
 

1 

Differential replay of reward and punishment paths predicts 1 

approach and avoidance 2 

Jessica McFadyen*1,2, Yunzhe Liu3,4, & Raymond J Dolan1,2 3 

* corresponding author: drjessicajean@gmail.com  4 
1 The UCL Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, UK 5 
2 Wellcome Centre for Human Neuroimaging, University College London, London, UK 6 
3 State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal 7 
University, Beijing, China. 8 
4 Chinese Institute for Brain Research, Beijing, China. 9 

Abstract 10 

Neural replay is implicated in planning, where states relevant to a task goal are rapidly reactivated in sequence. It 11 

remains unclear whether, during planning, replay relates to an actual prospective choice. Here, using 12 

magnetoencephalography (MEG), we studied replay in human participants while they planned to either approach 13 

or avoid an uncertain environment containing paths leading to reward or punishment. We find evidence for 14 

forward sequential replay during planning, with rapid state-to-state transitions from 20 to 90 ms. Replay of 15 

rewarding paths was boosted, relative to aversive paths, prior to a decision to avoid and attenuated prior to a 16 

decision to approach. A trial-by-trial bias towards replaying prospective punishing paths predicted irrational 17 

decisions to approach riskier environments, an effect more pronounced in participants with higher trait anxiety. 18 

The findings indicate a coupling of replay with planned behaviour, where replay prioritises an online representation 19 

of a worst-case scenario for approaching or avoiding. 20 

Introduction 21 

When formulating a plan, we often face uncertainty as to whether a choice will lead to a good or bad outcome. 22 

For example, when we deliberate whether to go to a party or stay home, we might simulate potential sequences 23 

of events that are positive (e.g., arriving and seeing friends, meeting new people, coming home feeling happy) or 24 

negative (e.g., arriving and not knowing anybody, saying something embarrassing in front of new people, leaving 25 

early, and regretting the whole experience). Situations such as these can engender approach-avoidance conflict, 26 

wherein decision-making is rendered difficult by a need to weigh the benefits of a risky choice against a more 27 

certain, but less rewarding, choice to avoid. 28 



 

2 

Neural replay, originally characterised in the context of a rapid sequential reactivation of hippocampal place cells 29 

that map specific locations of recently experienced paths1–7, is linked to a number of functions in both humans 30 

and animals, including memory consolidation of spatial4,8–11 and temporal order relationships7,12,13, inference14–16, 31 

and credit assignment17. There is also evidence indicating that neural replay may relate to a simulation of potential 32 

outcomes during active planning18–22. 33 

A role for prospective replay in planning is supported by observations that when rodents pause during spatial 34 

navigation, the order of replayed place cell firing matches paths leading to the learned location of a reward23,24, 35 

and is enhanced for paths leading to greater rewards25. Furthermore, the more a rewarding path is prospectively 36 

replayed, the more likely it is that the animal will pursue that path21,23,24,26. A disruption of replay events at decision 37 

points, such as by application of electric pulses to the hippocampus, leads to the expression of more vicarious 38 

trial and error behaviour25,27 and a greater likelihood that an animal will take an incorrect path10,28. Remarkably, 39 

replay events also provide a mapping of potential trajectories to rewards that have never been experienced, 40 

evident in both online29 and offline30,31 sequential reactivation. 41 

In contrast to reward, the question of how prospective aversive events modulate replay is under-investigated. 42 

Animal studies show that removal of a reward leads to a marked reduction in replay32. Paths leading to danger, 43 

however, are also more strongly replayed, and this is anticorrelated with an animal’s chosen trajectory such that 44 

they tend to avoid the dangerous path33. Such findings have led to a proposal that hippocampal replay prioritises 45 

paths that are most immediately relevant for on-going behaviour34. Recent evidence, however, suggests the goal 46 

of a current plan might not, in fact, directly relate to which path is most strongly replayed. Instead, the selection 47 

of paths for replay appears to relate to mnemonic functions that support future planning, evident in replay being 48 

enhanced for paths leading to previously-rewarded locations that have not been visited recently35,36, as well as for 49 

paths associated with sub-optimal decision-making22. Within this formulation, replay is proposed to support 50 

planning by consolidating memories of sequences that are susceptible to being forgotten, rather than reflecting 51 

a simulation of states leading to outcomes that directly relate to a current motivational goal37. 52 

A feature of many previous studies of replay has been the use of environments that contain either reward or 53 

punishment. Little is known about how replay is impacted by a prospective environment where paths can lead to 54 

either reward or punishment, especially where these environments give rise to an approach-avoidance conflict38,39. 55 

Notably, an inability to make optimal decisions under approach-avoidance conflict is a characteristic of clinical 56 

anxiety disorders, where the potential for experiencing a negative event leads to avoidance regardless of the 57 

likelihood of potential reward40–42. On the other hand, a tendency to approach, even when this might have negative 58 

consequences, is considered a risk factor for developing substance abuse disorders43. During approach-59 

avoidance conflict, the magnitude and likelihood of threat is proposed to be monitored by anterior and ventral 60 

hippocampus interactions that arbitrate decisions to approach or avoid, in both humans39,44 and rodents45,46. 61 
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Replay is a candidate mechanism for this process, where a relative increase in prospective replay strength of one 62 

trajectory over another might relate to a bias towards deciding to approach versus avoid. 63 

Here, we employed magnetoencephalography (MEG) to investigate whether there is an asymmetry between the 64 

replay of rewarding and aversive path sequences during planning. We designed a gambling-style task in which 65 

participants made decisions to either approach or avoid an uncertain environment containing paths leading to 66 

either gain or loss. By decoding rapid sequential replay related to sequences of transitioned states, we reveal a 67 

striking replay asymmetry that reflects prospective evaluations during planning and predicts trial-by-trial decision-68 

making.  69 

Results 70 

Expected value guides decision-making 71 

Participants learnt the structure of an environment containing two sequences (hereafter referred to as “paths”) 72 

containing three images (hereafter referred to as “states”), each with an associated integer value (Extended Data 73 

Fig. 1C). In a gambling-type scenario, where the overall task goal was to earn as many points as possible, 74 

participants could choose to either “approach” the environment, thereby probabilistically transitioning to one of 75 

the two paths, or “avoid” the environment entirely (receiving a guaranteed sum of 1 point). 76 

To make a rational choice, participants needed to mentally simulate a prospective accumulation of points along 77 

each path. The total value of each path was dependent on a visual cue presented at the beginning of each trial, 78 

which also guided participants towards a sequential evaluation of each path in a forwards direction (Fig. 1; see 79 

description of “odd rule” in Methods). In a majority of trials, one of the two paths resulted in an overall gain and 80 

the other in an overall loss. The likelihood of transitioning to either of the two paths (conditional on participants 81 

choosing to approach) spanned five probabilities (10-90%, 30-70%, 50-50%, 70-30%, and 90-10%), and these were 82 

displayed on screen during an allowed 30-second planning period. 83 

If participants chose to approach, a screen then displayed which of the two available paths had been selected, as 84 

determined by the path transition probabilities displayed during the planning phase (Fig. 1A). Participants then 85 

deterministically transitioned to each state along the selected path, with the state value and cumulative sum of 86 

points along the trajectory displayed on-screen. Note that the first four trials of each block were forced-choice to 87 

approach, serving as a reminder of the images representing each state (images were replaced by text labels in all 88 

other free-choice trials to control for visual exposure) and their associated integer values (the value of one state 89 

from each of the two paths was updated at the beginning of each block). If participants chose to avoid, a screen 90 

was then displayed indicating that participants had earned one point. 91 
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In the task, rational decision-making required calculating the expected value of approach (i.e., the sum of points 92 

for paths 1 and 2, weighted by their probabilities) and then choosing to approach only if the overall expected value 93 

is greater than a certain value granted after choosing to avoid (i.e., ≥ 1). We calculated the accuracy of participants’ 94 

choices by comparing them to perfectly rational choice behaviour. Simulations of different behavioural strategies 95 

showed that learning path values from experience, as opposed to the more cognitively burdensome optimal 96 

strategy of sequentially summing state values, could achieve approximately 69% to 85% accuracy (see 97 

Supplementary methods for model simulations). Moreover, only considering one, but not both, paths when 98 

computing the expected value achieved an hypothetical mean accuracy of approximately 63% (range = 53% to 99 

75%). Two of 26 participants performed at 47.55% and 51.37% accuracy, respectively, and thus were excluded 100 

from all subsequent analyses, except for evaluation of replay for an overall state map. 101 

We expected an ordered reactivation of state transitions to reflect the repeated visual experience of paths in 102 

sequential order (i.e., during learning, as well as the walkthrough phases of decision trials), as shown by previous 103 

studies17,47, as opposed to reflecting a conscious mental calculation performed during planning. The sequential 104 

nature of determining path value was therefore a design feature that served to encourage perception of temporal 105 

order in the relationships between states, as well as provide a sufficient level of task difficulty. Moreover, the 106 

chosen design aligned with previous work using paradigms that incorporate a cumulative sum calculation12, as 107 

well as investigations of spatial replay (which is inherently sequential1–7). 108 

Participants performed significantly above chance, with 76.07% accuracy on average (SD = 7.35%, range = 60.27% 109 

to 89.73%; t(23) = 17.373, p < 0.001; Fig. 2A), correctly approaching when the expected value was 2.386 on 110 

average (SD = 0.57) and avoiding when the expected value was -1.552 on average (SD = 0.556; t(23) = 21.152, p 111 

< 0.001; Fig. 2B). Overall, participants tended to approach more (57.15% of trials) than avoid (42.85%; t(23) = 112 

4.176, p < 0.001), consistent with reward-seeking or information-seeking behaviour. Experimental protocols were 113 

designed so that the expected value of approaching was > 1 on 50% of trials (Extended Data Fig.1E). As such, 114 

accuracy was significantly lower on trials where participants chose to approach (74.59%, SD = 7.53%) than avoid 115 

(79.27%, SD = 8.07%; t(23) = -3.190, p = 0.004; Fig. 2A). Participants were also significantly faster in their decision 116 

to approach (M = 8.446 seconds, SD = 2.03) than to avoid (M = 8.975 seconds, SD = 2.424; t(23) = -2.319, p = 117 

0.030; Fig. 2C). 118 

In the experimental design, there was consistency as to which of the two paths culminated in a reward or loss. 119 

Hence, for the first half of the experiment, path 1 resulted in reward and path 2 resulted in loss, and vice versa for 120 

the second half of the experiment (two protocols were used and counterbalanced across participants; see 121 

Methods). To encourage active engagement in sequential planning, rather than merely learning this tendency, we 122 

included catch trials (5%) where both paths either led to a reward or to a loss. Behavioural modelling of different 123 

strategies was consistent with participants performing online calculations (winning mental arithmetic model: N = 124 

15/24) as opposed to a strategy of caching learned values (N = 9/24; see Supplementary methods). Thus, for a 125 
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majority of participants (N = 20/24), choice behaviour was best explained by a model in which both paths were 126 

considered when computing expected value, while that of the remaining participants was best explained by 127 

models that either reflected a consideration of only path 1 (N = 2/24) or only the path perceived to be consistently 128 

punishing (N = 2/24). Thus, a majority of participants engaged in sequential planning by mentally accumulating 129 

points along each path, with the majority considering both paths (rather than just one path, in an effort to conserve 130 

cognitive resources) when deliberating. Note that, of the two participants excluded from path-specific analyses 131 

due to overall poor task accuracy, one was best explained by a null model (i.e., a general bias towards 132 

approaching, irrespective of expected outcome) and the other by a caching strategy that considered aversive 133 

paths alone. 134 

We next constructed a multilevel logistic regression model to more precisely examine how path values and 135 

transition probabilities influenced trial-by-trial decision-making. In this model, trial-by-trial choice was predicted 136 

by a three-way interaction between the value of the path with the highest prospective value (i.e., the rewarding 137 

path), the value of the path with the lowest prospective value (i.e., the loss path), and the probability of 138 

transitioning to the rewarding path (the probability of transitioning to one path was always relative to the other). 139 

We also included response time (RT) as a fixed effect, as well as certainty of path transition probabilities on each 140 

trial (uncertain: 50-50%, moderately certain: 30-70% or 70-30%, very certain: 10-90% or 90-10%). 141 

Approach choices were significantly predicted both by the probability of transitioning to a more rewarding path 142 

(β = 6.460, p < 0.001) and by larger prospective rewards (β = 0.113, p < 0.001; Fig. 2D). Thus, participants 143 

approached environments containing larger rewards more when the probability of transitioning to reward was 144 

higher (β = 4.991, p < 0.001). Although the magnitude of potential loss also predicted decision-making 145 

(participants were more likely to choose to avoid when potential losses were larger: β = 0.053, p = 0.011), there 146 

was no interaction with transition probability (β = -0.028, p = 0.744; Fig. 2E). These findings support the idea that 147 

decision-making was guided by the total value of reward and loss paths, as well as the probability of transitioning 148 

to a rewarding path. We also observed a significant effect of certainty (β = 0.317, p < 0.001), such that participants 149 

were more likely to approach when transition probabilities were more certain overall (i.e., 90-10% or 10-90%, as 150 

opposed to 50-50%). 151 

Finally, given that participants were more likely to approach when rewarding paths were more probable, we also 152 

tested whether participants experienced rewarding paths more frequently than aversive paths. On average, 153 

participants transitioned to a rewarding path 107 times (SD = 11) and to an aversive path 23 times (SD = 8), a 154 

difference that was significant (t(23) = 25.577, p < 0.001). Importantly, due to our counterbalanced design there 155 

was no significant difference in the likelihood of experiencing path 1 (M = 46, SD = 8) or path 2 (M = 46, SD = 7; 156 

t(23) = -0.046, p = 0.964).  157 
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Forward replay during planning 158 

Our primary research questions with regard to replay were: 1) whether there is a sequential reactivation of state-159 

to-state path transitions during planning, 2) whether this is influenced by each path’s perceived value, and 3) 160 

whether this, in turn, relates to a subsequent choice to approach or avoid. In an initial functional localiser task, we 161 

trained classifiers on visually-evoked response fields (measured using MEG) for six unique state images (see Fig. 162 

3A-C and Extended Data Fig. 2). Importantly, these state neural signatures were captured prior to participants 163 

learning the order of states in each sequence. Next, we applied each state classifier to MEG data acquired during 164 

the planning period of each decision trial, producing time series of decoded state reactivation (Fig. 3D). Using 165 

general linear modelling, we assessed evidence for temporally-ordered reactivation of each state pair (A-B and B-166 

C in path 1, and D-E, and E-F in path 2) across different time intervals (10 to 600 ms, in steps of 10 ms), in both a 167 

forwards and backwards direction. We refer to this as “sequenceness”, our index of replay. 168 

As a first step, we asked whether there was evidence for replay of the entire state space (i.e., average 169 

sequenceness across all four transitions), discarding the first four trials in each block as these were forced-170 

choice. We observed maximal forward state-to-state reactivation at 60 ms intervals (or “lags”), and maximal 171 

backward state-to-state reactivation at 110 ms (Fig. 3E). We then computed a forward-minus-backward 172 

sequenceness measure to remove common noise and increase sensitivity. A significance threshold generated by 173 

random permutations (see Methods) provided evidence for significant forward replay at 20 to 90 ms state-to-174 

state intervals, indicating the state space was replayed during planning with a rapid temporal compression akin 175 

to that reported in previous studies12,14,15,17,47. Notably, we did not observe significant forwards replay at longer 176 

state-to-state intervals of up to 3 seconds, where this might be more indicative of conscious memory retrieval 177 

processes during path evaluation or choice deliberation (Extended Data Fig. 3). 178 

Replay is modulated by prospective reward and loss 179 

Having found evidence for forwards replay during planning, we next asked whether we could differentiate replay 180 

for paths that culminated in either a reward or a loss. For each trial, we averaged sequenceness across the two 181 

transitions present within each path (Fig. 4A). We then entered these trial-by-trial estimates of path replay at the 182 

significant state-to-state intervals identified within our previous analysis (20 to 90 ms) into a series of linear 183 

mixed-effects models that accounted for effects of subject, replay interval, and trial duration (i.e., response time; 184 

see Supplementary methods for detailed model specification). 185 

We first asked whether the expression of replay was influenced by an eventual choice to approach or avoid.  186 

Overall, rewarding paths were replayed more strongly than aversive paths during planning (β = 0.014, p < 0.001; 187 

Fig. 4B). Notably, there was a significant interaction with choice (β = -0.018, p < 0.001) showing this was 188 

particularly the case when participants made an eventual decision to avoid (EMMΔ = -0.008, p < 0.001). Replay 189 
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strength did not differ between reward and loss paths when participants planned to approach (EMMΔ = 0.002, p 190 

= 0.362). Thus, replay preceding a choice to avoid was stronger for potential paths leading to reward than for 191 

potential paths leading to punishment. 192 

We next asked whether replay was modulated by factors other than choice; namely, recent path experience or the 193 

probability of transitioning to either path irrespective of path value. We operationalised recent experience as the 194 

number of trials within a block since participants last visited a particular path. We constructed a model in which 195 

replay was predicted by path experience (log-transformed to address a positive skew), path type (reward or loss), 196 

and path transition probability. Intriguingly, we found an interaction between path type and experience (β = 0.010, 197 

p < 0.001), showing that rewarding paths were more strongly replayed when they had been less recently 198 

experienced, whereas loss paths were more weakly replayed (Extended Data Fig. 4B). Path transition probability 199 

modulated this effect (β = 0.014, p = 0.010), such that less recently experienced rewarding paths were even more 200 

strongly replayed when the upcoming transition probability was higher. 201 

In our next model, we assessed whether path replay, irrespective of reward or loss, was modulated by its transition 202 

probability. We modelled replay of each path per trial as being predicted by its transition probability, as well as the 203 

subsequent choice made on each trial. We found no evidence for an effect of path transition probability on replay 204 

(β < 0.001, p = 0.830), regardless of which choice was being planned (β = -0.004, p = 0.190; Extended Data Fig. 205 

4C). This indicates that participants’ beliefs about which path was more likely to be experienced did not impact 206 

the strength of replay. 207 

Lastly, we asked whether evidence for a conscious retrieval of states during choice deliberation influenced the 208 

strength of path replay. Although our behavioural strategy modelling suggested participants did not have a bias 209 

towards evaluating one path more than another (Extended Data Fig. 5), we speculated that participants might 210 

differentially recollect states belonging to rewarding or aversive paths after appraising each path’s value, as a way 211 

of simulating future outcomes during choice deliberation. We computed a measure of overall state reactivation 212 

throughout planning as an indicator of memory reactivation that might, in principle, be akin to conscious memory 213 

retrieval. We found that, overall, states belonging to paths leading to reward were reactivated more strongly overall 214 

(β < 0.001, p = 0.027; Extended Data Fig. 6A), but, crucially, a significant effect of choice and path type on replay 215 

remained even after accounting for such overall state reactivation (β = -0.008, p < 0.001; Extended Data Fig. 6B). 216 

Replay predicts approach and avoidance 217 

Stronger replay for rewarding paths when subjects planned to avoid indicates a relationship between the content 218 

of replay and subsequent decision-making. To investigate this further, we computed a measure of “differential” 219 

replay that captures a difference in the expression of sequenceness between each prospective path on a trial-by-220 

trial basis. Specifically, we subtracted loss path replay from reward path replay, such that more positive 221 
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differential replay indicates a bias towards replaying paths leading to reward, and vice versa for more negative 222 

differential replay. 223 

Using this differential replay measure, we modelled how replay content changed conditional on the choice being 224 

planned (i.e., to approach or avoid), as well as the environment prospects (i.e., the cumulative gain or loss for 225 

each path, and the probability of transitioning to each path). To simplify the model, we used the expected value 226 

of approaching on each trial as a summary metric of an environment’s prospects (equivalent to the total sum of 227 

points for each path weighted by their respective transition probabilities). To then predict trial-by-trial decision-228 

making, we constructed a model that allowed expected value to interact with differential replay at all significant 229 

replay intervals (20 to 90 ms), as well as the certainty of path transition probabilities and response times. 230 

At a behavioural level, we observed a sigmoidal relationship between expected value and choice (β = 0.432, p < 231 

0.001; Fig. 4C), such that participants were more likely to approach when the associated expected value was ≥ -232 

1.2. This is below a rational indifference point of 1, indicating participants were more likely to approach 233 

environments with poorer prospects overall. Additionally, participants were more likely to approach when path 234 

transition probabilities were more certain (β = 0.270, p < 0.001). 235 

At a neural level, trial-by-trial differential neural replay predicted choice (β = -0.713, p < 0.001), such that 236 

participants were more likely to approach when differential replay during planning was less positive, reflecting a 237 

bias towards replaying paths leading to potential loss and/or a bias away from replaying paths leading to potential 238 

reward. Importantly, this effect of differential replay on decision-making interacted with expected value (β = 0.133, 239 

p = 0.008), such that a bias away from replaying paths leading to reward was even more pronounced when 240 

participants planned to approach environments with a more negative expected value. 241 

Our use of a difference measure precludes knowing whether the above effect was driven by diminished replay of 242 

reward paths or enhanced replay of loss paths. To unpack this, we duplicated our model but replaced differential 243 

replay with two separate predictors, one for reward path replay and one for loss path replay, with each separately 244 

interacting with expected value. This revealed that path replay for reward and loss had opposing interactions with 245 

expected value, such that planning to approach a more hazardous environment (i.e., negative expected value) 246 

was predicted by enhanced replay of paths leading to loss (β = 0.120, p = 0.090) and an attenuated replay of paths 247 

leading to reward (β = -0.146, p = 0.031; Fig. 4C). Moreover, as highlighted by our earlier analyses of replay and 248 

path value, when participants planned to approach, replay of reward paths was significantly reduced (β = -1.232, 249 

p < 0.001). Replay of loss paths did not predict decision-making (β = 0.189, p = 0.313). Thus, the content of replay 250 

predicted subsequent decisions such that when, participants exhibited more rational decision-making (i.e., 251 

choosing to avoid when the expected value of an approach choice was lower), paths leading to reward were 252 

selectively replayed. By contrast, reduced replay of reward paths and relatively stronger replay of loss paths was 253 

associated with participants being more likely to approach riskier environments.  254 
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Trait anxiety and risk aversion 255 

Next, we tested an hypothesis that a relationship between differential replay during planning and deciding to 256 

approach a risky environment would be amplified in participants with higher trait anxiety and/or a higher 257 

propensity towards risk-taking. An independent components analysis on subjects’ self-report questionnaires 258 

yielded one component representing anxiety and another representing risk-aversion (see Methods). Based upon 259 

this, we then constructed a model in which these personality traits were allowed to interact with both differential 260 

replay during planning and expected value to predict future decision-making. We again included the degree of 261 

certainty about the path transition probabilities in the model, as well as trial duration (i.e., response time). 262 

Within this model, anxiety and risk-aversion alone did not predict decision-making (β = -0.028, p = 0.644 and β = 263 

0.073, p = 0.284, respectively), although there was a significant increase in approach rate at higher expected 264 

values (indicating more conservative decision-making) in participants with higher risk aversion (β = 0.008, p = 265 

0.048). Instead, both anxiety and risk aversion significantly modulated the relationship between differential replay 266 

and decision-making. More anxious (β = -0.314, p = 0.003; Fig. 4D) and more risk-averse participants (β = -0.377, 267 

p < 0.001; Fig. 4E) showed a greater likelihood of approaching when replay was biased away from rewarding paths 268 

(β = -0.314, p = 0.003). For more risk-averse participants, this was the case regardless of expected value (β = -269 

0.018, p = 0.540), whereas for more anxious participants this was predominantly the case when expected value 270 

was lower (β = 0.096, p = 0.014). 271 

We repeated this model using separate interacting predictors for reward and loss path replay to detail what was 272 

driving the above effects. The model revealed that replay for paths leading to loss (β = 0.450, p = 0.003), but not 273 

reward (β = -0.199, p = 0.189), was boosted in more anxious participants when approaching more aversive 274 

environments. Similarly, replay for paths leading to loss (β = 0.483, p < 0.001), but not reward (β = -0.225, p = 275 

0.084), was boosted for more risk-averse participants when planning to approach any environment. Additionally, 276 

more risk-averse participants had diminished replay of rewarding paths when planning to approach more aversive 277 

environments, while more risk-seeking participants had diminished replay of rewarding paths when planning to 278 

approach more lucrative environments (β = -0.132, p = 0.004). In contrast, more anxious participants had stronger 279 

replay of loss paths when planning to approach more aversive environments (β = -0.201, p < 0.001). This suggests 280 

that the more negative differential replay in participants with higher trait anxiety during planning was driven by an 281 

increase in loss path replay rather than a decrease in reward path replay, while the opposite was true for approach 282 

planning in more risk-averse participants.  283 

Fronto-temporal theta activity underlies replay during planning 284 

In a final analysis, we estimated the spatial sources of activity underlying onset of replay events. We defined a 285 

replay “event” as an above-chance reactivation of one state followed by reactivation of the following state within 286 



 

10 

a 20 to 90 ms lag, with additional stringent criteria (see Methods). We reconstructed source activity in either the 287 

theta (4 to 8 Hz) or high gamma (120 to 150 Hz) frequency band based upon a priori evidence for expression of 288 

hippocampal theta-related replay during planning48,49, as well as high-frequency sharp-wave ripple events in 289 

hippocampus related to planning19. 290 

Across the whole brain (p < 0.05, FWE-corrected), there was a significant increase in theta power in the right 291 

thalamus (peak MNI: 5, -26, 8), as well as a cluster spanning the left middle temporal gyrus that overlapped left 292 

posterior hippocampus (peak MNI: -40, -31, -2). We also observed significant theta activity in dorsolateral 293 

prefrontal cortex (DLPFC; peak MNI: -35, 29, 28), right anterior cingulate cortex (ACC; peak MNI: 10, 49, 13), 294 

striatum (peak MNI: -15, 4, 13), and inferior occipital cortex (0, -101, -12). In contrast, we did not observe significant 295 

source activity in the gamma frequency range during replay events. We also investigated whether theta or high-296 

gamma activity during replay events covaried with each subject’s trait anxiety or overall performance accuracy, 297 

but we did not observe any significant effects. 298 

The increased theta activity in medial temporal lobe accords with studies in rodent hippocampus, where a rapid 299 

“look-ahead” of spatial trajectories during route planning is reflected by rapid hippocampal replay events bounded 300 

by theta cycles49. In humans, theta activity in hippocampus and medial temporal lobe has been observed during 301 

prospective replay events when participants plan to avoid aversive outcomes48, similar to the present study. Other 302 

studies in humans have localised replay onset during post-task rest periods (associated with memory 303 

consolidation of a cognitive map) to left hippocampus in the gamma frequency band14,15,47. This pattern is in line 304 

with the notion that planning-related replay in medial temporal cortex during is subserved by theta activity, 305 

whereas replay related to memory consolidation at rest is more closely linked to high-frequency sharp wave ripple 306 

events18,49–51. 307 

Our results support previous evidence for a role for ACC52, DLPFC53,54, striatum55, and inferior occipital cortex15 in 308 

prospective replay during planning that involves elements such as rule-switching or reward re-evaluation. 309 

Intriguingly, our results also hint at the thalamus being a significant source of replay-related theta activity. The 310 

thalamus purportedly coordinates reward-guided decision-making processes across hippocampus, medial 311 

temporal lobe, and prefrontal cortex56, and thus might reasonably be involved in long-range communication of 312 

ordered state reactivation across these areas during planning. 313 

Discussion 314 

In rodent studies, replay content during planning has been found to reflect paths that should be pursued23,24 as 315 

well as those that should be avoided33. Here, in the context of an approach-avoidance conflict in humans, we find 316 

that the content of forward replay during planning flexibly predicted subsequent decisions. Participants were 317 

more likely to avoid when replay was relatively stronger for paths leading to reward, and more likely to approach 318 
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when replay was relatively stronger for paths leading to loss, an effect most pronounced for risky environments 319 

(i.e., there was a negative expected value of approaching). Our findings indicate a role for replay during planning 320 

under uncertainty, where the relative strength of replay for paths leading to reward and loss is weighted towards 321 

counterfactual outcomes relating to a current plan to approach or avoid. 322 

Based on rodent studies, we had expected prospective replay content to reflect the goals of approach (to obtain 323 

reward) and avoidance (to avoid punishment), such that replay would increase for rewarding paths being 324 

pursued21,23,24,26,50 and for punishing paths being avoided33. Instead, we observed the opposite pattern, albeit in an 325 

environment that contained both reward and loss paths. Preceding a decision to avoid, replay was increased for 326 

paths that would lead to a foregone reward. By contrast, replay of paths leading to prospective reward was 327 

decreased preceding a decision to approach. Indeed, when there was greater risk associated with approach (i.e., 328 

a negative expected value), replay increased for paths leading to potential loss. This suggests a relationship 329 

between the content of prospective replay and rational decision-making under risk, where boosted replay of 330 

rewarding paths predicted rational avoidance and replay of more punishing paths predicted irrational approach. 331 

Our findings echo a recent theoretical account which proposed replay provides a pessimistic reminder of 332 

counterfactual outcomes to a model-free learning system37. This proposal finds support in observations of 333 

increased replay for paths previously – but not currently – rewarded35,36. Furthermore, behavioural modelling has 334 

linked replay to model-based planning, such that replay of sub-optimal outcomes of a given choice (i.e., 335 

“pessimistic” replay) promotes more rational model-free decision-making by ensuring that negative outcomes of 336 

unchosen actions are not forgotten22,37,48. Intriguingly, we also observed enhanced replay for paths leading to 337 

counterfactual outcomes (albeit the hypothetical outcomes of a planned decision, rather than the observed 338 

outcomes of a previous decision), though the design of our experiment does not allow us to draw conclusions 339 

regarding a contribution of r to either model-based versus model-free learning mechanisms. Our task entailed a 340 

high degree of cross-trial volatility in state values and transition probabilities that rendered model-free learning of 341 

state-action contingencies futile, as participants needed to adopt a model-based strategy that explicitly 342 

considered path values and transition probabilities. Moreover, we found mixed evidence for whether paths were 343 

more strongly replayed when they were more susceptible to being forgotten. While we found paths were replayed 344 

more strongly when they had not been recently experienced, this was the case solely for rewarding, but not 345 

aversive, paths. Additionally, under an assumption that replay prevents forgetting of sequences and their 346 

associated values, then planning to avoid should theoretically increase replay of both paths (as neither will be 347 

experienced) while planning to approach should increase replay of the less probable path. However, this was only 348 

the case for rewarding paths, suggesting that counterfactual replay during model-based planning is not 349 

adequately explained by a role in memory maintenance14,15,18,29–31,57. 350 

An alternative explanation for the pattern of replay we observed is that it reflects an anxiety-related simulation of 351 

counterfactual outcomes during planning. This would explain counterfactual replay being associated with 352 
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irrational decisions to approach under riskier conditions (i.e., when the expected value of approaching was 353 

negative), an effect most pronounced in participants with higher self-reported trait anxiety. Similarly, for 354 

participants who self-reported higher trait risk-aversion replay was biased towards paths leading to loss when 355 

planning to approach, regardless of the expected value of approaching. Replay has been speculated to play a role 356 

in clinical anxiety and depression41 and our study provides tentative evidence for a relationship between 357 

differential replay and both trait anxiety and risk-aversion.  358 

Dispositional anxiety is associated with a heightened, and sometimes uncontrollable, simulation of potential past 359 

(rumination) or future (worry) aversive events40,58. A functional role for replay in selectively sampling a prospective 360 

environment during planning provides a plausible explanation for a bias towards more aversive outcomes in 361 

people who have a greater tendency to worry40. Indeed, people with higher social anxiety engage in 362 

“counterfactual” updating, entailing greater deliberation of outcomes that have not, or will not, be experienced59. 363 

Thus, a simulation of “what if '' scenarios maps closely with our finding that replay content reflects a worst-case 364 

scenario of a plan to approach (i.e., the possibility of being punished) or avoid (i.e., foregoing potential reward). 365 

Note that more anxious and more risk-averse participants did not make more erroneous approach decisions 366 

overall, and an effect of anxiety and risk-aversion was only discernible at the neural level. Thus, our findings do 367 

not provide support for a suggestion that counterfactual replay drives a change in policy per se. Moreover, as our 368 

sample consisted solely of healthy controls, future studies involving participants with anxiety disorders, who show 369 

irrational risky choice behaviour60, could determine the extent to which replay relates to anxiety-modulated model-370 

based decision-making. 371 

An important caveat to our study is that reward may have been perceived by participants as more salient than 372 

loss, in line with participants’ choices being more sensitive to probability and magnitude of reward than that of 373 

loss. Playing to accumulate monetary rewards, as opposed to avoiding monetary losses, has been shown to 374 

enhance the utility of reward61. This might explain why replay reflected a worst-case scenario of choosing to avoid 375 

(i.e., foregoing potential reward) across all trials, irrespective of expected value. By contrast, replay reflected the 376 

worst-case scenario of choosing to approach (i.e., transitioning to a loss path) only when the expected value of 377 

approaching was more negative. An emphasis on reward might also explain why a relationship between path 378 

replay and memory maintenance was more evident for rewarding paths (as discussed above) but not punishing 379 

paths, in line with other recent findings36. Employing a variant of the current design using more arousing positive 380 

and negative stimuli (e.g., electric shocks or affective visual stimuli) could help adjudicate between these 381 

possibilities. 382 

Overall, we present novel evidence for a relationship between the expression of replay and decision-making under 383 

uncertainty. A path prioritisation in prospective replay reflected a worst-case scenario of a decision to approach 384 

(increased replay for loss paths) or avoid (increased replay for reward paths). Our findings align with recent 385 

observations that replay reflects counterfactual outcomes associated with prospective decision-making35-37 and 386 
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extends this to a domain in which choices to pursue reward also carry a risk of punishment. Scenarios such as 387 

this are particularly pertinent to survival where an outcome might be critical for the viability of an agent62, as well 388 

as to understanding anxiety-related disorders that are characterised by an over-simulation of improbable, but 389 

often catastrophic, events40. 390 
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Data are freely available on the Open Science Framework: https://osf.io/6ndu9/.  392 
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Figure legends 411 

Figure 1. Decision trials. (A) Participants began each trial in a planning phase. Here, they used the presented 412 

information (the odd rule states and the path transition probabilities) to mentally calculate the total outcome for 413 

each path and evaluate the utility of an approach vs avoid decision. This calculation involves summing the value 414 

(𝑣) of each state (𝑠) across each path, taking into account the ‘odd rule’, and multiplying the final sum (𝑅!"#$) by 415 

the path transition probabilities (𝑃!"#$), as described in B. The order of images and their respective values were 416 

learned during an initial training phase (Extended Data Fig. 1). MEG data from this planning period provided the 417 

focus for our replay analysis. If participants chose to approach, a screen then appeared displaying which of two 418 

potential paths they had probabilistically transitioned to (“Transition” screen), and participants then observed an 419 

animation of this sequence (“Walkthrough” screens). During this walkthrough, the number of points gained or lost 420 

at each state (light blue numbers), as well as the cumulative sum of points up to and including each state (dark 421 

blue numbers), was shown below the state image. Note that images were only shown in forced-choice trials, while 422 

text labels were shown in all other trials. The final sum of points for the sequence was then shown (“Outcome” 423 

screen). If participants chose to avoid, a fixed increase of one point was shown (“Safe outcome” screen). (B) The 424 

“odd rule” was introduced to reinforce the temporal order relationships between states by having participants 425 

appraise each sequence in a forwards direction. The rule was always applied to one state from each path, and 426 

this was indicated to participants on-screen during planning. The odd rule entailed that, if the cumulative sum of 427 

points collected up to (and including) a particular state was an odd number, then the sign of the sum would then 428 

be reversed (i.e., multiplied by -1) with this sum being carried over to any subsequent states in that path. Thus, 429 

the odd rule could significantly alter the total number of points collected along each path, depending on which 430 

state the odd rule was applied to, and enforced a need for online calculation. For example, using the values of 431 

path 2 illustrated in A, applying the odd rule to state 2 results in -3 points (𝑠%: 0 + 4 = 4 → 𝑠&: 4 + 1 = 5, which is 432 

odd and so the sign is reversed to give -5 → 𝑠': -5 + 2 = -3), whereas applying the odd rule to state 1 results in 7 433 

points (𝑠%: 0 + 4, as the sign is not reversed → 𝑠&: 4 + 1 = 5 → 𝑠': 5 + 2 = 7). A rational planner first calculates the 434 

cumulative sum of points along each path (taking the odd rule into account), multiplies these by the respective 435 

path transition probabilities (which varied trial to trial), and then decides based on a comparison between the 436 

expected value of approaching (𝐸𝑉"!!) and the expected value of avoiding (𝐸𝑉"().  437 

Figure 2. Behavioural results. (A) Accuracy is defined as the proportion of trials wherein participant responses 438 

matched an optimal response, based upon expected value. Overall, participants (individual markers; N = 26) made 439 

significantly more accurate avoid decisions than approach decisions (two-tailed t(25) = 4.023, p = 4.591E-4). 440 

Horizontal line indicates median and box bounds indicate 25th and 75th quantile. (B) The expected value of 441 

approaching was significantly higher when participants (N = 26) chose to approach than when participants chose 442 

to avoid (two-tailed t(25) = 12.250, p = 4.614E-12). (C) Participants (N = 26) were significantly faster to approach 443 

than to avoid (two-tailed t(25) = -2.360, p = 0.026). Boxplots indicate median and 25th and 75th percentiles of 444 
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average participant response times. (D) Approach rate estimated by a behavioural multilevel model showing 445 

participants were more likely to approach if the probability of transitioning to a rewarding path was higher, 446 

especially when prospective reward values were greater (error bars indicate 95% confidence interval). (E) 447 

Similarly, participants were more likely to approach if potential loss was lower, irrespective of path transition 448 

probability (error bars indicate 95% confidence interval). * p < .05, ** p < .01, *** p < 0.001. 449 

Figure 3. State classification and replay analysis. (A) Before learning the order of images along each path, 450 

participants viewed each image in an initial functional localiser task. The visually-evoked event-related fields 451 

(measured using MEG) are displayed for each of the 12 images, or “states” (6 were randomly assigned to each 452 

participant), averaged across participants (shaded error indicates standard error of the mean). (B) Using 453 

functional localiser MEG data, we created classifiers for each state, per participant (example participant shown). 454 

A classifier was a set of beta weights per sensor. (C) Using K-folds cross-validation, we assessed average 455 

accuracy of state classifiers per participant. Classifiers trained at a 120 ms time point produced the highest 456 

average accuracy overall (error bars indicate standard error of the mean). (D) Classifiers trained on either 110, 457 

120, or 130 ms (accounting for inter-subject variability in classifier performance) were applied to MEG data 458 

collected throughout the planning period of decision trials, producing matrices of predicted state reactivation per 459 

trial (example shown). (E) Using a two-level GLM approach, we estimated the intervals (or “lags”) between 460 

maximal reactivation of each state during planning, in a forwards (left) and backwards (middle) direction. Plots 461 

display the sequenceness estimates averaged across all four transitions (shaded error indicates standard error 462 

of the mean). The significance threshold is indicated by an horizontal dashed line. Significant forwards-minus-463 

backwards replay occurred at state-to-state intervals of 20 to 90 ms, peaking at 60 ms. 464 

Figure 4. Replay of prospective reward and loss paths. (A) Replay strength for paths leading to either reward 465 

(green) or loss (red) during planning, split according to whether participants subsequently chose to approach 466 

(left) or avoid (right). Data is averaged across trials and participants. Significant replay intervals are highlighted 467 

by the yellow box. The difference between reward and loss replay is also shown (black). (B) Estimated marginal 468 

means produced by a mixed-effects model (N = 24 participants) predicting replay strength by the total value of a 469 

path (reward in green, loss in red) and the choice subsequently made by participants (approach or avoid). Error 470 

bars indicate standard error, and significance is given by a two-tailed statistic using a Satterhwaite approximation 471 

(p = 3.452E-6). * p < .05, ** p < .01, *** p < 0.001 (C) Approach rate (y axis) predicted by a mixed-effects model 472 

containing expected value (x axis) and differential replay. When differential replay was more negative (red, 473 

indicating relatively stronger replay of loss than reward paths), participants were more likely to approach 474 

environments with poorer prospects (i.e., negative expected value). A similar model using separate predictors for 475 

reward and loss path replay showed participants were more likely to approach on trials with a negative expected 476 

value when replay of rewarding paths was attenuated (green dashed) and when replay of loss paths was enhanced 477 

(red solid). The indifference point (i.e., the point at which approach rate should be 50%) is displayed for rational 478 

agent behaviour (vertical dashed line). (D) Same as C, except that participants’ trait anxiety and risk-aversion 479 
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scores were included in the model. The interaction between differential replay and expected value on choice was 480 

driven predominantly by more anxious participants (low/high split is for visualisation purposes only). (E) Same as 481 

D, except data has been split into low and high risk-aversion. More risk-averse participants were more likely to 482 

approach when differential replay was more negative, regardless of expected value. 483 

Figure 5. Beamforming analysis on replay onsets. Sources underlying the onset of replay events for any state-to-484 

state transition included the middle temporal gyrus, hippocampus, anterior cingulate cortex (ACC), and thalamus. 485 

Significant activity not pictured: striatum, dorsolateral prefrontal cortex (DLPFC), and inferior occipital cortex. 486 

Viewing coordinates: left and middle = MNI [-30, -30, 3], right = MNI [5, 47, 7]. Clusters are thresholded at p < 0.05, 487 

whole brain FWE-corrected.  488 
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Methods 612 

Participants 613 

The study was approved by the University College London Research Ethics Committee (9929/002). We recruited 614 

32 healthy volunteers via online advertisements to participate in the first session, which served as an opportunity 615 

to practice and as a screening point to exclude participants who found the memorisation or arithmetic in the task 616 
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too difficult (see Methods, Experimental task). We excluded 1 participant who scored < 80% accuracy when tested 617 

on the image order, and 4 participants who scored < 60% accuracy in the decision trials. Thus, 27 participants 618 

completed session 2. One of these participants was excluded due to a technical error with MEG data collection. 619 

The final sample consisted of 26 right-handed participants (8 males, 18 females) aged between 18 and 35 years 620 

(M = 25, SD = 5).  621 

All participants were fluent or native English speakers with normal vision and no current use of psychiatric 622 

medication. Each participant provided written consent for each session and were paid £50 (£10 for behavioural 623 

session and £40 for MEG session), plus up to £15 bonus (up to £5 for the behavioural session and up to £10 for 624 

the MEG session) upon completing the study. Bonuses were calculated by converting the accuracy of each block 625 

(i.e., the proportion of times participants made the correct choice) into a monetary value between £0 and £1.  626 

Experimental task 627 

Image learning 628 

The experiment was created for web browser using jsPsych v6.1.0. The experiment was presented in the format 629 

of a computer game where participants played the role of an astronaut exploring rooms within a spaceship. There 630 

were six rooms in total, arranged as two sequences (or “paths”): path 1 contained rooms A, B, and C, and path 2 631 

contained rooms D, E, and F. Each room (or “state”) was represented by a unique image randomly selected from 632 

a set of 12 for each participant (Extended Data Fig. 1A). During the image learning phase, participants watched 633 

an animation of the transitions along each path, in which the images for each room were presented one at a time 634 

for 3 seconds each (Extended Data Fig. 1C). Participants were then tested on their memory for the order of images 635 

in each sequence. Participants were given up to two attempts to reach at least 80% accuracy. 636 

Value learning 637 

After successfully completing the image learning phase, participants then learned to associate an integer value 638 

(ranging from -5 to 5, excluding 0) with each room. This integer represented the number of points subjects stood 639 

to gain or lose in each room. To learn these values, participants were presented with each sequence four times, 640 

with the integer value presented underneath each image (4-second presentation; Extended Data Fig. 1D). 641 

Participants were then tested on their memory for each individual room’s value, as well as their ability to calculate 642 

the cumulative sum of points in each room. This process was repeated until participants scored at least 80% 643 

accuracy (up to two attempts). 644 
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Decision trials 645 

After completing image and value learning, participants then partook in decision trials. At the beginning of each 646 

decision trial, participants were placed conceptually “outside” of the environment containing the two learned 647 

sequences and could choose to either approach or avoid it (Fig. 1A). Avoidance resulted in a guaranteed point 648 

increase of +1 and no transition to either path. Approach decisions took participants down one of the two paths, 649 

as chosen by the computer. Crucially, however, there was always a degree of uncertainty as to which of the two 650 

paths the participant would transition to if an approach decision was made. The transition probability of each 651 

path varied from trial to trial and was explicitly conveyed to the participant at the beginning of each trial. There 652 

were five possible sets of probabilities: 10-90%, 30-70%, 50-50%, 70-30%, and 90-10% for transitions to paths 1 653 

and 2, respectively. Once transitioned to a path, the transitions to each room within the sequence were 654 

deterministic. 655 

Participants were required to use the value map they had learned in the previous stage, in conjunction with the 656 

path transition probabilities presented on each trial, to evaluate the utility of making an approach versus an avoid 657 

decision. Optimally, this evaluation would reflect an expected value calculation for both approach and avoid 658 

choices, such that: 659 

  
𝐸𝑉"!! = 𝑃%𝑅% + 𝑃&𝑅& 

  

(1) 

where 𝐸𝑉"!! is the expected value of approaching, 𝑃% and 𝑃& are the probabilities of transitioning to paths 1 and 2, 660 

respectively, and 𝑅% and 𝑅& are the total sums of points for paths 1 and 2, respectively, taking into account the 661 

odd rule states (see Methods, Planning manipulation). The expected value of avoiding, 𝐸𝑉"( , was always 1. The 662 

decision to approach was considered correct if 𝐸𝑉"!! ≥ 𝐸𝑉"( and the decision to avoid was considered correct if 663 

𝐸𝑉"!! ≤ 𝐸𝑉"(. 664 

After each block, the proportion of correct responses was converted into a monetary value and displayed as a 665 

bonus. Participants did not receive feedback on the accuracy of their choices throughout the block. They did, 666 

however, observe an animation of their subsequent transitions and change in points (Fig. 1A). For “avoid” 667 

decisions, a screen was displayed with text stating that they had received 1 point (3 seconds). For “approach” 668 

decisions, participants were first shown which path had been selected by the computer according to the transition 669 

probability (“Path 1” or “Path 2”, for 3 seconds). Participants were then shown each state within that path one at 670 

a time (2 second presentation), underneath which the state value as well as the running total of points collected 671 

along the path was displayed. A blank screen was presented between states (randomly jittered duration between 672 
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0.5 and 0.8 seconds). A final screen conveyed the total number of points earned for that trial (2 seconds). Trials 673 

were separated by a blank screen (1 second). 674 

After an initial practice block, participants completed 6 (behavioural session) or 10 (MEG session) blocks. Each 675 

block contained 18 decision trials. In the practice block, participants were given unlimited time to make their 676 

decision and did not earn bonus money. In test blocks, participants were given 30 seconds (indicated by an on-677 

screen timer) to make their choice. Responses were disabled for the first 5 seconds to prevent accidental presses 678 

and encourage planning. If no response was made after 30 seconds, participants were penalised -1 point and 679 

prompted with a warning message (“Too slow!”) and the trial ended.  680 

Planning manipulation 681 

A number of additional features were incorporated into the design of the decision trials to encourage planning, as 682 

well as to control for certain variables. One feature was what we term the “odd rule”. The purpose of the odd rule 683 

was to allow the sum of points along each path to vary from trial to trial, thus encouraging participants to engage 684 

in sequential planning. On each trial, the odd rule was applied to two states: one from each path. These two odd 685 

rule states were displayed on-screen (as images on forced-choice trials or as text labels on free-choice trials) at 686 

the beginning of each trial, alongside the path probabilities (Fig. 1A). Participants were instructed that, if the sum 687 

of points accumulated up until (and including) an odd rule state was an odd number, then the sign of this 688 

cumulative sum would “flip” (i.e., a negative cumulative sum will become positive, and vice versa). This new sum 689 

would then be carried over to any subsequent states along the path. 690 

By way of example, assume the values of states A, B, and C in path 1 are -5, -2, and 3, respectively. If state B is the 691 

odd rule state, then one must mentally sum the number of points up until (and including) state B (-5 + -2 = -7). One 692 

must then consider whether the current sum of points is an odd number. In this case, it is (-7), and thus the sign 693 

of the sum is flipped (becoming +7). This value is then carried over to the next state, C (7 + 3 = 10), producing a 694 

final outcome of 10. If, instead, state C is the odd rule state, then one sums the number of points up until state C 695 

(-5 + -2 + 3 = -4). In this case, the sum of points at the odd-rule state is an even number (-4), and thus no sign-696 

flipping occurs, producing a final outcome of -4. Hence, the final value of each path is entirely dependent on the 697 

position of the odd rule state in each path (see Fig. 1A for another example). This manipulation increased the 698 

variability of final path values across trials. In the MEG session, participants were instructed to refrain from 699 

verbalising numbers aloud to minimise movement-related artefacts in the MEG activity. 700 

To further increase the variability in final path values across the experiment, the value of one state from each path 701 

changed at the beginning of each block. All state values then remained constant for the duration of the block. So 702 

that participants knew which values had changed at the beginning of each block, the first four trials in each block 703 

(first six in the practice block) were forced-choice, such that participants could only choose to approach. Forced-704 
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choice trials were controlled so that they lead to an equal number of transitions to path 1 and path 2. Any points 705 

gained or lost on these trials did not count towards bonus payment and were not included in planning-related 706 

MEG analyses, as participants were unable to plan until having observed the updated values in both paths. 707 

Forced-choice trials were also the only trials in which the images were displayed, both during the planning period 708 

(where the states with the odd rules were displayed) and the sequence animation. In all other free-choice trials, 709 

images were replaced by their text labels (e.g., “cat” or “bicycle”), which had already been shown to participants 710 

during the functional localiser (see Procedure below). This was done to control for any potential biased visual 711 

exposure to the state images during free-choice trials based on choice behaviour (e.g., only deciding to approach 712 

when path 1 is more likely) while still periodically reminding participants of the images associated with each room. 713 

Participants were assigned to one of two experimental protocols in a counterbalanced fashion (Extended Data 714 

Fig. 1E). Each protocol was designed to minimise the repetition of odd rule state pairs across trials. These two 715 

protocols also captured another feature of the design, in which one path more often resulted in a positive outcome 716 

and the other in a negative outcome. This was done to maximise the difference in replay between rewarding and 717 

aversive paths, by allowing for some degree of association by repetition. To prevent participants from relying on 718 

this consistency (and thus not engaging in sequential planning), 5% of trials were catch trials, where either both 719 

paths produced a gain or both produced a loss, thus increasing the utility of planning on every trial. Furthermore, 720 

the rewarding and aversive paths swapped positions halfway through the experiment (e.g., if path 1 was 721 

consistently rewarding at the beginning, it became consistently aversive, and vice versa for path 2). The starting 722 

positions of the rewarding and aversive paths were counterbalanced across the two protocols.  723 

Procedure 724 

Initial session 725 

Participants completed two sessions on consecutive days. The first session was a behavioural-only practice, 726 

where participants completed three questionnaires: the 12-item Intolerance of Uncertainty Scale63, 16-item Penn 727 

State Worry Questionnaire64, and 30-item Domain-Specific Risk-Taking Scale65, each presented in a random order 728 

on a computer (approximately 15 minutes). Participants then completed a shorter 45-minute version of the 729 

experiment. The aim of this session was to ensure participants were capable of performing the task (at least 80% 730 

performance on the image and value memory tests, and at least 60% correct choices on decision trials) before 731 

continuing to the MEG session the following day. 732 
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Functional localiser 733 

The second session comprised an MEG session. Participants first completed a functional localiser task (30-734 

minutes) and then completed a full 1.5-hour task. In the functional localiser, participants were shown the six 735 

unique images (randomly selected per participant) used in the main task. Crucially, these images were different 736 

from those shown in the initial behavioural session. On each trial, an image was presented on screen for 1 second 737 

(Extended Data Fig. 1B). After the image disappeared, two words were presented on the left and the right of the 738 

screen. One of these was the correct label for the previous image (e.g. “cat”) and the other label was randomly 739 

selected from a pool of invalid words. Participants pressed either the left or right button of a 4-button response 740 

pad to indicate the correct label. After making a response, the words were replaced by a fixation cross for a 741 

randomly jittered inter-trial interval between 0.5 and 1.5 seconds. Correct and incorrect responses produced a 742 

green or red cross, respectively. There were four blocks, within which each image was randomly presented 20 743 

times, giving 80 trials in total per image. Across the 26 participants, the mean response accuracy was 97.48% (SD 744 

= 2.48%, range = 90.63 to 99.79%).  745 

MEG analysis 746 

MEG acquisition and preprocessing 747 

Participants’ neural activity was measured using a CTF Omega MEG scanner with a 275-channel axial gradiometer 748 

whole-head system (CTF Omega, VSM MedTech) at University College London. Participants were seated upright 749 

in the scanner and head position was continuously monitored by three head position indicator coils located at the 750 

nasion and left and right pre-auricular fiducial points. Data were acquired continuously at 1,200 Hz and 751 

participants’ eye movements were recorded using an Eyelink eye-tracking system. Triggers were recorded using 752 

a photodiode positioned behind the stimulus presentation screen that detected the onset of a flashing white 753 

stimulus (hidden from view) that was synchronised with event onsets. 754 

MEG data from the functional localiser and decision trials were preprocessed using SPM12 (Wellcome Centre for 755 

Human Neuroimaging), Fieldtrip (2019), and custom code written in MATLAB R2018b (MathWorks). All code is 756 

available on GitHub: https://github.com/jjmcfadyen/approach-avoid-replay. CTF data for each block were 757 

imported using OSL (the OHBA Software Library, from OHBA Analysis Group). Trigger onset times and durations 758 

were extracted from the photodiode signal and semi-automatically checked for errors. Next, the data were high-759 

pass filtered at 0.5 Hz to reduce slow drift, and a notch filter for 50 Hz was applied to remove line frequency. The 760 

data were then downsampled to either 100 Hz (for replay analysis, to reduce temporal autocorrelation) or 600 Hz 761 

(for source reconstruction), thereby reducing computational load and increasing signal to noise ratio. OSL also 762 
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identified potential bad channels whose characteristics fell outside the normal distribution of values for all 763 

sensors. 764 

Independent component analysis was then performed on the data (FastICA, 765 

http://research.ics.aalto.fi/ica/fastica), decomposing it into 150 independent spatiotemporal components. 766 

Artefactual components were automatically classified using the combined spatial topography, time course, time 767 

course kurtosis, and frequency spectrum of all components. For example, eye blink artifacts exhibited high 768 

kurtosis (>20), a repeated pattern in the time course, and consistent spatial topographies. The number of excluded 769 

components was limited to a maximum of 20. Artefacts were rejected by subtracting them out of the data. All 770 

subsequent analyses were performed directly on the filtered, cleaned MEG signal, in units of femtotesla. 771 

The data were then divided into different epochs using the trigger onsets and durations. For the functional 772 

localiser, epochs were created for the image onset (-0.1 to 0.8 seconds post-stimulus onset). For the decision 773 

trials in the main task, epochs were created for the planning time (-0.1 seconds before trial onset to the response 774 

time). Artefactual sensors identified by OSL were interpolated for all epochs, and artefactual functional localiser 775 

trials were excluded from the classification procedure. 776 

Image classification 777 

We used Temporal Delayed Linear Modelling (TDLM) to characterise patterns of neural dynamics during the 778 

task66, as performed in previous studies12,14,15,17,47. First, for each participant, we classified patterns of multivariate 779 

neural activity evoked by each image in the functional localiser (Fig. 2A). The purpose of these classifiers was to 780 

detect reinstatement of each image representation during planning, likely indicating memory reactivation. This 781 

approach capitalises on the similarity between spatial patterns of neural activity evoked by the visual onset of 782 

stimuli during conscious viewing and memory retrieval, which has previously been demonstrated in both MEG and 783 

fMRI67,68. Specifically, an interplay between hippocampus and distributed cortical networks during memory 784 

retrieval produces spatial patterns of activity that closely resemble patterns of activity that were produced when 785 

stimuli were first experienced69. Notably, our stimuli were visually and categorically unique, thus maximising our 786 

ability to detect features reinstated during planning (e.g., visual imagery, conceptual associations, etc.)47. 787 

We selected data from 0 to 300 ms from each functional localiser epoch, excluding incorrect and artefactual trials, 788 

as well as trials where response time was > 5 standard deviations from the mean per participant (average of 78 789 

trials per stimulus, per participant; SD = 2, range = 73 to 80). We then constructed a series of Lasso-regularised 790 

logistic regression models. Each model received data from a single time sample (0 to 300 ms, at 10-ms resolution) 791 

across all trials. Hence, we constructed separate models (per time sample, and per image; 31 × 6) per participant, 792 

each using a trials × sensors (e.g., 480 × 275) data matrix and a binary vector indicating which trials belonged to 793 
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that image. For each model, we appended a duplicate-sized matrix of zeros to the data matrix to reduce the spatial 794 

correlation between each model. 795 

Each lasso-regularised logistic regression model used a range of 100 regularisation parameters (λ) sampled from 796 

a half-Cauchy distribution (γ = 0.05, range = 0.0001 to 1). Thus, each model produced a λ × sensors (100 × up to 797 

275) matrix of slope coefficients (Fig. 2B), as well as a vector of intercept coefficients for each λ. We refer to 798 

these coefficients as our binomial classifiers, each of which are trained to distinguish the sensor data associated 799 

with one image as compared to all other images. 800 

To evaluate the accuracy of each classifier per participant, we conducted a K-folds cross-validation procedure. K 801 

was set to the minimum number of trials per stimulus for that participant. In each fold, a test set was created by 802 

randomly taking one sample from one exemplar trial per stimulus. The remaining data was used for training. 803 

Random selection of the test data was controlled to maximise equal sampling across trials. The classifiers per 804 

state generated from the training dataset were then applied to the six test trials (one for each stimulus). Thus, for 805 

a given fold, a score of 1 or 0 was given for whether each state classifier maximally predicted the correct trial. 806 

The accuracy of each state classifier was given by the average score across folds. 807 

For each subject, we selected λ that produced the highest mean accuracy across state classifiers (λ: M = 0.0017, 808 

SD = 0.0015). We then averaged the classification accuracy across states per subject and examined which 809 

training times produced the highest accuracy across subjects (Fig. 2C). Overall average state classification 810 

accuracy exceeded chance (16.66%) for all subjects from 80 ms onwards, peaking at 120 ms (48.97%). Classifier 811 

training times from 110 to 150 ms made up the top 15% performance (all > 45.80% accuracy).  812 

Sequential state reactivation 813 

Using our state classifiers, we then estimated the degree to which images were sequentially reactivated in the 814 

brain while participants planned whether to approach or avoid the state space in each trial. We utilised an updated 815 

general linear modelling approach, which encapsulates a lagged cross-correlation between the evidence for state-816 

to-state transitions. This method produces an overall “sequenceness” statistic at different time intervals, or “lags”. 817 

We employed this approach on a trial-by-trial basis per participant, using neural data collected during the planning 818 

period.  819 

In the first step, we estimated the degree to which each state was reactivated during the planning period of free-820 

choice decision trials by multiplying the spatiotemporal MEG data by each state classifier’s beta estimates. We 821 

used state classifiers trained at 120 ms post-stimulus onset, which had the highest cross-validated accuracy 822 

across subjects. We then entered the resultant time series of predicted state reactivation (states × time matrix; 823 
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Fig. 2D) per trial into a 2-level general linear model designed to test whether reactivation of each stimulus occurred 824 

in a specific order at different time intervals. 825 

At the first level, we performed a family of multiple regressions for each state’s reactivation time series (𝑖	𝜖	[1: 6]), 826 

in which a time-lagged copy of the reactivation time series for state 𝑗 (𝑋(𝑡𝛥))) predicts the original, unshifted 827 

reactivation time series of state 𝑖 (𝑋*). The time lags ranged from 0 to 600 ms, in 10 ms bins. Hence, this analysis 828 

evaluated the average likelihood that stimulus 𝑖 is followed by stimulus 𝑗 after a time lag of 𝑡𝛥. Separate linear 829 

models were estimated for each stimulus i and each time lag 𝑡𝛥: 830 

  

𝑋* =9𝑋(𝑡𝛥)) × 𝛽(𝑡𝛥)*) + 𝐶
+

*,%

 

  

  

(2) 

where 𝐶 is a constant term and 𝛽(𝑡𝛥)*) is a coefficient derived from ordinary least-squares that captures the 831 

unique influence of 𝑋* on 𝑋(𝑡𝛥)). These coefficients are then used to form 6 × 6 empirical transition matrices, 832 

𝛽(𝑡𝛥), for each time lag. 833 

At the second level, we quantified the evidence for specific, hypothesised state-to-state transitions. In this task, 834 

the key state-to-state transitions were A → B and B → C (path 1), as well as D → E and E → F (path 2). These 835 

transitions were declared by separate 6 x 6 binary matrices for hypothesised forward (𝑇-) and backward (𝑇.) 836 

transitions, where 𝑇- = 𝑇.′. The evidence for the hypothesised transitions was then quantified by: 837 

  
𝐵(𝛥𝑡) = ∑𝑟𝑍(𝑟) × 𝑇𝑟 

  

(3) 

where 𝑟 is the total number of all regressors included in the second level. These regressors included 𝑇" , 𝑇# , 838 

𝑇$%&'(an identity matrix of self-transitions to control for autocorrelation), and 𝑇(')*& (a constant matrix that 839 

models away the average of all transitions, ensuring that any weight on 𝑇" and 𝑇#was not due to general dynamics 840 

in background neural dynamics). Note that there were four versions of 𝑇" and 𝑇# , one for each hypothesised 841 

transition (A → B, B → C, D → E, and E → F). This allowed us to examine the evidence of replay of each transition 842 

specifically, which was critical to our path-specific analyses. 𝑍 is the weight for each regressor, representing the 843 

evidence for the hypothesised state-to-state transitions. 𝑍" and 𝑍# are evidence for forward and backward 844 

transitions, respectively. A forwards-minus-backwards sequenceness measure, 𝑍+ , was also computed by 845 

performing 𝑍" − 𝑍# , thus removing common variance. Repeating equation 3 at each time lag produces a time 846 
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series of sequenceness at different intervals, where smaller intervals indicate more time-compressed replay (Fig. 847 

2E). 848 

To determine the statistical significance of 𝑍 (averaged across the four transitions and all trials per participant), 849 

we employed non-parametric permutation testing at the second level. We generated a null distribution by 850 

generating all possible invalid versions of 𝑇- and 𝑇. , such that they only included cross-path transitions (e.g., A to 851 

E, B to D, etc.). This produced 40 null versions of 𝑍. We then calculated a significance threshold for our valid 𝑍 by 852 

taking the maximum absolute value of each null and computing the 95th percentile for 𝑍- 	and 𝑍. (one-sided test) 853 

or the 2.5th and 97.5th percentile for 𝑍/ (two-sided test). Thus, values of 𝑍 were deemed statistically significant 854 

(FWE < 0.05) if they exceeded these significance thresholds. 855 

To account for inter-subject variability in classification accuracy across training times and their relevance to 856 

replay, we also computed sequenceness using classifiers trained on 110 ms and 130 ms (10 ms either side of 857 

the winning training time). Thus, we computed sequenceness three times per subject, and chose the classifier 858 

training time (110 ms, 120 ms, or 130 ms) that produced the greatest absolute value of 𝑍/ across lags, averaged 859 

across all transitions (110 ms = 11 subjects, 120 ms = 10 subjects, 130 ms = 5 subjects).  860 

Source localisation 861 

To investigate the neural sources underlying replay during planning, we used a procedure for identifying replay 862 

onsets similar to previous studies14,15,47. Replay onsets were defined as time samples where reactivation of one 863 

state was followed by reactivation of the following state to a higher degree than that expected by chance. For 864 

each trial, we multiplied the state reactivation matrix (𝑋) by a time-shifted version of the state reactivation matrix 865 

by lag 𝑡 (𝑋(𝛥𝑡)). We did this separately for each lag found to be significant in the group-level replay analysis (20 866 

to 90 ms) and only investigated forward transitions, as only forwards replay was significant at the group level 867 

(Fig. 3E). Next, we multiplied 𝑋 by a state transition matrix (𝑃) that either represented the true sequential order of 868 

states or a randomised order (40 randomisations in total, matching the null iterations used in the replay analysis). 869 

Then, for each lag and for each iteration of 𝑃, we multiplied 𝑋(𝛥𝑡) by 𝑃 to produce a matrix of sequential state 870 

reactivation (i.e., replay) per transition across time. We then summed across transitions to produce a vector (𝑅) 871 

reflecting an overall estimate of replay. 872 

To demarcate the onset of a replay event, we estimated a significance threshold in a similar manner to the replay 873 

analysis. For each null iteration of 𝑃, we concatenated 𝑅 vectors for all lags and all trials into a single vector, which 874 

were combined to create matrix 𝑁 (40 columns: one per randomised state order). We then calculated a 875 

significance threshold by computing the maximum value across the columns of matrix 𝑁, and then computing its 876 

95th percentile. Thus, this permutation approach controlled for multiple comparisons across time samples and 877 

lags, and also maximised our ability to distinguish signal from noise. Individual replay events were marked as 878 



 

29 

instances where replay at any lag exceeded the overall significance threshold. Finally, we excluded any replay 879 

events that were preceded by another replay event (of any lag) in the preceding 100 ms. 880 

We epoched the MEG data according to the replay onsets (-100 to 150 ms surrounding replay onset) and baseline 881 

corrected the data using a -100 and -50 ms window. We then transformed these data to a three-dimensional grid 882 

in MNI space (grid step = 5 mm) using a linearly constrained minimum variance beamformer70,71, as implemented 883 

in OSL. Forward models were generated on the basis of a single shell using superposition of basis functions that 884 

approximately corresponded to the plane tangential to the MEG sensor array. The sensor covariance matrix for 885 

beamforming was estimated using data separately in theta (4 to 8 Hz) and high gamma (120 to 150 Hz) frequency 886 

ranges. 887 

At the first level, we computed one-sample tests on whole-brain source activity at each time point using 888 

nonparametric permutation testing72 as implemented in OSL. We selected the resultant t-maps for each 889 

participant and smoothed the images in SPM12 using a 12 mm FWHM Gaussian kernel. We then entered these 890 

into one-sample t-tests (averaged from 0 to 100 ms post-replay onset) in SPM12 for group-level inference, with 891 

or without participant trait anxiety or overall performance accuracy added as a covariate. All statistics are p < 892 

0.05, FWE-corrected at the whole brain cluster level. Anatomical labelling was determined via the Automated 893 

Anatomical Labelling Atlas (AAL3) add-on to SPM1273. 894 

Multi-level modelling 895 

All analyses were conducted on the MEG session, as the initial behavioural session served purely to acquaint 896 

participants with the task structure. We adopted a multi-level modelling approach, which allowed us to examine 897 

effects on a trial-by-trial basis. This approach also allowed us to compare conditions with unbalanced trial 898 

numbers (e.g., “approach” decisions mostly consisted of trials where reward probability was high, and vice versa 899 

for “avoid” decisions). 900 

We used the lme4 package implemented in R v3.6. We constructed a series of models that either used: a) choice 901 

as a binomial dependent variable, or b) sequenceness as a linear dependent variable. In all models, forced choice 902 

trials and catch trials (i.e., trials where both paths resulted in an overall loss or both resulted in an overall gain) 903 

were excluded. All predictors were mean-centred. To ensure convergence, the bobyqa optimiser was used and 904 

set to 106 iterations. Significant interaction terms were followed up by simple slopes analyses using the 905 

“interactions” package in R, FDR-corrected for multiple comparisons, and the “emmeans” package in R. We also 906 

ensured that all models produced a variable inflation factor (VIF) below 5 and that autocorrelation within the 907 

residuals of each model was minimal, as assessed by a Durbin-Watson test74; see Supplementary methods). 908 



 

30 

For models including individual differences, we used principal components analysis to reduce the dimensionality 909 

of the three self-report questionnaires (intolerance of uncertainty, worry, and risk-taking across 7 domains: ethical, 910 

social, health, financial, and recreational) completed at the beginning of the behavioural session. We identified 911 

two principal components that together explained 60.55% of the variance (41.52% and 29.49%, respectively; 912 

eigenvalues = 1.548, 1.357, 1.040, 0.944, 0.684, 0.457, 0.350). The first component mapped positively on to risk-913 

taking questionnaire scores, while the second component mapped negatively on to intolerance of uncertainty and 914 

worry. We refer to these two components as risk-seeking and anxiety, respectively. For interpretability, we inverted 915 

these factors, such that more positive values represented higher risk-aversion and higher anxiety, respectively. 916 

Statistics and reproducibility 917 

No statistical methods were used to pre-determine sample sizes but our sample size was similar to those reported 918 

in previous publications observing significant replay of state transitions as measured with MEG 12,15, as well as a 919 

relationship between replay and individual differences in performance 47. All statistical analyses were performed 920 

using computer code available online (see Code availability). Raw behavioural and MEG data are also available 921 

online in the interest of experimental reproducibility (see Data availability). As the study was a within-subjects 922 

design, there was no randomisation to experimental conditions and thus no blinding during data collection or 923 

analysis. The stimuli presented to each participant was, however, randomised using a random seed generator 924 

based on computer time at the beginning of the experiment. Assumptions of all tests were formally tested. In 925 

cases where assumptions of normality were violated, data were log-transformed. Two participants’ data were 926 

excluded from path-specific MEG replay analysis due to poor behavioural performance in the task (< 60% 927 

accuracy), meaning that these participants were unlikely to have processed that the two paths in the experiment 928 

resulted in an overall reward or loss. 929 
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