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Abstract Existing deep learning-based facial attribute
recognition (FAR) methods rely heavily on large-scale la-
beled training data. Unfortunately, in many real-world appli-
cations, only limited labeled data are available, resulting in
the performance deterioration of these methods. To address
this issue, we propose a novel spatial-semantic patch learn-
ing network (SPL-Net), consisting of a multi-branch shared
subnetwork (MSS), three auxiliary task subnetworks (AT-
S), and an FAR subnetwork, for attribute classification with
limited labeled data. Considering the diversity of facial at-
tributes, MSS includes a task-shared branch and four region
branches, each of which contains cascaded dual cross at-
tention modules to extract region-specific features. SPL-Net
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involves a two-stage learning procedure. In the first stage,
MSS and ATS are jointly trained to perform three auxiliary
tasks (i.e., a patch rotation task (PRT), a patch segmentation
task (PST), and a patch classification task (PCT)), which
exploit the spatial-semantic relationship on large-scale un-
labeled facial data from various perspectives. Specifically,
PRT encodes the spatial information of facial images based
on self-supervised learning. PST and PCT respectively cap-
ture the pixel-level and image-level semantic information of
facial images by leveraging a facial parsing model. Thus, a
well-pretrained MSS is obtained. In the second stage, based
on the pre-trained MSS, an FAR model is easily fine-tuned
to predict facial attributes by requiring only a small amount
of labeled data. Experimental results on challenging facial
attribute datasets (including CelebA, LFWA, and MAAD)
show the superiority of SPL-Net over several state-of-the-
art methods in the case of limited labeled data.

Keywords Facial attribute recognition · Limited labeled
data · Multi-task learning · Multi-label learning · Self-
supervised learning · Semantic segmentation

1 Introduction

Facial attributes (such as gender, age, and expression) de-
scribe important visual properties of facial images, and pro-
vide mid-level representations between low-level features
and high-level labels (Cao et al., 2018a). Over the past few
years, facial attribute recognition (FAR) has attracted con-
siderable attention from both academia and industry. This is
mainly because of its significant importance in various com-
puter vision tasks, including face verification and recogni-
tion (Chen et al., 2018; He et al., 2018b; Rao et al., 2019;
Song et al., 2018; Zhang et al., 2017b), image editing (Eg-
ger et al., 2018; Huang et al., 2018; Song et al., 2019), and
image retrieval (Li et al., 2015; Nguyen et al., 2018).



2 Yan Yan1 et al.

❶ ❸❷

❻ ❹

❼

❺

❾❽

PRT

attr ❺ ❽
whole        - hair
upper       eye           -
middle    nose           -
bottom       - mouth

PCT

❶ … ❺ … ❾

PST

MSS

whole: attractive, young
upper: brown hair
middle: pointy nose
bottom: smile

FAR

MSS

Transfer

Stage 1 Stage 2

Unlabeled Data
Large-scale

Labeled Data
Limited 

Fig. 1: Illustration of the two-stage learning procedure of our
proposed SPL-Net method. In the first stage, MSS and AT-
S (including PRT, PST, and PCT subnetworks) are jointly
trained to perform three auxiliary tasks on large-scale un-
labeled data, and a well-pretrained MSS is obtained. In the
second stage, the pre-trained MSS is transferred to perform
FAR with limited labeled data.

With the rapid development of deep learning, a large
number of FAR methods (Cao et al., 2018a; Hand and Chel-
lappa, 2017; He et al., 2018a; Kalayeh et al., 2017; Li et al.,
2018; Liu et al., 2015; Mahbub et al., 2018; Rudd et al.,
2016; Zhang et al., 2014) have been proposed and shown
promising performance. These methods often rely on abun-
dant labeled data to learn discriminative feature representa-
tions for classifying attributes. However, in many real-world
applications, only a small amount of labeled training data
are provided since labeling massive multi-attribute images
is time-consuming and labor-intensive. As a consequence,
the performance of these methods may substantially drop in
these applications. In this paper, we study the challenging
problem of FAR with limited labeled data.

To address the challenge of learning with limited labeled
data, many recent efforts (Caron et al., 2018; Chen et al.,
2020; Gidaris et al., 2018; He et al., 2020; Miyato et al.,
2018; Noroozi and Favaro, 2016; Sohn et al., 2020) have
been devoted to extracting feature representations in a self-
supervised or semi-supervised learning fashion. Generally,
self-supervised learning takes advantage of automatically gen-
erated labels for model training, while semi-supervised learn-
ing leverages both labeled and unlabeled data to improve the
generalization capability of models.

Traditional self-supervised and semi-supervised learn-
ing methods usually target at image classification (Misra and
Maaten, 2020; Wu and Prasad, 2017; Zhai et al., 2019), ob-
ject detection (Gao et al., 2019; Tang et al., 2017), and se-
mantic segmentation (Wang et al., 2020; Wei et al., 2018)

tasks. Unlike these tasks, FAR is a multi-label learning task,
where facial attributes are comprised of global attributes (such
as the “Male” attribute) and local attributes (such as the “S-
miling” attribute) according to different regions of interest.
To predict these attributes, a comprehensive understanding
of the spatial-semantic relationship of facial images plays
a critical role. For instance, the “Male” and “Attractive” at-
tributes are identified by extracting the semantic information
from the whole facial region. Similarly, to predict the “Smil-
ing” and “Mouth-Open” attributes, it is natural to locate the
mouth region and determine whether the mouth is smiling
and open at a semantic level. Therefore, it is of great signif-
icance to learn fine-grained feature representations, in par-
ticular capturing the spatial-semantic relationship, for FAR.

Motivated by the above observations, we propose a nov-
el spatial-semantic patch learning network (SPL-Net) method,
which effectively exploits the spatial-semantic relationship
on large-scale unlabeled facial data, for FAR with limited
labeled data. SPL-Net consists of a multi-branch shared sub-
network (MSS), three auxiliary task subnetworks (ATS), and
an FAR subnetwork. For MSS, it includes a task-shared branch
(denoted TB) and four region branches (denoted RB). TB
extracts shared features from input facial images, while RB

aggregates features from TB based on cascaded dual cross
attention modules. For ATS, it contains a patch rotation task
(PRT) subnetwork, a patch segmentation task (PST) subnet-
work, and a patch classification task (PCT) subnetwork.

The training of SPL-Net involves a two-stage learning
procedure. In the first stage, MSS and ATS are jointly trained
to perform three auxiliary tasks on large-scale unlabeled fa-
cial data. Therefore, a powerful pre-trained MSS is obtained.
Specifically, based on TB , PRT identifies the rotated patch
given several facial patches (one of which is rotated) and
PST performs semantic segmentation on a randomly cropped
facial patch. Meanwhile, based on RB , PCT predicts facial
components for the same patch in PST. In this way, PRT cap-
tures the spatial information of facial images, while PST and
PCT respectively encode the pixel-level and image-level se-
mantic information of facial images. These three tasks and
their joint training effectively capture the spatial-semantic
relationship between facial regions, which can in turn lead to
a significant improvement of FAR when only limited labeled
data are available. In the second stage, an FAR model (con-
sisting of the pre-trained MSS and the FAR subnetwork) is
easily fine-tuned to classify attributes by using labeled data.
Fig. 1 illustrates the training process of the proposed SPL-
Net method.

In summary, the main contributions of our work are as
follows:

– We propose a novel SPL-Net to address the problem of
FAR with limited labeled data. SPL-Net effectively ex-
ploits the spatial-semantic information on unlabeled fa-
cial data to learn a powerful pre-trained model. There-
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fore, we are able to obtain an accurate attribute predic-
tion model by simply fine-tuning the pre-trained model
with limited labeled data.

– We elaborately design three auxiliary tasks to make use
of the intrinsic dependencies between patch rotation pre-
diction and patch segmentation/classification. This en-
ables the pre-trained model to extract patch-level fine-
grained feature representations.

– Experimental results show that our proposed method con-
sistently outperforms several state-of-the-art methods in
the case of limited labeled data, which shows the impor-
tance of exploring the spatial-semantic relationship for
predicting facial attributes.

This paper is a substantial extension of our previous con-
ference work (Shu et al., 2021). The method in our previ-
ous work predicts all the facial attributes based on the same
features extracted from the backbone. However, as we men-
tioned above, identifying global and local attributes general-
ly relies on different facial regions. Therefore, our previous
work does not fully exploit the characteristics of different
facial attributes. SPL-Net alleviates this limitation from two
main aspects. First, we design MSS and the PCT subnetwork
with multiple branches to classify facial components. Such
a way explicitly accounts for the differences between facial
components in the auxiliary task, and thus in turn benefits
the FAR model to predict global and local attributes. Second,
we innovatively associate different component labels with
the corresponding attribute labels to effectively model the
instrinsic relationship between facial components and facial
attributes. Hence, we can perform PCT in the first stage and
FAR in the second stage by using the same network archi-
tecture. In this manner, the extended auxiliary task is more
suitable for FAR with limited labeled data.

To summarize, we have added the following new signif-
icant contributions:

– We design a multi-branch shared subnetwork MSS to en-
code the region-specific information for different facial
regions (which naturally correspond to different attribute
groups). In particular, we leverage adversarial training
between the whole region branch and the three local re-
gion branches. Hence, the whole region branch can cap-
ture the global context in facial images, even when ran-
domly cropped facial patches are used as inputs for train-
ing those region branches.

– We extend the original PCT subnetwork to the multi-
branch structure for classifying facial components. In
the PCT subnetwork, we introduce a spatial mutual ex-
clusion loss that explicitly enforces each local branch to
focus on its corresponding facial region. This is helpful
to classify diverse attributes in the FAR task with limited
labeled data.

– By virtue of the above extensions, our new SPL-Net achieves
better recognition accuracy than our previous method.

Furthermore, we validate the superiority of SPL-Net on
the newly released MAAD dataset (Terhörst et al., 2020).

The remainder of this paper is organized as follows. Sec-
t. 2 briefly reviews the related work. Sect. 3 introduces the
details of our proposed SPL-Net method. Sect. 4 provides
experimental results on three facial attribute datasets. Final-
ly, Sect. 5 presents the conclusion.

2 Related Work

In this section, we review the related work, including fa-
cial attribute recognition and learning from unlabeled data,
which is closely related to our method.

2.1 Facial Attribute Recognition (FAR)

Currently, deep learning-based methods have become dom-
inant in the field of FAR. They can be roughly categorized
into two groups: part-based methods and holistic methods
(Zheng et al., 2020).

Part-based methods first locate the regions for different
facial attributes, and then predict each attribute in a specif-
ic facial region. For example, SPLITFACE (Mahbub et al.,
2018) takes several facial segments and a whole facial image
as the input and identifies attributes. Kalayeh et al. (2017)
leverage a deep semantic segmentation network to improve
the prediction of facial attributes. Unlike part-based method-
s, holistic methods pay more attention to model the relation-
ships among attributes. For instance, Mao et al. (2020) pro-
pose to perform FAR based on a deep multi-task and multi-
label convolutional neural network (DMM-CNN). Consid-
ering the correlations and distinctions between different at-
tributes, several methods perform FAR based on attribute
grouping. He et al. (2019) divide facial attributes into six
groups and propose an adaptive threshold algorithm to clas-
sify attributes. Cao et al. (2018a) resort to the auxiliary in-
formation (i.e., attribute grouping and identity information)
to customize the network architecture and boost the FAR
performance by capturing the local geometric structure.

The above methods learn the optimized network param-
eters by training on large-scale labeled data. However, in
many real-world applications, a large number of labels can
be difficult to collect. As a result, the performance of these
methods is greatly influenced when only a few labeled train-
ing data are available. Different from these methods, we ad-
dress the challenging and little-explored problem of FAR
with limited labeled data. In particular, we design SPL-Net
with three auxiliary tasks to capture the spatial-semantic re-
lationship on large-scale unlabeled facial data. In this way,
a powerful pre-trained model can be obtained and then fine-
tuned to accurately classify facial attributes by using only
limited labeled data.
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Fig. 2: The network architecture of the proposed SPL-Net method. SPL-Net involves MSS, ATS (consisting of PRT, PST,
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layers, same as the PCT subnetwork). MSS contains TB and RB (including RW
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B , and RL
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ResNet-18 while each region branch of RB is comprised of cascaded DCA modules.

2.2 Learning from Unlabeled Data

To alleviate the extensive expense of annotating large-scale
data, various methods have been developed by learning from
unlabeled data. Among them, self-supervised learning and
semi-supervised learning are the two popular paradigms.

Self-supervised learning Self-supervised learning methods
often learn general features from large-scale unlabeled data
without using any human-annotated labels (Jing and Tian,
2021). For example, Caron et al. (2018) employ an image
clustering algorithm to generate labels for image classifica-
tion. Noroozi and Favaro (2016) divide the images into nine
patches and shuffle these patches. Then, a pretext task is de-
signed to establish correct spatial positions of input patches
by solving the jigsaw puzzle. Gidaris et al. (2018) develop
a self-supervised learning method to predict the geometric
transformation of images.

Recently, contrastive learning has been widely studied in
self-supervised learning. He et al. (2020) develop momen-

tum contrast (MoCo) by constructing dynamic dictionaries
for unsupervised visual representation learning. They for-
mulate an instance discrimination task to determine whether
a query and a key are encoded views (e.g., different crops)
of the same image. Chen et al. (2020) combine several data
augmentation methods to transform each sample to generate
two correlated views of the same sample, and use convo-
lutional networks to extract image features. Then, a multi-
layer perceptron (MLP) is employed to obtain the nonlinear
projection of image features, thereby improving the repre-
sentation quality of features.

Semi-supervised learning Current semi-supervised learning
methods mainly contain two categories: generative methods
and teacher-student methods (Qi and Luo, 2020).

The generative methods learn the real data distribution
from training data and then generate new data according to
the distribution. Salimans et al. (2016) use a generative ad-
versarial network (GAN) to generate virtual samples, where
the unlabeled and generated samples are classified into re-
al classes and a fake class, respectively. They further com-
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bine the classification loss and the unsupervised GAN loss
to train the model.

For teacher-student methods, a teacher model is first trained
to predict the proxy labels of unlabeled data. Then, both
labeled and unlabeled data (with the proxy labels) are em-
ployed to train a student model. MixMatch (Berthelot et al.,
2019) identifies low-entropy labels for data-augmented un-
labeled data, and then mixes labeled and unlabeled data based
on MixUp (Zhang et al., 2017a). FixMatch (Sohn et al.,
2020) introduces a strong augmentation and a weak aug-
mentation to an unlabeled sample, and predicts the labels for
the two types of augmentations. Virtual adversarial training
(VAT) (Miyato et al., 2018) develops a novel regularization
method based on the virtual adversarial loss, which defines
the virtual adversarial direction on unlabeled data.

The above methods often learn holistic feature represen-
tations in a variety of computer vision tasks, including image
classification, object detection, and semantic segmentation.
However, they may not be suitable for the FAR task, where
each facial attribute is associated with a specific facial re-
gion of interest. In this paper, three auxiliary tasks are de-
signed and jointly performed to model the spatial-semantic
relationship between facial regions by leveraging patch rota-
tion prediction and patch segmentation/classification. More-
over, MSS is introduced to extract region-specific features
which naturally correspond to different attribute groups. In
this way, fine-grained feature representations are extracted
by our method, which can largely facilitate FAR.

3 Proposed Method

In this section, we first give an overview of the proposed
method in Sect. 3.1. Then, we introduce MSS in Sect. 3.2.
Next, we describe the details of three auxiliary tasks and the
FAR model in Sects. 3.3 and 3.4, respectively. Finally, we
summarize the overall training of our method in Sect. 3.5.

3.1 Overview

The network architecture of our proposed SPL-Net method
is illustrated in Fig. 2. SPL-Net involves MSS for extracting
mid-level features, ATS for performing multi-auxiliary task
learning, and an FAR subnetwork for predicting attributes.
To address the problem of FAR with limited labeled data, we
introduce a two-stage learning procedure. In the first stage,
MSS and ATS are jointly trained to perform three auxiliary
tasks (i.e., PRT, PST, and PCT) and learn fine-grained fea-
ture representations encoding the spatial-semantic informa-
tion on large-scale unlabeled facial data. Hence, a powerful
pre-trained MSS is obtained. In the second stage, an FAR
model (consisting of the pre-trained MSS followed by the
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FAR subnetwork) is easily fine-tuned to classify facial at-
tributes by using only a small amount of labeled facial data.

For PRT, it encodes the spatial information of facial im-
ages in a self-supervised learning manner. Specifically, an
input facial image is divided into several patches, one of
which is randomly chosen and rotated. Then, PRT identifies
the rotated patch. For PST and PCT, they respectively ex-
ploit the pixel-level and image-level semantic information
of facial images. To achieve this, PST performs semantic
segmentation on a randomly cropped facial patch and as-
signs a semantic label to each pixel in this patch, while PCT
predicts facial components for the same input patch in PST.

Note that the ground-truth semantic labels and facial com-
ponent labels are usually not provided in facial attribute dataset-
s. In this paper, we take advantage of an externally trained
facial parsing model (BiSeNetV2 (Yu et al., 2021)) to gener-
ate proxy semantic labels and proxy facial component label-
s (obtained by aggregating predicted semantic labels from
BiSeNet) for PST and PCT, respectively. Therefore, during
the training of auxiliary tasks in the first stage, all the labels
are automatically generated to reduce the burden of labeling
large-scale facial data.

3.2 Multi-branch Shared Subnetwork (MSS)

MSS includes a task-shared branch (denoted TB) and four
region branches (denoted RB), as shown in Fig. 2. In this
paper, TB , which is based on PreAct ResNet-18 (He et al.,
2016b) (consisting of four PreAct blocks), extracts features
for both the PRT and PST subnetworks. RB , which con-
tains a whole region branch (denoted RW

B ), an upper re-
gion branch (denoted RU

B), a middle region branch (denoted
RM

B ), and a lower region branch (denotedRL
B), extracts four

different region-specific features for the PCT subnetwork.
These four branches share the same network architecture,
and each of them is composed of cascaded dual cross atten-
tion (DCA) modules.

The detailed network architecture of the DCA module is
given in Fig. 3.
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For the channel path, given two input features f1 and f2,
they are first concatenated along the channel dimension to
obtain a concatenated feature fcon, i.e., fcon = concat(f1, f2),
where concat(·) represents the channel-wise concatenation
operation. Then, fcon is fed into a channel attention (CA)
block (Hu et al., 2018) to calculate the channel attention
mask mCA, i.e., mCA = CA(fcon), where CA(·) represents
the CA block. Next, the output feature fCA of the channel
path is derived by adding fcon to the product between mCA

and fcon, which can be expressed as

fCA = fcon ⊕ (mCA � fcon), (1)

where ‘�’ and ‘⊕’ denote the element-wise multiplication
and element-wise addition operations, respectively.

For the spatial path, f1 and f2 are first added together
to obtain a feature fsum, i.e., fsum = f1 ⊕ f2. Instead of
concatenating the features, the element-wise addition is ad-
vantageous to preserve spatial details of two features. Then,
fsum is fed into a spatial attention (SA) block (Woo et al.,
2018) to calculate the spatial attention mask mSA, i.e., mSA =

SA(fsum), where SA(·) represents the SA block. Next, the
output feature fSA of the spatial path is derived by adding
fsum to the product between mSA and fsum, which can be
formulated as

fSA = fsum ⊕ (mSA � fsum). (2)

Finally, the output feature d of the DCA module is ob-
tained by combining fCA with fSA as

d = DCA(f1, f2)

= fCA ⊕ fSA,
(3)

where DCA(·, ·) denotes the DCA module.
Similar to existing attention mechanisms (Chen et al.,

2017; Fu et al., 2019; Zhang et al., 2018; Zhao et al., 2018),
the DCA module involves a channel path and a spatial path.
Concretely, it combines the CA block in SENet (Hu et al.,
2018) and the SA block in CBAM (Woo et al., 2018). In fact,
the DCA module can be comprised of any CA and SA block-
s. Note that existing attention mechanisms take in a single
feature as the input and generate an enhanced feature repre-
sentation. Nevertheless, unlike these mechanisms, the DCA
module accepts two features (i.e., one is from the PreAct
Block in TB and the other is from the previous DCA mod-
ule in Rk

B) as the input. The concatenation operation and
the element-wise addition operation are individually used to
combine the two input features before the CA and SA block-
s. By aggregating the features along the channel and spatial
dimensions, we can effectively exploit the shared informa-
tion from TB and the region-specific information from RB .

As shown in Fig. 2, the DCA module at the first layer
of Rk

B (k ∈ {W,U,M,L}) takes the feature o1 from the

first PreAct block in TB and its copy as the input. For the
DCA module at the n-th (n ∈ {2, 3, 4}) layer of Rk

B , the
feature on from the n-th PreAct block in TB and the atten-
tion feature dk

n−1 from the previous DCA module inRk
B are

taken as the input. Therefore, the output feature dk
n of the

n-th DCA module in Rk
B can be described as

dk
n =

{
DCA(on,on), n = 1,

DCA(on,d
k
n−1), n ≥ 2.

(4)

On the one hand, if the whole facial image is used as the
input of MSS, PCT is trained with similar facial component
labels while PRT leverages shortcuts to identify the rotat-
ed patch (detailed explanations will be described in Section
3.3). In this way, both PCT and PRT fail to perform well
on auxiliary tasks. Therefore, the whole region branch in
MSS adopts a randomly cropped facial patch as the input in
the first stage. On the other hand, the whole region branch
is designed to capture the global context information of the
whole facial image. To address this, we take advantage of
adversarial training between the whole region branch and
the three local region branches to enforce the whole region
branch to aggregate the information from local branches.

Specifically, a feature fusion block consisting of a con-
volutional layer and a batch normalization layer is used to
aggregate three region-specific features dU

4 , dM
4 , and dL

4

from the 4-th DCA modules of three local region branch-
es, which can be expressed as

dagg
4 = g(concat(dU

4 ,d
M
4 ,d

L
4 )), (5)

where dagg
4 is the aggregated feature and g(·) denotes the

convolutional operation followed by batch normalization.
Then, the distributions of dagg

4 and dW
4 extracted byRW

B

are constrained to be as close as possible. In this way, the
feature extracted from the whole region branch can easily
capture the global semantic context with the help of three
region-specific features from different local region branch-
es. To achieve this, a discriminator D (consisting of four
fully-connected (FC) layers) is introduced to play a mini-
max game betweenRW

B andRU
B ,RM

B ,RL
B . That is,RW

B tries
to minimize the divergence between dagg

4 and dW
4 , while D

aims to distinguish dagg
4 from dW

4 . Mathematically, adver-
sarial training can be formulated as

min
D

max
RW

B

Ladv
MSS(R

W
B , D), (6)

where the adversarial loss Ladv
MSS is defined as

Ladv
MSS = −E[log(D(dagg

4 ))]− E[log(1−D(dW
4 )))]. (7)

The whole region branch is optimized to extract features
similar to the aggregated features from three region-specific
features. Meanwhile, notice that the whole region branch is
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optimized with the joint loss (Eq. (16)) containing the clas-
sification loss corresponding to the whole facial components
in the first stage. It is also fine-tuned with the classification
loss (Eq. (17)) corresponding to the global attributes and the
whole facial images as inputs in the second stage. Therefore,
by back-propagating the gradients of the loss, the whole re-
gion branch can hold the global view of facial images to
some extent.

Note that both PS-MCNN (Cao et al., 2018a) and our
MSS adopt the multi-branch structure to extract features for
different facial regions. However, these two methods are sig-
nificantly different. PS-MCNN aggregates features from d-
ifferent branches by a simple concatenation layer. In con-
trast, our MSS aggregates features by employing an atten-
tion module (i.e., DCA), which emphasizes the important
information and suppresses the irrelevant information in the
features along the channel and spatial dimensions. By lever-
aging cascaded DCA modules, each region branch learn-
s informative features more effectively. Besides, compared
with ResNet-50 (He et al., 2016a) used in our previous work
(Shu et al., 2021), our MSS exploits the spatial character-
istics of facial images by extracting region-specific features
since each facial attribute corresponds to a specific facial re-
gion. Hence, a well-pretrained MSS can be obtained in the
first stage and facilitate the training of the FAR model in the
second stage, as verified in our experiments in Sec. 4.3.

3.3 Auxiliary Tasks

In this subsection, we give the details of three auxiliary tasks.

3.3.1 Patch Rotation Task (PRT)

We design PRT to model the spatial relationship between
facial patches. As illustrated in Fig. 2, the network architec-
ture of PRT contains TB and a PRT subnetwork (composed
of a global average pooling (GAP) layer and two FC layers).

Given an input facial image I from unlabeled facial da-
ta, it is first evenly divided into m × m different patches,
denoted by {p1, · · · ,pm2}. Then, one patch pr is random-
ly chosen and rotated by degree d that is randomly selected
from 90, 180, and 270 degrees. PRT takes these patches as
the input and aims to identify the rotated patch and the cor-
responding rotation angle. Note that the random selection of
a patch is guided by the semantic mask (see Section 3.3.2
for more details) generated by BiSeNetV2 (Yu et al., 2021).
That is, when a selected patch contains only the background,
we will discard it and choose another patch randomly until
it involves the facial component.

To be specific, these m×m patches are first concatenat-
ed along the channel dimension, and fed into a preprocess-
ing block (consisting of a 1×1 convolutional layer followed
by a batch normalization layer and a PReLU layer) to reduce

the number of feature channels and improve the training ef-
ficiency. Then, the output from the preprocessing block is
passed through several PreAct blocks to extract the patch
feature pPRT ∈ Rc×w×h, where c, w, and h represent the
channel, width, and height of the feature, respectively. Next,
the patch feature is fed into a GAP layer to obtain a fea-
ture fPRT . After that, fPRT is flattened and fed into two FC
layers and two softmax layers to predict the probabilities of
m2 patches being rotated and the probabilities of three de-
grees being chosen, i.e., tp = [tp1, · · · , t

p
m2 ] ∈ R1×m2

with
tpi ∈ [0, 1], and tr = [tr1, · · · , tr3] ∈ R1×3 with tri ∈ [0, 1].
The index of the largest element in tp corresponds to that
of the predicted rotated patch, and the index of the largest
element in tr indicates the predicted rotation angle.

Similar to Noroozi and Favaro (2016), we apply color
jitter to each patch and then normalize each patch indepen-
dently. In this way, we avoid the model simply taking short-
cuts between low-level texture statistics (e.g., edge conti-
nuity, pixel intensity distribution, and chromatic aberration)
when identifying the rotated patch. Therefore, the network
is capable of extracting high-level primitives and structures,
thus effectively modeling the spatial relationship between a
patch and its neighboring patches.

The loss of PRT employs the standard cross-entropy loss,
which is formulated as

LPRT = −(
m2∑
i=1

1[i=r] log(t
p
i ) +

3∑
i=1

1[i=d] log(t
r
i )), (8)

where log(·) denotes the logarithm function; 1[i=r] outputs
1 when i = r and 0 otherwise; 1[i=d] outputs 1 when i = d

and 0 otherwise.
It is worth pointing out that Gidaris et al. (2018) devel-

op a self-supervised learning method to predict the rotation
angle of an input image. However, this method is originally
designed for image classification, object detection, and se-
mantic segmentation, and thus it does not fully take into ac-
count the intrinsic geometric structure of images. For FAR,
different facial attributes are often associated with differen-
t facial regions. Hence, by exploiting the spatial contextual
information between patches, our design of PRT is more ap-
propriate for the FAR task.

3.3.2 Patch Segmentation Task (PST)

We develop PST to perform semantic segmentation, which
predicts the semantic label of each pixel in a patch. Conven-
tional semantic segmentation methods often consider the w-
hole image as the input. However, such a manner may cause
PRT to leverage shortcuts (such as low-level statistics in fa-
cial images) to identify the rotated patch since PST and PRT
share the same TB . Therefore, we use a randomly cropped
facial patch as the input of PST.
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As shown in Fig. 2, the network architecture of PST con-
sists of TB and a PST subnetwork (composed of a convolu-
tional layer and a Criss-cross attention (CCA) block (Huang
et al., 2019) followed by two convolutional layers. Differ-
ent from the encoder-decoder structure used in our previous
work (Shu et al., 2021), the PST subnetwork aggregates full-
patch dependencies in horizontal and vertical directions by
the CCA block. This way accurately captures the contextual
information from all patch pixels and benefits the perfor-
mance improvement of semantic segmentation.

Specifically, a c× c patch ps is randomly cropped from
the original facial image I and used as the input of PST.
The patch is fed into TB to extract a feature, which is then
passed through the PST subnetwork to classify each pixel
into different semantic classes. Suppose that we have J se-
mantic classes and the class prediction probabilities for the
d-th pixel are denoted h = [hd1, · · · , hdJ ], we can formu-
late the loss of the d-th pixel in ps as

Lpixel = −
J∑

j=1

qdj log(hdj), (9)

where qdj denotes the label distribution; qdj = 1 if j is the
ground-truth label of the d-th pixel and qdj = 0 otherwise.

Generally, the semantic labels of facial images are not
available in facial attribute datasets. Therefore, we make use
of an externally trained facial parsing model (i.e., BiSeNetV2
(Yu et al., 2021)) to predict the semantic labels for all pix-
els of the input patch ps. These predicted labels are used as
the proxy semantic labels for PST. In this paper, BiSeNetV2
is pre-trained on ImageNet and fine-tuned with only limited
labeled data (we employ the same number of training data in
CelebA-HQ (Karras et al., 2017) as that of limited labeled
data used in the second stage, instead of using the whole
CelebA-HQ).

BiSeNetV2 may give incorrect proxy semantic labels
when applied to facial attribute datasets due to domain dis-
crepancy and limited training data. To alleviate the overfit-
ting caused by incorrect labels, we further leverage the label
smoothing strategy (Szegedy et al., 2016), which is formu-
lated as

q′dj = (1− ε)qdj +
ε

J
, (10)

where q′dj is the modified label distribution and ε is a s-
moothing parameter empirically set to 0.1 as in Szegedy
et al. (2016).

With Eq. (9) and Eq. (10), the loss of PST is defined as

LPST =
1

D

D∑
d=1

− J∑
j=1

q′dj log(hdj)

 , (11)

where D is the total number of pixels in ps.

3.3.3 Patch Classification Task (PCT)

PST encodes the pixel-level semantic information of facial
images by performing semantic segmentation. Nonetheless,
the FAR task is an image-level multi-attribute classification
task, where each facial attribute often corresponds to the se-
mantic context of a whole/local facial region. Hence, we fur-
ther develop PCT to predict facial components of a given
input. In this way, the image-level semantic information of
facial images can be explicitly captured.

PCT adopts the same input (i.e., a randomly cropped fa-
cial patch) as PST. Note that, if the whole facial image is
taken as the input, most facial components exist and thus
PCT is trained with similar facial component labels. Such a
manner is detrimental to the PCT training since the distribu-
tion of facial component labels is highly imbalanced.

As shown in Fig. 2, the network architecture of PCT is
composed of TB , RB , and a PCT subnetwork (consisting of
four parallel GAP layers and four parallel FC layers). As we
mentioned previously, each branch of RB aggregates fea-
tures from TB based on cascaded DCA modules according
to a specific region of interest. Therefore, RB can extract
both the global and local information of a given input facial
image. More specifically, given a facial patch ps, it is first
fed into TB and RB to extract four region-specific features.
Then, these features are fed into the PCT subnetwork to pre-
dict facial components.

In this paper, the facial components predicted in PCT
are the same as the semantic classes used in PST. However,
PST and PCT are two different tasks. PST is a pixel-level
classification task (i.e., assigning a label to each pixel in a
patch) while PCT is an image-level classification task (i.e.,
predicting the existence of facial components in a patch).

Due to the lack of ground-truth facial component labels
in facial attribute datasets, we also employ BiSeNet to assign
the proxy facial component labels of an input patch. Each
proxy label is generated by aggregating pixel-level semantic
labels predicted by BiSeNet, and thus it is tolerant of small
label errors. Thus, the proxy component labels of the input
patch are denoted as a vector, that is, ys = [y0, · · · , yJ ].
Here, yi = 1 denotes the existence of a facial component,
and 0 otherwise. In particular, we divide J facial component
labels into four groups (a whole groupW , an upper groupU ,
a middle group M , and a lower group L) according to their
spatial locations, and each group has Jk (k ∈ {W,U,M,L})
facial component labels. The detailed group configuration
is listed in Sect. 4.2. Accordingly, the PCT subnetwork in-
volves a whole branch and three local branches, where each
branch predicts facial components in a group.

Usually, a few facial components exist in ps, where some
of them only involve a relatively small number of pixels.
Some examples are illustrated in Fig. 4. Hence, we only
choose the top v dominant facial components in the patch
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 (a) patch 1           (b) patch 2

Fig. 4: Examples of two input facial patches and their cor-
responding semantic masks from CelebA. The “ear” and
“right eye” exist in (a) patch 1 and (b) patch 2, respectively.
But they are not the dominant facial components.

and label them as 1. For the rest of facial components, we
label them as 0.

The classification loss of PCT adopts the binary cross-
entropy loss, which is defined as

Lcls
PCT = −

∑
k

Jk∑
j=1

(
zkj log(p

k
j ) + (1− zkj ) log(1− pkj )

)
,

k ∈ {W,U,M,L},
(12)

where pkj is the output prediction probability of the j-th fa-
cial component in group k; zkj denotes the proxy facial com-
ponent label of the j-th facial component; zkj = 1 indicates
the existence of a facial component, and 0 otherwise.

To explicitly enforce each local branch of the PCT sub-
network to focus on its corresponding facial region, we pro-
pose a spatial mutual exclusion (SME) loss. Specifically, a
normalization operation is first applied to the outputs (de-
noted by lU , lM , and lL) of local branches of the PCT sub-
network, and thus the normalized features l

U
, l

M
, and l

L
are

l
k
= sigmoid(lk −m), k ∈ {U,M,L}, (13)

where m = (lU ⊕ lM ⊕ lL)/3 represents the average fea-
ture, and sigmoid(·) is the Sigmoid function which maps the
value of an element in lk larger than m closer to 1 and that
smaller than m closer to 0.

Then, the SME loss is defined as

Lsme
PCT = l

U � l
M � l

L
. (14)

By minimizing the SME loss, three local branches are
concerned with different facial regions.

With Eq. (7), Eq. (12), and Eq. (14), the loss of PCT is
given as

LPCT = Ladv
MSS + Lcls

PCT + Lsme
PCT . (15)

3.3.4 Joint Loss

Based on the above formulation, the joint loss of SPL-Net
can be derived as

Ljoint = LPRT + λ1LPST + λ2LPCT , (16)

where λ1 and λ2 denote the regularization parameters to bal-
ance different losses.

3.4 FAR Model

After the joint training of three auxiliary tasks in the first
stage, a comprehensively pre-trained MSS is learned. Then,
an FAR model, containing the pre-trained MSS and an FAR
subnetwork (consisting of four parallel GAP layers and four
parallel FC layers), is fine-tuned to predict facial attributes
in the second stage.

Given an input facial image I with C attribute labels,
it is first fed into TB to extract features. Then, four region
branches extract region-specific features from TB . Finally,
these features are fed into the FAR subnetwork to predic-
t facial attributes. According to the different spatial loca-
tions of facial attributes, all the attribute labels are divid-
ed into four groups {W,U,M,L}, where each group has
Ck (k ∈ {W,U,M,L}) attribute labels. The detailed group
configuration is given in Sect. 4. Therefore, each branch of
the FAR subnetwork classifies facial attributes in a group.

The loss of FAR adopts the binary cross-entropy loss,
which is defined as

LFAR = −
∑
k

Ck∑
i=1

(
yki log(x

k
i ) + (1− yki ) log(1− xki )

)
,

k ∈ {W,U,M,L},
(17)

where xki represents the output prediction probability of the
i-th facial attribute in a branch of the FAR subnetwork; yki
represents the ground-truth label of the i-th facial attribute;
yki = 1 indicates the existence of a facial attribute, and 0
otherwise.

3.5 Overall Training

The overall training process of SPL-Net is summarized in
Algorithm 1. Generally, it involves a two-stage learning pro-
cedure. In the first stage, three auxiliary tasks are jointly per-
formed to capture the spatial-semantic relationship on large-
scale unlabeled facial data in a multi-task learning fashion.
Thus, a pre-trained MSS is learned. In the second stage, an
FAR model is fine-tuned with limited labeled facial data.
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Table 1: Group configuration of facial component labels and attribute labels in CelebA, LFWA, and MAAD.

Groups Component Labels Attribute Labels in CelebA/LFWA Attribute Labels in MAAD

Whole Group Background, Skin

5 o Clock Shadow, Attractive, Blurry,
Chubby, Heavy Makeup, Male, Oval Face,
Pale Skin, Straight Hair, Smiling,
Wavy Hair, Young

Male, Young, Middle Aged, Senior, Asian,
White, Black Shiny Skin, Wavy Hair,
5 o Clock Shadow, Oval Face, Square Face,
Round Face, Chubby, Smiling,
Heavy Makeup, Attractive

Upper Group

Left Eyebrow,
Right Eyebrow,
Left Eye, Right Eye,
Eye Glasses, Hair, Hat

Arched Eyebrows, Bags Under Eyes, Bald,
Bangs, Black Hair, Blond Hair, Brown Hair,
Bushy Eyebrows, Eyeglasses, Gray Hair,
Narrow Eyes, Receding Hairline, Wearing Hat

Bald, Receding Hairline, Bangs, Black Hair,
Blond Hair, Brown Hair, Gray Hair,
Obstructed Forehead, Fully Visible Forehead,
Brown Eyes, Bags Under Eyes,
Bushy Eyebrows, Arched Eyebrows,
Wearing Hat, No Eyewear, Eyeglasses

Middle Group
Left Ear, Right Ear,
Ear Ring, Nose

Big Nose, High Cheekbones, Pointy Nose,
Rosy Cheeks, Sideburns, Wearing Earrings

Rosy Cheeks, Sideburns, High Cheekbones,
Big Nose, Pointy Nose, Wearing Earrings,

Lower Group
Mouth, Upper Lip,
Lower Lip, Neck,
Necklace, Cloth

Big Lips, Double Chin, Goatee, Mustache,
Mouth Slightly Open, No Beard,
Wearing Lipstick, Wearing Necklace,
Wearing Necktie

No Beard, Mustache, Goatee, Double Chin,
Mouth Closed, Big Lips, Wearing Necktie,
Wearing Lipstick

Algorithm 1 The two-stage learning procedure of SPL-Net.
Input: Unlabeled facial data U ; labeled facial data L; the training

epochs of each stage, K1,K2; the number of steps to update the
discriminator, Kd; the number of image patches, m×m.

Output: A trained FAR model.
// Stage 1: Performing multi-auxiliary task learning.

1: for each k1 = 1 to K1 do
2: for each mini-batch Ub in U do
3: for i = 1 to |Ub| do
4: Randomly crop a patch ps from I ∈ Ub;
5: Divide I into m×m patches P = {p1, · · · ,pm2};
6: Randomly select a patch pr from P and rotate it by one

randomly chosen degree from 90, 180, and 270 degrees;
7: end for
8: for kd = 1 to Kd do
9: Calculate the adversarial loss Ladv

MSS by Eq. (7);
10: Fix MSS and three auxiliary task subnetworks, and up-

date the D;
11: end for
12: Calculate the joint loss Ljoint by Eq. (16);
13: Fix the D, and update MSS and three auxiliary task subnet-

works;
14: end for
15: end for

// Stage 2: Fine-tuning the FAR model.
16: for each k2 = 1 to K2 do
17: for each mini-batch in L do
18: Calculate the FAR loss LFAR by Eq. (17);
19: Update MSS and the FAR subnetwork simultaneously;
20: end for
21: end for

4 Experiments

In this section, we perform extensive experiments to show
the superiority of our proposed SPL-Net method. First, we
briefly introduce three public facial attribute datasets. Then,
we give the implementation details. Next, we perform ab-
lation studies to validate the effectiveness of each auxiliary

task in SPL-Net, and discuss the influence of several key pa-
rameters of SPL-Net on the final performance. Finally, we
compare SPL-Net with several state-of-the-art methods and
analyze the computational complexity of SPL-Net.

4.1 Datasets

CelebA (Liu et al., 2015) is a popular large-scale facial at-
tribute dataset, which is widely used to evaluate the FAR
performance. It contains 202,599 facial images with 40 at-
tribute annotations per image. The facial images are col-
lected with large pose variations, illumination changes, and
background clutter. CelebA is split into 3 parts, including
162,770 images for training, 19,867 images for validation,
and 19,962 images for testing.
LFWA (Huang et al., 2008) is another challenging facial
attribute dataset. It consists of 13,143 facial images with the
same attribute annotations as the CelebA dataset. Similar to
CelebA, LFWA is divided into a training set (6,263 images)
and a test set (6,880 images).
MAAD (Terhörst et al., 2020) is a newly-released massive
facial attribute dataset. It is constructed based on the VG-
GFace2 database (Cao et al., 2018b) and consists of 3.3M
facial images with 123.9M attribute labels of 47 attributes.
In MAAD, 3,138,862 images and 169,178 images are used
for training and testing, respectively.

In the first stage, we use the default training set (without
labels) to train three auxiliary tasks for CelebA and LFWA.
We randomly select 200,000 images from the training set
(without labels) to train three auxiliary tasks for MAAD. In
the second stage, we randomly choose a proportion of the
training set (with labels) of CelebA, LFWA, or MAAD to
fine-tune the FAR model. Moreover, we use the default val-
idation and test sets of CelebA and LFWA, while we ran-
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domly select 20,000 images from the test set of MAAD, to
evaluate the performance. All the experiments are performed
10 times, and the average recognition accuracy is reported.

4.2 Implementation Details

We use PreAct ResNet-18 (without pre-training) as the back-
bone of TB and each region branch inRk

B (k ∈ {W,U,M,L})
is comprised of four cascaded DCA modules. In PRT, the
number of patches per side m is set to 3. Hence, there are
3× 3 = 9 patches in total. Each facial image I in unlabeled
facial data is first resized to 255 × 255, and then 9 patches
with the size of 85×85 are cropped. Finally, a patch with the
size of 64×64 is randomly cropped from each 85×85 patch
and resized to 224 × 224. Such a way prevents the model
from using low-level texture statistics, which are not advan-
tageous for the FAR task. In PST and PCT, a patch with the
size of 75 × 75 is randomly cropped from each facial im-
age, and then resized to 224 × 224. In PCT, the number of
dominant facial components v is set to 9. The number of at-
tributes C is 40 for CelebA and LFWA, and 47 for MAAD.
The number of facial components J is 19.

We use PyTorch to implement SPL-Net, and all the ex-
periments are performed on four GTX 2080 GPUs. For the
first stage, the batch size is set to 40, and the model is trained
for 80 epochs. The number of steps to update the discrimi-
nator D is set to 3. The values of λ1 and λ2 in Eq. (16) are
empirically set to 0.05 and 0.50, respectively. For the second
stage, the batch size is set to 128, and the model is trained
for 60 epochs.

During training, the Adam optimizer (Kingma and Ba,
2014) is adopted with the initial learning rate of 1 × 10−4,
β1 = 0.500, β2 = 0.999 and the weight decay of 5× 10−4.
The warm-up strategy is used to update the learning rate,
where the value of the learning rate is linearly increased
from 1× 10−3 to 3.5× 10−3 in the first 15 epochs, and then
remains at 1.5×10−5 until the end of training. As mentioned
in Sect. 3, both facial component labels in PCT and facial
attribute labels in FAR are divided into four groups (i.e., a
whole group, an upper group, a middle group, and a lower
group) according to different spatial locations. The detailed
group configuration is shown in Table 1. We use BiSeNetV2
(Yu et al., 2021), which is pre-trained on ImageNet and fine-
tuned with only limited labeled data, to generate semantic
masks for training auxiliary tasks. In particular, we select the
same number of training data in CelebA-HQ (Karras et al.,
2017) as that of limited labeled data in the facial attribute
dataset. All experiments on speed analysis are performed by
using a single NVIDIA GTX 2080 GPU.

4.3 Ablation studies

To show the effectiveness of the proposed SPL-Net method,
we conduct ablation studies to evaluate the influence of the

DCA module, the whole region branch, MSS, different aux-
iliary tasks (i.e., PRT, PST, and PCT), the SME loss, adver-
sarial training in MSS, the two-stage learning procedure, and
critical parameters (including the number of patches and the
number of dominant facial components) on the final recog-
nition performance.

We evaluate the performance obtained by sixteen vari-
ants of the proposed method, including: 1) the baseline method
that uses the PreAct ResNet-18 backbone and two FC lay-
ers to predict facial attributes; 2) the method (denoted “S-
PL CBAM”) that is the same as SPL Net except that the
channel and spatial attention blocks in the DCA module are
replaced by those in CBAM; 3) the method (denoted “S-
PL w/o whole”) that is the same as SPL Net except that the
whole region branch is replaced by the aggregation (i.e., the
feature fusion block) after adversarial training in the sec-
ond stage; 4) the method (denoted “MSS”) that is based
on MSS and the FAR subnetwork; Note that both the base-
line and MSS methods are directly trained by using limit-
ed labeled data. 5) the method (denoted “SPL R”) that only
adopts PRT as the auxiliary task; 6) the method (denoted
“SPL S”) that only adopts PST as the auxiliary task; 7) the
method (denoted “SPL C”) that only adopts PCT as the aux-
iliary task; 8) the method (denoted “SPL C w/o A”) that on-
ly adopts PCT as the auxiliary task without using adversar-
ial training; 9) the method (denoted “SPL RS”) that adopts
PRT and PST as the auxiliary tasks; 10) the method (de-
noted “SPL RC”) that uses PRT and PCT as the auxiliary
tasks; 11) the method (denoted “SPL SC”) that uses PST
and PCT as the auxiliary tasks; 12) the method (denoted
“SPL w/o A”) that jointly trains PRT, PST, and PCT in an
integrated network but without using adversarial training in
MSS; 13) the method (denoted “SPL w/o SME”) that joint-
ly combines PRT, PST, and PCT but without using the SME
loss in PCT; 14) the method (denoted “SPL L2”) that is the
same as SPL Net except that adversarial training is replaced
by a simple contrastive learning method (based on the L2
loss); 15) the method (denote “SPL semi”) that jointly train-
s PRT, PST, and FAR in a semi-supervised manner; and 16)
the proposed SPL-Net method.

The details of these variants are summarized in Table 2.
The results obtained by these variants with the different pro-
portions of labeled training data on CelebA, LFWA, and
MAAD are given in Tables 3, 4, and 5, respectively.

Influence of the DCA module. We validate the effective-
ness of DCA via replacing the attention blocks in the D-
CA module by those in CBAM. Experimental results show
that SPL-Net can achieve slightly better performance than
SPL CBAM. This can be ascribed to the superiority of the
SE block, which effectively recalibrates channel-wise fea-
ture responses by exploiting interdependencies between dif-
ferent channels.
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Table 2: The details of sixteen vari-
ants of SPL-Net. AT denotes adver-
sarial training. W denotes the whole
region branch. TS denotes the two-
stage learning procedure.

Variants DCA MSS PRT PST PCT AT W SME TS
Baseline - - - - - - - - -
SPL CBAM CBAM X X X X X X X X

SPL w/o whole X X X X X X - X X

MSS X X - - - - - - X

SPL R - - X - - - - - X

SPL S - - - X - - - - X

SPL C X X - - X X X - X

SPL C w/o A X X - - X - - - X

SPL RS - - X X - X X - X

SPL RC X X X - X X X - X

SPL SC X X - X X X X - X

SPL w/o A X X X X X - - X X

SPL w/o SME X X X X X X X - X

SPL L2 X X X X X L2 - X X

SPL Semi X X X X - - - X one-stage
SPL-Net X X X X X X X X X

Table 3: Ablation studies: The recognition
accuracy (%) obtained by sixteen variants
of SPL-Net with the different proportion-
s of labeled training data on the CelebA
dataset. The best results are boldfaced.

CelebA
Proportion 0.02% 0.2% 0.5% 1% 2% 100%
Number of Labeled Samples 33 325 843 1,627 3,225 162,770
Baseline 76.34 82.16 85.23 87.60 88.40 90.90
SPL CBAM 79.03 86.95 88.15 88.77 89.53 91.68
SPL w/o whole 78.21 85.65 87.24 86.34 88.43 90.55
MSS 76.92 83.97 86.33 87.82 88.85 91.49
SPL R 78.38 85.25 87.67 88.58 89.13 91.70
SPL S 77.53 84.58 87.13 87.87 88.77 91.53
SPL C 77.23 83.87 86.40 87.59 88.65 91.38
SPL C w/o A 76.95 83.35 86.01 87.02 88.10 91.21
SPL RS 78.52 85.77 87.97 88.97 89.75 91.70
SPL RC 78.50 86.14 87.65 88.76 89.32 91.71
SPL SC 78.04 85.15 87.32 88.01 88.98 91.60
SPL w/o A 78.89 86.68 88.09 87.66 88.23 91.66
SPL w/o SME 78.83 86.60 87.86 87.41 88.05 91.53
SPL L2 78.01 85.84 87.21 86.95 87.43 89.64
SPL semi 75.23 83.12 85.75 85.94 86.45 89.57
SPL-Net 79.33 87.02 88.21 88.97 89.83 91.78

Influence of the whole region branch. We validate the im-
portance of the whole region branch in MSS. The adversar-
ial training introduced in MSS encourages the whole region
branch to extract features close to the aggregated features
from the three local branches. Therefore, we can replace the
whole region branch by the aggregation (i.e., the feature fu-
sion block) after adversarial training in the second stage.

We can see that SPL w/o whole cannot achieve satisfac-
tory performance. This is because the feature fusion block
(consisting of only a simple convolutional layer and a batch
normalization layer) cannot successfully learn powerful fea-
ture representations for classifying facial attributes, when
limited labeled data are given. In contrast, the whole re-
gion branch involving cascaded DCA modules provides bet-
ter feature extraction capability and can be more effectively

fine-tuned by taking the whole facial images as inputs in the
second stage.
Influence of the multi-branch shared subnetwork (MSS).
MSS includes a task-shared branch and four region branches
(each branch is composed of cascaded DCA modules). As
observed from Tables 3, 4, and 5, the MSS method obtains
better performance than the baseline method on all the three
datasets. More specifically, the MSS method improves the
performance by 0.58% on CelebA, 0.98% on LFWA, and
0.57% on MAAD, when 0.02%, 0.5%, and 0.02% of labeled
training data are respectively used. The above results show
the effectiveness of MSS, which can extract region-specific
features according to the regions of interest, for improving
the FAR performance.
Influence of different auxiliary tasks. SPL-Net outperform-
s the MSS method by 2.41% on CelebA, 3.53% on LFWA,
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Table 4: Ablation studies: The recognition
accuracy (%) obtained by sixteen variants
of SPL-Net with the different proportion-
s of labeled training data on the LFWA
dataset. The best results are boldfaced.

LFWA
Proportion 0.5% 5% 10% 20% 50% 100%
Number of Labeled Samples 31 313 626 1,252 3,131 6,263
Baseline 67.37 73.92 77.04 80.90 83.65 85.76
SPL CBAM 71.72 78.89 82.01 84.23 85.80 86.58
SPL w/o whole 70.25 77.47 80.33 82.21 83.15 85.60
MSS 68.35 74.96 78.79 82.14 84.53 86.14
SPL R 69.68 77.01 80.85 83.19 85.25 86.59
SPL S 68.53 76.01 79.79 82.37 84.70 86.32
SPL C 68.42 75.51 79.22 82.10 84.31 86.01
SPL C w/o A 68.03 75.30 78.87 81.81 83.65 85.98
SPL RS 70.15 77.45 81.59 83.31 85.23 86.47
SPL RC 70.31 77.54 81.60 83.42 85.42 86.54
SPL SC 69.25 76.15 79.31 82.52 84.88 86.46
SPL w/o A 71.30 78.34 81.05 82.84 83.51 85.01
SPL w/o SME 71.22 78.40 81.21 82.35 83.81 85.03
SPL L2 70.58 77.46 80.47 81.21 81.63 83.45
SPL semi 68.30 70.14 74.25 77.80 80.05 83.01
SPL-Net 71.88 79.20 82.12 84.43 85.86 86.77

Table 5: Ablation studies: The recognition
accuracy (%) obtained by sixteen variants
of SPL-Net with the different proportion-
s of labeled training data on the MAAD
dataset. The best results are boldfaced.

MAAD
Proportion 0.02% 0.2% 0.5% 1% 2% 100%
Number of Labeled Samples 40 400 1,000 2,000 4,000 200,000
Baseline 63.04 67.18 70.25 71.19 74.92 85.86
SPL CBAM 68.83 73.69 76.21 77.88 79.05 85.67
SPL w/o whole 67.21 72.39 75.37 76.70 78.75 84.21
MSS 63.61 67.72 70.90 73.67 75.32 85.88
SPL R 67.55 70.50 73.55 76.92 78.59 85.71
SPL S 66.83 69.13 72.41 75.87 77.21 85.34
SPL C 66.65 68.14 71.86 75.01 76.93 85.06
SPL C w/o A 66.31 67.79 70.87 74.31 76.44 85.02
SPL RS 67.83 71.56 74.30 77.15 79.01 85.92
SPL RC 67.76 71.67 74.81 77.17 78.90 85.80
SPL SC 67.13 70.55 73.34 75.99 78.15 85.13
SPL w/o A 68.45 72.41 75.83 76.14 78.20 84.89
SPL w/o SME 68.55 73.24 76.01 77.51 78.05 85.11
SPL L2 67.13 71.53 74.81 75.57 76.25 84.14
SPL semi 65.45 69.21 72.57 73.89 75.10 84.12
SPL-Net 69.01 73.98 76.39 77.97 79.21 85.94

and 5.40% on MAAD when 0.02%, 0.5%, and 0.02% of la-
beled training data are respectively used. Generally, when
a smaller proportion of labeled training data is employed,
the improvements obtained by SPL-Net are more eviden-
t. In particular, SPL-Net outperforms the baseline method
(2.99%, 4.51%, and 5.97% improvements on CelebA, LFWA,
and MAAD, respectively) when 0.02%, 0.5%, and 0.02% of
labeled training data are respectively used. This validates the
importance of exploiting the spatial-semantic relationship to
ensure the performance of the SPL-Net method.

PRT exploits the spatial information of facial images
based on self-supervised learning. Compared with SPL S
and SPL C, SPL RS and SPL RC give higher accuracy on
the CelebA, LFWA, and MAAD datasets. Moreover, SPL-

Net also achieves better recognition accuracy than SPL SC.
The above results show the effectiveness of PRT, which takes
advantage of spatial information to improve the FAR perfor-
mance in the case of limited labeled data.

PST leverages semantic segmentation to extract the fine-
grained semantic information from facial images. As shown
in Tables 3, 4 and 5, SPL RS and SPL SC obtain higher ac-
curacy than SPL R and SPL C, respectively. Introducing the
pixel-level semantic information in the first stage is helpful
to improve the final FAR performance in the second stage. In
comparison with SPL RC, SPL-Net achieves higher accura-
cy (e.g., 0.83%, 1.57%, and 1.25% improvements on Cele-
bA, LFWA, and MAAD, respectively, when 0.02%, 0.5%,
and 0.02% of labeled training data are respectively used).
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Fig. 5: Ablation studies: Influence of the number of patches (the first row) and the number of dominant facial components
(the second row) on the final performance when 0.5%, 10% and 0.5% of the labeled training data of (a) CelebA, (b) LFWA,
and (c) MAAD are used, respectively.

Hence, the pixel-level semantic segmentation is beneficial
to boost the final FAR performance.

PCT capitalizes on the semantic relationship to identi-
fy facial components. SPL RC and SPL SC achieve high-
er accuracy than SPL R and SPL S, respectively. Compared
with SPL RS, SPL w/o A also improves the performance
on CelebA, LFWA, and MAAD (i.e., 0.37%, 1.15%, and
0.62% improvements in terms of recognition accuracy on
CelebA, LFWA, and MAAD when 0.02%, 0.5%, and 0.02%
of labeled training data are adopted, respectively). There-
fore, the image-level semantic information is also important
to enhance the FAR performance with limited labeled data.

By combing PRT, PST, and PCT with adversarial train-
ing, SPL-Net gives the top performance among all the vari-
ants. Therefore, modeling the spatial-semantic relationship
of facial images is advantageous for the FAR task.
Influence of the spatial mutual exclusion (SME) loss. We
evaluate the importance of the SME loss in Tables 3, 4 and
5. Compared with SPL Net, SPL w/o SME obtains worse
performance (0.50%, 0.66%, and 0.46% drop on CelebA,
LFWA, and MAAD, respectively, when 0.02%, 0.5%, and
0.02% of labeled training data are respectively used). By
minimizing the SME loss, SPL-Net explicitly enforces dif-
ferent local branches to focus on their corresponding region-
s, benefiting the model to extract region-specific features.
This improves the performance of the FAR model when lim-
ited labeled data are used for fine-tuning.

Influence of the adversarial training strategy. From Ta-
bles 3, 4, and 5, in all six proportions on three datasets, SPL-
Net outperforms SPL w/o A (e.g. 0.44% improvements on
CelebA, 0.58% improvements on LFWA, and 0.56% im-
provements on MAAD, when 0.02%, 0.5%, and 0.02% of
labeled training data are respectively used). Compared with
SPL C w/o A, SPL C obtains higher performance. The above
results demonstrate the importance of the adversarial train-
ing strategy adopted in MSS.

Moreover, we compare our adversarial learning with a
simple contrastive learning method (we adopt the L2 loss
between the features from the whole region branch and the
aggregated features from the three local branches). We can
see that our method with adversarial learning achieves much
better performance than that with contrastive learning (i.e.,
SPL L2). Adversarial training is a generative model, which
matches the distribution of generated features from the w-
hole region branch to the distribution of aggregated features
from the three local branches. Adversarial training pursues
distribution consistency, enabling different branches to learn
diverse feature representations. Such a way benefits feature
extraction of the FAR task. In contrast, contrastive learn-
ing only reduces the distances between two features to be as
close as possible, limiting the diversity of local branches.
Influence of the two-stage learning procedure. SPL-Net
adopts the two-stage learning procedure (i.e., performing
auxiliary tasks with large-scale unlabeled data in the first
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stage and performing FAR with limited labeled data in the
second stage). Alternatively, we can design a one-stage learn-
ing method that performs multi-task learning (based on the
multi-branch architecture) in a semi-supervised manner. To
be specific, two branches perform PRT and PST (trained
with large-scale unlabeled data), while one branch performs
FAR (trained with limited labeled data). In this manner, we
can jointly train these tasks in a single stage.

From Tables 3, 4, and 5, we can see that SPL semi based
on one-stage learning achieves much worse results than SPL-
Net based on two-stage learning. This is because the one-
stage learning method does not fully exploit the spatial-semantic
relationship of facial images. The joint learning of these
tasks cannot effectively guide the model to extract discrimi-
native features for predicting facial attributes. Note that multi-
task learning can boost the performance in the case that mul-
tiple tasks are correlated or complementary to each other
(Zhao et al., 2018). However, PRT, PST, and FAR are weak
in terms of task relevance. In contrast, the two-stage learning
procedure follows the pre-training and fine-tuning paradig-
m. This shows the importance of obtaining a powerful pre-
trained model, as validated in recent research (Chen et al.,
2021).

Influence of the number of patches m ×m. We evaluate
the performance of SPL-Net with the different numbers of
patchesm×m (including 1×1, 2×2, 3×3, and 4×4) in PRT.
The experimental results on CelebA, LFWA, and MAAD are
shown in the first row of Fig. 5. SPL-Net achieves the best
performance, when the number of patches m ×m is set to
3×3. When the number of patches is larger, the semantical-
ly consistent facial components (such as the eye, nose, and
mouth) are over-segmented into small patches. On the other
hand, when the number of patches is smaller, the large patch
involves many facial components. In both cases, the feature
extraction capability of PRT to exploit the spatial informa-
tion is adversely affected.

Influence of the number of dominant facial components
v. We further evaluate the influence of the number of dom-
inant facial components in PCT on the final performance.
The experimental results on three datasets are given in the
second row of Fig. 5. Our SPL-Net method achieves the
best recognition performance when the value of v is set to 9.
Note that the input facial patch of PCT is randomly cropped
from the facial image. Hence, some facial components in-
volve only a few pixels. On the one hand, when the values
of v are too large, the facial components with a small num-
ber of pixels are chosen as dominant facial components. On
the other hand, when the values of v are too small, some
dominant facial components are ignored. This is harmful to
learn the image-level semantic information. Both cases lead
to performance degradation.

w

w/o

original images

w

w/o

original images

w

w/o

original images

(a) CelebA

(b) LFWA

(c) MAAD

Fig. 6: Semantic masks generated by SPL-Net with (denoted
w) and without the label smoothing strategy (denoted w/o)
on (a) CelebA, (b) LFWA, and (c) MAAD.
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Fig. 7: The correlation maps of seven randomly selected fa-
cial attributes obtained by (a) the baseline and (b) SPL-Net
on CelebA.

4.4 Visualization

In this subsection, we visualize several examples of seman-
tic masks generated by SPL-Net with and without the la-
bel smoothing strategy. The results are illustrated in Fig. 6.
Moreover, we also plot the correlation maps of several ran-
domly chosen facial attributes obtained by the baseline and
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(a) Upper (b) Middle (c) Lower       (d) Whole

Fig. 8: Visualization of heat maps from different region
branches of MSS: (a) the upper region branch, (b) the mid-
dle region branch, (c) the lower region branch, and (d) the
whole region branch on CelebA.

SPL-Net methods, as shown in Fig. 7. We randomly choose
seven facial attributes, and calculate the correlation map based
on the predicted outputs of the trained models. Finally, we
show the heat feature maps (we employ the attentive feature
maps as done in Ruan et al. (2022)) from the four region
branches of MSS in Fig. 8. Here, we employ 0.2% of labeled
training data of CelebA to train SPL-Net and the baseline.

From Fig. 6, compared with SPL-Net without the label
smoothing strategy, SPL-Net is able to generate the semantic
masks with much less noise. This validates the importance
of the label smoothing strategy. Based on accurate semantic
masks, PST can capture the pixel-level semantic information
more effectively. Such a manner is beneficial for training
MSS. Notice that there are some false detected masks. For
example, in the last column of LWFA in Fig. 6, the “ear” and
“nose” are falsely detected since there are a small number of
pixels for these facial components in the image. Meanwhile,
in the last column of MAAD in Fig. 6, most pixels in the
facial patches are classified as “face”, due to the lack of fa-
cial details caused by blurring. However, the false-detected
masks have no significant influence on the final performance
since the corresponding facial components are not dominan-
t, and the distorted facial details in blurry patches do not
greatly contribute to the learning process of PST.

From Fig. 7, SPL-Net shows better correlation respons-
es between facial attributes than the baseline method. For
instance, the “blond hair” attribute is negatively related to
the “brown hair” attribute (the correlation value is -0.47 ob-
tained by SPL-Net and that is -0.24 by baseline), while the
“sideburns” and “blond hair” attributes are not so strong-
ly correlated with each other (the correlation value is 0.054
obtained by SPL-Net and that is -0.68 by baseline).

In Fig. 8, the warm-toned parts of an image correspond
to the regions with large values in the feature map, and vice
versa. We can see the feature maps from different region
branches focus on different facial regions. In particular, for
the three local branches, their corresponding feature maps
concentrate on local regions. For the whole region branch,
its corresponding feature maps tend to pay attention to the
whole facial regions. This can be ascribed to the MSS struc-
ture and the PCT subnetwork, which are supervised with the
adversarial loss, the SME loss, and the classification loss.

4.5 Comparison with State-of-the-Art Methods

In this subsection, we compare the proposed SPL-Net method
with several state-of-the-art methods, including five super-
vised FAR methods (DMM (Mao et al., 2020), SlimCNN
(Sharma and Foroosh, 2020), AFFAIR (Li et al., 2018), PS-
MCNN (Cao et al., 2018a), and FAN (He et al., 2018a)),
five self-supervised learning methods (DeepCluster (Caron
et al., 2018), JigsawPuzzle (Noroozi and Favaro, 2016), Rot
(Gidaris et al., 2018), MoCo (He et al., 2020), and SimCLR
(Chen et al., 2020)), and two semi-supervised learning meth-
ods (FixMatch (Sohn et al., 2020) and VAT (Miyato et al.,
2018)), on the CelebA, LFWA, and MAAD datasets, respec-
tively. Our previous SSPL method (Shu et al., 2021) is also
evaluated for performance comparison. In particular, we e-
valuate two versions of SSPL (i.e., SSPL-w and SSPL-p),
where SSPL-w and SSPL-p indicate that the facial parsing
models are trained on the whole CelebA-HQ and limited la-
beled data of CelebA-HQ (same as SPL-Net), respective-
ly. We re-trained the models (including DeepCluster, Jig-
sawPuzzle, Rot, MoCo, SlimCLR, FixMatch, and VAT) on
a series of experiments according to the publicly available
codes from their papers. Note that the results obtained by
four state-of-the-art methods (DMM, AFFAIR, PS-MCNN,
and FAN) are not listed on MAAD since their source codes
are not publicly available. The results of these methods on
CelebA and LFWA are taken from their respective papers.

For five supervised FAR methods, we only leverage the
available labeled training data to train the FAR models. For
self-supervised learning methods, we use all the unlabeled
training data to obtain the pre-trained models in the pretext
task, and then use the different proportions of labeled train-
ing data for fine-tuning in the downstream FAR task. For
semi-supervised learning methods, we simultaneously train
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Table 6: The recognition
accuracy (%) obtained
by our proposed SPL-
Net method and several
state-of-the-art method-
s with the different pro-
portions of labeled train-
ing data on the CelebA
dataset. The best results
are boldfaced.

CelebA
Proportion 0.02% 0.2% 0.5% 1% 2% 100%
Number of Labeled Samples 33 325 843 1,627 3,225 162,770
DMM (Mao et al., 2020) - - - - - 91.70
SlimCNN (Sharma and Foroosh, 2020) 67.32 79.90 80.20 80.96 82.32 91.24
AFFAIR (Li et al., 2018) - - - - - 91.45
PS-MCNN (Cao et al., 2018a) - - - - - 92.98
FAN (He et al., 2018a) - - - - - 91.81
DeepCluster (Caron et al., 2018) 72.87 83.21 86.13 87.46 88.86 91.68
JigsawPuzzle (Noroozi and Favaro, 2016) 71.96 82.88 84.71 86.25 87.77 91.57
Rot (Gidaris et al., 2018) 73.82 83.25 86.51 87.67 88.82 91.69
MoCo (He et al., 2020) 78.34 85.09 87.44 88.43 89.06 91.66
SimCLR (Chen et al., 2020) 79.22 86.24 88.01 88.63 89.34 91.72
FixMatch (Sohn et al., 2020) 69.45 80.22 84.19 85.77 86.14 89.78
VAT (Miyato et al., 2018) 72.13 81.44 84.02 86.30 87.28 91.44
SSPL-w (Shu et al., 2021) 78.21 86.67 88.05 88.84 89.58 91.77
SSPL-p (Shu et al., 2021) 77.88 85.86 87.34 87.10 88.02 91.43
SPL-Net (Ours) 79.33 87.02 88.21 88.97 89.83 91.78

Table 7: The recognition
accuracy (%) obtained
by our proposed SPL-
Net method and several
state-of-the-art method-
s with the different pro-
portions of labeled train-
ing data on the LFWA
dataset. The best results
are boldfaced.

LFWA
Proportion 0.5% 5% 10% 20% 50% 100%
Number of Labeled Samples 31 313 626 1,252 3,131 6,263
DMM (Mao et al., 2020) - - - - - 86.56
SlimCNN (Sharma and Foroosh, 2020) 60.54 70.90 71.49 72.12 73.45 76.02
AFFAIR (Li et al., 2018) - - - - - 86.13
PS-MCNN (Cao et al., 2018a) - - - - - 87.36
FAN (He et al., 2018a) - - - - - 85.20
DeepCluster (Caron et al., 2018) 63.97 74.21 77.42 80.77 84.27 85.90
JigsawPuzzle (Noroozi and Favaro, 2016) 63.32 73.90 77.01 79.56 83.29 84.86
Rot (Gidaris et al., 2018) 64.08 74.40 76.67 81.52 84.90 85.72
MoCo (He et al., 2020) 71.71 78.08 80.15 82.56 84.92 86.15
SimCLR (Chen et al., 2020) 70.49 78.63 80.66 82.73 85.44 86.24
FixMatch (Sohn et al., 2020) 62.87 71.42 72.78 75.10 80.87 83.84
VAT (Miyato et al., 2018) 62.96 72.19 74.42 76.26 80.55 84.68
SSPL-w (Shu et al., 2021) 71.64 78.68 81.65 83.45 85.43 86.53
SSPL-p (Shu et al., 2021) 70.43 76.23 89.26 82.87 84.01 86.21
SPL-Net (Ours) 71.88 79.20 82.12 84.43 85.86 86.77

the models using both unlabeled and labeled training data.
The accuracy obtained by all the competing methods with
the different proportions of labeled training data on CelebA,
LFWA, and MAAD are shown in Tables 6, 7, and 8.

We can observe that, compared with several state-of-
the-art FAR methods (including DMM, SlimCNN, AFFAIR,
and FAN), our SPL-Net method shows similar or better per-
formance on the three datasets when 100% of labeled da-
ta are used to train the FAR models. State-of-the-art FAR
methods are capable of extracting discriminative features for
classifying facial attributes from large-scale labeled training
data. Note that DMM predicts facial attributes based on a dy-
namic weighting scheme and an adaptive thresholding strat-
egy. AFFAIR takes advantage of a unified transformation-
localization architecture to capture a hierarchy of spatial trans-

formations. Therefore, it can classify facial attributes with-
out relying on landmark annotations or landmark detectors.
PS-MCNN develops a network architecture consisting of
four task-specific networks (TSNets) and a shared network
(SNet) to extract features. FAN leverages abstraction im-
ages generated by GAN to locate facial parts. In contrast,
SPL-Net makes full use of three auxiliary tasks, which can
capture fine-grained spatial and semantic information for
FAR. This demonstrates the effectiveness of the pre-trained
MSS in the auxiliary tasks. Moreover, the proposed method
achieves much better performance (from 79.90% to 87.02%
on CelebA, from 70.90% to 79.20% on LFWA, and from
64.48% to 73.98% on MAAD) than Slim-CNN when only a
small proportion of training data (i.e., 0.2%, 0.5%, or 0.2%)
is used. This is because that we jointly train the auxiliary
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Table 8: The recognition
accuracy (%) obtained
by our proposed SPL-
Net method and several
state-of-the-art method-
s with the different pro-
portions of labeled train-
ing data on the MAAD
dataset. The best results
are boldfaced.

MAAD
Proportion 0.02% 0.2% 0.5% 1% 2% 100%
Number of Labeled Samples 40 400 1,000 2,000 4,000 200,000
SlimCNN (Sharma and Foroosh, 2020) 58.23 64.48 65.04 65.88 66.45 83.00
DeepCluster (Caron et al., 2018) 62.37 71.53 73.57 76.02 78.69 85.92
JigsawPuzzle (Noroozi and Favaro, 2016) 60.18 65.84 65.74 74.14 76.04 85.34
Rot (Gidaris et al., 2018) 67.42 71.06 75.35 77.09 78.95 85.81
MoCo (He et al., 2020) 68.96 71.87 75.59 77.83 78.88 85.82
SimCLR (Chen et al., 2020) 67.68 72.28 76.27 78.02 79.23 85.84
FixMatch (Sohn et al., 2020) 63.97 68.74 69.23 72.01 73.52 80.93
VAT (Miyato et al., 2018) 64.23 69.88 71.34 73.91 75.34 82.18
SSPL-w (Shu et al., 2021) 68.82 72.46 76.24 77.99 79.30 85.88
SSPL-p (Shu et al., 2021) 67.15 71.21 75.83 76.02 77.92 85.34
SPL-Net (Ours) 69.01 73.98 76.39 77.97 79.21 85.94

tasks to exploit the spatial-semantic relationship on unla-
beled facial data. Therefore, effective semantic-aware global
and local features can be extracted for the FAR task.

The SPL-Net method significantly outperforms the com-
peting context-based self-supervised learning methods (i.e.,
DeepCluster, JigsawPuzzle, and Rot) under the small pro-
portions of labeled training data. Compared with Rot, our
method obtains 3.77%, 4.80%, and 2.92% improvements on
CelebA, LFWA, and MAAD, when 0.2%, 5%, and 0.2% of
labeled data are used, respectively. Notice that, when less
labeled training data are used, the performance improve-
ments obtained by our method are more evident than the
competing self-supervised learning methods. These results
indicate the good generalization ability of SPL-Net to per-
form FAR with limited labeled data. SPL-Net effectively ex-
ploits both spatial and semantic information on unlabeled fa-
cial data by leveraging three auxiliary tasks. Moreover, com-
pared with contrastive learning-based self-supervised meth-
ods (i.e., MoCo and SimCLR), SPL-Net also achieves bet-
ter accuracy. In particular, SPL-Net outperforms the MO-
CO (0.99%, 0.17%, and 0.05% improvements on CelebA,
LFWA, and MAAD, respectively) when 0.02%, 0.5%, and
0.02% of labeled training data are respectively used, while
compared with SimCLR, the improvements are 0.11%, 1.39%,
and 1.33% on CelebA, LFWA, and MAAD when 0.02%,
0.5%, and 0.02% of labeled training data are used, respec-
tively.

Compared with those semi-supervised learning method-
s, our SPL-Net method achieves considerably higher accura-
cy in the case of limited labeled data. Among the competing
semi-supervised learning methods, FixMatch simultaneous-
ly introduces consistency regularization and proxy-labeling
strategies, while VAT explores unlabeled data by minimiz-
ing the distances between images and transformed versions

of these images. However, these methods focus on holistic
features, and thus they cannot effectively model the spatial
relationship, which plays a critical role for FAR. On the con-
trary, SPL-Net learns the spatial-semantic correlation of fa-
cial images and extracts fine-grained features, leading to su-
perior performance.

It is worth pointing out that both SSPL-w and SSPL-
p are based on ResNet-50, while SPL-Net uses a smaller
backbone (ResNet-18) with cascaded attention blocks. In
addition, SPL-Net and SSPL-p adopt limited labeled data
of CelebA-HQ for training the facial parsing model, while
SSPL-w leverages the whole CelebA-HQ for the training.
However, both SSPL-w and SSPL-p do not fully consid-
er the characteristics of FAR that facial attributes involve
global and local attributes. In contrast, SPL-Net adopts MSS
with four region branches to exploit the region-specific in-
formation for different attributes and model the attribute group
relationship to boost the performance. Such a way benefits
the model to predict global and local attributes in the FAR
task. Therefore, SPL-Net can achieve higher performance
than SSPL-w and SSPL-p. The above results validate the im-
portance of exploiting the characteristics of facial attributes
in designing the network architecture for FAR with limited
labeled data.

Compared with SSPL-w and SSPL-p, the performance
improvements of SPL-Net are not very significant on the
three facial attribute datasets. This can be ascribed to the fol-
lowing four factors. First, the imbalanced class data distribu-
tion (Huang et al., 2019) (e.g., the imbalance ratios between
the minority classes and the majority classes on the Cele-
bA dataset are up to 1:43) exists in facial attribute datasets.
Second, many facial attributes, especially for subjective at-
tributes, have ambiguous annotations in these datasets (Yan
et al., 2022). Third, some facial attributes may not be provid-
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Table 10: The number of parameters and FLOPs obtained by
different methods on the CelebA dataset.

Methods Params (M) FLOPs (G)
SimCLR - 35.298 6.231

SSPL first stage 29.063 18.343
second stage 23.590 8.385

SPL-Net first stage 26.354 10.328
second stage 21.721 4.132

ed with positive samples due to limited labeled data. Fourth,
SPL-Net employs much less annotated data than SSPL-w to
train the facial parsing model, resulting in inferior seman-
tic masks for learning the auxiliary tasks. This can affect
the representation capability of the pre-trained model ob-
tained in the first stage. The above factors greatly increase
the training difficulty, making it extremely challenging to
significantly improve the accuracy on these datasets.

We further report the accuracy obtained by each attribute,
to more comprehensively evaluate different methods at one
round of test. The results are given in Table 9, where 0.2%
of labeled training data on CelebA are used. Experimen-
tal results clearly show that SPL-Net improves the accura-
cy corresponding to global attributes (such as the “Attrac-
tive” and “Young” attributes) and local attributes (such as
the “Mouth Open” and “Bangs” attributes), compared with
the other competing methods. In particular, SPL-Net outper-
forms SSPL (both SSPL-w and SSPL-p) on most of facial
attributes, showing the effectiveness of SPL-Net for FAR
with limited labeled data. Generally, it is easier to identi-
fy objective attributes (such as the “Male” and “Hat” at-
tributes) than subjective attributes (such as the “Oval Face”
and “Pointy Nose” attributes). This is mainly because sub-
jective attributes often appear in a subtle form, which makes
the FAR model more difficult to learn the decision boundary.

We also observe that some attributes (such as the “Bald”
attribute) are not chosen (i.e., only negative samples of these
attributes are provided for the training) when a small pro-
portion of labeled data are selected. However, the model
can still predict these attributes. This can be ascribed to the
powerful pre-trained model and the potential correlation a-
mong attributes (e.g., the “Bald” attribute and the “Male”
attribute are highly correlated). Moreover, the number of
positive samples with respect to these attributes is small in
the test set (for example, the “Bald” attribute has 423 posi-
tive samples and 19,539 negative samples). Note that all the
competing methods are evaluated under the same settings
(i.e., we use the same randomly selected labeled training set
and the same test set at each round of test).

4.6 Computational Complexity

In this subsection, we analyze the computational complex-
ity of our proposed SPL-Net method. We also evaluate SS-

Table 11: The inference time and speed obtained by differ-
ent methods on the CelebA dataset. The inference time and
speed are measured in milliseconds (ms) and frames per sec-
ond (FPS), respectively.

Methods Inference time (ms) Speed (FPS)
SimCLR 12.17 82.15
SSPL 23.98 41.69
SPL-Net 10.56 94.70

PL and the SlimCLR method for a comparison. We use the
number of parameters (Params) and Floating-Point opera-
tions (FLOPs) to evaluate the memory consumption and com-
putational cost of the model, respectively. Moreover, we adop-
t the inference time and speed to measure the latency. We
take the CelebA dataset (0.2% of the labeled training data)
for performance evaluation.

Table 10 gives the number of parameters and FLOPs ob-
tained by SPL-Net, SSPL, and SlimCLR. SSPL has more
parameters and higher FLOPs than SPL-Net. This is because
SSPL adopts the larger ResNet-50 as the backbone. Both
SSPL and SPL-Net have higher memory consumption and
computational cost (in terms of Params and FLOPs) than
SimCLR, since they involve the two-stage learning proce-
dure. However, the second stage (i.e., the fine-tuning stage
based on limited labeled data) in SPL-Net has fewer param-
eters and smaller FLOPs than SimCLR.

The inference time and speed obtained by SPL-Net, SS-
PL, and SlimCLR are reported in Table 11. We can observe
that the proposed SPL-Net obtains smaller inference time
than the other two competing methods. The inference speed
of SPL-Net is also faster than those of SSPL and SlimCLR.
Although the training complexity of SPL-Net is high, it still
obtains real-time inference speed. Therefore, SPL-Net can
be applicable in practice.

5 Conclusion

In this paper, we have proposed a novel SPL-Net method
to perform FAR with limited labeled data effectively. The
SPL-Net method involves a two-stage learning procedure.
For the first stage, three auxiliary tasks (PRT, PST, and PC-
T) are jointly developed to exploit the spatial-semantic in-
formation on large-scale unlabeled facial data, and thus a
powerful pre-trained MSS is obtained. For the second stage,
only a few number of labeled facial data are leveraged to
fine-tune the pre-trained MSS and an FAR model is finally
learned. Extensive experiments on the CelebA, LFWA, and
MAAD datasets have demonstrated the effectiveness of our
proposed method in comparison with several state-of-the-art
methods to address FAR in the case of limited labeled data.
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Table 9: The recognition accuracy (%) obtained by each attribute when 0.2% of the labeled training data of CelebA are used.
The best results are boldfaced.
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