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1  |  INTRODUC TION

Global plastic production and usage continue to grow (Lebreton 
& Andrady, 2019), with rates of production exceeding 330 million 
tons per year (Jiang et al.,  2019; Talbot & Chang,  2022). Plastic 
is a low-cost, versatile, and extremely durable material making 
it a useful societal resource (Chamas et al.,  2020; Walkinshaw 
et al.,  2020). However, some of its properties, including its 

durability and resistance to degradation, are of major environ-
mental concern (Chamas et al.,  2020; Cole et al.,  2011; Geyer 
et al., 2017).

Some of the most pervasive and concerning forms of plastic 
in the aquatic environment are microplastics. Microplastics, often 
defined as plastics <5 mm in size (Horton et al., 2017), were iden-
tified in marine environments as early as the 1970s (Carpenter 
& Smith,  1972) and currently have a near-global contemporary 
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Abstract
Microplastics are a globally pervasive pollutant with the potential to directly impact 
species and accumulate in ecosystems. However, there remains a relative paucity of 
research addressing their accumulation in freshwater ecosystems and a near absence 
of work in crayfish, despite their high ecological and economic importance. This study 
investigated the presence of microplastics in the invasive signal crayfish Pacifastacus 
leniusculus along a stream urbanization gradient. The results demonstrate a ubiquitous 
presence of microplastics in crayfish digestive tracts at all sites and provide the first 
evidence of microplastic accumulation in tail tissue. Evidence of a positive linear trend 
was demonstrated between microplastic concentration in crayfish and upstream 
urban area size in generalized linear models. Evidence for a positive effect of the up-
stream urban area and a negative effect of crayfish length on microplastic concentra-
tions in crayfish was demonstrated in multiple generalized linear regression models. 
Our results extend the current understanding of microplastics presence in freshwater 
ecosystems and demonstrate their presence in crayfish in the wild for the first time.
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distribution (Eerkes-Medrano et al.,  2015; Rummel et al.,  2017; 
Wagner et al., 2014; Woodall et al., 2014).

Much of the research on understanding the distribution, density, 
and chronic impact of microplastics have focused on the marine en-
vironment, despite reported evidence that freshwater environments 
have comparable microplastic concentrations (Eerkes-Medrano 
et al.,  2015). Further, current freshwater research is generally fo-
cused on microplastic presence in fishes (Biginagwa et al.,  2016; 
Sanchez et al., 2014) and birds (D'Souza et al., 2020; Gil-Delgado 
et al., 2016; Reynolds & Ryan,  2018). Fewer studies have investi-
gated microplastic concentration in lower trophic organisms, such 
as freshwater crayfish (Chen et al.,  2020; Lv et al.,  2019; Zhang, 
Fraser, et al., 2021), despite their high ecological and economic im-
portance (Harlıoğlu & Farhadi, 2017; Reynolds et al.,  2013). Many 
crayfish species exhibit polytrophic, omnivorous feeding behaviors 
(Chucholl,  2013; Jackson et al.,  2014), acting as keystone species 
(Holdich et al.,  2009, 2014). As such, crayfish are well positioned 
to act as an important conduit of microplastic pollution throughout 
freshwater ecosystems (Alford et al., 2017; Jiang & Cao, 2021).

There have been some efforts to investigate microplastic pres-
ence in crayfish in China (Chen et al., 2020; Lv et al., 2019; Zhang, 
Fraser, et al., 2021). Lv et al. (2019) and Zhang, Fraser, et al. (2021) 
detected microplastics in water, sediment, and Red Swamp crayfish 
Procambarus clarkii from isolated rice paddies and controlled fresh-
water aquaculture ecosystems, respectively. Similar microplastic 
loads were recorded in water and sediment samples, and in gill, 
stomach, and gut samples from study pond and rice-crayfish co-
culture systems (Zhang, Fraser, et al., 2021). However, these stud-
ies did not report microplastics in flesh samples. Recent work on 
Redclaw crayfish Cherax quadricarinatus indicates the consumption 
of such microplastics can have ecotoxicological effects altering cray-
fish gene expression, enzyme production, and thus metabolic pro-
cesses (Chen et al., 2020). Consequently, there is a need to identify 
whether microplastic ingestion is a common occurrence across other 
globally abundant crayfish species.

While research on microplastics in freshwaters has recently 
received increasing attention (Bigalke et al., 2022; Liu et al., 2022; 
Wu et al., 2022; Xiang et al., 2022), there remains a notable absence 
of studies addressing microplastics in crayfish and western fluvial 
systems. We investigated the presence of microplastics in invasive 
signal crayfish Pacifastacus leniusculus populations in streams situ-
ated in North Yorkshire, Northern England, UK. The signal crayfish 
was introduced into the UK in the 1970s for aquaculture (Holdich & 
Rogers, 1997), with a present-day distribution across the majority of 
England (Chadwick, 2019; Holdich & Reeve, 1991) and wide-ranging 
impacts on aquatic ecosystems (Vaeßen & Hollert, 2015). However, 
the distribution of microplastics in crayfish in the UK has so far 
received little attention despite the potential for transfer through 
freshwater trophic pathways. Thus, driven by the knowledge that 
plastic pollution is linked to the size of an urban area and catchment 
population density (Lebreton et al., 2017; Strokal et al., 2021), we 
compared microplastic pollution within water and signal crayfish 
along stream urbanization gradients.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The study was conducted in North Yorkshire, England. Study sites 
were located across the River Wharfe, Ribble, Aire, and Wenning 
catchments within the Yorkshire Dales National Park and sur-
rounding environment (Figure  1). Eight study sites were selected 
downstream of urban conurbations of varying sizes to establish an 
increasing gradient of both upstream urban area (maps) and size 
of the human population (UK Gov,  2011) within each catchment 
(Table 1). The urbanization gradient was defined by the extent of the 
urban area (km2) and the size of the human population upstream of 
a site. A control site (Bookill Gill Beck) (Table 1) was included, which 
has a catchment dominated by unimproved and semi-improved pas-
tures with almost no upstream semi-urban land, enabling calcula-
tion of baseline microplastic concentrations for the region. Each 
site was known to have a well-established population of invasive P. 
leniusculus, and no modern records of native white-clawed crayfish 
Austropotamobius pallipes. No native crayfish were encountered.

2.2  |  Sample collection and preparation

The study sites were sampled between 19 and 28 May 2021, 
comprising a single night of trapping, followed by water sampling 
and supplementary handsearching where required. Sampling fol-
lowed Check-Clean-Dry best practice guidance with all equipment 
disinfected (FAM 30 Iodophor). Trapping was authorized by the 
Environment Agency (CR1 license) and undertaken with landowner 
permissions. Sites were selected on the criteria of being within 1 km 
downstream of the identified urban areas within each catchment 
and with safe riparian access.

At each site triplicate 0.5 L water samples were filtered on-site 
through glass microfiber filters (Whatman™, 1.2 μm particle reten-
tion). The metal-lined filtration system was rinsed with site water 
three times presampling and capped underwater to avoid atmo-
spheric contamination.

At each study site, P. leniusculus were collected via fladen cray-
fish traps (500 mm × 200 mm; entrance diameter: 50 mm; mesh 
size: 5 mm) and handsearching. All P. leniusculus caught (n = 41) 
were transferred to sterilized cool boxes and then frozen. Once 
humanely euthanized, P. leniusculus samples were thawed and 
washed with deionized water to remove microplastic contami-
nation from the exoskeleton. Foreguts, hindguts, and tail muscle 
tissues were dissected out of each specimen (n = 123) and were 
freeze-dried at −50°C for 72 h (Edwards). The dry mass of each 
sample was subsequently recorded (±0.01 g). Hydrogen peroxide 
(30%) was then added to each crayfish tissue sample during heated 
centrifuging (30 min at 75°C) until no organic material remained 
(adapted from Masura et al.,  2015). Reagent-grade sodium chlo-
ride and deionized water were subsequently added until all sodium 
chloride had dissolved to neutralize the solution. After digestion, 
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samples were individually filtered through the same glass micro-
fiber filter papers as used for the water samples using a Multiple 
Vacuum Filtration System (Membrane Solutions) and then dried 
in a drying cupboard (24 h at 30°C). Procedural blanks were run 
for crayfish (n = 7) and water (n = 3), in addition to a positive mi-
croplastic control (n = 1); procedural blanks indicated negligible 
contamination (p < .001). All sample processing was undertaken in 
a horizontal laminar flow cabinet to avoid exogenous contamina-
tion, and clothing made from man-made materials was limited to 
prevent contamination. At each stage of the research, equipment 
and workbenches were cleaned thoroughly to prevent microplas-
tic cross-contamination.

All filter paper contents were examined at 40× magnifica-
tion using a LEICA S6 D Stereo Zoom Microscope attached to a 
ZEISS Axiocam ERc 5 s camera (ZEISS). Microplastics were visually 
grouped by type (“fiber,” thread-like polymers; “fragment,” jagged-
edged pieces of larger materials; or “film,” a flat, thin, often trans-
parent sheet) and classified into a color category. Microplastic fibers 
were identified against Rochman et al. (2019) reference images and 
then enumerated. To confirm microplastic counts were consistent, 
a subsample (>10%) of randomly selected filter papers (n = 15) was 
re-examined for microplastic. No evidence for a difference was 
found between original and re-examined filter papers (t(14) = 6.42, 
p = .531). Concentrations of microplastic were calculated as particles 

F I G U R E  1 Location of sampled watercourses within the Yorkshire Dales National Park, North Yorkshire, Northern England. Single 
column fitting image.

Catchment Beck name Code
Size of urban 
area (km2)

Human population of 
upstream urban area 
(individuals)

Ribble Bookill Gill BGB 0.00 0

Wharfe Barden BDN 0.83 107

Wharfe Kex KEX 0.85 132

Wharfe Kettlewell KTW 0.89 334

Wenning Austwick AUT 0.99 553

Wharfe Captain CPT 1.12 649

Wharfe Town TWN 1.87 3644

Aire Eastburn EBN 2.05 7967

TA B L E  1 Key descriptors of the eight 
sampled watercourses flowing from the 
Yorkshire Dales National Parks (italics 
indicate control site).
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per gram of dry weight for P. leniusculus samples and particles per 
100 mL for water samples.

Suspected microplastic fibers and fragments from a randomly 
selected subsample of P. leniusculus filter papers (n = 24) and water 
sample filter papers (n = 16) were analyzed using micro-Fourier 
Transform Infrared (μFT-IR) Spectroscopy. This approach fol-
lows the current practice in the literature (Lv et al.,  2019; Tien 
et al., 2020; Wardlaw et al., 2022). Colored fibers and fragments 
(n = 79) were individually analyzed under a Nicolet™ iN10 MX 
Infrared Imaging Microscope (Thermo Scientific) to determine 
the polymeric composition; match similarity scores ≥70% were 
deemed reliable. Analyses were performed in reflectance mode 
with a cooled detector. Spectra were collected from an average of 
16 sample scans in the wavelength range 675–4000 cm−1 at a res-
olution of 4 cm−1. Background spectra were generated before the 
sample. μFT-IR spectra obtained were compared with a polymer li-
brary, compiled at University College London, in the OMNIC Picta 
Software. The validation procedure included procedural positives, 
in which known plastic pieces were processed in the same manner 
as suspected plastics from samples.

2.3  |  Statistical analyses

The two measures of urbanization, total population size (individu-
als) and urban area (km2), were recorded and were highly correlated 
(Pearson's rho 0.833, p = .010), and as such, only urban area was 
included in subsequent analyses. Generalized linear models with 
Gaussian error distributions were used to analyze relationships 
between microplastic concentrations in water and P. leniusculus 

samples against urban area. The relationship between mean water 
sample microplastic concentration and urban area was explored. 
The relationship between mean total, gut (foregut and hindgut), 
and tail microplastic concentrations and urban area (km2) were ex-
plored. Tail microplastic samples from Town Beck crayfish were 
omitted from analyses due to the unsuitability of the processed 
samples.

Multiple generalized linear regression with Gaussian error distri-
butions were used to relate total, gut, and tail microplastic concen-
trations in individual crayfish to predictor variables upstream urban 
area, carapace length, and gender. In this study, no interaction ef-
fects were assumed when undertaking multiple regression.

All statistical analyses were performed using SPSS (v 27.0) and R 
(v 3.5.1; R Core Team, 2018). All graphs and tables were generated in 
R and Excel (v 16.52). Scatter plots were produced in base R (R Core 
Team, 2018) and effect plots for multiple regression were produced 
using the effects package (Fox & Weisberg, 2018). For all statisti-
cal analyses, an evidence-based language was adopted for report-
ing the results (Muff et al., 2022) alongside traditional significance 
reporting.

3  |  RESULTS

3.1  |  Microplastic occurrence, identification, and 
composition

Microplastics were recorded in P. leniusculus and water samples from 
every site included in this study. In total, 41 P. leniusculus (CL 24.4 mm 
–  54.0 mm) were caught across the eight sites: BGB (n = 16), BDN 

F I G U R E  2 Photographs of suspected microplastics using the ZEISS Axiocam ERc 5 s camera, objective 40×: (a) red fiber from a Captain 
Beck P. leniusculus sample, (b) black fiber from a Kettlewell Beck water sample, (c) blue fiber from an Eastburn Beck P. leniusculus sample and 
(d) transparent film from a Kex Beck P. leniusculus sample.
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(n = 2), KEX (n = 3), KTW (n = 4), AUT (n = 3), CPT (n = 7), TWN (n = 4), 
EBN (n = 2). Microplastic fibers, films (Figure 2), and fragments were 
identified in P. leniusculus across all samples. Microplastic fibers and 
fragments were recorded in water samples. Across all samples, the 
total number of suspected microplastics identified was 841 (654 in 
crayfish; 187 in water samples). Fibers were most abundant; a total 
of 763 fibers from seven color categories were visually identified: 
white, black, blue, red, green, yellow, and purple. White fibers were 
most abundant in P. leniusculus samples, while black fibers were 
most abundant in water samples (Figure 3). In addition, 12 pieces of 
transparent film and 66 fragments from three color categories were 
visually identified: black, blue, and red. The randomly selected sub-
sample represented 57 suspected microplastics from P. leniusculus 
samples and 22 particles from water samples. Of the 79 suspected 
microplastics analyzed through μFT-IR, 54 particles (68.35%) were 
confirmed as plastic polymers with match similarity scores ≥70%, 
and 11 particles (13.92%) were confirmed as naturally sourced. 
The remaining 14 particles had match similarity scores that were 
deemed unreliable (<70%). In both crayfish and water samples, the 
most prevalent polymer types identified by μFT-IR were polyester, 
epoxy resin, and polyethylene. Polyester was found in crayfish at 
five sites and in water at three sites. Particles identified as epoxy 
resin were found in crayfish at four sites and in water at three sites. 
Polyethylene was found in crayfish at four sites and in water at one 
site. Polyacrylonitrile was found in crayfish at three sites and in 
water at two sites. Cellophane was found in crayfish at three sites 
and in water at two sites (Appendix 1: Tables A1 and A2). Polyester 
was the most abundant particle representing 17.02% and 16.67% 
of microplastics in crayfish and water samples. Epoxy resin was the 
second most abundant particle representing 14.89% and 16.67% 
of microplastics in crayfish and water samples. Plastic polymers, 
compared with natural fibers, were more common in the vicinity of 
highly urbanized areas.

3.2  |  Microplastic contamination

Microplastics were found in all water samples collected at all sites, 
with a mean of 1.5 ± 0.7 microplastic pieces 100 mL−1 recorded. The 
highest concentration of microplastics was recorded at Eastburn and 
Captain Beck (2.8 pieces 100 mL−1) and the lowest was recorded at 
Bookill Gill Beck (0.6 pieces 100 mL−1). Generalized linear regression 
showed little to no evidence for a relationship between the concen-
tration of microplastics in the water and urban area size (F = 1.649, 
p = .247; Figure 4).

Microplastics were seen in all P. leniusculus samples, in 100% of 
total gut samples, and 93% of tail samples, with a mean count of 16.1 
microplastic particles per crayfish. Concentrations of microplastics 
in samples collected from individual signal crayfish ranged from 3.6 
pieces g−1 in a crayfish from Bookill Gill Beck to 45.4 pieces g−1 from 
Eastburn Beck with a mean of 23.0 ± 11.4 pieces g−1 of crayfish. 
Generalized linear regression showed strong evidence (significant at 
p = .05) was available for a positive relationship between the total 

concentration of microplastics in P. leniusculus samples and urban 
area size (F = 32.478, p = .001; Figure 4).

Microplastic concentrations were highest in crayfish guts 
(mean = 30.2 ± 16.5 pieces g−1) and varied greatly between individual 
crayfish with 5.4 pieces g−1 in a crayfish from Bookill Gill Beck and 
64.3 pieces g−1 in a crayfish from Eastburn Beck. Strong evidence 
(significant at p = .05) of a relationship between microplastic concen-
tration within P. leniusculus guts and urban area (F = 30.451, p = .001) 
was also evident.

Microplastic concentrations in individual crayfish tails 
(mean = 8.6 ± 3.2 pieces g−1) were lower than in total or gut samples. 
Two crayfish tails at Bookill Gill Beck contained no microplastics 
while the highest concentration was recorded in a crayfish at Town 
Beck (13.9 pieces g−1 tail tissue). Little evidence (not significant at 
p = .05) was available for a linear relationship between P. leniusculus 
tail microplastic concentration and urban area (F = 4.531, p = .087).

In multiple generalized linear regression models, evidence was 
available for the effects of upstream catchment urbanization and 
P. leniusculus length of individuals on microplastic concentration. 
Strong evidence for a highly significant positive effect of urban 
area size on total crayfish microplastic concentration was found 
(F = 232.832, p < .001; Figure 5), as well as significant evidence of a 
negative effect of crayfish length (F = 5.548, p = .024). No evidence 
of an effect of crayfish gender was found (F = 0.013, p = .910). Strong 
evidence (significant at p = .05) of a positive effect of urban area size 
on gut microplastic concentration was found (F = 227.636, p < .001), 
but there was no evidence for an effect of crayfish length (F = 3.473, 
p = .070) and no evidence of an effect of crayfish gender (F = 0.042, 
p = .0.839). For tail microplastic concentrations a positive effect (sig-
nificant at p = .05) of urban area size was evident (F = 6.956, p = .012), 
as well as a negative effect (significant at p = .05) of crayfish length 
(F = 6.495, p = .015). Again, no evidence of an effect of crayfish gen-
der was found (F = 2.189, p = .147).

4  |  DISCUSSION

4.1  |  Microplastic occurrence and urbanization

To our knowledge, this research presents the first published evi-
dence of microplastics in invasive P. leniusculus populations in 
Europe. It also reveals a ubiquitous presence of microplastics in 
headwater stream sites, including in catchments with almost no ur-
banization. Microplastics can be transported in a variety of ways and 
it is possible that atmospheric transport, degradation of litter (in situ 
or elsewhere followed by transport) and even very small semi-urban 
areas can produce enough microplastics to be identified in adjacent 
ecosystems (Petersen & Hubbart, 2021). Our findings provide fur-
ther empirical evidence for the ubiquity of microplastics and that 
both urban and rural land uses can be associated with their presence.

The concentration of microplastics in P. leniusculus was posi-
tively related to urban area size. Although sample sizes were small 
at some sites, within-site standard deviations were small compared 
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with means and the urban area size gradient. Further, the observed 
trend is in agreement with previous studies, which highlight a higher 
abundance of microplastic in freshwater species from urbanized 

locations (Parker et al., 2021; Peters & Bratton, 2016; Simmerman 
& Coleman Wasik,  2020), suggesting the observed trend reflects 
the underlying patterns reported across the literature. Stronger 

F I G U R E  3 The total percentage of 
microplastic fibers, and microplastic 
fragments in all (a) water samples, and (b) 
P. leniusculus samples categorized by color. 
Twelve colorless microplastic films were 
also recorded in P. leniusculus samples.

F I G U R E  4 Scatter plots of microplastic concentration in water (a), total (b), gut (c), and tail (d) samples against urban area size in signal 
crayfish. Blue lines represent regressions where there is strong evidence (significant at p = .05) for urban area size to predict microplastic 
concentration, ribbons reflect confidence intervals (2 standard error).
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    |  7 of 13DENT et al.

relationships between urban area and both total and crayfish gut 
microplastic samples were observed than for crayfish tail samples. 
Concentrations in crayfish tail tissue were low compared with those 
in total and gut samples and future work is required to determine 
whether a trend is present here. This may require larger sample sizes 
and a more extreme urbanization gradient than we were able to in-
clude here. In our study, the most urbanized sites were associated 
with small towns on the periphery of major urban conurbations. 
Maximum recorded crayfish microplastic burdens would likely be 
higher if more urbanized sites were selected to represent the upper 
extreme of the urbanization gradient.

Contrary to previous research (Hurley et al.,  2018; Lebreton 
et al., 2017; McCormick et al., 2016), a relationship was not observed 
between microplastic abundance in water samples and urban areas. 
It is noted that water samples were collected in each catchment once 
on the day of crayfish sampling only. As a consequence, water sam-
ples were taken on different days under varying weather and flow 
conditions and this may be expected to introduce variability unre-
lated to urban area size (Hurley et al., 2018). Triplicate 0.5 liter water 
samples were filtered at each site and it is possible that if this volume 
was increased a stronger relationship may have been observed with 
urban area size. However, standard deviations in water sample mi-
croplastic concentrations were small compared with sample means 
at each site suggesting sufficient water was collected to reflect 
the point population means. The microplastic loading in water may 
follow anthropogenic temporal patterns for instance varying with 
inputs from wastewater treatment works and combined sewage 

overflows during rainfall events (Di Nunno et al., 2021; McCormick 
et al., 2016). Under such patterns, point sampling rather than re-
peated sampling risks under- or over-reporting microplastic abun-
dance as microplastic load in water can be expected to vary over 
very short time frames (< hours). Precedence therefore exists to use 
macroinvertebrates as bioindicators rather than waters to monitor 
pollutants such as nutrients (Ashton et al., 2014; Wright et al., 2000), 
sediment load (Extence et al., 2013), and flow conditions (Extence 
et al., 1999). It follows, therefore, that microplastic abundance in P. 
leniusculus digestive tracts may better reflect average microplastic 
loading within the ecosystem as material passes through the gut 
over a much longer period (e.g., being retained in the foregut alone 
for up to 9 h, Loya-Javellana et al., 1995). As such, invasive crayfish 
may act as excellent indicator taxa for monitoring microplastic abun-
dance in aquatic environments that demonstrate high variability in 
water microplastic abundance, although biosecurity and permitting 
should be considered. This idea, however, requires targeted research 
and in particular further assessment of other potential indicators 
such as sediment, primary producers, detritus, and other organisms 
with suitable feeding ecology.

Microplastic abundance reported here greatly exceeds those 
in previous research on crayfish. To the authors’ knowledge, only 
two previous studies have reported microplastic abundance within 
crayfish (Lv et al., 2019; Zhang, Fraser, et al., 2021) reporting mean 
abundances of 2.5 ± 0.6 and 0.92 ± 0.19 microplastic particles per 
crayfish compared with 16.1 ± 6.9 microplastic particles per cray-
fish in this study. This may be the result of higher environmental 

F I G U R E  5 Effects plots for multiple regression models of signal crayfish microplastic concentrations against predictor variables. Top 
row = total microplastic concentration, middle row = gut microplastic concentration, and bottom row = tail microplastic concentrations.
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loads in the present study location. Lv et al.  (2019) and Zhang, 
Fraser, et al.  (2021) investigated microplastic pollution in isolated 
rice paddies and controlled freshwater aquaculture systems, respec-
tively. Further research is required to elucidate how crayfish accu-
mulate microplastics within different ecosystems, and the role of 
life histories and environmental conditions in this process (Alcorlo 
et al., 2004; Harvey et al., 2011; Souty-Grosset et al., 2016).

Fibers were the most commonly identified microplastic mor-
phology in our study, representing more than 90% of the total mi-
croplastic particles observed. Fibers are often the most commonly 
identified microplastic shape in many freshwater studies (Eerkes-
Medrano & Thompson, 2018; Tanentzap et al., 2021). For example, 
fibers in invertebrates were identified as the most common micro-
plastic type found in some caddisflies (Gallitelli et al., 2021), may-
flies (Akindele et al.,  2020; Windsor et al.,  2019), worms (Hurley 
et al., 2017) and freshwater shrimp (Nan et al., 2020). Our research 
extends this group to include P. leniusculus.

4.2  |  Microplastic and crayfish

In addition to urban areas, there was moderate evidence for a nega-
tive relationship between individual carapace length and microplastic 
abundance in crayfish. This finding is counterintuitive given a wealth of 
literature on the trophic transfer of microplastics through food webs 
(Athey et al., 2020; Costa et al., 2020; D'Souza et al., 2020) and cray-
fish occupying multiple trophic levels including engaging in cannibalism 
(Bondar et al., 2005; Rummel et al., 2017). Another explanation for this 
relationship may be driven by diet. Ontogenetic diet shifts in crayfish 
are observed with smaller crayfish more heavily relying on inverte-
brates, while larger crayfish consume greater amounts of detritus and 
plant material (Scalici & Gibertini, 2007). Evidence within the freshwa-
ter literature of increased microplastic concentrations with increased 
trophic levels supports this hypothesis (Mateos-Cárdenas et al., 2022). 
However, recent evidence suggests diet changes as a function of sea-
sonality rather than size (Ercoli et al., 2021). Therefore, future research 
is required to provide a comprehensive assessment of the inter- and 
intraspecific drivers of microplastic contamination in crayfish.

Microplastic contamination within the gastrointestinal tract of 
target species is almost ubiquitously reported across the literature 
(Gouin, 2020). Following ingestion, microplastics can pass through 
the digestive tract and be excreted or can translocate across the gut 
lining and persist in tissues (Browne et al., 2008; Carr et al., 2012; 
Messinetti et al.,  2019). Translocation of microplastics into other 
organs and tissues, however, is much rarer and less consistently re-
ported. To the authors' knowledge, microplastics found in P. lenius-
culus tail samples from this study provide the first evidence of such 
translocation into the body of crayfish. Evidence of translocation of 
microplastics into tissues has been provided for other aquatic taxa, 
such as livers in fish (Ding et al., 2018; Song et al., 2022) and muscle 
in tiger prawns Penaeus semisulcatus (Abbasi et al., 2018). However, 
some studies also report no evidence of translocation in sampled tis-
sues, such as in the muscle tissue of commercial crab species (Zhang, 

Sun, et al., 2021) and muscle and liver tissues of commercial fish spe-
cies (Su et al., 2019).

Translocation of microplastics is a prerequisite process for bio-
accumulation and biomagnification to occur. Evidence of transloca-
tion of microplastics within wild-caught crayfish provided within this 
study therefore provides crucial support for the inclusion of crayfish 
in future work exploring impacts of bioaccumulation and biomagnifi-
cation processes, such as ecotoxicology (Anbumani & Kakkar,  2018; 
Mallik et al.,  2021) and impaired physiological performance (Mkuye 
et al., 2022; Welden & Cowie, 2016). In our study, microplastics were 
observed within tail muscle tissue; however, no organs outside of the 
gastrointestinal tract were sampled. As such, it is clear that confirma-
tion of whether microplastics can translocate into additional tissues 
within crayfish warrants further research. Furthermore, the exact phys-
iological mechanism of translocation is not fully understood for larger 
microplastic particles (>200 μm) and requires further study, especially 
in larger organisms such as fish and crayfish (McIlwraith et al., 2021).

The size and shape of microplastic particles influence trans-
location, with small fibers translocating more readily (Browne 
et al.,  2008). Furthermore, polymer type influences the toxico-
logical effects of microplastic ingestion and translocation (Kögel 
et al.,  2020; Rochman et al.,  2019; Sheng et al.,  2021). Chemical 
analysis of individual plastic particles identified polyester as the 
most common polymer type in P. leniusculus and water samples 
within this study, at 17.02% and 16.67%, respectively. Polyester, 
which accounts for more than half of the synthetic textile fibers pro-
duced globally, has been shown to cause cellular damage in mammal 
species, and decreased reproduction in soil invertebrates (Browne 
et al., 2008; Selonen et al., 2020). The translocation of polyester fi-
bers may cause similar negative effects in crayfish; however, further 
research on the fate of microplastics and the contaminant loading of 
translocated polymers is required.

5  |  CONCLUSIONS

In conclusion, our study demonstrates microplastic contamination in 
crayfish for the first time in Europe. Further, it demonstrates a posi-
tive trend between microplastic concentration in crayfish and urban 
area size, extending a trend reported for a range of other species. 
Our results indicate much higher microplastic burdens in P. leniuscu-
lus within lotic systems than reported elsewhere for other crayfish 
species in aquaculture and lentic systems; however, the drivers of 
this remain unclear. An empirical study of in situ microplastic con-
tamination, accumulation, and trophic transport in freshwaters is 
therefore essential but has been limited to date. To this end, our 
study provides novel in situ evidence of microplastic contamination 
and translocation in invasive crayfish in Europe.
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APPENDIX 1

TA B L E  A 1 Compound names of fibers and fragments (with 
match similarity scores ≥70%) identified in P. leniusculus samples 
using FT-IR. Natural polymers are in bold.

Study site Compound name n

BGB Epoxy resin 1

Polyester 1

Cellulose 1

Polypropylene 1

BDN Cellophane 2

Cellulose + Lignin 2

Phenoxy resin 1

KEX Polyvinyl alcohol 2

Polyethylene 2

Wood 1

KTW Polyacrylonitrile 1

Polyester 1

Epoxy resin 1

Cellulose + Lignin 1

AUT Polyvinyl alcohol 2

Cellophane 2

Bakelite 1

Polyacrylonitrile 1

Protein α-helix 1

CPT Polyethylene 2

Polyester 2

Epoxy resin 2

Pinewood 1

Polyacrylonitrile 1

TWN Epoxy resin 3

Polyester 2

Bakelite 1

Chipboard 1

Polyethylene 1

EBN Polyethylene 2

Polyester 2

Cellophane 1

Phenoxy resin 1

TA B L E  A 2 Compound name of fibers and fragments (with 
match similarity scores ≥70%) identified in water samples using FT-
IR. Natural polymers are in bold.

Study site Compound name n

BGB Cellulose 1

Epoxy resin 1

Polypropylene 1

BDN Bakelite 1

Cellulose + Lignin 1

KEX Phenoxy resin 1

Polyacrylonitrile 1

KTW Polyacrylonitrile 1

Polyester 1

AUT Cellophane 1

Epoxy resin 1

CPT Cellophane 1

Polyvinyl alcohol 1

TWN Cellulose 1

Polyester 1

EBN Epoxy resin 1

Polyester 1

Polyethylene 1
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