratio test

∞∑
j=m+1

j

τ
αr
4
j−1

<∞,
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as in this regime of fast growth

j+1

τ
αr
4
j

j

τ
αr
4
j−1

=
j + 1

j

(
τj−1

τj

)αr
4

−→ 0 < 1.

Being a series of positive terms, there will be some Γ > 0 such that

∞∑
j=m+1

j

τ
αr
4
j−1

< Γ,

and therefore ∣∣∣∣ k−1∑
j=m+1

ε(i)

j

√
σjP

(i)

j−1(1− P (i)

j−1)

∣∣∣∣ ≤ Γd
α−1

2

√
σk−1

τ
αr
4
m

. (8.29)

It is now possible to prove that the nonmeasurable tail of T (i)
m,n almost surely

vanishes on this event. First rewrite this tail as follows:

1

µm,n

n∑
k=m+2

σk
πm,kτk

Θ(i)

k−1 =

1

µm,n

n∑
k=m+2

σk
πm,kτk

T (i)
m +

∑k−1
j=m+1 ε

(i)

j

√
σjP

(i)

j−1(1− P (i)

j−1) +
∑k−1

j=m+1 σjP
(i)

j−1

τk−1

=

=
1

µm,n

n∑
k=m+2

σk
πm,kτk

T (i)
m

τk−1

+
1

µm,n

n∑
k=m+2

σk
πm,kτk

∑k−1
j=m+1 ε

(i)

j

√
σjP

(i)

j−1(1− P (i)

j−1)

τk−1

+
1

µm,n

n∑
k=m+2

σk
πm,kτk

σm+1P
(i)
m

τk−1

+
1

µm,n

n∑
k=m+2

σk
πm,kτk

∑k−1
j=m+2 σjP

(i)

j−1

τk−1

,

then by the previous estimates, as m −→ ∞, uniformly in n > m, by (8.26),
(8.27) and (8.29), almost surely on E

(i)

0 we have that

∣∣∣∣ 1

µm,n

n∑
k=m+2

σk
πm,kτk

∑k−1
j=m+1 ε

(i)

j

√
σjP

(i)

j−1(1− P (i)

j−1)

τk−1

∣∣∣∣
≤ 1

µm,n

n∑
k=m+2

σk
πm,kτk

∣∣∣∣∑k−1
j=m+1 ε

(i)

j

√
σjP

(i)

j−1(1− P (i)

j−1)

∣∣∣∣
τk−1

≤ Γd
α−1

2

µm,n

n∑
k=m+2

σk
πm,kτk

√
σk−1

τ
αr
4
m

τk−1

≤ Γd
α−1

2 πm,m+1τm+1

√
σm+1τ

αr
4
m

n∑
k=m+2

σk
πm,kτk

√
σk−1

τk−1

≤ Γd
α−1

2 (α + 1)

√
τm+1

τ
αr
4
m

n∑
k=m+2

1

πm,k

1
√
τk−1

≤ Γd
α−1

2 (α + 1)

√
τm+1

√
τm+1τ

αr
4
m

n∑
k=m+2

1

pk−m

≤ Γd
α−1

2 (α + 1)p

(p− 1)τ
αr
4
m

−→ 0.
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This term’s estimate holds only almost surely on the event, so it will contribute
with a Oω(1). Similarly, recalling that

k−1∑
j=m+1

σjP
(i)

j−1 ≤ S(i),

we have that, by (8.26) and (8.27),

1

µm,n

n∑
k=m+2

σk
πm,kτk

∑k−1
j=m+2 σjP

(i)

j−1

τk−1

≤ S(i)πm,m+1τm+1√
σm+1

n∑
k=m+2

σk
πm,kτk

1

τk−1

≤ (α + 1)S(i)√τm+1

n∑
k=m+2

1

πm,k

1

τk−1

≤ (α + 1)S(i)

√
τm+1

n∑
k=m+2

1

pk−m
≤ (α + 1)S(i)p

(p− 1)
√
τm+1

−→ 0.

This term has, in the estimate, S(i) = S(i)(ω), so it also contributes with a Oω(1).
In conclusion as m −→∞, on E

(i)

0 , uniformly in n > m,

1

µm,n

n∑
k=m+2

σk
πm,kτk

Θ(i)

k−1 =
1

µm,n

n∑
k=m+2

σk
πm,kτk

T (i)
m

τk−1

+
1

µm,n

n∑
k=m+2

σk
πm,kτk

σm+1P
(i)
m

τk−1

+ Oω(1),

and therefore, the decomposition into Fm-measurable term and vanishing Fm-
non-measurable term is

T (i)

m,n = t(i)m,n + Oω(1),

where

t(i)m,n
..=

1

µm,n

σm+1

πm,m+1τm+1

Θ(i)

m+
1

µm,n

n∑
k=m+2

σk
πm,kτk

T (i)
m

τk−1

+
1

µm,n

n∑
k=m+2

σk
πm,kτk

σm+1P
(i)
m

τk−1

.

• On E(i)
∞ most of what holds on E

(i)

0 still applies, except for the existence of the
random variable S(i) ∈ R. Hence the only difference concerns the proof that the
term

1

µm,n

n∑
k=m+2

σk
πm,kτk

∑k−1
j=m+2 σjP

(i)

j−1

τk−1

vanishes. The key fact here is that, on E(i)
∞ , not only Θ(i)

k vanishes, but it decays
fast. Specifically,

Θ(i)

k+1 = Oω(Θ(i)

k ). (8.30)

This follows from a relatively simple fact. Recall that in the conclusion of Step
2, in Lemma 6.1, the angle bracket process argument showed that for almost all
ω, such that

k∑
j=1

σjP
(i)

j−1 −→∞,

we have that

T (i)

k ∼ω
k∑
j=1

σjP
(i)

j−1.
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But then, by (8.1), which implies P (i)

k � (Θ(i)

k )α, and σk ∼ τk, it follows that

Θ(i)

k+1

Θ(i)

k

=
T (i)

k+1

T (i)

k

τk
τk+1

∼ω

∑k+1
j=1 σjP

(i)

j−1∑k
j=1 σjP

(i)

j−1

τk
τk+1

=

(
1 +

σk+1P
(i)

k∑k
j=1 σjP

(i)

j−1

)
τk
τk+1

∼ω
(

1 +
σk+1P

(i)

k

T (i)

k

)
τk
τk+1

=
τk
τk+1

+
σk+1τkP

(i)

k

τk+1T
(i)

k

≤ τk
τk+1

+
τkP

(i)

k

T (i)

k

−→ 0,

since τk = O(τk+1) and

τkP
(i)

k

T (i)

k

� τk(Θ
(i)

k )α

T (i)

k

= (Θ(i)

k )α−1 −→ 0.

By (8.30), for m large enough, Θ(i)

k+1 < Θ(i)

k for all k > m, in particular Θ(i)

k−1 <
Θ(i)

k−2 < . . . < Θ(i)

m+1. Then consider that, having adopted empty sum convention
when splitting the sums, for k = m+ 2,

k−1∑
j=m+2

σjP
(i)

j−1 = 0.

Therefore, by (8.26) and (8.27) and the almost sure eventual monotonicity of
Θj−1, we have that

1

µm,n

n∑
k=m+2

σk
πm,kτk

∑k−1
j=m+2 σjP

(i)

j−1

τk−1

=
1

µm,n

n∑
k=m+3

σk
πm,kτk

∑k−1
j=m+2 σjP

(i)

j−1

τk−1

≤

dα−1

µm,n

n∑
k=m+3

σk
πm,kτk

∑k−1
j=m+2 σj(Θ

(i)

j−1)α

τk−1

≤ dα−1

µm,n

n∑
k=m+3

σk
πm,kτk

∑k−1
j=m+2 σk−1(Θ(i)

m+1)α

τk−1

=
dα−1(Θ(i)

m+1)α

µm,n

n∑
k=m+3

(k −m− 2)σkσk−1

πm,kτkτk−1

≤ dα−1πm,m+1τm+1√
σm+1ταrm+1

n∑
k=m+3

k −m− 2

pk−m

≤ (α + 1)dα−1

√
τm+1

ταrm+1

n∑
k=m+3

(k −m− 2)

pk−m
<

(α + 1)dα−1√τm+1

p(p− 1)2ταrm+1

−→ 0,

having used, in the conclusion, also that: we can consider m large enough such
that σk−1 > σk−2 > . . . > σm+2; r > rα, ensuring that that αr > 1/2; the series

n∑
k=m+3

(k −m− 2)

pk−m
<

∞∑
j=0

j

pj+2
=

1

p3

∞∑
j=1

j

pj−1
=

1

p3
(

1− 1
p

)2 =
1

p(p− 1)2
.

Hence also on E(i)
∞ ,

T (i)

m,n = t(i)m,n + Oω(1),

which therefore holds on Hl
m as m −→∞ uniformly in n > m.

Define

τ~m,n =
l+1∑
i=2

R(i)

m,n − r(i)

m,n +
d∑

i=l+2

S(i)

m,n − s(i)

m,n +
α

l + 1

d∑
i=l+2

T (i)

m,n − t(i)m,n.

Since τ~m,n −→ 0 almost surely on Hl
m, since as m −→∞, (8.22) can be rewritten as

Θ(1)

n −
1

l + 1
=

(1 + O(1))εm,n

[
Am,n +

l+1∑
i=2

r(i)

m,n +
d∑

i=l+2

s(i)

m,n +
α

l + 1

d∑
i=l+2

t(i)m,n +

√
l + O(1)

l + 1
Nm,n + τm,n

]
,
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defining a new Fm-measurable term

A~
m,n

..= Am,n +
l+1∑
i=2

r(i)

m,n +
d∑

i=l+2

s(i)

m,n +
α

l + 1

d∑
i=l+2

t(i)m,n,

and the random term
η~m,n = 1Hlmτ

~
m,n,

we have that as m −→ ∞, also when ρn −→ ∞, on Hl
m, uniformly in n > m, (8.22)

can be rewritten as

Θ(1)

n −
1

l + 1
= (1 + O(1))εm,n

[
A~
m,n +

√
l + O(1)

l + 1
Nm,n + η~m,n

]
, (8.31)

where η~m,n −→ 0 almost surely on the probability space.

Step 5. Fix nm ≥ m2 growing fast enough, such that εm,nm −→ ∞ as m −→ ∞.
This requirement can be satisfied, and that this is true, is shown after the conclusion
of the argument. Note that the iteration formulas (8.25) and (8.31) holding on Hl

m as
m −→∞, in the slow growth and fast growth regime respectively, have the same form,
so the conclusion in either of the two regimes will follow by the same argument, with
a formal exchange of A∗m,nm and A~

m,nm . Since it is notationally lighter, we write the
argument explicitly for the slow growth regime, that is, relying on (8.25). Consider
that by the triangle inequality

‖Θn − El‖ ≥
∣∣∣∣Θ(1)

n −
1

l + 1

∣∣∣∣;
that in (8.19) we established that conditionally on Fm, Nm,nm is asymptotically a
standard normal, where Nm,nm is independent of Fm; and finally recall that A∗m,nm ∈
mFm and η∗m,nm vanishes almost surely on Ω. Then

P(Hl
m) = P ({‖Θn − El‖ ≤ δn, ∀ n ≥ m}) ≤ P

({∣∣∣∣Θ(1)

nm −
1

l + 1

∣∣∣∣ ≤ δnm

}
∩{

Θ(1)

nm −
1

l + 1
= (1 + O(1))εm,nm

[
A∗m,nm +

√
l + O(1)

l + 1
Nm,nm + η∗m,nm

]})
≤ P

(
(1 + O(1))εm,nm

∣∣∣∣A∗m,nm +

√
l + O(1)

l + 1
Nm,nm + η∗m,nm

∣∣∣∣ ≤ δnm

)
= EPFm

(
(1 + O(1))

(
A∗m,nm +

√
l + O(1)

l + 1
Nm,nm + η∗m,nm

)
∈
[
− δnm
εm,nm

,
δnm
εm,nm

])
,

which we now show to be vanishing, as a result of δnm/εm,nm −→ 0 and the standard
normal density being bounded by 1/

√
2π, which bounds, asymptotically, the expression

above with the area of a rectangle having vanishing base length. Denote

am ..=
l + 1√
l + O(1)

(
−A∗m,nm −

δnm
(1 + O(1))εm,nm

)
and

bm ..=
l + 1√
l + O(1)

(
−A∗m,nm +

δnm
(1 + O(1))εm,nm

)
.



216

Since δnm/εm,nm −→ 0, for all m large enough,

0 < bm − am < 2(l + 2)
δnm
εm,nm

−→ 0,

which follows from (l + 1)/
√
l < (l + 2), as the inequality is equivalent to l3 + 3l2 +

2l − 1 > 0, and l ≥ 1, thus the cubic, which is positive at l = 1 and has derivative
3l2 + 6l + 2 > 0 on the positive reals, is positive for all l ≥ 1. We will show that

PFm

(
Nm,nm +

l + 1√
l + O(1)

η∗m,nm ∈ [am, bm]

)
−→ 0

almost surely, by proving that almost surely

EFme
it(Nm,nm+η̂∗m,nm ) −→ e−

t2

2 , (8.32)

having defined

η̂∗m,nm
..=

l + 1√
l + O(1)

η∗m,nm ,

which vanishes almost surely on the probability space as well. First of all consider
that, by adding and subtracting eitNm,nm ,

EFme
it(Nm,nm+η̂∗m,nm ) = EFme

itNm,nm
(
eitη̂

∗
m,nm − 1

)
+ EFme

itNm,nm . (8.33)

The second term on the right-hand side of (8.33) converges to e−
t2

2 by (8.19). As to
the first term, we briefly show that it vanishes. Recall that by a standard estimate,
obtained from the complex exponential’s Taylor expansion remainder,∣∣eitη̂∗m,nm − 1

∣∣ ≤ min{2, |tη̂∗m,nm|},

which, for every t fixed, almost surely vanishes. Then∣∣eitNm,nm (eitη̂∗m,nm − 1
)∣∣ ≤ min{2, |tη̂∗m,nm|} −→ 0

almost surely. Note that for every t fixed, for all m large enough, min{2, |tη̂∗m,nm|} ≤ 2
almost surely and therefore, by the Dominated Convergence Theorem for conditional
expectations (see [16, §4.6 Theorem 4.6.10]), almost surely

EFme
itNm,nm

(
eitη̂

∗
m,nm − 1

)
−→ EF∞0 = 0.

Thus (8.32) follows, from which, by the conditional Lévy Continuity Theorem (see for
example [3]), one can conclude that

µωm
w−→N(0, 1),

where µωm denotes the conditional distribution of Nm,nm + η̂∗m,nm given Fm, which is
defined, by the standard theory, as the map

µωm(·) ..= µm(·, ω) : B(R)× Ω −→ [0, 1]

such that for every ω ∈ Ω, µωm(·) : B(R) −→ [0, 1] is a probability measure on B(R);
for each B ∈ B(R), µωm(B) = PFm(Nm,nm + η̂∗m,nm ∈ B)(ω), P-almost surely. This
yields that for every fixed a < b,

PFm

(
Nm,nm + η̂∗m,nm ∈ [a, b]

)
−→ Φ(b)− Φ(a)
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almost surely, where Φ denotes the standard normal cumulative distribution function.
Since Φ is continuous on R, for almost every fixed ω, the convergence above is uniform
on R by the standard theory (see for example [22, §2.6, Theorem 2.6.1] for the
statement, and [41, Satz I] for the first proof given of this elementary result, by Pólya).
Therefore, for any given ε > 0, let M = Mε

..= max{M ′,M ′′}, where M ′ = M ′
ε ∈ N is

such that for all m ≥M ′,
δnm
εm,nm

<

√
2π

4(l + 2)
ε

and

bm − am < 2(l + 2)
δnm
εm,nm

,

while M ′′ = M ′′
ε is such that, for all m ≥M ′′, for all a, b ∈ R,

|PFm

(
Nm,nm + η̂∗m,nm ∈ [a, b]

)
− (Φ(b)− Φ(a))| < ε

2
.

Then for all m ≥M , and almost every ω fixed,

PFm

(
Nm,nm + η̂∗m,nm ∈ [am, bm]

)
≤

|PFm

(
Nm,nm + η̂∗m,nm ∈ [am, bm]

)
− (Φ(bm)− Φ(am))|+ Φ(bm)− Φ(am) ≤

ε

2
+

1√
2π

(bm − am) <
ε

2
+

2(l + 2)√
2π

δnm
εm,nm

<
ε

2
+
ε

2
= ε.

Thus

PFm

(
Nm,nm + η̂∗m,nm ∈ [am, bm]

)
−→ 0

almost surely, yielding the claim, passing to the limit under expectation by the
Bounded Convergence Theorem:

P(Hl
m) ≤ EPFm

(
Nm,nm + η̂∗m,nm ∈ [am, bm]

)
−→ 0.

Lastly, we show that what we assumed so far holds: that nm can be chosen to grow
fast enough, so as to let εm,nm diverge to infinity, regardless of the regime of growth
considered. This follows quite simply from

πm,nmµm,nm ≥
πm,nm

√
σm+1

πm,m+1τm+1

≥ 1

ατm+1

exp
nm∑

j=m+1

log

(
1 + (α− 1)

σj
τj

)
≥

1

ατm+1

exp
nm∑

j=m+1

(α− 1)
σj
τj

1 + (α− 1)
σj
τj

≥ 1

ατm+1

exp

{
α− 1

α

nm∑
j=m+1

σj
τj

}
.

Since by Lemma C.1
∑∞

j=1
σj/τj =∞, choosing nm growing fast enough will enable

exp

{
α− 1

α

nm∑
j=m+1

σj
τj

}

to grow fast enough, so as to let the ratio of the exponential term and τm+1 diverge,
because any speed is achievable, being the series divergent.
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Chapter 9

Dominance and monopoly

This final chapter is mainly dedicated to showing almost sure dominance with posi-
tive feedback. The high-level strategy of the proof is showing, thanks to the results
from the previous chapter, that as Θn deviates infinitesimally from the equilibria, the
martingale parts are powerful enough to push Θn to the vertices. As this happens,
certain components become small. In order for this strategy to work, it is necessary
to gather some analytic information about the vanishing components, that is, it is
necessary to show certain upper bounds on their rate of decay. In order to do so, we
build a specific tool-box in the following preliminary section. In contrast, the results
regarding monopoly follow easily, but the reader is reminded that this is a result of
the fact that we omitted the study of the critical regime, since our focus in this work
is mainly on dominance.

9.1 Preliminaries

This section is dedicated to a technical result which is a variation on the Implicit
Function Theorem, and will assist us in the argument for almost sure dominance of
Theorem 1.11, in the next section. Lemma 9.1 is more easily read, while following
that argument of Theorem 1.11, so that its motivations are clear. Nonetheless we
attempt an early description of its role in the argument.

Lemma 9.1 ensures that, on a certain event, which will be suitably defined, for
every l ∈ {1, . . . , d−2}, F (l+1)(Θn) ..= ψ(l+1)(Θn)−Θ(l+1)

n stays negative by the time that
Θn starts drifting away from El+1, the equilibrium of the (l + 1)-face, in such a way
that it does not approach El in the l-face (and then again the argument is repeated
iteratively, to show that Θn does not get stuck at any of the partial equilibria). There
will be no issues, when drifting away from E, so the case l = d− 1 does not need this
lemma, and neither does the model with d = 2 as a result, which has no such thing
as partial equilibria.

Let xl+2, . . . , xd be the coordinates that are identically zero on the generic l-face of
the simplex considered, according to the order, which will be followed in the argument
of Theorem 1.11. It will be clear that there is no loss of generality in following a
specific order, as all arguments in Proposition 8.4, Lemma 9.1, and Theorem 1.11
are, mutatis mutandis, invariant with respect to the permutations of the order in
which the coordinates of Θn are considered. Denote x ..= (x2, . . . , xl+1), y ..= xl+2 and
x′ ..= (xl+3, . . . , xd). Since on the simplex

x1 = x1(x, y, x′) = 1−
d∑

1<j 6=l+2

xj − y,
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define

ψ(l+1)(x1, x, y, x
′)−xl+1

∣∣∣∣
∆d−1

=.. F (l+1)(x, y, x′) : [0, 1]d−1∩{0 ≤ x2+. . .+xd ≤ 1} −→ R.

In this section we will always implicitly assume that (x, y, x′) is in the domain of
F (l+1) and, except for Step 3, with the x1-coordinate suppressed. We will work in
Rd−1
x,y,x′

..= Rd−1, as we have d − 1 degrees of freedom, by implicitly exploiting the
canonical projection mapping projx,y,x′

..= (projx2
× . . .× projxd) ◦∆d−1,

projx,y,x′ : Rd −→ Rd−1

(x1, x2, . . . xd) 7−→ (x, y, x′),

where ∆d−1 denotes the (d−1)-fold diagonal embedding, exploited so that the domain
is not repeated by the tensor product of the maps. In this new coordinate system
we will not change notation, for instance projx,y,x′(El) will still be denoted as El. We
will not change the axes labels either, aside from using, instead of the label xl+2, the
label y. However, the canonical basis directions’ indices will be shifted backwards
by 1, with respect to the axes’ labels, since the first coordinate is suppressed. For
example, the direction of the x2-axis is e1 (the vector with 1 in the first coordinate, 0
in all the other d− 2 coordinates), and so on. The reason for keeping the old labels is
related to the context in which we apply the lemma, so it will be clear later on. When
considering a point, for example El, in this new coordinate system, it will sometimes
be necessary to further canonically project it onto the coordinate hyperplane

Hl+1 : y = 0,

often denoted as H for simplicity, whenever the dependence on l is clear. This is the
coordinate hyperplane for the axes corresponding to (x, x′) (thus isomorphic to Rd−2),
onto which we project via the analogously defined projection map projx,x′ : Rd−1 −→
H. When projecting, for example, El onto H, we will denote

E˜ l ..= projx,x′(El).

Finally, denote the canonical projection (through projx,y,x′) of the l-face considered,
as Fl, that is

Fl ..=
{

(x, y, x′) ∈ [0, 1]d−1 ∩ {0 ≤ x2 + . . .+ xd ≤ 1} : (y, x′) = (0,0)
}
,

denote

F−l
..=

{
(x, y, x′) ∈ Fl : xl+1 <

1

l + 1

}
the canonically projected portion, of the considered l-face of the simplex, satisfying
xl+1 < 1/(l + 1), and similarly denote

F−l (δn) ..=

{
(x, y, x′) ∈ Fl :

1

l + 1
− cl+1

δn
2
< xl+1 <

1

l + 1

}
the canonically projected portion, satisfying 1/(l + 1)− cl+1δn/2 < xl+1 < 1/(l + 1),
where, for all l ∈ [d−2], {cl+1} are arbitrary positive subunitary constants, which will
be fixed in Theorem 1.11, and δn is the monotonically vanishing sequence introduced
in Proposition 8.4. For an intuitive understanding of the statement of the lemma, see
Figure 9.1.
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Lemma 9.1. For every integer l ∈ [d − 2] fixed, there exists an open neighbourhood
Yl+1

..= Y of 0 in the y-axis and an open neighbourhood Xl+1
..= X of E˜ l in Hl+1

..= H,
such that in X × Y the level set {(x, y, x′) : F (l+1)(x, y, x′) = 0} is a hypersurface
Gl+1

..= G, parametrised by the (unique) continuously differentiable function y =
G(x, x′), where G : X −→ Y . That is, for every (x, x′) ∈ X, F (l+1)(x,G(x, x′), x′) = 0
and G(E˜ l) = 0.

Moreover, there are constants 0 < γ∗l+1 <
ε∗/2 and 0 < ε∗ < 1 small enough, and

a time n∗l+1 large enough, to ensure that δn∗l+1
is small enough, such that there exists

a connected composite (d − 1)-dimensional polytope Sl+1
n∗l+1
∪ P l+1

n∗l+1
⊃ F−l , on which

F (l+1)(x, y, x′) < 0, having defined

P l+1
n∗l+1

..= projx
(
F l
n

)
×
[
0, ε∗l+1

]
× [0, ε∗l+1]d−l−2,

and

Sl+1
n∗l+1

..=

{
(x, y, x′) ∈ C l+1

n∗l+1
(ε∗) : (l + 1)γ∗l+1xl+1 + y +

d∑
j=l+3

xj ≤ γ∗l+1

}
,

where
Cn∗l+1

(ε∗l+1) ..= projx

(
F−l (δn∗l+1

)
)
×
[
0, ε∗l+1

]
×
[
0, ε∗l+1

]d−l−2

and the hyperplane

T ∗l+1 : (l + 1)γ∗l+1xl+1 + y +
d∑

i=l+3

xi = γ∗l+1

is constructed such that El ∈ T ∗l+1, T ∗l+1 intersects the coordinate axes y, xl+3, . . ., xd
at distance γ∗l+1 from the origin on the positive semi-axes and does not intersect the
span of the (x2, . . . , xl)-coordinate axes.

Proof.

Step 1. F (l+1) is continuously differentiable at El and

F (l+1)(El) = ψ(l+1)(El)− E(l+1)

l =

1
(l+1)α

(l + 1) 1
(l+1)α

− 1

(l + 1)
= 0.

Also by direct calculation the partial derivatives of

F (l+1)(x, y, x′) =
xαl+1

(1−
∑

i 6=1,l+2 xi − y)α +
∑

i 6=1,l+2 x
α
i + yα

− xl+1

are, reminding that x1 = x1(x, y, x′) = 1−
∑

i 6=1,l+2 xi − y,

F (l+1)

xj
(x, y, x′) =


αxαl+1(xα−1

1 (x,y,x′)−xα−1
j )

(xα1 (x,y,x′)+
∑
i6=1,l+2 x

α
i +yα)2 , j 6= l + 1

αxα−1
l+1 [xα1 (x,y,x′)+

∑
i 6=1,l+2 x

α
i +yα+xl+1(xα−1

1 (x,y,x′)−xα−1
l+1 )]

(xα1 (x,y,x′)+
∑
i 6=1,l+2 x

α
i +yα)2 , j = l + 1,

so

F (l+1)

xj
(El) =


α
l+1
, j > l + 1

α, j = l + 1

0, 1 < j < l + 1.

Hence F (l+1)
y (El) = α/(l + 1) > 0.
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Step 2. By the Implicit Function Theorem applied to F (l+1)(x, y, x′), there exist
a (d − 2)-dimensional open neighbourhood X of E˜ l, and an open interval Y in
the y-axis, containing 0, such that there exists a unique continuously differentiable
hypersurface Gl+1 : X −→ Y (denoted simply as G in this argument) satisfying
F (l+1)(x,G(x, x′), x′) = 0 and G(E˜ l) = 0. Moreover,

∇G(x, x′) = −∇x,x′F
(l+1)(x, y, x′)

F (l+1)
y (x, y, x′)

∣∣∣∣
(x,G(x,x′),x′)

and therefore

Gxj(E˜ l) =


−1, j > l + 2

−(l + 1), j = l + 1

0, 1 < j < l + 1.

Step 3. We briefly go back to the standard coordinates for ∆d−1, in order to show
that ψ(l+1)(x1, . . . , xl+1, 0,0) takes negative values for all x, such that xl+1 < 1/(l+ 1)
and (x1, . . . , xl+1, 0,0) ∈ ∆d−1. Consider first that, given 0 ≤ xi for all i ∈ [l], by
Hölder’s inequality, for every p, q > 1 such that 1/p + 1/q = 1,

l∑
i=1

xi =
l∑

i=1

1 · xi ≤

(
l∑

i=1

1q

) 1
q
(

l∑
i=1

xpi

) 1
p

= l
1
q

(
l∑

i=1

xpi

) 1
p

.

Take p = α and

q =
1

1− 1
p

=
α

α− 1
.

Then
l∑

i=1

xi ≤ l
α−1
α

(
l∑

i=1

xαi

) 1
α

,

from which it follows that (
l∑

i=1

xi

)α

≤ lα−1

l∑
i=1

xαi . (9.1)

Consider that

ψ(l+1)(x1, x, 0,0) < 0 ⇐⇒
xαl+1∑l

i=1 x
α
i + xαl+1

< xl+1 ⇐⇒ 1 +

∑l
i=1 x

α
i

xαl+1

>
1

xl+1

⇐⇒
l∑

i=1

xαi >

(
1

xl+1

− 1

)
xαl+1 =

(
l∑

i=1

xi

)
xα−1
l+1 ,

since xl+2 = . . . = xd = 0. Also since xl+1 < 1/(l + 1),

l∑
i=1

xi = 1− xl+1 >
l

l + 1
.

This allows us to verify that

l∑
i=1

xαi >

(
l∑

i=1

xi

)
xα−1
l+1 , (9.2)
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since by (9.1)

1

lα−1

(
l∑

i=1

xi

)α

≤
l∑

i=1

xαi .

We now show that
1

lα−1

(
l∑

i=1

xi

)α

≥

(
l∑

i=1

xi

)
xα−1
l+1 , (9.3)

thus yielding (9.2). (9.3) follows from the assumptions:

1

lα−1

(
l∑

i=1

xi

)α

≥

(
l∑

i=1

xi

)
xα−1
l+1 ⇐⇒

(
l∑

i=1

xi

)α−1

≥ (lxl+1)α−1,

and the second inequality holds since(
l∑

i=1

xi

)α−1

>

(
l

l + 1

)α−1

,

while

(lxl+1)α−1 <

(
l

l + 1

)α−1

.

Hence (9.3) follows and (9.2) is satisfied.

Step 4. As a consequence of Step 3, for all n large enough, F (l+1)(x, y, x′) < 0 on F−l ,
and therefore, for any ε > 0 small enough, on the compact F l

n
..= F−l \ C l

n(ε), where

C l
n(ε) ..= projx

(
F−l (δn)

)
× [0, ε]× [0, ε]d−l−2 .

We will denote C l
n(ε) as Cn(ε) for simplicity. Note that Cn(ε) ⊆ X×Y for all n large

enough and ε small enough. Since F (l+1)(x, y, x′) is continuous and negative on F l
n, it

will be possible to have ε small enough, such that F (l+1)(x, y, x′) < 0 on the compact
(d− 1)-dimensional polytope

P l+1
n

..= projx
(
F l
n

)
× [0, ε]× [0, ε]d−l−2.

Intuitively P l+1
n (denoted simply as Pn) will constitute the main body of the polytope

in the claim. Additionally ε will be chosen small enough, to allow Cn(ε) ⊂ X × Y for
all n large enough.

We now construct a wedge-like tip for this polytope. Throughout the construction, it
will be useful to keep an eye on Figure 9.1. Consider Tl+1 (denoted as T in this argu-
ment), the affine tangent hyperplane at El to the hypersurface G, which divides X×Y
into two parts, one on which F (l+1)(x, y, x′) < 0, and one on which F (l+1)(x, y, x′) ≥ 0,
by the Implicit Function Theorem. By the standard theory, we can write the implicit
Cartesian equation of T as

T : ∇F (l+1)(El) ·

xy
x′

− El
 = 0.

Since

∇F (l+1)(El) =

(
∇xF

(l+1)(El)
∇y,x′F

(l+1)(El)

)
= α

 0
1
1

l+1


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from Step 1, where we proved that

∇xF
(l+1)(El) = (0, α)

and

∇y,x′F
(l+1)(El) = α

1

l + 1
,

the implicit equation reads as

T : α

(
xl+1 −

1

l + 1

)
+

α

l + 1

(
y +

d∑
j=l+3

xj

)
= 0,

which, dividing both sides by α/(l + 1) and rearranging, yields

T : (l + 1)xl+1 + y +
d∑

j=l+3

xj = 1. (9.4)

In the following, we adopt as normal vector for T ,

g ..=

 0
l + 1

1

 .

Note that T intersects each of the coordinate axes y, xl+3, . . . , xd at 1. This can be
seen easily by putting (9.4) together with the xj-coordinate axis equation, for all
j ≥ l + 2, which reads xi = 0, ∀i 6= j; intersecting with the xl+1-axis yields

xi =

{
1
l+1
, i = l + 1

0, i 6= l + 1,

since T goes through El; for all j ≥ l + 2, intersecting with the xj-axis yields

xi =

{
1, i = j

0, i 6= j.

Lastly, note that T does not intersect the span(e1, . . . , el−1), its equation being xl+1 =
. . . = xd = 0, which turns (9.4) into 0 = 1.

We will now require n to be large enough to allow F (l+1)(x, y, x′) < 0 on the whole
portion of Cn(ε) defined as follows. Consider{

(x, y, x′) ∈ Cn(ε) : (l + 1)xl+1 + y +
d∑

j=l+3

xj < 1

}
.

There is no guarantee that F l+1 does not intersect this set for n large enough and ε
small enough. Hence we define a suitable hyperplane, which has the same implicit
equation form as that of T :

T ′ : βxl+1 +
d∑

i=l+2

xi = γ.

We first require that El ∈ T and β > 0, 0 < γ < 1. Then

γ =
β

l + 1
,
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yielding the equation

T ′ : (l + 1)γxl+1 +
d∑

i=l+2

xi = γ.

By a similar argument as for T , it will still not intersect the span(e1, . . . , el−1) as a
similar intersection would yield γ = 0. It clearly intersects the xl+1-coordinate axis
at 1/(l + 1). From the form of its equation, it is also clear that for all j ≥ l + 2,
intersecting with the xj-axis yields

xi =

{
γ, i = j

0, i 6= j.

For γ = 1, T ′ = T ; as we reduce γ, we lower T ′ towards the span(e1, . . . , el) (γ being
the intercept with the xl+2, . . . , xd axes, we are reducing these coordinates). Since on
Cn(ε), xl+1 < 1/(l+ 1), by Step 3 we know that as γ is reduced, T ′ gets closer to the
open neighbourhood of F−l on which F (l+1)(x, y, x′) < 0. For some γ∗l+1 <

ε∗l+1/2, for
ε∗l+1 < 1 small enough, and n∗l+1 large enough, the hyperplane

T ∗l+1 : (l + 1)γ∗l+1xl+1 + y +
d∑

i=l+3

xi = γ∗l+1

will be such that F (l+1)(x, y, x′) < 0 on

Sl+1
n∗l+1

..=

{
(x, y, x′) ∈ Cn∗l+1

(ε∗) : (l + 1)γ∗l+1xl+1 + y +
d∑

j=l+3

xj ≤ γ∗l+1

}
.

To show this, let us denote Sl+1
n as Sn for simplicity, and similarly γ and ε. By Step

2 we can show that the implicit hypersurface y = G(x, x′) decreases strictly as we
approach E˜ l coming from projx,x′(Sn∗), meaning that for any direction u = (ux, ux′)
such that E˜ l+tu ∈ projx,x′(Sn∗) for some t > 0 small enough, the directional derivative

∂uG(E˜ l) = ∇G(E˜ l) · u = −(l + 1)ul+1 −
d∑

i=l+3

ui > 0. (9.5)

This can be shown by noting that, for u to satisfy E˜ l + tu ∈ projx,x′(Sn∗) for some
t > 0, we need to have ul+1 < 0 (because on this set, the xl+1 coordinate is strictly
less than 1/(l + 1)) and ui ≥ 0. Also, since for all (x, y, x′) ∈ Sn it holds that

(l + 1)γxl+1 + y +
d∑

i=l+3

xi ≤ γ,

with y ≥ 0, it also follows that

(l + 1)γxl+1 +
d∑

i=l+3

xi ≤ γ.

We can assume ε, and thus γ, subunitary. Then without loss of generality we can
assume that, for all directions u considered, for some 0 < t < 1,

(l + 1)γ

(
1

l + 1
+ tul+1

)
+

d∑
i=l+3

ui ≤ γ.
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G

T

T ∗

Pn∗ Sn∗

F < 0

F > 0

H El

γ∗
ε∗

1

(x, x′)

y

Figure 9.1: Pn∗ (red) and Sn∗ (blue)

Therefore

d∑
i=l+3

ui ≤ γ − (l + 1)γ

(
1

l + 1
+ tul+1

)
= −(l + 1)γtul+1. (9.6)

As a result, by (9.5) and (9.6), γt < 1, ul+1 < 0 and ui ≥ 0 for all l + 3 ≤ i ≤ d, it
follows that

∂uG(E˜ l) ≥ −(l + 1)ul+1 + (l + 1)γ∗tul+1 = (l + 1)(tγ∗ − 1)ul+1 > 0.

Since it follows that the surface y = G(x, x′) increases in all directions, which go from
E˜ l to projx,x′(Sn). Since T ∗ is constructed, so as to have lower y, xl+3, . . . , xd-axes
intercept than the tangent hyperplane of G at El, it grows at a slower rate than G
in all directions going from E˜ l to projx,x′(Sn). Thus for n large enough and ε small
enough, we can fix a suitable γ (respectively denoted as n∗l+1, ε∗l+1 and γ∗l+1), such that
G will not intersect Sl+1

n∗l+1
, meaning that F (l+1)(x, y, x′) < 0 on the tip of the polytope.

In conclusion, by construction, the composite (d− 1)-dimensional polytope Pn∗ ∪ Sn∗
is connected and F (l+1)(x, y, x′) < 0 on it. Let us explain the construction more in-
formally through Figure 9.1. The horizontal axis is a collapsed representation of the
coordinate hyperplane H (the coordinate axis, which has been prioritized in repre-
senting it, is xl+1, that is why El appears at distance 1/(l+ 1) from the origin, and as
to the elevation, we prioritized y, even though the in the higher-dimensional setting
the picture is supposed to be homogenous with respect to the xl+3, . . . , xd directions,
by construction of T ∗), the body and the tip of the solid are the coloured regions.
The distance between El and Pn∗ is cl+1δn∗/2, that is the segment, which is the base
of the tip, stands actually for projx,x′(Sn∗(ε

∗)). Note that Figure 9.1 is accurate for
d = 3: y = x3 and (x, x′) = x2, with El = E1 = (1/2, 0) and E˜ l = E˜ 1 = 1/2. The
reason for defining a new set of coordinates, through the projection eliminating the
first coordinate, is in fact that the d = 3 case becomes univariate in these coordinates,
and therefore very easy to handle, offering precious intuition for the general case.

The polytope P l+1
n∗l+1
∪ P l+1

n∗l+1
extends towards the positive coordinate directions

xl+2, xl+3, . . . , xd, so as to ensure that close enough to the l-face there is space for
Θn to fit small enough components Θ(l+2)

n , . . . ,Θ(d)
n as Θ(l+1)

n < 1/(l + 1) − δn∗
l+1/2, so

that ψ(l+1)(Θn)−Θ(l+1)
n < 0, provided n is large enough. This is the gist of the use for
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Lemma 9.1 in Theorem 1.11. When making the Cartesian equation of T ∗l+1 explicit
with respect to coordinates y, xl+3, . . . , xd, we will adopt the notation y = T ∗l+1(x, x′),
xl+3 = T ∗l+1(x, y, xl+4, . . . , xd), and so on. Indeed the explicit equation has always
the same form, only the coordinates formally change. For simplicity, we will always
make the equation explicit with respect to y. It will be clear that there is no loss of
generality in doing this, when exploiting the following corollary in the induction step
of Theorem 1.11.

Corollary 9.2. For all integers l ∈ [d− 2] and n ≥ n∗l+1, define the sequence

yl+1(δn) ..= T ∗l+1

(
E˜ l − cl+1

δn
2
e˜l
)
,

where e˜l is the lth element of the canonical basis of Rd−2
x,x′ . By construction, yl+1(δn) �

δn and vanishes monotonically.

Proof. Trivially yl+1(δn) � δn by the linearity in δn of yl+1(δn) > 0, which is obvious
from the linearity of y = T ∗l+1(x, x′) stated in Lemma 9.1. As δn is monotone and
vanishing by (8.3), trivially δn/2 < δn∗

l+1/2 and

E˜ l ←− E˜ l − cl+1
δn
2
e˜l ∈ projx,x′

(
Sl+1
n∗l+1

)
.

By Lemma 9.1, y = T ∗l+1(x, x′) is positive, monotonically decreasing and upper
bounded by ε∗l+1/2 along the xl+1-coordinate direction (which is given by e˜l, in the
canonical projection) and vanishes as (x, x′) −→ E˜ l, so

yl+1(δn) ∈
(

0,
ε∗l+1

2

)
,

with yl+1(δn) −→ 0 as n −→∞.

9.2 Dominance in presence of feedback

In this section we show that with positive feedback, the event of dominance (that
is, the event on which one of the components Θ(i)

n tends to 1) is almost sure in both
cases, for which ρn is bounded, and for which ρn −→∞, θ = 0, λ < 1.

Proof of Theorem 1.11. Define the stopping time ηd ..= inf {n ≥ s : ‖Θn − E ‖> δn},
where s ≥ max {3, n∗} and

n∗ = max
1≤l≤d−2

n∗l+1

can be fixed arbitrarily large, and δn ..= 1/τrn, where rα < r < 1/2, with rα defined as in
Proposition 8.4, n∗l+1 is the time defined in Lemma 9.1. For any s, the stopping time
ηd is almost surely finite, since by Proposition 8.4, P (‖Θn − E ‖> δn, i.o.) = 1. By
(5.2),

Θn+1 −Θn =
τn
τn+1

Θn +
1

τn+1

Bn+1 −Θn

= −σn+1

τn+1

Θn +
1

τn+1

Bn+1 −
σn+1

τn+1

Pn +
σn+1

τn+1

ψ(Θn)

=
Bn+1 − σn+1Pn

τn+1

− σn+1

τn+1

(Θn − ψ(Θn)).
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Iterating this formula from ηd to ηd + n yields

Θηd+n −Θηd =

ηd+n∑
k=ηd+1

Bk − σkPk−1

τk
−

ηd+n∑
k=ηd+1

σk
τk

(Θk−1 − ψ(Θk−1)) = Mn −Rn,

where we defined

Mn
..=

ηd+n∑
k=ηd+1

Bk − σkPk−1

τk

and

Rn
..=

ηd+n∑
k=ηd+1

σk
τk

(Θk−1 − ψ(Θk−1)).

By the empty sum convention, set M0 = 0 and R0 = 0. We obtained the Doob-Meyer
decomposition of Θηd+n = Θηd+Mn−Rn. Indeed, trivially Rn ∈ mFηd+n−1 (recall that
this notation is used for measurability with respect to σ-algebra) and it is therefore
previsible with respect to the filtration defined as {Gn}, where Gn

..= Fηd+n, whereas
for all i, M (i)

n is a conditional {Gn}-martingale. For the definition and basic conver-
gence properties of conditional martingales, see [27]; note that the concepts of mar-
tingale and conditional martingale coincide when G0 is a trivial σ-algebra, and most
of the convergence properties are inherited via conditional expectation arguments
analogous to the classical ones (for instance the Conditional Upcrossing Lemma).
Being adapted, Bk ∈ mFηd+n for all k ≤ ηd + n; being previsible, Pk−1 ∈ mFηd+n

for all k ≤ ηd + n + 1; and having EFηd+n(Bηd+n+1) = σηd+n+1Pηd+n, it follows that
EGnMn+1 = Mn, since

EFηd+nMn+1 =

ηd+n+1∑
k=ηd+1

1

τk
EFηd+n (Bk − σkPk−1) = Mn.

Trivially, for all n

EG0|M (i)

n | = EFη |M (i)

n | ≤
ηd+n+1∑
k=ηd+1

EFηd

|B(i)

k − σkP
(i)

k−1|
τk

=

ηd+n+1∑
k=ηd+1

EFηd

EFk−1
|B(i)

k − σkP
(i)

k−1|
τk

≤ 2

ηd+n+1∑
k=ηd+1

EFηd

σkP
(i)

k−1

τk
≤

ηd+n+1∑
k=ηd+1

1 = 2n <∞.

Moreover, M (i)
n is bounded in L2(Fηd) for all i. In fact, by the tower property,

EFηd
(M (i)

n )2 = EFηd
(M (i)

n −M
(i)

n−1 +M (i)

n−1 −M
(i)

0 )2 = EFηd
(M (i)

n −M
(i)

n−1)2

+ EFηd
(M (i)

n−1)2 + 2EFηd

[
(M (i)

n −M
(i)

n−1)(M (i)

n−1 −M
(i)

0 )
]

= EFηd
(M (i)

n −M
(i)

n−1)2 + EFηd
(M (i)

n−1)2,

since

EFηd

[
(M (i)

n −M
(i)

n−1)(M (i)

n−1 −M
(i)

0 )
]

= E
[
(M (i)

n −M
(i)

n−1)(M (i)

n−1 −M
(i)

0 )|Fηd+n−1|Fηd

]
and

EFηd+n−1

[
(M (i)

n −M
(i)

n−1)(M (i)

n−1 −M
(i)

0 )
]

= (M (i)

n−1 −M
(i)

0 )EFηd+n−1(M (i)

n −M
(i)

n−1) = 0
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by the martingale property. Since

EFηd
(M (i)

n )2 = EFηd
(M (i)

n −M
(i)

n−1)2 + EFηd
(M (i)

n−1)2,

and by the tower property

EFηd
(M (i)

n −M
(i)

n−1)2 = E
[
(M (i)

n −M
(i)

n−1)2|Fηd+n−1|Fηd

]
= E

(B(i)

ηd+n − σηd+nP
(i)

ηd+n−1

τηd+n

)2∣∣∣∣Fηd+n−1

∣∣∣∣Fηd


= EFηd

(
VarFηd+n−1 B

(i)

ηd+n

τ 2
ηd+n

)
= EFηd

σηd+nP
(i)

ηd+n−1(1− P (i)

ηd+n−1)

τ 2
ηd+n

≤ EFηd

σηd+n

τ 2
ηd+n

=
σηd+n

τ 2
ηd+n

,

we have that

EFηd
(M (i)

n )2 ≤ EFηd
(M (i)

n−1)2 +
σηd+n

τ 2
ηd+n

,

which can be iterated, yielding

EFηd
(M (i)

n )2 ≤
ηd+n∑
k=ηd+1

σk
τ 2
k

≤
∫ ∞
τηd

dx

x2
=

1

τηd
< 1,

and therefore supn EFηd
(M (i)

n )2 < ∞. By the L2-martingale convergence theorem,
Mn converges almost surely in L2(Fηd).

Step 1. Focus now on the dth component (this justifies the notation with an index d
for the stopping time). Consider the event

Ed
..=
{

Θ(d)

ηd
∈ ∆d

}
,

where

∆d
..=

{
x ∈ ∆d−1, xd = min

1≤i≤d
xi

}
.

Since ‖Θηd − E‖ > δηd ; since the (d− 1)-dimensional polytope ∆d is the convex hull
of the vertex E and all other vertices of the simplex having xd = 0; since the angle
formed at E by the edges that connect it to any two other vertices in ∆d is

π

2
< arccos

(
− 1

d− 1

)
≤ 2

3
π

for every d ≥ 3; since the angle between the dth basis vector ed and the normal to
the hyperplane to which the simplex belongs, which is 1, is

π

4
< arccos

(
1√
d

)
<
π

2

for every d ≥ 3; we can see that on Ed not only Θηd ≤ 1/d by the pigeonhole principle,
but

1

d
−Θ(d)

ηd
> cdδηd ,
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where cd is a subunitary trigonometric constant bounded away from zero, such that
cdδηd is the minimum modulus of the orthogonal projection of

δηd
x− E
‖x− E‖

onto the axis spanned by the dth basis vector ed, for x varying in the compact ∆d.
That is

cdδηd = min
x∈∆d

∣∣∣∣(δηd x− E
‖x− E‖

)
· ed
∣∣∣∣

where · denotes the scalar product in Rd. Hence

Ed ⊆
{

Θ(d)

ηd
<

1

d
− cdδηd

}
.

To prove that on Ed, Θ(d)

ηd+n −→ 0 as n −→∞, consider the event

Sd
..=

{
sup
n
M (d)

n ≤
cdδηd

2

}
.

We will show that Θ(d)
n vanishes on Sd ∩ Ed. This will be enough to prove that it

vanishes almost surely on Ed, thanks to a bound on the probability of the complement
Sc
d that we will derive. We first show this bound. Consider that

P(Sc
d) = E(1Scd

) = EEFηd
(1Scd

) = EPFηd
(Sc

d),

where

PFηd
(Sc

d) = PFηd

(
sup
n
M (d)

n >
cdδηd

2

)
,

which can be estimated by Doob’s submartingale inequality as follows. Define the
event

Hd
n

..=

{
max
k≤n

M (d)

k >
cdδηd

2

}
.

Since Hd
n ⊆ Hd

n+1, it follows that

Sc
d = lim

n→∞
Hd
n,

and as a consequence of the monotonicity of probability measures,

PFηd
(Sc

d) = lim
n→∞

PFηd
(Hd

n).

Applying Doob’s inequality to the positive submartingale {(M (d)

k )2} yields

PFηd
(Hd

n) = PFηd

(
max
k≤n

M (d)

k >
cdδηd

2

)
≤ PFηd

(
max
k≤n

(M (d)

k )2 >
c2
dδ

2
ηd

4

)
≤ 4

c2
dδ

2
ηd

EFηd
(M (d)

n )2 ≤ 4

c2
dδ

2
ηd
τηd

=
4τ 2rα
ηd

c2
dτηd

=
4

c2
dτ

1−2r
ηd

≤ 4

c2
dτ

1−2r
s

almost surely, thus

PFηd
(Sc

d) ≤ 4

c2
dτ

1−2r
s
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almost surely, and as a result

P(Sc
d) = EPFηd

(Sc
d) ≤ E

4

c2
dτ

1−2rα
s

=
4

c2
dτ

1−2r
s

. (9.7)

Since s can be chosen arbitrarily large, and since rα < r < 1/2 ensures 1 − 2r > 0,
implying

lim
s→∞

4

c2
dτ

1−2
s

= 0,

we can conclude that if we can show that Θ(d)
n vanishes on Sd∩Ed, by the fact that s can

be chosen arbitrarily large and thus P(Sc
d) arbitrarily small, we will have shown that it

vanishes almost surely on the whole of Ed (this is a trivial argument by contradiction
that we omit).

Consider now the event Sd ∩Ed and recall that on Ed,

Θ(d)

ηd
<

1

d
− cdδηd <

1

d
− cd

2
δηd .

By induction, it can be proved that on Sd ∩Ed, for all n

Θ(d)

ηd+n <
1

d
− cd

2
δηd .

For n = 0 it follows trivially from Sd ∩Ed ⊆Ed. Assume that for all j ∈ [n− 1],

Θ(d)

ηd+j <
1

d
− cd

2
δηd .

Then since for all j ∈ [n− 1], Θ(d)

ηd+j <
1/d, (8.1) yields that for all j ∈ [n− 1],

ψ(d)(Θηd+j) ≤ dα−1(Θ(d)

ηd+j)
α <

dα−1

dα−1
Θ(d)

ηd+j = Θ(d)

ηd+j,

and therefore, for all j ∈ [n− 1],

Θ(d)

ηd+j − ψ(d)(Θηd+j) > 0.

Hence

R(d)

n =

ηd+n∑
k=ηd+1

σk
τk

(Θ(d)

k−1 − ψ
(d)(Θk−1)) > 0

on Sd ∩Ed. The positivity of R(d)
n yields that on Sd ∩Ed

Θ(d)

ηd+n = Θ(d)

ηd
+M (d)

n −R(d)

n < Θ(d)

ηd
+M (d)

n ≤
1

d
− cdδηd +

cd
2
δηd =

1

d
− cd

2
δηd .

As a result, since all added terms are strictly positive, R(d)
n is strictly increasing on

Sd ∩Ed. Since 0 ≤ Θηd+n ≤ 1; since {M (d)
n } is almost surely convergent in L2(Fηd);

since R(d)
n is positive and strictly increasing and R(d)

n = Θ(d)
ηd
− Θ(d)

ηd+n + M (d)
n , which

yields boundedness of R(d)
n as |R(d)

n | ≤ Θ(d)
ηd

+Θ(d)

ηd+n+ |M (d)
n | ≤ 2+ |M (d)

n | and thus of its
limit, that is supnR

(d)
n ≤ 2 + |M (d)

∞ |; we can conclude that being bounded positive and
increasing, R(d)

n converges almost surely too. This proves that there exists an almost
sure limit Θ(d) ←− Θ(d)

k = Θ(d)

ηd+n. It is left to prove that Θ(d) = 0. By contradiction,
assume that there is an ω ∈ Sd ∩Ed such that Θ(d)(ω) > 0. But on Sd ∩Ed, for all
k = ηd+j, where j ∈ N0, Θ(d)

k (ω)−ψ(d)(Θk(ω)) > 0. Passing to the limit and recalling
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Ed−1

∆d

Ed−2

∆∗d−1

Θ̂d−2

Θd−1

Θd

Figure 9.2: ∆d and ∆∗d−1, where Θ̂d−2 = (Θ1, . . . ,Θd−2).

that by assumption Θ(d)(ω) > 0, this implies that Θ(d)(ω) − ψ(d)(Θ(ω)) > 0 by the
continuity of ψ(d). From which it follows that

σk
τk

(Θ(d)

k (ω)− ψ(d)(Θk(ω))) ∼ σk
τk

(Θ(d)(ω)− ψ(d)(Θ(ω)))

and that

∞∑
k=ηd+1

σk
τk

(Θ(d)(ω)− ψ(d)(Θ(ω))) = (Θ(d)(ω)− ψ(d)(Θ(ω)))
∞∑

k=ηd+1

σk
τk

=∞,

as Θ(d)(ω)−ψ(d)(Θ(ω)) > 0 and Lemma C.1 holds. Then by the limit comparison test
we have that

R∞(ω) ..=
∞∑

k=ηd+1

σk
τk

(Θ(d)

k−1(ω)− ψ(d)(Θk−1(ω))) =∞.

Since surely Θ(d) ≥ 0, the following contradiction is reached: Θ(d)(ω) = Θ(d)
η (ω) +

M∞(ω) − R∞(ω) = −∞. Thus Θ(d) = 0 almost surely on Sd ∩Ed, and as we argued
earlier, by s being allowed to be arbitrarily large and by (9.7), it follows that Θ(d) = 0
almost surely on Ed.

Step 2. By Step 1 and Lemmas E.2 and F.1 respectively, in the two regimes of growth
of the claim, for almost every ω ∈ Ed there exists a finite upper bound T (d)(ω) for
{T (d)

n (ω)}. We exploit this bound and define a new stopping time, that similarly to
ηd, allows to prove that also Θ(d−1)

n vanishes on an analogous event, included in the
previous one, denoted as Ed−1. The overall scheme, besides this step, is to show that,
one by one, other d−2 components vanish, on a suitable event. The bound T (d) requires
information about all future T (d)

n . It cannot be used in defining a stopping time.
However, since the deterministic function log τn diverges to infinity, the existence
of an almost sure bound allows to conclude that eventually for almost all ω ∈ Ed,
T (d)
n (ω) < log τn. As a result for almost every ω ∈ Ed, there exists a finite positive

integer Nd = Nd(ω) such that

Θ(d)

n (ω) <
log τn
τn

for all n ≥ Nd. Recall that s ≥ max {3, n∗}. It is essential for the argument that this
deterministic upper bound on Θ(d)

n is strictly decreasing and vanishing. In particular,
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for all x > 0, log x/x is decreasing on [e,∞) (note that 3 = dee), in that

d

dx

log x

x
=

1− log x

x2
< 0

on (e,∞) (seen by rearranging the inequality for all x > 0 into log x > 1 and taking
logarithms). This is the reason for requiring s ≥ 3. We must also satisfy s ≥ n∗,
so that s ≥ n∗d−1. This guarantees that, for the constant cd−1, which we will define
similarly to cd,

E˜ d−2 − cd−1
δk
2
e˜d−2 ∈ projx

(
Sd−1
n∗d−1

)
,

where the notation is with respect to the projected coordinate system

(x2, . . . , xd−1︸ ︷︷ ︸
x

, xd︸︷︷︸
y

)

(in this first step there is no coordinate x′) used in Lemma 9.1 with l = d−2. Finally
note that there is a deterministic Md−1 ∈ N, such that

log τn
τn
≤ yd−1(δn)

for all n ≥Md−1, where

yd−1(δn) ..= T ∗d−1

(
E˜ d−2 − cd−1

δn
2
e˜d−2

)
∈
(

0,
ε∗d−1

2

)
.

Md−1 is well defined, in that by Corollary 9.2 (with l = d − 2), yd−1(δn) � δn as
n −→∞, and

log τn
τn

=
log τn
τ 1−r
n

δn = O(δn).

Thus
log τn
τn

yd−1(δn)
−→ 0,

and the ratio is eventually bounded by 1 and the inequality holds eventually, as per
the definition of Md−1. Define the stopping time

ηd−1
..= inf

{
n ≥ s : Θ(d)

n <
log τn
τn

< yd−1(δn), ‖Θn − Ed−2‖ > δn

}
.

It is known, from Proposition 8.4 and the almost sure existence of Nd and Md−1 (which
are finite), that on Ed, ηd−1 is almost surely finite. Define

∆d−1
..=

{
x ∈ ∆d−1, xd−1 = min

1≤i≤d−1
xi

}
∆∗d−1 = ∆d−1 ∩∆d

E∗d−1
..=
{

Θηd−1
∈ ∆∗d−1

}
∩Ed

Gs
d−1

..=

{
ω ∈E∗d−1 : Θ(d)

n <
log τn
τn

< yd−1(δn), ∀n ≥ s

}
.

We have that

E∗d−1 ⊆
{

Θ(d−1)

ηd−1
<

1

d− 1
− cd−1δηd−1

}
,
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because
∥∥Θηd−1

− Ed−2

∥∥ > δηd−1
; since the (d − 1)-dimensional polytope ∆∗d−1 is the

convex hull of the vertex E, Ed−2 and all other vertices of the simplex having xd =
xd−1 = 0; since the angle formed at Ed−2 by the edges that connect it to any two other
vertices of ∆∗d−1 is either a right angle (if one of the vertices is E, which is always the
case if we started with d = 3, in which scenario this step is the last step) or is

π

2
< arccos

(
− 1

d− 2

)
≤ 2π

3

for every d > 3 (if both vertices lie in the (d−2)-dimensional face having xd = xd−1 =
0, which is ∆d−2); since the angle between the (d − 1)st basis vector ed−1 and the
normal to the hyperplane, to which the simplex belongs, is

π

4
< arccos

(
1√
d

)
<
π

2

for every d ≥ 3; we can conclude that on Ed,

1

d− 1
−Θ(d−1)

ηd−1
> cd−1δηd−1

,

where cd−1 is a subunitary trigonometric constant bounded away from zero, such that

cd−1δηd−1
= min

Θ∈∆∗d−1

∣∣∣∣(δηd−1

Θ− Ed−2

‖Θ− Ed−2‖

)
· ed−1

∣∣∣∣ .
We move on to proving that for all s, on Gs

d−1 ∩ Sd−1 almost surely Θ(d−1)

k −→ 0
with a similar argument as in Step 1, but making use of Lemma 9.1 to ensure that
R(d−1)
n is positive increasing ((8.1) is no longer sufficient at partial equilibria). Since

Gs
d−1 ⊆ Gs+1

d−1 and since on Ed ⊇E∗d−1 there are Nd and Md−1 almost surely finite,

∞⋃
s=max{3,n∗}

Gs
d−1 = lim

s→∞
Gs
d−1 = G∞d−1

is well defined and it is such that P(E∗d−1 rG∞d−1) = 0. Then it follows that

P(E∗d−1 rGs
d−1) ↓ 0 (9.8)

as s −→∞. Similarly, by a bound analogous to the one achieved for Sc
d , we show that

P(Sc
d−1) is bounded by a function that vanishes as s −→∞. Therefore, the conclusion

will be that almost surely on E∗d−1, Θ(d−1)

k −→ 0 (and Θ(d)

k −→ 0 by the previous step).
The argument that follows is technically speaking unnecessary, because the first step
of the inductive argument has already been done. However the second step shows
the essence of the general inductive step, but with less technicalities. To gain some
intuition about this step see Figure 9.2, where all the dimensions (Θ1, . . . ,Θd−2) have
been collapsed in one flat subspace of codimension 2, Θ̂d−2. Note that the picture is
accurate for the three bins case, where Θ̂d−2 = Θ1.

Consider the (d − 1)st components M (d−1)
n , R(d−1)

n and the σ-algebra Fηd−1
. Defining

Gn
..= Fηd−1+n by the exact same argument as before, mutatis mutandis, it holds that

M (d−1)
n is a Gn-martingale and M (d−1)

n ∈ L2(Fηd−1
) and is bounded (the same bound

found on the dth component holds), hence it is almost surely convergent in L2(Fηd−1
).

Define the event

Sd−1 =

{
sup
n
M (d−1)

n ≤
cd−1δηd−1

2

}
.
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Analogously to what done in Step1, we can find a vanishing bound for P(Sc
d−1) using

Doob’s inequality. Define

Hd−1
n =

{
max
k≤n

M (d−1)

k >
cd−1δηd−1

2

}
.

Then

PFηd−1
(Hd−1

n ) ≤ 4(M (d−1)
n )2

c2
d−1δ

2
ηd−1

≤
4τ 2r
ηd−1

c2
d−1τηd−1

=
4

c2
d−1τ

1−2r
ηd−1

≤ 4

c2
d−1τ

1−2r
s

.

As in Step 1 this implies that

P(Sc
d−1) ≤ 4

c2
d−1τ

1−2r
s

(9.9)

and therefore this probability can be made arbitrarily small by taking s sufficiently
large. The argument proceeds as before, by proving by induction that for all n ≥ 0,
on Gs

d−1 ∩Sd−1,

Θ(d−1)

ηd−1+n <
1

d− 1
− cd−1

δηd−1

2
. (9.10)

The case n = 0 follows by Gs
d−1 ∩Sd−1 ⊆ Gs

d−1 ⊆E∗d−1, on which

Θ(d−1)

ηd−1
<

1

d− 1
− cd−1δηd−1

.

Assume the induction hypothesis true for all indices 0 ≤ j < n. The main difference
from the induction argument in Step 1 is that now the inductive hypothesis does
not ensure that Θ(d−1)

ηd−1+j <
1/d (which would allow using (8.1) as in Step 1 ) since

1/(d − 1) > 1/d. To show (9.10), we use Lemma 9.1 instead. For all 0 ≤ j < n, set
k = ηd−1 + j, and recall that

F (d−1)(x, y) ..= F (d−1)(Θ(2)

k , . . .Θ
(d−1)

k︸ ︷︷ ︸
x

, Θ(d)

k︸︷︷︸
y

) ..= ψ(d−1)(Θk)−Θ(d−1)

k .

We show that R(d−1)
n is positive, so that the induction step will follow, as

Θ(d−1)

ηd−1+n = Θ(d−1)

ηd−1
+M (d−1)

n −R(d−1)

n < Θ(d−1)

ηd−1
+M (d−1)

n <
1

d− 1
− cd−1δηd−1

+
cd−1δηd−1

2
=

1

d− 1
− cd−1

δηd−1

2
.

The conditions that have been put in the definition of the stopping time ηd−1 all
intervene here, to ensure that the vector (Θ(2)

k , . . . ,Θ
(d)

k ) ∈ P d−1
n∗d−1
∪ Sd−1

n∗d−1
, on which

F (d−1)(x, y) < 0, so that −F (d−1)(Θ(2)

k , . . . ,Θ
(d)

k ) > 0 for all ηd−1 < k < ηd−1 + n and
therefore R(d−1)

n is positive. Since k > ηd−1 > s ≥ n∗d−1 and ω ∈ Gs
d−1∩Sd−1 ⊆ Gs

d−1 ⊆
Ed,

Θ(d)

k <
log τk
τk

< yd−1(δk)

for all considered k. The induction hypothesis ensures that

Θ(d−1)

k <
1

d− 1
− cd−1

δηd−1

2
,
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but the monotonicity of δk, following from its definition by (8.3), tells us that

1

d− 1
− cd−1

δηd−1

2
>

1

d− 1
− cd−1

δn∗d−1

2
.

Then we cannot conclude simply that (Θ(2)

k , . . . ,Θ
(d)

k ) ∈ P d−1
n∗d−1

, but we can be sure

that (Θ(2)

k , . . . ,Θ
(d)

k ) ∈ P d−1
n∗d−1
∪Sd−1

n∗d−1
. Indeed, the components lower than the (d− 1)st

have no constraints to satisfy on P d−1
n∗d−1
∪Sd−1

n∗d−1
, besides corresponding to points of the

simplex, which is trivial. Whereas, Θ(d)

k has been shown small enough to ensure that,
if it were the case that

Θ(d−1)

k >
1

d− 1
− cd−1

δn∗d−1

2
,

it would follow that (Θ(2)

k , . . . ,Θ
(d)

k ) ∈ Sd−1
n∗d−1

. Hence F (d−1)(Θ(2)

k , . . . ,Θ
(d)

k ) < 0 and the

induction step is completed. Then (9.10) holds on Gs
d−1 ∩ Sd−1 for all n ≥ 0. Thus

{R(d−1)
n } is positive and increasing on Gs

d−1 ∩Sd−1. At this point, reasoning as in the
concluding part of Step 1, it is possible to conclude by contradiction that Θ(d−1)

k −→ 0
almost surely on Gs

d−1 ∩ Sd−1. Since s is arbitrary, through (9.8) and (9.9) we have
that Θ(d−1)

k −→ 0 almost surely on E∗d−1. Since E∗d−1 ⊆ Ed, also Θ(d)

k −→ 0 almost
surely on E∗d−1 by Step 1. Thus almost surely on E∗d−1 both Θ(d)

k and Θ(d−1)

k vanish.

Step 3. To conclude we repeat the argument for a general step l ∈ [d − 3], making
use of Lemma 9.1 in its full generality. As induction hypothesis assume that on E∗l+2

(inductively defined as usual), Θ(l+2)
n , . . . ,Θ(d)

n have been shown to vanish almost surely.
Then by Lemmas E.2 and F.1, for almost every ω ∈E∗l+2 there is a finite bound T (i)(ω)
for {T (i)

n (ω)}, for all l+2 ≤ i ≤ d, in both regimes of growth respectively. We discussed
in Step 2 that this allows us to conclude that, for almost every ω ∈ E∗l+2, there exist
finite positive integers Ni = Ni(ω) such that, if we define N∗l+2

..= maxl+2≤i≤dNi, it
holds that

Θ(i)

n (ω) <
log τn
τn

for all n ≥ N∗l+2 and l + 2 ≤ i ≤ d. Recall that s ≥ max {3, n∗} ≥ n∗l+1. This
guarantees that, for the constant cl+1, defined in a moment similarly to the {ci} in
the previous steps,

E˜ l − cl+1
δk
2
e˜l ∈ projx,x′

(
Sl+1
n∗l+1

)
,

where the notation is with respect to the projected coordinate system

(x2, . . . , xl+1︸ ︷︷ ︸
x

, xl+2︸︷︷︸
y

, xl+3, . . . , xd︸ ︷︷ ︸
x′

)

used in Lemma 9.1. Finally note that there is a deterministic Ml+1 ∈ N such that for
all n ≥Ml+1,

log τn
τn
≤ yl+1(δn),

where

yl+1(δn) = T ∗l+1

(
E˜ l − cl+1

δn
2
e˜l
)
∈
(

0,
ε∗l+1

2

)
.

Ml+1 is well defined, since by Corollary 9.2, yl+1(δn) � δn, while log τn/τn = O(δn) as
n −→∞. Define the stopping time

ηl+1
..= inf

{
n ≥ s : Θ(i)

n <
log τn
τn

< yl+1(δn), ∀ l + 2 ≤ i ≤ d, ‖Θn − El‖ > δn

}
.



236

It is known, from Proposition 8.4 and the almost sure finiteness of N∗l+2 and Ml+1,
that on E∗l+2, ηl+1 is almost surely finite. Define

∆l+1
..=

{
x ∈ ∆d−1, xl+1 = min

i∈{1,...,l+1}
xi

}
∆∗l+1

..= ∆l+1 ∩∆∗l+2

E∗l+1
..= {Θηl+1

∈ ∆∗l+1} ∩E∗l+2

Gs
l+1

..=

{
ω ∈E∗l+1 : Θ(i)

n <
log τn
τn

< yl+1(δn) ∀l + 2 ≤ i ≤ d, ∀n ≥ s

}
.

We have that

E∗l+1 ⊆
{

Θ(l+1)

ηl+1
<

1

l + 1
− cl+1δηl+1

}
,

because
∥∥Θηl+1

− El
∥∥ > δηl+1

; since the (d− 1)-dimensional polytope ∆∗d−1 is the con-
vex hull of Ed−1, Ed−2, . . . , El, and all vertices of the simplex having xd = xd−1 = . . . =
xl+1 = 0; since the angle formed at El by the edges that connect it to any two other
vertices of ∆∗l+1 is either a right angle (if only one of the vertices is Ed−1, . . . , El+1) or
is

π

2
< arccos

(
−1

l

)
≤ 2π

3

for l > 1 (if both are vertices lying in the l-face having xd = . . . = xl+1 = 0, which is
∆l: this scenario is not possible for l = 1 since, by definition, the only other vertex
of the 1-face is excluded already) or is a nondegenerate acute angle (if both vertices
are centres of two distinct faces: since the difference between two centres is always
orthogonal to the lower-dimensional face, to which one of the centres belongs, the
difference between these two centres, and the edges connecting them to El, form a
nondegenerate right triangle); since the angle between the (l + 1)st basis vector el+1

and 1, the normal to the hyperplane, to which the simplex belongs, is

π

4
< arccos

(
1√
d

)
<
π

2

for every d ≥ 3; we can then conclude that on E∗l+1,

1

l + 1
−Θ(l+1)

ηl+1
> cl+1δηl+1

,

where cl+1 is a subunitary trigonometric constant bounded away from zero, such that

cl+1δηl+1
= min

Θ∈∆∗l+1

∣∣∣∣(δηl+1

Θ− El
‖Θ− El‖

)
· el+1

∣∣∣∣ .
We will now prove that for all s, on Gs

l+1 ∩ Sl+1 almost surely Θ(l+1)

k −→ 0 with a
similar argument as in Step 2, but making use of Lemma 9.1 in its full generality, so
as to ensure that R(l+1)

n is positive increasing. By the monotonicity of the events Gs
l+1

and since on E∗l+1 there are N∗l+2 and Ml+1 almost surely finite, as in Step 2, we have
that

P(E∗l+1 rGs
l+1) ↓ 0 (9.11)

as s −→ ∞. Similarly, by a bound analogous to that achieved for Sc
d−1, we will

show that P(Sc
l+1) is bounded by a function that vanishes as s −→ ∞. Therefore

the conclusion will be that almost surely on E∗l+1, Θ(l+1)

k −→ 0 (and Θ(i)

k −→ 0 for
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all l + 2 ≤ i ≤ d by the induction hypothesis). Consider the (l + 1)st components
M (l+1)

n , R(l+1)
n and the sigma algebra Fηl+1

. Defining Gn = Fηl+1+n by the exact same
argument as in the previous two steps, mutatis mutandis, it holds that M (l+1)

n is a
Gn-martingale and M (l+1)

n ∈ L2(Fηl+1
) and is bounded (the same bound found on

the previous components holds), hence it is almost surely convergent in L2(Fηl+1
).

Define the event

Sl+1
..=

{
sup
n
M (l+1)

n ≤
cl+1δηl+1

2

}
.

We first show that P(Sc
l+2) has a vanishing upper bound, via Doob’s inequality. Define

H l+1
n

..=

{
max
k≤n

M (l+1)

k >
cl+1δηl+1

2

}
.

Then

PFηl+1
(H l+1

n ) ≤ 4(M (l+1)
n )2

c2
l+1δ

2
ηl+1

≤
4τ 2r
ηl+1

c2
l+1τηl+1

=
4

c2
l+1τ

1−2r
ηl+1

≤ 4

c2
l+1τ

1−2r
s

.

As in Step 2 this implies that

P(Sc
l+1) <

4

c2
l+1τ

1−2r
s

. (9.12)

Therefore, we can proceed as in Step 2, by proving by induction that for all n ≥ 0 on
Gs
l+1 ∩Sl+1,

Θ(l+1)

ηl+1+n <
1

l + 1
− cl+1

δηl+1

2
. (9.13)

The case n = 0 follows by Gs
l+1 ∩Sl+1 ⊆ Gs

l+1 ⊆E∗l+1, on which

Θ(l+1)

ηl+1
<

1

l + 1
− cl+1δηl+1

.

Assume the inductive hypothesis for all j ∈ [n − 1]. To show (9.13) we will use
Lemma 9.1 so as to ensure that R(l+1)

n ≥ 0. For all j ∈ [n − 1] set k = ηl+1 + j, and
recall that

F (l+1)(x, y, x′) ..= F (l+1)(Θ(2)

k , . . . ,Θ
(l+1)

k︸ ︷︷ ︸
x

,Θ(l+2)

k︸ ︷︷ ︸
y

,Θ(l+3)

k , . . . ,Θ(d)

k︸ ︷︷ ︸
x′

) = ψ(l+1)(Θk)−Θ(l+1)

k .

If we show that R(l+1)
n is positive, then the induction step will follow, since

Θ(l+1)

ηl+1+n = Θ(l+1)

ηl+1
+M (l+1)

n −R(l+1)

n < Θ(l+1)

ηl+1
+M (l+1)

n <
1

l + 1
− cl+1δηl+1

+ cl+1

δηl+1

2
=

1

l + 1
− cl+1

δηl+1

2
.

The conditions that have been put in the definition of the stopping time ηl+1 all
intervene here, to ensure that the vector (Θ(2)

k , . . . ,Θ
(d)

k ) ∈ P l+1
n∗l+1
∪ Sl+1

n∗l+1
, on which

F (l+1)(x, y, x′) < 0, so that −F (l+1)(Θ(2)

k , . . . ,Θ
(d)

k ) > 0 for all ηl+1 < k < ηl+1 + n and
therefore R(l+1)

n would be positive. Since k > ηl+1 > s ≥ n∗l+1 and ω ∈ Gs
l+1 ∩Sd−1 ⊆

Gs
l+1 ⊆E∗l+1,

Θ(i)

k <
log τk
τk

< yl+1(δk)

for all l + 2 ≤ i ≤ d, for all considered k. The induction hypothesis ensures that

Θ(l+1)

k <
1

l + 1
− cl+1

δηl+1

2
,
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but the monotonicity of δk yields

1

l + 1
− cl+1

δηl+1

2
>

1

l + 1
− cl+1

δn∗l+1

2
.

Thus we cannot conclude simply that (Θ(2)

k , . . . ,Θ
(d)

k ) ∈ P l+1
n∗l+1

, but we can be sure

that the vector (Θ(2)

k , . . . ,Θ
(d)

k ) ∈ P l+1
n∗l+1
∪Sl+1

n∗l+1
. Indeed the components lower than the

(l+1)st have no constraints to satisfy on P l+1
n∗l+1
∪Sl+1

n∗l+1
, besides corresponding to points

of the simplex, which is trivial; whereas the components higher than the (l+ 1)st are
all satisfying the same requirement that the (l + 2)nd component has to satisfy, in
order to ensure that the vector is in Sl+1

n∗l+1
, were

Θ(l+1)

k >
1

l + 1
− cl+1

δn∗l+1

2
.

By the symmetries of the equation of the hyperplane T ∗l+1 with respect to the
(xl+3, . . . , xd)-coordinate directions, discussed in Lemma 9.1 and in the introduction
to Corollary 9.2, this is enough to ensure that also these coordinates of the vector are
small enough to ensure (Θ(2)

k , . . . ,Θ
(d)

k ) ∈ P l+1
n∗l+1
∪ Sl+1

n∗l+1
, because Θ(l+2)

k , . . . ,Θ(d)

k would

be such that, for every l + 2 ≤ j ≤ d,

Θ(j)

k < T ∗l+1(Θ(2)

k , . . . ,Θ
(l+2)

k , . . . ,Θ(j−1)

k ,Θ(j+1)

k , . . . ,Θ(d)

k ),

if it were true that

Θ(l+1)

k >
1

l + 1
− cl+1

δn∗l+1

2

(that is, the vector would be in the tip of the polytope, in the worst case scenario).
Hence F (l+1)(Θ(2)

k , . . . ,Θ
(d)

k ) < 0 and the induction step is complete. As (9.13) holds
on Gs

l+1 ∩ Sl+1 for all n ≥ 0, {R(l+1)
n } is positive and increasing on Gs

l+1 ∩ Sl+1. At
this point, mutatis mutandis, it is possible to conclude, as in Step 2, by contradiction,
that Θ(l+1)

k −→ 0 almost surely on Gs
l+1 ∩ Sl+1. Since s is arbitrary, through (9.11)

and (9.12) we have that Θ(l+1)

k −→ 0 almost surely on E∗l+1. Also, since E∗l+1 ⊆E∗l+2, by
induction hypothesis Θ(l+2)

k −→ 0, . . . ,Θ(d)

k −→ 0 almost surely on E∗l+1. Thus almost
surely on E∗l+1, Θ(d)

k , . . . ,Θ
(l+1)

k vanish.

Step 4. The induction above terminates with l = 1, with the construction of the
event E∗2 , on which, in conclusion, Θ(2)

k , . . . ,Θ
(d)

k all vanish almost surely, meaning that
Θ(1)

k −→ 1 almost surely on E∗2 . Note that E∗2 is defined in terms of the subset of the
simplex ∆∗2

..= {x ∈ ∆d−1 : xd ≤ . . . ≤ x2 ≤ x1}. Going through all the permutations
of the coordinates, defines a covering of the simplex with d! analogous sets (they all
have equal Lebesgue measure, since the coordinate permutation elementary matrix
has a determinant of 1). To be more rigorous with the notation, we could denote
∆∗d,...,2,1 the set we constructed and E∗d,...,2,1 the corresponding event, and similarly
all the other d! − 1 sets and events, with the corresponding ordering in the indices.
Proposition 8.4 and Lemma 9.1 and the arguments in Steps 1-3 have been presented
in the decreasing order from d to 1, but there is nothing special about this order:
the arguments can be repeated with respect to any order we were to choose for the
coordinates. In each of these events E∗i1,...,id , where the permutation(

1 2 . . . d
i1 i2 . . . id

)
∈ Sd,
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the last index id means that Θ
(id)
n −→ 1 for almost every ω ∈ E∗i1,...,id . The union of

the sets ∆∗i1,...,id covers the simplex and thus the union of all the events E∗i1,...,id is an
almost sure event, on which one component of Θn tends to 1. Hence P(D) = 1.

9.3 Monopoly in presence of feedback

Recall that monopoly is the event in which all but one of the bins receive finitely
many balls. Then the proof of almost sure monopoly in presence of feedback follows
easily for the regimes in which we just showed that dominance is almost sure: ρn is
bounded; ρn −→∞, θ = 0 and λ < 1.

Proof of Corollary 1.13. Since when α > 1, if ρn is bounded (regime of growth covered
by Lemma E.2) or, if it goes to infinity with θ = 0 and λ < 1 (regimes of growth
covered by Lemma F.1), P(D) = 1 by Theorem 1.11, by Lemmas E.2 and F.1 again,
applied to each of the almost surely vanishing components, the corresponding bins
get a bounded number of balls almost surely, hence the one bin whose proportions
tend to 1 will get eventually all balls almost surely. Thus P(M) = 1 in the regimes,
for which dominance has been shown to be almost sure.
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Part III

Supplements to Part I
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Appendix A

The dynamical system with ρ < 1

In this section of the appendix we show how to generalise all the results for the dy-
namical system with ρ = 1 obtained in Chapter 3, to the dynamical system described
by (2.35) and (2.36). We will not repeat all arguments when the variations are trivial,
however, for self-containedness and ease of the reader, we will always rewrite the full
statements of all results.

For one-step iterations arguments, a less cumbersome notation will sometimes be
used, in order to omit the time index, and (2.35) and (2.36) will often be written as

q̂ = Mpq

p̂ = (1− ρ)p+ ρ(1− q − q̂),

where we recall that

Mp
..=

 0 p3

p1+p3

p2

p1+p2
p3

p2+p3
0 p1

p1+p2
p2

p2+p3

p1

p1+p3
0

 .

A.1 Preliminaries

The same conventions as in Chapter 3 will be adopted, that is p0 6∈ ∂Σ and q0 6∈ ∂Σ.
We briefly justify this assumption. In the case of this dynamical system, with p0 ∈
∂Σ \ V no consistency issue arises for the iteration if q0 ∈ V . Nonetheless, we will
follow the same conventions of Chapter 3, as we can take care of extremal cases easily
in the next two remarks.

Remark A.1. Let p0 ∈ Ei and q0 = vi for some i ∈ {1, 2, 3}. Then pn = p0 for all
n ∈ N and qn is 2-periodic for all n ∈ N0.

Proof. Without loss of generality, by symmetry, assume i = 1. Let p0 = (0, p(2)

0 , 1−p
(2)

0 )
and denote a = p(2)

0 , 0 < a < 1. We have that

q1 =

 0 1 1
1− a 0 0
a 0 0

1
0
0

 =

 0
1− a
a

 ,

so

p1 = (1− ρ)p0 + ρ

1− v1 −

 0
1− a
a

 = (1− ρ)p0 + ρ

 0
a

1− a

 = p0
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and

q2 =

 0 1 1
1− a 0 0
a 0 0

 0
1− a
a

 =

1
0
0

 = q0.

By induction this shows qn is 2-periodic, with pn fixed.

Remark A.2. Let p0 ∈ Ei and q0 = vj for some i 6= j ∈ {1, 2, 3}. Then pn = p1 for
all n ∈ N and qn is 2-periodic for all n ∈ N.

Proof. Without loss of generality, by symmetry, assume i = 1 and j = 2. Let p0 =
(0, p(2)

0 , 1− p
(2)

0 ) and denote a = p(2)

0 , 0 < a < 1. We have that

q1 =

 0 1 1
1− a 0 0
a 0 0

0
1
0

 =

1
0
0

 ,

so

p1 = (1− ρ)p0 + ρ(1− v1 − v2) = (1− ρ)p0 + ρv3 =

 0
(1− ρ)a

1− (1− ρ)(a)

 .

Note that there is no inconsistency issue, as p1 6∈ V . Thus, by letting b = (1 −
ρ)a, having q1 = (1, 0, 0) and p1 = (0, b, 1 − b), we fall back in the case studied in
Remark A.1.

The inconsistency issue of Remark 3.3 is avoided through the convex combination
with the past: even with q0 not being the vertex corresponding to the edge on which
p0 lies, the dynamics is essentially the same as that described in Remark A.1. The
statement equivalent to Remark 3.5 does not hold for this system, since due to the
convex combination with the past, p1 6∈ ∂Σ even if q0 ∈ V . In particular, by a similar
argument to that used in Remark 3.7, it is easy to establish the following.

Remark A.3. Let p0 6∈ ∂Σ: if q0 ∈ Ei for some i ∈ {1, 2, 3}, p1 6∈ ∂Σ and q1 6∈ ∂Σ;
if q0 ∈ V , p1 6∈ ∂Σ, p2 6∈ ∂Σ and q2 6∈ ∂Σ.

Proof. By symmetry, without loss of generality we can show the first case via explicit
calculation for q0 = (0, a, 1 − a), with 0 < a < 1. Due to p0 6∈ ∂Σ, we will have
q1 6∈ ∂Σ, since

q1 = (aφ(p(3)

0 , p
(1)

0 ) + (1− a)φ(p(2)

0 , p
(1)

0 ), (1− a)φ(p(1)

0 , p
(2)

0 ), aφ(p(1)

0 , p
(3)

0 ))

and φ(p(i)

0 , p
(j)

0 ) = 0 if and only if p(i)

0 = 0 (which is not allowed). Hence

p1 = (1− ρ)p0 + ρ(1− q1 − q0) 6∈ ∂Σ

since p0 6∈ ∂Σ. For the second case, without loss of generality assume q0 = v1. Due to
p0 6∈ ∂Σ, we will have q1 ∈ E1 since, by letting this time a = φ(p(2)

0 , p
(3)

0 ), 0 < a < 1,
we have that

q1 =

 0 ∗ ∗
1− a ∗ ∗
a ∗ ∗

1
0
0

 =

 0
1− a
a

 ∈ E1,

and due to the convex combination,

p1 = (1− ρ)p0 + ρ(1− q1 − q0) 6∈ ∂Σ.

This falls back into the first case above, which will lead to q2 6∈ ∂Σ and p2 6∈ ∂Σ.



244

This means that also these extremal conditions have been reduced to regular orbits,
via the following remark.

Remark A.4. If p0 6∈ ∂Σ and q0 6∈ ∂Σ, then pn 6∈ ∂Σ and qn 6∈ ∂Σ for all n ∈ N.

Proof. The proof proceeds as in Remark 3.8, by showing that if pn 6∈ ∂Σ and qn 6∈ ∂Σ,
then pn+1 6∈ ∂Σ and qn+1 6∈ ∂Σ. Like in Remark 3.8

qn+1 =

φ(p(3)
n , p

(1)
n )q(2)

n + φ(p(2)
n , p

(1)
n )q(3)

n

φ(p(3)
n , p

(2)
n )q(1)

n + φ(p(1)
n , p

(2)
n )q(3)

n

φ(p(2)
n , p

(3)
n )q(1)

n + φ(p(1)
n , p

(3)
n )q(2)

n

 6∈ ∂Σ.

As to pn+1, note that

pn+1 = (1− ρ)pn + ρ(1− qn+1 − qn) 6∈ ∂Σ,

because performing a nontrivial (0 < ρ < 1) convex combination of a nonnegative
vector with pn yields automatically a vector in the interior of the simplex.

As a result of these introductory remarks, unless otherwise stated, all orbits will
be considered with initial conditions p0 6∈ ∂Σ and q0 6∈ ∂Σ, which only yield regular
orbits, that is orbits for which eventually pn ∈ Σ̊ for all n. The result given by
Remark 3.11 trivially holds true, due to its argument being not dependent on the
equations of the system.

Remark A.5. If pn+1− pn −→ 0 as n −→∞ and pn does not converge to any of the
vertices, then there is a subsequence {pnj} bounded away from V .

A.2 Fixed points and potential function

From (2.35) and (2.36) it is immediate to derive the fixed point equations

q = Mpq

p = (1− ρ)p+ ρ(1− 2q).

Since the second equation is equivalent to p = 1 − 2q, the same set of equilibrium
points as in Chapter 3 is obtained: {(p, qp) : p ∈ Σ0}, where

qp ..=
1− p

2
.

The same potential V (p, q) ..= ‖q − qp‖1 works for this system. In fact note that by
(2.36) we have

1− p̂
2

=
1− (1− ρ)p− ρ(1− q̂ − q)

2
,

which can be rearranged as

1− p̂
2

= (1− ρ)
1− p

2
+
ρ

2
(q + q̂),

from which it follows that

qp̂ = (1− ρ)qp +
ρ

2
(q + q̂) (A.1)
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and therefore

q̂ − qp̂ = q̂ − (1− ρ)qp −
ρ

2
(q̂ − q) =

(
1− ρ

2

)
q̂ − (1− ρ)qp −

ρ

2
q =

(
1− ρ

2

)
q̂

−
(

1− ρ

2

)
qp +

ρ

2
qp −

ρ

2
q =

(
1− ρ

2

)
(q̂ − qp)−

ρ

2
(q − qp),

which ultimately yields

q̂ − qp̂ =
[(

1− ρ

2

)
Mp −

ρ

2
I
]

(q − qp). (A.2)

Thus we can conclude with a remark analogous to Remark 3.13.

Remark A.6. Since

‖Lp‖1
..=
∥∥∥(1− ρ

2

)
Mp −

ρ

2
I
∥∥∥

1
= 1

for all p ∈ Σ0, taking the norm on both sides of (A.2) yields V (pn+1, qn+1) ≤ V (pn, qn),
and therefore V (p, q) defines a Lyapunov potential function for this system. Moreover,
there is 0 ≤ ` ∈ R, dependent on the initial conditions, such that V (pn, qn) −→ ` as
n −→∞.

Orbits do not get stuck at equilibria for this system either.

Remark A.7. If p0 ∈ Σ0 and qp0 6= q0 ∈ Σ0, then for all p ∈ Σ0, (pn, qn) 6= (p, qp)
for all n ∈ N.

Proof. If qn+1 = qpn+1 , let us write pn+1 = p and qn+1 = qp for some n ∈ N0, then by
(A.2) it follows that

0 = Lpn(qn − qpn),

implying that qn− qpn is in the kernel of Lpn . We will now show that Lpn is invertible.
Recall that by Lemma 3.19 (a, b) Mpn has an eigenvalue of 1 and two other nonpositive
eigenvalues, bigger or equal than −1. Let then λ be one of these eigenvalues. Then
Lpn has a corresponding eigenvalue of(

1− ρ

2

)
λ− ρ

2
.

Assume any of these eigenvalues of Lpn to be zero, by contradiction. Then since
0 < ρ < 1,

λ =
ρ
2

1− ρ
2

> 0.

Hence λ = 1. But then
1− ρ

2
=
ρ

2

which is equivalent to ρ = 1, which is a contradiction. Since Lpn is invertible, its
kernel is trivial and qn − qpn = 0. Then by (2.36)

p = (1− ρ)pn + ρ(1− qp − qpn) = (1− ρ)pn +
ρ

2
(p+ pn),

which can be rearranged into (
1− ρ

2

)
p =

(
1− ρ

2

)
pn,

yielding pn = p and thus qn = qp. The argument can be concluded by induction as in
Remark 3.12.



246

Lemma A.8. For every p 6∈ ∂Σ and q 6= qp,

V (p̂, q̂) < V (p, q).

Therefore, the potential is eventually strictly decreasing along the regular orbits of the
dynamical system.

Proof. If q = qp, then q̂ = q = qp and p̂ = p. Therefore, V (p̂, q̂) = V (p, q) = 0.
Assume q 6= qp. By (A.2), V (p̂, q̂) < V (p, q) if and only if∥∥∥∥[(1− ρ

2

)
Mp −

ρ

2
I
] q − qp
‖q − qp‖1

∥∥∥∥
1

< 1.

To show this, one proceeds exactly as in Lemma 3.14, but for the newly defined matrix
Lp of this section. Defining

v ..=
q − qp
‖q − qp‖1

and using the vertex of the hexagon v = (1/2, 0,−1/2) without loss of generality, the
computation yields

Lpv =
1

4

 −ρ− (2− ρ) p2

p1+p2

(2− ρ)
(

p3

p2+p3
− p1

p1+p2

)
ρ+ (2− ρ) p2

p2+p3


and then, as a result, if p 6∈ ∂Σ,

‖Lpv‖1 =
1

4

[
2ρ+ (2− ρ)

(
p2

p1 + p2

+
p2

p2 + p3

+

∣∣∣∣ p3

p3 + p2

− p1

p1 + p2

∣∣∣∣)]

=


1
2

(
ρ+ (2− ρ) p2

p1+p2

)
< 1 , p3

p3+p2
≥ p2

p1+p2

1
2

(
ρ+ (2− ρ) p2

p2+p3

)
< 1 , p3

p3+p2
< p1

p1+p2

(A.3)

because

1

2

(
ρ+ (2− ρ)

p2

p1 + p2

)
=

1

2

[
ρ

(
1− p2

p1 + p2

)
+ 2

p2

p1 + p2

]
<

1

2

(
1 +

p2

p1 + p2

)
< 1

and
1

2

(
ρ+ (2− ρ)

p2

p2 + p3

)
<

1

2

(
1 +

p2

p2 + p3

)
< 1,

due to the fact that none of the coordinates of p 6∈ ∂Σ is zero. Note that since by
Remark A.4 pn 6∈ ∂Σ for all n ∈ N0 and by Remark A.7 qn 6= qpn , we can conclude
that the potential is strictly decreasing along the orbits.

We proceed with the same strategy as the one outlined at the end of Section 3.2.
In the following sections we will show convergence of {pn} when:

• {pn} is bounded away from the boundary (Section A.3);

• ` = 0 and {pn} is not bounded away from the boundary (Section A.4);

• ` > 0 and {pn} is not bounded away from the boundary (Section A.5).
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A.3 Convergence bounded away from the bound-

ary

The main goal of this section is showing the convergence of the dynamical system
when {pn} is known to be bounded away from the boundary of the simplex.

Proposition A.9. If {pn} is bounded away from ∂Σ, there is a constant 0 < c < 1,
dependent on the initial condition, such that

V (pn+1, qn+1) < cV (pn, qn).

Hence
` ..= lim

n−→∞
V (pn, qn) = 0,

and the dynamical system converges to an internal equilibrium.

Proof. The proof of the geometric decaying upper bond and that ` = 0 is the same
as that in Proposition 3.15, with the same definition of c. As to the convergence of
the dynamical system to an internal equilibrium, noting that

p̂− p = ρ(2qp − q − q̂) = ρ[Mp(qp − q) + qp − q],

it similarly follows that
‖p̂− p‖1 ≤ 2ρV (p, q). (A.4)

The geometric decaying upper bound ensured by {pn} being bounded away from ∂Σ,
ensures that

∑∞
n=0 V (pn, qn) <∞ as in Proposition 3.15.

A result analogous to Proposition 3.17 still holds. It is enough to invoke Proposi-
tion A.9 instead of Proposition 3.15 to get the constant c of the geometric decay, as it
is similarly defined, and to note that the two other crucial estimates of the argument
in Proposition 3.17 were: (3.2), which we also know to hold in this case by (A.2);
‖pn+1 − pn‖1 ≤ 2‖qn − qpn‖1, which is still true for ρ < 1, as we have just shown
in the proof of Proposition A.9 that ‖pn+1 − pn‖1 ≤ 2ρ‖qn − qpn‖1 < 2‖qn − qpn‖1.
Hence, with no substantial changes to the proof, just by replacing the Lpn of Chap-
ter 3 with the one defined in this section, the corresponding result holds. Recall that
U((p, q), r, r′) ..= B(p, r) × B(q, r′) and dist are with respect to the 1-norm, where
U((p, q), r) ..= U((p, q), r, r) and B(p, r) is the ball centred at p of radius r in 1-norm.

Proposition A.10. For every p 6∈ ∂Σ and a small enough 0 < ε′ < dist(p, ∂Σ),
there is a δ′ > 0 suitably smaller than ε′ such that, if (p0, q0) ∈ U((p, qp), δ

′) then
(pn, qn) ∈ B((p, qp), ε

′, ε′/2) for all n ∈ N.

By Proposition A.10 and the final convergence claim in Proposition A.9, the fol-
lowing holds.

Corollary A.11. If (p0, q0) is close enough to an internal equilibrium (p, qp), the
system converges to a (possibly different) internal equilibrium.

A.4 Convergence to the boundary with ` = 0

The main goal of this section is to show that if {pn} approaches the boundary and the
limit of the potential ` ..= limn−→∞ V (pn, qn) = 0, the dynamical system converges.
The setup will be the same as the one at the beginning of Section 3.4, with the
same notation, since we have recovered both Remark A.5 and (A.4). Then we can
immediately proceed to establish similar eigencoordinate iteration formulas.



248

Lemma A.12.

α̂ = α
[(

1− ρ

2

)
λ0(p)− ρ

2

] ∣∣∣∣e(i)

0 (p) e(i)

−1(p̂)
e(j)

0 (p) e(j)

−1(p̂)

∣∣∣∣∣∣∣∣e(i)

0 (p̂) e(i)

−1(p̂)
e(j)

0 (p̂) e(j)

−1(p̂)

∣∣∣∣ + β
[(

1− ρ

2

)
λ−1(p)− ρ

2

] ∣∣∣∣e(i)

−1(p) e(i)

−1(p̂)
e(j)

−1(p) e(j)

−1(p̂)

∣∣∣∣∣∣∣∣e(i)

0 (p̂) e(i)

−1(p̂)
e(j)

0 (p̂) e(j)

−1(p̂)

∣∣∣∣
(A.5)

β̂ = α
[(

1− ρ

2

)
λ0(p)− ρ

2

] ∣∣∣∣e(i)

0 (p̂) e(i)

0 (p)
e(j)

0 (p̂) e(j)

0 (p)

∣∣∣∣∣∣∣∣e(i)

0 (p̂) e(i)

−1(p̂)
e(j)

0 (p̂) e(j)

−1(p̂)

∣∣∣∣ + β
[(

1− ρ

2

)
λ−1(p)− ρ

2

] ∣∣∣∣e(i)

0 (p̂) e(i)

−1(p)
e(j)

0 (p̂) e(j)

−1(p)

∣∣∣∣∣∣∣∣e(i)

0 (p̂) e(i)

−1(p̂)
e(j)

0 (p̂) e(j)

−1(p̂)

∣∣∣∣
(A.6)

Proof. As in Corollary 3.39, by (A.2) we obtain a system of three linear equations in
two variables (α̂, β̂) ∈ R2,

α̂e0(p̂) + β̂e−1(p̂) = α
[(

1− ρ

2

)
λ0(p)− ρ

2

]
e0(p) + β

[(
1− ρ

2

)
λ−1(p)− ρ

2

]
e−1(p),

which can therefore be solved by picking any two of the three equations as per the
discussion in Corollary 3.39. Then we have that, for any i 6= j ∈ {1, 2, 3} chosen, the
linear system(
e(i)

0 (p̂) e(i)

−1(p̂)
e(j)

0 (p̂) e(j)

−1(p̂)

)(
α̂

β̂

)
=(
α
[(

1− ρ
2

)
λ0(p)− ρ

2

]
e(i)

0 (p) + β
[(

1− ρ
2

)
λ−1(p)− ρ

2

]
e(i)

−1(p)
α
[(

1− ρ
2

)
λ0(p)− ρ

2

]
e(j)

0 (p) + β
[(

1− ρ
2

)
λ−1(p)− ρ

2

]
e(j)

−1(p)

)
has a unique solution, which can be calculated by Cramer’s rule,

α̂ =

∣∣∣∣α [(1− ρ
2

)
λ0(p)− ρ

2

]
e(i)

0 (p) + β
[(

1− ρ
2

)
λ−1(p)− ρ

2

]
e(i)

−1(p) e(i)

−1(p̂)
α
[(

1− ρ
2

)
λ0(p)− ρ

2

]
e(j)

0 (p) + β
[(

1− ρ
2

)
λ−1(p)− ρ

2

]
e(j)

−1(p) e(j)

−1(p̂)

∣∣∣∣∣∣∣∣e(i)

0 (p̂) e(i)

−1(p̂)
e(j)

0 (p̂) e(j)

−1(p̂)

∣∣∣∣
β̂ =

∣∣∣∣e(i)

0 (p̂) α
[(

1− ρ
2

)
λ0(p)− ρ

2

]
e(i)

0 (p) + β
[(

1− ρ
2

)
λ−1(p)− ρ

2

]
e(i)

−1(p)
e(j)

0 (p̂) α
[(

1− ρ
2

)
λ0(p)− ρ

2

]
e(j)

0 (p) + β
[(

1− ρ
2

)
λ−1(p)− ρ

2

]
e(j)

−1(p)

∣∣∣∣∣∣∣∣e(i)

0 (p̂) e(i)

−1(p̂)
e(j)

0 (p̂) e(j)

−1(p̂)

∣∣∣∣ ,

which yields the iteration given in (A.5) and (A.6), where the ratios of the deter-
minants do not depend on the choice of i 6= j, by the same reasoning as in Corol-
lary 3.39.

The Taylor expansion about (p1, α, β) = (0, 0, 0) will now be possible as in Sec-
tion 3.4, having analogous iteration formulas.

Lemma A.13.

p̂1 = p1 + ρ1(r) (A.7)

p̂2 = p2 − 2ρ(1− p2)p1β + ρ2(r), (A.8)

where ρ1(r) = O(βp1, αp1) and ρ2(r) = O(α, βp2
1)
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Proof. Since

p̂− p = ρ(1− p− q̂ − q) = ρ(2qp −Mpq − q) = −ρ(Mp + I)(q − qp),

we have that

p̂ = p− ρα(1 + λ0(p))e0(p)− ρβ(1 + λ−1(p))e−1(p), (A.9)

from which, reading off the first two components and applying Lemma 3.19 (f, g, h),
it follows that

p̂1 = p1 − ρα(1− 2p1 +O(p2
1))O(p1)− ρβ(2p1 +O(p2

1))(−1 +O(p1))

= p1 +O(αp1, βp1)

p̂2 = p2 − ρα(1− 2p1 +O(p2
1))(1 +O(p1))− ρβ(2p1 +O(p2

1))(1− p2 +O(p1))

= p2 − 2ρ(1− p2)p1β +O(α, βp2
1),

having used the smoothness of the eigenvectors to linearise, as p approaches the edge
E1, and the relative compactness of K∗

ε, δ
8

to estimate uniformly the Jacobian term as

in the conclusion of Lemma 3.21.

Lemma A.14.

α̂ = −ρ
2
α(1 + ρ3(r)) + ρ4(r) (A.10)

β̂ = −β [1− (2− ρ) p1] + ρ5(r), (A.11)

where ρ3(r) = O(α, p1), ρ4(r) = O(βα, β2p1), ρ5(r) = O(α2, αβ, β2p1, βp
2
1).

Proof. As in Lemma 3.22, by Lemma A.13 it follows that p̂ = p + O(α, βp1). We
plug this estimate, along with that of Lemma 3.19 (g), in (A.5) and (A.6), precisely
in the terms next to α and β, exactly as done in Lemma 3.22. The only difference are
the coefficients involving ρ, so there is no need to show the explicit calculation again.
It yields, due to smoothness of the eigenvectors’ components and relative compactness
of K∗

ε, δ
8

, the following estimates for those terms involved in (A.5),

α̂ = α
(
−ρ

2
+O(p1)

)
(1 +O(α, βp1)) + β

(
−
(

1− ρ

2

)
− ρ

2
+O(p1)

)
O(α, βp1)

= α
(
−ρ

2
+O(p1)

)
(1 +O(α, βp1)) + β (−1 +O(p1))O(α, βp1)

= α
(
−ρ

2
+O(α, p1)

)
+ βO(α, βp1) = −ρ

2
α(1 +O(α, p1)) +O(βα, β2p1),

and the following estimates for those terms in (A.6),

β̂ = α
(
−ρ

2
+O(p1)

)
O(α, βp1) + β

[(
1− ρ

2

) (
−1 + 2p1 +O(p2

1)
)
− ρ

2

]
(1 +O(α, βp1))

= O(α2, αβp1) + β
[
−1 + (2− ρ) p1 +O(p2

1) +O(α, βp1)
]

= O(α2, αβp1)− β [1− (2− ρ) p1] +O(αβ, β2p1, βp
2
1)

= −β [1− (2− ρ) p1] +O(α2, αβ, β2p1, βp
2
1),

since the same considerations as in Lemma 3.22 hold, about the determinantal terms.

Due to Lemmas A.13 and A.14 holding as in Section 3.4, no substantial changes
from Lemma 3.23 are involved in the proof of the errors’ estimates.
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Lemma A.15. Let the constant θ ..= 1/16. There is a constant c > 0 such that for all
sufficiently small ε, on the closure K

∗
ε, δ

8
we have that

|ρ1(r)| < θp1

|ρ2(r)| < c|α|+ p1|β|
|ρ3(r)| < θ

|ρ4(r)| < θ|α|+ θp1|β|
|ρ5(r)| < θ|α|+ θp1|β|.

It will be necessary, for further arguments, to add a requirement on ε, that given
δ, c, θ,

ε < min

{
θ,
δ(1− 2θ)

16(3 + c)

}
.

We continue by adopting the same exact setup as in the corresponding part of Sec-
tion 3.4 immediately preceding Lemma 3.24. Indeed the counterpart of Lemma 3.24
holds with no changes to the proof, due to Proposition 3.17 having been extended to
this case by Proposition A.10 with no changes either, the constant c being similarly
defined in Lemma A.8 after redefining Lpn with the new corresponding matrix.

Corollary A.16. There is a k ≥ K large enough such that, having defined m ..= nk,
for all m ≤ n < τk, p(1)

n ≤ ε.

In the following, all the proofs are made with respect to this large enough m = nk,
and therefore the corresponding τk will be simply denoted as τ .

Lemma A.17. For all m ≤ n ≤ τ ,

|αn| ≤ max

{(
3

4

)n−m
|αm|, p(1)

n |βn|

}
.

Proof. The same proof by induction of Lemma 3.25 works with the new iterative for-
mulas established in Lemma A.14. If n = m, the statement |αm| ≤ max{|αm|, p(1)

m |βm|}
is trivially true. If n = m+ 1 < τ , it hods that

|αm+1| ≤
ρ

2
|αm|(1 + |ρ3(rm)|) + |ρ4(rm)| ≤ |αm|

2
(1 + θ) + θ|αm|+ θp(1)

m |βm|

by definition of m. Then

|αm+1| ≤ |αm|
1 + 3θ

2
+ θp(1)

m |βm|.

If |αm| ≥ p(1)
m |βm|, then

|αm+1| ≤
1 + 5θ

2
|αm| ≤

3

4
|αm|,

as θ ≤ 1/16 < 1/10 implies (1 + 5θ)/2 < 3/4. If instead |αm| < p(1)
m |βm|, then it holds

that

|αm+1| ≤
1 + 5θ

2
p(1)

m |βm|. (A.12)

By definition of m and by Lemmas A.13 and A.15 the exact same as the corresponding
argument in Lemma 3.25 holds, hence

p(1)

m+1 ≥ (1− θ)p(1)

m , (A.13)
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since at time m the orbit is in K
∗
ε, δ

8
. Note also that since by hypothesis |αm| < |βm|

and by assumption ε ≤ θ, it follows, by definition of m, that p(1)
m < ε ≤ θ. This yields,

by applying Lemmas A.14 and A.15, that

|βm+1| ≥ |βm| [1− (2− ρ) p(1)

m ]− |ρ5(rm)| > |βm|(1− 2p(1)

m )− |ρ5(rm)|
> |βm|(1− 2p(1)

m )− θ|αm| − θp(1)

m |βm| > |βm|(1− 2p(1)

m )− 2θp(1)

m |βm|
= βm|(1− 2(1 + θ)p(1)

m ) > |βm|(1− 2θ(1 + θ)),

and thus
|βm+1| > |βm|(1− 3θ), (A.14)

because 0 < θ < 1/2 ensures that 2θ(1 + θ) < 3θ. Plugging the bounds of (A.13)
and (A.14) into (A.12) yields that

αm+1 ≤
1 + 5θ

2

p(1)

m+1|βm+1|
(1− θ)(1− 3θ)

< p(1)

m+1|βm+1|.

Assume now the thesis for any m + 1 ≤ n < τ . This time, when carrying out the
inductive step, it will not be possible to appeal to the definition of m, but it will be
necessary to rely on Corollary A.16, which ensures that (pn, qn) ∈K

∗
ε, δ

8
, and therefore

makes it possible for the same aforementioned lemmas to apply in the corresponding
steps, which are repeated trivially as in Lemma 3.25, with very elementary changes,
similar to those shown in the base case for the induction. It will not be necessary to
show them explicitly.

The time σ is also defined as in Section 3.4.

Lemma A.18.

a) If τ <∞, then σ < τ and p(2)
σ ∈ [δ/4, 1− δ/4].

b) If σ <∞, then for all σ ≤ n ≤ τ ,(
3

4

)n−m
|αm| ≤ p(1)

n |βn|.

Proof.

a) For all m ≤ n ≤ σ∧ τ , by definition of σ, p(1)
n |βn| < (3/4)n−m|αm|, and as a result

by Lemma A.17, αn ≤ (3/4)n−m|αm|. By Lemmas A.13 and A.15 and Corol-
lary A.16 it follows that

|p(2)

σ∧τ − p(2)

m | ≤
σ∧τ−1∑
n=m

|p(2)

n+1 − p(2)

n | =
σ∧τ−1∑
n=m

|2ρ(1− p(2)

n )p(1)

n βn − ρ2(rn)|

< 2
σ∧τ−1∑
n=m

p(1)

n |βn|+
σ∧τ−1∑
n=m

c|αn|+ p(1)

n |βn| = 3
σ∧τ−1∑
n=m

p(1)

n |βn|+

c

σ∧τ−1∑
n=m

|αn| ≤ (3 + c)|αm|
σ∧τ−1∑
n=m

(
3

4

)n−m
< 4(3 + c)ε

< 4(3 + c)
δ(1− 2θ

16(3 + c)
<
δ

4
.

The same argument as in Lemma 3.26 implies that σ < τ , and in particular that
p(2)
σ ∈ [δ/4, 1− δ/4].
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b) Same proof as in Lemma 3.26 (b).

Theorem A.19. τ =∞ and the dynamical system converges.

Proof. Suppose first σ =∞. By Lemma A.18 (a), if τ <∞, σ < τ <∞ against the
hypothesis, hence τ =∞. By Lemmas A.13, A.15 and A.17 and Corollary A.16 and
the definition of σ, it follows that

∞∑
n=m

|p(2)

n+1 − p(2)

n | =
∞∑
n=m

|2ρ(1− p(2)

n )p(1)

n βn + ρ2(rn)| ≤ 3
∞∑
n=m

p(1)

n |βn|+ c

∞∑
n=m

|αn|

≤ (3 + c)|αm|
∞∑
n=m

(
3

4

)n−m
<
δ

4
,

so p(2)
n converges within [δ/4, 1 − δ/4] ⊂ [δ/8, 1 − δ/8]. Then the same conclusion, as in

the corresponding case in Theorem 3.27, follows yielding the claim.
Suppose now σ < ∞. By Lemma A.18 (b), σ < τ . By Lemma A.14, for any

σ ≤ k < τ ,

βk+1 + (−1)k−σβσ =
k∑

n=σ

(−1)k−n(βn+1 + βn) =
k∑

n=σ

(−1)k−n [(2− ρ) βnp
(1)

n + ρ5(rn)] .

By the definition of σ, Lemmas A.15 and A.17 and Corollary A.16, for all σ ≤ n ≤ k,
|ρ5(rn)| < 2θp(1)

n |βn|, so it follows that {βn}kn=σ has alternating signs, since if βn 6= 0,

βn+1βn = [−1 + (2− ρ) p(1)

n ] β2
n + βnρ5(rn) < [−1 + 2p(1)

n ] β2
n + |βn||ρ5(rn)|

≤ (−1 + 2p(1)

n + 2θp(1)

n )β2
n < [−1 + 2θ(1 + θ)]β2

n < 0

by Corollary A.16 and θ < 1/4, which ensures that 2θ(1 + θ) < 1, because 2x(1 + x)
is increasing on the positive reals and valued 0 at 0 and 1 at (

√
3− 1)/2 > 1/4, which

follows from
√

3 > 3/2 (which is equivalent to 12 > 9). Clearly if βn = 0 there
is no contribution made towards the sum we are interested in estimating, which is∑k

n=σ p
(1)
n |βn|, and the zero term can just be neglected. Since for all k ≥ m, |βk| < ε,

and the sign alternates as aforementioned,

2ε > |βk+1 + (−1)k−σβσ| =

∣∣∣∣∣
k∑

n=σ

(−1)k−n ((2− ρ) βnp
(1)

n + ρ5(rn))

∣∣∣∣∣
=

∣∣∣∣∣
k∑

n=σ

(−1)k−nsign(βn) (2− ρ) |βn|p(1)

n +
k∑

n=σ

(−1)k−nρ5(rn)

∣∣∣∣∣ ≥
(2− ρ)

k∑
n=σ

|βn|p(1)

n −

∣∣∣∣∣
k∑

n=σ

(−1)k−nρ5(rn)

∣∣∣∣∣ >
k∑

n=σ

|βn|p(1)

n −
k∑

n=σ

|ρ5(rn)|

≥ (1− 2θ)
k∑

n=σ

|βn|p(1)

n ≥ 0.

In conclusion it has been shown that

k∑
n=σ

p(1)

n |βn| <
2ε

1− 2θ
. (A.15)
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The main argument is the same as that of the second part of Theorem 3.27 then: we
show τ = ∞ by contradiction. If τ < ∞ one can use (A.15) with k = τ − 1, and
therefore by Lemmas A.13, A.15, A.17 and A.18 and Corollary A.16, we have, by
the same estimate as in the previous case (σ = ∞, more precisely Lemma A.18 (a)
ensures that σ < τ , while Lemma A.18 (b) ensures that (3/4)n−m|αm| ≤ p(1)

n |βn|), that

|p(2)

σ − p(2)

τ | ≤
τ−1∑
n=σ

|p(2)

n+1 − p(2)

n | < 3
τ−1∑
n=σ

p(1)

n |βn|+ c

τ−1∑
n=σ

|αn| ≤ 3
τ−1∑
n=σ

p(1)

n |βn|

+ c
τ−1∑
n=σ

max

{(
3

4

)n−m
|αm|, p(1)

n |βn|

}
= 3

τ−1∑
n=σ

p(1)

n |βn|+ c

τ−1∑
n=σ

p(1)

n |βn|

= (3 + c)
τ−1∑
n=σ

p(1)

n |βn| ≤
(3 + c)2ε

1− 2θ
<
δ

8
.

But if τ <∞ by Lemma A.18 (a), p(2)
σ ∈ [δ/4, 1−δ/4]. This yields that p(2)

τ ∈ [δ/8, 1−δ/8],
in contradiction with the definition of τ . Hence τ =∞ and the conclusion is reached
as in the corresponding part of Theorem 3.27.

Remark A.20. Repeating this argument for p∗ ∈ Ei with i ∈ {2, 3}, by exploiting the
symmetry of the model, defining σ and τ accordingly in terms of the corresponding
coordinates and showing an analogous version of Theorem A.19 for i ∈ {2, 3} as well,
yields convergence of any orbit approaching the boundary with ` = 0.

A.5 Convergence to the boundary with ` > 0

The main goal of this section is to show that if {pn} approaches the boundary and
the limit of the potential ` ..= limn−→∞ V (pn, qn) > 0, the dynamical system con-
verges. With the same introductory remarks as those in Section 3.5, we show how the
arguments of this section generalise.

A.5.1 Convergence of boundary orbits

We will assume q0 ∈ Σ0 since by Remarks A.1 and A.2 it is already known that if
q0 ∈ V and p0 ∈ ∂Σ \ V , {pn} eventually becomes a constant point of the edge to
which p0 belongs, and qn is 2-periodic.

Lemma A.21. Let p0 ∈ Ei for some i ∈ {1, 2, 3}. Then pn −→ p∗ ∈ Ei as n −→∞.

Proof. By symmetry, without loss of generality, assume i = 1, that is p0 ∈ E1, or
equivalently p(1)

0 = 0 and 0 < p(2)

0 < 1. It follows that

q1 =

 0 1 1
1− p(2)

0 0 0
p(2)

0 0 0

 q0 =

 q(2)

0 + q(3)

0

(1− p(2)

0 )q(1)

0

p(2)

0 q
(1)

0

 ,

p1 = (1− ρ)

 0
p(2)

0

1− p(2)

0

+ ρ

1− q0 −

 q(2)

0 + q(3)

0

(1− p(2)

0 )q(1)

0

p(2)

0 q
(1)

0

 .

We obtain immediately that p(1)

1 = 0 and therefore, by induction, that for all n ∈ N0,
p(1)
n = 0, that is we are in presence of a boundary orbit. Also we can see that

p(2)

1 = (1− ρ)p(2)

0 + ρ(1− q(2)

0 − (1− p(2)

0 )q(1)

0 ) > 0,
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since 0 < p(2)

0 < 1. Hence by induction 0 < p(2)
n < 1 for all n ∈ N0. In conclusion for

all n ∈ N0,

Mpn =

 0 1 1
1− p(2)

n 0 0
p(2)
n 0 0

 .

The convex combination will make the proof of convergence easier than with ρ = 1.
As in Lemma 3.29, we proceed by estimating p(2)

n+1 − p(2)
n . Since we have just shown

that for all n, Mpn takes a form such that q(2)

n+1 = (1− p(2)
n )q(1)

n , we have that

p(2)

n+1 − p(2)

n = (1− ρ)p(2)

n + ρ[1− (1− p(2)

n )q(1)

n − q(2)

n ]− p(2)

n

= ρ[1− (1− p(2)

n )q(1)

n − q(2)

n − p(2)

n ] = ρ [(1− p(2)

n )(1− q(1)

n )− q(2)

n )] .

Similarly, due to the form of Mpn for all n ∈ N0 ,

q(1)

n = q(2)

n−1 + q(3)

n−1 = 1− q(1)

n−1

and
q(2)

n = (1− p(2)

n−1)q(1)

n−1,

which yields
q(2)

n = (1− p(2)

n−1)(1− q(1)

n ).

Thus

p(2)

n+1 − p(2)

n = ρ
[
(1− p(2)

n )(1− q(1)

n )− (1− p(2)

n−1)(1− q(1)

n )
]

= −ρ(1− q(1)

n )(p(2)

n − p
(2)

n−1).

Due to the factor ρ, this already yields convergence, since |p(2)

n+1 − p(2)
n | ≤ ρ|p(2)

n −
p(2)

n−1| already produces a geometric series bound on the series of increments of the
p(2)-component, while p(1)

n is identically zero. We can use the monotonicity and the
alternating sign to conclude, like in Lemma 3.29, that convergence is not at the
vertices.

Corollary A.22. If p0 ∈ Ei, then for all q0 ∈ Σ0 there exists p∗ ∈ Ei and some β ≥ 0
(dependent on p0 and q0) such that the set of accumulation points of the boundary
orbit is {(p∗, qp∗ ± βe−1(p∗))}. Moreover, if limn−→∞ V (pn, qn) = ` then β = `/2.

Proof. By symmetry, without loss of generality, set i = 1. Note that

Φρ(p, q) ..=

(
(1− ρ)p+ ρ(1− q −Mpq)

Mpq

)
is continuous on E1 × Σ. Rearranging (2.36) yields

(I +Mpn)qn =
1− ρ
ρ

pn −
1

ρ
pn + 1 = 1− pn +

1

ρ
(pn − pn+1) = 2qpn +

1

ρ
(pn − pn+1).

By Lemma A.21 pn −→ p∗, so pn − pn+1 −→ 0 and qpn −→ qp∗ as n −→∞, yielding

I +Mpn

2
qn −→ qp∗

as in Corollary 3.30. From this we obtain

I +Mp∗

2
(qn − qp∗) −→ 0.

From here on, the conclusion is the same as in Corollary 3.30.
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Proposition A.23. If p0 ∈ Ei, then for all q0 ∈ Σ0 there exists p∗ ∈ Ei and β ≥ 0
(dependent on initial conditions) such that the boundary orbit approaches the 2-cycle
{(p∗, qp∗ ± βe−1(p∗))}, with β = |β0|, where q0 = qp0 + α0e0(p0) + β0e−1(p0).

Proof. The proof is as in Proposition 3.31, with a few changes, which we now point out.
Given the same set-up as in Proposition 3.31 with i = 1 and the same eigensystem,
noting that for a boundary orbit as such, e0(pn) ..= e0 = (0, 1,−1) and

e−1(pn+1)− e−1(pn) = (p(2)

n+1 − p(2)

n )e0,

it is straightforward to rewrite (A.2) by exploiting the eigencoordinates:

αn+1e0 + βn+1e−1(pn+1) = −ρ
2
αne0 − βne−1(pn). (A.16)

yielding the system

−βn+1 = βn

αn+1 + (1− p(2)

n+1)βn+1 = −ρ
2
αn − (1− p(2)

n )βn

−αn+1 + p(2)

n+1βn+1 =
ρ

2
αn − p(2)

n βn.

Since the first equation plugged into the second makes the latter a scalar multiple
of the third equation, the system is consistent and overdetermined, so we solve it by
keeping the first and third equation only, and finally use the first equation to simplify
the third, obtaining

αn+1 = −ρ
2
αn + βn(p(2)

n − p
(2)

n+1) (A.17)

βn+1 = −βn. (A.18)

By rearranging (2.36), we can also express pn+1 − pn in eigencoordinates. We have
that

pn+1 − pn = ρ(2qpn − qn+1 − qn) = −ρ(Mpn + I)(qn − qpn) = −ραne0.

Thus p(2)

n+1 − p(2)
n = −ραn, which allows us to rewrite (A.17) and (A.18) as

αn+1 = ρ

(
βn −

1

2

)
αn (A.19)

βn+1 = −βn. (A.20)

Thus we argue exactly as in Corollary 3.30 to prove the claim, thanks to the geometric
decay of αn. The only difference in the bounds is that they will have a ρ2 factor in
the two-steps iterates, that is

αn+1 = −ρ2

(
β2
n−1 −

1

4

)
αn−1,

yielding

|αn+1| <
ρ2

12
|αn−1|

and in conclusion resulting into

|αn| < M

(
ρ

2
√

3

)n
,

having defined M ..= max{|α0|, |α1|}.
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Remark A.24. The geometric upper bound on the decay of the |αn| for a boundary
orbit is uniform, since M ..= max{|α0|, |α1|} holds uniformly, by the boundedness of
the simplex. Hence there exists a uniform constant M̃ such that for any boundary
orbit

|αn| < M̃

(
ρ

2
√

3

)n
. (A.21)

The following is immediate from Proposition A.23. Recall that Σ∗ denotes the
medial triangle (boundary excluded).

Corollary A.25. If p0 ∈ Ei and q0 = qp0 + α0e0(p0) + β0e−1(p0) ∈ Σ0, pn −→ p∗ ∈
Ei, while {qn} either converges to qp∗ ∈ ∂Σ∗ if β0 = 0 or approaches the 2-cycle
{(p∗, qp∗ ± βe−1(p∗))}, with β = |β0|.

A.5.2 Structure of the set of accumulation points

In this section we study the set of accumulation points of regular orbits approaching
the boundary, and therefore assume p0 6∈ ∂Σ. Since we will approach the problem
from the point of view of boundary orbits, it is useful to describe the dynamical system
in terms of its iteration map Φ(p, q) ..= Φρ(p, q) (the ρ will always be omitted in this
section, as there is no confusion with Section 3.5), which is continuous on Σ0 × Σ,
defined as(

pn+1

qn+1

)
= Φ(pn, qn) =

(
Φp(pn, qn)
Φq(pn, qn)

)
..=

(
(1− ρ)pn + ρ(1− qn −Mpnqn)

Mpnqn

)
.

Lemma A.26. Let {(pn, qn)} be an orbit such that {pn} is not bounded away from the
vertices, that is such that there is {nk}, with pnk −→ vi for some i ∈ {1, 2, 3}. Then
the set of accumulation points of {(pnk−1, qnk−1)}, {(pnk , qnk)} and {(pnk+1, qnk+1)}
is a subset of

{
(vi, qvi ± `

2
e−1(vi))

}
. Moreover if {nk} is such that {qnk} converges,

{qnk−1}, {qnk}, and {qnk+1} asymptotically oscillate about q∗ = qvi ± `
2
e−1(vi) and

q̂∗ = qvi ∓ `
2
e−1(vi), while {pnk−1}, {pnk}, and {pnk+1} all tend to vi, that is

(pnk−1, qnk−1) −→ (vi, q̂∗), (pnk , qnk) −→ (vi, q∗) and (pnk+1, qnk+1) −→ (vi, q̂∗).

Proof. By symmetry, without loss of generality, assume i = 2 and let (pnkr , qnkr ) −→
(v2, q∗) as r −→∞ as in Lemma 3.34. Note that as r −→∞

(1− ρ)p(1)

nr−1 + ρ(1− q(1)

nr−1 − q(1)

nr ) −→ 0 (A.22)

(1− ρ)p(2)

nr−1 + ρ(1− q(2)

nr−1 − q(2)

nr ) −→ 1 (A.23)

(1− ρ)p(3)

nr−1 + ρ(1− q(3)

nr−1 − q(3)

nr ) −→ 0, (A.24)

and therefore (A.23) implies that q(2)

nr−1 +q(2)
nr −→ 0, since 0 ≤ p(2)

nr−1 ≤ 1, and therefore
if 1 − q(2)

nr−1 − q(2)
nr did not tend to 1, the convex combination of the two would not

either. Hence q(2)
nr −→ 0 = q(2)

∗ and p(2)

nr−1 −→ 1, which also implies that for i ∈ {1, 3},
p(i)

nr−1 −→ 0, that is pnr−1 −→ v2 too. (A.22) and (A.24) directly imply also that for
i ∈ {1, 3}, q(i)

nr + q(i)

nr−1 −→ 1 as r −→ ∞, because if the convex combinations tend
to zero, then for all i ∈ {1, 3}, 1 − q(i)

nr − q(i)

nr−1 −→ 0 as r −→ ∞. From here on,
one can repeat the same exact argument in the corresponding part of Lemma 3.34 as
the same properties have been shown, with, in addition, the fact that pnr−1 −→ v2

as r −→ ∞ (this was not possible to be shown in Lemma 3.34). The part of the
argument that finds the two possible forms of the limit of {qnr}, q∗ and q̂∗, given
the potential limit `, stays the same since the potential is the same. Also the part in
which, without loss of generality, assuming q∗ = ((1−`)/2, 0, (1+`)/2), we showed that



257

qnr−1 −→ q̂∗ ..= ((1+ `)/2, 0, (1− `)/2) first and qnr+1 −→ q̂∗ secondly, stays the same,
as it relies only on (2.35), which is the same as (2.37). The only difference is in how we
show the conclusion for pnr+1. As r −→∞, qnr+1 −→ q̂∗ and qnr + qnr+1 −→ (1, 0, 1)
so

pnr+1 = (1− ρ)pnr + ρ[1− (qnr + qnr+1)] −→ (1− ρ)v2 + ρ(1− (1, 0, 1)) = v2,

and qpnr+1 −→ qv2 = (1/2, 0, 1/2). Like in Lemma 3.34, we now need to start from
an arbitrary convergent subsubsequence of {(pnk+1, qnk+1)} and in addition, also from
one of {pnk−1, qnk−1}. We will denote them {(pnr+1, qnr+1)} and {(pnr−1, qnr−1)}, and
their limit will be, in each case separately, denoted as (p∗, q̂∗), to be determined. The
underlying hypothesis is that pnr −→ v2. In the case of the convergent forward shift
subsubsequence, by (2.36) we can see that

qnr =
(1− ρ)pnr − pnr+1

ρ
+ 1− qnr+1 −→

(1− ρ)v2 − p∗
ρ

+ 1− q̂∗ =.. q∗,

so we have again (pnr , qnr) −→ (v2, q∗) and we can proceed, through the same argu-
ment shown above, with showing that the forms of q∗ and q̂∗ are the claimed ones, and
that p∗ = v2. Similarly, in the case of the convergent backward shift subsubsequence,
by (2.36) we can see that

qnr =
(1− ρ)pnr−1 − pnr

ρ
+ 1− qnr −→

(1− ρ)p∗ − v2

ρ
+ 1− q̂∗ =.. q∗,

thus (pnr , qnr) −→ (v2, q∗) and we can repeat the same strategy just discussed in the
previous case. The second part of the claim trivially follows by taking nr = nk in the
argument above.

The next proposition is proved the same as Proposition 3.35, by swapping for the
iteration map Φ(p, q) = Φρ(p, q) in the argument, and all the references to Lemma 3.34
and Remark 3.32 being replaced by Lemma A.26 and Remark A.24.

Proposition A.27. Let {(pn, qn)} be an orbit such that ` > 0. The set of its accu-
mulation points is a subset of

{(p, qp ± βe−1(p)) : p ∈ ∂Σ, β > 0, V (p, qp ± βe−1(p)) = `} .

Remark A.28. Consider an orbit such that ` > 0 and, for some {nk}k∈N, pnk −→
p∗ ∈ Ei for some i ∈ {1, 2, 3}. The set of accumulation points of {(pnk , qnk)} and
{(pnk+1, qnk+1)} is a subset of {(p∗, qp∗ ± βe−1(p∗)) : β > 0, V (p∗, qp∗ ± βe−1(p∗)) =
`}. Moreover, if {nk} is such that also {qnk} converges, {qnk} and its shift {qnk+1}
asymptotically oscillate between q∗ = qp∗ ± βe−1(p∗) and q̂∗ = qp∗ ∓ βe−1(p∗), that is
if (pnk , qnk) −→ (p∗, q∗), then (pnk+1, qnk+1) −→ (p∗, q̂∗) as k −→∞.

Proof. The claim for the q-component’s shift follows as in Remark 3.36 by using
Proposition A.27 instead of Proposition 3.35, since (2.35) is the same as (2.33). The
only explicit difference is in (2.36), which now yields - when starting with a subsub-
sequence {(pnr+1, qnr+1)} convergent to some (p, q̂∗) to be determined - that

qnr =
(1− ρ)pnr − pnr+1

ρ
+ 1− qnr+1 −→

(1− ρ)p∗ − p
ρ

+ 1− q̂∗ = q∗
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by Proposition A.27. The rest of the argument is exactly the same. The claim about
the p-component’s shift follows also as in Remark 3.36, since using again q̂∗+q∗ = 2qp∗ ,
if pnr −→ p∗ as r −→∞,

pnr+1 = (1− ρ)pnr + ρ(1− qnr+1 − qnr) −→ (1− ρ)p∗ + ρ[1− (q̂∗ + q∗)]

= (1− ρ)p∗ + ρ(1− 2qp∗) = (1− ρ)p∗ + ρp∗ = p∗.

The second part of the claim is shown by taking nr = nk.

The next corollary is proved as its counterpart Corollary 3.37, as the argument
does not depend on ρ. It is enough to replace the references to (3.4), Remark 3.36,
and Lemma 3.34 with (A.4), Remark A.28, and Lemma A.26 .

Corollary A.29. Let {(pn, qn)} be an orbit. Then pn+1 − pn −→ 0 as n −→∞.

Remark A.30. Let {(pn, qn)} be an orbit with {pn} not convergent to any of the
vertices. By Corollary A.29 and Remark A.5, there is a subsequence {pnj} bounded
away from V .

The following claim is trivially true if ` = 0.

Corollary A.31. Let {(pn, qn)} be an orbit not convergent to the vertices and such
that ` > 0, that is V (pn, qn) = ‖αne0(pn) + βne−1(pn)‖1 −→ ` > 0. Then αn −→ 0
and |βn| −→ `/2 as n −→∞.

Proof. For the first part of the statement, consider that, following the notation of
Lemma 3.19, in eigencoordinates (A.9) holds, which we recall below,

pn+1 − pn = −ρ[αn(1 + λ0(pn))e0(pn) + βn(1 + λ−1(pn))e−1(pn)],

and as pn −→ ∂Σ, 1+λ−1(pn) −→ 0 and 1+λ0(pn) −→ 1; as a result of Corollary A.29
and Lemma 3.19 (h), we obtain that αn −→ 0 as n −→∞ exactly as in Corollary 3.39,
since the factor ρ in (A.9) does not change substantially the argument. Therefore the
second part of the proof regarding {|βn|} remains unaltered.

We conclude this section with the remark corresponding to Remark 3.40. Showing
that the potential is eventually subunitary requires a different argument in this case,
due to (A.1) taking the place of (3.1). In particular, it will not be possible to show
that the potential is already subunitary at the second iterate. We will have to show
that eventually, at a time large enough, it will become subunitary, by exploiting the
accumulation points of the orbits.

Remark A.32. For any orbit with ` > 0, which does not converge to a vertex, ` < 1.

Proof. By Remark A.5 and Corollary 3.37, exploiting the boundedness of {pn}, we
can assume the existence of a subsequence {pnj} converging to a point p∗ ∈ Ei for
some i ∈ {1, 2, 3}. Without loss of generality, by symmetry, assume i = 1. By
Remark A.28 assume that the limit points for {qnj} and {qnj+1} are, without loss
of generality, q∗ = qp∗ − βe−1(p∗) and q̂∗ = qp∗ + βe−1(p∗), for some 0 < |β| = `/2,
by Corollary A.31. Note that q(1)

p∗ = 1/2 and that q(1)
pnj+1

= (1 − p(1)

nj+1)/2 < 1/2 for all

j ∈ N by Remark A.4. Note also that for all j large enough, due to the nonzero angle
that the eigendirection e−1(p∗) forms with E2 and E3, due to β > 0 and due to the
elementary geometry of the simplex, we have that q(1)

nj
− q(1)

pnj
> 0, q(2)

nj
− q(2)

pnj
< 0,
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−(q(1)
nj
− q(1)

pnj
+ q(2)

nj
− q(2)

pnj
) = q(3)

nj
− q(3)

pnj
< 0 and q(1)

nj+1 − q(1)
pnj+1

< 0, q(2)

nj+1 − q(2)
pnj+1

> 0,

−(q(1)

nj+1 − q(1)
pnj+1

+ q(2)

nj+1 − q(2)
pnj+1

) = q(3)

nj+1 − q(3)
pnj+1

> 0. Therefore

‖qnj+1 − qpnj+1‖1 =
∑

i∈{1,2,3}

|q(i)

nj+1 − q(i)

pnj+1
| = −(q(1)

nj+1 − q(1)

pnj+1
) + q(2)

nj+1 − q(2)

pnj+1

− (q(1)

nj+1 − q(1)

pnj+1
+ q(2)

nj+1 − q(2)

pnj+1
) = 2(q(1)

pnj+1
− q(1)

nj+1) < 2 · 1

2
= 1,

and we can conclude by Remark A.6, that eventually the potential is subunitary and
` < 1.

A.5.3 Convergence of regular orbits

We will adopt the same exact set-up as in Section 3.5.3, since all the correspond-
ing theorems involved in the set-up have been shown to apply: Lemma A.26, Re-
marks A.28 and A.30, Proposition A.27, Corollary A.31, and (A.9). Even the estimate
‖p̂ − p‖1 ≤ 3B(|α| + p1) for all p1 < ε does not change, due to the factor ρ in (A.9)
being subunitary. We now list the restrictions that change. Define

R ..= 1 + ρ

(
1

δ
− 1

)
,

then we require

ε′ < min
{ ε
R
,
ε

12B

}
,

(ε′ is to be further restricted too). Having defined

K`ε′,δ ..=

{
(p, q) ∈ Σ2 : 0 < p(1), |α|,

∣∣∣∣|β| − `

2

∣∣∣∣ ≤ ε′, δ ≤ p(2) ≤ 1− δ
}
,

and similarly K`ε,δ′ , by construction of m, (pm, qm) ∈ K`ε′,δ, and

‖pm+1 − pm‖1 < 6Bε′ <
ε

2
, (A.25)

thus ensuring, exactly as in Section 3.5.3, that

p(1)

m+1 < ε. (A.26)

p(2)

m+1 < 1− δ′, (A.27)

p(2)

m+1 > δ′. (A.28)

Define a hitting time

σ ..= inf

{
n ≥ m : p(2)

n 6∈
[
δ

2
, 1− δ

2

]}
∈ N ∪∞.

Note that σ > m + 1 by construction of m. We now derive some iterative formulas
and bounds.

Remark A.33. For all m ≤ n < σ, p(1)

n+1 < Rp(1)
n .

Proof. Since for all m ≤ n < σ,

1− q(1)

n+1 − q(1)

n = p(1)

n

(
q(2)
n

1− p(2)
n

+
q(3)
n

1− p(3)
n

)
<

2

δ
(1− q(1)

m )p(1)

n ≤
2

δ
p(1)

n ,

p(1)

n+1 < (1− ρ)p(1)

n +
2ρ

δ
p(1)

n ,

and the claim follows by the definition of R.
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Remark A.34. For any n ≥ 0,

p(1)

n+2 = p(1)

n+1

{
(1− ρ) + ρ

[
(1− q(1)

n+1)ϑn+1 − p(1)

n+1

ϑn+1

ρ
+ p(1)

n ϑ
′′
n+1

]}
,

where ϑn+1 and ϑ′n+1 are defined as in (3.33) and (3.34) in Remark 3.42, and

ϑ′′n+1
..=

1− ρ
ρ

ϑn+1 + ϑ′n+1. (A.29)

Proof. For any n ≥ 0,

p(1)

n+2 = (1− ρ)p(1)

n+1 + ρp(1)

n+1

(
q(2)

n+1

1− p(2)

n+1

+
q(3)

n+1

p(1)

n+1 + p(2)

n+1

)
= p(1)

n+1{(1− ρ) + ρ(q(1)

n ϑn+1 + p(1)

n ϑ
′
n+1)}

by the second step (in which we rearranged the factor in the brackets) in the proof of
Remark 3.42, and since by (2.36)

q(1)

n = (1− q(1)

n+1) +
1− ρ
ρ

p(1)

n −
1

ρ
p(1)

n+1,

the claim follows.

Remark A.35. For any n ≥ 0,

p(2)

n+2 − p
(2)

n+1 = −ρq(1)

n

(
p(2)

n+1 − p(2)

n + ξn+1 − ξ′n+1 − η′n+1 − ηn + η′′n+1 + η′′′n+1

)
,

where η′n+1, ηn, η′′n+1 and η′′′n+1 are defined as in (3.35) to (3.38) in Remark 3.43, and

ξn+1
..= p(1)

n+1

p(2)

n+1

1− p(1)

n+1

(
1 +

1
ρ
− 1

q(1)
n

)
(A.30)

ξ′n+1
..= p(1)

n p
(2)

n+1

1
ρ
− 1

q(1)
n (1− p(1)

n+1)
. (A.31)

Proof. For any n ≥ 0,

p(2)

n+2 − p
(2)

n+1 = ρ

(
p(2)

n+1

1− p(1)

n+1

q(1)

n+1 +
p(2)

n+1

p(1)

n+1 + p(2)

n+1

q(3)

n+1 − p
(2)

n+1

)
= ρ

[
p(2)

n+1

(
q(1)

n+1

1− p(1)

n+1

− 1

)
+

p(2)

n+1

p(1)

n+1 + p(2)

n+1

(
q(1)

n

p(2)
n

1− p(1)
n

+ q(2)

n

p(1)
n

1− p(2)
n

)]
= ρ

{
p(2)

n+1

[
q(1)

n+1

1− p(1)

n+1

− 1 +
p(1)
n

(p(1)

n+1 + p(2)

n+1)(1− p(2)
n )

q(2)

n

]
+ p(2)

n

q(1)
n

1− p(1)
n

p(2)

n+1

p(1)

n+1 + p(2)

n+1

}
= ρ

{
p(2)

n+1

[
− q(1)

n − p
(1)

n+1

q(1)
n + 1

ρ
− 1

1− p(1)

n+1

− p(1)

n

1− 1
ρ

1− p(1)

n+1

+
p(1)
n

(p(1)

n+1 + p(2)

n+1)(1− p(2)
n )

q(2)

n

]
+ p(2)

n q
(1)

n

(
1 +

p(1)
n

1− p(1)
n

)
(

1−
p(1)

n+1

p(1)

n+1 + p(2)

n+1

)}
= −ρq(1)

n

[
p(2)

n+1 − p(2)

n + p(1)

n+1

p(2)

n+1

1− p(1)

n+1

(
1 +

1
ρ
− 1

q(1)
n

)

+ p(1)

n p
(2)

n+1

1− 1
ρ

q(1)
n (1− p(1)

n+1)
− p(1)

n

p(2)

n+1

(p(1)

n+1 + p(2)

n+1)(1− p(2)
n )

q(2)
n

q(1)
n

− p(2)

n

p(1)
n

1− p(1)

n+1

+ p(1)

n+1

p(2)
n

p(1)

n+1 + p(2)

n+1

+ p(2)

n

p(1)
n

1− p(1)
n

p(1)

n+1

p(1)

n+1 + p(2)

n+1

]
,
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since by (2.36),

1− q(1)

n+1 = q(1)

n +

(
1− 1

ρ

)
p(1)

n +
p(1)

n+1

ρ
,

and therefore

q(1)

n+1

1− p(1)

n+1

− 1 = −
1− q(1)

n+1

1− p(1)

n+1

+
p(1)

n+1

1− pn+1(1)

= − q(1)
n

1− p(1)

n+1

−
1− 1

ρ

1− p(1)

n+1

p(1)

n −
p(1)

n+1

ρ(1− p(1)

n+1)

+
p(1)

n+1

1− p(1)

n+1

= −q(1)

n − p
(1)

n+1

q(1)
n + 1

ρ
− 1

1− p(1)

n+1

− p(1)

n

1− 1
ρ

1− p(1)

n+1

.

Thus the claim follows.

Finally we require that δ < ρ4/45, and define

γ = γ(δ′) ..=

√
..= 1− 4

(δ′)2

ρ2
+ 240

(δ′)3

ρ2
.

The constant γ′ ..= γ2 = 1−4ρ2(δ′)2+240(δ′)3/ρ2 is positive subunitary, since−4ρ2x2+
240x3/ρ2 is negative monotone decreasing on (0, ρ4/90), and it attains minimum at ρ4/90

of value −ρ10/6075 > −1/6075. Recall that

R ..= 1 + ρ

(
2

δ
− 1

)
.

Further require

ε < min

{
(δ′)5,

ρδ′

2(2− ρ)R
(1− γ2),

ρδ′

2− ρ
1

1 + R
1−γ

}
.

Define also

D ..= 2 +
1

δ′

(
1

δ′
+

1

ρ
− 1

)
+R

(
2 +

1

δ′ρ

)
and let Γ be a constant such that

0 < Γ <
δ′

D(1− δ′)
.

Finally let λ ..= max{γ, ρ} and further restrict

ε′ < min

{
ε

12B
,

ε

4RD
(1− γ2),

δΓλ(1− λ)

2(R + Γ)

}
.

Lemma A.36. Let γ′ ..= γ2, assume that pm+l ≤ R(γ′)b
l
2
cp(1)
m for all 0 ≤ l ≤ 2k − b,

where b ∈ {0, 1}. Then for all b ≤ j ≤ 2k,

δ′ < q(1)

m+2k−j <
1

2
− δ′

if j is even and
1

2
+ δ′ < q(1)

m+2k−j < 1− δ′

if j is odd.
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Proof. We iterate the first component of (2.36) after rearranging it as

q(1)

m+l = 1− q(1)

m+l−1 +
1− ρ
ρ

p(1)

m+l−1 −
1

ρ
p(1)

m+l,

for every l ≥ 0. It yields

q(1)

m+l =

{
q(1)
m −

1−ρ
ρ
p(1)
m + 2−ρ

ρ

∑l−1
j=1(−1)j+1p(1)

m+j − 1
ρ
p(1)

m+l l even

1− q(1)
m + 1−ρ

ρ
p(1)
m + 2−ρ

ρ

∑l−1
j=1(−1)jp(1)

m+j − 1
ρ
p(1)

m+l l odd.
(A.32)

Recall that by construction

ε <
ρδ′

2(2− ρ)R
(1− γ′).

Since q(1)
m < 1/2− δ,

q(1)

m+2k−j = q(1)

m −
1− ρ
ρ

p(1)

m +
2− ρ
ρ

2k−j−1∑
l=1

(−1)l+1p(1)

m+l −
1

ρ
p(1)

m+2k−j

<
1

2
− δ +

2− ρ
ρ

2k−j∑
l=0

p(1)

m+l <
1

2
− δ + 2

(2− ρ)R

ρ
ε

b 2k−j
2
c∑

l=0

(γ′)l

<
1

2
− δ +

2(2− ρ)Rε

ρ(1− γ′)
<

1

2
− δ′ (A.33)

for all even b ≤ j ≤ 2k (with the bound for j = 2k holding also with δ, by adopting
empty sum convention) and

q(1)

m+2k−j = 1− q(1)

m +
1− ρ
ρ

p(1)

m +
2− ρ
ρ

2k−j−1∑
l=1

(−1)lp(1)

m+l −
1

ρ
p(1)

m+2k−j

>
1

2
+ δ − 2− ρ

ρ

2k−j∑
l=0

p(1)

m+l >
1

2
+ δ − 2

(2− ρ)Rε

ρ

b 2k−j
2
c∑

l=0

(γ′)l

>
1

2
+ δ − 2

(2− ρ)Rε

ρ(1− γ′)
>

1

2
+ δ′ (A.34)

for all odd b ≤ j ≤ 2k. Similarly, since δ < q(1)
m < 1− δ,

q(1)

m+2k−j = q(1)

m −
1− ρ
ρ

p(1)

m +
2− ρ
ρ

2k−j−1∑
l=1

(−1)l+1p(1)

m+l −
1

ρ
p(1)

m+2k−j

> δ − 2− ρ
ρ

2k−j∑
l=0

p(1)

m+l > δ − 2
(2− ρ)R

ρ
ε

b 2k−j
2
c∑

l=0

(γ′)l

> δ − 2(2− ρ)Rε

ρ(1− γ′)
> δ′ (A.35)

for all even b ≤ j ≤ 2k and

q(1)

m+2k−j = 1− q(1)

m +
1− ρ
ρ

p(1)

m +
2− ρ
ρ

2k−j−1∑
l=1

(−1)lp(1)

m+l −
1

ρ
p(1)

m+2k−j

< 1− δ +
2− ρ
ρ

2k−j∑
l=0

p(1)

m+l < 1− δ + 2
(2− ρ)Rε

ρ

b 2k−j
2
c∑

l=0

(γ′)l

< 1− δ + 2
(2− ρ)Rε

ρ(1− γ′)
< 1− δ′ (A.36)
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for all odd b ≤ j ≤ 2k.

Lemma A.37. Let γ′ ..= γ2, assume that pm+l ≤ R(γ′)b
l
2
cp(1)
m for all 0 ≤ l ≤ 2k − b,

where b ∈ {0, 1}, and δ′ < p(2)

m+l < 1− δ′. Then for all b ≤ j ≤ 2k − 1,

|p(2)

m+2k−j − pm+2k−j−1| < ε.

Proof. Recall that

ε′ <
ε

4RD
(1− γ′).

Iterate Remark A.35 applied to n = m+ 2(k − 1)− j, down to time m. It yields

|p(2)

m+2k−j − p
(2)

m+2k−j−1| ≤ |p
(2)

m+1 − p(2)

m |+
2k−j−1∑
l=1

Em+l <
ε

2
+

2k−2∑
l=1

Em+l,

where Em+l
..= ξm+l + ξ′m+l + ηm+l + η′m+l + ηm+l−1 + η′′m+l + η′′′m+l. Note that the

hypotheses allow to apply Lemma A.36, thus δ′ < q(1)

m+l−1 < 1 − δ′ for all 1 ≤ l ≤
2k − j − 1. This implies that, by using Remark A.33 and the assumptions, for all
1 ≤ l ≤ 2k − j − 1, we have that

ηm+l−1 < p(1)

m+l−1 < R(γ′)b
l−1
2
cp(1)

m (A.37)

ηm+l < Rp(1)

m+l−1 < R2(γ′)b
l−1
2
cp(1)

m (A.38)

η′m+l <
1

(δ′)2
p(1)

m+l−1 <
R

(δ′)2
(γ′)b

l−1
2
cp(1)

m (A.39)

η′′m+l <
R

δ′
p(1)

m+l−1 <
R2

δ′
(γ′)b

l−1
2
cp(1)

m (A.40)

η′′′m+l < p(1)

m+l−1 < R(γ′)b
l−1
2
cp(1)

m , (A.41)

and we can estimate similarly the two error terms

ξm+l <

[
1 +

1

δ′

(
1

ρ
− 1

)]
R2(γ′)b

l−1
2
cp(1)

m (A.42)

ξ′m+l <
1

δ′

(
1

ρ
− 1

)
R(γ′)b

l−1
2
cp(1)

m . (A.43)

Hence
Em+l < RD(γ′)b

l−1
2
cp(1)

m , (A.44)

which yields a bound, uniform in k, on the increments of the p(2)-component:

|p(2)

m+2k−1− p
(2)

m+2k−2| <
ε

2
+RDε′

∞∑
l=1

(γ′)b
l−1
2
c =

ε

2
+ 2RD

ε′

1− γ′
<
ε

2
+
ε

2
< ε. (A.45)

Lemma A.38. For all m ≤ n ≤ σ, p(1)
n ≤ Rγn−m−1p(1)

m .

Proof. Let

γ′ ..= γ2 = 1− 4
(δ′)2

ρ2
+ 240

(δ′)3

ρ2
,

we will first show that for every k ≥ 0 such that m+ 2k ≤ σ,

p(1)

m+2k ≤ R(γ′)kp(1)

m (A.46)

p(1)

m+2k+1 ≤ R(γ′)kp(1)

m (A.47)
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and if m+ 2k = σ, we only show the claim up to (A.46). Recall that by construction
δ′ < ρ4/90,

ε <
ρδ′

2(2− ρ)R
(1− γ′),

and
ε′ <

ε

4RD
(1− γ2).

Choosing n = m in Remark A.33, yields the first odd case (the even case is trivial as
R > 1) for k = 0:

p(1)

m+1 ≤ Rp(1)

m .

Let n = m in (3.33) and (3.34), and apply the hypothesis made in (A.26) to (A.28),
and the fact that |p(2)

m+1 − p(2)
m | < ε/2, which follows from (A.25). Then the following

estimates follow, as in the corresponding step of Lemma 3.46:

|ϑm+1| ≤
2

δ′(1− ε)
, (A.48)

|ϑm+1| ≤ 2 +
ε

1− ε

(
2 +

3

δ′

)
, (A.49)

|ϑ′m+1| ≤
1

δ′

(
1

1− ε
+

2

δ′ + ε

)
, (A.50)

yielding

|ϑ′′m+1| ≤
(

1

ρ
− 1

)
|ϑm+1|+ |ϑ′m+1| ≤

(
1

ρ
− 1

)
2

δ′(1− ε)
+

1

δ′

(
1

1− ε
+

2

δ′ + ε

)
,

and therefore

|ϑ′′m+1| <
1

δ′

[(
2

ρ
− 1

)
1

1− ε
+

2

δ′

]
. (A.51)

Plug the estimates (A.48) to (A.51) into Remark A.34 applied to n = m, it yields

p(1)

m+2 ≤ p(1)

m+1

{
(1− ρ) + ρ

[
2(1− q(1)

m+1) +
ε

1− ε

(
2 +

3

δ′

)
+
p(1)

m+1

ρ

2

δ′(1− ε)

+ p(1)

m

1

δ′

[(
2

ρ
− 1

)
1

1− ε
+

2

δ′

] ]}
≤ p(1)

m+1

{
(1− ρ) + ρ

[
2(1− q(1)

m+1)

+ ε

{
1

1− ε

(
2 +

3

δ′

)
+

1

ρ

2

δ′(1− ε)
+

1

δ′

[(
2

ρ
− 1

)
1

1− ε
+

2

δ′

]}]}
= p(1)

m+1

{
(1− ρ) + ρ

[
2(1− q(1)

m+1) + 2ε

(
1

1− ε
+

(
1 +

2

ρ

)
1

δ′(1− ε)
+

1

(δ′)2

)]}
.

Recall that ε < (δ′)5 < 1/905. Then q(1)
m < 1/2− δ implies that

q(1)

m+1 = 1− q(1)

m +
1− ρ
ρ

p(1)

m −
1

ρ
p(1)

m+1 >
1

2
+ δ − 1− ρ

ρ
p(1)

m −
R

ρ
p(1)

m

>
1

2
+ δ − 2

R

ρ
ε >

1

2
+ δ′

by construction of ε, since 2− ρ > 1. From

1− ρ+ 2ρ(1− q(1)

m+1) + 2ε

(
1

δ′
+

(
1 +

2

ρ

)
1

(δ′)2
+

1

(δ′)2

)
≤ 1− ρ+ 2ρ(1− q(1)

m+1)

+ 2
ε

(δ′)2

(
3 +

2

ρ

)
< 1− 2ρδ′ +

(
6 +

4

ρ

)
(δ′)3 < 1− 2ρδ′ +

10

ρ
(δ′)3,
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it follows that

p(1)

m+2 < Rp(1)

m

(
1− 2ρδ′ +

10

ρ
(δ′)3

)
< Rγ′p(1)

m .

Note that for any δ′ > 0, γ′ = 1− 4ρ2(δ′)2 + 240(δ′)3/ρ2 > 1− 2ρδ′ + 10(δ′)3/ρ since
it is equivalent to ρ− 2ρ2δ′ + (δ′)2(120/ρ2 − 5/ρ) > 0, and ρ− 2ρ2x + x2(120/ρ2 − 5/ρ) is
a convex parabola (since 120/ρ2 − 5/ρ > 0) with symmetry axis parallel to the y-axis
taking value ρ > 0 at 0 and having negative discriminant ρ4 + 5− 120/ρ (since ρ < 1,
the discriminant is less than −114). We have thus shown that p(1)

m+2 ≤ Rγ′p(1)
m . If

σ > m+ 2, the case k = 1 is not yet concluded. Since by the geometric decay proved
so far

p(1)

m+2 < Rγ′p(1)

m < ε, (A.52)

and by the definition of σ, δ′ < p(2)

m+2 < 1 − δ′, the same estimates in (A.48), (A.50)
and (A.51) apply to ϑm+2, ϑ′m+2 and ϑ′′m+2 with the due shift of time indices. However,
(A.49) does not apply automatically, since nothing guarantees that the same bound
applies on the shifted increments of the p(2)-component. Let us first assume that
indeed also |p(2)

m+2 − p
(2)

m+1| < ε and therefore that also (A.49) applies, with the due
shift of indices. Then plugging them into Remark A.34 applied to n = m+ 1 yields

p(1)

m+3 ≤ p(1)

m+2

[
1− ρ+ 2ρ(1− q(1)

m+2) + 2
ε

(δ′)2

(
3 +

2

ρ

)]
= p(1)

m+2

[
1− ρ+ 2ρ

(
q(1)

m+1 −
1− ρ
ρ

p(1)

m+1 +
1

ρ
p(1)

m+2

)
+ 2

ε

(δ′)2

(
3 +

2

ρ

)]
≤ p(1)

m+1

[
1− ρ+ 2ρ(1− q(1)

m+1) + 2
ε

(δ′)2

(
3 +

2

ρ

)][
1− ρ+ 2ρq(1)

m+1

+ 2(1− ρ)p(1)

m+1 + 2p(1)

m+2 + 2
ε

(δ′)2

(
3 +

2

ρ

)]
< p(1)

m+1

[
1− ρ+ 2ρ(1− q(1)

m+1)

+ 2
ε

(δ′)2

(
3 +

2

ρ

)][
1− ρ+ 2ρq(1)

m+1 + 2ε

(
2 +

1

(δ′)2

(
3 +

2

ρ

))]
.

Noting that

[1− ρ+ 2ρ(1− q(1)

m+1)](1− ρ+ 2ρq(1)

m+1) = 1− ρ2 + 4ρ2q(1)

m+1(1− q(1)

m+1)

and that 1− ρ + 2ρ(1− q(1)

m+1), 1− ρ + 2ρq(1)

m+1 < 1 + ρ, we can multiply out the two
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factors and get the following estimate:

p(1)

m+3 < p(1)

m+1

[
1− ρ2 + 4ρ2q(1)

m+1(1− q(1)

m+1) + 2(1 + ρ)ε

(
1 +

1

(δ′)2

(
3 +

2

ρ

))
+ 4

ε2

(δ′)2

(
3 +

2

ρ

)(
2 +

1

(δ′)2

(
3 +

2

ρ

))]
< p(1)

m+1

[
1− 4ρ2(δ′)2

+ 4(δ′)5 + 4(δ′)3

(
3 +

2

ρ

)
+ 4(δ′)8

(
3 +

2

ρ

)(
2 +

1

(δ′)2

(
3 +

2

ρ

))]
< p(1)

m+1

{
1− 4ρ2(δ′)2 + 4(δ′)3

[(
3 +

2

ρ

)
+ (δ′)2 + (δ′)5

(
3 +

2

ρ

)
(

2 +
1

(δ′)2

(
3 +

2

ρ

))]}
≤ p(1)

m+1

{
1− 4ρ2(δ′)2 + 4(δ′)3

[(
3 +

2

ρ

)
+ (δ′)2 +

(
3 +

2

ρ

)2

(δ′)3 + 2

(
3 +

2

ρ

)
(δ′)5

]}
< p(1)

m+1

{
1− 4ρ2(δ′)2 + 16(δ′)3

(
5 +

5

ρ
+

1

ρ2

)}
< p(1)

m+1

{
1− 4ρ2(δ′)2 +

240

ρ2
(δ′)3

}
≤ Rγ′p(1)

m ,

where in the second last inequality, we used trivially that δ′ < 1, as the factor next to
the cubic term, for δ′ small, becomes negligible, considering that regimes with ρ small
are also allowed; in the last inequality we used trivially that 5 < 5/ρ < 5/ρ2 due to
0 < ρ < 1. We now show that the upper bound on the p(2)-component keeps applying
uniformly, by using Remark A.35 applied to n = m, yielding the same upper bound
as Lemma 3.45, by defining Em+1

..= ξm+1 + ξ′m+1 + ηm+1 + η′m+1 + ηm + η′′m+1 + η′′′m+1,
that is obtaining

|p(2)

m+2 − p
(2)

m+1| ≤ |p
(2)

m+1 − p(2)

m |+ Em+1. (A.53)

Since p(1)

m+2 < Rγ′p(1)
m < ε, by the definition of σ, which ensures that also δ′ < p(2)

m+1 <
1− δ′, and by exploiting Remark A.33 with n = m, we can estimate

ηm =
p(2)
m p

(1)
m

p(2)
m + p(3)

m

< p(1)

m (A.54)

ηm+1 =
p(2)

m+1p
(1)

m+1

p(2)

m+1 + p(3)

m+1

< Rp(1)

m (A.55)

η′m+1
..=

q(2)
m

q(1)
m

p(2)

m+1

p(1)

m+1 + p(2)

m+1

p(1)
m

1− p(2)
m

<
1

(δ′)2
p(1)

m (A.56)

η′′m+1
..= p(2)

m

p(1)

m+1

p(1)

m+1 + p(2)

m+1

<
1− δ′

δ′
Rp(1)

m <
R

δ′
p(1)

m (A.57)

η′′′m+1 = p(2)

m

p(1)

m+1

p(1)

m+1 + p(2)

m+1

p(1)
m

p(2)
m + p(3)

m

< p(1)

m (A.58)

ξm+1 =
p(2)

m+1

p(2)

m+1 + p(3)

m+1

(
1 +

1
ρ
− 1

q(1)
m

)
p(1)

m+1 <

[
1 +

1

δ′

(
1

ρ
− 1

)]
Rp(1)

m (A.59)

ξ′m+1 =
p(2)

m+1

p(2)

m+1 + p(3)

m+1

1
ρ
− 1

q(1)
m

p(1)

m <
1

δ′

(
1

ρ
− 1

)
p(1)

m , (A.60)

yielding
Em+1 ≤ Dp(1)

m .
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Note that R > 1, and therefore from

ε′ <
ε

4RD
(1− γ′),

we get

Em+1 ≤
ε

4R
.

Since |p(2)

m+1 − p(2)
m | < ε/2, this yields

|p(2)

m+2 − p
(2)

m+1| <
ε

2
+

ε

4R
< ε.

Apart from the base cases, this estimate will be less immediate in further steps, and
we will be relying on Lemma A.37.

To summarise what has been shown in this two steps argument: there is a constant
γ′ = γ(δ′) holding uniformly on K∗ for both cases, σ = m + 2 and σ > m + 2. In
the first case p(1)

m+1 < R(γ′)0p(1)
m (case k = 0), and p(1)

m+2 < Rγ′p(1)
m (half case k = 1);

in the second case both p(1)

m+1 < R(γ′)0p(1)
m (case k = 0), and p(1)

m+2 < Rγ′p(1)
m and

p(1)

m+3 < Rγ′p(1)
m (full case k = 1). Note, before proceeding, that the estimate on q(1)

n ’s
oscillations above and below 1/2 has to iterate at each step. For example, for the next
step it will hold, because

q(1)

m+2 = 1− q(1)

m+1 +
1− ρ
ρ

p(1)

m+1 −
1

ρ
p(1)

m+2 = q(1)

m −
1− ρ
ρ

p(1)

m +
2− ρ
ρ

p(1)

m+1 −
1

ρ
p(1)

m+2

<
1

2
− δ +

(2− ρ)R

ρ
p(1)

m <
1

2
− δ′

by construction of ε. Apart from the first few steps, this condition will not be so
immediate to verify, because geometric terms will start adding up, and we will rely on
Lemma A.36. Assume that m+ 3 < n < σ, for some n, and let us prove the claim for
n+1. There are two cases to consider: the even step n = m+2k−1 to n+1 = m+2k
first, and the odd step n = m + 2k to n + 1 = m + 2k + 1 afterwards, for all k ∈ N
such that n is in the mentioned range.

• In the even step one has the induction hypothesis that for all 1 ≤ j ≤ 2k,

p(1)

m+2k−j < R(γ′)b
2k−j

2
cp(1)

m (A.61)

and (A.46) needs to be shown. As to the oscillations of q(1), they are δ′-bounded
away from 1/2 in the correct order, thanks to (A.61) and Lemma A.36 applied
with b = 1:

q(1)

m+2k−j <
1

2
− δ′

for all even 1 ≤ j ≤ 2k (with bound for j = 2k holding also with δ, by adopting
empty sum convention) and

q(1)

m+2k−j >
1

2
+ δ′

for all odd 1 ≤ j ≤ 2k. All that remains to be shown is that

p(1)

m+2k < (γ′)p(1)

m+2k−1,

by using

q(1)

m+2k−1 >
1

2
+ δ′.
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Since by (A.61),

p(1)

m+2k−1 < R(γ′)k−1p(1)

m ,

(A.52) holds for p(1)

m+2k−1 too, and σ > m+2k−1 implies that δ′ < p(2)

m+2k−1 < 1−
δ′; the estimates in (A.48) to (A.51) apply also to ϑm+2k−1, ϑ′m+2k−1 and ϑ′′m+2k−1

(with the due shift of time indices) since by Lemma A.37 with b = 1, |p(2)

m+2k−1−
p(2)

m+2k−1| < ε. Plugging the aforementioned estimates into Remark A.34 applied
to n = m+ 2k − 2, yields the same estimate as that obtained for p(1)

m+2,

p(1)

m+2k ≤ p(1)

m+2k−1

{
(1− ρ) + ρ

[
2(1− q(1)

m+2k−1) + 2ε

(
1

1− ε
+

(
1 +

2

ρ

)
1

δ′(1− ε)

+
1

(δ′)2

)]}
< p(1)

m+2k−1

[
1− 2ρδ′ +

10

ρ
(δ′)3

]
< γ′p(1)

m+2k−1,

resulting into (A.46) by (A.61).

• In the odd step one has (A.61) holding for all 0 ≤ j ≤ 2k, and (A.47) needs to
be shown.For the oscillations of q(1) we proceed similarly but, with a different
range for j, by exploiting Lemma A.36 applied with b = 0:

q(1)

m+2k−j <
1

2
− δ′

for all even 0 ≤ j ≤ 2k (with bound for j = 2k holding also with δ, by adopting
empty sum convention) and

q(1)

m+2k−j >
1

2
+ δ′

for all odd 0 ≤ j ≤ 2k. In particular, being known that q(1)

m+2k−1 >
1/2 + δ′, the

part concerning p is obvious from the same calculation performed in the third
step, since knowing p(1)

m+2k < R(γ′)kp(1)
m , using the same bounds for ϑm+2k, ϑ

′
m+2k

and ϑ′′m+2k, yields p(1)

m+2k+1 < R(γ′)kp(1)
m . All that has to be shown explicitly is

that

p(1)

m+2k+1 < γ′p(1)

m+2k−1,

by using

q(1)

m+2k−1 >
1

2
+ δ′.

Since by the geometric decay in (A.61), for the new range of indices,

p(1)

m+2k−1 < R(γ′)k−1p(1)

m ,

extending (A.52), and σ > m+2k implies δ′ < p(2)

m+2k < 1−δ′; then the estimates
in (3.53) to (3.55) apply also to ϑm+2k, ϑ

′
m+2k and ϑ′′m+2k (with the due shift of

time indices) since |p(2)

m+2k − p
(2)

m+2k−1| < ε, because we can apply Lemma A.37
with b = 0; also the previous step’s estimates for ϑm+2k−1 and ϑ′m+2k−1 keep
applying, and they are vital, since in this step the bound needed, is yielded by
iterating the previous even step into the current odd one, producing a two-step
estimate, because a one step estimate would not yield a subunitary constant,
due to q(1)

m+2k <
1/2 − δ′, which would imply 2(1 − q(1)

m+2k) > 1. Therefore, by
plugging these estimates into Remark A.34 applied to n = m+ 2k− 1, and also
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using the estimate from the previous even step, yields the same estimate as that
obtained for p(1)

m+3:

p(1)

m+2k+1 ≤ p(1)

m+2k−1

[
1− ρ+ 2ρ(1− q(1)

m+2k−1) + 2
ε

(δ′)2

(
3 +

2

ρ

)]
[
1− ρ+ 2ρq(1)

m+2k−1 + 2ε

(
2 +

1

(δ′)2

(
3 +

2

ρ

))]
< p(1)

m+2k−1

{
1− 4ρ2(δ′)2 +

240

ρ2
(δ′)3

}
= γ′p(1)

m+2k−1

resulting into (A.47) by (A.61).

Having shown (A.46) and (A.47), we can easily derive the main claim by simply setting
γ ..=

√
γ′, so as to express the two-steps geometric decaying upper bound as a one-step

geometric decaying one. Equivalently, it has been shown that for all 1 ≤ l ≤ σ −m,

p(1)

m+l < R(γ′)b
l
2
cp(1)

m .

Since ⌊
l

2

⌋
≥ l − 1

2
,

it follows that

p(1)

m+l < R
√
γ′
l−1
p(1)

m ,

hence for the uniform constant γ, we have that for all m < n ≤ σ,

p(1)

n < Rγn−m−1p(1)

m .

For any τ ≥ m we define

ζ ..= inf

{
n > τ :

|p(2)

n+1 − p(2)
n |

p(1)
n

<
1

Γ

}
.

Lemma A.39. Suppose that there exists m ≤ τ < σ, such that

p(1)
τ

|p(2)

τ+1 − p
(2)
τ |
≤ Γ.

Then for all τ ≤ n ≤ ζ ∧ σ,

|p(2)

n+1 − p(2)

n | < ρn−m|p(2)

m+1 − p(2)

m |.

Proof. We proceed like in Lemma 3.47, by showing the claim explicitly only for τ = m.
If ζ = m+1 we need to show the claim only for n = m+1, since for n = m it is trivial.
It is known that only the condition p(1)

m ≤ Γ|p(2)

m+1 − p(2)
m | holds, and p(1)

m+1 < Rp(1)
m by

Remark A.33 applied to n = m, along with the hypotheses made in (A.26) to (A.28).
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Then by (A.54) to (A.58), it follows that

ηm < p(1)

m ≤ Γ|p(2)

m+1 − p(2)

m | (A.62)

ηm+1 < Rp(1)

m ≤ RΓ|p(2)

m+1 − p(2)

m | (A.63)

η′m+1 <
1

(δ′)2
p(1)

m ≤
Γ

(δ′)2
|p(2)

m+1 − p(2)

m | (A.64)

η′′m+1 <
R

δ′
p(1)

m ≤
R

δ′
Γ|p(2)

m+1 − p(2)

m | (A.65)

η′′′m+1 < p(1)

m ≤ Γ|p(2)

m+1 − p(2)

m | (A.66)

ξm+1 <

[
1 +

1

δ′

(
1

ρ
− 1

)]
Rp(1)

m ≤
[
1 +

1

δ′

(
1

ρ
− 1

)]
RΓ|p(2)

m+1 − p(2)

m | (A.67)

ξ′m+1 <
1

δ′

(
1

ρ
− 1

)
p(1)

m ≤
1

δ′

(
1

ρ
− 1

)
Γ|p(2)

m+1 − p(2)

m |. (A.68)

Plugging these estimates into Remark A.35 applied to n = m yields

|p(2)

m+2 − p
(2)

m+1| < ρq(1)

m (1 + ΓD) |p(2)

m+1 − p(2)

m |.

Since by construction Γ < δ′/[D(1− δ′)],

q(1)

m (1 + ΓD) < q(1)

m

(
1 +

δ′

1− δ′

)
=

q(1)
m

1− δ′
≤ 1,

and therefore it follows that

|p(2)

m+2 − p
(2)

m+1| ≤ ρ|p(2)

m+1 − p(2)

m |,

and the claim for ζ = m+ 1 and the first step of the induction is complete.
Assuming now ζ > m+1, we show the rest by induction as in Lemma 3.47. Recall

that δ′ < δ < q(1)
m < 1− δ < 1− δ′ and that

ε <
ρδ′

(2− ρ)
(

1 + R
1−γ

) .
Since for all m ≤ n ≤ ζ ∧ σ, by Lemma A.38, it holds that p(1)

n < Rγn−m−1p(1)
m , or

equivalently that p(1)

m+k < Rγk−1ε for all k ∈ N such that n = m + k is within the
bounds above; by (A.32), for all such k,

q(1)

m+k ≥



q(1)
m −

2−ρ
ρ

∑k
j=0 p

(1)

m+j ≥ δ − (2−ρ)
ρ
ε
(

1 +R
∑k

j=0 γ
j
)

> δ − 2−ρ
ρ
ε
(

1 + R
1−γ

)
> δ′ k even

1− q(1)
m −

2−ρ
ρ

∑k
j=0 p

(1)

m+j ≥ δ − (2−ρ)
ρ
ε
(

1 +R
∑k

j=0 γ
j
)

≥ δ − 2−ρ
ρ
ε
(

1 + R
1−γ

)
> δ′ k odd.

This ensures that estimating η′n, ξn and ξ′n with the constants, which upper bound
reciprocals of q(1), can carry out during the induction step. As to the constants, which
lower bound reciprocals involving q(1), one can proceed analogously:

q(1)

m+k ≤



q(1)
m + 2−ρ

ρ

∑k
j=0 p

(1)

m+j ≤ 1− δ + (2−ρ)
ρ
ε
(

1 +R
∑k

j=0 γ
j
)

< 1− δ + 2−ρ
ρ
ε
(

1 + R
1−γ

)
< 1− δ′ k even

1− q(1)
m + 2−ρ

ρ

∑k
j=0 p

(1)

m+j ≤ 1− δ + (2−ρ)
ρ
ε
(

1 +R
∑k

j=0 γ
j
)

< 1− δ + 2−ρ
ρ
ε
(

1 + R
1−γ

)
< 1− δ′ k odd.
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The inductive hypothesis is then like in Lemma 3.47: assuming that for some k ≥ 0
such that m + k + 1 < ζ ∧ σ, |p(2)

m+k+1 − p(2)

m+k| < ρk|p(2)

m+1 − p(2)
m |, we need to show

that |p(2)

m+k+2 − p(2)

m+k+1| < ρk+1|p(2)

m+1 − p(2)
m |, and it will be done by showing that

|p(2)

m+k+2 − p
(2)

m+k+1| < ρ|p(2)

m+k+1 − p
(2)

m+k|. Since by the definition of σ it still holds that
δ′ ≤ p(2)

m+k+1 ≤ 1−δ′, by the definition of ζ it still holds that p(1)

m+k ≤ Γ|p(2)

m+k+1−p
(2)

m+k|
and the geometric decay of the first component ensures the bounds on q(1)

m+k and q(1)

m+k+1

as shown above, it follows that

ηm+k < p(1)

m+k ≤ Γ|p(2)

m+k+1 − p
(2)

m+k|
ηm+k+1 < Rp(1)

m+k ≤ RΓ|p(2)

m+k+1 − p
(2)

m+k|

η′m+k+1 <
1

(δ′)2
p(1)

m+k ≤
Γ

(δ′)2
|p(2)

m+k+1 − p
(2)

m+k|

η′′m+k+1 <
R

δ′
p(1)

m+k ≤
R

δ′
Γ|p(2)

m+k+1 − p
(2)

m+k|

η′′′m+k+1 < p(1)

m+k ≤ Γ|p(2)

m+k+1 − p
(2)

m+k|

ξm+k+1 <

[
1 +

1

δ′

(
1

ρ
− 1

)]
Rp(1)

m+k ≤
[
1 +

1

δ′

(
1

ρ
− 1

)]
RΓ|p(2)

m+k+1 − p
(2)

m+k|

ξ′m+k+1 <
1

δ′

(
1

ρ
− 1

)
p(1)

m+k ≤
1

δ′

(
1

ρ
− 1

)
Γ|p(2)

m+k+1 − p
(2)

m+k|.

Plugging these estimates into Remark A.35 applied to n = m+ k yields

|p(2)

m+k+2 − p
(2)

m+k+1| < ρq(1)

m+k (1 + ΓD) |p(2)

m+k+1 − p
(2)

m+k|.

Since by construction Γ < δ′/[D(1− δ′)],

q(1)

m+k(1 + ΓD) < q(1)

m+k

(
1 +

δ′

1− δ′

)
=

q(1)

m+k

1− δ′
≤ 1,

and therefore it follows that

|p(2)

m+k+2 − p
(2)

m+k+1| ≤ ρ|p(2)

m+k+1 − p
(2)

m+k|,

and the induction is complete. If m < τ < σ, the same concluding remarks apply, as
in Lemma 3.47.

In the following theorem, the proof of convergence, given that the previous results
(Lemmas A.38 and A.39) have been rederived in correspondingly to the old ones
(Lemmas 3.46 and 3.47), plays out exactly as Theorem 3.48, with only a small change:
whenever the factor 1+2/Γ appears, it must be replaced with the factor 1+R/Γ, because
the factor of 2 in the statement of Lemma 3.46 has been replaced by the factor R in
Lemma A.38. Also c = ρ, in the notation of Section 3.5.3. The rest of the proof then
does not change, since in the condition defining ε′ the term

δΓλ(1− λ)

2(R + Γ)

has now replaced
δΓλ(1− λ)

2(2 + Γ)
.

Hence it is not necessary to repeat the modified argument.

Theorem A.40. {pn} converges to some p∗ ∈ E1.
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The proof of the next corollary also does not change. It is enough to appeal to
the corresponding lemmas used from Section 3.5.3 (Theorem 3.48, Corollary 3.39,
Remark 3.36, and Lemmas 3.19 and 3.46) which have been rederived in this section
(Theorem A.40, Corollary A.31, Remark A.28, and Lemmas A.38 and 3.19).

Corollary A.41. As pn converges to some p∗ ∈ E1, qn is asymptotically 2-periodic
to {qp∗ ± `

2
e−1(p∗)}.

Then the same conclusive remarks of Section 3.5.3 apply, mutatis mutandi, leading
to the following.

Remark A.42. If (p0, q0) ∈ Kε′,δ, then by Theorem A.40, for some p∗ ∈ E1, pn −→ p∗
and {qn} diverges.

The same is not true for the argument in Section A.4, as explained in Section 3.5.3.

Remark A.43. If p∗ ∈ Ei for i ∈ {2, 3}, one can proceed by exploiting the symmetry
of the model, define σ, ζi and τi accordingly in terms of the corresponding coordinates,
and show an analogous version of Theorem A.40 and Remark A.42 for i ∈ {2, 3}
as well, thus yielding convergence of {pn} to some p∗ ∈ ∂Σ \ V and asymptotic 2-
periodicity of {qn(ω)} to {qp∗± `

2
e−1(p∗)} for any orbit having ` > 0 and a subsequence

bounded away from the vertices.

A.6 Convergence of the dynamical system

In this section we finally put together all the convergence results gathered so far to
show firstly the convergence of {pn}, secondly that {qn} may or may not converge.

Proof of Theorem 2.1. Let p0 6∈ ∂Σ. By Lemma A.8 the limit ` of the potential
function exists. If {pn} is bounded away from the boundary, it converges by Proposi-
tion A.9. If ` = 0 and {pn} is not bounded away from the boundary, it converges by
Remark A.20. If ` > 0 and {pn} is not bounded away from the boundary, it converges
by Remark A.43. By mutual exclusion the only case left is convergence to a vertex.
Let p0 ∈ ∂Σ \ V and q0 ∈ Σ0. Then {pn} converges by Lemma A.21. Let p0 ∈ Ei and
q0 ∈ V . Then {pn} converges by Remarks A.1 and A.2.

Proof of Corollary 2.2. Let p0 6∈ ∂Σ. By Lemma A.8 the limit ` of the potential
function exists. By Theorem 2.1 if ` = 0 the convergence to Σ

∗
is trivial. If ` > 0

the convergence to the limit 2-cycle follows either by Remark A.43 if p∗ ∈ V , or by
the introductory remarks to Section A.5.3. Let p0 ∈ ∂Σ \ V and q0 ∈ Σ0. Then {qn}
either converges in ∂Σ∗ ⊂ Σ

∗
or is asymptotic to a 2-cycle by Corollary A.25. Let

p0 ∈ Ei and q0 ∈ V . Then {qn} is 2-periodic by Remarks A.1 and A.2, and thus
trivially asymptotic to a 2-cycle.
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Appendix B

Construction of ϑ(µ) and θ(µ)

In Section 4.4, prior to Lemma 4.13, we discussed extensively the reasons behind
choosing a 1 < ν <

√
µ, as a function of µ > 1, defined as

ν = ν(µ) ..=

{
7
5
, µ ≥ 2

µ
1
2
−ϑ, 1 < µ < 2,

where ϑ = ϑ(µ) can be determined such that 0 < ϑ < 1/2. While the case µ ≥ 2 is
an easy guess, the case 1 < µ < 2 is not so easy to guess, so a constructive approach,
which requires determining the functions ϑ(µ) and θ(µ), is what leads to the guess
made in Lemma 4.13. In this appendix we show how to construct them.

Let η = η(µ) ..= min {ρ, 1− ρ}. Clearly m can be so large to ensure ρ−η < ρn+1 <
ρ+ η for all n ≥ m, where

η = η(µ) ..= min {ρ, 1− ρ} =

{
1− ρ, µ ≥ 2

ρ, 1 < µ < 2,

since for all µ > 1, µ ≥ 2 is equivalent to 1− ρ ≤ ρ as ρ = (µ− 1)/µ, thus implying
also that µ < 2 is equivalent to ρ < 1− ρ. Define

a = a(θ, µ) ..=
ρ+ η + (4 + ρ+ η)θ

2

and

b = b(θ, µ) ..=
a(θ, µ)

d(θ, µ)
,

where

d(θ, µ) ..=

[
1−

(
1− 1

3
√
µ

)
θ

] [
1− 2

2− ρ+ η + 2θ

3(1 + 3
√
µ)

( 3
√
µ− 1)θ

]
.

We have seen, in Lemma 4.13, how the requirement 0 < θ < 1/2 implies the positivity
of the factors appearing in d. The constant θ = θ(µ) is to be determined and thus
fixed along with ϑ(µ), such that, for all µ ≥ 2, 0 < a < 3/4 and 0 < b < 1 and
3/4 > 1/ν; while for all 1 < µ < 2 we require the conditions 0 < a < b < 1 and a > 1/ν.
That this is possible for all µ ≥ 2 has been shown in Lemma 4.13. The construction
that leads to all these conditions to be met also for 1 < µ < 2, requires more work.

First of all it needs to be shown that it is possible to find 0 < ϑ, θ < 1/2 such that

a(θ, µ) >
1

ν(µ)
= µϑ(µ)− 1

2 . (B.1)
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Next one needs to show that the θ thus found ensures that 0 < a, b < 1. (B.1) is
equivalent to

1

2
log µ+ log a > ϑ log µ,

which is equivalent to

ϑ <
1

2
+

log a

log µ
.

Thus the existence of ϑ can be ensured by requiring that θ = θ(µ) be such that

−1

2
<

log a(θ, µ)

log µ
< 0,

or equivalently, since η = ρ, that

1
√
µ
< ρ+ (2 + ρ)θ < 1,

and then by finding explicitly a parametrisation θ = θ(µ) that satisfies it for all
1 < µ < 2 (on top of ensuring 0 < a, b < 1). Once this is done, we can use any

0 < ϑ(µ) <
1

2
+

1

log µ
log [ρ+ (2 + ρ)θ] ,

since the specific form will not be playing an explicit role in the argument of Theo-
rem 4.18, so we will just take, for example, half the upper bound as our ϑ. On the
other hand, we will determine θ explicitly, as it will play an important role in all
estimates from Lemma 4.14 onward. The condition that ensures the existence of ϑ
can be rephrased as a system of two inequalities:

ρ+ (2 + ρ) θ < 1 (B.2)

ρ+ (2 + ρ) θ >
1
√
µ
. (B.3)

We will first study this as a subset of the (θ, ρ)-plane’s first quadrant, due to 0 <
ρ, θ < 1/2. First we rearrange (B.2) and (B.3), so that they are shown to describe
regions of the plane delimited by rectangular hyperbolic boundaries. Indeed, (B.2) is
equivalent, by adding and subtracting 1 to θ and rearranging, to

(ρ+ 2)(θ + 1) < 3.

This is the part of the plane strictly between the two branches of the rectangular
hyperbola of equation (ρ+ 2)(θ+ 1) = 3, which has a centre of coordinates (−1,−2).
One branch is on the third quadrant, the only relevant branch goes through the first
quadrant and meets the θ-axis at (1/2, 0) and the ρ-axis at (0, 1). In Figure B.1 we can
see the the rectangular hyperbola defining the boundary of the region corresponding
to the inequality (B.2) in solid gray (concealed partially by the dashed blue line,
as they coincide). The region corresponding to (B.2), which is independent of µ, is
the one closer to the origin, between the θ-axis, the ρ-axis and the gray hyperbola.
Through a similar manipulation as that used for (B.2), (B.3) is shown to be equivalent
to

(2 + ρ)(1 + θ) > 2 +
1
√
µ
.

This is the part of the plane strictly outside the two branches of the rectangular
hyperbola of equation (2 + ρ)(1 + θ) = 2 + 1/√µ, which has a centre of coordinates
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(−1,−2). The simultaneous inequalities (B.2) and (B.3) admit therefore a solution,
with positive values for θ and ρ, due to the fact that 2+1/

√
2 < 2+1/√µ < 3. Indeed, one

branch is on the negative quadrant, the only relevant branch goes through the positive
quadrant and meets the θ-axis at (1/2√µ, 0) and the ρ-axis at (0, 1/√µ). In Figure B.1
we can see the hyperbolas defining the boundary of the region corresponding to the
inequality (B.3) and positive values of θ and ρ, for the limit parameters µ = 1, in
dashed blue (coinciding with the hyperbola for (B.2)), and µ = 2, in dashed red. The
region corresponding to Figure B.1 is obviously always the one further from the origin,
between the θ-axis, the ρ-axis and above the dashed hyperbolic branch corresponding
to the value of µ at hand (clearly all the branches for 1 < µ < 2 are in between the
limit ones). The solution to (B.2) and (B.3) is thus represented by the area between
the two branches (the dashed one corresponding to the value of µ at hand and the
gray one, which is independent of µ, see Figure B.1 for the solution corresponding to
µ = 3/2) and the coordinate axes. For µ = 2 this area is the largest and vanishes as
µ −→ 1. Due to 0 < 1/√µ < 1 for all µ > 1, the area in between the solid gray and
dashed branch is always nonnegligible and represents the solution for positive values.
What we need to find is a parametrisation of θ in terms of µ that always falls within
this feasible area. Clearly, since 3

√
µ <

√
µ for all µ > 1, 1/√µ < 1/ 3

√
µ < 1, so an

option is to choose all θ > 0 such that (2 + ρ)(1 + θ) = 2 + 1/ 3
√
µ. This is a consistent

choice, since we have fixed η = ρ = 1− 1/µ < 1/2, and the hyperbola chosen allows for
ρ ∈ (0, 1/ 3

√
µ). Indeed, having 1 < µ < 2,

ρ = 1− 1

µ
<

1
3
√
µ

since while 1 − 1/µ < 1/2, 1/ 3
√
µ > 1/ 3

√
2 > 1/2. Hence the intersection between the

horizontal line, drawn at the height of the fixed value given by ρ and the hyperbola
in question, is always well defined. Hence for 1 < µ < 2 we can set

θ(µ) ..=
2 + 1

3
√
µ

2 + ρ
− 1 =

2 + 1
3
√
µ

3− 1
µ

− 1

(see Figure B.2 for an intuitive representation depicting the case µ = 3/2, where the
solid black hyperbola represents the hyperbolic subset of solution chosen to derive θ(µ)
explicitly from the ρ(µ)). Note that this definition is consistent with 0 < θ(µ) < 1/2,
as 1 < µ < 2. As aforementioned, one can let, for example,

ϑ(µ) ..=
1

4
+

1

2 log µ
log a.

Note that by adding and subtracting 1 to θ and recalling that we chose θ(µ) such that

(2 + ρ) (1 + θ) = 2 +
1

3
√
µ
,

we obtain

a = ρ+ (2 + ρ)θ = ρ+ (2 + ρ) (1 + θ)− (2 + ρ) = ρ+ 2 +
1

3
√
µ
− 2− ρ =

1
3
√
µ
.

As a result of a = 1/ 3
√
µ, and it follows that

ϑ(µ) ..=
1

4
+

1

2 log µ
log
(
µ−

1
3

)
=

1

12
,

thus yielding
ν = µ

1
2
−ϑ = µ

5
12 ,

and the set up of the constants is thus complete. The final check that 0 < a < b < 1
has been done in Lemma 4.13.
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Figure B.1: Nonnegligibility of the positive solution to (B.2) and (B.3)

θ(µ) 1
2

ρ(µ)

1
3
√
µ

1

θ

ρ (2 + ρ)(1 + θ) = 3
(2 + ρ)(1 + θ) = 2 + 1/ 3

√
µ

(2 + ρ)(1 + θ) = 2 + 1/√µ

Figure B.2: Finding θ(µ) given ρ(µ) = 1/3 for µ = 3/2
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Part IV

Supplements to Part II
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Appendix C

Supplements to Chapter 6

In this chapter, for self-containedness, we include a few brief results regarding
monopoly, which can be found, respectively, in [48, Lemma 2.3, Lemma 2.2, The-
orem 1.3, Theorem 1.4]. Recall the usual notation for the BB model: α is
the feedback parameter, σn is the integer-valued time-dependent number of balls
thrown at the bins, τn ..= τ0 +

∑n
i=1 σi, ρn

..= σn+1/τn, θ ←− θn ..= α−n log τn,
λ = lim supn→∞ σn+1σ

α
n−1σ

−α−1
n , and monopoly is the event M for which all but

one bin receive finitely many balls. Recall also the claim proved in Lemma 6.1: if

∞∑
n=1

σn+1

ταn
=∞,

then P(M) = 0.

Lemma C.1.
∞∑
n=1

σn
τn

=∞.

Proof. Note first that

τn = τn−1

(
τn−1

τn

)−1

= τn−1

(
1− σn

τn

)−1

= τ0

n∏
k=1

(
1− σk

τk

)−1

=

τ0 exp−
n∑
k=1

log

(
1− σk

τk

)
.

Thus as n −→∞,

−
n∑
k=1

log

(
1− σk

τk

)
= log

τn
τ0

−→∞.

Without loss of generality, assume σn/τn −→ 0 (otherwise, there is nothing to prove,
the series would be divergent by assumption). It is then possible to expand in Taylor
series the logarithm and get the following:

− log

(
1− σk

τk

)
=
σk
τk

+
σ2
k

2τ 2
k

+ O

(
σ2
k

τ 2
k

)
.

It is now possible to apply the limit comparison test to the two series
∑∞

n=1
σn/τn and

−
∑∞

n=1 log (1− σn/τn):

σn
τn

− log
(

1− σn
τn

) =
σn
τn

σn
τn

+ σ2
n

2τ2
n

+ O
(
σ2
n

τ2
n

) =
1

1 + σn
2τn

+ O
(
σn
τn

) −→ 1.
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Thus either both series diverge or both converge. From what has been noted first,
the claim follows.

In the next theorem we show that there is no monopoly without feedback.

Proof of Theorem 1.14. Lemma C.1 and τn−1 < τn imply that

∞ =
∞∑
n=1

σn
τn

<

∞∑
n=1

σn
τn−1

=
∞∑
n=0

σn+1

τn
,

so by Lemma 6.1 the claim follows.

In the next theorem we show that if there is feedback and θ = ∞ (supercritical
regime), then there is no monopoly.

Proof of Theorem 1.15. Assume by contradiction that

∞∑
n=0

σn+1

ταn
<∞.

Then σn/ταn−1 vanishes, hence there is a k such that for all n ≥ k, σn < ταn−1. Hence
for all such n,

τn = τn−1 + σn ≤ τn−1 + ταn−1 ≤ 2ταn−1.

Iterating this n− k times yields

τn ≤ 2
∑n−k−1
i=0 αiτα

n−k

k = 2
αn−k−1
α−1 τα

n−k

k ≤ 2
αn−k
α−1 τα

n−k

k =
(

2
1

α−1 τk

)αn−k
,

but then, for all n ≥ k,

θn ≤
αn−k log

(
2

1
α−1 τk

)
αn

=
log
(

2
1

α−1 τk

)
αk

,

and therefore the contradiction

θ ≤
log
(

2
1

α−1 τk

)
αk

<∞

is reached. The claim now follows by Lemma 6.1.

In the next theorem we show that with feedback and θ = 0 (subcritical regime),
if ρn −→∞ and λ > 1, there is no monopoly.

Proof of Theorem 1.16. Rewrite

σn+1

ταn
σn
ταn−1

=
ρn
ρn−1

(
τn−1

τn

)α−1

=
ρn
ραn−1

(
1

1 + ρn−1

)α−1

=
ρn
ραn−1

(
ρn−1

1 + ρn−1

)α−1

.

Since ρn −→∞, (
ρn−1

1 + ρn−1

)α−1

−→ 1,

and, noting that
σn
τn

=
1

1− 1
ρn−1

,
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σn ∼ τn, so that
ρn
ραn−1

=
σn+1τ

α
n−1

τnσαn
∼
σn+1σ

α
n−1

σα+1
n

.

Then since

1 < lim sup
n→∞

σn+1σ
α
n−1

σα+1
n

= lim sup
n→∞

ρn
ραn−1

(
ρn−1

1 + ρn−1

)α−1

= lim sup
n→∞

σn+1

ταn
σn
ταn−1

,

it follows that
∞∑
n=0

σn+1

ταn
=∞,

and therefore, P(M) = 0 by the ratio test and Lemma 6.1.
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Appendix D

Supplements to Chapter 7

In this section, for self-containedness, we outline the idea of the proof of no dominance
in absence of feedback for two bins, which can be read in [48, Theorem 1.1] in full
detail. The two bins scenario is essentially univariate, since the vector Θn = (Θ(1)

n , 1−
Θ(1)
n ). Thus by symmetry it is possible to focus only on Θ(1)

n
..= T

(1)
n /τn for all arguments,

and therefore we denote Θ(1)
n as Θn

..= Tn/τn, just for this chapter. For two bins the
event of dominance, that there is one of the two proportions converging to 1, can
equivalently be stated as the event that there is one of the two proportions converging
to 0.

Theorem D.1. Let α = 1. Then Θn converges almost surely to a random variable Θ
and P(D) = 0.

Idea of the proof. By the first part of the argument of Theorem 1.10 applied to d =
2, we have already seen that the almost sure convergence holds by the martingale
convergence theorem, so we only need to show the idea of the proof behind the second
part of the argument. By symmetry, it suffices to show that P(Θ = 0) = 0.

Denote by fn(λ) ..= Ee−λΘn and f(λ) ..= Ee−λΘ, for λ ∈ R. Since f(λ) ≥
E
[
e−λΘ

1{Θ=0}
]

= P(Θ = 0) for all λ, the claim will follow by showing that there
is a sequence {λm}m∈N such that

lim
m−→∞

f(λm) = 0.

Let c ∈ (0, 1) be such that

e−x ≤ 1− x+
x2

2
for all x ∈ [0, c], and define λm = cτm. The bulk of the technical work is showing by
induction on k, by relying on the monotonicity of all functions fn−k(λ), that

fn(λm) ≤ fn−k

(
λm − λ2

m

n∑
i=n−k+1

σi
τ 2
i

)
for all m, n > m and 1 ≤ k ≤ n−m. Substituting k = n−m in the inductive upper
bound obtained, and exploiting the monotonicity of fm(λ), yields

fn(λm) ≤ fm

(
λm − λ2

m

n∑
i=m+1

σi
τ 2
i

)
≤ fm(λm(1− c)) = Ee−c(1−c)τmΘm = Ee−c(1−c)Tm

for all m and n > m. The second inequality follows since, noting that

n∑
i=n−k+1

σi
τ 2
i

=
n∑

i=n−k+1

τi − τi−1

τ 2
i

≤
∫ τn

τn−k

dx

x2
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and that τm ≤ τn−k and c < 1, it holds that

λm − λ2
m

n∑
i=m+1

σi
τ 2
i

≥ λm

(
1− cτm

∫ ∞
τm

dx

x2

)
= λm(1− c).

By the Dominated Convergence Theorem, knowing that fn(λ) −→ f(λ) as n −→ ∞
for all λ > 0, we can take limits in the inequality just derived, yielding f(λm) ≤
Ee−c(1−c)Tm for all m. As by Theorem 1.14 it is known that P(M) = 0, almost surely
none of the bins eventually stops receiving balls, that is, almost surely Tm −→ ∞.
By the Dominated Convergence Theorem again, we have that Ee−c(1−c)Tm −→ 0 as
m −→ ∞, which shows the fact that f(λm) −→ 0 as m −→ ∞. Since λ is arbitrary
in the inequalities 0 ≤ P(Θ = 0) ≤ f(λ) previously established, we have that this last
fact implies that P(Θ = 0).
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Appendix E

Supplements to Chapter 8

In this section, for self-containedness, we include the proof of three useful lemmas
that are adaptations of [48, Lemma 6.4, Proposition 7.1, Proposition 6.3] respectively.
Recall that for the BB model: α is the feedback parameter, σn is the integer-valued
time-dependent number of balls thrown at the bins, τn = τ0 +

∑n
i=1 σi, ρn

..= σn+1/τn
and the normalised fluctuations are defined as

ε(i)

n+1
..=

B(i)

n+1 − σn+1P
(i)
n√

σn+1P
(i)
n (1− P (i)

n )
.

Lemma E.1. Let {ξn} be a sequence of random variables adapted to the filtration
{Fn}. Suppose |ξi| ≤ ζnai for all i ≥ n, for all n ∈ N almost surely, where {ζn} is
an almost surely positive and square-integrable {Fn}-adapted sequence, and {an} is a
deterministic square-summable sequence. Then for all j ∈ {1, . . . , d}, almost surely,

∞∑
i=0

ξiε
(j)

i+1 <∞

and

lim inf
n→∞

1

ζn
√
An

∞∑
i=n

ξiε
(j)

i+1 <∞,

where An =
∑∞

i=n a
2
i .

Proof. Let n ∈ N0. For all m ≥ n denote

Snm
..=

m−1∑
i=n

ξiε
(j)

i+1,

where the empty sum convention is adopted (that is Snn = 0). Then Sn = {Snm}m is
a martingale with respect to {Fm}. Indeed, since {ξi} are adapted and {ε(j)

i+1} are
centred conditionally on this filtration, as well as adapted to it, Snm is adapted and

EFm−1S
n
m =

m−1∑
i=n

EFm−1(ξiε
(j)

i+1) =
m−2∑
i=n

ξiε
(j)

i+1 + ξm−1EFm−1ε
(j)

m =
m−2∑
i=n

ξiε
(j)

i+1 = Snm−1.

Since boundedness in L2 holds, thanks to the martingale property of orthogonality of
the increments

∞∑
m=n

E(Snm+1 − Snm)2 =
∞∑
m=n

Eξ2
m(ε(j)

m+1)2
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is finite, which follows from the two square-summability and square-integrability hy-
potheses made on {ξi} and {ζn} respectively:

∞∑
m=n

Eξ2
m(ε(j)

m+1)2 ≤
∞∑
m=n

a2
mEζ2

n(ε(j)

m+1)2 =
∞∑
m=n

a2
mEζ2

nEFm(ε(j)

m+1)2 = Eζ2
n

∞∑
m=n

a2
m <∞,

where it has been made use of the null conditional mean and unitary conditional
variance of ε(j)

m+1, on the top of the random variables ζn being adapted. This implies
the almost sure convergence to a finite limit of the martingale Snm, as m −→ ∞, by
the standard theory. Hence

∞∑
i=n

ξiε
(j)

i+1 <∞,

which implies the first claim that

∞∑
i=0

ξiε
(j)

i+1 <∞

almost surely.
In order to show that almost surely

lim inf
n→∞

1

ζn
√
An

∞∑
i=n

ξiε
(j)

i+1 <∞,

we equivalently prove that

P

(
lim inf
n→∞

1

ζn
√
An

∞∑
i=n

ξiε
(j)

i+1 =∞

)
= 0.

Having defined Ek
n

..=
{

1
ζn
√
An

∑∞
i=n ξiεi+1 > k

}
, rewrite the event in the following

way:{
lim inf
n→∞

1

ζn
√
An

∞∑
i=n

ξiε
(j)

i+1 =∞

}
=
∞⋂
k=1

{
lim inf
n→∞

1

ζn
√
An

∞∑
i=n

ξiε
(j)

i+1 > k

}
=

∞⋂
k=1

{
∃N ∈ N : ∀n ≥ N,

1

ζn
√
An

∞∑
i=n

ξiε
(j)

i+1 > k

}
=

∞⋂
k=1

∞⋃
N=1

{
∀n ≥ N

1

ζn
√
An

∞∑
i=n

ξiε
(j)

i+1 > k

}
=
∞⋂
k=1

∞⋃
N=1

⋂
n≥N

{
1

ζn
√
An

∞∑
i=n

ξiε
(j)

i+1 > k

}

=
∞⋂
k=1

∞⋃
N=1

⋂
n≥N

Ek
n =

∞⋂
k=1

Hk,

where Hk =
⋃∞
N=1 GN , with GN =

⋂
n≥N E

k
n. In order to prove that P (

⋂∞
k=1 Hk) = 0,

it is enough to note first that Hk ⊇ Hk+1, because trivially Ek
n ⊇ Ek+1

n , and therefore
limk→∞Hk =

⋂∞
k=1Hk is well defined, and by the monotonicity of the probability

measure

P

(
∞⋂
k=1

Hk

)
= lim

k→∞
P(Hk).
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By a similar reasoning, note also that P(Hk) = P (
⋃∞
N=1GN) , and by the definition

of GN , GN ⊆ GN+1, implying that limN→∞GN =
⋃∞
N=1 GN and therefore, by mono-

tonicity of the probability measure, P (
⋃∞
N=1GN) = limN→∞ P(GN). All in all, we

have that

P

(
lim inf
n→∞

1

ζn
√
An

∞∑
i=n

ξiε
(j)

i+1 =∞

)
= lim

k→∞
lim
N→∞

P(GN),

thus all there is left to prove is that limk→∞ limN→∞ P(GN) = 0. Proceed with es-
timating P(GN) from above. Since trivially GN ⊆ Ek

N , raising to the square yields,
conditionally on FN , that

P(GN) ≤ P(Ek
N) ≤ P

 1

ζ2
NAN

(
∞∑
i=N

ξiε
(j)

i+1

)2

> k2


= EPFN

 1

ζ2
NAN

(
∞∑
i=N

ξiε
(j)

i+1

)2

> k2

 ,

with ζ2
N ∈ mFN and AN deterministic, allowing to apply Markov’s inequality condi-

tionally on FN as follows:

PFN

 1

ζ2
NAN

(
∞∑
i=N

ξiε
(j)

i+1

)2

> k2

 = PFN

( ∞∑
i=N

ξiε
(j)

i+1

)2

> k2ANζ
2
N

 ≤
EFN

(∑∞
i=N ξiε

(j)

i+1

)2

k2ANζ2
N

≤ 1

k2
.

The last step follows from the very same calculation done earlier, where we showed
L2-boundedness of Sn, but conditionally on FN this time. This shows that SNm is
a martingale bounded in L2(FN). The orthogonality of the increments implies the
same upper bound for all m > N :

EFN

(
m−1∑
i=N

ξiε
(j)

i+1

)2

= EFN (SNm)2 = EFN (SNN )2 +
m−1∑
i=N

EFN (SNi+1 − SNi )2 =

m−1∑
i=N

EFN ξ
2
i (ε

(j)

i+1)2 ≤ ζ2
N

m−1∑
i=N

a2
i ≤ ζ2

NAN .

Hence

EFN

(
∞∑
i=N

ξiε
(j)

i+1

)2

≤ sup
m≥N

EFN (SNm)2 ≤ ζ2
NAN ,

and the result follows from taking expectation. Since P(GN) ≤ 1/k2, and
limk→∞ limN→∞ P(GN) ≤ limk→∞ 1/k2 = 0, the conclusion of the argument is
reached.

Lemma E.2. Let i ∈ [d]. If ρn is bounded, on the event {Θ(i)
n −→ 0}, T (i)

n is almost
surely bounded.

Proof. The aim is to prove, by contradiction, that T (i)

k (ω) is bounded for almost all
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ω ∈
{

Θ(i)

k −→ 0
}

. Assume by contradiction that on Θ(i)

k −→ 0, T (i)

k −→∞. Since

T (i)

i = T (i)

j−1 +B(i)

j = T (i)

j−1 + σjP
(i)

j−1 +
(
B(i)

j − σjP
(i)

j−1

)
= T (i)

j−1 + σjP
(i)

j−1+

ε(i)

j

√
σjP

(i)

j−1

(
1− P (i)

j−1

)
≤ T (i)

j−1 + dα−1σj
(
Θ(i)

j−1

)α
+ ε(i)

j

√
σjP

(i)

j−1

(
1− P (i)

j−1

)
=

T (i)

j−1 + dα−1σj

(
T (i)

j−1

τj−1

)α

+ ε(i)

j

√
σjP

(i)

j−1

(
1− P (i)

j−1

)
by the bound in (8.1),

T (i)

j − T
(i)

j−1(
T (i)

j−1

)α ≤ dα−1 σj
ταj−1

+ ε(i)

j

√
σjP

(i)

j−1

(
1− P (i)

j−1

)(
T (i)

j−1

)α = dα−1 σj
ταj−1

+ ε(i)

j ξ
(i)

j−1, (E.1)

having defined

ξ(i)

j−1 =

√
σjP

(i)

j−1

(
1− P (i)

j−1

)(
T (i)

j−1

)α .

Summing (E.1) from n+ 1 to infinity yields the following upper bound:

∞∑
j=n+1

T (i)

j − T
(i)

j−1(
T (i)

j−1

)α ≤ dα−1

∞∑
j=n+1

σj
ταj−1

+
∞∑

j=n+1

ε(i)

j ξ
(i)

j−1. (E.2)

We also find a lower bound for the same summation, since as T (i)

k −→∞,
(
T (i)

j−1

)−α
is

decreasing, and in particular vanishing. Therefore, arguing as in the integral test for
series, we have that

∞∑
j=n+1

T (i)

j − T
(i)

j−1(
T (i)

j−1

)α ≥
∫ ∞
T

(i)
n

dx

xα
=

1

(α− 1)
(
T (i)
n

)α−1 . (E.3)

In conclusion putting (E.2) and (E.3) together yields

1

(α− 1)
(
T (i)
n

)α−1 ≤ dα−1

∞∑
j=n+1

σj
ταj−1

+
∞∑

j=n+1

ε(i)

j ξ
(i)

j−1. (E.4)

A bound can similarly be found for the first summation involved, as ρj−1 is bounded
by a constant ρ:

∞∑
j=n+1

σj
ταj−1

=
∞∑

j=n+1

(1 + ρj−1)ασj
ταj

≤ (1 + ρ)α
∞∑

j=n+1

σj
ταj

= (1 + ρ)α
∞∑

j=n+1

τj − τj−1

ταj

≤ (1 + ρ)α
∫ ∞
τn

dx

xα
=

(1 + ρ)α

(α− 1)τα−1
n

.

Plugging
∞∑

j=n+1

σj
ταj−1

≤ (1 + ρ)α

(α− 1)τα−1
n

(E.5)

in (E.4) yields

1

(α− 1)
(
T (i)
n

)α−1 ≤
dα−1(1 + ρ)α

(α− 1)τα−1
n

+
∞∑

j=n+1

ε(i)

j ξ
(i)

j−1 =
γ

(α− 1)τα−1
n

+
∞∑

j=n+1

ε(i)

j ξ
(i)

j−1,
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where γ = dα−1(1 + ρ)α. Rearranging it, yields

1(
Θ(i)
n

)α−1 =

(
τn

T (i)
n

)α−1

≤ γ + (α− 1)τα−1
n

∞∑
j=n+1

ε(i)

j ξ
(i)

j−1,

thus
1(

Θ(i)
n

)α−1 − γ ≤ (α− 1)τα−1
n

∞∑
j=n+1

ε(i)

j ξ
(i)

j−1. (E.6)

It is now possible to reach a contradiction by invoking Lemma E.1. Consider that by
definition of ξ(i)

j , (8.1) and T (i)

j being nondecreasing, we have that

ξ(i)

j−1 =

√
σjP

(i)

j−1

(
1− P (i)

j−1

)(
T (i)

j−1

)α ≤ 1(
T (i)

j−1

)α
2

√
σjdα−1

(
Θ(i)

j−1

)α(
T (i)

j−1

)α ≤ 1(
T (i)
n

)α
2

√
dα−1σj
ταj−1

.

Define

ζn ..=
1(

T (i)
n

)α
2

∈L2

aj ..=

√
dα−1σj
ταj−1

∈ l2,

where {ζn} is trivially adapted, since ζn ∈ mFn, and square integrable on Ω, as
0 < ζn < 1. The square-summability of {aj} follows trivially from (E.5). Then

|ξj−1| = ξj−1 ≤ ζnaj.

Define also

An ..=
∞∑

j=n+1

a2
j = dα−1

∞∑
j=n+1

σj
ταj−1

≤ γ

(α− 1)τα−1
n

and further estimate

1(
Θ(i)
n

)α−1 − γ ≤ (α− 1)τα−1
n

∞∑
j=n+1

ε(i)

j ξ
(i)

j−1 ≤ (α− 1)τα−1
n

√
γ

(α−1)τα−1
n(

T (i)
n

)α
2 ζn
√
An

∞∑
j=n+1

ε(i)

j ξ
(i)

j−1

=

√
(α− 1)γ

τn

(
τn

T (i)
n

)α
2 1

ζn
√
An

∞∑
j=n+1

ε(i)

j ξ
(i)

j−1 =

√
(α− 1)γ

τn
(
Θ(i)
n

)α 1

ζn
√
An

∞∑
j=n+1

ε(i)

j ξ
(i)

j−1.

Thus (
1(

Θ(i)
n

)α−1 − γ

)√
τn
(
Θ(i)
n

)α ≤ √(α− 1)γ

ζn
√
An

∞∑
j=n+1

ε(i)

j ξ
(i)

j−1,

Lemma E.1 ensures that

lim inf
n−→∞

1

ζn
√
An

∞∑
j=n+1

ε(i)

j ξ
(i)

j−1 <∞,

and therefore

lim inf
n−→∞

(
1(

Θ(i)
n

)α−1 − γ

)√
τn
(
Θ(i)
n

)α
<∞.
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Since (
1(

Θ(i)
n

)α−1 − γ

)√
τn
(
Θ(i)
n

)α
=

(
1(

Θ(i)
n

)α
2
−1
− γ (Θ(i)

n )
α
2

)
√
τn

and
1(

Θ(i)
n

)α
2
−1
− γ (Θ(i)

n )
α
2 ∼ 1(

Θ(i)
n

)α
2
−1

as Θ(i)
n −→ 0 by hypothesis, and γ is a constant, it follows that almost surely

∞ > lim inf
n−→∞

(
1(

Θ(i)
n

)α−1 − γ

)√
τn
(
Θ(i)
n

)α
= lim inf

n−→∞

(
1(

Θ(i)
n

)α
2
−1
− γ (Θ(i)

n )
α
2

)
√
τn

= lim inf
n−→∞

√
τn(

Θ(i)
n

)α
2
−1
.

The contradiction follows from

lim inf
n−→∞

√
τn(

Θ(i)
n

)α
2
−1

<∞.

We have indeed two cases.

Case 1. If α ≥ 2, having (Θ(i)
n )

α
2
−1 ≤ 1, it trivially follows that

∞ > lim inf
n−→∞

√
τn(

Θ(i)
n

)α
2
−1
≥ lim inf

n−→∞

√
τn =∞,

which is a contradiction.

Case 2. If 1 < α < 2, then 0 < (2− α)/2 < 1/2 and (α− 1)/(2− α) > 0. Note that

√
τn(

Θ(i)
n

)α
2
−1

= (T (i)

n )
2−α

2 τ
α−1

2
n =

(
T (i)

n τ
α−1
2−α
n

) 2−α
2

.

But since T (i)
n −→∞, (

T (i)

n τ
α−1
2−α
n

) 2−α
2

−→∞,

and it follows that

∞ > lim inf
n−→∞

√
τn(

Θ(i)
n

)α
2
−1

= lim inf
n−→∞

(
T (i)

n τ
α−1
2−α
n

) 2−α
2

=∞,

which is a contradiction.

Hence T (i)

k must be almost surely bounded on the event Θ(i)

k −→ 0.

Lemma E.3. P(ε(i)

n+1 ≤ n, ev.) = 1.

Proof. Equivalently, we can prove that P(ε(i)

n+1 > n, i.o.) = 0. Let En+1
..={

ε(i)

n+1 > n
}
∈ Fn+1. By Lévy’s extension of Borel-Cantelli Lemma, if

∞∑
n=0

PFn(En+1) <∞,
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then
∞∑
n=0

1En+1 <∞,

that is En+1 does not occur infinitely often. Vice versa, if

∞∑
n=0

PFn(En+1) =∞,

then
∞∑
n=0

1En+1 ∼
∞∑
n=0

PFn(En+1),

that is En+1 does not occur infinitely often, as

∞∑
n=0

1En+1

must diverge. Summing up,

{En+1, i.o.} =

{
∞∑
n=0

PFn(En+1) =∞

}
.

Since by the conditional Markov’s inequality

PFn(En+1) ≤ PFn(|ε(i)

n+1| > n) = PFn((ε(i)

n+1)2 > n2) ≤
EFn(ε(i)

n+1)2

n2
=

1

n2
,

the series converges almost surely, and the claim follows.



291

Appendix F

Supplements to Chapter 9

In this chapter, for self-containedness, we include the proof of an adaptation of [48,
7.2]. Recall that for the BB model α is the feedback parameter, σn is the integer-
valued time-dependent number of balls thrown at the bins, τn = τ0 +

∑n
i=1 σi, ρn

..=
σn+1/τn, θ ←− θn ..= α−n log τn, λ ..= lim supn→∞ σn+1σ

α
n−1σ

−α−1
n and the normalised

fluctuations are defined as

ε(i)

n+1
..=

B(i)

n+1 − σn+1P
(i)
n√

σn+1P
(i)
n (1− P (i)

n )
.

Lemma F.1. Assume ρn −→ ∞, λ < 1 and that there exists limn→∞ θn =.. θ = 0.
Let i ∈ [d]. Then on the event {Θ(i)

n −→ 0}, T (i)
n is almost surely bounded.

Proof. The argument will show that the event

E = {Θ(i)

n −→ 0} ∩ {T (i)

n −→∞}

almost never occurs. In order to do this a number of fixed parameters will be needed:
ε, q and δ. The conditions they will have to satisfy will be specified in due time.
Recall that by (8.1) the following iterative upper bound holds:

T (i)

n+1 ≤ T (i)

n + dα−1σn+1
(T (i)

n )α

ταn
+ ε(i)

n+1

√
σn+1P

(i)
n (1− P (i)

n ). (F.1)

Define k0 = 0 and δ > 0 small enough, to satisfy all conditions, which will be imposed
in due time. For every n ∈ N define a sequence of stopping times

kn = inf

{
j > kn−1 :

σj+1

ταj
(T (i)

j )α ≤ δT (i)

j

}
,

that is the successive times, at which the second term of the iteration is dα−1δ-smaller
than the first. Let ε > 0 be a small parameter, the conditions upon which will be
clear later in Step 3. Similarly, δ is assumed small enough, so that dα−1δ < ε (first
condition on δ).

Step 1. In this first step we prove that on E the dα−1δ-negligibility of the second
term of the iteration occurs infinitely often, that is, for all n, kn is almost surely
finite. Proceeding by contradiction, suppose that it is not true. Then a random
variable n̄ expressing the last time at which the dα−1δ-negligibility happened can be
defined, which is finite on E with positive probability:

n̄ = sup

{
j ∈ N :

σj+1

ταj
(T (i)

j )α ≤ δT (i)

j

}
.



292

This means that with positive probability eventually on E the second term of the
iteration plays the main role (ignoring for the moment the contributions of the third
term). Using the hypothesis that θ = 0, this will yield a contradiction with T (i)

n ≥ 1.
The argument is as follows. Since the intersection {n̄ <∞} ∩ {E} has already been
shown to be an event having positive probability, consider that for all ω in this event,
for all n ≥ n̄,

σn+1

ταn
(T (i)

n )α > δT (i)

n .

Plugging this into the first term of (F.1) yields

T (i)

n+1 ≤
σn+1

δταn
(T (i)

n )α + dα−1σn+1
(T (i)

n )α

ταn
+ ε(i)

n+1

√
σn+1P

(i)
n (1− P (i)

n ) =

c
σn+1

ταn
(T (i)

n )α + ε(i)

n+1

√
σn+1P

(i)
n (1− P (i)

n ) = c
σn+1

ταn
(T (i)

n )α
(

1 + ξ̂nε
(i)

n+1

)
,

having defined c ..= dα−1 + 1/δ, and

ξ̂n ..=
ταn

c(T (i)
n )α
√
σn+1

√
P (i)
n (1− P (i)

n ).

Thus

T (i)

n ≤ c
σn
ταn−1

(T (i)

n−1)α
(

1 + ξ̂n−1ε
(i)

n

)
. (F.2)

Iterating (F.2) n− k − 1 times yields, for all k > n̄ large enough and n > k, that

T (i)

n ≤ c1+α+...+αn−k−1

(T (i)

k )α
n−k σn

ταn−1

(
σn−1

ταn−2

)α
. . .

(
σk+1

ταk

)αn−k−1 n−1∏
j=k

(
1 + ξ̂jε

(i)

j+1

)αn−j−1

≤
(
c1+α−1+α−2+...+α−(n−k−1)

)αn−k−1

τn

(
T (i)

k

τk

)αn−k n−1∏
j=k

(
1 + ξ̂jε

(i)

j+1

)αn−j−1

≤

(
c
∑∞
j=0 α

−j
)αn−k−1

τn
(
Θ(i)

k

)αn−k n−1∏
j=k

(
1 + ξ̂jε

(i)

j+1

)αn−j−1

=
(
c

α
α−1

)αn−k−1

τn
(
Θ(i)

k

)αn−k
(
n−1∏
j=k

(
1 + ξ̂jε

(i)

j+1

)αk−j−1
)αn−k

= τn

[
c

1
α−1 Θ(i)

k exp

(
n−1∑
j=k

αk−j−1 log
(

1 + ξ̂jε
(i)

j+1

))]αn−k

≤ τn

[
c

1
α−1 Θ(i)

k exp

(
αk−1

n−1∑
j=k

ξ̂j
αj
ε(i)

j+1

)]αn−k
= τn

[
c

1
α−1 Θ(i)

k exp

(
αk−1

n−1∑
j=k

ξjε
(i)

j+1

)]αn−k
,

where ξj = ξ̂j/αj, and the following facts have been used, that σj ≤ τj and log(1+x) ≤
x. For the second inequality to hold, x ..= ξ̂jε

(i)

j+1 needs to satisfy the hypothesis x >

−1, as the fluctuations ε(i)

j+1 can take negative values. However, this is immediately
shown by recalling (8.1) and that δ > 0:

ξ̂jε
(i)

j+1 =
ταj

c(T (i)

j )α
√
σj+1

√
P (i)

j (1− P (i)

j )
B(i)

j+1 − σj+1P
(i)

j√
σj+1P

(i)

j (1− P (i)

j )
≥

−
ταj

c(T (i)

j )α
P (i)

j ≥ −
dα−1ταj

c(T (i)

j )α
(Θ(i)

j )α = −d
α−1

c
= − dα−1

dα−1 + 1/δ
> −1.
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Thus, for all n̄ < k < n,

T (i)

n ≤ τn

[
c

1
α−1 Θ(i)

k exp

(
αk−1

∞∑
j=k

ξjε
(i)

j+1

)]αn−k
,

then

log T (i)

n ≤ log τn + αn−k log

[
c

1
α−1 Θ(i)

k exp

(
αk−1

∞∑
j=k

ξjε
(i)

j+1

)]
,

and therefore

α−n log T (i)

n ≤ α−n log τn + α−k log

[
c

1
α−1 Θ(i)

k exp

(
αk−1

∞∑
j=k

ξjε
(i)

j+1

)]
.

Recall that 0 = θ ..= limn→∞ α
−n log τn, hence

lim sup
n→∞

α−n log T (i)

n ≤ lim sup
n→∞

α−n log τn + α−k log

[
c

1
α−1 Θ(i)

k exp

(
αk−1

∞∑
j=k

ξjε
(i)

j+1

)]

= α−k log

[
c

1
α−1 Θ(i)

k exp

(
αk−1

∞∑
j=k

ξjε
(i)

j+1

)]

for all k > n̄. However by Lemma E.1 it can be shown that the right-hand side is
negative on E for some k (depending on ω). This would be possible only if T (i)

n < 1, a
contradiction with T (i)

n ≥ T (i)

0 > 1. More precisely, the argument is as follows. Since
on E, Θ(i)

k −→ 0, it is enough to show that

exp

(
αk−1

∞∑
j=k

ξjε
(i)

j+1

)

is infinitely often bounded above (that is, for infinitely many k, there is a finite uniform
upper bound). Clearly this amounts to show that

αk−1

∞∑
j=k

ξjε
(i)

j+1

is infinitely often bounded above. Since, if it diverges to infinity, then its limit inferior
will do so too, it is enough to prove that almost surely

lim inf
k→∞

αk−1

∞∑
j=k

ξjε
(i)

j+1 <∞,

in order to achieve the desired boundedness infinitely often. Here is where Lemma E.1
is used. The hypotheses of the lemma are satisfied on the whole of Ω, since for all
j ≥ k > n̄,

|ξj| =
|ξ̂j|
αj

=
ταj

cαj(T (i)

j )α
√
σj+1

√
P (i)

j (1− P (i)

j ) ≤
d
α−1

2 ταj

cαj(T (i)

j )α
√
σj+1

√
(T (i)

j )α

ταj

=
d
α−1

2

cαj

√
(T (i)

j )α

σj+1ταj
<

d
α−1

2

cαj
√
δT (i)

j

≤ d
α−1

2

cαj
√
δ
.
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Define aj ..= α−j and

ζk ..=
d
α−1

2

c
√
δ
> 0.

Note that {aj} are square-summable, since α2 > 1 yields a convergent geometric
series. Denote

Ak ..=
∞∑
j=k

a2
j =

(
1

1− α−2
− 1− α−2k

1− α−2

)
=

α−2k

1− α−2
≤ 1

(1− α−2)
.

Note that {ζk} is trivially square-integrable and adapted, since it is constant. Finally,
since |ξj| ≤ ζkaj, by Lemma E.1 it holds that

lim inf
k→∞

1

ζk
√
Ak

∞∑
j=k

ξjε
(i)

j+1 <∞.

Since

1

ζk
√
Ak

∞∑
j=k

ξjε
(i)

j+1 =
c
√
δ

d
α−1

2

√
1− α−2

α−k

∞∑
j=k

ξjε
(i)

j+1 = c

√
δ(α2 − 1)

dα−1

(
αk−1

∞∑
j=k

ξjε
(i)

j+1

)
,

factor the positive constant c
√
δ(α2 − 1)/dα−1 out of the lim inf, and the claim that

lim inf
k→∞

αk−1

∞∑
j=k

ξjε
(i)

j+1 <∞

follows.

Step 2. In this step we provide an upper bound for the random noise terms ε(i)

j , for
all j ≥ kn, as a function of j and n, which applies almost surely, infinitely often. For
all n ∈ N let cn ∈ R be a sequence diverging to infinity, and let

En
..=
(
{kn <∞} ∩

{
ε(i)

j ≤ cj(j − kn) ∀j > kn
})
∪ {kn =∞} ,

where cj(j − kn) is the bound aforementioned. Then we show that

P(En, i.o.) = 1. (F.3)

Let Gn
..=
⋃
k≥nEk and note that Gn+1 ⊆ Gn, then

{En, i.o.} ..=
∞⋂
n=1

⋃
k≥n

Ek =
∞⋂
n=1

Gn = lim
n→∞

Gn,

and therefore P(En, i.o.) = 1 if and only if

lim
n→∞

P

(⋃
k≥n

Ek

)
= 1.

Since P
(⋃

k≥nEk
)
≥ P (En), it will suffice to prove that

lim
n→∞

P (En) = 1.
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Recall that EFj−1
ε(i)

j = 0, EFj−1
(ε(i)

j )2 = 1; then for all n large enough, so that cj(j −
kn) ≥ 0 and (cj(j − kn))−2 < 1 (recall that cj −→ ∞), by Markov’s inequality, the
tower property of the conditional expectation applied iteratively, the measurability of
the stopping time kn with respect to its own stopped σ-algebra Fkn and finally by the
monotone convergence theorem, it follows that

P (En) = P
(
{kn <∞} ∩

{
ε(i)

j ≤ cj(j − kn) ∀j > kn
})

+ P (kn =∞) =

P

(
∞⋂
l=1

{
ε(i)

j ≤ cj(j − kn) ∀kn < j ≤ kn + l
}
∩ {kn <∞}

)
+ P (kn =∞) =

lim
l→∞

P
({
ε(i)

j ≤ cj(j − kn) ∀kn < j ≤ kn + l
}
∩ {kn <∞}

)
+ P (kn =∞) =

lim
l→∞

E
(
1{

ε
(i)
j ≤cj(j−kn) ∀kn<j≤kn+l

}1{kn<∞}
)

+ P (kn =∞) =

lim
l→∞

E

(
1{kn<∞}

kn+l∏
j=kn+1

1{
ε
(i)
j ≤cj(j−kn)

}
)

+ P (kn =∞) =

lim
l→∞

EEFkn+l−1

(
1{kn<∞}

kn+l∏
j=kn+1

1{
ε
(i)
j ≤cj(j−kn)

}
)

+ P (kn =∞) =

lim
l→∞

E

(
1{kn<∞}

kn+l−1∏
j=kn+1

1{
ε
(i)
j ≤cj(j−kn)

}EFkn+l−1
1{

ε
(i)
kn+l≤ckn+ll

}
)

+ P (kn =∞)

= lim
l→∞

E

(
1{kn<∞}

kn+l−1∏
j=kn+1

1{
ε
(i)
j ≤cj(j−kn)

}PFkn+l−1

(
ε(i)

kn+l ≤ ckn+ll
))

+ P (kn =∞)

≥ lim
l→∞

E

(
1{kn<∞}

kn+l−1∏
j=kn+1

1{
ε
(i)
j =cj(j−kn)

} [1− PFkn+l−1

(
|ε(i)

kn+l| > ckn+ll
)])

+ P (kn =∞) = lim
l→∞

E
(
1{kn<∞}

kn+l−1∏
j=kn+1

1{
ε
(i)
j =cj(j−kn)

}[1− PFkn+l−1
((ε(i)

kn+l)
2

> c2
kn+ll

2)]

)
+ P (kn =∞) ≥ lim

l→∞
E
(
1{kn<∞}

kn+l−1∏
j=kn+1

1{
ε
(i)
j =cj(j−kn)

}(1− 1

c2
kn+ll

2

))

+ P (kn =∞) ≥ . . . ≥ lim
l→∞

E

(
1{kn<∞}

kn+l∏
j=kn+1

(
1− 1

c2
j(j − kn)2

))
+ P (kn =∞) =

lim
l→∞

E

(
1{kn<∞}

l∏
j=1

(
1− 1

c2
kn+jj

2

))
+ P (kn =∞) =

lim
l→∞

E

(
1{kn<∞} exp

l∑
j=1

log

(
1− 1

c2
kn+jj

2

))
+ P (kn =∞) =

E

(
1{kn<∞} exp

∞∑
j=1

log

(
1− 1

c2
kn+jj

2

))
+ P (kn =∞) .

Consider now that for all x ∈ [0, 1/2),

log(1− x) ≥ −x− x2,

as the two concave functions meet at 0, where their derivatives, respectively (x−1)−1

and −(1 + 2x) take the common value −1. Consider also that for all 0 < x < 1, the
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difference of such derivatives (x−1)−1+(1+2x) > 0 if and only if 0 < x < 1/2, meaning
that for all x in this interval, the parabola decays faster than the logarithm. Having
started at zero, where both of the two functions and the corresponding derivatives
coincide, the inequality follows. Since

ĉn ..= min
j≥n
{cj}

diverges to infinity, for n sufficiently large, to satisfy also ĉ−2
n < 1/2, it holds that for

all x ∈ [0, ĉ−2
n ], the logarithmic inequality is also satisfied. Note that since kn + j ≥ n

for all n and j, ckn+j ≥ ĉn. Hence for all such n large enough, having 1/(ĉ2nj2) ∈ [0, ĉ−2
n ],

it follows that, as n −→∞,

P (En) ≥ E

(
1{kn<∞} exp

∞∑
j=1

log

(
1− 1

ĉ2
nj

2

))
+ P (kn =∞) ≥

E

(
1{kn<∞} exp−

{
∞∑
j=1

1

ĉ2
nj

2
+
∞∑
j=1

1

ĉ4
nj

4

})
+ P (kn =∞) =

exp−ĉ−2
n

{
∞∑
j=1

1

j2
+ ĉ−2

n

∞∑
j=1

1

j4

}
E
(
1{kn<∞}

)
+ P (kn =∞) =

(1 + O(1))P (kn <∞) + P (kn =∞) −→ 1.

Step 3. In this step, using the stopping times kn, at which the second term of (F.1)
is dα−1δ-smaller than the first, and combining them with the new bound obtained for
the random fluctuations ε(i)

n in (F.3), a stopping time kν will be determined such that,
for all n ≥ kν , the second term of (F.1) will be dα−1δqn−kν -smaller than the first one.
This is a much stronger domination, as q is subunitary (further hypotheses will be
needed on q). More precisely, the argument is that on E there is a random variable ν
such that for all n ≥ kν , it holds that ε(i)

n ≤ n and

σn+1

ταn
(T (i)

n )α ≤ δqn−kνT (i)

n ,

that is an eventually exponentially decaying upper bound. One more parameter γ
will be needed to prove this, and further hypotheses on δ, ε and q.

• q ∈ (λ, 1), which is consistent since 0 ≤ λ < 1.

• ε > 0 small enough, to let (λ + ε)(1 + 2ε)α−1 < q, which is consistent since the
function f(ε) = (λ + ε)(1 + 2ε)α−1 has limε→0+ f(ε) = λ and is increasing for
ε > 0, since f ′(ε) = (1 + 2ε)α−1 + 2(α− 1)(λ+ ε)(1 + 2ε)α−2 and therefore, from
the right, it approaches λ from above, and since 0 ≤ λ < q < 1, an ε > 0 small
enough, to satisfy the condition, exists by the continuity of f(ε) on ε ≥ 0.

• γ ∈ (max {0, α− 2} , α− 1).

• δ should be small enough, such that√
dα−1δ

γ
α−1 max

m∈N0

[
(m+ 1)

√
q
γm
α−1

]
< ε.

This last condition is well posed, since the continuous function h(x) = (x +
1)qγx/[2(α− 1)], for x ∈ R, is such that h(0) = 1 and h(x) vanishes as x −→ ∞,
due to the exponential qx beating the linear term (recall that 0 < q < 1).
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By a standard compactness argument (split the nonnegative half line in two
at some large enough value, after which h(x) is smaller than some subunitary
value, and consider the compact subinterval between zero and this large value,
on which the maximum is attained by continuity), h(x) achieves its maximum on
the nonnegative half-line, and evaluating for x = m ∈ N0, the maximum of the
sequence {h(m)} will be also achieved at one of such nonnegative integers m and,
making δ small enough, the factor δγ/[2(α− 1)] will be able to make the maximum
arbitrarily small, making possible the condition that it be smaller than ε.

In order to suitably apply (F.3), define the sequence

cn =

√
σn
ταn−1

γ
α−1
−1

.

Since γ < α − 1, cn −→ ∞ because σn/ταn−1 −→ 0. This last fact is a consequence of
ρn −→∞ and λ < 1. Indeed, in this regime σn ∼ τn, since

σn
τn

=
1

ρn−1

+ 1 −→ 1.

Next rewrite

σn+1

ταn
σn
ταn−1

=
ρn
ρn−1

(
τn−1

τn

)α−1

=
ρn
ραn−1

(
1

1 + ρn−1

)α−1

=
ρn
ραn−1

(
ρn−1

1 + ρn−1

)α−1

.

Having ρn −→∞, (
ρn−1

1 + ρn−1

)α−1

−→ 1,

also,
ρn
ραn−1

=
σn+1τ

α
n−1

τnσαn
∼
σn+1σ

α
n−1

σα+1
n

,

therefore

lim sup
n→∞

σn+1

ταn
σn
ταn−1

= lim sup
n→∞

ρn
ραn−1

= lim sup
n→∞

σn+1σ
α
n−1

σα+1
n

= λ < 1,

thus
∞∑
n=0

σn+1

ταn
<∞,

which yields that σn+1/ταn vanishes. From this discussion, since by Step 1 almost surely
on E all kn are finite; since by Lemma E.3 almost surely eventually ε(i)

n ≤ n− 1 < n;
since by Step 2, En infinitely often almost surely occurs on Ω; we can conclude that
for every ω ∈ Ω, there is an index ν(ω) such that Eν occurs and (think of it large
enough) such that kν < ∞ almost surely on E (by Step 1 again), ε(i)

n ≤ n for all
n ≥ kν (by Lemma E.3) and such that for all n > kν ,

σn+1τ
α
n−1

τnσαn
< λ+ ε,

which is possible because

lim sup
n→∞

σn+1τ
α
n−1

τnσαn
= λ.
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We now show that, by induction, this last condition yields that for all n ≥ kν ,

σn+1

ταn
(T (i)

n )α ≤ δqn−kνT (i)

n . (F.4)

For n = kν , this follows by the definition of kν given in Step 1, as trivially qn−kν = 0.
For n > kν , assuming the induction hypothesis satisfied for n− 1, yields that

(T (i)

n−1)α−1 ≤ δqn−1−kν τ
α
n−1

σn
,

and knowing that ω ∈ Eν , which means ε(i)
n ≤ cn(n − kν) for all n > knu, all these

results can be plugged into (F.1). Rewrite the claim to be proved as

σn+1

ταn
(T (i)

n )α−1 ≤ δqn−kν ,

then use (F.1) and, as aforementioned,

σn+1

ταn
(T (i)

n )α−1 ≤ σn+1

ταn

(
T (i)

n−1 + dα−1(T (i)

n−1)α
σn
ταn−1

+ ε(i)

n

√
σnP

(i)

n−1(1− P (i)

n−1)

)α−1

≤ σn+1

ταn

(
T (i)

n−1 + dα−1(T (i)

n−1)α
σn
ταn−1

+ cn(n− kν)
√
dα−1

σn
ταn−1

(T (i)

n−1)α
)α−1

=
σn+1

ταn
(T (i)

n−1)α−1

(
1 + dα−1(T (i)

n−1)α−1 σn
ταn−1

+ cn(n− kν)
√
dα−1

σn
ταn−1

(T (i)

n−1)α−2

)α−1

≤ σn+1

ταn
δqn−1−kν τ

α
n−1

σn

(
1 + dα−1δqn−1−kν + cn(n− kν)

√
dα−1

σn
ταn−1

(T (i)

n−1)α−2

)α−1

.

Since it is possible to find max {0, α− 2} < γ < α − 1, which is always positive, the
direction of the bound can be preserved (the definition of gamma given earlier comes
precisely from this argument, to avoid the possible negativity of α − 2, which would
otherwise require to proceed by cases):

(T (i)

n−1)α−2 ≤ (T (i)

n−1)γ =
(
(T (i)

n−1)α−1
) γ
α−1 ≤

(
δqn−1−kν τ

α
n−1

σn

) γ
α−1

,

hence

σn
ταn−1

(T (i)

n−1)α−2 ≤
(
δqn−1−kν τ

α
n−1

σn

) γ
α−1 σn

ταn−1

=
(
δqn−1−kν

) γ
α−1

(
σn
ταn−1

)1− γ
α−1

,

then √
dα−1

σn
ταn−1

(T (i)

n−1)α−2 ≤ d
α−1

2

√
(δqn−1−kν )

γ
α−1

(
σn
ταn−1

)1− γ
α−1

=

d
α−1

2

(
δqn−1−kν

) γ
2(α−1)

√(
σn
ταn−1

)1− γ
α−1

and therefore, to eliminate this nonconstant term, we define

cn =

√(
σn
ταn−1

) γ
α−1
−1

,



299

so that

cn

√
dα−1

σn
ταn−1

(T (i)

n−1)α−2 ≤ d
α−1

2

(
δqn−1−kν

) γ
2(α−1) cn

√(
σn
ταn−1

)1− γ
α−1

= d
α−1

2

(
δqn−1−kν

) γ
2(α−1) .

In conclusion,

σn+1

ταn
(T (i)

n )α−1

≤ δqn−1−kν σn+1τ
α
n−1

σnταn

(
1 + dα−1δqn−1−kν + (n− kν)d

α−1
2

(
δqn−1−kν

) γ
2(α−1)

)α−1

≤ δqn−1−kν σn+1τ
α
n−1

σnταn

(
1 + dα−1δ + d

α−1
2 δ

γ
2(α−1) (n− kν)q

γ(n−kν−1)
2(α−1)

)α−1

≤ δqn−1−kν σn+1τ
α
n−1

σnταn

(
1 + ε+ d

α−1
2 δ

γ
2(α−1) max

m∈N0

[
(m+ 1)q

γm
2(α−1)

])α−1

≤ δqn−1−kν σn+1τ
α
n−1

σnταn
(1 + 2ε)α−1 ≤ δqn−1−kν (λ+ ε) (1 + 2ε)α−1 ≤ δqn−kν

which is equivalent to (F.4).

Step 4. The exponential decaying bound is strong enough to allow a proof of the
boundedness of T (i)

n on E, a contradiction that implies P(E) = 0. Since on E, for all
n ≥ kν , it holds that the usual iterative bound becomes, iterated n − kν times after
applying (F.4),

T (i)

n ≤ T (i)

n−1 + dα−1 σn
ταn−1

(T (i)

n−1)α + ε(i)

n

√
σnP

(i)

n−1(1− P (i)

n−1)

≤ T (i)

n−1

(
1 + dα−1 σn

ταn−1

(T (i)

n−1)α−1 +
n

T (i)

n−1

√
σnP

(i)

n−1(1− P (i)

n−1)

)

≤ T (i)

n−1

(
1 + dα−1 σn

ταn−1

(T (i)

n−1)α−1 +
n

T (i)

n−1

√
dα−1σn

(T (i)

n−1)α

ταn−1

)

= T (i)

n−1

1 + dα−1 σn
ταn−1

(T (i)

n−1)α−1 +
n√
T (i)

n−1

√
dα−1σn

(T (i)

n−1)α−1

ταn−1


≤ T (i)

n−1

1 + dα−1δqn−kν−1 +
n√
T (i)

n−1

√
dα−1δqn−kν−1


≤ T (i)

n−1

(
1 + dα−1δqn−kν−1 + n

√
dα−1δqn−kν−1

)
≤ . . .

≤ T (i)

kν

n−kν∏
j=1

(
1 + dα−1δqj−1 + (kν + j)

√
dα−1δqj−1

)
≤

≤ T (i)

kν

∞∏
j=1

(
1 + dα−1δqj−1 + (kν + j)

√
dα−1δqj−1

)
.
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The infinite product converges, since

∞∏
j=1

(
1 + dα−1δqj−1 + (kν + j)

√
dα−1δqj−1

)
= exp

∞∑
j=1

log
(

1 + dα−1δqj−1 + (kν + j)
√
dα−1δqj−1

)
≤ exp

(
∞∑
j=1

dα−1δqj−1 +
∞∑
j=1

(kν + j)
√
dα−1δqj−1

)

≤ exp

(
dα−1δ

∞∑
j=1

qj−1

)
exp

(
√
dα−1δ

∞∑
j=1

(kν + j)
√
qj−1

)

= exp

(
dα−1δ

∞∑
j=1

qj−1

)
exp

(
√
dα−1δ

∞∑
j=1

j
√
qj−1

)
exp

(
√
dα−1δkν

∞∑
j=1

√
qj−1

)
,

and all series converge, since
∑∞

j=1 q
j−1 and

∑∞
j=1

√
qj−1 are geometric series with q

and
√
q subunitary, and

∑∞
j=1 j
√
qj−1 converges by the ratio test, since as j −→∞,

(j + 1)
√
qj

j
√
qj−1 −→ √q < 1.

Since for all n ≥ kν there is a random variable that uniformly bounds

T (i)

n ≤ T (i)

kν

∞∏
j=1

(
1 + dα−1δqj−1 + (kν + j)

√
dα−1δqj−1

)
<∞,

the contradiction with T (i)
n −→ ∞ follows. As aforementioned, this implies, through

P(E) = 0, that on {Θ(i)
n −→ 0}, T (i)

n is almost surely bounded.
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[4] M. Benäım, Dynamics of stochastic approximation algorithms. In Séminaire de
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[27] D. Majerek and W. Ziȩba. Conditional martingales. Acta Math., 32(1):41-50,
2007.

[28] F. Merkl and S. Rolles. Linearly edge-reinforced random walks. In Dynamics &
Stochastics: Festschrift in honor of M. S. Keane, Vol. 48 of IMS Lecture Notes
Monogr. Ser., 66-77, Institute of Mathematical Statistics Press, 2006.

[29] F. Merkl and S. Rolles. A random environment for linearly edge reinforced ran-
dom walks on inifinite graphs. Probab. Th. Rel. Fields, 138:157-176, 2007.

[30] M. Menshikov and V. Shcherbakov. Balls-in-bins models with asymmetric feed-
back and reflection. ALEA Lat. Am. J. Probab. Math. Stat., 20:1–19, 2023.

[31] M. Mitzenmacher, R. Oliveira, and J. Spencer. A scaling result for explosive
processes. Electron. J. Combin., 11(1):R31, 2004.

[32] R. Oliveira. The onset of dominance in balls-in-bins processes with feedback.
Random Struct. Algorithms, 34(4):419-526, 2009.

[33] H. G. Othmer and A. Stevens. Aggregation, blowup, and collapse: the ABCs of
taxis in reinforced random walks. SIAM J. Appl. Math., 57:1044-1081, 1997.

[34] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani. Epidemic
processes in complex networks. Rev. Mod. Phys., 87:925–979, 2015.



303

[35] R. Pemantle. Random Processes with reinforcement. Doctoral dissertation,
M.I.T., 1988.

[36] R. Pemantle. Phase transition of reinforced random walk and RWRE on trees.
Ann. Prob., 16:1229-1241, 1988.

[37] R. Pemantle. A time-dependent version of Pólya’s urn. J. Theoret. Probab., 3:627-
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