
Vol.:(0123456789)1 3

Acta Neuropathologica 
https://doi.org/10.1007/s00401-023-02583-z

ORIGINAL PAPER

Brain DNA methylomic analysis of frontotemporal lobar degeneration 
reveals OTUD4 in shared dysregulated signatures across pathological 
subtypes

Katherine Fodder1,2 · Megha Murthy1,3 · Patrizia Rizzu4 · Christina E. Toomey1,3,5 · Rahat Hasan6 · Jack Humphrey6 · 
Towfique Raj6 · Katie Lunnon7 · Jonathan Mill7 · Peter Heutink4,8 · Tammaryn Lashley1,2 · Conceição Bettencourt1,2 

Received: 6 December 2022 / Revised: 28 April 2023 / Accepted: 28 April 2023 
© The Author(s) 2023

Abstract
Frontotemporal lobar degeneration (FTLD) is an umbrella term describing the neuropathology of a clinically, genetically 
and pathologically heterogeneous group of diseases, including frontotemporal dementia (FTD) and progressive supranu-
clear palsy (PSP). Among the major FTLD pathological subgroups, FTLD with TDP-43 positive inclusions (FTLD-TDP) 
and FTLD with tau-positive inclusions (FTLD-tau) are the most common, representing about 90% of the cases. Although 
alterations in DNA methylation have been consistently associated with neurodegenerative diseases, including Alzheimer’s 
disease and Parkinson’s disease, little is known for FTLD and its heterogeneous subgroups and subtypes. The main goal 
of this study was to investigate DNA methylation variation in FTLD-TDP and FTLD-tau. We used frontal cortex genome-
wide DNA methylation profiles from three FTLD cohorts (142 FTLD cases and 92 controls), generated using the Illumina 
450K or EPIC microarrays. We performed epigenome-wide association studies (EWAS) for each cohort followed by meta-
analysis to identify shared differentially methylated loci across FTLD subgroups/subtypes. In addition, we used weighted 
gene correlation network analysis to identify co-methylation signatures associated with FTLD and other disease-related 
traits. Wherever possible, we also incorporated relevant gene/protein expression data. After accounting for a conservative 
Bonferroni multiple testing correction, the EWAS meta-analysis revealed two differentially methylated loci in FTLD, one 
annotated to OTUD4 (5’UTR-shore) and the other to NFATC1 (gene body-island). Of these loci, OTUD4 showed consist-
ent upregulation of mRNA and protein expression in FTLD. In addition, in the three independent co-methylation networks, 
OTUD4-containing modules were enriched for EWAS meta-analysis top loci and were strongly associated with the FTLD 
status. These co-methylation modules were enriched for genes implicated in the ubiquitin system, RNA/stress granule forma-
tion and glutamatergic synaptic signalling. Altogether, our findings identified novel FTLD-associated loci, and support a role 
for DNA methylation as a mechanism involved in the dysregulation of biological processes relevant to FTLD, highlighting 
novel potential avenues for therapeutic development.
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Introduction

Frontotemporal lobar degeneration (FTLD) is an umbrella 
term describing the neuropathology of a group of neu-
rodegenerative disorders, which are characterised by the 
selective degeneration of the frontal and temporal lobes 
of the brain. These disorders are clinically, pathologically 
and genetically heterogeneous. Clinically, patients with 
FTLD frequently present with frontotemporal dementia 
(FTD), which is the second most common form of early 
onset dementia and is often associated with behavioural 
and language changes. A fraction of patients may present 
with or develop Parkinsonism as part of their disease, 
including those with progressive supranuclear palsy (PSP), 
and frontotemporal dementia and parkinsonism linked to 
chromosome 17 (FTDP-17). An overlap with amyotrophic 
lateral sclerosis/motor neuron disease (ALS/MND) is also 
observed in a proportion of patients with FTLD, highlight-
ing a spectrum of clinical phenotypes that relate to shared 
neuropathologic features [17, 42].

A considerable number of FTLD cases report a posi-
tive family history (30–50%), and the majority of famil-
ial cases can be attributed to mutations in three genes, 
namely chromosome 9 open reading frame 72 (C9orf72), 
progranulin (GRN), and microtubule-associated protein 
tau (MAPT). Apart from those cases in which a genetic 
mutation has been identified, neuropathological assess-
ment is essential to confirm the disease entity underlying 
FTLD. The neuropathological classification of FTLDs, 
based on the presence/absence of specific proteinaceous 
inclusions, recognises five major subgroups. FTLD with 
43 kDa transactive response DNA-binding protein (TDP-
43) positive inclusions (FTLD-TDP), and with tau-positive 
inclusions (FTLD-tau), account for the vast majority of 
cases, representing around 50% and 40% of FTLD cases, 
respectively [28, 60].

Even though progress has been made in identifying 
genetic risk factors for diseases under the FTLD umbrella 
[19, 24, 35, 67, 88], the molecular mechanisms driving 
FTLD pathology are not completely understood. Mounting 
evidence reveals changes in the FTLD brain transcriptional 
landscapes [3, 15, 29, 31, 82]. However, studies investi-
gating non-sequence-based regulatory mechanisms such 
as epigenetic modifications in FTLD brain tissue are lim-
ited [9, 52, 84, 87]. Variable DNA methylation, the most 
well-studied epigenetic modification, has consistently been 
associated with Alzheimer’s disease pathology in epige-
nome-wide studies (EWAS) and subsequent meta-analyses 
[73, 75, 90]. In FTLD, brain tissue EWAS are scarce and 
limited to a single PSP study [84].

To investigate further the relevance of DNA methyla-
tion variation in FTLD, we set out a study investigating 

epigenome-wide DNA methylation variation in frontal 
lobe tissue from three cohorts, spanning different subtypes 
of FTLD-TDP and FTLD-tau subgroups, followed by an 
EWAS meta-analysis, co-methylation network analysis in 
each cohort, and subsequent module preservation analysis 
in the other datasets. Through the EWAS meta-analysis we 
identified two differentially methylated loci shared across 
the FTLD subgroups and subtypes after a conservative 
Bonferroni correction for multiple testing. These methyla-
tion sites were annotated to OTUD4 (5’UTR-shore) and 
NFATC1 (gene body-island). We also identified co-meth-
ylation modules associated with the FTLD status, FTLD 
subtypes, and pathological features (e.g. brain atrophy and 
severity of neuronal loss). Functional and cellular enrich-
ment analyses have shown an overrepresentation of gene 
ontology terms related to regulation of gene expression 
and the ubiquitin system as well as specific cell types, 
including pyramidal neurons and endothelial cells, across 
FTLD subgroups and subtypes. In all three independent 
co-methylation networks, OTUD4-containing modules 
were enriched for top EWAS meta-analysis loci, and were 
strongly associated with the disease status, further sup-
porting their role in FTLD. Our findings implicate DNA 
methylation in the dysregulation of important processes in 
FTLD, including the ubiquitin system, RNA/stress granule 
formation and glutamatergic synaptic signalling.

Methods

Demographic and clinical characteristics 
of post‑mortem brain donors

For FTLD cohort 1 (FTLD1, N = 23), all post-mortem tis-
sues originated from brains donated to the Queen Square 
Brain Bank archives, where tissues are stored under a 
licence from the Human Tissue authority (No. 12198). 
Both the brain donation programme and protocols have 
received ethical approval for donation and research by the 
NRES Committee London—Central. All cases were char-
acterised by age, gender, disease history (including disease 
onset and duration) as well as neuropathological findings. 
For FTLD cohort 2 (FTLD2, N = 48), all post-mortem 
tissues were obtained under a Material Transfer Agree-
ment from the Netherlands Brain Bank, and MRC Kings 
College London, as described by Menden et al. [54]. For 
FTLD cohort 3 (FTLD3, N = 163, after quality control), 
data made available by Weber et al. [84] was retrieved 
from GEO (accession code GSE75704). Figure 1 shows an 
outline of the study design and analysis framework. More 
details on each cohort are presented in Table 1.
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Fig. 1  Outline of the study design and analysis framework. FTLD, Frontotemporal lobar degeneration; PSP, Progressive supranuclear palsy. Fig-
ure created with BioRender
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Measures of brain atrophy, neuronal cell loss 
and pathology‑related traits

For FTLD1 and a proportion of FTLD2, formalin-fixed par-
affin-embedded (FFPE) sections were also available for more 
detailed neuropathological evaluations, including sections 
stained for standard haematoxylin and eosin (H&E). These 
FFPE sections were from the opposite brain hemisphere with 
respect to the frozen tissue used for the DNA methylation 
profiling.

For FTLD1 and FTLD2, microscopic atrophy was 
assessed on H&E stained slides, by examining the cortical 
thickness and neuronal loss in the frontal and temporal corti-
ces. A four point grading system was used in comparison to a 
neurological normal control with no underlying neurodegen-
erative changes: 0—the cortical thickness was within normal 
limits and no neuronal loss was observed; 1—reduction in 
cortical thickness but the number of neurons was compara-
ble to normal levels; 2—reduction in cortical thickness and 
reduction in the numbers of neurons; 3—severe reduction in 
cortical thickness and no neurons observed. For each region, 
the microscopic atrophy was scored semi-quantitatively by 
an experienced observer blinded to clinical, histopathologi-
cal and genetic status, at an objective magnification of × 20. 
Macroscopic atrophy was also determined for FTLD1 based 
on observations of gyri and sulci from the coronal slices 
observed during brain cutting procedures. Levels of atrophy 
were graded, as previously described [70], into four stages: 
none, mild, moderate, and severe. These neuropathologi-
cal scores of the frontal and temporal regions were used in 

the module-trait correlations with the DNA co-methylation 
network modules.

DNA methylation profiling and data quality control

For FTLD1, genomic DNA was extracted from carefully 
dissected flash frozen frontal cortex grey matter tissue using 
standard protocols. Bisulfite conversion was performed with 
the EZ DNA Methylation Kit (Zymo Research) using 500 ng 
of genomic DNA. For FTLD2 and FTLD3, frontal lobe 
DNA extractions and bisulfite conversions were performed 
previously as described by Menden et al. [54] and Weber 
et al. [84]. Genome-wide methylation profiles were gener-
ated using the Infinium HumanMethylationEPIC BeadChip 
(Illumina) for FTLD1 and FTLD2, or the Infinium Human-
Methylation450 BeadChip (Illumina) for FTLD3, as per the 
manufacturer’s instructions.

Beta-values ranging from 0 to 1 (approximately 0% to 
100% methylation, respectively), were used to estimate 
the methylation levels of each CpG site using the ratio of 
intensities between methylated and unmethylated alleles. 
Data analysis was conducted using several R Bioconduc-
tor packages as previously described [11]. All three cohorts 
were subjected to harmonised quality control checks and 
pre-processing. Briefly, raw data (idat files) were imported 
and subjected to rigorous pre-processing and thorough qual-
ity control checks using minfi [4], wateRmelon [68], and 
ChAMP packages [77]. The following criteria were used 
to exclude probes that did not pass quality control checks 
from further analysis: (1) poor quality, (2) cross reactive, 

Table 1  Pathological and demographic characteristics of the three FTLD cohorts and selected models for cohort-specific EWAS

FTLD, Frontotemporal lobar degeneration; FTLD-TDP, FTLD with 43 kDa transactive response DNA-binding protein (TDP-43) positive inclu-
sions; FTLD-Tau, FTLD with tau-positive inclusions; PSP, progressive supranuclear palsy; SD, Standard deviation; F, Females; M, Males; 
 Double− proportions,  NeuN−/SOX10− proportions

Cohort Pathological FTLD subtypes and controls 
included after quality control

Mean age ± SD (years) Sex Regression models used for cohort-specific 
EWAS

FTLD1 FTLD (N = 15) 70.07 ± 5.59 7M/8F  ~ 0 + disease + age + sex + SOX10+ propor-
tions + Double− proportions + array (0 
surrogate variables detected)

 FTLD-TDP type A (C9orf72 mutation car-
riers, N = 7)

 66.86 ± 4.85 3M/4F

 FTLD-TDP type C (sporadic, N = 8)  72.88 ± 4.79 4M/4F
Controls (N = 8) 75.75 ± 5.63 3M/5F

FTLD2 [54] FTLD (N = 34) 63.18 ± 7.92 14M/20F  ~ 0 + disease + age + sex + SOX10+ propor-
tions + Double− proportions + array + slide 
(0 surrogate variables detected)

 FTLD-TDP type A (GRN mutation carriers, 
N = 7)

 65.57 ± 7.63 2M/5F

 FTLD-TDP type B (C9orf72 mutation car-
riers, N = 14)

 64.57 ± 8.41 5M/9F

 FTLD-tau (MAPT mutation carriers, N = 13)  60.92 ± 7.60 7M/6F
Controls (N = 14) 78.43 ± 11.76 5M/9F

FTLD3 [84] FTLD (N = 93) 71.16 ± 5.32 54M/39F  ~ 0 + disease + age + sex + SOX10+ 
proportions + Double− propor-
tions + array + slide + surrogate variable 
(1/1 surrogate variables detected)

 FTLD-Tau (sporadic PSP)
Controls (N = 70) 76.17 ± 7.93 45M/25F
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(3) included common genetic variants, and (4) mapped to X 
or Y chromosome. In addition, samples were dropped dur-
ing quality control if: (1) they presented with a high failure 
rate (≥ 2% of probes), (2) the predicted sex did not match 
the phenotypic sex, and (3) they clustered inappropriately 
on multidimensional scaling analysis. Beta-values were 
normalised with ChAMP using the Beta-Mixture Quantile 
(BMIQ) normalisation method. M-values, computed as the 
logit transformation of beta-values, were used for all statis-
tical analysis, as recommended by Du et al. [23], owing to 
their reduced heteroscedasticity (as opposed to beta-values) 
and improved statistical validity for differential methylation 
analysis.

As significant batch effects were detected during quality 
control checks, and different FTLD subgroups/subtypes were 
studied in FTLD1-3, the three cohorts were analysed sepa-
rately first and then meta-analysed. Similarly, co-methylation 
network analyses were conducted on each cohort separately, 
and module preservations were then cross-checked with data 
from the other cohorts (as described in more detail below).

Cell‑type deconvolution based on DNA methylation 
data

As DNA methylation patterns are often cell-type specific, 
changes in different brain cell-type proportions constitute 
an important confounding factor for DNA methylation 
studies performed on ‘bulk’ brain tissue. We used a novel 
cell-type deconvolution reference panel recently described 
by Shireby et al. [73] which brings more granularity and 
expands previous methods that account only for neuronal 
(NeuN+) versus all other cell types (NeuN−). This new 
method uses novel DNA methylation data obtained from 
fluorescence activated sorted nuclei from cortical brain tis-
sue to estimate the relative proportions of neurons (NeuN+), 
oligodendrocytes (SOX10+) and other glial brain cell types 
(Double−[NeuN−/SOX10−]). Cell-type proportions in bulk 
brain tissue were thus estimated using the CETYGO (CEll 
TYpe deconvolution GOodness) package (https:// github. 
com/ ds420/ CETYGO), and the sorted cell-type reference 
datasets as described by Shireby et al. [73]. Pairwise com-
parisons between FTLD cases and controls were conducted 
using Wilcoxon rank sum test with Benjamini–Hochberg 
correction for multiple testing, and adjusted p < 0.05 was 
considered significant.

Differential methylation analysis and EWAS 
meta‑analysis

We applied linear regression models (Table 1) using the 
M-values as the input to identify associations between DNA 
methylation variation at specific CpG sites and FTLD using 
the limma package [65]. For FTLD1, we have accounted for 

possible confounding factors, such as age and sex as well as 
factors detected in principal components 1 and 2 as seen in 
Singular Value Decomposition (SVD) plots (ChAMP pack-
age), which included cell proportions (SOX10 + and Dou-
ble−) and sample position in the array. Using this regression 
model, no surrogate variables were detected with the num.
sv function of the SVA package [43], meaning there were 
no remaining unknown, unmodelled, or latent sources of 
noise [65]. The same process was applied to FTLD2 and 
FTLD3. The model for FTLD2 was further adjusted for 
slide, whereas for FTLD3, the model was further adjusted 
for slide and one surrogate variable (Table 1). False dis-
covery rate (FDR) adjusted p-values < 0.05 were considered 
genome-wide significant.

We used the estimated coefficients and SEs obtained from 
the regression models, described above for the three FTLD 
cohorts, to undertake an inverse variance meta-analysis 
using the metagen function from the meta R package [8]. 
Only methylation probes present in all datasets (N = 363,781) 
were considered for this analysis. When reporting differen-
tially methylated sites, a conservative Bonferroni signifi-
cance was defined as p < 1.374 ×  10−7 (p < 0.05/363,781) to 
account for multiple testing. We report random-effects meta-
analysis results as the three cohorts included different FTLD 
subgroups/subtypes according to the neuropathological 
classification possibly leading to high heterogeneity in the 
meta-analysis. We also used a less stringent FDR adjusted 
p < 0.10 to report top meta-analysis loci, all of which were 
then investigated in the co-methylation networks.

Co‑methylation network analysis

To identify clusters of highly correlated CpGs (co-methyl-
ation modules) in an unsupervised manner, i.e. agnostic of 
gene ontology, we used a systems biology approach based on 
weighted gene correlation network analysis (WGCNA) [39]. 
For this analysis, we focussed on CpGs present in all three 
FTLD datasets, non-intergenic CpGs (i.e. CpGs annotated 
to genes), and selected the top 20% with the highest variance 
across individuals in each cohort regardless of their disease 
status (i.e. most variable 56,001 CpG sites per cohort). After 
outlier exclusion, a total of 23, 42 and 157 samples remained 
in the FTLD1, FTLD2 and FTLD3 cohorts, respectively. 
For each network, we used as input the M-values adjusted 
for the covariates included in the models described above 
(Table 1) and constructed signed networks. Modules were 
calculated using the WGCNA blockwiseModules function, 
with a minimum module size of 200 and a soft-thresholding 
power of 16, 10 and 12 for the FTLD1, FTLD2 and FTLD3 
networks, respectively. Module membership (MM) was then 
reassigned for each network using the applyKMeans func-
tion of the CoExpNets package [13]. Highly connected CpGs 
within a module (hub CpGs) present with high M-values to 

https://github.com/ds420/CETYGO
https://github.com/ds420/CETYGO
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the respective module. In “Results”, we refer to hub CpGs as 
those with the highest MM within a given module.

Using a principal component analysis on the CpG meth-
ylation values within each module, the CpGs inside each 
module were represented by a weighted average, the mod-
ule eigengene (ME). The MEs were then correlated with 
the FTLD status, FTLD subtypes, and other sample traits, 
including disease onset and duration, measures of macro-
scopic atrophy and neuronal loss scores, and other pathol-
ogy-related traits, as available for each cohort.

To gain insights into the biology underlying the FTLD-
related modules, we carried out functional enrichment for 
CpGs mapping to genes using the default parameters of clus-
terProfiler [86]. We also carried out cell-type enrichment 
analysis on the FTLD-related modules using the package 
EWCE [74] and associated single-cell transcriptomic data 
[89].

DNA methylation cross‑network module 
preservation analysis

As a method for differential network analysis, i.e. to identify 
which co-methylation modules in each of the three generated 
FTLD networks were preserved (i.e. shared) or perturbed 
(i.e. unique) in the other two datasets, we employed mod-
ule preservation analysis, as described by Langfelder et al. 
[40]. For each network (taken as the “reference dataset”), 
module preservation in the other two datasets (the “test 
data”) was calculated using the modulePreservation function 
implemented in WGCNA. In all instances, the “test data” 
contained methylation values (adjusted M-values) for the 
56,001 CpG sites used to construct the “reference dataset” 
network. A total of 200 permutations for each preservation 
analysis was used. As a measurement of module preserva-
tion, we used the Z-summary statistic (a composite measure 
to summarise multiple preservation statistics). A Z-summary 
greater than 10 indicates a strong preservation of this mod-
ule in the “test data”, a Z-summary of between 2 and 10 
indicates moderate preservation, and a Z-summary less than 
2 indicates no preservation.

Comparisons of DNA methylation hits with FTLD 
frontal/temporal cortex gene expression data

To examine the gene expression patterns of the EWAS 
meta-analysis gene hits, we used previously published 
transcriptomics data from bulk frontal cortex tissue of 
FTLD-TDP cases and controls [31] as well as bulk tem-
poral cortex tissue of FTLD-tau cases (PSP) and controls 
[83]. It is of note that a subset of individuals from the 
FTLD1 DNA methylation cohort [FTLD-TDP (N = 14) 
and controls (N = 5)] overlaps with those with transcrip-
tomics data from Hasan et al. [31] [FTLD-TDP (N = 80) 

and controls (N = 48)]. To further infer the expression pat-
terns of selected DNA methylation top genes in specific 
brain cell types, we also correlated gene expression levels 
(adjusted for age, sex, and RNA integrity number) with 
cellular proportions using data from Hasan et al. [31], with 
the cellular proportions having been estimated using the 
method described by Mathys et al. [51].

Comparisons of DNA methylation hits 
with FTLD‑TDP frontal cortex proteomics data

To examine the gene expression patterns of the EWAS meta-
analysis gene hits at the protein level, we used proteomics 
data from FTLD-TDP and controls. Briefly, frontal cortex 
homogenate of frozen post-mortem human brain tissue was 
prepared from control (N = 6), FTLD-TDP type A with 
C9orf72 repeat expansion (N = 6), and FTLD-TDP type C 
(N = 6) cases, as previously described [58]. Proteins in both 
the soluble supernatant and the insoluble pellet fraction were 
analysed, and samples were pooled per disease group (three 
cases per pooled sample) to enable deeper coverage of the 
proteome with higher fractionation. Proteins were quanti-
tated using 2D-LCMS and UDMSe label-free proteomics 
and SYNAPT G2-Si High Definition mass spectrometer 
operating in ion mobility mode. Data were processed using 
Progenesis software, as previously described [79]. A total of 
6114 proteins were detected in the supernatant, and 5108 in 
the pellet, with an overlap in some proteins that were found 
both in the supernatant and pellet. Fold-changes between 
FTLD-TDP subtypes compared to controls were calculated. 
Of the Bonferroni significant EWAS meta-analysis hits, only 
the OTUD4 protein was detected (both in the supernatant 
and in the pellet).

Comparisons of DNA methylation hits 
with additional datasets

We further investigated the normal expression patterns of the 
meta-analysis gene hits both in the human and mouse brains 
using single-nuclei RNAseq data from the Allen Brain Map 
(https:// cellt ypes. brain- map. org/) [7], and data from the 
Allen Mouse Brain Atlas (http:// mouse. brain- map. org) [44]. 
Given the OTUD4-related findings, we investigated the list 
of cortical tissue OTUD4 protein interactors made available 
by Das et al. [20]. The RNA granule database (http:// rnagr 
anule db. lunen feld. ca/) collates curated literature evidence 
that support gene or protein association with the stress gran-
ules (SGs) and P-bodies (PBs). We used a list of tier 1 genes 
from the RNA granule database version 2.0 for comparisons 
with the lists of genes composing the three OTUD4 FTLD-
associated co-methylation modules.

https://celltypes.brain-map.org/
http://mouse.brain-map.org
http://rnagranuledb.lunenfeld.ca/
http://rnagranuledb.lunenfeld.ca/
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OTUD4 immunohistochemical staining

To investigate tissue expression patterns of OTUD4 protein 
across the human cortex, FFPE frontal cortex tissue from 7 
FTLD cases (4 FTLD-TDP type A and 3 FTLD-TDP type 
C) and 3 controls (overlapping with FTLD1) were utilised. 
Briefly, 8-mm-thick sections cut from the FFPE blocks were 
immunostained using a standard avidin–biotin-peroxidase 
complex method with di-aminobenzidine as the chromo-
gen [41]. The rabbit anti-OTUD4 antibody (Atlas Antibod-
ies HPA036623, 1:200) was used, along with heat antigen 
retrieval pre-treatment prior to application of the primary 
antibody. The samples were mounted and examined using a 
light microscope.

Results

Cell‑type deconvolution based on DNA methylation 
data highlights important cellular composition 
differences in FTLD

To estimate brain cell-type proportions in our bulk frontal 
cortex DNA methylation datasets, we used a refined cell-type 
deconvolution algorithm based on reference DNA methyla-
tion profiles from purified nuclei from neurons (NeuN+), 
oligodendrocytes (SOX10+) and other brain cell types 
(NeuN−/SOX10−) [73]. This new model controls better 
for cellular heterogeneity in bulk cortex tissue compared to 

previous models, which account only for neuronal (NeuN+) 
versus all glial cells (NeuN−). Within each sample group, 
we observed extensive variability in cell-type proportions 
across cell types (Fig. 2). When comparing disease cases 
with controls, no overall differences were detected in the 
proportions of oligodendrocytes (SOX10+) and other glial 
cells (NeuN−/SOX10−) after accounting for multiple testing 
corrections. However, with the exception of the PSP cases 
(FTLD3), all FTLD subgroups/subtypes showed a signifi-
cant decrease in neuronal proportions compared to controls 
(Wilcoxon rank sum test, adjusted p < 0.05), as expected in 
neurodegenerative diseases. These findings highlight the 
importance of adjusting for cell-type proportions in bulk 
tissue EWAS studies. Accounting for this allowed us to 
identify DNA methylation changes that are relevant to the 
disease rather than merely reflecting changes in cell-type 
composition, which could be related partly to the disease 
pathogenesis itself and partly due to technical issues (e.g. a 
result of capturing different proportions of grey and white 
matter during tissue dissection).

Frontal cortex case–control EWAS meta‑analysis 
identifies shared differentially methylated CpG sites 
across FTLD pathological subgroups and subtypes

First, we investigated DNA methylation variation in spe-
cific loci across the genome as covered by the 450K/EPIC 
arrays, using linear regressions models to perform cohort-
specific case–control EWAS. For FTLD1 and FTLD2, which 

Fig. 2  Brain cell-type proportion estimates derived from bulk DNA 
methylation data in frontal lobe of frontotemporal lobar degeneration 
(FTLD) and controls. *Indicates significant differences for each cell-
type between FTLD subtypes and the corresponding controls; pair-
wise comparisons were performed using the Wilcoxon rank sum test, 
and adjusted p-values < 0.05 were considered significant. CTRL, con-
trols; TDPA_GRN, FTLD with TDP-43 positive inclusions (FTLD-

TDP) subtype A, carriers of GRN mutations; TDPA_C9, FTLD-TDP 
subtype A, carriers of C9orf72 repeat expansion; TDPB_C9, FTLD-
TDP subtype B, carriers of C9orf72 repeat expansion; TDPC, FTLD-
TDP subtype C, sporadic; MAPT, FTLD with tau-positive inclusions 
(FTLD-Tau), carriers of MAPT mutations; PSP, FTLD-Tau, sporadic 
progressive supranuclear palsy; Neurons, NeuN + ; Oligodendrocytes, 
SOX10 + ; other glial cells, NeuN−/SOX10−



 Acta Neuropathologica

1 3

comprise heterogeneous cases with sporadic and genetic 
forms of FTLD-TDP and FTLD-tau pathology, no genome-
wide significant CpGs were identified. For FTLD3, which 
only includes cases with FTLD-tau pathology (sporadic 
PSP), 234 differentially methylated positions were identi-
fied (Supplementary Table S1, Online Resource). The top 
differentially methylated CpG in the FTLD3 cohort was 
cg09202319, which was hypomethylated in FTLD-tau (PSP) 
compared to controls (adjusted p = 6.54 ×  10–8). This CpG 
mapped to a CpG island in the promoter region of PFDN6 
(Prefoldin Subunit 6), which is involved in promoting the 
assembly of cytoskeletal proteins [45]. Supplementary Fig. 
S1 (Online Resource) shows the quantile–quantile (Q–Q) 
plots for each of the single cohort-specific EWAS.

Second, we meta-analysed the single cohort EWAS 
results, enabling an analysis of FTLD-associated differential 
cortical DNA methylation using tissue from 234 individu-
als (142 FTLD cases and 92 controls). After a conservative 
Bonferroni adjustment for multiple testing (p < 1.37 ×  10− 7), 
the meta-analysis identified two differentially methylated 
CpGs in FTLD compared to controls, regardless of the 
pathological subgroup (FTLD-TDP or FTLD-tau), and 
corresponding subtypes (Fig. 3; Supplementary Fig. S2, 
Supplementary Table S2, Online Resource). The top CpG 
was annotated to a shore in the 5’UTR of OTUD4 and was 
hypomethylated in FTLD compared to controls, whereas the 

other was annotated to a CpG island in the body of NFATC1 
and hypermethylated in FTLD compared to controls (Fig. 3). 
The direction of the effect was consistent across the three 
FTLD cohorts for these two hits, as well as for nine addi-
tional top meta-analysis loci obtained when considering 
a less stringent FDR p < 0.10 multiple testing correction 
(Fig. 3; Supplementary Table S2, Online Resource). Of 
note, none of these meta-analysis top differentially methyl-
ated sites showed epigenome-wide significant changes in 
FTLD3 alone (Supplementary Table S1, Online Resource) 
or in previous Alzheimer’s disease EWAS meta-analyses 
(Supplementary Table S2, Online Resource).

Frontal cortex FTLD EWAS meta‑analysis hits are 
consistent with downstream changes in mRNA 
and protein expression patterns

To explore possible downstream consequences of DNA 
methylation variation on gene expression in FTLD, we 
investigated available FTLD-TDP and FTLD-tau tran-
scriptomic data [31, 83], as well as FTLD-TDP proteomics 
data. From the EWAS meta-analysis hits passing Bonfer-
roni correction, consistent results were observed in both 
FTLD-TDP (frontal cortex) and FTLD-tau (temporal cor-
tex) for OTUD4, which showed higher mRNA expression 
levels in FTLD cases compared to controls (Fig. 4). When 

Fig. 3  Differentially methylated positions identified in a case–control 
FTLD cross-cohort EWAS meta-analysis. a Manhattan plot show-
ing associations between single DNA methylation sites (CpGs) and 
FTLD from the EWAS meta-analysis random-effect results (total 
N = 234). CpGs are plotted on the x-axis according to their positions 
on each chromosome against association with FTLD on the y-axis 
(− log 10 p-value). The top red line indicates the conservative Bonfer-
roni significance threshold (α) of p = 1.37 ×  10−7. Green points indi-

cate CpGs passing the Bonferroni threshold. The blue line indicates 
a less stringent threshold of p = 2.70 ×  10−6 (FDR p = 0.10). b Forest 
plot depicting the CpG in OTUD4, which is significantly hypomethyl-
ated in FTLD compared to controls in the cross-cohort meta-analysis 
(FTLD1 N = 23, FTLD2 N = 48, and FTLD3 N = 163). c) Forest plot 
depicting the CpG in NFATC1, which is significantly hypermethyl-
ated in FTLD compared to controls in the cross-cohort meta-analysis 
(FTLD1 N = 23, FTLD2 N = 48, and FTLD3 N = 163)
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considering FTLD-TDP gene expression data from Hasan 
et al. [31] only for a subset of cases and controls with over-
lapping FTLD1 DNA methylation data (N = 19), the OTUD4 
gene expression patterns were very similar to the whole 
dataset (N = 128). For NFATC1, increased expression was 
observed in FTLD-TDP when compared to controls (Fig. 4). 
However, this increase in expression was not observed in 
the FTLD-Tau, as seen in data from Wang et al. [83]. Of 
the nine additional top meta-analysis loci, ZNF804A and 
KLF12 showed lower mRNA expression levels and IMPA2 
showed higher mRNA expression levels in FTLD cases com-
pared to controls (p < 0.05, Supplementary Fig. S3, Online 
Resource). DNA methylation levels in upstream regulatory 
regions are often inversely associated with gene expression 
levels [61, 80]. Therefore, lower methylation levels in CpGs 
annotated to 5’UTR in OTUD4 and to TSS200 in IMPA2, 
and higher expression of these genes in FTLD compared to 
controls, meets such expectations. On the other hand, DNA 
methylation levels in gene bodies are usually positively asso-
ciated with gene expression. Again, results align with this 
in the case of NFATC1 (which showed higher methylation 
and higher expression in FTLD-TDP compared to controls) 
and ZNF804A (which showed lower methylation and lower 
expression in FTLD).

Only one of the two Bonferroni adjusted meta-analysis 
gene hits were detected in the frontal cortex proteomics data. 
OTUD4 protein was upregulated in FTLD-TDP in types A 
and C compared to controls (Fig. 5), with the highest fold-
change being observed in type C for the supernatant soluble 
fraction (fold-change = 14.72). These findings are in line 
with our observations from the RNAseq data and support 
consistent dysregulation of the OTUD4 EWAS meta-analysis 
hit in FTLD. Therefore, we further investigated the patterns 

of OTUD4 protein expression in the frontal cortex and per-
formed anti-OTUD4 immunohistochemical analysis (Fig. 6) 
using FTLD-TDP types A and C cases as well as controls 
that overlap with those used in the DNA methylation analy-
sis (subset of the FTLD1 cohort). Minimal neuronal cyto-
plasmic staining was observed in the normal controls. How-
ever, in the FTLD-TDP cases, an increase in cytoplasmic 
staining intensity was observed in both the grey and white 
matter. In the grey matter, neuronal cytoplasmic staining 
was seen together with glial nuclear staining. In the white 
matter, there was an increase in glial staining. These results 
concur with the results from our proteomics and transcrip-
tomics data.

DNA co‑methylation modules are associated 
with the FTLD status, FTLD pathological subtypes, 
and disease‑related traits

To provide insight into higher order relationships across 
DNA methylation sites (CpGs), we used an agnostic sys-
tems biology approach based on WGCNA and constructed 
co-methylation networks. Considering the top 20% most 
variable CpGs in each of the 3 cohorts (N = 56,001 CpGs), 
we identified clusters of highly correlated CpGs, hence-
forth called co-methylation modules, each assigned a col-
our name.

For the FTLD1, FTLD2 and FTLD3 networks, 9/33 
(p < 0.002, 0.05/33 modules), 16/49 (p < 0.001, 0.05/49 
modules) and 10/14 (p < 0.004, 0.05/14 modules) co-meth-
ylation modules were found to be associated with the dis-
ease status (i.e. FTLD or control), respectively (Fig. 7a–c). 
Our co-methylation network analysis also revealed modules 
associated with specific pathological subgroup/subtypes 

Fig. 4  Boxplots showing gene 
expression levels in the frontal 
cortex for the two EWAS meta-
analysis hits in FTLD-TDP and 
controls. RNA sequencing data 
from Hasan et al. [31] adjusted 
for age, sex, and RNA integrity 
number was used. Log2-
transformed gene expression 
data is shown in the y-axis, and 
non-paired t-test p-value for the 
comparison between FTLD-
TDP (N = 80) and controls 
(N = 48) is denoted at the top



 Acta Neuropathologica

1 3

in FTLD1 and FTLD2 networks (Supplementary Fig. S4, 
Online Resource). In a few cases, opposite effect directions 
were shown in one subgroup/subtype compared to another 
(e.g. midnightblue and salmon modules in FTLD1 TDPA 
versus TDPC, Supplementary Fig. S4a; and turquoise mod-
ule in FTLD2 TDP versus Tau, Supplementary Fig. S4b; 
Online Resource). More detailed identification of subtype-
specific DNA methylation signatures warrants further inves-
tigation in the future studies.

We also tested for correlations with additional disease-
related traits as available for FTLD1, FTLD2, and FTLD3. 
We found associations between FTLD-associated co-meth-
ylation modules and disease duration as well as with mac-
roscopic and/or microscopic measures of atrophy/neurode-
generation in the frontal and temporal lobes (Supplementary 
Fig. S4a, b, Online Resource). Two out of the ten modules 
associated with the disease status in FTLD3 were also asso-
ciated with tau pathological burden (Braak stage, Supple-
mentary Fig. S4c, Online Resource).

To assess replication of FTLD-associated co-methylation 
modules across datasets, we then ran preservation analysis 
for each dataset against each of the networks. We found that 
most of the FTLD-associated co-methylation modules were 
indeed moderately to highly preserved (Z-summary > 2) in 

at least one of the other two datasets (Supplementary Fig. 
S5, Online Resource), further supporting their relevance 
to FTLD regardless of the pathological subgroup/subtype. 
Exceptions to this were observed only for the FTLD1 brown, 
darkturquoise and grey60, and the FTLD2 darkorange2 mod-
ules, which seem to be perturbed in the other two datasets.

Genes that compose FTLD‑associated 
co‑methylation modules are involved 
in transcription regulation, phosphorylation, 
the ubiquitin system and actin cytoskeleton 
dynamics

We then performed functional enrichment analysis to 
investigate which gene ontologies were shared across the 
three FTLD co-methylation networks. We found significant 
enrichment of terms related with transcription regulation 
(e.g. “DNA-binding transcription factor binding”), phospho-
rylation (“protein serine/threonine/tyrosine kinase activity”), 
the ubiquitin system (e.g. “ubiquitin protein ligase activ-
ity”), and actin cytoskeleton dynamics (e.g. “actin filament 
binding”). This was observed across the three co-methyl-
ation networks and across different modules of each net-
work (Fig. 8). Dysregulation of all these processes had been 

Fig. 5  Bar plots of protein 
quantifications in the frontal 
cortex for the EWAS meta-anal-
ysis hit OTUD4 in FTLD-TDP 
subtypes and controls. Out of 
the two EWAS meta-analysis 
hits, only the OTUD4 protein 
was detected in the proteom-
ics data and is presented here. 
OTUD4 was detected in both 
fractions (pellet and superna-
tant). Two pooled samples (2 × 3 
samples) per group were ana-
lysed. Protein levels were quan-
titated using mass spectrom-
etry. The average values were 
obtained for each group, and 
fold-changes were calculated 
comparing FTLD-TDP subtypes 
with controls. Bar plots show 
mean fold-change and corre-
sponding standard error
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previously linked to FTLD [69], and our findings now sup-
port a role for DNA methylation as a mechanism involved 
in such dysregulation.

FTLD‑associated modules are enriched for genes 
relevant for pyramidal neurons and endothelial cells 
across all three co‑methylation networks

We also aimed to elucidate whether the genes that compose 
FTLD-associated co-methylation modules are relevant for 
specific brain cell types. Across the three networks (FTLD1, 
FTLD2 and FTLD3), we found significant enrichments for 
pyramidal neurons and endothelial/mural cells (Fig. 9), sug-
gesting these cell types are consistently affected by the DNA 
methylation changes in FTLD regardless of the pathologi-
cal subgroup/subtype. Previous studies with pathological 
assessment, as well as transcriptomic analysis in FTLD 
brain tissue, support changes in these cell types in FTLD 
[25–27, 31, 64]. In addition, in the FTLD1 and the FTLD3 
networks, we found signatures with an overrepresentation 
of oligodendrocyte markers. Of note, FTLD3 is composed 
of PSP cases, which, unlike the other FTLD groups studied 
here, is known to present with pathological accumulation of 
tau in the oligodendrocytes [85]. The FTLD3 network was 
also enriched for microglia and interneurons.

OTUD4 and other top meta‑analysis loci are 
co‑methylated in all three networks

We then examined whether the 11 EWAS meta-analysis 
top loci (FDR p < 0.10) were present (Supplementary 
Table S2, Online Resource) in the co-methylation networks 
and whether any co-methylation modules were enriched 
for such loci (Supplementary Table S3, Online Resource). 
Notably, the top meta-analysis hit in OTUD4 was present 
in all three networks (FTLD1—brown, FTLD2—blue, 
and FTLD3—blue modules), and was always co-methyl-
ated with the CpG annotated to CEBPZ (Supplementary 
Table S3, Online Resource). These modules showed a sig-
nificant enrichment for the top EWAS meta-analysis loci 
[Fisher’s exact test, FTLD1—brown odds ratio (OR) = 14.9, 
p = 0.003; FTLD2—blue OR = 10.6, p = 0.007; FTLD3—
blue OR = 8.0, p = 0.017). We, therefore, decided to fur-
ther investigate similarities across these three modules 
(FTLD1—brown, FTLD2—blue, and FTLD3—blue), which 
will henceforth be referred to as “OTUD4-modules”.

It is of note that only eight CpGs were shared across the 
three “OTUD4-modules”, two of which—cg21028777 in 
OTUD4 and cg07695590 in CEBPZ—correspond to top 
EWAS meta-analysis loci (Supplementary Fig. S6, Online 
Resource), highlighting their importance across the FTLD 

Fig. 6  Immunoreactivity of OTUD4 in the frontal cortex of FTLD-
TDP (N = 4 type A and N = 3 type C) and controls (N = 3). Immuno-
histochemical analysis was carried out in FFPE frontal cortex tissue 

from FTLD-TDP cases and controls overlapping with FTLD1, using 
a rabbit anti-OTUD4 antibody (Atlas Antibodies HPA036623, 1:200). 
Scale-bars represent 100 µm
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Fig. 7  Module-trait correlations for the FTLD co-methylation net-
works. a FTLD1; b FTLD2; c FTLD3. The rows represent the co-
methylation module eigengenes (ME) and their colours, and the col-
umn represents the correlation of the methylation levels of CpGs in 

each module with the disease status. p-values are presented within 
each cell and the colour scale at the right indicates the strength of the 
correlation (darker cells depict stronger correlations, with blue repre-
senting negative and red representing positive correlations)
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subgroups/subtypes. All three “OTUD4-modules” were 
inversely related with the disease status, i.e. lower lev-
els of methylation in CpGs composing these modules are 
associated with increased risk of FTLD (Fig. 7; FTLD1—
brown r = − 0.89, p = 2 ×  10–8; FTLD2—blue r = − 0.75, 
p = 8 ×  10–9; and FTLD3—blue r = − 0.89, p = 3 ×  10–54). 

FTLD2-blue was also inversely associated with the severity 
of neuronal loss in the frontal cortex (r = − 0.48, p = 0.001, 
Supplementary Fig. S4b, Online Resource). Although not 
reaching statistical significance after accounting for mul-
tiple testing corrections, a similar trend was observed with 
the severity of neuronal loss in the temporal cortex for 

Fig. 8  Functional enrichment for the FTLD-associated co-methyl-
ation modules across the three networks. y-axis shows top enriched 
gene ontology terms, while x-axis depicts FTLD-associated modules 

in FTLD1 (green), FTLD2 (yellow) and FTLD3 (blue) co-methyla-
tion networks. Modules not showing enrichment for shared terms 
across the networks are not shown

Fig. 9  Cell-type enrichment for all FTLD-associated co-methylation 
modules across the three co-methylation networks. Green denotes 
FTLD-associated modules in the FTLD1 network; Yellow denotes 
FTLD-associated modules in the FTLD2 network; Blue denotes 
FTLD-associated modules in the FTLD3 network. Dark filled cir-
cles highlight the cell types found to be significantly enriched with 

adjusted p < 0.05 after Bonferroni correction over all cell types within 
each module; the size of the circles represents the number of standard 
deviations (SD) from the mean. Cell-type enrichment analysis on the 
FTLD-related modules was performed using the package EWCE [74] 
and associated single-cell transcriptomic data [89]
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FTLD2-blue (r = − 0.46, Supplementary Fig. S4b, Online 
Resource) as well as for FTLD1-brown in both frontal and 
temporal cortices (r = − 0.29 n.s., and r = − 0.63 p = 0.001, 
respectively, Supplementary Fig. S4a, Online Resource). 
These findings further support the relevance of these sig-
natures enriched for top EWAS meta-analysis loci, includ-
ing CpGs in OTUD4 and CEBPZ, in disease progression/
severity.

Previous studies have shown that OTUD4 [20], tau 
[5], TDP-43, and a growing number of additional FTLD-
related RNA-binding proteins [10] play an important role 
in the biology of stress granules. We, therefore, investi-
gated whether stress granules proteins and OTUD4 protein 
interactors were present in the “OTUD4-modules”. Indeed, 
many genes encoding for such proteins were represented 
in these modules, including several genes associated with 
genetic FTLD risk such as MAPT (encoding for tau), pre-
sent across the three “OTUD4-modules”, and FUS, present 
in FTLD3-blue (Supplementary Tables S4 and S5, Online 
Resource). The same was true for many hnRNPs, such as 
HNRNPA1, HNRNPC, and HNRNPUL1, which are present 
in the “OTUD4-modules” and are OTUD4 protein interac-
tors (Supplementary Tables S4 and S5, Online Resource). 
These hnRNPs are also known targets of the transcription 
factor CEBPZ (as described by Ma’ayan et al. [66]), which 
is also a top EWAS meta-analysis loci and is co-methylated 
with OTUD4 across the networks.

We also identified the hub genes in the three “OTUD4-
modules” (i.e. the most interconnected genes within the 
module). These were ADCY1, TLE6 and GDAP1 for FTLD1-
brown, FTLD2-blue and FTLD3-blue, respectively (Supple-
mentary Table S4, Online Resource). Of note and highly 
relevant for FTLD, ADCY1 has been found to be implicated 
in learning, memory, and behaviour [72]. The importance of 
TLE6 to brain-related disease is supported through its asso-
ciation with bipolar disorder [22], and mutations in GDAP1 
cause inherited peripheral neuropathies [62].

“OTUD4‑modules” implicate glutamatergic synapse 
and pyramidal neurons

More detailed gene ontology enrichment of “OTUD4-
modules” once again highlighted transcriptional regulation 
and the ubiquitin system, as well as nuclear speck, synapse 
(particularly glutamatergic synapse), and axon develop-
ment (Supplementary Fig. S7, Online Resource). All three 
“OTUD4-modules” showed an enrichment for pyramidal 
neurons and the FTLD3-blue module additionally showed an 
enrichment for oligodendrocytes (Fig. 9). Further support-
ing the importance of OTUD4 and CEBPZ in glutamatergic 
cells, in the normal brain (human and mouse) these genes 
show the highest expression in glutamatergic neurons and/or 

cortical and hippocampal pyramidal and granule cell layers 
(Supplementary Figs. S8–S9, Online Resource).

Using gene expression data and derived cellular propor-
tions from Hasan et al. [31], we observed a positive rela-
tionship between both OTUD4 and CEBPZ expression and 
proportions of excitatory neurons in controls and FTLD-
TDP type A (Supplementary Fig. S10, Online Resource). 
This finding further supports the relevance of OTUD4 and 
CEBPZ in excitatory glutamatergic neurons. However, that 
relationship is perturbed in FTLD-TDP type C (Supplemen-
tary Fig. S10, Online Resource), which could suggest higher 
expression of these genes by fewer surviving excitatory neu-
rons and/or higher expression by other cell type(s).

Discussion

We have conducted, to our knowledge, the first FTLD EWAS 
meta-analysis utilising three independent cohorts and incor-
porating results from 234 brain donors (142 FTLD cases 
and 92 controls). We identified two differentially methylated 
CpGs shared across a range of FTLD subgroups (FTLD-TDP 
and FTLD-tau) and corresponding subtypes, which map to 
OTUD4 and NFATC1. Systems biology approaches such as 
co-methylation network analysis are powerful methodolo-
gies for identifying pathways and networks which may be 
more relevant to disease pathophysiology than individual 
genes. We, therefore, performed a co-methylation network 
analysis in each of the independent cohorts and identi-
fied modules associated with the FTLD disease status and 
FTLD-related traits. Interestingly, CEBPZ always clustered 
with OTUD4, and the “OTUD4-modules” were enriched 
for meta-analysis top loci in each of the three independent 
cohorts. Using functional and cell-type enrichment analy-
sis of modules of interest, we identified several biological 
processes with relevance to FTLD pathology, including the 
ubiquitin system, RNA granule formation and glutamatergic 
synaptic signalling, which we discuss below. It is of note 
that none of the loci identified in our meta-analysis match 
with neuropathology-associated loci identified in large AD 
studies [73, 75, 90], therefore, supporting the hypothesis that 
molecular changes in these loci reflect shared disease biol-
ogy aspects of FTLD subgroups/subtypes rather than a mere 
downstream consequence of neurodegeneration.

The OTUD4 gene encodes the protein OTUD domain-
containing protein 4, a de-ubiquitinating enzyme [55]. 
Mutations in this gene are associated with Gordon Holmes 
syndrome, which is characterised by ataxia and hypogon-
adotropism [49]. Interestingly, a combination of mutations 
in OTUD4 along with mutations in RNF216, which codes 
for a ubiquitin ligase, was also found to result in demen-
tia [49]. The protein is known to have roles in modulating 
inflammatory signalling [92] and in the alkylation damage 
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response [91], and has more recently been demonstrated to 
interact with RNA-binding proteins (RBPs), including TDP-
43 (which aggregates in FTLD-TDP), which are important 
in the functioning of neuronal RNA granules and stress 
granules [18]. RNA granules are structures which facili-
tate the translocation and storage of mRNAs [38], whilst 
stress granules are formed when cellular stressors such as 
oxidative stress are present, possibly as a mechanism to 
reversibly block translation initiation until the stress has 
been removed [16, 36]. Notably, similarly to TDP-43 [6], 
OTUD4 was shown to be important in the correct formation 
of stress granules [20]. Indeed, there is much evidence as 
to the importance of the ubiquitin system in the function-
ing of stress granules [37, 56, 78]. The hypomethylation 
of the 5’UTR region of OTUD4 (cg21028777), which was 
observed as the top hit from the FTLD EWAS meta-analy-
sis, and the inclusion of this CpG in three modules where 
decreased methylation was associated with increased risk 
of FTLD indicates that decreased methylation of this gene 
might be involved in the pathogenesis of FTLD. Further sup-
porting these findings, the OTUD4 gene and protein expres-
sion levels are dysregulated in FTLD [31, 83].

Also supporting the importance of the role of ubiquitina-
tion and granule formation are the results from the func-
tional enrichment analysis of the three network modules 
containing OTUD4, which revealed an overrepresentation 
of terms relating to the ubiquitin system. All three “OTUD4-
modules” contained terms such as “ubiquitin protein ligase 
activity”, the FTLD2-blue module also showed enrichment 
of the GO term “ribonucleoprotein granule”, indicating that 
other genes in this module might also have processes rel-
evant to granule formation, as with the meta-analysis hit 
OTUD4. Ubiquitin signalling is well described as a process 
implicated in neurodegenerative disease pathology, and 
several genes involved in ubiquitin and ubiquitin binding 
processes are known to be mutated/contain risk alleles in 
multiple neurodegenerative diseases, including FTD [69].

Ontology terms enriched in our functional analysis of 
FTLD-associated modules also include many relating to 
regulation of transcription such as “DNA-binding transcrip-
tion factor binding” and “transcription coregulator activity”. 
Another meta-analysis top loci was annotated to the CEBPZ 
gene, which encodes the CCAAT Enhancer Binding Protein 
Zeta, a transcription factor implicated in cellular response to 
environmental stimuli through transcriptional processes that 
regulate heat-shock factors, including HSP70 [48]. HSP70 is 
a heat-shock protein involved in several protein folding pro-
cesses, including the refolding of aggregated proteins [33, 
47, 63]. Furthermore, HSP70 has been shown to have a role 
in the prevention of build-up of misfolded proteins in stress 
granules [50]. Interestingly, a CpG in PFDN6 was the top-
most differentially methylated CpG in the FTLD3 (FTLD-
tau) EWAS. This gene encodes for the subunit 6 of prefoldin, 

which is a co-chaperone of HSP70, regulates the correct 
folding of proteins and is involved in the proper assembly 
of cytoskeletal proteins [45]. Prefoldin proteins themselves 
have also been associated with neurodegenerative disease 
pathology [45, 76].

Our functional enrichment analysis of the “OTUD4-
modules”, FTLD1-brown, FTLD2-blue and FTLD3-blue, 
showed that these modules were enriched for gene ontol-
ogy terms (for cellular component) relating to synapses, 
including “synaptic membrane”, “asymmetric synapse”, 
“postsynaptic density”, and “glutamatergic synapse”. Cell-
type enrichment analysis revealed that these three modules 
were also significantly enriched for markers of pyramidal/
glutamatergic cells. These findings were further substanti-
ated with expression patterns of OTUD4 and CEBPZ in sin-
gle-nuclei and mouse expression data. Glutamate, which is 
the most abundant excitatory neurotransmitter in the human 
brain [93], is typically associated with memory, learning 
and other higher cognitive functions [12], and has also been 
implicated in neurodegeneration [59]. The contribution of 
neurotransmitter deficits, and specifically, changes in glu-
tamate and glutamate signalling have been described in 
FTD [2, 14, 30, 34, 57]. DNA methylation has previously 
been suggested to be an important regulator of glutamater-
gic synaptic scaling (also known as homeostatic synaptic 
plasticity), with demethylation found to be associated with 
increased glutamatergic synapse strength in cultured neurons 
[53], we here find evidence supporting disruption of such 
processes in FTLD. Homeostatic synaptic plasticity has been 
linked to neurodegeneration, possibly with loss of function 
due to pathogenesis, or through an increase as a mechanism 
to preserve function despite neurodegenerative deficits [21]. 
There is a known link between RNA granule formation and 
synapse plasticity; with RNA-binding protein function 
known to be particularly important. This has been proposed 
to be dysregulated in FTLD, whereby mutations in the genes 
encoding for TDP-43 and FUS lead to dysregulated granule 
formation dynamics and consequent disturbances in mRNA 
translation and synaptic function [46, 71]. Moreover, the lev-
els of known OTUD4 protein interactor FMRP are regulated 
by ubiquitination in response to stimulation by the metabo-
tropic glutamate receptor [32, 59], and this is involved in the 
regulation of synaptic plasticity, providing another possible 
link between separate findings in our study.

The NFATC1 gene, which was also identified as an 
FTLD-associated loci in the EWAS meta-analysis, encodes 
the nuclear factor of activated T cells 1, and belongs to the 
NFAT family of activity-dependent transcription factors. In 
the nervous system, the NFAT family has been shown to play 
a regulatory role in neuronal excitability, axonal growth, 
synaptic plasticity, and neuronal survival [81]. Aberrant 
NFAT-related signalling has been reported in AD, and 
NFAT1 seems to be selectively activated early in cognitive 
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decline [1], supporting its possible involvement in the patho-
genesis of neurodegenerative diseases/dementias.

As is the case with any other genome-wide DNA meth-
ylation study, there are key limitations. First, by study-
ing post-mortem tissue, i.e. the end stage of the disease, 
causality cannot be elucidated. Second, because FTLD is 
heterogeneous, comprising several pathological subgroups 
and subtypes, and given the relatively small sample size 
per subtype, this might have hampered the identification of 
additional DNA methylation alterations, especially subtype-
specific variation. Notwithstanding, we focussed on the 
shared DNA methylation variation across FTLD subgroups/
subtypes, and we used independent and complementary ana-
lytical approaches (EWAS followed by meta-analysis, and 
co-methylation network analysis followed by preservation 
analysis) and datasets, which identified concordant results 
and consistently identified the involvement of OTUD4 and 
related genes in FTLD. Given our findings, OTUD4 and 
other top hits from our meta-analysis warrant more detailed 
investigation in the future studies.

In summary, this study identified genome-wide DNA 
methylation changes in post-mortem frontal cortex tissue 
of FTLD subjects, highlighting new FTLD-associated loci, 
and implicated DNA methylation as a mechanism involved 
in the dysregulation of important processes such as ubiquitin 
and glutamatergic signalling in FTLD. Our findings increase 
the understanding of the biology of FTLD and role of DNA 
methylation its pathophysiology, pointing towards new ave-
nues that could be explored for therapeutic development.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00401- 023- 02583-z.
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