
Learning to Optimise Networked Systems

Victor-Alexandru Darvariu

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

May 10, 2023

2

I, Victor-Alexandru Darvariu, confirm that the work presented in this thesis is

my own. Where information has been derived from other sources, I confirm that

this has been indicated in the work.

Abstract

Many systems based on relations between connected entities find a natural represen-

tation in graphs, which has led to the development of mathematical and statistical

tools for understanding their structure and the phenomena that take place over them.

There is comparatively little work on the study of optimising the outcome of pro-

cesses on graphs with respect to a given objective function. Problems of this nature

are combinatorial optimisation tasks, which are challenging for systems beyond a

trivial size due to the rapid growth of the solution space.

Traditional ways of approaching such problems use either heavily tailored,

objective-specific approaches or generic metaheuristics. Machine learning and

decision-making algorithms have begun to emerge as an alternative data-driven

paradigm for navigating the search space, allowing for generalisation between related

problems and effective scaling to larger instances than those seen during training.

This thesis contributes problem formulations, solution methods, and learning

representations for approximately solving several graph combinatorial optimisa-

tion problems. We first address constructing a graph for optimising a structural

objective such as resilience or efficiency. We propose a deep reinforcement learning

approach that uses graph neural networks as a key component for generalisation

and a complementary extension of Monte Carlo Tree Search, which is suitable for

spatial networks. Next, we study public goods games over networks, discussing an

approach for effective imitation learning of policies mapping graph states to node

selection actions. Finally, we focus on data-driven routing of flows over graphs,

proposing a novel graph neural network architecture for this family of problems.

Our evaluation results show significant advantages for the proposed approaches

over prior methods, representing a contribution to the broader area of machine

learning for combinatorial optimisation. The research discussed in this thesis may

Abstract 4

find meaningful applications in domains as diverse as structural engineering, urban

planning, operations research, and computer networking.

Impact Statement

Given the generality of graph representations, the work herein may find applications

in diverse fields, in ways that are difficult to anticipate. Below, we make an attempt

to summarise the areas in which we foresee a path to impact.

Overall, the present thesis is highly relevant to the operations research discipline

(which significantly overlaps with industrial engineering and management science),

since it contributes flexible approaches for decision-making on networks such that

resources and budgets are efficiently used. Possible application areas include the

optimisation of supply chains, logistics and transportation systems, and network

engineering. Given the practical relevance of these fields of study, we expect impact

might occur not only in an academic setting, but that technologies based on the pro-

posed methods may have an impact in practice. We envision that such technologies

can lead to reduced operational costs and usage of resources (natural or human).

The work on graph construction presented in Chapters 3 and 4 is highly relevant

to engineering and the physical sciences. There are possible applications of the

proposed techniques in designing structures, both at a macroscopic and microscopic

level. With respect to the former, we mention structural engineering for the stability

and resilience of human-made buildings, as well as the robustness of transportation

networks. Regarding the latter, similar techniques may be used to discover materials

and compounds with desirable properties.

Potentially, the proposed work may also find applications in decision-making

and policy design of local authorities and governments. Approaches similar to the

work in Chapter 5 can be used to run simulations that assess the right means of

targeting interventions in a networked system such as to encourage certain desirable

outcomes. As an example scenario, important health factors such as smoking and

obesity are known to be linked to individuals’ social networks [71, 72], and hence a

Impact Statement 6

policy-maker could be interested in the best way of targeting a public health campaign.

Furthermore, this type of technique may assist authorities in deciding how to best

invest and spend available resources to, for example, extend a transportation network

or invest in public infrastructure. Such methods may help in making decisions that

have a well-specified, objective, target outcome.

We note that the type of mathematical modelling used in this thesis necessarily

makes simplifying assumptions about the real world and cannot capture all of its

complexity. Due to this, we highlight the importance of involving stakeholders and

domain experts in the modelling process when considering practical applications,

so that assumptions, risks, and benefits are thoroughly analysed and specified. By

doing so, negative impacts may be foreseen and mitigated.

Acknowledgements

The preparation of this thesis is the culmination of an unlikely journey that started

nearly ten years ago – one that has challenged and helped me grow in ways I never

could have foreseen. It takes a village, and I am fortunate to be able to thank the

following people from this metaphorical ledge.

I owe the biggest debt to my parents, Liliana and Marius. Thank you for teaching

me the value of education and the art of grit and determination. Thank you also

for standing by me even as our worlds diverged as much as they have. Teza asta e

dedicată vouă. I would also like to offer my deepest gratitude to my much-loved sister

S, tefana, who is about to embark on an academic journey of her own, and to whom I

wish the best of luck in navigating the stormy waters. Heaps of thanks also go out to

Elena and Silvia, Camelia and Petrea, Gianina and Gabi, as well as my wider family.

Mult,umesc!

To this day, I am still not sure what Mirco saw in my starry eyes when I showed

up at his office door all those years back. He bears, by far, the single highest amount of

responsibility for me ending up here. I would have never even considered research

had it not been for you. Thank you for shaping my thinking, teaching me what

questions to ask of the world, inspiring me to aim high, and for your friendship during

the tough times. I also owe a lot to Steve, who somehow knows more things than I

can hope to accumulate in several lifetimes. Thank you for your truly extraordinary

support and feedback. I also owe a debt to my mentors in computer science going

all the way back. Thank you to Dan, Liliana (whose memory will live on), and Zizi.

Thanks are also owed to the colleagues that I have had the pleasure of sharing

an office, meals, and evenings with. Thank you to Abhinav, Beatrice, Benjamin, and

Mariflor for the early days; Alessandro, Charlie, Christoffel, Liza, and Olivia for the

later ones. Thanks to everyone at the Turing, especially Andrew, Nicolas, Ryan, Sam,

Acknowledgements 8

Shunee, and the football gang. Thank you also to Antonio, Brian, Dimitrios, Maria,

Mariano, and Shahar – spending a summer at Spotify was a dream come true. I also

owe an immense amount of gratitude to the friends that have kept me afloat during

these years. Thank you to Adelina, Alex, Albert, Amar, Andrei, Bijal, Bristena, Călin,

Cecilia, Florin, Francisc, Ioana, Jimmy, Rares, , Teona, Toni, and Vlad.

Finally, I would like to thank my life partner, Maria, for her enduring love and

support. I do not see how I possibly could have done this without you.

Contents

1 Introduction 22

1.1 Networks and Combinatorial Optimisation 22

1.2 Machine Learning for Combinatorial Optimisation: Beyond Canonical

Problems . 25

1.3 Research Questions . 27

1.4 Thesis Outline and Contributions . 30

1.5 List of Publications . 32

2 Background and Related Work 34

2.1 Graph Fundamentals and Properties 34

2.2 Classic Graph Generative Models . 36

2.3 Graph Processes . 37

2.3.1 Robustness . 38

2.3.2 Efficiency . 40

2.3.3 Network Flows . 41

2.3.4 Network Games . 42

2.4 Artificial Neural Networks on Graphs 44

2.4.1 Artificial Neural Networks . 44

2.4.2 Graph Representation Learning 47

2.4.3 Deep Graph Embedding Methods 48

2.5 Decision-making Processes and Solution Methods 53

2.5.1 Markov Decision Processes . 53

2.5.2 Dimensions of RL Algorithms 55

2.5.3 Policy Iteration Methods . 56

2.5.4 Learning a Policy Directly . 57

Contents 10

2.5.5 Search and Decision-Time Planning Methods 59

2.5.6 Overview of Other Relevant RL Techniques 63

2.6 ML for Optimising Graph Processes 64

2.6.1 Classic Graph Combinatorial Optimisation Problems 64

2.6.2 Learning to Construct Graphs 70

2.6.3 Learning to Route Network Flows 74

2.6.4 Learning to Optimise Other Graph Processes 76

2.7 Summary . 78

3 Goal-directed Graph Construction using Reinforcement Learning 80

3.1 Introduction . 80

3.2 Methods . 82

3.2.1 Robust Graph Construction as an MDP 83

3.2.2 Learning to Build Graphs with Function Approximation . . . 86

3.3 Evaluation Protocol . 87

3.4 Evaluation Results . 90

3.5 Discussion . 95

3.6 Summary . 97

4 Planning Spatial Networks with Monte Carlo Tree Search 98

4.1 Introduction . 98

4.2 Methods . 101

4.2.1 Spatial Networks and Objectives 101

4.2.2 Spatial Graph Construction as an MDP 103

4.2.3 Algorithm . 106

4.3 Evaluation Protocol . 109

4.4 Evaluation Results . 112

4.4.1 Optimising Graph Structure . 112

4.4.2 Running Time and Scalability 115

4.5 Discussion . 118

4.6 Summary . 119

Contents 11

5 Solving Graph-based Public Goods Games with Tree Search and Imitation

Learning 120

5.1 Introduction . 120

5.2 Methods . 123

5.2.1 Preliminaries and Problem Statement 123

5.2.2 MDP Definition . 125

5.2.3 Collection of Demonstrations by Monte Carlo Tree Search . . 126

5.2.4 Graph Imitation Learning . 126

5.3 Evaluation Protocol . 128

5.4 Evaluation Results . 131

5.5 Discussion . 134

5.6 Summary . 135

6 Graph Neural Modelling of Network Flows 136

6.1 Introduction . 137

6.2 Methods . 140

6.2.1 Routing Formalisation and Learning Task 140

6.2.2 Per-Edge Weights . 141

6.3 Evaluation Protocol . 143

6.4 Evaluation Results . 146

6.4.1 Benefits of PEW for Flow Routing 146

6.4.2 Varying Graph Structure . 147

6.4.3 Best Demand Input Representation 147

6.4.4 Impact of Topology . 148

6.4.5 Learning Curves . 150

6.5 Discussion . 150

6.6 Summary . 153

7 Conclusion 154

7.1 Summary and Contributions . 154

7.2 Limitations and Future Work . 156

7.3 Applications and Impact . 158

7.4 Closing Thoughts . 159

Contents 12

Appendices 162

A Appendix for Chapter 3: Goal-directed Graph Construction using Reinforce-

ment Learning 162

A.1 Implementation . 162

A.2 Data Availability . 162

A.3 Parameters . 163

A.4 Runtime Details . 164

B Appendix for Chapter 4: Planning Spatial Networks with Monte Carlo Tree

Search 165

B.1 Implementation . 165

B.2 Data Availability . 165

B.3 Parameters . 165

B.4 Runtime Details . 166

C Appendix for Chapter 5: Solving Graph-based Public Goods Games with

Monte Carlo Tree Search and Imitation Learning 168

C.1 Implementation . 168

C.2 Data Availability . 168

C.3 Parameters . 168

C.4 Runtime Details . 169

D Appendix for Chapter 6: Graph Neural Modelling of Network Flows 172

D.1 Implementation . 172

D.2 Data Availability . 172

D.3 Parameters . 172

D.4 Runtime Details . 173

D.5 Learning Curves . 173

List of Figures

1.1 Visual summary of the main topics and contributions of the present

thesis. 30

3.1 Illustration of a Graph Construction MDP (GC-MDP) trajectory. . . . 82

3.2 Validation performance of RNet–DQN during training. 92

3.3 Evaluation results for the considered graph construction agents on

out-of-distribution synthetic graphs. 93

3.4 Examples of the solutions found by RNet–DQN on real-world graphs. 94

4.1 Schematic of our approach for spatial graph construction. 99

4.2 Illustration of Monte Carlo Tree Search applied to the construction of

spatial networks. 102

4.3 Illustration of the asymmetry in the number of actions in the proposed

MDP. 106

4.4 Empirical distribution of rewards obtained for subsets selected by a

uniform random φ. 109

4.5 Average reward for SG-UCTMINCOST as a function of β. 114

4.6 Wall clock time and number of objective function evaluations required

by the spatial graph construction algorithms as a function of synthetic

graph size. 116

5.1 Schematic of our approach for finding desirable equilibria in the graph-

based best-shot game. 122

5.2 Illustration of the proposed MDP. 125

5.3 Training curves for GIL, showing performance on the held-out valida-

tion set. 132

List of Figures 14

5.4 Mean rewards obtained by the methods as a function of the number

of players N . 132

5.5 Mean rewards obtained on the validation set by GIL using different

training procedures. 133

5.6 Mean milliseconds needed to complete an episode (i.e., construct an

mIS) as a function of the number of players. 134

6.1 An illustration of Multi-Commodity Network Flow problems and the

learning task. 138

6.2 Illustration that contrasts the proposed PEW method with the typical

MPNN used in previous flow routing works. 140

6.3 Normalised MSE obtained by the predictors on different topologies

for the SSP and ECMP routing schemes. 146

6.4 Difference in normalised MSE between the two demand input repre-

sentations as a function of the number of training datapoints. 148

6.5 Impact of topological characteristics on the predictive performance of

RGAT+PEW. 149

6.6 Learning curves for Uninett2011. 151

6.7 Relationship between the percentage changes in NMSE from RGAT

to RGAT+PEW and the topological characteristics of the considered

graphs. 152

6.8 Relationship between the percentage changes in NMSE from RGAT

to MLP and the topological characteristics of the considered graphs. 152

D.1 Learning curves for Aconet. 174

D.2 Learning curves for Agis. 175

D.3 Learning curves for Arnes. 176

D.4 Learning curves for Cernet. 177

D.5 Learning curves for Cesnet201006. 178

D.6 Learning curves for Grnet. 179

D.7 Learning curves for Iij. 180

D.8 Learning curves for Internode. 181

D.9 Learning curves for Janetlense. 182

List of Figures 15

D.10 Learning curves for Karen. 183

D.11 Learning curves for Marnet. 184

D.12 Learning curves for Niif. 185

D.13 Learning curves for PionierL3. 186

D.14 Learning curves for Sinet. 187

D.15 Learning curves for SwitchL3. 188

D.16 Learning curves for Ulaknet. 189

List of Tables

1 Main acronyms and abbreviations used throughout the present thesis. 18

2 Summary of notation used throughout the present thesis. 21

3.1 Evaluation results obtained by the considered graph construction

approaches on synthetic graphs. 90

3.2 Evaluation results obtained by the considered graph construction

approaches on real-world graphs. 91

4.1 Real-world spatial graphs considered in the evaluation. 110

4.2 Gains in the objective function obtained on synthetic graphs by the

considered spatial graph construction methods. 113

4.3 Gains in the objective function obtained on real-world graphs by the

considered spatial graph construction methods. 113

4.4 Ablation study that examines the impact of the SG-UCT components. 114

4.5 Representative wall clock time taken by the spatial graph construction

algorithms on real-world networks. 115

5.1 Mean rewards obtained by the methods split by cost setting, graph

model, and objective function. 131

6.1 Properties of the topologies. 145

6.2 Mean Reciprocal Rank and Win Rates for the different predictors. . . 147

B.1 Hyperparameters used for UCT and SG-UCT. 167

C.1 Mean rewards obtained by the methods split by cost setting, graph

model, objective function, and number of players. 170

C.2 Win Rates (%) for the different methods. 171

Acronyms and Abbreviations

Table 1 introduces the acronyms and abbreviations used throughout the present

thesis.

Term Meaning

AI Artificial Intelligence

ML Machine Learning

SL Supervised Learning

RL Reinforcement Learning

IL Imitation Learning

MDP Markov Decision Process

MC Monte Carlo

TD Temporal-Difference

DQN Deep Q-Network

MCTS Monte Carlo Tree Search

UCT Upper Confidence Bounds for Trees

ANN Artificial Neural Network

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

MSE Mean Squared Error

MLP Multi-Layer Perceptron

CNN Convolutional Neural Network

RNN Recurrent Neural Network

GAN Generative Adversarial Network

LSTM Long Short-Term Memory

GNN Graph Neural Network

Acronyms and Abbreviations 18

MPNN Message Passing Neural Network

mIS Maximal Independent Set

MIS Maximum Independent Set

CF Critical Fraction

LCC Largest Connected Component

TSP Travelling Salesperson Problem

VRP Vehicle Routing Problem

PGG Public Goods Game

NE Nash Equilibrium

PSNE Pure Strategy Nash Equilibrium

ER Erdős–Rényi generative graph model

BA Barabási–Albert generative graph model

WS Watts–Strogatz generative graph model

KH Kaiser–Hilgetag generative graph model

MCNF Multi-Commodity Network Flow

LP Linear Programming

Table 1: Main acronyms and abbreviations used throughout the present thesis.

Notation

Table 2 presents an overview of the notation used throughout this thesis, with the

specific chapters introducing additional notation where necessary. It covers basic

mathematical notation, elements related to graphs and, finally, notation specific to

RL, planning, and deep learning.

Example Explanation

N,R The sets of natural and real numbers.

x Lowercase letters typically denote scalars, with several ex-

ceptions in accordance with conventional notation in the

fields the present thesis touches on. Most notably, as shown

in subsequent rows, we use v to indicate graph vertices and

e to indicate graph edges; as well as s and a to indicate a

generic state and action in RL.

x Bold lowercase letters denote vectors.

xi i-th element of a vector.

[x, y] Vector containing elements x and y.

[x‖y] Concatenation of vectors x and y.

X Bold uppercase letters denote matrices.

Xi,j Matrix element at row i and column j.

(x, y) Tuple.

{x}, {x, y, z} Sets (with the former representing a singleton).

|X| Cardinality of set X .

x̂ Estimate of x.

x̄ Sample mean of x.

abs(x) Absolute value.

x mod y Remainder obtained when dividing x by y.

Notation 20

δxy Kronecker delta, which is equal to 1 if x = y, and 0 otherwise.

d(X1, X2) Distance between points X1 and X2 (Euclidean unless oth-

erwise specified).

G = (V,E) A graph (also referred to as network), in which V is the set of

nodes and E is the set of edges. Graphs are undirected unless

otherwise specified.

v, vi A specific node (also called vertex) in the graph. Note that,

when used together with v, the subscript i indicates a partic-

ular node, rather than the value at index i in a vector.

e, ei,j A specific edge in the graph. Note that, when used together

with e, the subscript i, j indicates the edge between vi and

vj , rather than the value at index i, j in a matrix.

|V |, N Number of nodes in the graph.

|E|, m Number of edges in the graph.

deg(vi) Degree of node vi.

A Adjacency matrix of the graph.

L Graph Laplacian. The entry Li,j is equal to deg(vi) if i = j,

−1 if i 6= j and ei,j ∈ E, and 0 otherwise.

F Objective function defined on a graph (typically, the max-

imisation objective).

ξ A permutation of the graph nodes.

N (vi) Open neighbourhood of node vi, which contains all nodes

adjacent to vi.

N [vi] Closed neighbourhood of node vi, which contains vi and all

nodes adjacent to vi.

xvi ,xei,j Feature vectors associated with node vi and edge ei,j . Note

the use of subscripts to indicate nodes and edges.

h
(l)
vi Embedding vector for node vi, as computed by layer l of a

representation learning method.

c(vi), c(ei,j) Costs associated with vertex vi or edge ei,j .

G A set of graphs.

Notation 21

Gtrain A training dataset of graphs.

t Discrete timestep.

T The terminal timestep.

s, St A state in a Markov Decision Process (MDP), with the latter

indicating the state at a specific timestep.

Gt The graph at a specific timestep. Note that it does not denote

the return, as is common in some RL notations.

a, At An action in an MDP.

r, Rt A reward in an MDP.

S The set of possible states in an MDP.

A(s) The set of possible actions at a given state.

R The set of all possible rewards.

P (s′|s, a) The transition function (dynamics).

R(s, a) The reward function.

γ The discount factor.

Ht The return received from time t onwards.

V (s) The value function.

Q(s, a) The state-action value function.

π, πΘ The policy, possibly parametrised by parameters Θ.

π(a|s) The probability of taking action a in state s.

C(s) Visit count for state s.

C(s, a) Number of times action a was taken in state s.

b, bt The budget available to the agent.

α Learning rate.

W,W1 Parameter matrix of a policy or model.

Θ Complete set of parameters of a given policy πΘ or a Super-

vised Learning model.

L(Θ) Loss function of a model with respect to parameters Θ.

∇Θ Gradient with respect to parameters Θ.

Table 2: Summary of notation used throughout the present thesis.

Chapter 1

Introduction

This section outlines the core topics, research questions, and contributions

of the present thesis. We begin with a gentle introduction to networks by

discussing the idea of optimising processes taking place over them and tra-

ditional methods used to address such problems. We then give an overview

of how Machine Learning (ML) approaches may help in devising solutions,

as well as the placement of the dissertation in this emerging body of work.

We formulate the research questions that we set out to address in this thesis,

and give an overview of its outline and contributions. Finally, we close with

a list of publications stemming from the investigations that have been carried

out in pursuit of the research questions.

1.1 Networks and Combinatorial Optimisation

Euler’s work on the bridges of Königsberg, which poses the problem of finding

a route through a city that crosses each bridge exactly once, is widely regarded

as the genesis of graph theory [39]. The field has since developed as a branch of

discrete mathematics, and solutions have been developed for problems such as

route-finding [108], colouring [188], and graph enumeration [161]. Going beyond

raw topology, nodes and edges in graphs are often associated with attributes: for

example, an edge can be associated with the value of a distance metric [23]. Enriched

with such features, graphs become powerful formalisms able to represent a variety

of systems.

This flexibility led to their usage in fields as diverse as computer science, biology,

1.1. Networks and Combinatorial Optimisation 23

and the social sciences [263]. The term network is used interchangeably with graph,

especially when discussing a specific instance or application.1

The modern discipline of network science [263] draws on concepts from a variety

of fields in order to perform fundamental studies of graph-structured systems, builds

predictive models and algorithms, and applies them to practical problems. To name

but a few examples: probability theory and statistical physics have been used to

analytically examine the properties and limit behaviour of networks [20]; graph

algorithms and data structures, with origins in theoretical computer science, find

broad uses when using network modelling [118]; insights into networks can be

leveraged for optimisation problems that are relevant in an operational context, such

as supply and logistics chains [7].

Methods from network science allow us to formally characterise processes taking

place over a graph. For example, decision-makers might be interested in the global

structural properties such as the efficiency with which the network exchanges infor-

mation, or its robustness when network elements fail, aspects crucial to infrastructure

networks [223, 8]. One can also use the graph formalism to model flows of quantities

such as packets or merchandise, relevant in a variety of computer and logistics net-

works [6]. Taking a decentralised perspective, we may be interested in the individual

and society-level outcome of network games, in which a network of individuals take

selfish decisions in order to maximise their gain [185].

Suppose that we consider such a global process and aim to optimise its outcome

by intervening in the network. For example, a local authority might decide to add

new connections to a road network with the goal of minimising average trip time

or congestion, or a policy-maker might intervene in a social network in order to

encourage certain outcomes. These are combinatorial optimisation problems, which

involve choosing a solution out of a large, discrete space of possibilities such that it

maximises the value of a given objective function. Conceptually, such problems are

easy to define but very challenging to solve, since one cannot simply enumerate all

possible solutions beyond the smallest of graphs.

Some of the most well-known combinatorial optimisation problems, such as

1Regarding the difference between the terms, “graph” is more accurately used to refer to the
mathematical abstraction, while “network” refers to a realisation of this general concept, such as a
particular social network. The terms are synonymous in general usage [18, Chapter 2.2].

1.1. Networks and Combinatorial Optimisation 24

the Travelling Salesperson Problem (TSP) [308], are known to be NP-hard [196].

This means that, given a problem instance and candidate solution, one can check its

correctness in polynomial time with respect to the inputs. Finding such a solution in

the first place, however, is computationally intensive – no polynomial time algorithms

are known for NP-hard problems [134].2 Problems of this type bear relevance in

many areas – the TSP, for example, has been applied in circuit design [62] and

bioinformatics [4]. A significant body of work is devoted to solving them.

The lines of attack for such problems can be divided into the following categories:

• Exact methods: approaches that solve the problem exactly, i.e., will find the

globally optimal solution if it exists. These include exact search algorithms such

as brute force search. Notably, if the problem of interest has a linear objective,

one can formulate it as an (integer) linear program [333], for which efficient

solving methods such as the simplex method [91] and branch-and-bound [221]

exist. Typically, exact methods only work well for small to medium-sized

problem instances.

• Heuristics [271] and approximation algorithms [361]: approaches that do not

guarantee to find the optimal solution, but instead find one in a best-effort

fashion. For the latter category, one can also obtain theoretical guarantees on

the approximation ratio between the obtained solution and the optimal one.

Such approaches make use of insights about the structure of the problem and

objective function at hand, and can typically scale to large problem instances.

• Metaheuristics: methods that, unlike heuristics, do not make any assumptions

about the problem and objective at hand, and instead are generic [40, 36].

Notable examples include local search based methods (such as greedy search,

hill climbing, simulated annealing [211]) and population-based approaches,

many of which are nature-inspired (such as evolutionary algorithms [14] and

ant colony optimisation [109]). Their generic formulation makes them widely

applicable, but they are typically outperformed by algorithms that are based

on some knowledge of the problem, if indeed it is available.

2Unless P=NP, one of the famous unsolved problems in computer science.

1.2. Machine Learning for Combinatorial Optimisation: Beyond Canonical Problems 25

1.2 Machine Learning for Combinatorial Optimisation:

Beyond Canonical Problems
In recent years, ML has started to emerge as a valuable tool in approaching combi-

natorial optimisation problems, with researchers in the field anticipating its impact

to be transformative [31, 58]. Worthy of note are the following relationships and

“points” of integration at the intersection of ML and combinatorial optimisation:

1. ML models can be used to speed up and improve existing algorithms by data-driven

learning for improving components of classic algorithms, replacing hand-

crafted expert knowledge. Examples include, for exact methods, learning

to perform variable subset selection in Column Generation [255] or biasing

variable selection in the branch-and-cut method for Mixed Integer Linear Pro-

grams [204]. Often, such works adopt the Supervised Learning (SL) paradigm.

2. ML can enable the discovery of new algorithms through the use of Reinforcement

Learning (RL), another ML paradigm. Broadly speaking, RL is a mechanism

for producing goal-directed behaviour through trial and error [326]. In this

framework, one formulates the problem of interest as a Markov Decision Pro-

cess (MDP), which can be solved in a variety of ways. In the RL paradigm, an

agent interacts by means of actions with an uncertain environment, receiving

rewards that are proportional to the optimality of its actions; the objective

of the agent is to adjust its behaviour so as to maximise the sum of rewards

received. Framing combinatorial optimisation problems as decision-making

processes can enable the automatic discovery of novel algorithms, including

for problems that are not yet well-studied or understood.

3. ML models are fast to evaluate and can be independent of instance size. This can

be exploited for applications where latency is critical and decisions must be

made quickly – typically the realm of well-tuned heuristics. Furthermore, the

parametrisations of some ML models can be formulated independently of the

size of the problem instance, which means that ML models can be applied to

instances of a larger size than seen during training.

Two important pieces of the puzzle that have contributed to the feasibility of

applying ML to combinatorial optimisation problems on graphs are, firstly, deep

1.2. Machine Learning for Combinatorial Optimisation: Beyond Canonical Problems 26

RL algorithms [326] with function approximation such as the Deep Q-Network

(DQN) [251] and, secondly, ML architectures able to operate on graphs [159]. When

put together, they represent a powerful, synergistic mechanism for approaching such

problems while merely requiring that the task can be expressed in the typical MDP

decision-making formalism.

Regarding the former, many RL techniques are able to provably converge to

the optimal solution; however, their applicability has been limited until relatively

recently to small and medium-scale problems. With the advent of deep learning, RL

algorithms have acquired powerful generalisation capabilities, and became equipped

to overcome the curse of very high-dimensional state spaces. RL approaches com-

bined with deep neural networks have achieved state-of-the-art performance on a

variety of tasks, ranging from general game-playing to continuous control [251, 236].

With respect to the latter, architectures designed to operate on non-Euclidean

data [50] have brought the successes of ML to the graph domain. Worthy of note are

Graph Neural Networks (GNNs), which are based on rounds of message passing

and non-linear aggregation [303]. Motivated by these advances, many works adopt

such architectures in order to generalise during the learning process across different

graphs which may, while being distinct in terms of concrete nodes and edges or their

attributes, share similar characteristics.

The majority of work in ML for combinatorial optimisation focusses on canon-

ical problems, either known NP-complete problems (see, e.g., Richard M. Karp’s

list [196]), or problems for which a reduction to a known NP-complete problem has

been devised.3 Notable examples include Maximum Independent Sets (MIS) [5],

Maximum Cut [203, 5], as well as routing problems including the aforementioned

TSP [346, 29, 203] and the Vehicle Routing Problem (VRP) [216, 205]. Such problems,

however, have been intensely studied – research on solving the TSP alone dates back

nearly 70 years to the paper of Dantzig et al. [92]. With a few exceptions [5], even

though work on such benchmark problems is important for pushing the limitations
3To prove the NP-completeness of these decision problems, Karp derived polynomial-time reduc-

tions to the Boolean satisfiability problem (SAT). The construction of such reductions have become a
standard way to prove the NP-completeness of a decision problem. The Cook-Levin theorem [79, 228],
another cornerstone result in theoretical computer science, established the NP-completeness of SAT,
to which the “reductibility hierarchy” of many problems can be traced. [134] gives a catalogue of
such problems and an extensive treatment of the area. We also note that, while such tools are useful
constructs to formally categorise the difficulty of problems, it is typically impractical to solve them by
conversion to a set of Boolean clauses and use of a SAT solver.

1.3. Research Questions 27

of ML-based methods, currently they cannot directly compete with well-established,

highly optimised heuristic and exact solvers [193].

The goal of this thesis is instead to devise learning-based approaches to practical problems

for which no efficient, performant algorithms are currently known. In doing so, it aims

to address the gap in the literature regarding the types of problems for which ML

approaches would bring a benefit over prior heuristics and metaheuristics. The

key insights behind this thesis are that formulating such problems as decision-

making processes and using RL brings a great degree of flexibility in the range of

graph combinatorial optimisation problems that can be addressed; that extending

well-known RL algorithms to tailor them for certain problem families can bring

substantial gains in optimisation capabilities; and, moreover, that carefully designed

graph learning representations can further contribute to this goal.

1.3 Research Questions
We are now well-equipped to enunciate the research questions addressed by this

thesis. They focus on three underexplored applications of the optimisation of graph

processes that are relevant in practical contexts: network structure, network games, and

network flows. Note that, in other parts of the thesis, we use the acronym RQ to refer

back to a particular research question.

Research Question 1: Is RL a suitable paradigm for optimising the structure of

networked systems?

Unlike well-studied NP-hard problems, the current state of the art in the area

of methods for modifying the structure of a graph so as to optimise a given ob-

jective function relies on simple, hand-crafted heuristics [35, 348, 306]. We aim to

understand whether the RL paradigm is appropriate for discovering novel heuristic

algorithms for such problems, as well as the flexibility of this framework to incorpo-

rate different constraints and objectives.

Research Question 2: How do RL-based methods for graph construction compare with

traditional approaches in terms of optimality of the solutions found and computational cost?

The application of RL to such problems over simple heuristics needs to be

justified since it is significantly more complex, both algorithmically and conceptually.

1.3. Research Questions 28

The advantages and disadvantages compared to simpler methods, for example in

terms of computational speed and gains in terms of the optimisation objective that

they are able to obtain, should be clearly understood.

Research Question 3: How can we make RL-based approaches for graph construction scale

to large graphs? What are the necessary modifications or simplifications?

For such approaches to be truly impactful, they need to be applicable to large,

non-trivially sized graphs. There are several possibilities worth exploring in this

space, from adopting decision-time planning algorithms that only consider the

fraction of the MDP starting from a state of interest, to constraining the space of

possible actions, and applying models trained on small networks (where training is

computationally feasible) to larger graphs.

Research Question 4: Can RL be applied to finding Maximal Independent Sets on graphs

that optimise a given objective function? What are possible applications of this problem?

While the Maximum Independent Set problem has received substantial atten-

tion in the literature, there is no known efficient algorithm for finding a Maximal

Independent Set (mIS) that optimises a given objective function. Furthermore, there

is an interesting connection between mISs and network games: mISs correspond to

Nash Equilibria in a networked Public Goods Game [46]. Hence, such a method can

also be used to find desirable equilibria in the context of this network game.

Research Question 5: If we are given demonstrations of an expert policy defined on a set

of graphs, how can we efficiently summarise its knowledge so that we may apply it to a set

of different graphs? Can a policy derived in this manner have the same performance on this

held-out set as the original one on the training graphs?

Performing RL training tabula rasa can be computationally expensive, exhibit

high variability, and suffer from sub-optimal exploration. If a well-performing

algorithm is already known for a graph problem, we may want to derive a model by

Imitation Learning so that it can be quickly applied to other problem instances, or

use it to “warm start” RL training. A substantial limitation of policies defined over

graphs is their sensitivity to graph size and labelling, constraining their applicability.

1.3. Research Questions 29

Research Question 6: Are current Graph Neural Networks a suitable learning repre-

sentation for modelling flows on networks? Assuming a multi-commodity network flow

formulation with varying traffic between multiple sources and sinks, what is the right means

for providing the demand input data to a model? What is the relationship between graph

structure and the performance of such a model?

Graph Neural Networks have been successfully used for learning to route traffic

over graphs, a problem of substantial practical interest in networking and logistics [6,

339, 175]. However, the benefits of such a learning representation over standard

architectures such as feedforward neural networks are not well understood, especially

in relation to graph structure. It is also not clear how the flows of traffic should be

presented as input to a learning architecture.

With the research questions having been articulated, it is also perhaps worth

discussing the topics that this thesis does not address, and how it relates to other

areas of active interest in the community.

One such area is that of graph representation learning [159], which seeks to

find appropriate embeddings that may be used for a variety of downstream ML

tasks, commonly node and graph classification. The field seeks both to characterise

the fundamental limits of such learning architectures, as well as to investigate the

design of expressive representations that can guarantee good performance on given

end tasks. In contrast, we are mainly interested in addressing the combinatorial

optimisation problems themselves, which can also be viewed as novel end tasks in

this context. The contributions of the present thesis are largely orthogonal to this

area – one can, for example, swap the learning architectures in Chapters 3 and 5 for

more effective and efficient alternatives that will be developed by the community

over time. An exception in this sense is the approach presented in Chapter 6: we

aim to show that learning representations must be aligned with the characteristics

of the combinatorial optimisation problem in order to be effective.

Works on neural algorithmic reasoning [344, 342, 182] are also closely related

and share some common goals, such as obtaining models that may generalise well

to larger problem instances than encountered during training. However, most of the

works adopt Supervised Learning, rather than RL. Models are trained to directly

1.4. Thesis Outline and Contributions 30

Network Structure

Chapter 5: Graph Imitation

Learning (GIL)

Chapter 6: Per-Edge

Weights (PEW)

Network Games Network Flows

Chapter 3: Building Robust
Networks with DQN (RNet-DQN)

Chapter 4: Spatial Graph UCT

 (SG-UCT)

Figure 1.1: Visual summary of the main topics and contributions of the present thesis.

mimic the execution of known algorithms, without the notion of an MDP or, indeed,

a policy. Our primary focus is, instead, to design new algorithms by exploiting

the flexibility of the MDP framework for generic decision-making and discovery.

Nevertheless, when interpreted in a broader sense, neural algorithmic reasoning

argues for building architectures that are informed by, and are compatible with,

an algorithmic prior [367, 58]. Given that interest in this area has been shifting

towards combinatorial optimisation problems [58], we expect there to be many

cross-interactions and use of such techniques in the future.

1.4 Thesis Outline and Contributions

The structure and key contributions of this thesis are summarised in Figure 1.1.

Towards the previously enumerated research questions, it makes contributions along

the axes of problem formulations, solution methods for MDPs, and learning representations.

We begin in Chapter 2 by giving an overview of the literature relevant to this

thesis. We discuss formalisations of networks and processes that take place over

them, and review prior methods that have been proposed for their optimisation.

We then cover the essential concepts behind graph representation learning, RL, and

planning – techniques that underpin the approaches that we propose. Finally, we

review related work in ML for the optimisation of graph processes.

1.4. Thesis Outline and Contributions 31

Chapter 3 addresses the problem of constructing or modifying a graph so as

to optimise a given objective function through the addition of edges. It proposes a

Markov Decision Process formulation and an algorithm for Building Robust Net-

works with DQN (RNet-DQN) that learns how to optimise the structure of a graph.

As objective functions, we consider the resilience of the network to random failures

and targeted attacks. Evaluations on synthetic and real-world power grid and road

networks show that the approach can outperform prior methods based on spectral

or local properties, while exhibiting strong generalisation to larger graphs than those

used for training in some cases. This chapter addresses RQ1, RQ2, and RQ3.

In Chapter 4, we take further steps towards scaling the decision-making process

approach for graph construction to larger, real-world networks. If we are inter-

ested in optimising a particular graph, such as a given infrastructure network, one

can sidestep the computational cost of training an RL policy, and instead use a

decision-time planning method that leverages knowledge of the transition and re-

ward functions. In our pursuit of a more realistic formulation of the problem, we

consider networks in which nodes are embedded in space, an aspect that governs the

density and realisability of new connections. We propose a variant of the Upper Con-

fidence Bound for Trees (UCT) planning algorithm [213] that we call Spatial Graph

UCT (SG-UCT). We show that SG-UCT obtains excellent performance in optimising

the resilience and efficiency of spatial networks used for internet communication

and urban transportation. This chapter addresses RQ1, RQ2, and RQ3.

Chapter 5 considers the problem of finding a Maximal Independent Set of nodes

on a graph that maximises the value of a given objective function. We propose

an MDP formulation of this task, and use the UCT algorithm to construct an mIS

incrementally, outperforming prior methods. Furthermore, we devise a technique to

carry out Imitation Learning of demonstrations of the search algorithm, which is

shown to perform similarly in terms of its ability to optimise the objective while being

orders of magnitude faster to evaluate after having been trained. The technique,

which we term Graph Imitation Learning (GIL), may be used more widely for other

graph combinatorial optimisation problems. We motivate the study of this problem

through the correspondence between mISs and equilibria of the networked best-shot

Public Goods Game [46], a social dilemma scenario that takes place on a graph and

1.5. List of Publications 32

captures the tensions between selfish actions and the collective good. This chapter

addresses RQ4 and RQ5.

Then, in Chapter 6, we consider the problem of data-driven routing of flows

on graphs between many sources and sinks, a problem that finds applications in

logistics and computer networks. Despite the fact that GNNs are enjoying substantial

interest for this problem, their benefits with respect to standard architectures are not

well understood or validated. In this chapter, we argue that the “global” message

functions used in many GNNs are not suitable for this type of problem, since they

constrain the routing unnecessarily. We propose a GNN model with per-edge mes-

sage functions, called Per-Edge Weights (PEW), which we show yields substantial

gains in accuracy for predicting link utilisations in a computer network scenario that

uses two routing schemes and 17 Internet Service Provider topologies. Furthermore,

we examine the relationship between the performance of the considered predictive

models and the topological structure of the underlying graphs, showing that the

relative advantage of the proposed GNN increases under variations in topology and

for highly heterogeneous networks. This chapter addresses RQ6.

Lastly, we summarise and conclude in Chapter 7, focussing on lessons learned,

applications of the proposed techniques, as well as directions for future work.

1.5 List of Publications
The preparation of this thesis has led to the following publications. The first author

performed the algorithm and study designs, wrote the implementations, analysed

the results, prepared the figures, and wrote the initial drafts of the manuscripts.

Mirco Musolesi and Stephen Hailes had important advisory roles and contributed

to refining the manuscripts. Accompanying code for the published papers can be

found at https://github.com/VictorDarvariu/.

• Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Goal-directed

graph construction using reinforcement learning. Proceedings of the Royal Society

A: Mathematical, Physical and Engineering Sciences, 477(2254):20210168, 2021.

• Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Planning spa-

tial networks with Monte Carlo tree search. Proceedings of the Royal Society A:

Mathematical, Physical and Engineering Sciences, 479(2269):20220383, 2023.

https://github.com/VictorDarvariu/

1.5. List of Publications 33

• Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Solving Graph-

based Public Goods Games with Tree Search and Imitation Learning. In Proceedings

of the Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS), 2021.

• Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Graph Neural

Modeling of Network Flows. arXiv preprint arXiv:2209.05208, 2022.

The author has also contributed to the following works at the intersection of ML

and combinatorial optimisation on graphs, which are relevant to the contents of the

present thesis.

• Christoffel Doorman, Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Mu-

solesi. Dynamic Network Reconfiguration for Entropy Maximization using Deep

Reinforcement Learning. In Proceedings of the First Learning on Graphs (LoG) Confer-

ence, 2022.

• Syu-Ning Johnn, Victor-Alexandru Darvariu, Julia Handl, and Joerg Kalcsics.

Graph Reinforcement Learning for Operator Selection in the ALNS Metaheuristic.

In Proceedings of the International Conference in Optimization and Learning (OLA2023),

2023.

Chapter 2

Background and Related Work

This chapter offers an overview of the concepts and key works related to our

topic of study. We begin by discussing fundamental notions about graphs

and the variety of generative models that have been proposed to capture their

characteristics. Subsequently, we summarise the relevant literature that seeks

to quantify their properties and processes taking place over them, as well

as prior works that aim to optimise the outcomes of such graph processes

using standard methods that are not based on ML.

The later sections cover the necessary background for understanding

how ML techniques may be used to approach the optimisation of graph

processes. We give a brief overview of Artificial Neural Networks and how

the discrete structure of graphs can be represented for ML tasks. We then

cover the RL and planning paradigms in depth, both of which are central to

this thesis. Finally, with the prerequisites having been met, we review the

existing work on ML for optimising the outcome of processes taking place

on graphs. We treat both work that tackles well-known NP-hard problems

as well as other, less-studied graph processes.

2.1 Graph Fundamentals and Properties

Graphs, also called networks, are the underlying mathematical objects that are the

focus of the present thesis. We denote a graph G as the tuple (V,E), where V is

a set of nodes or vertices that are used to represent the entities that are part of the

system, and E is a set of edges that represent connections and relationships between

the entities. We indicate an element of the set V with v or vi and an element of E

2.1. Graph Fundamentals and Properties 35

with e or ei,j , with the latter indicating the edge between the nodes vi and vj .

A common mathematical structure used for representing graphs in computer

programs is the adjacency matrixA, in which the entry at row i and column j is equal to

1 if an edge exists between nodes vi and vj , and 0 otherwise. Since many networks are

sparse in terms of the number of connections per node, in practical implementations

an edge list representation, which only records existing edges, may be used instead.

If A is symmetric, which implies reciprocal bidirectional connectivity, the graph is

known as undirected. Otherwise, it is called directed.

Nodes and edges may optionally have attribute vectors associated with them,

which we denote as xv and xe respectively. These can capture various aspects about

the problem of interest depending on the application domain, and may be either

static or dynamic. Some examples include geographical coordinates in a space, the

on-off status of a node, and the capacity of an edge for the transmission of information

or a physical quantity. Equipped with such attributes, graphs become a powerful

mathematical tool for studying a variety of systems.

One may be interested in the relevance of each node in the overall connected

structure, which is a local property. The degree centrality [263, Chapter 7.1.1] is a

simple way of quantifying this, and is proportional to the number of links (degree)

of each node. Eigenvector centrality [263, Chapter 7.1.2] takes this notion further,

assigning higher values to nodes connected to nodes that themselves are densely

connected. Betweenness centrality [263, Chapter 7.1.7] associates high values with

nodes that are present in many of the shortest paths between other vertices. It

is difficult to overstate the relevance of these measures: PageRank [48], related to

eigenvector centrality, is a metric that was at the basis of the first implementation of

one of the most famous search engines.

The empirical study of real-world networks has also unravelled various recurring

global characteristics that can be used to describe connected systems. A notable

example is the average path length [263, Chapter 10.2], i.e., the mean distance between

vertex pairs along the shortest paths in a network. It has been used to explain the

small-world phenomenon observed in Stanley Milgram’s well-known “six degrees

of separation” experiment [336]. Other important quantities include the clustering

coefficient [263, Chapter 10.6], which measures the number of connected triples, and

2.2. Classic Graph Generative Models 36

the level of homophily of connections between vertices that are similar (sometimes

called assortativity [263, Chapter 10.7]).

2.2 Classic Graph Generative Models
Graph generative models attempt to replicate certain local and global characteristics

that were observed in real-world systems, or are otherwise mathematically interest-

ing. Such generative models are able to produce instances of graphs that, while not

having identical connectivity, share common statistical properties.

For example, Erdős and Rényi [114] studied the properties of graphs randomly

drawn from the distribution of all graphs with a certain number of nodes and

edges. Barabási and Albert [19] introduced a graph generation model based on

preferential attachment that produces networks that mimic the scale-free degree dis-

tributions observed in real-world networks such as the World Wide Web. In another

seminal work, Watts and Strogatz [354] proposed the “small-world” model based on

the random rewiring of regular networks, which produces networks with character-

istically small diameters. The authors showed that many real-world networks, such

as the connectome of the nematode C. elegans, have this property. Stochastic Block

Models (SBMs) [170], which have a long tradition in the social sciences, posit that

connections in a network structure are governed by the presence of communities.

Also called blocks, they provide a compact description of the network in terms of

the intra- and inter-community connection probabilities.

Another family of graph generative models considers nodes that are placed in a

metric space. In random geometric graphs [277], nodes are positioned uniformly

randomly on the unit square, and connections occur for each pair of nodes with

distance below a fixed threshold. Soft random geometric graphs [278] introduced

probabilistic connections while maintaining the fixed threshold. The models pro-

posed by Waxman [355] and Kaiser and Hilgetag [194] added a further degree of

realism in relation to physical communication networks: namely, considering the cost

of establishing a link as inversely proportional to the distance between nodes [23].

Planarity (i.e., the fact that edges intersect only at nodes) is another property of inter-

est. The authors of [22] proposed a growth model for planar urban street networks

which, in the absence of a central network designer, creates new connections that

observe a local maximisation principle. Despite its simplicity, it is able to reproduce

2.3. Graph Processes 37

patterns resembling existing cities, and it is closely related to a mechanism that yields

leaf venation patterns similar to those observed in nature [299].

The generative models listed above are precisely defined in mathematical terms,

an aspect that has permitted the analytical study of their properties. Other families of

approaches instead consider a posteriori fitting of a model in a data-driven way based

on some existing observations. Bayesian SBMs [276] are a family of approaches for

nonparametric Bayesian inference of network structure, with extensions of this model

having been proposed for dealing with hierarchical structure [274] or uncertainty

around the existence of links [275]. Deep graph generative models [209, 233, 373,

235] have the same goal, but instead use a form of deep neural network trained with

gradient descent. We will discuss these in detail in Section 2.6.2, once the necessary

technical background has been introduced.

Let us make a brief intermission in order to mention the relationship between

graph generative models and the present thesis. Graph generative models are a

means of generating topologies that obey a certain prescribed set of rules or match

empirical observations. In contrast, the present thesis seeks to allow a decision-maker

to intervene in a network such that an objective in which they are interested can be

maximised. Graphs produced by generative models serve as “starting points” or

“underlying structure” to which the proposed algorithms are applied. They are also

practically useful since they can be used to generate synthetic network topologies

with controlled characteristics, enabling statistically robust evaluations.

2.3 Graph Processes
Beyond the statistical quantities mentioned in Section 2.1, graphs can also serve

as a backdrop to simulate processes of interest. This is realised via the study of

interactions that are dynamic in nature and take place on the topology, as governed

by a set of mathematical rules [20]. Quantities related to these processes will serve

as the optimisation objective in the present thesis.

In the following subsections, we carry out an in-depth treatment of each such

process that is relevant to this thesis. Namely, we review work in network robustness,

efficiency, flows, and games on networks. Furthermore, we cover recent works that

seek to optimise the outcome of these processes using traditional (i.e., not based on

ML) methods.

2.3. Graph Processes 38

We note that this selection is not exhaustive. Some important types of processes

that this thesis does not address are, among others: epidemic models such as Suscep-

tible, Infected, Recovered (SIR) [202], synchronisation phenomena [20, Chapter 7],

and opinion dynamics [20, Chapter 10]. However, at a high level, the proposed

methods may also be adapted for the purpose of optimising other graph processes,

as we will discuss in Section 7.4.

2.3.1 Robustness

Overview of Robustness

A process taking place on graphs that has attracted significant interest from the

network science community and practitioners is robustness [262] (sometimes also

called resilience), which is typically defined as the capacity of a graph to withstand

random failures, targeted attacks on key nodes, or some combination thereof. This

is a desirable characteristic in general, since it implies that a system can continue

to function in the face of adversity; the most salient example where this property

is essential is that of infrastructure networks. Previous works have studied the

robustness of communication networks such as the Internet [77], energy distribution

systems [61], and urban transportation networks [104, 359], just to name a few.

The existing literature proposes various definitions of robustness. The resilience

of a graph to random errors and targeted attacks was first discussed by Albert et al.

[8], who examined the average shortest path distance as a function of the number of

removed nodes. Performing an analysis of two scale-free communication networks,

they found that this type of network has good robustness to random failure but

is vulnerable to targeted attacks. Other works consider a network to be robust if

a significant fraction (called Critical Fraction) of nodes have to be removed before

it breaks into more than one connected component [76] or the size of its Largest

Connected Component diminishes [35]. A more recent measure of robustness

proposed by Schneider et al. [306] is based on averaging the proportion of nodes in

the Largest Connected Component as the percentage of attacked nodes increases;

this can smoothly capture the functioning of the network before complete collapse.

In the case of targeted removal of nodes, there exists some variation in the

possible strategies for attacking the network. An extensive investigation by Holme

et al. [172] analysed the robustness of several real-world networks as well as some

2.3. Graph Processes 39

generated by means of synthetic models. The authors investigated different attack

strategies based on degree and betweenness centrality, finding that recomputing the

centralities after the removal of nodes can yield more efficient attack strategies. A

more recent investigation considered a wider scope of definitions of centrality than

degree or betweenness [184].

Another relevant line of work on the study of resilience focusses on percolation

phenomena taking place on grids [321] and graphs [56]. Using this framework,

one can study the number of connected components as the fraction of nodes that

are present in the network grows. For high fractions a single giant component

typically occurs, while for small values the system consists of many tiny components.

The value at which the switch between these two regimes happens is called the

percolation threshold, and is a possible quantification of the failure rate that a network

can withstand. The related cascading failure models [353] are more appropriate for

networks that carry loads, such as power grids. Nodes are equipped with capacities,

and upon node failure the load is distributed to the neighbours. Exceeding the

capacity may trigger further failures, leading to avalanche-like phenomena [17].

Beyond the empirical analysis of real-world networks, various analytical re-

sults have also been obtained that describe the percolation thresholds of network

models under random removal of nodes [76] and targeted attacks [77]. Optimal

configurations under the joint objective of resilience to both attack strategies has

also been found – the optimal network has a bi-modal or tri-modal degree distribu-

tion [340, 329]. Relationships between robustness and other graph properties have

also been discovered: there is a positive association between the assortativity of the

degree distributions of graphs and their robustness to vertex removal [260, 261].

Another property of interest is the spectral gap, defined as the difference (or ratio)

between the two largest eigenvalues. Networks with high spectral gap have been

proven to be highly connected, which also implies good robustness [174].

There exists evidence to suggest that the topological robustness of infrastructure

systems is correlated to operational robustness [319]. More broadly, the resilience of

systems is highly important in structural engineering and risk management [73, 132].

2.3. Graph Processes 40

Optimising Robustness

Building a robust network from scratch is often impractical, since networks are

generally designed with a specific purpose in mind. For this reason, prior works

have addressed the problem of modifying existing networks in order to improve their

robustness. Beygelzimer et al. [35] approached this problem by considering edge

addition or rewiring, based on random or preferential (with respect to the degree of a

node) modifications. In [306], the authors proposed a “greedy” modification scheme

based on random edge selection and swapping if the resilience metric improves. For

the problem of de novo graph generation, Wu and Holme [366] have proposed an

algorithm that produces graphs with similarly high values of robustness at a much

lower computational cost.

Schneider et al. [307] discussed an approach for improving the robustness

of coupled networks. Rather than rewiring an existing network, the authors pro-

posed making certain nodes “autonomous”, which are selected based on degree

and betweenness centrality. They found that this method can increase robustness

significantly. Wang et al. [350] considered both preferential (based on node degree)

and greedy (with respect to effective graph resistance [113]) modification schemes,

finding that greedy strategies are generally more effective but also more expensive

to compute. Related problems have also attracted the attention of the operations

research community. Work on the Pre-disaster Transportation Network Preparation

problem [273, 364] has treated the scenario of increasing the robustness of a highway

network to cope with random failures of links.

2.3.2 Efficiency

Overview of Efficiency

Consider a network process that consists of nodes positioned in a physical space

exchanging information, as is the case with transportation networks. Efficiency is a

metric quantifying the distance that information has to travel along the shortest path

defined by the links of the network in relation to the straight line distances between

pairs of points. It is hypothesised to be an underlying principle for the organisation

of networks [223, 224], including neural and social networks.

It is a more suitable metric for measuring the exchange of information than the

inverse average path length between pairs of nodes. In the extreme case where the

2.3. Graph Processes 41

network is disconnected (and thus some paths lengths are infinite), this metric does

not go to infinity. More generally, this metric is better suited for systems in which

information is exchanged in a parallel, rather than sequential, way [223]. A recent

paper [33] extends the formalisation of efficiency to weighted networks, in which

the links are equipped with capacities.

Optimising Efficiency

In comparison with the literature on robustness optimisation, the body of work on

efficiency optimisation is limited. In [105], the authors considered a problem with

node upgrade actions and the goal of reducing pairwise shortest path distances.

They proposed two greedy algorithms that are shown to perform well in practice

when compared to an exact algorithm.

2.3.3 Network Flows

Overview of Network Flows

The efficiency metric described above makes two implicit assumptions: that traffic

between pairs of points is uniformly distributed, and that it travels in its entirety

along the single shortest path. These assumptions are not suitable for communication

networks such as the Internet, for which traffic volumes are highly heterogeneous

and dynamic [13, 121], and different routing schemes that can split traffic among

multiple paths to the destination are instead desirable in order to achieve a better

utilisation of the network.

The Multi-Commodity Network Flow (MCNF) family of problems is a more

general process of entities in a network exchanging information. It requires, in

addition to the network topology, specifying a demand matrix D that captures the

amount of traffic to be routed between each pair of vertices. The typical optimisation

objective for a routing scheme is to minimise the ratio of utilisations versus capacity

of the network links, possibly also sharply penalising high levels of congestion.

MCNF formulations are ubiquitous in Internet traffic engineering works [124,

195, 154] that serve as our motivating application, but also find wider uses, for exam-

ple in routing goods in a logistics network or cars in a rail network [6, Chapter 17].

Monitoring the levels of congestion allows Internet Service Providers, for example, to

gauge when further infrastructure investments to increase capacity are needed [151].

2.3. Graph Processes 42

Optimising the Routing of Network Flows

MCNF solutions can be computed optimally in polynomial time given a demand

matrix using Linear Programming (LP) techniques [331]. However, there are two

debatable assumptions behind these approaches that are worth discussing, which in

practice means that such problems are far from solved.

Firstly, they assume that the matrix of demands is fixed. This is an assump-

tion that is not realistic in networks that show clear variations in traffic patterns,

such as those between morning and evening [124]. Secondly, in such solutions, the

decision variables specify the quantity of flow routed along each arc for each source-

destination pair. This introduces complexity at the implementation level because it ne-

cessitates the configuration of source-destination routes [69]. Software-Defined Net-

working (SDN) technology [245] introduces the concept of programmable switches,

which gives a centralised controller a global view and decision-making capabilities

over the routing decisions; despite many successful solutions such as B4 [187], which

is used to route traffic between Google’s datacenters, transitioning to this model

remains challenging in general due to interoperability requirements [69].

Other routing protocols are destination-based, a design that greatly simplifies

implementation at the infrastructure level. Open Shortest Path First (OSPF) [257]

is perhaps the most widespread among such protocols. In this specification, nodes

maintain a database of the topology of the network and derive routes by calculating

shortest paths to destinations in this topology as defined over weighted links. The

Equal-Cost Multi Path (ECMP) extension [177] specifies that flows are split equally

among shortest paths if multiple exist. Extensive prior works have studied the

task of traffic engineering (TE) by setting weights for the OSPF-ECMP model using

metaheuristics such as local search [126], memetic [54], and genetic [115] algorithms.

In fact, this problem has been shown to be NP-hard [124] and, furthermore, it is

impossible to approximate the optimal configuration within any constant ratio [68].

2.3.4 Network Games

Overview of Network Games

Let us move away from communication networks and consider a decentralised game-

theoretic [231] scenario in which a social network connects self-interested agents.

The actors have the liberty to take individual actions and derive utility based on their

2.3. Graph Processes 43

neighbours’ actions as well as their own. Such scenarios are referred to as network

games [185] and, in case the set of possible actions is binary and utilities are defined

in terms of graph neighbours, as graphical games [198].

An intuitive example is the network majority game, which bears resemblance to

the Voter model [171]. In this game, each player in a network structure decides on an

action of either 0 or 1, and receives positive utility if their chosen action agrees with

the majority of the actions taken by neighbours, and negative utility otherwise [185].

In the majority game, there clearly are many possible combinations of actions

taken by the players, which are called action profiles. How might we quantify whether

an action profile is “better” than another? In such settings, this is typically called

a solution concept [231]. One classic solution concept is the Nash Equilibrium (NE),

an outcome in which no player would gain higher utility by unilaterally changing

their action, given the actions of all other players. The Pure Strategy Nash Equilibrium

(PSNE) is an equilibrium involving pure (i.e., non-probabilistic) strategies.

For the network majority game, finding a NE is fairly straightforward. This

is due to the structure of the set of equilibria, which form an ordered lattice [185].

To reach an equilibrium, one can follow Best-Response dynamics, in which players

are repeatedly allowed to adjust their action in response to that of a neighbour, and

pick the best (i.e., highest utility) choice. However, this is not the case in general

in game theory. A large spectrum of techniques exist for 2-player and n-player

games that find a sample equilibrium or enumerate all equilibria, with the task being

computationally challenging or intractable in many cases [244, 98]. In graphical

games, more efficient algorithms can be derived for restricted cases such as complete

graphs or trees [198, 375].

The broader literature on network games focusses on several fundamental ques-

tions regarding the behaviour of agents that are connected by a network struc-

ture [185]: examples include proving the existence of and characterising profiles of

behaviour in equilibria, reasoning in the presence of partial or probabilistic informa-

tion [131], and examining the effect of new links in the graph [46].

Public Goods Games (PGGs) are used to model scenarios in which individuals

can choose to invest in a costly good that can be used, typically free of charge, by

other members of a society [226]. It is a type of social dilemma [215], since it may

2.4. Artificial Neural Networks on Graphs 44

not be justified to make such a contribution from a purely selfish point of view, and

yet the entire population would be better off if the pool of public resources is large.

Such dynamics are observed in a variety of scenarios of societal importance such

as vaccination programs [127], investing in research and development [186], or

meeting climate change targets [201, 249]. Since network connections are known to

shape decision-making in a variety of systems and at several scales [147], works in

the literature have pursued finding NE in networked PGGs.

Optimising NE in Networked PGGs

Recent studies in this area treated the properties of binary networked PGGs [375] as

well as designing strategies for inducing equilibria in such games by manipulating

the graph structure itself [200].

For the more specific best-shot networked PGGs, in which utilities are a max-

imum of neighbour quantities, Best-Response dynamics have been proven to con-

verge to a PSNE [230]. Two methods have been proposed for finding PSNEs in

such games. Dall’Asta et al. [90] proposed a method based on simulated annealing

for finding equilibria of maximum social welfare, which was proven to converge

to the globally optimal solution given infinite time. Levit et al. [230] introduced

a decentralised heuristic algorithm based on side payments, which can be used by

agents that are unsatisfied with their outcome to convince their neighbours to switch

their action. The configurations that such heuristics arrive at are nevertheless inferior

to optimal solutions found by Exhaustive Search. Additionally, these methods cannot

optimise for objectives other than social welfare.

2.4 Artificial Neural Networks on Graphs

Given that we have covered the what of the network processes we intend to optimise in

the first 3 sections of this chapter, let us now move on to addressing the how – namely,

the relevant ML tools. In this section, we discuss how one can represent graphs

and tame their discrete structure for ML tasks. We begin with a broad overview of

graph representation learning and traditional approaches. We then cover GNNs and

related “deep” approaches for embedding graphs.

2.4. Artificial Neural Networks on Graphs 45

2.4.1 Artificial Neural Networks

The early history of Artificial Neural Networks (ANNs) begun in the 1940s and

substantially overlaps with work on the biologically-inspired cybernetics [358, 146].

One of the earliest models of the means by which the brain processes information is

the McCulloch-Pitts Neuron [243], which could distinguish between two different

categories of input, and required the manual setting of model parameters. The

Perceptron, introduced by Rosenblatt [292], was the first algorithm that allowed the

automatic adjustment of parameters from examples. However, the linear nature of

the Perceptron meant that it could not distinguish functions that are not linearly

separable. The XOR is a notorious example of such a function, and its presence in the

Perceptrons book of Minsky and Papert [250] caused a drop in interest and research

activity on ANNs.

The second wave of interest in ANNs originated in the cognitive science commu-

nity in the 1980s, and came to be known as connectionism [241, 242]. This literature

made two key contributions. Firstly, it introduced the idea of distributed represen-

tations, which stipulates that each feature should be involved in the intermediate

representation of multiple inputs instead of being pre-programmed for a particular

input. Secondly, it proposed the backpropagation algorithm [298] that enables an

efficient computation of the gradients of model weights with respect to the loss

function, and is still in wide use today.

In its modern sense, an ANN takes a vector of inputs x, performs information

processing, and produces a vector of outputs ŷ. A possible instantiation is

ŷ = ReLU (Wx + b) (2.1)

where W is a matrix of weights, b is a vector of biases, and the Rectified Linear

Unit ReLU(x) = max(0, x) is an activation function that is applied element-wise. The

weights and biases are the parameters of the ANN and control the information

processing. One can repeat this recipe and stack several layers of the ANN; for

example, a two-layer ANN may be defined as:

2.4. Artificial Neural Networks on Graphs 46

ŷ = ReLU (W2 ReLU (W1x + b1) + b2) (2.2)

where, analogously, W1 and W2 are weight matrices, and b1, b2 are bias vectors.

An ANN with two or more such layers is commonly called Multi-Layer Perceptron

(MLP). It forms a common building block for many neural network architectures.

How does one arrive at the “right” values for the weights and biases? Let us refer

to them collectively as the model parameters Θ. One needs to define a loss functionL(Θ)

which specifies the “goodness” of a particular choice of parameters, and is typically

the minimisation objective. Concretely, in the case of univariate regression, one seeks

to predict scalar outputs y, and is provided with a dataset of inputs and ground

truth real-values D = ∪k{x(k), y(k)}. Given an input x(k), the model produces an

approximate value ŷ(k). The Mean Squared Error (MSE) loss is defined as:

LMSE(Θ) =

∑
k (y(k) − ŷ(k))2

|D| (2.3)

It is common to use mini-batch Stochastic Gradient Descent (SGD) to learn the

parameters Θ in a data-driven fashion. One can start with a random guess of the

values Θ and adjust them in an iterative process that is driven by the loss function. A

mini-batch of datapoints is sampled uniformly at random, and the gradient∇ΘL(Θ)

of the loss function with respect to the parameters is computed. One then takes a

step in the direction of the gradient according to a learning rate α that dictates the

magnitude of the step: Θ′ ← Θ− α∇ΘL(Θ).

The choice of α is dictated by the optimisation algorithm, and it may be fixed

or adaptive. A popular choice in this literature is the Adam optimisation algo-

rithm [207], which keeps track of the mean and variance of the gradients to adjust

the learning rate. The process continues until certain stopping criteria are met, such

as executing a certain number of mini-batches.

When a model consists of many layers, it is common to refer to such approaches

as deep learning. Stacking many layers leads to a form of hierarchical feature process-

ing, with the further layers receiving higher-level features as input [146]. Interest

2.4. Artificial Neural Networks on Graphs 47

in deep learning has surged in the 2010s as a result of an increase in computational

power of modern hardware combined with increased levels of training data availabil-

ity, enabling deep neural networks to attain excellent empirical results in a variety of

domains. They have been able to overtake traditional approaches in a variety of fields

including computer vision [217], speech and signal processing [148], and natural

language processing [15] while requiring significantly less feature engineering.

The universal function approximation theorem [178, 82] establishes that MLPs of

arbitrary width can approximate any bounded continuous real function. This serves

as a theoretical foundation of these remarkable empirical results. However, it is not

prescriptive about the required width, nor does it account for the tasks themselves,

some of which we might expect to be more easily approximated than others.

MLPs, while being generic, do not take advantage of the structure of the prob-

lems under consideration, and may require a prohibitively large amount of data or

number of parameters in order to obtain good predictive performance. Variations

in the neural network architecture can encode structural inductive biases about the

problem, such that a model may be arrived at with tractable cost. A now canonical

example is that of Convolutional Neural Networks (CNN) [130, 225] for computer

vision. Data in this domain is highly local, grid-like, and compositional at multiple

scales. These characteristics are encoded by design in the architecture, avoiding the

large costs needed for discovering them tabula rasa with MLPs (e.g., as was achieved

in a recent work [334]).

2.4.2 Graph Representation Learning

As mentioned previously, graphs are the structure of choice for representing infor-

mation in many other fields and are able to capture interactions and similarities. The

success of neural networks, however, did not immediately transfer to the domain of

graphs as there is no obvious equivalent for this class of architectures: graphs do

not necessarily present the same type of local statistical regularities [50].

Suppose we wish to represent a graph as a vectorial input x that can be fed to a

ML model, such as an MLP. An obvious choice is to take the adjacency matrix A and

apply vectorization in order to transform it to a column vector. In doing so, however,

two challenges become apparent. One is the fact that by relabelling the nodes in

the graph according to a permutation, the input vector is modified substantially,

2.4. Artificial Neural Networks on Graphs 48

and may result in a very different output when fed to a model, even though the

structure has remained identical. Furthermore, if a new node joins the network, our

previous model is no longer applicable by default since the shape of the input vector

has changed. How might we address this, and design a better graph representation?

Such questions are studied in the field of graph representation learning [159].

Broadly speaking, the field is concerned with learning a mapping that translates the

discrete structure of graphs into vectorial representations with which downstream

ML approaches can work effectively. Work in this area is focussed on deriving

vectorial embeddings for a node, a subgraph, or an entire graph. A distinction can

be drawn between shallow and deep embedding methods [159]. The former category

consists of manually-designed approaches such as those using local node statistics,

characteristic graph matrices, or graph kernels. In the latter category, methods

typically use a deep neural network trained with gradient descent, and learn the

representation in a data-driven fashion.

The literature on shallow embeddings is extensive. Prior work has considered

factorisations of characteristic graph matrices [25, 268]. Another class of approaches

constructs embeddings based on random walks: nodes will have similar embed-

dings if they occur along similar random paths in the graphs. Methods such as

DeepWalk and node2vec [279, 149] fall into this category. Other approaches such as

struc2vec [288] and GraphWave [106] assign similar embeddings to nodes that fulfil

a similar structural role within the graph (e.g., hub), irrespective of their proximity.

2.4.3 Deep Graph Embedding Methods

Broadly speaking, deep embedding methods rely on the idea of neighbourhood

aggregation: the representation of a node is determined in several rounds of ag-

gregating the embeddings and features of its neighbours, to which a non-linear

activation function is applied.

The learning architectures are usually parameter-sharing: the manner of per-

forming the aggregation and the corresponding weights are the same for the entire

network. Another important aspect for deep embedding methods is that they can

incorporate task-specific supervision: the loss corresponding to the decoder can

be swapped for e.g. cross-entropy loss in the case of classification tasks. A final

distinction in this family of approaches is the way subgraph embeddings are con-

2.4. Artificial Neural Networks on Graphs 49

structed: variants include performing a sum or mean over node embeddings in a

subgraph [112, 85], introducing a dummy node [232], using layers that perform

clustering [100], or learning the hierarchical structure end-to-end [370].

Several works have proposed increasingly feasible versions of convolutional

filters on graphs, based primarily on spectral properties [52, 165, 100, 210] or

their approximations. An alternative line of work is based on message passing

on graphs [320, 303] as a means of deriving vectorial embeddings. Both Message

Passing Neural Networks [144] and Graph Networks [24] are attempts to unify

related methods in this space, abstracting the commonalities of existing approaches

with a set of primitive functions. The term “Graph Neural Network” is used in the

literature, rather loosely, as an umbrella term to mean a deep embedding method.

Let us now take a closer look at some GNN terminology and variants that are

relevant to the present thesis. Recall that we are given a graph G = (V,E) in which

nodes vi are equipped with feature vectors xvi and, optionally, with edge features

xei,j . The goal is to derive an embedding vector hvi for each node that captures the

features as well as the structure of interactions on the graph. The computation of

the embedding vectors happens in layers l ∈ 1, 2, ..., L, where L denotes the final

layer. We use h
(l)
vi to denote the embedding of node vi in layer l. The notation W(l),

possibly indexed by a subscript, denotes a weight matrix that represents a block of

learnable parameters in layer l of the GNN model. Unless otherwise specified, the

embeddings are initialised with the node features, i.e., h(0)
vi = xvi ,∀vi ∈ V .

Message Passing Neural Network

The Message Passing Neural Network (MPNN) [144] is a framework that abstracts

several graph learning architectures, and serves as a useful conceptual model for

deep embedding methods in general. It is formed of layers that apply a message

function M (l) and vertex update function U (l) to compute embeddings as follows:

m(l+1)
vi =

∑
vj∈N (vi)

M (l)
(
h(l)
vi ,h

(l)
vj ,xei,j

)
h(l+1)
vi = U (l)

(
h(l)
vi ,m

(l+1)
vi

) (2.4)

where N (vi) is the open neighbourhood of node vi. Subsequently, a readout function

I is applied to compute an embedding for the entire graph from the set of final

2.4. Artificial Neural Networks on Graphs 50

node embeddings: I({h(L)
vi |vi ∈ V }). The message and vertex update functions

are learned and differentiable, e.g., some form of MLP. The readout function may

either be learned or fixed a priori (e.g., summing the node embeddings). A desirable

property for it is to be invariant to node permutations.

structure2vec

structure2vec (S2V) [85] is one of the earlier GNN variants, and it is inspired by prob-

abilistic graphical models [214]. The core idea is to interpret each node in the graph

as a latent variable in a graphical model, and to run inference procedures similar

to mean field inference [347] and loopy belief propagation [272] to derive vectorial

embeddings. Additionally, the approach replaces the “traditional” probabilistic op-

erations (sum, product, and renormalisation) used in the inference procedures with

nonlinear functions (namely, neural networks), yielding flexibility in the learned

representation. It was shown to perform well for classification and regression in

comparison to other graph kernels, as well as to be able to scale to medium-sized

graphs representing chemical compounds and proteins.

One possible realisation of the mean field inference variant of S2V computes

embeddings in each layer based on the following update rule:

h(l+1)
vi = ReLU

(
W1xvi + W2

∑
vj∈N (vi)

h(l)
vj

)
(2.5)

where W1,W2 are weight matrices that parametrise the model. We note that there

are two differences to the other architectures discussed in this section. Firstly, the

weight matrices are not indexed by the layer superscript, since they are shared

between all the layers. Additionally, the node features xvi appear in the message-

passing step of every layer, rather than only being used to initialise the embeddings.

A possible alternative is to use vectors of zeros for initialisation, i.e., h(0)
vi = 0 ∀vi ∈ V .

Graph Convolutional Network

The Graph Convolutional Network (GCN) method [210] is substantially simpler

in nature, relying merely on the multiplication of the node features with a weight

matrix, together with a degree-based normalisation. It is motivated as a coarse,

first-order, approximation of localised spectral filters on graphs [100]. Since it can

be formulated as a series of matrix multiplications, it has been shown to scale well to

2.4. Artificial Neural Networks on Graphs 51

large graphs with millions of edges, while obtaining superior performance to other

embedding methods at the time. It can be formulated as:

h(l+1)
vi = ReLU

(
W

(l)
1

∑
vj∈N [vi]

h
(l)
vj√

(1 + deg(vi))(1 + deg(vj))

)
(2.6)

where deg(vi) indicates the degree of node vi, andN [vi] is the closed neighbourhood

of node vi, which includes all its neighbours and vi itself.

Graph Attention Network

Note how, in the GCN formula above, the summation implicitly performs a rigid

weighting of the neighbouring nodes’ features. The Graph Attention Network (GAT)

model [343] proposes the use of attention mechanisms [15] as a way to perform

flexible aggregation of neighbour features instead. Learnable aggregation coefficients

enable an increase in model expressibility, which also translates to gains in predictive

performance over the GCN for node classification.

Let ζ(l)
i,j denote the attention coefficient that captures the importance of the

features of node vj to node vi in layer l. It is computed as:

ζ
(l)
i,j =

exp
(

LeakyReLU
(
θT
[
W

(l)
1 h

(l)
vi ‖W(l)

1 h
(l)
vj ‖W(l)

2 xei,j

]))
∑

vk∈N [vi]
exp

(
LeakyReLU

(
θT
[
W

(l)
1 h

(l)
vi ‖W(l)

1 h
(l)
vk‖W

(l)
2 xei,k

])) (2.7)

where exp(x) = ex is the exponential function, θ is a weight vector that parametrises

the attention mechanism, and [·‖·] denotes concatenation. The LeakyReLU(x) ac-

tivation function, which outputs non-zero values for negative inputs according to

a small slope αLR, is equal to αLRx if x < 0, and x otherwise. Given the attention

coefficients, node embeddings are computed according the rule below.

h(l+1)
vi =

∑
vj∈N [vi]

ζ
(l)
i,jW

(l)
1 h(l)

vj (2.8)

Analogously, it is also possible to use multiple attention “heads”, which can

improve model performance in some settings [343].

2.4. Artificial Neural Networks on Graphs 52

Relational Graph Convolutional Network

The Relational Graph Convolutional Network (RGCN) model [305] is an extension

of the GCN that is purpose-built for knowledge graphs. In such graphs, nodes

represent entities, and edges are tagged with a relation type χ out of a set X . The

model proposes using different parametrisations for relations of different types as a

means of capturing their diverse semantics. Concretely, this is realised by using a

separate weight matrix W
(l)
χ for each relation type χ in layer l. The model computes

embeddings according to:

h(l+1)
vi = ReLU

∑
χ∈X

∑
vj∈Nχ(vi)

1

µi,χ
W(l)

χ h(l)
vj + W

(l)
1 h(l)

vi

 (2.9)

where N χ(vi) denotes the neighbourhood of vi along the relation type χ, and µi,χ is

a problem-specific normalisation factor that can be fixed or learned.

RGCNs have been successfully applied to a variety of knowledge graph tasks,

such as link prediction and entity classification. Despite this success, perhaps sur-

prisingly, recent preliminary work shows that randomly trained relation weights

may perform similarly well [101], highlighting the need for further principled inves-

tigations into this model class.

Relational Graph Attention Network

Relational Graph Attention Networks (RGATs) [55] follow the footprint of RGCNs

and extend the GAT approach to the relational setting. As with the RGCN, one uses

separate weight matrices W(l)
χ for each relation type. The fusion of the approaches

presents several choices with respect to the attention mechanism used and the ways

in which the attention coefficients should be aggregated when dealing with several

relation types. The additive self-attention, across-relation variant of RGAT is defined

as follows. To compute the coefficients for each relation, one first needs to compute

intermediate representations g(l)
vi,χ = W

(l)
χ hvi by performing multiplication with a

weight matrix. Subsequently, the “query” and “key” representations are defined as

below, where Q(l)
χ and K

(l)
χ represent per-relation query and key kernels respectively:

q(l)
vi,χ = g(l)

vi,χ ·Q(l)
χ and k(l)

vi,χ = g(l)
vi,χ ·K(l)

χ (2.10)

2.5. Decision-making Processes and Solution Methods 53

Then, the attention coefficients ζ(l)
i,j,χ are computed according to:

ζ
(l)
i,j,χ =

exp
(

LeakyReLU
(
q

(l)
i,χ + k

(l)
j,χ + W

(l)
1 xei,j

))
∑

χ′∈X
∑

vk∈Nχ′ [vi] exp
(

LeakyReLU
(
q

(l)
i,χ + k

(l)
k,χ + W

(l)
1 xei,k

)) (2.11)

Finally, the node embeddings are computed as:

h(l+1)
vi = ReLU

∑
χ∈X

∑
vj∈Nχ(vi)

ζ
(l)
i,j,χg

(l)
vj ,χ

 (2.12)

Despite the increased expressivity of RGAT, the authors of the original paper

were not able to find a case in which it is guaranteed to perform better than the

RGCN [55]. However, its ability to include edge features natively alongside different

relation types is a good fit for the problem we consider in Chapter 6.

2.5 Decision-making Processes and Solution Methods

We now move on to discussing the other crucial set of methods used in this thesis:

decision-making processes and approaches for solving them. We begin by defining

the key elements of Markov Decision Processes. We also give a broad overview

of solution methods for MDPs and discuss some conceptual “axes” along which

they may be compared and contrasted. We then cover several relevant methods for

constructing a policy, including those that perform policy iteration, learn a policy

directly, or perform planning from a state of interest. Finally, we discuss other

research directions in RL that are relevant to graph combinatorial optimisation.

In the following chapters, we make use of Q-learning [352], Behavioural

Cloning [283], and several search techniques including a variant of Monte Carlo

Tree Search [213]. However, we consider it important to compare and contrast the

wide range of methods that have been proposed in the past for solving MDPs, since

they rest on diverse assumptions and principles. Indeed, other algorithmic choices

may be more suitable for optimising graph processes different to those presented

here, or may be a better fit for real-world use cases with specific constraints on data

collection and interaction with the environment.

2.5. Decision-making Processes and Solution Methods 54

2.5.1 Markov Decision Processes

RL refers to a class of methods for producing goal-driven behaviour. In broad

terms, decision-makers called agents interact with an uncertain environment, receiving

numerical reward signals; their objective is to adjust their behaviour in such a way

as to maximise the sum of these signals. Modern RL bases its origins in optimal

control and Dynamic Programming methods for solving such problems [34] and

early work in trial-and-error learning in animals. It has important connections to

conditioning in psychology as well as neuroscience – for example, a framework

to explain the activity of dopamine neurons through temporal-difference learning

has been developed [253]. Such motivating connections to learning in biological

systems, as well as its applicability in a variety of decision-making scenarios, make

RL an attractive way of representing the basic ingredients of the Artificial Intelligence

problem.

One of the key building blocks for RL is the Markov Decision Process (MDP).

An MDP is defined as a tuple (S,A, P,R, γ), where:

• S is a set of states in which the agent can find itself;

• A is the set of actions the agent can take, and A(s) denotes the actions that the

agent can take in state s;

• P is the state transition function: P (St+1 = s′|St = s,At = a), which sets the

probability of agents transitioning to state s′ after taking action a in state s;

• R is a reward function, and denotes the expected reward when taking action a

in state s: R(s, a) = E[Rt+1|St = s,At = a];

• γ ∈ [0, 1] is a discount factor that controls the agent’s preference for immediate

versus delayed reward.

A trajectory S0, A0, R1, S1, A1, R2, ...ST−1, AT−1, RT is defined by the sequence

of the agent’s interactions with the environment until the terminal timestep T . The

return Ht =
∑T

k=t+1 γ
k−t−1Rk denotes the sum of (possibly discounted) rewards

that are received from timestep t until termination. We also define a policy π(a|s),
a distribution of actions over states which fully defines the behaviour of the agent.

Given a particular policy π, the value function Vπ(s) is defined as the expected return

2.5. Decision-making Processes and Solution Methods 55

when following the policy π in state s. Similarly, the action-value function Qπ(s, a)

is defined as the expected return when starting from s, taking action a, and subse-

quently following π.

There exists at least one policy π∗, called the optimal policy, which has an as-

sociated optimal action-value function Q∗, defined as maxπ Qπ(s, a). The Bellman

optimality equationQ∗(s, a) = E[Rt+1 +γQ∗(St+1, At+1)|St = s,At = a] is satisfied by

the optimal action-value functions. Solving this equation provides a possible route

to finding an optimal policy and, hence, solving the RL problem.

2.5.2 Dimensions of RL Algorithms

How is a policy learned? There exists a spectrum of algorithms for this task. Before

delving into the details of specific approaches, which we shall do in the following

section, we begin by giving a high-level picture of the main axes that may be used to

characterise these methods.

Model-based versus Model-free

One important distinction is that between model-based algorithms (which assume

knowledge of the MDP) and model-free algorithms (which require only samples of

agent-environment interactions). To be specific, the state space S and action space

A are assumed to be known; a modelM = (P,R) refers to knowing, or having some

estimate of, the transition and reward functions P,R.

Model-based methods can incorporate knowledge about the world to greatly

speed up learning. The model can either be given a priori or learned. In the former

case, it typically takes the form of a set of mathematical descriptions that fully define

P and R. In the latter case, learning P corresponds to a density estimation problem,

while learning R is a Supervised Learning problem. Learning architectures for this

purpose can range from probabilistic models such as Gaussian Processes [102] to

deep neural networks [266].

Model-based RL is especially advantageous where real experience is expensive

to generate, and executing poor policies may have a negative impact (e.g., in robotics).

When equipped with a model of the world, the agent can plan its policy, either at the

time actions need to be taken focussing on the current state (decision-time planning),

or not focussed on any particular state (background planning). Model-free algorithms,

on the other hand, can yield simpler learning architectures. This comes at the

2.5. Decision-making Processes and Solution Methods 56

expense of higher sample complexity: they typically take more interactions with the

environment to train. The two categories can also be combined: it is possible to use a

model to generate transitions, to which a model-free algorithm can be applied [150].

It is worth noting that, in the context of this thesis, we typically have access to

analytical descriptions of the transition and reward functions, which are defined

based on the graph process of interest.

Other Considerations

Approaches may also be divided into on-policy and off-policy. The distinction relies on

the existence of two separate policies: the behaviour policy, which is used to interact

with the environment, and the target policy, which is the policy that is being learned.

For on-policy methods, the behaviour and target policy are identical, while they are

different in off-policy algorithms. Off-policy methods are more flexible and include

on-policy approaches as a special case. They can enable, for example, learning from

policy data generated by a controller or a human.

The category of sample-based or Monte Carlo (MC) methods rely on samples

of interactions with the environment, rather than complete knowledge of the MDP.

They aim to solve the Bellman optimality equations using the returns of sampled

trajectories, albeit approximately, which requires less computation than an exact

method while still yielding competent policies. Temporal-Difference (TD) methods,

in addition to being based on samples of experience, use “bootstrapping” of the

value estimate based on previous estimates. This leads to estimates that are biased

but have less variance. It possesses certain advantages such as naturally befitting an

online scenario in which learning can occur during an episode without needing to

wait until the end when the return is known; applicability in non-episodic tasks; as

well as empirically better convergence properties [326].

2.5.3 Policy Iteration Methods

A common framework underlying many RL algorithms is that of Policy Iteration (PI).

It consists of two phases that are applied alternatively, starting from a policy π. The

first phase is called policy evaluation and aims to compute the value function by updat-

ing the value of each state iteratively. The second phase, policy improvement, refines

the policy with respect to the value function, most commonly by acting greedily with

respect to it. Under certain conditions, this scheme is proven to converge to the opti-

2.5. Decision-making Processes and Solution Methods 57

mal value function and optimal policy [326]. Generalised Policy Iteration (GPI) refers

to schemes that combine any form of policy evaluation and policy improvement.

Let us look at some concrete examples of algorithms. Dynamic Programming

(DP), which is model-based, applies the PI scheme as described above. It is one of

the earliest solutions developed for MDPs [28]. However, since it involves updating

the value of every state in the entire state space, it is computationally intensive.

The Q-learning [352] algorithm is an off-policy TD method that follows the GPI

blueprint. Unlike DP, it only requires samples of interactions with the environment.

It is proven to converge to the optimal value functions and policy in the tabular

case with discrete actions, so long as, in all the states, all actions have a non-zero

probability of being sampled [352]. The agent updates its estimates according to:

Q(s, a)← Q(s, a) + α
(
r + γ max

a′∈A(s′)
Q(s′, a′)−Q(s, a)

)
(2.13)

In the case of high-dimensional state and action spaces, a popular means of

generalising across similar states and actions is to use a function approximator for

estimating Q(s, a). An early example of such a technique is the Neural Fitted Q-

iteration (NFQ) [289], which uses a neural network. The DQN algorithm [251],

which improved NFQ by use of an experience replay buffer and an iteratively updated

target network for state-action value function estimation, has yielded state-of-the-

art performance in a variety of domains ranging from general game-playing to

continuous control [251, 236].

A variety of general and problem-specific improvements over the DQN have

been proposed [166]. Prioritised Experience Replay weighs samples of experience

proportionally to the magnitude of the encountered TD error [304], arguing that

such samples are more important for the learning process. Double DQN uses two

separate networks for action selection and Q-value estimation [341] to address the

overestimation bias of standard Q-learning. Distributional Q-learning [27] models

the distribution of returns, rather than only estimating the expected value.

The DQN has been extended to continuous actions via the DDPG algo-

rithm [236], which features an additional function approximator to estimate the

action which maximises the Q-value. TD3 [129] is an extension of DDPG that applies

additional tricks that improve stability and performance over standard DDPG.

2.5. Decision-making Processes and Solution Methods 58

2.5.4 Learning a Policy Directly

An alternative approach to RL is to parametrise the policy π(a|s) by some parameters

Θ directly instead of attempting to learn the value function. In effect, the objective is

to find parameters Θ∗ which make the parametrised policy πΘ produce the highest

expected return over all possible trajectories τ that arise when following the policy:

Θ∗ = argmax
Θ

Eτ∼πΘ

T∑
t

R(St, At) (2.14)

If we define the quantity under the expectation as JΘ, the goal is to adjust the

parameters Θ in such a way that the value of J is maximised. We can perform

gradient ascent to improve the policy in the direction of actions that yield high

return, formalising the notion of trial and error. The gradient can be written as:

∇ΘJ(Θ) = Eτ∼πΘ

[(
T∑
t

∇Θ log πΘ(At|St)
)(

T∑
t

R(St, At)

)]
(2.15)

Such approaches are called policy gradient algorithms, a well-known example of

which is REINFORCE [360]. A number of improvements over this basic scheme exist:

for example, in the second sum term one can subtract a baseline (e.g., the average

observed reward) such that only the probabilities of actions that yield rewards better

than average are increased. This estimate of the reward will still be noisy, however.

An alternative is to fit a model, called critic to estimate the value function, which will

yield lower variance [326, Chapters 13.5-6].

This class of algorithms is called Actor-Critic, and modern asynchronous vari-

ants have been proposed, such as A3C, which parallelises training with the effect

of both speeding up and stabilising the training [252]. Soft Actor-Critic (SAC) in-

troduces an additional term to maximise in addition to the expected reward: the

entropy of a stochastic policy [156]. Other policy gradient variants concern the way

the gradient step is performed; modern algorithms in this class include Trust Region

Policy Optimisation (TRPO) [309] and Proximal Policy Optimisation (PPO) [310].

Despite the popularity of these algorithms, a surprising finding of recent work

is that a carefully constructed random search [238] or using evolutionary strate-

gies [302] are viable alternatives to model-free RL for navigating the policy space.

2.5. Decision-making Processes and Solution Methods 59

Another means of learning a policy directly is through Imitation Learning (IL). In-

stead of environment interactions or model knowledge, it relies on expert trajectories

generated by a human or algorithm that performs very well on the task. The simplest

form of IL is Behavioural Cloning (BC) [283, 16]. It can take the form of a classifica-

tion problem, in which the goal is to learn a state to action mapping from the expert

trajectories. Alternatively, in case trajectories include probabilities for all actions, one

can train a probabilistic model that minimises the distance (e.g., the Kullback–Leibler

divergence) between the expert and model probability distributions.

A possible downside of BC is that it violates the i.i.d. assumption and may suffer

from compounding errors as soon as the policy makes a mistake and trajectories

diverge from those seen during training. Follow-up works considered reducing the

impact of this issue by enabling the agent to query the expert for more data [294] or

using Generative Adversarial Networks [168]. The imitated policies can be used by

themselves, or as an initialisation for RL [229, 372]. IL has found success for robotics

tasks such as autonomous vehicle navigation [284, 75] and flying drones [313].

This concludes our discussion of the ways in which a policy may be learned

from data. Before moving on to describing model-based approaches for search

and decision-time planning, let us take the opportunity to mention the relationship

between the RL algorithms discussed up to this point and the graph representation

learning methods covered in Section 2.4.3. Namely, the set of model weights Θ of

a deep graph embedding approach serve as an effective basis for parametrising a

policy πΘ or an approximation Q̂Θ of the true action-value function. For updating

the parameters Θ using gradient descent, instead of using cross-entropy or Mean

Squared Error losses with respect to the labels of “ground truth” examples as one

would in a Supervised Learning setting, one computes losses with respect to learning

targets that are defined by the RL algorithm.

2.5.5 Search and Decision-Time Planning Methods

Recall the fact that, in the case of model-based methods, we have access to the transi-

tion function P and reward functionR. This means that an agent does not necessarily

need to interact with the world and learn directly through experience. Instead, the

agent may use the model in order to plan the best course of action, and subsequently

execute the carefully thought-out plan in the environment. Furthermore, decision-

2.5. Decision-making Processes and Solution Methods 60

time planning concerns itself with constructing a plan starting from the current state

that the agent finds itself in, rather than devise a policy for the entire state space.

To achieve this, the agent can perform rollouts using the model, and use a

search technique to find the right course of action. Search has been one of the most

widely utilised approaches for building intelligent agents since the dawn of AI [301,

Chapters 3-4]. Methods range from relatively simple in-order traversal (e.g., Breadth-

First Search and Depth-First Search) to variants that incorporate heuristics (e.g.,

A*). It has been applied beyond single-agent discrete domains to playing multi-

player games [301, Chapter 5]. Such games have long been used as a Drosophila of

Artificial Intelligence, with search playing an important part in surpassing human-

level performance on many tasks [258, 57, 314].

Search methods construct a tree in which the nodes are states in the MDP. Chil-

dren nodes correspond to the states obtained by applying a particular action to the

state at the parent node, while leaf nodes correspond to terminal states, from which

no further actions can be taken. The root of the search tree is the current state. The

way in which this tree is expanded and navigated is dictated by the particulars of

the search algorithm.

It is worth first discussing two of the simpler search techniques that are used in

this thesis. Exhaustive Search (ES) refers to expanding all possible paths in the MDP

from the current state and picking the best trajectory (i.e., the trajectory yielding the

highest return). It is typically impractical due to the computational and memory

requirements, but can serve as a useful benchmark on small problems. Greedy Search

creates, at each step, a search tree of shallow depth rooted at the current state. It

subsequently picks the best child node, and repeats the search with the child node

at the root until a terminal state is reached. It is less resource-intensive than ES,

but may also lead to short-sighted decisions. Despite this, it is commonly used in

practice to good effect in a variety of problems [80].

In many applications, however, the branching factor b and depth d of the search

tree make it impossible to explore all paths, or even perform greedy search. There

exist proven ways of reducing this space, such as alpha-beta pruning. However, its

worst-case performance is still O(bd) [301, Chapter 5.3]. A different approach to

breaking the curse of dimensionality is to use random (also called Monte Carlo)

2.5. Decision-making Processes and Solution Methods 61

rollouts: to estimate the goodness of a position, run random simulations from a tree

node until reaching a terminal state [3, 332].

Monte Carlo Tree Search (MCTS) is a model-based planning technique that

addresses the inability to explore all paths in large MDPs by constructing a policy

from the current state [326, Chapter 8.11]. It relies on two core principles: firstly, that

the value of a state can be estimated by sampling trajectories and, secondly, that the

returns obtained by this sampling are informative for deciding the next action at the

root of the search tree. We review its basic concepts below and refer the interested

reader to [51] for more information.

In MCTS, each node in the search tree stores several statistics such as the sum of

returns and the node visit count in addition to the state. For deciding each action, the

search task is given a computational budget expressed in terms of node expansions

or wall clock time. The algorithm keeps executing the following sequence of steps

until the search budget is exhausted:

1. Selection: The tree is traversed iteratively from the root until an expandable

node (i.e., a node containing a non-terminal state with yet-unexplored actions)

is reached.

2. Expansion: From the expandable node, one or more new nodes are constructed

and added to the search tree, with the expandable node as the parent and each

child corresponding to a valid action from its associated state. The mechanism

for selection and expansion is called tree policy, and it is typically based on the

node statistics.

3. Simulation: Trajectories in the MDP are sampled from the new node until a ter-

minal state is reached and the return (discounted sum of rewards) is recorded.

The default policy or simulation policy dictates the probability of each action,

with the standard version of the algorithm simply using uniform random sam-

pling of valid actions. We note that the intermediate states encountered when

performing this sampling are not added to the search tree.

4. Backpropagation: The return is backpropagated from the expanded node

upwards to the root of the search tree, and the statistics of each node that was

selected by the tree policy are updated.

2.5. Decision-making Processes and Solution Methods 62

The tree policy used by the algorithm needs to trade off exploration and exploita-

tion in order to balance actions that are already known to lead to high returns against

yet-unexplored paths in the MDP for which the returns are still to be estimated. The

exploration-exploitation trade-off has been widely studied in the multi-armed bandit

setting, which may be thought of a single-state MDP. A representative method is

the Upper Confidence Bound (UCB) algorithm [12], which computes confidence

intervals for each action and chooses, at each step, the action with the largest upper

bound on the reward, embodying the principle of optimism in the face of uncertainty.

Upper Confidence Bounds for Trees (UCT) [213] is a variant of MCTS that

applies the principles behind UCB to the tree search setting. Namely, the selection

decision at each node is framed as an independent multi-armed bandit problem. At

decision time, the tree policy of the algorithm selects the child node corresponding to

action a that maximises

UCT (s, a) = r̄a + 2εUCT

√
2 lnC(s)

C(s, a)
, (2.16)

where r̄a is the mean reward observed when taking action a in state s, C(s) is the

visit count for the parent node, C(s, a) is the number of child visits, and εUCT is a

constant that controls the level of exploration [213].

MCTS is easily parallelisable either at root or leaf level, which makes it a highly

practical approach in distributed settings. It is also a generic framework that does not

make any assumptions about the characteristics of the problem at hand. The com-

munity has identified ways in which domain heuristics or learned knowledge [139]

can be integrated with MCTS such that its performance is enhanced. This includes

models learned with RL based on linear function approximation [312] as well as

deep neural networks [153].

MCTS has been instrumental in achieving state-of-the-art performance in do-

mains previously thought intractable. It has been applied since its inception to the

game of Go, perceived as a grand challenge for Artificial Intelligence. The main

breakthrough in this space was achieved by combining search with deep neural

networks for representing policies (policy networks) and approximating the value

of positions (value networks); the resulting approach was able to surpass human

expert performance [314]. Subsequent works have significantly improved on this by

2.5. Decision-making Processes and Solution Methods 63

performing search and learning together in an iterative way: the search acts as the

expert, and the learning algorithms imitate or approximate the play of the expert.

The AlphaGo Zero [315, 316] and Expert Iteration algorithms [11] both epitomise

this idea, having been proposed concurrently.

Monte Carlo Tree Search has found wide applicability in a variety of decision-

making and optimisation scenarios. It is not solely applicable to two-player games,

and has been successful in a variety of single-player games (also called solitaire or

puzzle [51, Section 7.4]) such as Morpion Solitaire [293] and Hex [258, 11]. Indeed,

given that such games involve creating connections on a regular grid, they served

as a source of inspiration for leveraging it to optimise generic graph processes.

Techniques combining MCTS with deep neural networks have also been fruitfully

applied outside of games in areas such as combinatorial optimisation [222, 43],

neural architecture search [349], and knowledge graph completion [311].

Let us also briefly discuss some of the limitations of MCTS [51]. Firstly, being

a discrete search algorithm, it is limited by the depth and branching factors of

the considered problem. To obtain good performance, a task-dependent, possibly

lengthy, process is required to find effective ways of reducing them. Secondly, it is

not directly applicable to continous control problems, and discretization can lead to

a loss of generality. Thirdly, it has proven difficult to analyze using theoretical tools,

a characteristic shared by other approximate search algorithms. An implication of

this is that its performance as a function of the computational budget or parameters

are not well understood, requiring adjustments based on trial-and-error.

2.5.6 Overview of Other Relevant RL Techniques

There are several other topics in RL that are relevant to the present thesis. The related

area of Inverse RL focusses on extracting the reward function itself from demon-

strated trajectories [264]. Early algorithms in this area focussed on learning reward

functions that are linear with respect to some state features [1]. However, there may

be a variety of potential reward functions that match the behaviour of the expert. The

principle of maximum entropy has been applied to learn reward functions that are as

“random” as possible while still matching the expert trajectories [381]. Subsequent

works draw a connection to Generative Adversarial Networks, adopting them as

a means of scaling Inverse RL to problems with large state spaces and unknown

2.6. ML for Optimising Graph Processes 64

dynamics [123, 128]. Recently, a technique has also been devised for performing

scalable Inverse RL in a multi-agent setting [374].

The topic of performing effective exploration is also highly relevant in RL. Recall

the aforementioned principle of optimism in the face of uncertainty leveraged in

the UCB algorithm for the bandit setting. An alternative approach to UCB is the

probabilistic Thompson sampling [63], which works by estimating the distribution

of rewards conditioned on the history. Even though the same principles apply to

MDPs, it is significantly more difficult to estimate regret bounds in this setting

since state spaces can be very large. Exploration strategies become increasingly

important in Deep RL settings, in which using function approximation to quantify

the “familiarity” of a state [26] or creating a hashcode based on latent variables fit to

the state space [328] are viable options.

2.6 ML for Optimising Graph Processes

Having introduced the necessary ML notions, in this section we are well-equipped to

review other related works that apply such methods to the optimisation of processes

taking place on graphs. In the first part of this section, we review the extensive body

of work that applies ML to classic combinatorial optimisation problems. However,

as we have argued extensively in Chapter 1, such methods can rarely compete with

state-of-the art solvers when applied to these well-studied problems.

In the second part, we review works that tackle the optimisation of other graph

processes with ML methods, focussing on those relevant to this thesis. For such

problems, solution methods close to optimality or strong heuristics are typically not

known. We examine learning-based approaches for constructing graphs and routing

network flows, processes that have been addressed from a variety of perspectives.

For completeness, we also briefly cover papers that discuss the optimisation of other

graph processes.

2.6.1 Classic Graph Combinatorial Optimisation Problems

As we have discussed extensively in the Introduction (Chapter 1), in the past years

there has been a growing interest from the community in addressing canonical

NP-hard combinatorial optimisation problems on graphs with ML.

A problem that has received a large amount of attention is the aforementioned

2.6. ML for Optimising Graph Processes 65

TSP. It involves finding a route through a set of points placed in a space such that

the total travel distance is minimised, subject to the constraint that each point is only

visited once. While it is not a graph problem at first glance, it is possible to formulate

the TSP as a process occurring over a fully connected graph. Finding a solution

involves the selection of a set of weighted edges such that the total sum of weights

is minimised, subject to the constraint that they form a Hamiltonian cycle. This

graph-centric view of the problem enables one to use powerful tools and algorithms

to reason about and address it.

In this section, we set out to review works that leverage ML for classic combi-

natorial optimisation problems on graphs. Despite clear differences between such

problems and those addressed by this thesis, the methods used for solving them are

similar to those that we have leveraged. We consider that it is important to examine

the possible methodological choices so that we may relate our design decisions to

this body of work. Even within the realm of classic graph combinatorial optimisation

problems, such methodological choices are not always clearly justified, persisting as

a challenge to the field [193].

The application of ML techniques for graph combinatorial problems is by no

means new and can be traced to the application of Hopfield networks by the epony-

mous author to the TSP in 1985 [176]. This paper has spurred more than a decade

of research on applications of ML to a large variety of combinatorial optimisation

problems. The advantages that neural networks enabled, such as flexibility in the

range of problems that can be addressed, as well as their fast evaluation times, were

also recognised. Overall, however, this wave of work had varying degrees of success.

At the time, the rather damning conclusion was that such approaches usually cannot

compete with standard heuristics and exact methods [318], a finding that persists

today to a certain extent [193].

Interestingly, this review anticipated the significant potential of neural networks

if sufficient hardware and software advances were made in order to render their

training and use more practical. Lately, a confluence of progress in tooling as well

as learning representations and RL have led to a modern revival of this strand of

research. In broad terms, the present thesis also belongs to this wave of interest.

Let us first review some of the seminal papers that have reignited interest in this

2.6. ML for Optimising Graph Processes 66

area. In 2015, Vinyals et al. [346] proposed a recurrent neural network architecture

(Pointer Network) for sequence modelling, the inputs to which are discrete and

outputs correspond to a position (pointer) in the input sequence. This overcame a

limitation of previous Recurrent Neural Network (RNN) models that constrained

input and output sizes to be equal. It enabled the model to be used on output

sequences of variable lengths and, hence, on instances of combinatorial optimisation

problems that are different in size. One of the case studies used in this paper was the

TSP, for which the authors used Supervised Learning of labelled data produced by a

combinatorial solver. The approach showed good results on instances of size up to

50, and demonstrated the ability to satisfactorily apply a model on larger instances

than the ones on which it had been trained.

Bello et al. [29] noted the inherent limitation of Supervised Learning from

demonstrations of known solvers. Instead, they proposed an actor-critic RL method

trained using the policy gradient, as well as improved procedures for inference.

These enhancements enabled the resulting model to scale well to TSP instances

of size up to 100. Subsequently, Khalil et al. [203] achieved several remarkable

results. They proposed a framework (S2V-DQN) based on the DQN algorithm

together with a GNN representation than can solve several graph combinatorial

optimisation problems at once. It was shown to scale to TSP instances upwards of

1000 nodes, while maintaining excellent approximation ratios and outperforming

classic heuristics.

We now discuss subsequent works, formulating some dimensions along which

they can be classified.

Problems Addressed

As we have noted, many works in this area have considered applications to several

variants of the TSP [346, 29, 203, 216, 220, 206], as well as other problems that aim

to devise optimal tours for visiting nodes placed in a space.1 An example is work on

the Prize Collecting TSP [206], which additionally involves prizes for nodes that are

visited and penalties for those that are not.

1We note that some works in this field refer to this family of problems as routing problems, since
they involve devising routes, i.e., sequences of nodes to be visited. This is an unfortunate clash in
terminology with problems that involve the routing of flows over graphs, which were discussed in
Section 2.3.3, and to which Chapter 6 is dedicated. The problems have little in common in structure
and solution methods beyond this superficial naming similarity.

2.6. ML for Optimising Graph Processes 67

The VRP has also been approached with ML methods. In the VRP, there is a

special node called depot, at which several vehicles need to start and end their tours.

The goal is to devise a set of tours for the vehicles (rather than a single tour as in

the TSP) that minimises the total cost. Different extensions of the problem were

considered in the literature: differing capacities for vehicles and customer nodes (the

Capacited VRP, CVRP) [259], as well as time windows between which the deliveries

must be made (the VRP with Time Windows, VRPTW) [119].

Beyond the TSP and related problems, other works have considered ML for

graph combinatorial optimisation problems that involve the selection of a subset of nodes

in a graph. A widely used concept in this setting is that of a Maximal Independent

Set: a set of nodes defined such that every node is either a member of the set, or

is directly connected to a member of this set. The Maximum Independent Set is a

Maximal Independent Set of the largest possible size. A strongly related problem is

the Minimum Vertex Cover (MVC), the smallest set of nodes that includes at least one

endpoint of all the edges. It is known that the MIS and MVC sets are complements

of each other, and hence solutions to one problem can be used to solve the other.

Both have been approached using a variety of ML techniques [203, 234, 5, 43].

ML approaches have also been applied to combinatorial optimisation problems

that do not take place on a graph, such as the knapsack [29, 220], bin packing [222], as

well as the job shop scheduling problem [378]. However, the body of work in this

area is substantially smaller.

Learning Paradigm

Some works adopted Supervised Learning [346], but the vast majority opted for

Reinforcement Learning [29, 203, 216, 220]. Other papers combined both approaches

by adopting Supervised Learning as a pre-training step, and subsequently perform-

ing fine-tuning [29, 372]. Since data used for supervised training usually comes in

the form of demonstrations of a known solver or algorithm, this may also be viewed

as a form of Imitation Learning, which additionally requires a compatible MDP

formulation (e.g., as performed in [110]).

Learning Representation

Many of the earlier works adopted the aforementioned Pointer Network archi-

tecture [346, 29, 259, 83]. Subsequently, the attention model proposed by Kool

2.6. ML for Optimising Graph Processes 68

et al. [216] gained traction and was used in several recent works [220, 205], while

other papers proposed their own variants of attention-based policies [365, 179, 237].

Other works used GNNs such as the previously discussed S2V [203], GCN [234],

and the scalability-targeted GraphSAGE that performs message-passing over a sam-

pled neighbourhood of fixed size [160, 5]. The Pointer Network and attention-based

models are overwhelmingly used for TSP and its extensions, whereas GNNs are

popular as well as effective in problems for which graph structure matters [203].

Performing Inference

After training a model, the most straightforward way to construct a solution is to

perform greedy evaluation of the trained policy. While simple, this basic scheme has

been shown to perform well even on very large instances with up to 1000 nodes [203].

Various improvements over this scheme exist. For example, one may allow the agent

to reverse its decisions and continue to explore at test time [21].

Better solutions over greedy evaluation may also be found by using the model to

perform sampling of many trajectories, subsequently selecting the one with the best

objective function value. This, however, discards the reward information contained

in the sampled trajectories. Active search [29] uses this data and continues to adjust

the model weights at inference time. Beam Search, a method akin to Breadth-First

Search with a limited number of expansions per level according to a score, has also

been applied for performing inference [346, 192].

Other approaches take the recipe of combining search and ML further. Li et al.

[234] proposed a tree search method that uses a GNN to bias the navigation of

the search space towards promising solutions, achieving gains over S2V-DQN for

the MIS problem. However, a recent paper [43] that attempted to reproduce its

results debunked the contribution of the GNN for this purpose, showing that its

priors for node expansion are as effective as using random values. The use of graph

kernelisation was instead found to be responsible for the observed performance.

Abe et al. [2] proposed an extension of AlphaGo Zero for addressing graph

combinatorial optimisation problems. Their MCTS-based approach, which was

paired with various types of GNNs, showed improvements over S2V-DQN in some

settings. Laterre et al. [222] also used MCTS together with a neural network. Their

method additionally reshapes the reward signal such that the agent is incentivised

2.6. ML for Optimising Graph Processes 69

to improve over its performance in the last iteration, justified as a form of “self-play”

for single-player games.

Symmetries

Symmetries that are present in the problem and solution spaces are also highly

relevant. For example, a TSP solution that visits nodes (A,B,C) is equivalent to

one that visits (B,C,A). Exploiting this may lead to better sample complexity and

more robust models. Approaches for doing so have considered encoding symmetry

with specific terms in the loss function [220, 206] or augmenting the dataset of

sampled solutions at inference time [220]. A recent work [110] proposed exploiting

symmetries at the level of the MDP formulation itself by proposing a transformation

of the original MDP that reduces the state space. Symmetries may also be encoded

in the learning representation itself, as can be achieved by the use of GNNs with

appropriate permutation-invariant readout functions [203].

Construction and Improvement Methods

A dichotomy is present in this literature between construction and improvement meth-

ods. The former, which makes up the majority of papers discussed in this section,

refers to approaches that build the solution incrementally, starting from an empty set.

For example, in the context of the TSP, one would begin with the empty sequence

and continue adding nodes until the tour is complete.

The latter category begins with an already-built solution that is refined over time.

This is achieved by applying certain heuristic operators which have a high chance to

improve the solution, possibly integrated inside a higher-level search or metaheuristic

algorithm. In this space, Wu et al. [365] and da Costa et al. [83] considered learning

the selection of a pair of nodes to which a local improvement heuristic is applied,

training an actor-critic algorithm for this purpose. An example of such a pairwise

local heuristic that has been widely used for TSP and its extensions is 2-opt [81], which

involves reversing a segment of the solution, e.g., (A,B,C,D) becomes (D,C,B,A).

If applied at an appropriate location, it can lead to the “uncrossing” of routes, which

greatly reduces travel costs.

Hottung and Tierney [179] adopted the Adaptive Large Neighbourhood Search

(ALNS) metaheuristic, which is based on simulated annealing, and applies pairs

of “destroy” and “repair” operators that deconstruct and reconstruct parts of the

2.6. ML for Optimising Graph Processes 70

solution. Their approach learns the repair operators using an actor-critic mecha-

nism. Lu et al. [237] used a large library of predefined operators from the literature,

and learned a controller for selecting which repair operator to apply using a policy

gradient method. Chen and Tian [67] trained two policies: a region-picking policy

that selects the part of the solution to be improved, and a rule-picking policy that

selects one of the predefined rewriting rules.

One of the advantages of improvement methods is that the large body of prior

work in operations research can be leveraged. Algorithms for constructing a solution

of good quality may already exist, and it is reasonable to start the procedure from one

such solution. An example algorithm is the “savings” procedure proposed by Clarke

and Wright [74] for the TSP and VRP. In terms of disadvantages, improvement

methods require knowledge of strong heuristic operations. Hence they may not

perform well if the problem at hand has not been sufficiently studied and such

operators are not known.

2.6.2 Learning to Construct Graphs

A shared characteristic of the graph combinatorial optimisation problems discussed

in the previous subsection is that they do not involve changes in topology to the graph.

Concretely, one needs to find a solution while assuming that the network structure

remains fixed. However, as discussed in Section 2.3, networks in the real world

undergo structural changes regularly, which influences the outcome of processes

taking place over them. In this prior section, we have also covered a variety of

non-ML methods that were applied for modifying the topology of a graph in order

to optimise a quantity of interest related to such a process.

The problem of learning to construct a graph or to modify its structure has

received comparatively less attention in the ML literature. It may be classified into

two strands of work. The first considers the explicit optimisation of a given objective

function using RL. The second focusses on building graphs that are similar to a

dataset of known examples in some way, which is a form of unsupervised learning.

This is typically performed using a deep generative model, and may be seen as a ML

based alternative of the classic models discussed in Section 2.2.

Prior to delving into the details, let us compare these lines of enquiry at a high

level. RL methods require the ability to simulate the process of interest so that an

2.6. ML for Optimising Graph Processes 71

agent may learn through interactions with an environment. Generative models,

on the other hand, primarily use datasets of examples of the “finished product”,

without access to the steps of the generation process. They additionally require large

collections of related examples, which may not always be available depending on the

domain of interest. RL methods are also more granular and can be used to extend

existing structures, whereas generative models are typically “one-shot”.

Explicitly Optimising an Objective Function

The work of Dai et al. [86] treats the problem of learning to modify the topology of

a graph through edge additions and removals. It considers an adversarial setting in

which the objective is to induce a deep graph or node-level classifier to make labelling

errors. The problem can be thought of as the graph-based equivalent of finding

adversarial perturbations for image classifiers based on deep neural networks [38,

327]. The approach proposed by the authors, called RL-S2V, is a variant of S2V-DQN

in which the action space is decomposed for scalable training: edge additions are

formulated as two node selections. The evaluation performed by the authors showed

that it it compares favourably to attacks based on random edge additions and those

discovered by a genetic algorithm.

You et al. [372] considered learning to construct molecular graphs. The objective

functions that the method seeks to optimise are the drug-likeness and synthetic

accessibility of molecules. The action space is defined as the addition of bonds or

certain chemical substructures, and the transition function enables the environment

to enforce validity rules with respect to physical laws. The proposed approach, called

Graph Convolutional Policy Network (GCPN), uses a GNN representation of the

policy, which is trained using PPO. In addition to the objective functions, the reward

structure incentivises the method to generate molecules that are similar to a given

dataset of examples. GCPN was shown to outperform a series of previous generative

models for the task.

GraphOpt [338] tackles the inverse problem of the one discussed thus far. Namely,

given a graph, the goal is to learn a plausible underlying objective function that

has lead to its generation. The authors proposed an MDP formulation of graph

construction through edge additions, and used maximum entropy inverse RL and

GNNs. The authors empirically showed that the learned model is able to generate

2.6. ML for Optimising Graph Processes 72

graphs that match statistics such as the degree and clustering coefficient distributions

of the observed graphs. The resulting model can also be used to generate similar

examples of networks that optimise the discovered objective, as well as for performing

link prediction.

Deep Generative Models of Graphs

We begin our discussion of these approaches by giving a brief overview of generative

modelling. It is a central problem in unsupervised learning that concerns itself with

learning or approximating the data-generating process; once learned, such models

can be used to produce samples or as a starting point for supervised tasks.

Deep generative models have been successful in generating realistic text and

images at unprecedented scale and sample quality [286, 267, 197]. Naturally, interest

in generative models has also extended to the domain of graphs, which poses distinct

challenges: their discrete nature, combinatorial complexity, and the fact that the

structure is permutation-invariant. Additionally, graph data is not as widely available

as images or sounds; often, models need to work with very few samples. Still,

significant advances have been achieved in this domain.

There are three main classes of deep generative models currently in wide use:

1. Variational Autoencoders (VAEs): an explicit model for mapping data to and

from a continuous latent space. It is trained by jointly optimising the evidence

lower bound (ELBO) between an encoder and decoder, which typically use

deep neural network architectures [208].

2. Generative Adversarial Networks (GANs): an implicit approach, in which data

generation is modelled as a two-player minimax game with two opponents:

a generator and discriminator. The generator aims to produce data indistin-

guishable from original training samples, whereas the discriminator tries to

tell them apart [145].

3. Deep Auto-Regressive Models: a neural network is used to model the condi-

tional distribution. Typically, a recurrent architecture such as Long-Short Term

Memory (LSTM) [169] or Gated Recurrent Unit (GRU) [70] is used to capture

conditional dependencies over long horizons.

Several works in the ML literature have considered the generation of graphs

2.6. ML for Optimising Graph Processes 73

with similar topological properties to a provided dataset. Li et al. [233] modelled the

graph generation process as a sequence of decisions: addition of a new node to the

graph, whether to add an edge, and picking the node for such an edge addition. They

made use of a GRU architecture paired with a GNN, and showed good results for

reconstructing both synthetic and real-world graphs. GraphRNN [373] modelled the

process differently by considering two separate recurrent networks: one graph-level

network for node generation, and an edge-level network which is used to predict

the connectivity of the added node. It is faster to evaluate since it does not involve

using a GNN for message passing, although it needs to impose a canonical ordering

of node labels (achieved by using Breadth-First Search).

The Graph Recurrent Attention Network [235] method generates blocks of nodes

and associated edges at a time, and thus can scale to larger graphs while maintaining

good output quality. It is based on GNNs with attention for handling long-term

dependencies. The authors of NetGAN [41] framed the problem of graph generation

slightly differently. Their method is concerned with generating graphs similar to

a single source graph. They instead proposed learning the distribution of random

walks over graph as a surrogate for its topology, and used a GAN architecture to

distinguish between genuine and generated random walks on the graph. Both the

generator and discriminator used a LSTM architecture. A graph reconstruction

method was also proposed based on the visitation counts for the nodes across the

random walks.

Beyond the generation of raw topologies, progress in this area has been driven by

applications in chemistry and material sciences. The manageable scale of the search

space, which is estimated to lie between 1023 and 1060 for drug-like molecules [282],

highlights the possibility of practical impact using computational methods. For

example, deep generative modelling can act as a way of generating plausible candi-

dates, so that fewer molecules need to be manually investigated in the drug discovery

process. For representing molecules, works used either the SMILES string-based

encoding [356] or a graph-based representation [372].

Character VAE [155] is based on a VAE in conjunction with a GRU to learn a

generative model of molecular graphs represented as SMILES strings. However,

the decoder does not necessarily output valid SMILES strings or chemically valid

2.6. ML for Optimising Graph Processes 74

molecules. GrammarVAE [219] improved on this approach by generating parse

trees instead of raw strings – thus their syntactic validity could be ensured. SD-

VAE [87] built further in this direction by not only considering syntactic but also

semantic validity, similar to how a computer program may be syntactically valid

but semantically erroneous at the same time. The authors of ORGAN [152] also

operated with SMILES representations, but instead used a sequential GAN together

with an RL objective for training with domain-specific feedback.

SMILES string representations of molecules are limited to a certain extent since

two molecules that are structurally very similar can have completely different repre-

sentation strings. Furthermore, it is simpler to check chemical properties directly on

graphs than such strings [372]. For this reason, works have considered generating

the graph connectivity information and node/edge attributes directly. GraphVAE

was the first in this series of works [317], in which the authors considered generating

the entire graph in one step. To achieve this, they used a VAE architecture together

with a graph matching algorithm in order to quantify the reconstruction ability of

the decoder. However, this matching procedure is an O(|V |4) operation and can

only apply to relatively small graphs. MolGAN [99] circumvented this problem

by using a GAN, which does not require computing the explicit likelihood of node

permutations. The generator was trained to minimise the discriminator loss together

with an RL objective that quantifies the “goodness” of the generated molecules.

Nevertheless, models for molecular graphs generated by all of the above-listed

approaches still suffer from relatively low validity scores. The Junction Tree VAE or

JT-VAE [190] significantly improved on previous approaches by considering the basic

valid building blocks of molecules as constructing a tree-like scaffolding (which they

call junction tree), as well as applying GNNs specifically designed for this setting.

The aforementioned GCPN method subsequently outperformed JT-VAE by a large

margin, highlighting the potential of RL with graph representations to carry out a

structured exploration of the solution space, as well as its ability to generate solutions

that obey validity constraints.

2.6.3 Learning to Route Network Flows

The routing of flows across a network topology has been approached from two

different perspectives in the ML literature. A first wave of interest considered routing

2.6. ML for Optimising Graph Processes 75

at the packet level in a multi-agent RL formulation. The second, more recent, wave

of interest originated in the computer networks community, which has begun to

recognise the potential of ML methods in this space [120, 189].

The first work in this area dates back to a 1994 paper in which Boyan and Littman

proposed Q-routing, a means of performing routing of packets with multi-agent

Q-learning [44]. In this framework, an agent is placed on packet-switching nodes

in a network; nodes may become congested and so picking the shortest path may

not always yield the optimal result. Agents receive neighbours’ estimate of the

time remaining after sending a packet and iteratively update their estimates of the

Q values in this way. The authors showed, on a relatively small network, that this

approach is able to learn policies that can adapt to changing topology, traffic patterns,

and load levels.

Subsequent works have introduced variations or improvements on this approach:

Stone [322] considered the case in which nodes are not given information about their

neighbours, and applied a form of Q-learning with function approximation where

states are characterised by feature vectors. Another approach that instead uses policy

gradient methods [330] was able to learn co-operative behaviour without explicit

inter-agent communication, adapt better to changing topology, and is amenable to

reward shaping. Peshkin and Savova [280] proposed a softmax policy trained using

a variant of REINFORCE, which was shown to perform substantially better than

Q-routing in scenarios for which the optimal policy is stochastic.

Recent research on routing with ML in the computer networks community [142,

339, 300] generally considers routing at the flow level rather than the more granular

packet level, which tends to be a more scalable formulation of the problem, and is

more aligned to current routing infrastructure.

There have been several recent works on learning to route using either conven-

tional neural network architectures or GNN-like architectures. Geyer and Carle [142]

proposed a variant of the Gated GNN [232] and trained it to predict paths taken by

conventional routing algorithms. Rusek et al. [300] proposed a MPNN variant and

used it to predict graph-level metrics such as delay and jitter. Reis et al. [287] used

an MLP representation and Supervised Learning to predict the full path that a flow

should take through the network.

2.6. ML for Optimising Graph Processes 76

Other works have considered learning the routing protocol itself with RL in a

variety of problem formulations: Valadarsky et al. [339] used an MLP and considered

learning per-edge coefficients that are used with “softmin” routing. Xu et al. [368]

proposed an MLP approach for learning traffic split ratios for a set of candidate

paths. Zhang et al. [380] used a CNN to re-route a proportion of important (critical)

flows. Almasan et al. [10] introduced a formulation that routes flows sequentially,

which then become part of the state. It uses a MPNN representation. Most re-

cently, Hope and Yoneki [175] adopted the formulation in [339], showing that the

use of Graph Networks [24] improves performance in one graph topology.

Finally, a work that does not fit in either category but is highly relevant was

performed in the neural algorithmic reasoning literature. Georgiev and Liò [140]

trained two GNN variants to mimic the steps taken by the Ford-Fulkerson algorithm

for finding the maximum flow that can be routed across a graph without violating

capacity constraints [80, Chapter 24]. The authors showed that the considered GNNs

obtain strong generalisation on unseen inputs.

2.6.4 Learning to Optimise Other Graph Processes

To complete our picture of related work, let us now discuss the literature on ML for

the optimisation of other graph processes.

Learning in Network Games

Network games, which are the remaining class of graph processes addressed by the

contributions of this thesis, have attracted comparatively less attention from the

research community.

A core question that has been addressed in this area is the inference of the

structure of a network from data about the actions taken by the players in a network

game, under a variety of formulations and assumptions. Honorio and Ortiz [173]

studied the class of linear influence games [183] with binary actions and linear

payoffs, deriving an algorithm for this purpose with guarantees in terms of sample

complexity. Garg and Jaakkola [135] treated the problem of recovering the network

in graphical games that are structured as trees, and the utilities are such that the game

is a potential game. Leng et al. [227] considered a network game with continuous

actions, proposing an algorithm that recovers the individual marginal benefits in

addition to the graph structure. Most recently, the authors of [295] proposed a

2.6. ML for Optimising Graph Processes 77

method that does not require knowledge of the utility function, and yet compares

favourably to existing methods.

Trivedi and Zha [337] focussed on learning in the related class of network emer-

gence games. In this category of games, it is the strategic behaviour of agents them-

selves that leads to the creation of links, rather than the graph merely governing

the structure of interactions. The paper seeks to recover the unknown utility func-

tion from an observed graph structure, using a GNN-parametrised policy and a

multi-agent inverse RL algorithm. Methodologically, this work is substantially closer

to the deep learning centric approach of this thesis, whereas the works discussed

in the above paragraphs rely on tractable inference procedures that make use of

simplifying assumptions (e.g., linearity and convexity).

Learning for Spreading Processes

A few recent papers have considered applications of ML to spreading processes on

graphs, especially in the context of the COVID-19 pandemic. Meirom et al. [248]

proposed an approach based on RL and GNNs for controlling spreading processes

taking place on a network of agents. Their method was applied for controlling an

epidemic spreading process, for which the agent decides which node should be tested

and subsequently isolated, as well as an influence maximisation process, for which

the agent decides which node should be selected as the target to be influenced. Their

method was shown to perform better than several prior heuristics (e.g., removing

highly central nodes in epidemic processes).

Panagopoulos et al. [269] considered a higher level of abstraction in modelling

the spread of an epidemic by extracting the network of regions within a country.

Two regions are connected in the network if they share a geographical border, with

edge weights quantifying the number of people moving between them. The task is

to estimate the number of future cases for a given region. The authors successfully

leveraged a MPNN for this purpose, additionally demonstrating that the model

transfers well when applying it to different countries.

Learning to Search

Search processes have also been studied in the ML literature, especially in the context

of reasoning in knowledge graphs [324, 42]. The task is typically formulated as

completing a query: given an entity and a relation, the goal is to find the missing

2.7. Summary 78

entity. This is realised through guided walks over the knowledge graph. A model is

trained using queries that are known to be true, and subsequently applied to tuples

for which the knowledge is incomplete.

Das et al. [97] formulated the task as an MDP and tackled it with an LSTM

architecture trained using a policy gradient algorithm. M-Walk [311] obtained

improvements over this approach by combining a policy network with Monte Carlo

Tree Search. Finally, a recent work by Zhang et al. [379] addressed the issue of

degrading performance of such models with increases in path length. The authors

proposed a design with two policies that act cooperatively: one higher-level policy

for picking the cluster in the knowledge graph to be searched, and a fine-grained

policy that operates at the entity level.

2.7 Summary
In this chapter, we have discussed the required background notions and covered

the relevant related work. We began by formally defining networks and high-level

mathematical properties that may be used to examine them. We then covered a series

of processes taking place over graphs – namely, robustness, efficiency, network flows,

and network games; as well as conventional methods that have been proposed in the

past for their optimisation. Subsequently, we discussed the core methodological tools

used in this thesis: learning representations operating on graphs and techniques

for solving decision-making processes. Finally, we have reviewed other works that

use Machine Learning for the optimisation of graph processes, to which the present

thesis is closely related.

Given that we have completed our discussion of related work, let us close this

chapter by placing the research questions formulated in Section 1.3 in broader context.

Research questions RQ1, RQ2, and RQ5 address the gap in the literature regard-

ing the application of RL techniques beyond canonical combinatorial optimisation

problems to other graph processes of practical interest. Specifically, these research

questions target the problems of goal-directed graph construction (Chapters 3 and 4),

and the determination of an optimal Maximal Independent Set (Chapter 5). As

discussed in Section 2.3, current approaches for solving these problems primarily

rely on hand-crafted heuristics and generic metaheuristics. The use of RL may enable

substantial advantages in addressing them.

2.7. Summary 79

Furthermore, RQ3 and RQ6 are motivated by challenges specific to graph

combinatorial optimisation, and seek to tackle the design of algorithms and learning

representations that are well-suited for problems in this space. Chapter 4 shows a

blueprint for how a standard algorithm for decision-making (UCT) may be fruitfully

extended for the particulars of a family of combinatorial optimisation problems. The

inductive bias that is encoded in the learning representation is also important. As

demonstrated by Chapter 6, the wrong choice of inductive bias can prove harmful,

and it is crucial to design the learning architecture such that it is aligned to the

problem characteristics.

Finally, an important practical aspect that we address is how to obtain scalability

on large problem instances (RQ3 and RQ5). Chapters 3 and 5 study the application

of models trained on small problem instances to larger ones. This technique can

obtain impressive results in scenarios in which the model transfers well. Further

options that we adopt are the use of decision-time planning to examine a small

fraction of the entire decision-making process (Chapters 4 and 5), pruning the action

space (Chapter 4), and using demonstrations of a well-performing algorithm to

collect data instead of online environment interaction (Chapter 5).

Chapter 3

Goal-directed Graph Construction using

Reinforcement Learning

As discussed extensively in Chapter 2, several metrics have been devised to

quantify the global characteristics of graph-structured systems. However,

comparatively little is currently known about how to construct a graph or

improve an existing one by adding edges so as to optimise a target objective

function. Our starting hypothesis is that it may be possible to discover, in a

data-driven way, algorithms that perform better than current heuristics that

are based on local and spectral properties.

In this chapter, we pursue a generic framework for optimising the struc-

tural properties of graphs. Towards this goal, we formulate the construction

of a graph as a decision-making process in which a central agent creates

topologies by trial and error and receives rewards proportional to the value

of the target objective. We then propose a high-level algorithm based on

RL and GNNs to learn strategies for graph construction and improvement.

Our core case study focusses on robustness to failures and attacks, a dimen-

sion relevant for the infrastructure and communication networks that power

modern society.

3.1 Introduction

Graphs are mathematical abstractions that can be used to model a variety of systems,

from infrastructure and biological networks to social interactions. Various meth-

ods for analysing networks have been developed: these have been often used for

3.1. Introduction 81

understanding the systems themselves and range from mathematical models of how

families of graphs are generated [354, 19] to measures of centrality for capturing the

roles of vertices [37] and global network characteristics [263], to name but a few.

A measure that has attracted significant interest from researchers and practition-

ers is robustness [262] (sometimes called resilience), which is typically defined as the

capacity of the graph to withstand random failures, targeted attacks on key nodes,

or some combination thereof. A network is considered robust if a large fraction

(Critical Fraction) of nodes have to be removed before it becomes disconnected [76],

its diameter increases [8], or its Largest Connected Component diminishes in size

[35]. Previous work has focussed on the robustness of communication networks,

such as the Internet [77] and infrastructure networks used for transportation and

energy distribution [61], for which resilience is a key property.

In many practical cases, an initial network is given and the only way of improv-

ing its robustness is through the modification of its structure. This problem was first

approached by considering edge addition or rewiring, based on random and prefer-

ential (with respect to node degree) modifications [35]. Alternatively, a strategy has

been proposed that uses a “greedy” modification scheme based on random edge

selection and swapping if the resilience metric improves [306]. Another line of work

focusses on the spectral decomposition of the graph Laplacian, and using proper-

ties such as the algebraic connectivity [348] and effective graph resistance [350] to

guide modifications. While simple and interpretable, these strategies may not yield

the best solutions or generalise across networks with varying characteristics and

sizes. Certainly, better solutions may be found by Exhaustive Search, but the time

complexity of exploring all the possible topologies and the cost of computing the

metric render this strategy infeasible. With the goal of discovering better strategies

than existing methods, we ask whether generalisable network construction strategies for

improving robustness can be learned.

Starting from this motivation, we formalise the process of graph construction and

improvement as an MDP in which rewards are proportional to the value of a graph-

level objective function. We consider two objective functions that quantify robustness

as the Critical Fraction of the network in the presence of random failures and targeted

attacks. Inspired by recent successes of RL in solving combinatorial optimisation

3.2. Methods 82

0

1

9

2

5

3

4

6

7 8

S0 = (G0, {∅})
F(G0) = 0.10

A0 = 3

0

1

9

2

5

3

4

6

7 8

S1 = (G1, {v3})

R1 = 0.00
A1 = 2

0

1

9

2

8

5

3

4

6

7

S2 = (G2, {∅})

R2 = 0.00
A2 = 1

0

1

9

2

8

5

3

4

6

7

S3 = (G3, {v1})

R3 = 0.00
A3 = 4

0

1

9

2

4

8

5

3

7

6

S4 = (G4, {∅})

R4 = 0.00
A4 = 3

0

1

9

2

4

8

5

3

7

6

S5 = (G5, {v3})

R5 = 0.00
A5 = 6

0

1

9

2

4

8

5

3

7

6

S6 = (G6, {∅})
F(G6) = 0.70
R6 = 0.60

Figure 3.1: Illustration of a Graph Construction MDP (GC-MDP) trajectory. The agent
is provided with a start state S0 = (G0, {∅}). It must make b = 3 edge additions over a
sequence of 6 node selections (actions At), receiving rewards Rt proportional to the value
of an objective function F applied to the graph. In this case, F quantifies the robustness of
the network to targeted node removal, computed by removing nodes in decreasing order of
their degree and in decreasing order of the labels if two nodes have the same degree. We
observe an improvement of the robustness of the graph from F(G0) = 0.1 to F(G6) = 0.7.
Actions and the corresponding edges are highlighted.

problems on graphs [29, 203], we make use of GNN architectures [303] together

with the DQN [251] algorithm. Recent work in goal-directed graph generation and

improvement considers performing edge additions for adversarially attacking GNN

classifiers [86] and generating molecules with certain desirable properties using

domain-specific rewards [372]. In contrast, to the best of our knowledge, this is the

first time that RL is used to learn how to construct a graph such as to optimise a global

structural property. While in this chapter we focus on robustness, other intrinsic global

properties of graphs, such as efficiency [223] or communicability [117], could be

used as optimisation targets.

The contribution of this chapter is twofold. Firstly, we propose a framework for

improving global structural properties of graphs, by introducing the Graph Construc-

tion Markov Decision Process (GC-MDP). Secondly, focussing on the robustness of

graphs under failures and attacks as a core case study, we offer an in-depth empirical

evaluation that demonstrates significant advantages over existing approaches in this

domain, both in terms of the quality of the solutions found as well as the time com-

plexity of model evaluation. Since this approach addresses the problem of building

robust networks with a DQN, we name it RNet–DQN.

3.2 Methods

In this section, we first introduce the proposed formalism of graph construction and

the objective functions used. Subsequently, we propose a method for learning heuris-

tics for constructing robust graphs, which relies on RL with function approximation.

3.2. Methods 83

3.2.1 Robust Graph Construction as an MDP

Modelling Graph Construction. Let G(N) be the set of labelled, undirected, un-

weighted graphs with N nodes; each such graph G = (V,E) consists of a vertex

set V and edge set E. Let G(N,m) be the subset of G(N) with |E| = m. We also

let F : G(N) → [0, 1] be an objective function, and b ∈ N be a modification budget

that defines the number of new edges that can be added. Given an initial graph

G0 = (V,E0) ∈ G(N,m0) containing the edge set E0 with cardinality m0, the aim is to

perform b edge additions to G0 such that the resulting graph G∗ = (V,E∗) satisfies:

G∗ = argmax
G′∈G′

F(G′), (3.1)

where G′ = {G = (V,E) ∈ G(N,m0+b) | E0 ⊂ E}.

This combinatorial optimisation problem can be cast as a sequential decision-

making process as follows. The agent will iteratively select two nodes between which

a new edge will be added until the budget b is exhausted. Before diving into the

details of the mathematical formulation, an important aspect to consider is the design

of the action space. A straightforward choice would be to frame it as the selection

of one of the O(N2) non-edges to be added at each timestep, which would not be

effective on large graphs.

Instead, to aid scalability, we decompose the addition of an edge into two sepa-

rate node selection decisions, which means that O(N) choices need to be considered

at each timestep. Concretely, the agent first selects, at time t, the node vi from which

an edge will be constructed. From this point onwards, in accordance with the Markov

assumption, the agent “commits” to having vi be the origin of an edge. Subsequently,

at time t + 1, the agent selects node vj , which is the other end of the edge. When

transitioning to the state at time t+ 2, the new edge ei,j between vi and vj is added

to the graph, and the process repeats. Tasks are episodic, and each episode proceeds

for at most 2b steps. A trajectory visualisation is shown in Figure 3.1.

Formally, we define the Graph Construction MDP (GC-MDP) as follows:

1. State: The state St is a tuple (Gt, {σt}) containing the graph Gt = (V,Et) and

a singleton containing an edge stub σt. At even timesteps (t mod 2 = 0), σt is

3.2. Methods 84

equal to the empty set∅. At odd timesteps, σt is equal to vkfrom , where vkfrom ∈ V
is the node that was selected in the previous timestep, from which an edge

must be built.

2. Action: At corresponds to the selection of an index identifying a node in V . The set

of available actions, containing the indices of the nodes that may be selected,

are defined as below. The first clause states that maximally connected nodes

cannot be selected as the edge stub, while the second clause forbids actions

that would lead to the construction of an already-existing edge.

A(St) =


{select kfrom | vkfrom ∈ V ∧ deg(vkfrom) < |V | − 1}, if t mod 2 = 0

{select kto | vkto ∈ V ∧ ekfrom,kto /∈ Et}, otherwise.

(3.2)

3. Transitions: The transition dynamics are deterministic, meaning that, from a

state s, there is a single state s′ that can be reached with probability 1. Recall

that the Kronecker delta δxy is equal to 1 if x = y and 0 otherwise. The transition

model is defined as P (St+1 = s′|St = s,At = a) = δss′ ,

where s′ =


((V,Et) , {va}) , if t mod 2 = 0((
V,Et ∪ {ekfrom,a}

)
, {∅}

)
, otherwise.

(3.3)

Written in plain English, when transitioning from an even timestep, the model

“marks” the node corresponding to the selected action as the edge stub so that

it forms part of the next state. Otherwise, it adds the edge corresponding to

the selections to the topology of the next state, and resets the edge stub.

4. Reward: The reward Rt is defined as follows1:

Rt =


F(Gt)−F(G0), if t = 2b

0, otherwise.
(3.4)

1Since F is very expensive to estimate, we deliberately only provide the reward at the end of the
episode in order to make the training feasible computationally, to the detriment of possible credit
assignment issues. Intermediate rewards based on the true objective or a related quantity represent a
middle ground which we leave for future work.

3.2. Methods 85

Definition of Objective Functions for Robustness. We are interested in the robust-

ness of graphs as objective functions. Given a graph Gt, we let the Critical Fraction

CF(Gt, ξ) ∈ [0, 1] be the minimum fraction of nodes that have to be removed from

Gt in some order ξ for it to become disconnected (i.e., have more than one connected

component). Connectedness is a crucial operational constraint and the higher this

fraction is, the more robust the graph can be said to be.2 The order ξ in which nodes

are removed can have an impact on CF, and corresponds to different scenarios: ran-

dom removal is typically used to model arbitrary failures, while targeted removal is

adopted as a model for attack. Formally, we consider both random permutations

ξrandom of nodes in Gt, as well as permutations ξtargeted, which are subject to the

constraint that nodes must appear in the order of their degree, i.e.,

∀vi, vj ∈ V. ξtargeted(vi) ≤ ξtargeted(vj) ⇐⇒ deg(vi) ≥ deg(vj). (3.5)

We define the objective functions F in the following way:

1. Expected Critical Fraction to Random Removal:

Frandom(Gt) = Eξrandom [CF(Gt, ξrandom)] (3.6)

2. Expected Critical Fraction to Targeted Removal:

Ftargeted(Gt) = Eξtargeted [CF(Gt, ξtargeted)] (3.7)

We use MC sampling for estimating these quantities. For completeness, Al-

gorithm 3 in Appendix A describes how the simulations are performed. In the

remainder of the chapter, we use Frandom(Gt) and Ftargeted(Gt) to indicate their

estimates obtained in this way. We highlight that evaluating an MC sample has time

complexityO(|V | · (|V |+ |Et|)): it involves checking connectedness (anO(|V |+ |Et|)
operation) after the removal of each of the O(|V |) nodes. Typically, many such

samples need to be used to obtain a low-variance estimate of the quantities. Coupled
2We note that while connectedness is required for the specific objective functions considered in

this chapter, it is not required by either the GC-MDP formulation or the learning mechanism itself.
The approach is applicable for other quantifiers of robustness (e.g., those that evaluate the size of the
Largest Connected Component), as well as fundamentally different objective functions that measure
graph properties of interest.

3.2. Methods 86

with the number of possible topologies, the high cost renders even shallow search

methods infeasible in this domain.

3.2.2 Learning to Build Graphs with Function Approximation

While the problem formulation described in Section 3.2.1 may allow us to work with

a tabular RL method, the number of states quickly becomes intractable – for exam-

ple, there are approximately 1057 labelled, connected graphs with 20 vertices [265].

Thus, we require a means of considering graph properties that are label-agnostic,

permutation-invariant, and generalise across similar states and actions. GNN archi-

tectures address these requirements. In particular, we use the S2V architecture3 [85]

as described in Section 2.4.3. Recall that, given an input graph Gt = (V,Et) in which

nodes vi ∈ V have feature vectors xvi , its objective is to produce for each node

vi an embedding vector hvi . For each round or layer l ∈ {1, 2, ..., L}, the network

simultaneously applies updates of the form:

h(l+1)
vi = ReLU

(
W1xvi + W2

∑
vj∈N (vi)

h(l)
vj

)
(3.8)

where N (vi) is the open neighbourhood of node vi. We initialise embeddings with

h
(0)
vi = 0 ∀vi ∈ V , and let hvi = h

(L)
vi as a shorthand to indicate the embeddings after

the execution of all the message passing rounds. Once node-level embeddings are

obtained, a permutation-invariant representation for the state St can be derived by

summing the node embeddings: h(St) =
∑

vi∈V hvi . The initial node features xvi

are one-hot 2-dimensional vectors indicating whether vi is the edge stub or not.

Recall, as we described in Section 2.5.3, that in Q-learning [352], the agent

estimates the action-value function Q(s, a). Subsequently, it derives a deterministic

policy that acts greedily with respect to it. The agent interacts with the environment

and updates its estimates according to:4

Q(s, a)← Q(s, a) + α
(
r + γ max

a′∈A(s′)
Q(s′, a′)−Q(s, a)

)
(3.9)

3The problem formulation does not depend on the specific GNN or RL algorithm used. While
further advances developed by the community in these areas [240, 166] can be incorporated, in this
chapter we focus on aspects specific to the challenges of optimising the global properties of graphs.

4Note that we deliberately use s and a in this equation instead of St and At since, when using a
replay buffer, the time at which a given state s is observed is not necessarily equal to the time at which
an update is performed.

3.3. Evaluation Protocol 87

During learning, exploratory random actions are taken with probability ε. In the

case of high-dimensional state and action spaces, approaches that use a neural

network to estimate Q(s, a) have been successful in a variety of domains ranging

from general game-playing to continuous control [251, 236]. Specifically, we use the

DQN algorithm together with two parametrisations of the Q-function depending on

whether the state contains a non-empty edge stub:

Q(s, a) = W3 ReLU (W4 [hva‖h(s)]) (3.10)

or

Q(s, a) = W5 ReLU (W6 [hσ‖hva‖h(s)]), (3.11)

where [·‖·] represents concatenation. This lets the model learn combinations of relevant

node features (e.g., that connecting two central nodes has high Q-value). The

use of GNNs has several advantages: firstly, the parameters Θ = {Wi}6i=1 can be

learned in a goal-directed fashion for the RL objective, allowing for flexibility in

the representation. Secondly, the embeddings can generalise to larger graphs since

they control how to combine neighbour features in the message passing rounds and

are not restricted to graphs of a particular size. We note that the underlying S2V

parameters W1,W2 are shared between the two Q-function parametrisations.

3.3 Evaluation Protocol
Learning Environment. We build a learning environment that allows for the defini-

tion of an arbitrary graph objective function F and provides a standardised interface

for agents. Our implementation of the environment, RNet–DQN and baseline agents,

and experimental suite is provided as a code repository containing Docker image

blueprints that enable the reproduction of the results presented herein (up to hard-

ware differences), including the relevant tables and figures. The instructions about

how to obtain, configure, and run the code are provided in Appendix A.1.

Baselines. We compare against the following approaches:

• Random: This strategy randomly selects an available action.

• Greedy: This strategy uses lookahead and selects the action that gives the

3.3. Evaluation Protocol 88

biggest improvement in the estimated value of F over one edge addition.

• Preferential: Previous works have considered preferential additions between

nodes with the two lowest degrees [35], connecting a node with the lowest

degree to a random node [348] or connecting the two nodes with the Lowest

Degree Product (LDP) [350], i.e., adding an edge between the vertices vi, vj
that satisfy argmini,j . i 6=j deg(vi) · deg(vj). We use the latter as we found it

works best in all settings tested.

• Fiedler Vector (FV): The concept of Fiedler Vector was introduced by [122] and

for robustness improvement by [348]. This strategy adds an edge between the

vertices vi, vj that satisfy argmaxi,j . i 6=j |yi − yj |, where y is the Fiedler Vector,

i.e., the eigenvector of the graph Laplacian L corresponding to the second

smallest eigenvalue, and yi denotes the i-th element of vector y.

• Effective Graph Resistance (ERes): The concept of Effective Graph Resistance

was introduced by [113] and for robustness improvement as a local pair-

wise approximation by [350]. This strategy selects vertices vi, vj that satisfy

argmaxi,j . i 6=j Ωi,j , which is defined as (L̃−1)i,i + (L̃−1)j,j − 2(L̃−1)i,j , where

L̃−1 is the pseudoinverse of L.

• Supervised Learning (SL): We consider a Supervised Learning baseline by re-

gressing on F to learn an approximate F̂ . We use the same S2V architecture

as RNet–DQN, which we train using MSE loss on the ground truth values of

F values instead of the Q-learning loss. To choose actions for a graph G, the

agent considers all graphs G′′ that can be obtained by adding a single edge to

G, selecting the one that satisfies argmaxG′′ F̂(G′′).

Neural Network Architecture. For all experiments, we use an S2V embedding vector

of length 64. The neural network architecture used for RNet–DQN and SL is formed

of state-action embeddings obtained using S2V followed by an MLP; the single

output unit corresponds to the Q(s, a) estimate for RNet–DQN and the predicted

F̂ for SL respectively. Details of hyperparameters used for the two learning-based

models are provided in Appendix A.

Evaluation Protocol. We evaluate RNet–DQN and baselines on both synthetic and

real-world graphs. We allow agents a number of edge additions b equivalent to

3.3. Evaluation Protocol 89

a percentage η of total possible edges. As an evaluation metric, we report the cu-

mulative reward obtained by the agents, which quantifies the improvement in the

objective function value between the final and original graphs. Training is performed

separately for each graph family, objective function F , and value of η. Where an

agent is non-deterministic (either through intrinsic stochasticity or need for training),

we repeat its evaluation (and training where applicable, starting from a different

random initialisation of the network weights) to compute confidence intervals. For

the learned models, we record both average and maximum performance. No hyper-

parameter tuning is performed due to computational budget constraints. Details

about the experimental settings are provided in Appendix A.3.

Synthetic Graphs. We consider graphs generated through the following models:

• Erdős–Rényi (ER): A graph sampled uniformly out of G(N,mER) [114]. We use

mER = 20
100 ·

N(N−1)
2 , which represents 20% of all possible edges.

• Barabási–Albert (BA): A growth model whereN nodes each attach preferentially

to mAB existing nodes [19]. We use mAB = 2.

We consider graphs with |V | = 20, allowing agents to add a percentage of

the total number of edges equal to η ∈ {1, 2, 5}, which yields b ∈ {2, 5, 10}. For

RNet–DQN and SL, we train on a disjoint set of graphs Gtrain. We periodically

measure performance on another set Gvalidate, storing the best model found. We use

|Gtrain| = 104 and |Gvalidate| = 102. The performance of all agents is evaluated on a set

Gtest with |Gtest| = 102 generated using the ER and BA models. In order to evaluate

out-of-distribution generalisation, we repeat the evaluation on graphs with up to

|V | = 100 (only up to |V | = 50 for Greedy and SL due to computational cost, see

next section) and scalemER (for ER) and b accordingly. For non-deterministic agents,

evaluation (and training, where applicable) is repeated across 50 random seeds.

Real-World Graphs. In order to evaluate our approach on real-world graphs, we

consider infrastructure networks (for which robustness is a critical property) ex-

tracted from two datasets: Euroroad (road connections in mainland Europe and parts

of Western and Central Asia [382, 218], |V | = 1174) and Scigrid (a dataset of the

European power grid [247], |V | = 1479). We split these graphs by the country in

which the nodes are located, selecting the Largest Connected Component in case they

3.4. Evaluation Results 90

Random LDP FV ERes Greedy SL RNet–DQN
Objective G b avg best avg best

Frandom BA 2 0.018±0.001 0.036 0.051 0.053 0.033 0.048±0.002 0.057 0.051±0.001 0.057
5 0.049±0.002 0.089 0.098 0.106 0.079 0.099±0.003 0.122 0.124±0.001 0.130
10 0.100±0.003 0.158 0.176 0.180 0.141 0.161±0.008 0.203 0.211±0.001 0.222

ER 2 0.029±0.001 0.100 0.103 0.103 0.082 0.094±0.001 0.100 0.098±0.001 0.104
5 0.071±0.002 0.168 0.172 0.175 0.138 0.158±0.002 0.168 0.164±0.001 0.173
10 0.138±0.002 0.238 0.252 0.253 0.217 0.221±0.005 0.238 0.240±0.001 0.249

Ftargeted BA 2 0.010±0.001 0.022 0.018 0.018 0.045 0.022±0.002 0.033 0.042±0.001 0.047
5 0.025±0.001 0.091 0.037 0.077 0.077 0.055±0.003 0.077 0.108±0.001 0.117
10 0.054±0.003 0.246 0.148 0.232 0.116 0.128±0.014 0.217 0.272±0.002 0.289

ER 2 0.020±0.002 0.103 0.090 0.098 0.149 0.102±0.002 0.118 0.122±0.001 0.128
5 0.050±0.002 0.205 0.166 0.215 0.293 0.182±0.008 0.238 0.268±0.001 0.279
10 0.098±0.003 0.306 0.274 0.299 0.477 0.269±0.016 0.374 0.461±0.003 0.482

Table 3.1: Mean cumulative reward per episode obtained by the agents on synthetic graphs
with |V | = 20, grouped by objective function, graph family, and number of edge additions b.
Each reported value represents the improvement in the expected Critical Fraction between
the final and initial graphs.

are disconnected. We then select those with 20 ≤ |V | ≤ 50, obtaining 6 infrastructure

graphs for Scigrid and 8 for Euroroad. The partitioning and selection procedure

yields infrastructure graphs for the following countries:

• Euroroad: Finland, France, Kazakhstan, Poland, Romania, Russia, Turkey,

Ukraine.

• Scigrid: Switzerland, Czech Republic, United Kingdom, Hungary, Ireland,

Sweden.

Since, in this context, the performance on individual instances matters more

than generalisability, we train and evaluate on each graph separately (effectively,

the sets Gtrain,Gvalidate,Gtest all have cardinality 1 and contain the same graph). SL

is excluded for this experiment since we consider a single network. Evaluation is

repeated across 10 random seeds.

3.4 Evaluation Results

In Table 3.1, we present the results of our experimental evaluation for synthetic

graphs. We also display the evolution of the validation loss during training in

Figure 3.2. Out-of-distribution generalisation results are shown in Figure 3.3. The

results for real-world graphs are provided in Table 3.2. Additionally, Figure 3.4

displays examples of the original and improved topologies found by our approach.

Main Findings. We summarise our findings as follows:

3.4. Evaluation Results 91

Random LDP FV ERes Greedy RNet–DQN
Objective Dataset Instance avg best

Frandom Euroroad Finland 0.080±0.019 0.133 0.163 0.170 0.162 0.161±0.015 0.189
France 0.057±0.016 0.149 0.181 0.163 0.151 0.178±0.013 0.202
Kazakhstan 0.107±0.018 0.165 0.191 0.180 0.160 0.179±0.010 0.203
Poland 0.082±0.033 0.186 0.170 0.201 0.140 0.196±0.014 0.230
Romania 0.076±0.025 0.196 0.170 0.243 0.203 0.207±0.013 0.235
Russia 0.084±0.016 0.135 0.224 0.157 0.187 0.199±0.017 0.230
Turkey 0.092±0.023 0.191 0.198 0.198 0.191 0.215±0.011 0.247
Ukraine 0.071±0.017 0.158 0.186 0.151 0.098 0.163±0.022 0.205

Scigrid Switzerland 0.050±0.035 0.191 0.160 0.174 0.182 0.198±0.017 0.226
Czech Republic 0.091±0.020 0.242 0.239 0.252 0.214 0.334±0.020 0.375
United Kingdom 0.111±0.020 0.263 0.273 0.290 0.224 0.321±0.022 0.379
Hungary 0.051±0.029 0.176 0.179 0.175 0.117 0.148±0.017 0.185
Ireland 0.090±0.014 0.208 0.211 0.213 0.177 0.201±0.013 0.228
Sweden 0.097±0.029 0.187 0.213 0.195 0.197 0.213±0.022 0.276

Ftargeted Euroroad Finland 0.069±0.018 0.149 0.112 0.112 0.307 0.273±0.009 0.300
France 0.032±0.019 0.199 0.120 0.120 0.074 0.218±0.006 0.228
Kazakhstan 0.052±0.021 0.161 0.137 0.124 0.229 0.236±0.014 0.257
Poland 0.010±0.008 0.101 0.114 0.084 0.108 0.230±0.008 0.248
Romania 0.029±0.021 0.167 0.056 0.126 0.148 0.238±0.021 0.270
Russia 0.000±0.000 0.000 0.000 0.053 0.000 0.110±0.036 0.155
Turkey 0.044±0.021 0.126 0.155 0.126 0.143 0.233±0.018 0.264
Ukraine 0.031±0.023 0.074 0.037 0.083 0.135 0.164±0.006 0.178

Scigrid Switzerland 0.030±0.024 0.000 0.103 0.098 0.045 0.128±0.006 0.139
Czech Republic 0.038±0.026 0.116 0.116 0.116 0.163 0.242±0.027 0.284
United Kingdom 0.070±0.047 0.190 0.095 0.184 0.207 0.252±0.027 0.326
Hungary 0.027±0.028 0.190 0.000 0.129 0.143 0.190±0.000 0.190
Ireland 0.047±0.023 0.101 0.084 0.106 0.079 0.259±0.011 0.288
Sweden 0.061±0.021 0.142 0.121 0.201 0.094 0.232±0.008 0.261

Table 3.2: Results obtained on real-world graphs, split by graph instance. Each reported
value represents the improvement in the expected Critical Fraction between the final and
initial graphs.

RNet–DQN provides competitive performance, especially for longer action sequences. Across

all settings tested, RNet–DQN performed significantly better than random. On syn-

thetic graphs, the best model obtained the highest performance in 8 out of 12 settings

tested, while the average performance is at least 89% of that of the best-performing

configuration. For BA graphs, RNet–DQN obtained the best performance across

all tasks tested. For ER graphs, ERes performed slightly better when considering

Frandom; for Ftargeted, the greedy baseline performed better on shorter sequences.

For real-world graphs, RNet–DQN obtained the best performance across all tasks.

Strategies for improving Frandom are easier to learn. The performance gap between the

trained model and the baselines is smaller for Frandom, suggesting it is less complex

to learn. This is also supported by the evaluation losses monitored during training,

which show performance improves and plateaus more quickly. For Frandom the net-

work with randomly initialised parameters already yields policies with satisfactory

results, and training brings a small improvement. In contrast, the improvements for

Ftargeted are much more dramatic.

3.4. Evaluation Results 92

0.0 0.8 1.6 2.4 3.2 4.0
timestep ×104

0.00

0.05

0.10

Frandom, Barabási–Albert

b
=

 2
va

lid
at

io
n

pe
rf

or
m

an
ce

0.0 0.8 1.6 2.4 3.2 4.0
timestep ×104

Frandom, Erdős–Rényi

0.0 0.8 1.6 2.4 3.2 4.0
timestep ×104

Ftargeted, Barabási–Albert

0.0 0.8 1.6 2.4 3.2 4.0
timestep ×104

Ftargeted, Erdős–Rényi

0.0 0.2 0.4 0.6 0.8 1.0
timestep ×105

0.0

0.1

0.2

b
=

 5
va

lid
at

io
n

pe
rf

or
m

an
ce

0.0 0.2 0.4 0.6 0.8 1.0
timestep ×105

0.0 0.2 0.4 0.6 0.8 1.0
timestep ×105

0.0 0.2 0.4 0.6 0.8 1.0
timestep ×105

0.0 0.4 0.8 1.2 1.6 2.0
timestep ×105

0.2

0.4

b
=

 1
0

va
lid

at
io

n
pe

rf
or

m
an

ce

0.0 0.4 0.8 1.2 1.6 2.0
timestep ×105

0.0 0.4 0.8 1.2 1.6 2.0
timestep ×105

0.0 0.4 0.8 1.2 1.6 2.0
timestep ×105

Figure 3.2: Performance on Gvalidate for synthetic graphs as a function of training steps. Note
the different x-axes scales for each row: more training steps are typically required for longer
edge addition sequences.

Out-of-distribution generalisation only occurs for Frandom. The performance on larger

out-of-distribution graphs is preserved for the Frandom objective, and especially for

BA graphs we observe strong generalisation. The performance for Ftargeted decays

rapidly, obtaining worse performance than the baselines as the size increases. The

poor performance of the greedy policy means the Q(s, a) estimates are no longer

accurate under distribution shift. There are several possible explanations, e.g., the

inherent noise of estimating Frandom makes the neural network more robust to

outliers, or that central nodes impact message passing in larger graphs differently. We

think investigating this phenomenon is a worthwhile direction for future work, since

out-of-distribution generalisation does occur forFrandom and evaluating the objective

functions directly during training is prohibitively expensive for large graphs.

Performance on real-world graphs is comparatively better with respect to the baselines. This

is expected since training is performed separately for each graph to be optimised.

Time Complexity. Below, we compare the time complexities of the methods.

• RNet–DQN:O(|V |+|Et|) operations at each step: constructing node and graph-

level embeddings and, based on these embeddings, performing the forward

pass in the neural network to estimate Q(s, a) for all valid actions.

3.4. Evaluation Results 93

20 40 60 80 100
|V |

0.0

0.1

0.2

0.3

Frandom, Barabási–Albert

η
=

 1
.0

te
st

 p
er

fo
rm

an
ce

RNet–DQN

Random

LDP

FV

ERes

Greedy

SL

20 40 60 80 100
|V |

Frandom, Erdős–Rényi

20 40 60 80 100
|V |

Ftargeted, Barabási–Albert

20 40 60 80 100
|V |

Ftargeted, Erdős–Rényi

20 40 60 80 100
|V |

0.2

0.4

η
=

 2
.5

te
st

 p
er

fo
rm

an
ce

20 40 60 80 100
|V |

20 40 60 80 100
|V |

20 40 60 80 100
|V |

20 40 60 80 100
|V |

0.2

0.4

0.6

η
=

 5
.0

te
st

 p
er

fo
rm

an
ce

20 40 60 80 100
|V |

20 40 60 80 100
|V |

20 40 60 80 100
|V |

Figure 3.3: Performance on out-of-distribution synthetic graphs as a function of graph size,
grouped by target problem and percentage of edge additions η. For RNet–DQN and SL,
models trained on graphs with |V | = 20 are used.

• Random: O(1) for sampling, assuming the environment checks action validity.

• Greedy: O(|V |4 ·(|V |+ |Et|)). The improvement inF is estimated for allO(|V |2)

candidate edges. For each edge, this involves O(|V |) MC simulations, each of

which has complexity O(|V | · (|V |+ |Et|)) as described in Section 3.2.1.

• LDP: O(|V |2) for computing the product of node degrees.

• FV, ERes: O(|V |3), since they involve computing the eigendecomposition and

the Moore-Penrose pseudoinverse of the graph Laplacian respectively.

• SL: O(|V |2 · (|V |+ |Et|)), since F̂ is predicted for the O(|V |2) graphs that can

be obtained by adding a single edge to G.

It is worth noting that the analysis above does not account for the cost of training,

the complexity of which is difficult to determine as it depends on many hyperparam-

eters and the specific characteristics of the problem at hand. The approach is thus

advantageous in situations in which predictions need to be made quickly, over many

3.4. Evaluation Results 94

Frandom(G) = 0.077
Ftargeted(G) = 0.037

Frandom(G) = 0.232 Ftargeted(G) = 0.256

Road Network, France

Frandom(G) = 0.067
Ftargeted(G) = 0.033

Frandom(G) = 0.242 Ftargeted(G) = 0.186

Road Network, Russia

Frandom(G) = 0.080
Ftargeted(G) = 0.023

Frandom(G) = 0.425 Ftargeted(G) = 0.278

Power Grid, Czech Republic

Figure 3.4: Several examples of the solutions found by RNet–DQN on real-world graphs.
Each row of the illustration shows the original network on the left, while the central and
right panels show the network optimised for resilience to random and targeted removals,
respectively. Objective function values are shown underneath. The solutions for Frandom
typically assign more connections to a few central nodes, notably discovering the hub pattern
in the third example. For Ftargeted the added edges are spread around the network, reducing
the impact of attacks. However, the algorithm might discover more complex patterns that
are not directly interpretable, as shown in the solutions for the first example network.

graphs, or the model transfers well from a cheaper training regime. We also remark

that, even though the method requires an upfront cost for training, this can be seen

as a constant term if the number of problem instances over which we would like

to obtain predictions is large. These characteristics are shared with other emergent

work that tackles combinatorial optimisation with ML [203, 31].

3.5. Discussion 95

3.5 Discussion

Relationship to RL–S2V. Our work builds on RL–S2V, a method that was applied for

the construction of adversarial examples against graph classifiers [86]. However, it is

worth noting that there are a series of key differences with respect to this approach.

Firstly, RL–S2V is not designed to address the problem of constructing robust graphs

or, more generally, learning to construct graphs according to a given goal. Secondly,

there are two key algorithmic differences to RL–S2V with respect to the GC-MDP

formulation: the reward function used, which in this case quantifies a global property

of the graph itself, as well as the definition of the action spaces and the transition

model, which account for excluding already-existing edges (RL–S2V ignores this,

leading to some of the edge budget being wasted). Since the values of structural

properties we consider are increasing in the number of edges (the complete graph

has robustness 1), RNet–DQN generally yields strictly better performance results.

Extensions. The proposed approach can be applied to other problems based on

different definitions of robustness or considering fundamentally different objective

functions such as efficiency [223], path diversity [154], and assortativity [260], which

are of interest in various biological, communication, and social networks. Since our

formulation and algorithm are objective-agnostic, we expect they are applicable out-

of-the-box for other objectives, even those for which no strong baselines are currently

known. As such, this approach may be a useful tool for the discovery of new graph

improvement algorithms for objectives that can be evaluated programmatically,

either in closed form or via simulations. Potential limitations might be related to

the complexity of the objective functions and the related computational demands.

We also view the interpretability of the approach, which is less straightforward

than those based on known mathematical concepts such as Fiedler Vector, to be an

important research direction. Since there is an active interest in the interpretability

of both GNNs and RL [371, 345], we consider that there is scope for developing

techniques that are tailor-made for explaining policies learned by RL on graphs.

Operationalisation. Beyond considering other objectives, in order to operationalise

the proposed algorithm, it is possible to integrate a variety of refinements, which can

include capturing heterogeneous edge costs (e.g., different capacities per link in a

communication network), extending the action space to support heterogeneous edge

3.5. Discussion 96

types (e.g., addition of different types of edges with specific characteristics), and

integrating domain-specific link constraints (e.g., planarity). For critical scenarios,

it is also possible to verify that the resulting solutions satisfy some given formal

properties and constraints [133]. Furthermore, considering multi-criteria objective

functions [290] is important for cases where properties of the solutions must be

balanced [199]. Various choices exist for representing this trade-off and should be

captured on a case-by-case basis depending on the application: for example, a linear

combination may be sufficient in certain situations, while others are characterised

by economies of scale. We also remark that our formulation captures operational

scenarios in which the cost of constructing a link is significantly greater than the cost

of its maintenance (e.g., as with road networks).

Broader Applications. The approach described in this chapter can be used to improve

the properties of a variety of human-made infrastructure systems, such as commu-

nication networks, transportation networks, and power grids. We also envisage

potential applications in biological networks (e.g., hypothesis testing for understand-

ing the characteristics of brain networks [53]), ecological networks (e.g., design of

more resilient ecosystems [357]) and social networks (e.g., design of organisational

structures [363]). As far as biological networks are concerned, the brain is hypothe-

sised to optimise a trade-off between efficiency and wiring cost [53]. Our method

could be used in order to test different hypotheses related to the resulting structure of

brain networks over evolutionary times and also during their development. Indeed,

the evolution of such networks in time has been captured (for example, Sulston

et al. [325] mapped the development of the C. elegans connectome). This can be

achieved by applying the optimisation procedure for different objective functions

and comparing the obtained networks to the “ground truth”. With respect to the

potential application in ecosystem management, the graph formalisation can be used

to model interactions between species in a given environment. As such, our method

has potential applications to study, in simulation, the impact of introducing or re-

moving species from an ecosystem so as to achieve a desired outcome. Specifically, in

the context of robustness, we can consider optimising the resilience of an ecosystem

to intrinsic or extrinsic shocks, a task of fundamental importance [9]. The dynamics

of interactions between species may be modelled in simulation using well known

3.6. Summary 97

models of e.g., predator-prey mechanics [32]. With respect to social networks, for

example, our method can be applied to derive optimal communication strategies

and related team structures so as to optimise a given objective for an organisation.

Finally, there are also potential applications for networks of artificial agents (i.e.,

robots). There is a significant body of work in the robotics literature that treats

the problem of maintaining robust communication in a network of agents working

together to complete a task in an environment that contains obstacles or adversaries.

For instance, [323] uses properties of the graph Laplacian (namely, the Fiedler Vector

and its associated eigenvalue) to ensure the underlying communication network

remains robust. Since we have empirically shown superior performance to using the

Fiedler Vector, our approach could also lead to gains in this deployment scenario.

3.6 Summary
In this chapter, we have addressed the problem of improving a given graph structure

with the goal of maximising the value of a global objective function. We have framed

it for the first time as a decision-making problem and we have formalised it as the

Graph Construction MDP (GC-MDP). Our approach, developed to tackle RQ1,

uses RL and GNNs as key components for generalisation. As a case study, we have

considered the problem of improving graph robustness to random and targeted

removals of nodes. Our experimental evaluation on synthetic and real-world graphs

shows that, in certain situations, this approach can deliver performance superior to

existing methods, both in terms of the solutions found (i.e., the resulting robustness

of the graphs) and time complexity of model evaluation (RQ2). Furthermore, we

have shown the ability to transfer to out-of-sample graphs, as well as the potential

to transfer to out-of-distribution graphs larger than those used during training as a

possible technique to address RQ3.

Chapter 4

Planning Spatial Networks with Monte

Carlo Tree Search

In this chapter, we continue our treatment of optimising graph structure

through edge additions. Unlike the method in Chapter 3, which only con-

siders topological properties, herein we propose a more realistic model for

networks positioned in physical space. Namely, it is able to capture the influ-

ence of spatial characteristics on the existence and density of links. Through

the use of planning methods, we also make contributions towards improv-

ing the scalability of decision-making algorithms for graph construction by

sidestepping the costly trial-and-error required for training a RL agent.

Generic planning algorithms, such as Monte Carlo Tree Search, are di-

rectly applicable given our deterministic MDP formulation but, nevertheless,

may be sub-optimal. We tailor the algorithm towards this family of problems,

addressing three key aspects: their single-agent nature, the rapidly grow-

ing size of the action space, and the relationship between the cost of links

and their contribution to the objective. The proposed approach, SG-UCT,

is rigorously evaluated for increasing the efficiency and attack resilience of

synthetic spatial graphs, as well as real-world networks of Internet Service

Providers and urban metro systems.

4.1 Introduction

The non-Euclidean structure of graphs has traditionally proven challenging for

ML and decision-making approaches. As discussed extensively in Chapter 2, the

4.1. Introduction 99

used budget

...
... ...

... ...
...

used budget

Figure 4.1: Schematic of our approach. Left: given a spatial graph G0, an objective function
F , and a budget defined in terms of edge lengths, the goal is to add a set of edges such
that the resulting graph G∗ maximally increases F . Right: we formulate this problem as
a deterministic MDP, in which states are graphs, actions represent the selection of a node,
transitions add an edge every two steps, and the reward is based on F . We use Monte Carlo
Tree Search to plan the optimal set of edges to be added using knowledge of this MDP, and
propose a method (SG-UCT) that improves on standard UCT.

emergence of the GNN learning paradigm [303] and geometric deep learning more

broadly [50] have brought about encouraging breakthroughs in diverse application

areas for graph-structured data. Relevant examples include combinatorial opti-

misation [346, 29, 203], recommendation systems [254, 369] and computational

chemistry [144, 190, 372, 45].

There is an increasing interest in the problem of goal-directed graph construction,

in which the aim is to build or to modify the topology of a graph (i.e., add a set of

edges) so as to maximise the value of a global objective function, subject to a budget

constraint. As an example scenario, consider the following: given a road network and

a budget of 200 kilometres of highways that can be invested, a national transportation

department must decide where to place them with the goal of minimising average

trip time for drivers. Another practical instance of this problem is to place 500

kilometres of tracks between stations in a train network such that, in the event

of infrastructure failures or disruptions, customers have many alternative routes

to their destinations. Similar network planning and design scenarios arise in a

variety of other infrastructure systems including communication, power, and water

distribution networks. The family of related problems unified by this framework

is illustrated at a high level in the first panel of Figure 4.1 and is mathematically

defined in Equation (4.1).

As this task involves an element of exploration (optimal solutions are not known

a priori), its formulation as a decision-making process is a suitable paradigm. In

Chapter 3, we formulated the optimisation of a global structural graph property as an

4.1. Introduction 100

MDP and approached it using a variant of the RL-S2V [86] algorithm, showing that

generalisable strategies for improving a global network objective can be learned, and

can obtain performance superior to prior conventional approaches [35, 306, 348, 350]

for certain classes of problems.

However, several real-world networks are embedded in space and this fact adds

constraints and trade-offs in terms of the topologies that can be created [137, 23]. In

fact, since there is a cost associated with edge length, connections tend to be local, and

long-range connections must be justified by some gain (e.g., providing connectivity

to a hub). Moreover, existing methods based on RL are challenging to scale, due to

the sample complexity of current training algorithms, the linear increase of possible

actions with the number of nodes, and the complexity of evaluating the global

objectives (typically polynomial in the number of nodes). Furthermore, objective

functions defined over nodes’ positions, such as efficiency, are key for understanding

their organisation [223], but current solutions only consider topological aspects of

the problem. Additionally, training data (i.e., instances of real-world graphs) are

scarce and we are typically interested in a specific starting graph (e.g., a particular

infrastructure network to be improved).

In this chapter, for the first time among related works, we consider the problem

of the construction of spatial graphs as a decision-making process that explicitly

captures the influence of space on graph-level objectives, the realisability of links,

and connection budgets. Furthermore, to address the scalability issue, we select an

optimal set of edges to add to the graph through planning, which sidesteps the problem

of sample complexity since we do not need to learn a generalisable strategy. We

adopt the Monte Carlo Tree Search framework – specifically, the UCT algorithm [213]

– and show it can successfully be applied in planning graph construction strategies.

We illustrate our approach at a high level in Figures 4.1 and 4.2. Finally, we propose

several improvements over the basic UCT method in the context of spatial networks.

These relate to important characteristics of this family of problems: namely, their

single-agent, deterministic nature; the inherent trade-off between the cost of edges

and their contribution to the global objective; and an action space that is linear in

the number of nodes in the network. Our proposed approach, Spatial Graph UCT

(SG-UCT), is designed with these characteristics in mind and relies on a limited

4.2. Methods 101

set of assumptions. For this reason, it can be applied to a large class of networked

systems positioned in physical space.

As objective functions, we consider the global properties of network efficiency

and robustness to targeted attacks. While these represent a variety of practical

scenarios, our approach is broadly applicable to any other structural property. We

perform an evaluation on synthetic graphs generated by a spatial growth model and

several real-world internet backbone networks and metro transportation systems.

Our results show that SG-UCT performs best out of all methods that have been

proposed in the past in all the settings we tested; moreover, the performance gain over

UCT is substantial (24% on average and up to 54% over UCT on the largest networks

tested in terms of a robustness metric). We also benchmark the execution time of the

various approaches, showing that SG-UCT requires similar amounts of computation

to other search-based methods. In addition, we conduct an ablation study that

explores the impact of the individual algorithmic mechanisms, highlighting that the

most significant part of the objective function gains is due to the simulation policy

that prioritises lower cost edges.

4.2 Methods

In this section, we first introduce some preliminary notions regarding spatial net-

works and relevant objectives. We then formulate their construction towards opti-

mising a global objective function as an MDP. Subsequently, we propose a variant of

the UCT planning algorithm, termed SG-UCT, which exploits the characteristics of

spatial networks.

4.2.1 Spatial Networks and Objectives

We define a spatial network as the tuple G = (V,E, f, w). V is the set of vertices, and

E is the set of edges. f : V → Λ is a function that maps nodes in the graph to a

set of positions Λ. We require that Λ admits a metric d, i.e., there exists a function

d : Λ× Λ→ R+ defining a pairwise distance between elements in Λ. The tuple (Λ, d)

defines a space, common examples of which include Euclidean space and spherical

geometry. w : E → R+ associates a weight with each edge, a positive real-valued

number. For example, the weight can be interpreted as the capacity of a link in

networks that carry traffic.

4.2. Methods 102

Figure 4.2: Illustration of Monte Carlo Tree Search applied to the construction of spatial
networks. (i) Starting from the root node, which contains the original graph S0, the tree
is traversed until an expandable node is reached. (ii) The algorithm expands the tree by
adding a child to this node. The strategy for traversing the tree and deciding which node to
expand is called tree policy, and typically relies on statistics (such as average reward) stored
by each node. (iii) From the newly added node, a trajectory is sampled using a simulation
policy until a terminal state is reached and the algorithm cannot add more edges to the graph.
A reward is received depending on the objective function F defined on the graph. (iv) The
path is traversed back to the root node, updating the statistics of nodes along the way. After
several iterations of steps (i)-(iv), the algorithm will select action A0 corresponding to the
child of the root with the highest average reward. The search then continues with the next
state S1 at the root.

We consider two global objectives for spatial networks that are representative

of a wide class of properties relevant in real-world situations. Depending on the

domain, there are many other global objectives for spatial networks that can be

considered, to which the approach that we present is directly applicable.

Efficiency. Efficiency quantifies the optimality of information transmission in a

network. It does not solely depend on topology but also on the spatial distances

between the nodes. We adopt its definition as formalised by [223], and we in-

dicate the global efficiency objective with FE(G) = 1
N(N−1)

∑
i 6=j

1
dsp(vi,vj)

, where

dsp(vi, vj) is the cumulative length (i.e., the summed distances) of the shortest

path between vertices vi and vj . To normalise, we divide by the ideal efficiency

F∗E(G) = 1
N(N−1)

∑
i 6=j

1
d(f(vi),f(vj))

, and possible values are thus in [0, 1].

Efficiency is computable in O(|V |3) by using the “weighted” version of the

Floyd-Warshall shortest path algorithm1, in which the spatial distances over the

edges are given as weights (note, however, that this differs from the weight function

w defined above, which is akin to capacity). The path lengths are provided raw and

are not normalised by the straight line distances.
1In practice, this may be made faster by considering dynamic shortest path algorithms, e.g., [103].

4.2. Methods 103

Robustness. We consider the property of robustness, i.e., the resilience of the network

in the face of removals of nodes. We adopt a robustness measure widely used in

the literature [8, 56] and of practical interest and applicability based on the Largest

Connected Component (LCC), i.e., the component with most nodes. In particular,

we use the definition in [306], which considers the size of the LCC as nodes are

removed from the network. We consider only the targeted attack case as previous

work has found it is more challenging [8]. We define the robustness measure as

FR(G) = Eξ[1
N

∑N
i=1

|LCC(G,ξ,k)|
N], where LCC(G, ξ, k) denotes the Largest Connected

Component of G after the removal of the first k nodes in the permutation ξ (in

which nodes appear in descending order of their degrees). Possible values are in

[1
N , 0.5). This quantity can be estimated using Monte Carlo simulations and scales

as O(|V |2 · (|V |+ |E|)).

It is worth noting that the value of the objective functions is typically higher if

more edges exist in the network (the complete graph has both the highest possible

efficiency and robustness). However, it may be necessary to balance the contribution

of an edge to the objective with its cost. The proposed method explicitly accounts for

this trade-off, which is widely observed in infrastructure and brain networks [136, 53],

amongst others.

4.2.2 Spatial Graph Construction as an MDP

Spatial Constraints in Network Construction. Spatial networks that can be observed

in the real world typically incur a cost to edge creation. To aid intuition, consider

the example of a power grid: the cost of a link depends, among another aspects,

on its geographic distance as well as on its capacity. We let c(ei,j) denote the cost

of edge ei,j and c(Γ) =
∑

e∈Γ c(ei,j) be the cost of a set of edges Γ. We consider

c(ei,j) = w(ei,j) · d(f(vi), f(vj)) to capture the notion that longer, higher capacity

connections are more expensive. We are aware that this is just one of the possible

definitions and different notions of cost may be desirable depending on the domain.

However, it can be considered representative of several real-world scenarios, in which

cost can be modelled in a similar manner. To ensure fair comparisons, we normalise

costs c(ei,j) to be in [0, 1].

Problem Statement. Let G(N) be the set of labelled, undirected, weighted, spatial

networks with N nodes. We let F : G(N) → [0, 1] be an objective function, and

4.2. Methods 104

b0 ∈ R+ be a modification budget that represents an upper bound on the summed

lengths of new edges that can be added. Note that, unlike in the previous chapter in

which the budget was defined in terms of number of edges, herein we account for the

positioning of the nodes in space. Hence, we may decide to build a higher number

of short connections in case it is beneficial.

Given an initial graph G0 = (V,E0, f, w) ∈ G(N), the aim is to add a set of edges

Γ to G0 such that the graph G∗ = (V,E∗, f, w) satisfies:

G∗ = argmax
G′∈G′

F(G′), (4.1)

where G′ = {G ∈ G(N) | E = E0 ∪ Γ . c(Γ) ≤ b0}

MDP Formulation. As in the previous chapter, we formulate graph construction

as a series of sequential decisions, which acts as a decomposition of the solution

space. We also further decompose the edge addition into two separate node selection

decisions, with the transition model adding an edge to the topology every two

timesteps, while also imposing length restrictions on the new edges. When put

together, these aspects yield a means of achieving scalability to larger graphs. We

next define the MDP elements as below.

State: The state St is a 3-tuple (Gt, {σt}, bt) containing the spatial graph Gt =

(V,Et, f, w), a singleton comprised of an edge stub σt, and the remaining budget bt.

σt can be either the empty set ∅ or the node vkfrom ∈ V . As previously, if the edge

stub is non-empty, it means that the agent has “committed” in the previous step to

creating an edge originating at the node vkfrom .

Action: An action At corresponds to the selection of the index of a node in V .

We enforce spatial constraints as follows: given a node vi, we define the set K(vi) of

connectable nodes vj that represent realisable connections. We let:

K(vi) = {vj ∈ V | c(ei,j) ≤ ρ max
k . ei,k∈E0

c(ei,k)} (4.2)

which formalises the idea that a node can only connect as far as a proportion ρ

of its longest existing connection, with K(vi) fixed based on the initial graph G0.

Compared to the naı̈ve choice of establishing a uniform connection radius for all the

4.2. Methods 105

nodes, this has the benefit of allowing long-range connections if they already exist in

the network. Given an unspent connection budget bt, we let the set B(vi, bt) = {vj ∈
K(vi) | c(ei,j) ≤ bt} consist of those connectable nodes whose cost is not more than

the unspent budget. Therefore, available actions2 are defined as:

A(St) =


{select kfrom | vkfrom ∈ V ∧ deg(vkfrom) < |V | − 1

∧ |B(vkfrom , bt)| > 0}, if t mod 2 = 0

{select kto | vkto ∈ V ∧ ekfrom,kto /∈ Et ∧ vkto ∈ B(vkfrom , bt)}, otherwise.

(4.3)

Transitions: The deterministic transition model adds an edge every two timesteps

and decrements the budget accordingly. Concretely, we define it as P (St+1 = s′|St =

s,At = a) = δss′ , where

s′ =


((V,Et, f, w), {va}, bt), if t mod 2 = 0

((V,Et ∪ {ekfrom,a}, f, w), {∅}, bt − c(ekfrom,a)), otherwise.
(4.4)

Reward: The final reward RT is defined as F(GT)−F(G0) and intermediary re-

wards are 0. We do not provide intermediate rewards due to the large computational

cost (at least cubic in the number of nodes) needed for calculating the objective

functions. However, intermediate rewards may be provided for less computationally

demanding objectives.

Episodes in this MDP proceed for an arbitrary number of steps until the budget

is exhausted or no valid actions remain (concretely, |A(St)| = 0). Since we are in

the finite horizon case, we let γ = 1. Given the MDP definition above, the problem

specified in Equation 4.1 can be reinterpreted as finding the trajectory τ∗ that starts

at S0 = (G0, {∅}, b0) such that the final reward RT is maximal – actions along this

trajectory will define the set of edges Γ.
2Depending on the type of network being considered, in practice there may be different types of

constraints on the connections that can be realised. For example, in transportation networks, there
can be obstacles that make link creation impossible, such as prohibitive landforms or populated areas.
In circuits and utility lines, planarity is a desirable characteristic as it makes circuit design cheaper.
Such constraints can be captured by the definition of K(vi) and enforced by the environment when
providing the agent with available actions A(s). Conversely, defining K(vi) = V \ {vi} recovers the
simplified case where no constraints are imposed.

4.2. Methods 106

4.2.3 Algorithm

The formulation above can, in principle, be used with any planning algorithm for

MDPs in order to identify an optimal set of edges to add to the network. The UCT

algorithm, discussed in Section 4.2.1, is one such algorithm that has proven very

effective in a variety of settings. We refer the reader to [51] for an in-depth description

of the algorithm and its various applications. However, the generic UCT algorithm

assumes very little about the particulars of the problem under consideration, which,

in the context of spatial network construction, may lead to sub-optimal solutions. In

this section, we identify and address concerns specific to this family of problems,

and formulate the Spatial Graph UCT (SG-UCT) variant of UCT in Algorithm 1.

The evaluation whose results are presented in Section 4.4 compares SG-UCT to UCT

and other baselines, and contains an ablation study of SG-UCT’s components.

t mod 2 = 0 t mod 2 = 1

Figure 4.3: Illustration of the asymme-
try in the number of actions at even
(state has an empty edge stub) versus
odd t (state contains a non-empty edge
stub). Spatial constraints are imposed
in the latter case, reducing the number
of actions.

Best Trajectory Memoisation (BTM). The

standard UCT algorithm is applicable in a vari-

ety of settings, including multi-agent, stochas-

tic environments. For example, in two-player

games, an agent needs to re-plan from the new

state that is arrived at after the opponent exe-

cutes its move. However, the single-agent, de-

terministic nature of the problem considered

means that there is no-need to re-plan trajecto-

ries after a stochastic event: the agent can plan

all its actions from the very beginning in a sin-

gle step. We thus propose the following modification over UCT: memoising the

trajectory with the highest reward found during the rollouts, and returning it at the

end of the search. We name this Best Trajectory Memoisation, shortened BTM. This

is similar in spirit (albeit much simpler) to ideas used in Reflexive and Nested MCTS

for deterministic puzzles, in which the best move found at lower levels of a nested

search is used to inform the upper level [59, 60].

4.2. Methods 107

Cost-Sensitive Default Policy. The standard default policy used to perform out-of-

tree actions in the UCT framework is based on random rollouts. While evaluating

nodes using this approach is free from bias, rollouts can lead to high-variance es-

timates, which can hurt the performance of the search. Previous work has consid-

ered hand-crafted heuristics and learned policies as alternatives, although, perhaps

counter-intuitively, learned policies may lead to worse results [139]. As initially

discussed in Section 4.2.1, the value of the objective functions we consider grows

with the number of edges of the graph. We thus propose the following default policy

for spatial networks: sampling each edge with probability inversely proportional to

its cost. Formally, we let the probability of edge ei,j being selected during rollouts be

proportional to (maxk,l . ek,l∈E(c(ek,l))− c(ei,j))β , where β denotes the level of bias.

β → 0 reduces to random choices, while β → ∞ selects the minimum cost edge.

This is very inexpensive computationally, as the edge selection probabilities only

need to be calculated once, at the start of the search.

Action Space Reduction. In certain domains, the number of actions available to an

agent is large, which can greatly affect scalability. Previous work in RL has considered

decomposing actions into independent sub-actions [164], generalising across similar

actions by embedding them in a continuous space [111], or learning which actions

should be eliminated via supervision provided by the environment [376]. Existing

approaches in planning consider progressively widening the search based on a

heuristic [64] or learning a partial policy for eliminating actions in the tree [281].

Concretely, in this MDP, the action space grows linearly in the number of nodes.

This is partly addressed by the imposed connectivity constraints: once an edge stub

is selected (equivalently, at odd values of t), the branching factor of the search is

small since only connectable nodes need to be considered. However, the number of

actions when selecting the origin node of the edge (at even values of t) remains

large, which might become detrimental to performance as the size of the network

grows (as illustrated in Figure 4.3). Can this be mitigated?

We consider limiting the nodes that can initiate connections to a subset – which

prunes away all branches in the search tree that are not part of this set. Concretely,

let a reduction policy φ be a function that, given the initial graph G0, outputs a strict

4.2. Methods 108

subset of its nodes.3 Then, we modify our definition of allowed actions as follows.

Under a reduction policy φ, we define

Aφ(St) =


A(St) ∩ φ(G0), if t mod 2 = 0

A(St), otherwise.
(4.5)

We investigate the following class of reduction policies: a node vi is included in

φ(G0) if and only if it is among the top nodes ranked by a local node statistic λ(vi). Letting

gain(ei,j) = F(V,E ∪ {ei,j}, f, w)−F(V,E, f, w), we consider the node statistics λ

listed below:

• Degree (DEG): deg(vi);

• Inverse Degree (ID): maxj . i 6=j (deg(vj))− deg(vi);

• Number of Connections (NC): |K(vi)|;

• Best Edge (BE): maxvj∈K(vi) gain(ei,j);

• Best Edge Cost Sensitive (BECS): maxvj∈K(vi)
gain(ei,j)
c(ei,j)

;

• Average Edge (AE):
∑

vj∈K(vi)
gain(ei,j)/|K(vi)|;

• Average Edge Cost Sensitive (AECS):
∑

vj∈K(vi)
gain(ei,j)
c(ei,j)

/|K(vi)|.

Since the performance of reduction strategies may depend on F , we treat them

as a tunable hyperparameter. To illustrate the impact of the reduction policy, we

consider the following analysis: starting from the same initial graph, a selection of

1000 subsets of size 40% of all nodes is obtained using a uniform random reduction

policy. We show the empirical distribution of the reward obtained by UCT with

different sampled subsets in Figure 4.4. Since the subset that is selected has an

important influence on performance, a reduction policy yielding high-reward subsets

is highly desirable (effectively, we want to bias subset selection towards the upper

tail of the distribution of obtained rewards).
3Learning a reduction policy in a data-driven way is also possible; however, obtaining the supervi-

sion signal (i.e., node rankings over multiple MCTS runs) is very expensive. Furthermore, since we
prioritise performance on specific graph instances over generalisable policies, simple statistics may be
sufficient. Still, a learned reduction policy that predicts an entire set at once may be able to identify
better subsets than individual statistics alone. Furthermore, a possible limitation of using a reduction
policy is that the optimal trajectory in the full MDP may be excluded. We consider these worthwhile
directions for future investigations.

4.3. Evaluation Protocol 109

0.1 0.2 0.3
R

0

10

E
st

.
D

en
si

ty

N = 25

F E

0.15 0.20 0.25 0.30
R

0

10

N = 50

0.20 0.25 0.30 0.35
R

0

20
N = 75

0.050 0.075 0.100
R

0

25

E
st

.
D

en
si

ty

F R

0.05 0.10 0.15
R

0

20

0.075 0.100 0.125 0.150
R

0

25

Figure 4.4: Empirical distribution of rewards obtained for subsets selected by a uniform
random φ.

Algorithm 1 Spatial Graph UCT (SG-UCT).
1: Input: spatial graph G0 = (V,E0, f, w), objective function F ,
2: edge budget b0, per-action simulation budget bsims, reduction policy φ
3: Output: actions A0, . . . AT−1

4: for v in V : compute K(v)
5: compute Φ = φ(G0) . apply reduction policy φ
6: t = 0, b0 = η

100 · c(E0), S0 = (G0, {∅}, b0)
7: rmax = −∞
8: bestActs = Array(), pastActs = Array()
9: loop

10: if |Aφ(St)| = 0 then return bestActs
11: create root node nroot from St
12: for i = 0 to bsims
13: nborder, treeActs = TreePolicy(nroot, Φ) . follow to border of current tree
14: r, outActs = MinCostPolicy(nborder, Φ) . cost-sensitive default policy
15: Backup(nborder, r)
16: if r > rmax then
17: bestActs = [pastActs, treeActs, outActs] . memoisation of the best trajectory
18: rmax = r
19: nchild = MaxChild(nroot)
20: Append(pastActs,GetAction(nchild))
21: t+ = 1
22: St = GetState(nchild)
23: return bestActs

4.3 Evaluation Protocol
Definitions of Space and Distance. For all experiments in this chapter, we consider

the unit 2D square as our space, i.e. we let Λ = [0, 1]× [0, 1] and the distance d be

Euclidean distance. In case the graph is defined on a spherical coordinate system (as

is the case with physical networks positioned on Earth), we use the WGS84 variant

of the Mercator projection to project nodes to the plane; then normalise to the unit

plane. We opt to project the coordinates onto a plane, rather than onto a unit sphere,

4.3. Evaluation Protocol 110

since the networks that we consider are at the geographical scale of a city or, at most,

a country, for which a plane is a reasonable local approximation. Projecting onto a

unit sphere would introduce more significant distortions. For simplicity, we consider

uniform weights, i.e., w(e) = 1 ∀ e ∈ E. The approach can be extended to networks

with heterogeneous weights by defining the action space at even timesteps as a

product between the set of valid nodes and the set of possible weight values, as well

as adopting an objective function that incorporates them as a drop-in replacement

(e.g., the formalisation of efficiency in [33]).

Table 4.1: Real-world spatial graphs
considered in the evaluation.

Dataset Graph |V | |E|

Internet Colt 146 178

GtsCe 130 169

TataNld 141 187

UsCarrier 138 161

Metro Barcelona 135 159

Beijing 126 139

Mexico 147 164

Moscow 134 156

Osaka 107 122

Synthetic and Real-World Graphs. As a means

of generating synthetic graph data, we use the

popular model proposed by Kaiser and Hilgetag

in [194], which simulates a process of growth

for spatial networks. Related to the Waxman

model [355], in this model the probability that a

connection is created is inversely proportional to

its distance from existing nodes. The distinguish-

ing feature of this model is that, unlike, e.g., the

random geometric graph [88], this model pro-

duces connected networks: a crucial character-

istic for the types of objectives we consider. We

henceforth refer to this model as Kaiser-Hilgetag (shortened KH). We use αKH = 10

and βKH = 10−3, which yields sparse graphs with scale-free degree distributions – a

structure similar to road infrastructure networks. We also evaluate performance on

networks belonging to the following real-world datasets, detailed in Table 4.1: Inter-

net (a dataset of internet backbone infrastructure from a variety of ISPs [212], which

display spatial characteristics due to their country-level scales) and Metro (a dataset

of metro networks in major cities around the world [296]). Due to computational

budget constraints, we limit the sizes of networks considered to |V | = 150.

Setup. For all experiments, we allow agents a modification budget equal to a per-

centage η of the total cost of the edges of the original graph, i.e., b0 = η
100 · c(E0). We

use η = 10. The parameter ρ controlling the range of possible connections takes the

value ρ = 1 for synthetic graphs and ρ = 2 for real-world graphs, respectively. This

4.3. Evaluation Protocol 111

is because the real-world networks tend to have comparatively fewer long-range con-

nections than the synthetic ones. Moreover, a value of ρ that is too low could prohibit

longer connections entirely in case they do not already exist in the seed network,

severely restricting the feasible solution space. Confidence intervals are computed

using results of 10 runs, each initialised using a different random seed. Rollouts are

not truncated. We allow a number of node expansions per move bsims equal to 20|V |
(a larger number of expansions can improve performance, but leads to diminishing

returns), and select as the move at each step the node with the maximum average

value (commonly referred to as MaxChild). Full details of the hyperparameter

selection methodology and the values used are provided in Appendix B.

Evaluation Metrics. We report the rewards obtained by the different approaches,

i.e., the difference in F between the final and initial graphs. This has the advantage

that the values are directly interpretable and correspond to the gain in the objective

function that can be obtained with a certain budget. We note that the relatively

small scale of the values reported in the tables and figures are due to the fact that

they represent differences in objective function values that range between [0, 1] for

efficiency and [1/N, 0.5] for robustness, as reported in Section 4.2.1.

Baselines. The baselines against which we compare are detailed below and represent

several prior methods discussed in Sections 2.3.1 and 2.3.2. All of the techniques,

including our proposed algorithm, solve the problem approximately, since no meth-

ods currently exist to solve the problem exactly beyond the smallest of graphs. We

do not consider previous RL-based methods such as that proposed in Chapter 3

directly, since they are unsuitable for training at the scale of the largest graphs taken

into consideration.

• Random (FE ,FR): Randomly selects an available action.

• Greedy (FE ,FR): A local search that selects the edge that gives the biggest improve-

ment in F : formally, it adds the edge e that satisfies argmaxe gain(e) to the graph

structure. This approach builds a shallow search tree of depth two, evaluating the

objective function for all leaf nodes.

• GreedyCS (FE ,FR): We also consider the cost-sensitive variant of the greedy local

search, for which the gain is offset by the cost: argmaxe
gain(e)
c(e) .

4.4. Evaluation Results 112

• MinCost (FE ,FR): Selects edge e that satisfies argmine c(e).

• LBHB (FE): Adds an edge between the node with Lowest Betweenness and

the node with Highest Betweeness; formally, letting the betweeness centrality of

node v be bw(v), this strategy adds an edge between nodes argmini bw(vi) and

argmaxj bw(vj), with i 6= j.

• LDP (FR): Adds an edge between the vertices with the Lowest Degree Product, i.e.,

vertices vi, vj that satisfy argmini,j . i 6=j deg(vi) · deg(vj).

• FV (FR): Adds an edge between vertices vi, vj satisfying argmaxi,j . i 6=j |yi − yj |,
where y is the Fiedler Vector [122, 348], and yi denotes the i-th element of y.

• ERes (FR): Adds an edge between vertices with the highest pairwise Effective

Graph Resistance, i.e., nodes vi, vj that satisfy argmaxi,j . i 6=j Ωi,j . Ωi,j is defined

as (L̃−1)i,i + (L̃−1)j,j − 2(L̃−1)i,j , where L̃−1 is the pseudoinverse of the graph

Laplacian L [350].

4.4 Evaluation Results

Our evaluation considers two dimensions of interest. In the first half of this section,

we examine the degree to which the proposed method and the baselines can optimise

the target objective. In the second half, we benchmark the computational time that the

various approaches need for finding a solution, a highly relevant practical concern.

4.4.1 Optimising Graph Structure

Synthetic Graph Results. In this experiment, we consider 50 KH graphs each of

sizes {25, 50, 75}. The results obtained are shown in the top half of Table 4.2. We

summarise our findings as follows: SG-UCT outperforms UCT and all other methods

in all the settings tested, obtaining 13% and 32% better performance than UCT on

the largest synthetic graphs for the efficiency and robustness measures respectively.

For FR, UCT outperforms all baselines, while for FE the performance of the Greedy

baselines is superior to UCT. Interestingly, MinCost yields solutions that are superior

to all other heuristics and comparable to search-based methods while being very

cheap to evaluate. Furthermore, UCT performance decays in comparison to the

baselines as the size of the graph increases.

4.4. Evaluation Results 113

Table 4.2: Gains in the values of the objective function F between the optimised and the
original graphs obtained by baselines, UCT, and SG-UCT on synthetic graphs.

Objective FE FR
|V | 25 50 75 25 50 75

Random 0.128±0.008 0.089±0.005 0.077±0.004 0.031±0.002 0.033±0.002 0.035±0.002

Greedy 0.298 0.335 0.339 0.064 0.078 0.074
GreedyCS 0.281 0.311 0.319 0.083 0.102 0.115
LDP — — — 0.049 0.044 0.040
FV — — — 0.051 0.049 0.049
ERes — — — 0.054 0.057 0.052
MinCost 0.270 0.303 0.315 0.065 0.082 0.099
LBHB 0.119 0.081 0.072 — — —
UCT 0.288±0.003 0.307±0.003 0.311±0.003 0.092±0.001 0.112±0.002 0.120±0.001

SG-UCT (ours) 0.305±0.000 0.341±0.000 0.352±0.001 0.107±0.001 0.140±0.001 0.158±0.000

Table 4.3: Gains in the values of the objective function F between the optimised and the
original graphs obtained by baselines, UCT, and SG-UCT on real-world graphs.

Random Greedy GreedyCS LDP FV ERes MinCost LBHB UCT SG-UCT
(ours)

F G Graph

FE Internet Colt 0.081±0.003 0.180 0.127 — — — 0.127 0.098 0.164±0.003 0.199±0.000

GtsCe 0.017±0.007 0.123 0.089 — — — 0.082 0.014 0.110±0.004 0.125±0.002

TataNld 0.020±0.004 0.106 0.082 — — — 0.078 0.015 0.102±0.003 0.110±0.002

UsCarrier 0.026±0.014 0.178 0.097 — — — 0.097 0.026 0.171±0.005 0.178±0.002

Metro Barcelona 0.020±0.005 0.071 0.063 — — — 0.063 0.003 0.067±0.002 0.076±0.000

Beijing 0.008±0.003 0.036 0.033 — — — 0.028 0.003 0.041±0.001 0.046±0.001

Mexico 0.007±0.002 0.037 0.035 — — — 0.032 0.011 0.037±0.001 0.041±0.000

Moscow 0.011±0.003 0.052 0.042 — — — 0.038 0.007 0.043±0.001 0.053±0.001

Osaka 0.017±0.005 0.097 0.082 — — — 0.082 0.010 0.093±0.003 0.102±0.000

FR Internet Colt 0.007±0.004 0.034 0.075 0.005 0.006 0.009 0.075 — 0.055±0.003 0.089±0.000

GtsCe 0.023±0.011 0.064 0.101 0.048 0.017 0.031 0.099 — 0.098±0.005 0.155±0.003

TataNld 0.017±0.010 0.043 0.083 0.011 -0.002 0.013 0.074 — 0.093±0.006 0.119±0.002

UsCarrier 0.010±0.004 0.078 0.060 0.035 0.038 0.033 0.041 — 0.085±0.007 0.125±0.003

Metro Barcelona 0.020±0.007 0.057 0.073 0.010 0.009 0.036 0.071 — 0.076±0.004 0.115±0.002

Beijing 0.004±0.004 0.014 0.054 0.003 0.002 0.001 0.037 — 0.055±0.003 0.062±0.001

Mexico 0.007±0.004 0.040 0.043 0.003 0.005 0.011 0.038 — 0.051±0.002 0.068±0.001

Moscow 0.013±0.005 0.072 0.057 0.033 0.042 0.034 0.031 — 0.090±0.003 0.109±0.002

Osaka 0.003±0.006 0.042 0.064 0.008 0.011 0.015 0.064 — 0.066±0.004 0.072±0.001

Real-world Graph Results. The results obtained for real-world graphs are shown

in Table 4.3. As with synthetic graphs, we find that SG-UCT performs better than

UCT and all other methods in all settings tested. The aggregated differences in

performance between SG-UCT and UCT are 10% and 39% forFE andFR respectively.

Ablation Study. Since SG-UCT comprises three components that are active at the

same time as defined in Section 4.2.3, we conduct an ablation study on synthetic

graphs in order to assess their impact. To achieve this, we consider standard UCT

and enable each of the three components in turn, measuring the performance of the

algorithm. The obtained results are shown in Table 4.4, in which the results for each

component are separated by the horizontal lines. SG-UCTBTM denotes UCT with Best

4.4. Evaluation Results 114

Table 4.4: Ablation study that examines the impact of the three components of SG-UCT
by enabling each of them separately in standard UCT. The components are Best Trajectory
Memoisation, the MINCOST simulation policy, and the various choices of a reduction policy.
The results are separated by horizontal lines. Each value represents the gain in the value of
the objective function F between the optimised and the original graphs.

Objective FE FR
|V | 25 50 75 25 50 75

UCT 0.288±0.003 0.307±0.003 0.311±0.003 0.092±0.001 0.112±0.002 0.120±0.001

SG-UCTBTM 0.304±0.001 0.324±0.002 0.324±0.002 0.106±0.001 0.123±0.001 0.128±0.001

SG-UCTMINCOST 0.299±0.001 0.327±0.001 0.333±0.001 0.105±0.001 0.131±0.001 0.153±0.001

SG-UCTRAND-80 0.284±0.005 0.305±0.003 0.303±0.003 0.091±0.001 0.111±0.001 0.119±0.001

SG-UCTRAND-60 0.271±0.007 0.288±0.004 0.288±0.003 0.089±0.003 0.107±0.002 0.115±0.002

SG-UCTRAND-40 0.238±0.009 0.263±0.005 0.271±0.003 0.083±0.001 0.102±0.002 0.110±0.002

SG-UCTDEG-40 0.237±0.003 0.262±0.003 0.255±0.002 0.069±0.001 0.086±0.001 0.092±0.001

SG-UCTID-40 0.235±0.002 0.268±0.001 0.283±0.001 0.094±0.001 0.114±0.001 0.124±0.001

SG-UCTNC-40 0.234±0.003 0.268±0.002 0.262±0.003 0.071±0.001 0.087±0.002 0.092±0.001

SG-UCTBE-40 0.286±0.002 0.304±0.002 0.297±0.001 0.088±0.001 0.108±0.001 0.115±0.001

SG-UCTBECS-40 0.290±0.001 0.316±0.001 0.319±0.002 0.097±0.001 0.115±0.001 0.121±0.001

SG-UCTAE-40 0.286±0.002 0.302±0.003 0.297±0.002 0.088±0.001 0.103±0.001 0.114±0.001

SG-UCTAECS-40 0.289±0.001 0.317±0.001 0.319±0.002 0.098±0.001 0.117±0.001 0.126±0.001

Trajectory Memoisation, SG-UCTMINCOST denotes UCT with the cost-based default

policy, SG-UCTφ− q for q in {40, 60, 80} denotes UCT with a particular reduction

policy φ, and q represents the percentage of original nodes that are selected by φ.

0.15

0.20

0.25

0.30

M
ea

n
R

ew
ar

d
F E

0 10 20
β

0.10

0.12

0.14

0.16

M
ea

n
R

ew
ar

d
F R

N

25

50

75

Figure 4.5: Average reward for SG-
UCTMINCOST as a function of β, which
suggests that a bias towards low-cost
edges is beneficial.

We find that BTM indeed brings a net im-

provement in performance: on average, 5% for

FE and 11% for FR. The benefit of the cost-

based default policy is substantial (especially

for FR), ranging from 4% on small graphs to

27% on the largest graphs considered, and in-

creases the higher the level of bias. This is

further evidenced in Figure 4.5, which shows

the average reward obtained as a function of

β. This illustrates that the cost-based simula-

tion policy yields the largest gains in the value

of the objective function out of all the three al-

gorithmic components. In terms of reduction

policies, even for a random selection of nodes,

we find that the performance penalty paid is

comparatively small: a 60% reduction in ac-

4.4. Evaluation Results 115

Table 4.5: Representative wall clock time for the algorithms measured in hours, minutes,
and seconds on real-world graphs.

Random Greedy GreedyCS LDP FV ERes MinCost LBHB UCT SG-UCT
(ours)

F G Graph

FE Internet Colt <00:01 0:20:50 1:19:05 — — — 0:00:02 0:00:02 0:51:10 1:30:15
GtsCe <00:01 0:18:06 0:37:23 — — — 0:00:01 0:00:01 0:33:35 1:01:22

TataNld <00:01 0:11:26 0:34:25 — — — 0:00:01 0:00:01 0:42:12 0:53:47
UsCarrier <00:01 0:06:08 0:14:45 — — — <00:01 <00:01 0:26:20 0:38:11

Metro Barcelona <00:01 0:03:22 0:07:11 — — — <00:01 0:00:01 0:23:05 0:26:45
Beijing <00:01 0:01:52 0:04:09 — — — <00:01 <00:01 0:15:32 0:18:44
Mexico <00:01 0:01:58 0:03:08 — — — <00:01 0:00:02 0:16:44 0:24:08
Moscow <00:01 0:03:00 0:05:44 — — — <00:01 0:00:01 0:15:03 0:22:57
Osaka <00:01 0:01:38 0:02:32 — — — <00:01 <00:01 0:13:23 0:14:49

FR Internet Colt <00:01 0:11:39 2:35:10 <00:01 <00:01 <00:01 0:00:03 — 0:37:19 1:27:04
GtsCe <00:01 0:08:16 1:11:32 <00:01 <00:01 <00:01 0:00:01 — 0:30:51 1:43:39

TataNld <00:01 0:07:24 1:06:12 <00:01 <00:01 <00:01 0:00:01 — 1:05:55 1:41:43
UsCarrier <00:01 0:06:50 0:37:12 <00:01 <00:01 <00:01 0:00:01 — 0:31:19 1:11:30

Metro Barcelona <00:01 0:04:00 0:16:59 <00:01 <00:01 <00:01 <00:01 — 0:30:40 0:50:20
Beijing <00:01 0:01:03 0:09:55 <00:01 <00:01 <00:01 <00:01 — 0:26:54 0:33:05
Mexico <00:01 0:02:53 0:09:08 <00:01 <00:01 <00:01 <00:01 — 0:31:12 0:59:55
Moscow <00:01 0:03:23 0:13:37 <00:01 <00:01 <00:01 <00:01 — 0:30:11 0:31:49
Osaka <00:01 0:01:42 0:06:30 <00:01 <00:01 <00:01 <00:01 — 0:14:46 0:22:22

tions translates to at most 15% reduction in performance, and as little as 5%; the

impact of random action reduction becomes smaller as the size of the network grows.

The best-performing reduction policies are those based on a node’s gains, with BECS

and AECS outperforming UCT with no action reduction. For the FR objective, a

poor choice of bias can be harmful: prioritising nodes with high degrees leads to a

32% reduction in performance compared to UCT, while a bias towards lower-degree

nodes is beneficial.

4.4.2 Running Time and Scalability

An important aspect to consider is the computational time needed to decide which

edges to add. The wall clock time for a complete run of the algorithms on the real-

world graphs is shown in Table 4.5 and is measured on a single core of an Intel Xeon

E5-2630 v3 (2014) processor.

A distinction between heuristic and search-based methods is immediately appar-

ent. The former category of methods, which do not evaluate the objective function

directly but instead rely on local node statistics or spectral properties, result in tim-

ings that do not exceed a few seconds and often complete their evaluation within

a second. On the other hand, the latter category, comprising the greedy and tree

search variants, require larger timescales. Within this category, the cost-sensitive

methods (GreedyCS and SG-UCT) typically require more time with respect to their

cost-agnostic counterpart. This is due to longer action sequences resulting in more

4.4. Evaluation Results 116

25 50 75 100 125 150 175 200

101

103

105
Total seconds

F E

25 50 75 100 125 150 175 200
10−1

100

101

102

Mean seconds per step

25 50 75 100 125 150 175 200

103

104

105

106

Total F evaluations

25 50 75 100 125 150 175 200

102

103

Mean F evaluations per step

25 50 75 100 125 150 175 200

N

101

103

105

F R

25 50 75 100 125 150 175 200

N

10−1

100

101

102

25 50 75 100 125 150 175 200

N

103

104

105

106

25 50 75 100 125 150 175 200

N

102

103

Greedy

GreedyCS

SG-UCT

UCT

Figure 4.6: Wall clock time (leftmost two columns) and number of objective function evalua-
tions (rightmost two) used by the different algorithms on synthetic graphs.

edges being added and hence more simulations being performed, as well as the

overheads needed for computing distances and using them to weight edge choices.

In order to further probe the scaling behaviour of the search-based approaches,

we carry out an additional experiment using synthetic KH graphs of sizes between

N = 25 and N = 200. Each column in Figure 4.6 represents a different metric for the

Greedy and UCT variants; namely: the total and mean wall clock time per search step,

as well as the total and mean number of objective function evaluations. As shown

in the third panel, it is indeed the case that the cost-sensitive searches typically

perform more objective function evaluations, an aspect that is reflected in their

total wall clock timings (first panel). Furthermore, the UCT variants are noticeably

slower on the smaller graphs, an aspect that is explained by the increased number of

simulations compared to the greedy searches. Nevertheless, an advantage of UCT

is that the user is able to specify a budget in terms of number of simulations that

suits their requirements, different from the 20N simulations used throughout our

experiments as reported in Section 4.3. On the largest graphs, the greedy approaches

begin performing more objective evaluations per step (fourth panel), and hence the

wall clock timings per search step are also smaller (second panel), becoming nearly

identical to the UCT variants on the largest of graphs. This is due to the fact that

the Greedy approaches need to consider O(|V |)2 actions at each step compared to

4.4. Evaluation Results 117

the O(|V |) required by UCT and SG-UCT, and this difference begins to manifest at

larger scales.

Let us now revisit the claim in Section 4.1 regarding superior scalability with

respect to prior RL methods, which require training a model before it can be used

to improve a particular network. Namely, in Chapter 3, we have reported a wall

clock time that is equivalent to 56 hours of a single core of a comparable CPU to

train a model on graphs of size N = 20. Due to the complexity of the problem, we

did not train models directly beyond graphs with N = 50. In contrast, on similar

computational infrastructure, the SG-UCT method proposed in this chapter requires

11 hours on average to optimise a much larger graph with N = 200 nodes. Hence, in

cases in which we are interested in improving a particular network, our proposed

method yields an important improvement in scalability by sidestepping the cost of

model training altogether.

Given the timings above, we expect our method to be applicable out-of-the-box to

graphs with several hundreds of nodes. Practically speaking, further improvements

in the speed and performance of the algorithm can be obtained by implementing it

fully in a low-level programming language (in the reference implementation, the

core algorithm is implemented in Python and the objective functions, the main speed

bottleneck, are implemented in C++). It is possible to speed up the computation of

the objective functions by exploiting their incremental structure (see Footnote 2 in

this chapter), using cheaper proxy quantities (i.e., the various spectral indicators

of resilience, which can circumvent needing to run simulations), or learning an

approximate model of such global processes. Root and leaf parallelisation in Monte

Carlo Tree Search [51] can also be employed to speed up individual runs. Beyond this

scale, it may be necessary to consider different levels of abstraction (for example, by

treating the problem hierarchically). Due to the inherent difficulty of combinatorial

optimisation problems, current solutions are generally limited to this scale.

We also remark that there naturally exists a trade-off between the computational

cost of the methods and their ability to improve the values of the given objective

function. Namely, the heuristic approaches can be evaluated very quickly but yield

smaller performance improvements (in terms of the values of the objective function)

compared to the search-based methods, which require more computational time.

4.5. Discussion 118

However, the type of infrastructure networks (such as road, rail or wired communi-

cation networks) motivating our work are very expensive to build in the real world.

We argue that finding a solution as close as possible to optimality is worthwhile,

since the cost of additional simulations would be negligible compared to that of

laying down roads or tracks characterised by sub-optimal layouts in the real world.

4.5 Discussion
Given our formulation of goal-directed graph construction in spatial networks as

a combinatorial optimisation problem, we note that other generic optimisation al-

gorithms can in principle be used. The Greedy baselines are local searches over

a horizon of two actions, in effect constructing a shallow search tree in which the

objective function is evaluated for all the leaf nodes. Approaches such as branch-

and-bound share some similarities since they also construct a tree of the solution

space. However, to the best of our knowledge, no meaningful bounding criteria exist

for the considered objectives. In such cases, branch-and-bound degenerates to an

Exhaustive Search, which is infeasible beyond the smallest of graphs.

Our work is also related to a large body of prior work in network design and

optimisation [7] that were previously discussed [273, 364, 105]. Another important

class of approaches for network design is based on the concept of spanner of a graph,

i.e., a subgraph of the given graph in which the length of any path does not exceed a

given threshold. Such methods have found applications in designing communication

networks [239, 163]. However, none of the methods are applicable in our setting

given their focus on very specific problem definitions.

More broadly, works in the operations research literature formulate the problem

under consideration as a mathematical program on a case-by-case basis, for which

highly optimised combinatorial solvers can be applied. In contrast, our method is

generic and makes no assumptions about the objective at hand. In principle, any

objective function defined on a spatial graph is admissible, allowing our method

to optimise for complex, non-linear objectives that may arise in the real world (the

resilience of the network to targeted attacks is one example of such a non-linear

objective). Hence, our approach has the potential to be used for many more real-

world problems, and can be applied to objectives for which no exact algorithms are

currently known.

4.6. Summary 119

Necessarily, the generic nature of our method means that it may perform worse

on certain specific problems, for example those with linear constraints and objectives.

The trade-offs arising from the use of generic ML and decision-making algorithms

are a topic of ongoing debate in the combinatorial optimisation community [31],

and we view these classes of methods as complementary.

4.6 Summary
In this chapter, we have addressed the problem of optimising the structure of spatial

graphs, proposing a positive answer to RQ1 that is complementary to the contribu-

tions of Chapter 3. Namely, given an initial spatial graph, a budget defined in terms

of edge lengths, and a global objective, we have aimed to find a set of edges to be

added to the graph such that the value of the objective is maximised. For the first

time, we have formulated this task as a deterministic Markov Decision Process that

accounts for how the spatial geometry influences the connections and organisational

principles of real-world networks. Building on the UCT framework, we have consid-

ered several aspects that characterise this problem space and proposed the Spatial

Graph UCT (SG-UCT) algorithm to address them.

Our approach brings an important improvement in scalability with respect to the

approach in Chapter 3 for goal-directed graph construction, both in terms of network

size that the method can operate on, as well as reduced computational cost. The

much-desired gains in scalability expressed in RQ3 are obtained through the use of

planning methods that do not require training, alongside realistic feasible reductions

in the action space. Our evaluation results show performance that is substantially

better than UCT (24% on average and up to 54% in terms of a robustness measure)

and all existing baselines taken into consideration, while requiring a computational

budget similar to other search-based methods (RQ2).

We hope that our work will be used by infrastructure designers and urban

planners as a basis for the design of more cost-effective infrastructure systems such

as communication, power, transportation, and water distribution networks. Even

though we have treated an idealised version of such network design scenarios, we

consider that the flexibility of decision-making frameworks to accommodate realistic

constraints and objectives holds great promise in this problem space.

Chapter 5

Solving Graph-based Public Goods Games

with Tree Search and Imitation Learning

In this chapter, we turn our attention beyond graph structure to finding a

Maximal Independent Set of nodes that maximises an objective function. In

pursuit of a data-driven approach, we define an MDP that incrementally

generates an mIS, and adopt a planning method to search this solution

space, outperforming existing methods. Furthermore, we devise a graph

Imitation Learning technique that uses search demonstrations to obtain a

GNN parametrised policy, which generalises to unseen problem instances

while being substantially faster to evaluate.

As an application scenario, we consider a class of Public Goods Games

on networks. They represent insightful settings for studying incentives for

individual agents to make contributions that, while costly for each of them,

benefit the wider society. We adopt the perspective of a central planner

with a global view of a network of self-interested agents and the goal of

maximising some desired property for a Nash Equilibrium of the networked

best-shot Public Goods Game. By exploiting the correspondence between

equilibria and mISs, we are able to find desirable configurations efficiently.

5.1 Introduction

In a Public Goods Game, individuals can choose to invest in an expensive good (paying

a cost), with benefits being shared by wider society [226]. It is a form of N -party

social dilemma that has been used to study the tension between decisions that

5.1. Introduction 121

benefit the individual and the common good [215]. Aspects characteristic to public

goods are observed in many important societal problems such as meeting climate

change targets [201, 249], the dynamics of research and innovation [186], the design

of effective vaccination programs [127], and, more generally, situations in which

contributions are non-excludable. The analysis of this class of games is related to

ongoing efforts to study cooperation in multi-agent systems as a means of driving

progress on societal challenges [84].

The best-shot PGG is a variant in which investment decisions are binary and

agents benefit if either they or a neighbour own the good [167]. Since patterns of

connections along social and geographical dimensions in networks are known to

shape individual decision-making [46, 147], a natural restriction is to limit the impact

of contributions to an agent’s neighbours. Graph-based best-shot Public Goods

Games exhibit multiple Pure Strategy Nash Equilibria [90]. Given this multiplicity, a

natural question that arises is how to compute equilibria that satisfy some properties,

a task known to be NP-complete in general for multiplayer games [143, 78]. Examples

of desirable equilibria are those that maximise the social welfare (total utility) of

agents or those with a high degree of fairness in terms of contributions. For graph-

based best-shot PGGs, it has been shown that each equilibrium corresponds to an

mIS [46]: a set of vertices of maximal size in which no two nodes are adjacent. Since

enumerating mISs to identify desirable equilibria quickly becomes unfeasible for

non-trivially sized graphs, practical alternatives are needed for larger graphs.

Towards this goal, Dall’Asta et al. [90] proposed a centralised algorithm based

on Best-Response dynamics that converges to the optimal equilibrium (with respect

to social welfare) in the limit of infinite time, and suggested a tractable simulated

annealing alternative. Levit et al. [230] proved that the general version of the best-

shot PGG is a potential game and derived an algorithm for finding equilibria based

on side payments, which are used by agents that are unhappy with their outcome

to convince neighbours to switch. While superior results were obtained over Best-

Response dynamics, there is still a wide gap between the equilibria found by this

approach and optimal equilibria as found by Exhaustive Search on small graphs.

Furthermore, current methods cannot optimise for criteria other than social welfare.

The contributions of this chapter are two-fold and can be summarised as follows.

5.1. Introduction 122

...

...

...

()

a) Collection of demonstrations by

Monte Carlo Tree Search policy

b) Training of GNN-parametrised

policy by Imitation Learning

c) Use of IL policy to quickly

predict on unseen game instances

Figure 5.1: Schematic of our approach for finding desirable equilibria in the graph-based
best-shot game. (a) We exploit the correspondence between agents acquiring the public
good in equilibria (pictured in dark blue above) and the mIS substructure of graphs. We
define an MDP that incrementally grows an independent set until it is maximal, and use
MCTS to plan in this MDP in order to find desirable equilibrium configurations of the game.
(b) We propose a Graph Imitation Learning method which uses demonstrations of the MCTS
policy π to learn a policy π̂ parametrised by a GNN. (c) We use π̂ to find optimal equilibrium
configurations on unseen instances of the game.

Firstly, we propose to take advantage of the connection between equilibria in this class

of games and mISs. This relationship allows us to define an MDP that incrementally

generates an mIS to optimise a desired property; thus, every configuration found

is, by construction, an equilibrium of the game.1 We adopt a variant of the Monte

Carlo Tree Search algorithm for planning in this MDP. On small graphs, where an

exhaustive enumeration of equilibria can be performed, the best outcomes found by

this method are matched in most settings. On larger graphs, existing methods are

outperformed, especially in cases in which the costs for acquiring the public good

differ among players.

Secondly, we devise a way to learn the structure of the solutions found by

the planning algorithm based on Imitation Learning, such that predictions can be

obtained on unseen game instances without repeating the search process. Specifically,

we use a dataset of demonstrations of the search in order to learn a GNN parametrised

policy through Imitation Learning, a procedure we call Graph Imitation Learning (GIL).

The resulting policy is able to achieve 99.5% of the performance of the search method

while being approximately three orders of magnitude quicker to evaluate and even

exceeding the performance of the original search in some cases. This method is

1We highlight the difference between Maximal Independent Set and Maximum Independent Set. A
Maximal IS (mIS) is an IS that is not a proper subset of another IS. A Maximum IS (MIS) is an mIS of
the largest possible size. In PGGs, an MIS may not be a desirable equilibrium, since it involves many
players expending the cost.

5.2. Methods 123

applicable beyond this class of networked Public Goods Games, i.e., to a variety of

graph-based decision-making problems in which a model of the MDP is available

and the goal is to maximise a graph-level objective function.

5.2 Methods
In this section, we first discuss some preliminary notions regarding network games,

and formalise the problem we set out to address. Subsequently, we introduce our

proposed method which, in contrast with previous approaches, directly exploits the

relationship between equilibria of this game and the mIS property. We assume that

a central planner, with a global view of the graph, seeks to find optimal outcomes of

this game. To this end, we formulate the construction of a mIS as an MDP, in which

an agent incrementally builds an independent set, receiving a reward signal based

on the objective F once the independent set is maximal. To plan in this MDP, we

use the UCT algorithm. We also describe an Imitation Learning procedure based

on Behavioural Cloning [284] that can be used to learn a generalisable model of

equilibrium structure by mimicking the moves of the search. This policy can be

evaluated rapidly on new instances of the game without performing a new search.

Our method is illustrated in Figure 5.1 and detailed below.

5.2.1 Preliminaries and Problem Statement

Game Definition. A networked, best-shot Public Goods Game takes place over an

undirected, unweighted graph G = (V,E) with no self-loops. Each vertex in V =

{v1, v2, . . . vN} represents one of the players, while edges E capture the interactions

between agents in the game. Each player chooses an action av ∈ Av, where Avi =

{0, 1} denotes the action space of player vi.2 We let action 1 denote investment

in the public good by the agent and 0 denote non-investment. An action profile

a = [av1 , . . . , avN] captures the choices of all players, andAv1 ×Av2 ×· · ·×AvN is the

set of all possible action profiles. We use a−v to refer to actions of all other players

except v, and I(a) to denote the set of all players that play action 1 in action profile

a. Investment in the public good carries a cost c(v) ∈ (0, 1) for each player v. We

use the terms identical cost (IC) to refer to the setting in which costs are the same for

all players, and heterogeneous cost (HC) to refer to that in which costs are different

2Note that we use superscripts to indicate the actions of the players, and the subscript remains
reserved for the timestep used in the single-agent RL notation.

5.2. Methods 124

between players. We let c = [c(v1), . . . , c(vN)].

We also define, for each player vi, the neighbourhood N (vi) that contains all of

its adjacent players, i.e., N (vi) = {vj ∈ V |ei,j ∈ E}. The utility function U(vi,a) for

player vi under an action profile a is defined as:

U(vi,a) =


1− c(vi), if avi = 1

1, if avi = 0 ∧ ∃vj ∈ N (vi) . a
vj = 1

0, if avi = 0 ∧ ∀vj ∈ N (vi) . a
vj = 0

(5.1)

We are interested in Pure Strategy Nash Equilibrium solutions, since there

are no mixed strategy equilibria in this game [46]. A pure strategy is a complete,

deterministic description of how a player will play the game. An action profile is

a PSNE if all players would not gain higher utility by changing their action choice,

given the actions of the other players. Formally, a ∈ Av1 × Av2 × · · · × AvN is a

PSNE if and only if U(vi, a
vi ,a−vi) ≥ U(vi, a

′,a−vi) ∀vi ∈ V, a′ ∈ Avi . The tuple

(G, c) defines an instance of this game. We let the set E denote all Pure Strategy Nash

Equilibria of a game instance.

Problem Statement. We formulate our problem as follows: given a game instance

(G, c) and an objective function F : E → [0, 1], the goal is to find the PSNE for which

F is maximised; concretely, finding a that satisfies argmaxa∈E F(a).

What constitutes a desirable equilibrium in this game? From a utilitarian per-

spective, a desirable equilibrium is one that maximises the social welfare of agents. We

define the FSW (a) objective as below, normalising by the number of players N so

that games of different sizes are comparable:

FSW (a) =

∑
i U(vi,a)

N
(5.2)

A further desirable characteristic is global fairness, or equality between players’

utilities. Letting abs() denote absolute value, we define the fairness objective FGF (a)

as the complement of the Gini coefficient, a measure of inequality:

5.2. Methods 125

FGF (a) = 1−
∑

i

∑
j abs(U(vi,a)− U(vj ,a))

2N
∑

j U(vj ,a)
(5.3)

Maximal Independent Sets. A subset of vertices I ⊆ V is an independent set of the

graphG = (V,E) if none of the vertices in the set are adjacent to each other. Formally,

∀vi, vj ∈ I s.t. i 6= j . ei,j /∈ E. An mIS is an independent set that is not a proper

subset of any other independent set. Bramoullé and Kranton [46] have proven a

bidirectional correspondence between the set of players playing 1 in equilibria of the

networked best-shot PGG and mISs. Thus, one way of finding desirable equilibria

that is faster than considering all 2N action profiles could be to enumerate all mISs.

However, the best known family of algorithms [49] for this task has worst-case

running time O(3N/3), which makes this impractical beyond very small graphs.

5.2.2 MDP Definition

agent that acquires public good

neighbour able to access it cost-free

Figure 5.2: Illustration
of the proposed MDP.

The MDP we propose is defined below and illustrated in

Figure 5.2. Note that it is formulated from the perspective of

a central planner that acts on the agent society. In particular,

the actions a that are mentioned in the remainder of this

section refer to the actions of this principal agent.

States S . A state St is a tuple (G, It) formed of the graph and

independent set It, with I0 = ∅.

Actions A. Actions correspond to selecting the index of a

node that is not currently in the independent set. We define

available actions as A(St) = {select i | vi ∈ V \
⋃
vj∈It N (vj) }, i.e., nodes currently

in the independent set and all their neighbours are excluded.

Transition function P . Transitions are deterministic and correspond to the addition

of a node to the independent set. Concretely, given that the agent selects node va at

time t− 1, the next state is defined as (G, It), where It = It−1 ∪ {va}.

Reward function R. Rewards depend on the objective function F considered (con-

cretely, FSW or FGF), and are provided once an mIS is constructed, with all other

intermediate rewards being 0.

Terminal. Episodes proceed until the agent has finished constructing an mIS.

5.2. Methods 126

5.2.3 Collection of Demonstrations by Monte Carlo Tree Search

Since the MDP formulation above fully describes the transition and reward functions

of this MDP, we may use model-based planning algorithms in order to plan an

mIS that maximises the desired objective. Concretely, we opt for the UCT [213]

variant of the Monte Carlo Tree Search algorithm, which has proven to be an effective

framework in a wide variety of decision-making problems. Recall that, as described

in Section 2.5.5, the UCT algorithm selects the child node corresponding to action a

that maximises

UCT (s, a) = r̄a + 2εUCT

√
2 lnC(s)

C(s, a)
, (5.4)

where r̄a is the mean reward observed when taking action a in state s, C(s) is the

visit count for the parent node, C(s, a) is the number of child visits, and εUCT is a

constant that controls the level of exploration [213]. We use the UCT policy π to

collect demonstrations using a set of training game instances Gtrain, each of which

contains N players. This process is illustrated in Figure 5.1a. We let DN denote

this dataset of demonstrations. Each demonstration is effectively a datapoint and is

composed of a tuple (St,A(St), N,v), where:

• St represents the state from which the move is executed (i.e., for the mIS

problem, the underlying graph G and the current independent set It);

• A(St) represents the valid actions available at the state (i.e., it contains nodes

that are not currently in It or are a neighbour of any node in It);

• N is the number of nodes (players);

• v is a vector of size |A(St)|, where each entry is equal to C(St, a), for each valid

action a ∈ A(St). This represents the number of visits of the search policy

from the root state St to each of the possible actions a. Given that C(St) =∑
a∈A(St)

C(St, a), the empirical policy is then estimated as π(a|St) = C(St,a)
C(St)

.

5.2.4 Graph Imitation Learning

Policy parametrisation. The main disadvantage in using planning algorithms is

that predictions are expensive to obtain for new game instances. To mitigate this, we

explore the possibility of learning a policy π̂ parametrised by a GNN – specifically,

5.2. Methods 127

structure2vec [85]. Recall, as described in Section 2.4.3, that it produces an embedding

vector hvi for each vertex vi ∈ V that captures the structure of the graph as well as

interactions between neighbours. This is achieved in several rounds of combining

the features of a node with an aggregation of its neighbours’ features according to

weight matricesW1 andW2, to which an activation function is applied. Permutation-

invariant embeddings for the state St can be derived by summing the node-level

embeddings: h(St) =
∑

vi∈V hvi . We use initial node features xvi corresponding to

a one-hot encoding that captures whether the node is in the independent set, i.e.,

xvi = [1, 0] if vi ∈ It and xvi = [0, 1] otherwise.

An important challenge in this setting is that, at any timestep, a significant

number of actions are unavailable. Thus, choosing to have the output layer consist

of a softmax layer with one unit per vertex in V is wasteful. In addition, such an

architecture is sensitive to node relabelling and not transferable to other graphs. We

thus consider a different approach: we make the final layer of the policy network

output a proto-action ψ(St) = W3 ReLU (W4 h(St)). Then, in order to obtain proba-

bilities for each action a, we measure the Euclidean distances d(a, ψ(St)) between the

proto-action and the embeddings of all available actions, normalised using a softmax

with temperature τGIL. This allows us to compute probabilities for all possible actions

in a single forward pass. Let Θ = {Wi}4i=1 denote the full set of parameters for the

policy π̂Θ. Formally:

π̂Θ(At|St) =
exp(d(xvAt , ψ(St))/τGIL)∑

a∈A(St)
exp(d(xva , ψ(St))/τGIL)

(5.5)

Loss Term. For training the policy network, we minimise the KL divergence between

the distribution of the policy network and the empirical distribution formed by the

number of child visits [11], i.e.,

L(Θ) = −
∑

a∈A(s)

C(s, a)

C(s)
log(π̂Θ(a|s)) (5.6)

Training Strategies. We consider several training strategies for obtaining a model

for a target sizeN of game instances (i.e., games in which there areN players). Since

the structure of equilibria for increasingly large number of players are potentially

5.3. Evaluation Protocol 128

more complex (i.e., we have to deal with larger graphs), we also consider whether

training additionally on smaller graphs (thus simpler examples) brings a generalisa-

tion benefit. We employ curriculum learning, a methodology successful in a variety

of ML settings [30, 377], and compare against training only on the target size as

well as mixing the examples of different sizes instead of constructing a curriculum.

Concretely, we consider the following training strategies, noting that validation is

performed on the target size N :

• separate: train only on examples from DN ;

• mixed: train on examples from
⋃
k≤N Dk;

• curriculum: carry out the training in several epochs, at each epoch considering

only examples from Dk, with each value k ≤ N considered in ascending order.

We learn the parameters Θ as well as the softmax temperature τGIL in an end-

to-end fashion. When evaluating this policy, we use greedy action selection. Our

method, which we refer to as Graph Imitation Learning, is illustrated in Figure 5.1b. A

pseudocode description is given in Algorithm 2. We note that the presentation of

the algorithm is independent of the specific MDP model used.

5.3 Evaluation Protocol
Game Instances. To evaluate our approach and all baselines, we create instances

of network games over graphs with a number of players N ∈ {15, 25, 50, 75, 100}.
For each size and each underlying graph model, we generate: 103 training instances

Gtrain; 102 validation instances Gvalidate used for hyperparameter optimisation; and

102 test instances Gtest. To set costs c, in the IC case we fix c(vi) = 1/2, ∀vi ∈ V ,

while for HC we consider costs uniformly sampled in (0, 1). To create the underlying

graphs G over which the game is played, we use the following synthetic models:

• Erdős–Rényi (ER): A graph sampled uniformly out of all graphs with N nodes

and mER edges [114]. We use mER = 20
100 ·

N ·(N−1)
2 , which represents 20% of

all possible edges.

• Barabási–Albert (BA): A growth model whereN nodes each attach preferentially

to mAB existing nodes [19]. We use mAB = 2.

5.3. Evaluation Protocol 129

Algorithm 2 Graph Imitation Learning (GIL).

1: procedure GIL(Gtrain,Gvalidate)
2: Θ = initParams() . Randomly initialise policy π̂ and underlying GNN.
3: D = collectDataset(Gtrain)
4: while true do
5: batch = sampleBatch(D)
6: update Θ by SGD(batch,L) . See Equation 5.6 for loss term.
7: checkStoppingCriterion(π̂,Gvalidate) . Evaluate policy on held-out set.
8: return policy π̂

9: procedure collectDataset(Gtrain)
10: for G in Gtrain do
11: t = 0
12: St = initState(G)
13: while |A(St)| > 0 do
14: St+1, At,dem = runMCTS(St) . Collect demonstration & plan action.
15: D = D ∪ {dem} . Add demonstration to dataset.
16: t+ = 1

17: return D

18: procedure runMCTS(s)
19: create root node nroot from s
20: for i = 0 to bsims do
21: nborder = TreePolicy(nroot)
22: r = RandomDefaultPolicy(nborder)
23: Backup(nborder, r) . Backup reward (proportional to objective F).
24: v = Array()
25: for a in A(s) do . Construct vector of visit counts for all actions.
26: Append(v, C(s, a))

27: nchild = RobustChild(nroot)
28: snext, anext = GetState(nchild), GetAction(nchild)
29: dem = (s,A(s), N,v)
30: return snext, anext,dem

5.3. Evaluation Protocol 130

• Watts–Strogatz (WS): A model designed to capture the small-world property

found in many social and biological networks, which generates networks with

high clustering coefficient [354]. Starting with a regular ring lattice withN ver-

tices with kWS edges each, edges are rewired to a random node with probability

pWS. We use kWS = 2 and pWS = 0.1.

Baselines. We compare to the following baselines:

• Exhaustive Search (ES): Select the PSNE that maximises the objective out of

2N possible action profiles. Only applicable on very small graphs due to its

computational complexity.

• Best-Response (BR): In the graph-based best-shot PGG, Best-Response converges

to a PSNE [230]. We start from a randomly selected action profile, allow the

agents to iteratively play Best-Response, and measureF once a PSNE is reached.

• Payoff Transfer (PT): The method of Levit et al. [230] modifies the definition of

utilities in this game to include an additional term that represents a payoff. The

distributed procedure they propose enables agents to convince their neighbours

to switch their action by providing a payoff. As with BR, we start from a

randomly selected action profile, and measure F once a PSNE is reached. Even

though the PSNEs reached do not necessarily correspond to mISs, we evaluate

the objective functions by considering the utilities of the players.

• Simulated Annealing (SA): The method proposed by Dall’Asta et al. [90] works

by randomly selecting an agent playing 0, incentivising them to switch their

action to 1, then iterating on the BR rule. The new PSNE reached is either

accepted or rejected based on a simulated annealing rule with a certain tem-

perature parameter τSA. In the limit of infinite time, this method converges to

the optimal Nash Equilibrium in terms of social welfare in the IC case.

We also consider the additional baselines listed below, which exploit the mIS

connection. We note that TH and TLC have not been considered in prior work but

are potentially effective heuristics.

• Random: Incrementally construct an mIS by randomly picking, at each step, a

node that is not in the independent set and is not adjacent to any nodes in the

independent set.

5.4. Evaluation Results 131

Table 5.1: Mean rewards obtained by the methods split by cost setting, graph model, and
objective function.

Random TH TLC BR PT SA UCT GIL (ours)
c G F

HC BA FGF 0.745±0.005 0.802 0.774 0.742±0.004 0.791±0.015 0.815±0.000 0.837±0.000 0.834±0.001

FSW 0.697±0.007 0.779 0.727 0.691±0.006 0.760±0.019 0.795±0.000 0.815±0.000 0.813±0.000

ER FGF 0.877±0.001 0.896 0.920 0.877±0.000 0.911±0.002 0.908±0.001 0.945±0.000 0.940±0.003

FSW 0.868±0.001 0.890 0.912 0.867±0.000 0.903±0.002 0.903±0.001 0.940±0.000 0.935±0.001

WS FGF 0.803±0.002 0.806 0.865 0.804±0.002 0.821±0.003 0.832±0.001 0.892±0.000 0.892±0.000

FSW 0.781±0.002 0.785 0.846 0.782±0.003 0.800±0.004 0.817±0.001 0.876±0.000 0.876±0.000

IC BA FGF 0.833±0.000 0.844 — 0.834±0.000 0.841±0.005 0.849±0.000 0.847±0.000 0.847±0.000

FSW 0.697±0.007 0.779 — 0.691±0.006 0.757±0.019 0.794±0.000 0.795±0.000 0.795±0.000

ER FGF 0.893±0.000 0.906 — 0.892±0.000 0.907±0.001 0.916±0.000 0.922±0.000 0.919±0.002

FSW 0.867±0.000 0.889 — 0.866±0.001 0.889±0.002 0.903±0.000 0.910±0.000 0.908±0.001

WS FGF 0.842±0.001 0.843 — 0.842±0.001 0.847±0.001 0.856±0.000 0.862±0.000 0.864±0.000

FSW 0.777±0.002 0.782 — 0.779±0.003 0.791±0.004 0.813±0.001 0.824±0.000 0.828±0.000

• Target Hubs (TH): Pick the highest-degree node available that is not yet included

in the independent set. While this strategy is not guaranteed to find a global

maximum, placing the public good on nodes with many connections means

that many others can access it.

• Target Lowest Cost (TLC): Place the public good on nodes for which the cost c(v)

is lowest (only applicable in HC case). This may result in equilibria with high

social welfare and fairness since the good is acquired only by those players for

which it costs little to do so.

Training and Evaluation Protocol. Evaluation (and training, where applicable) is

performed separately for each N , graph model, objective F , and cost setting (IC or

HC). We aggregate results from 10 different random seeds for stochastic approaches.

Further details are provided in Appendix C.

5.4 Evaluation Results
We show the main results obtained in Table 5.1, in which entries are aggregated

across games with a number of playersN ∈ {15, 25, 50, 75, 100}. Each reported value

corresponds to the average objective function value of an equilibrium of the graph-

based best-shot Public Goods Game. In Appendix C, extended versions of these

results are shown in Table C.1. The reported values are separated by the number

of players N . We also include an additional analysis that evaluates the win rate

percentage for each of the methods instead of average reward, since the average

reward metric may be sensitive to outliers (i.e., game instances with abnormally

5.4. Evaluation Results 132

0 1000 2000

0.8350

0.8375

0.8400

B
ar

ab
ás

i–
A

lb
er

t
va

lid
at

io
n

re
w

ar
d

0 1000 2000
0.700

0.725

0.750

0.775

0 1000 2000

0.750

0.775

0.800

0.825

0 1000 2000

0.70

0.75

0.80

0 1000 2000
0.93

0.94

0.95

E
rd

ős
–R

én
yi

va
lid

at
io

n
re

w
ar

d

0 1000 2000

0.93

0.94

0.95

0 1000 2000

0.94

0.96

0 1000 2000

0.94

0.96

0 1000 2000
batch number

0.84

0.85

0.86

W
at

ts
-S

tr
og

at
z

va
lid

at
io

n
re

w
ar

d

0 1000 2000
batch number

0.76

0.78

0.80

0.82

0 1000 2000
batch number

0.80

0.85

0 1000 2000
batch number

0.75

0.80

0.85

IC, FGF IC, FSW HC, FGF HC, FSW

Figure 5.3: Training curves for GIL, showing performance on the held-out validation set.

15 25 50 75 100
0.83

0.84

0.85

B
ar

ab
ás

i–
A

lb
er

t
te

st
 s

et
 r

ew
ar

d

15 25 50 75 100

0.70

0.75

0.80

15 25 50 75 100

0.75

0.80

0.85

15 25 50 75 100

0.70

0.75

0.80

15 25 50 75 100

0.85

0.90

0.95

E
rd

ős
–R

én
yi

te
st

 s
et

 r
ew

ar
d

15 25 50 75 100

0.80

0.85

0.90

0.95

15 25 50 75 100
0.80

0.85

0.90

0.95

15 25 50 75 100

0.8

0.9

15 25 50 75 100
number of players N

0.84

0.85

0.86

W
at

ts
-S

tr
og

at
z

te
st

 s
et

 r
ew

ar
d

15 25 50 75 100
number of players N

0.78

0.80

0.82

15 25 50 75 100
number of players N

0.80

0.85

0.90

15 25 50 75 100
number of players N

0.80

0.85

0.90

Rand TH TLC ES BR PT SA UCT GIL (ours)

IC, FGF IC, FSW HC, FGF HC, FSW

Figure 5.4: Mean rewards obtained by the methods as a function of the number of playersN .

large or small objective function values). This is shown in Table C.2, with ties being

broken randomly in case there is more than one winner.

Performance obtained during training on the held-out validation set of instances

with N = 100 is shown in Figure 5.3. The performance on the test set is shown in

Figure 5.4, in which the x-axes represent the number of players. We also show a

comparison of the runtime per episode in milliseconds used by the different methods

in Figure 5.6. In the figures, the stars at N = 15 represent Exhaustive Search.

5.4. Evaluation Results 133

15 25 50 75 100
0.7

0.8
B

ar
ab

ás
i–

A
lb

er
t

va
lid

at
io

n
re

w
ar

d

15 25 50 75 100 15 25 50 75 100 15 25 50 75 100

15 25 50 75 100

0.8

0.9

E
rd

ős
–R

én
yi

va
lid

at
io

n
re

w
ar

d

15 25 50 75 100 15 25 50 75 100 15 25 50 75 100

15 10025 50 75

0.8

0.9

W
at

ts
-S

tr
og

at
z

va
lid

at
io

n
re

w
ar

d

15 10025 50 75 15 10025 50 75 15 10025 50 75

separate mixed curriculum

IC, FGF IC, FSW HC, FGF HC, FSW

number of players N number of players N number of players N number of players N

Figure 5.5: Mean rewards obtained on the validation set by GIL using different training
procedures. The choice of an appropriate procedure depends on the underlying graph
structure. We observe that it is more important in the HC case and it increases in importance
with graph size.

We find that the UCT planning method outperforms previous methods in all

cases except for IC,FGF in which the SA baseline does better as game size increases.

For the smallest graphs, UCT nearly performs on par with Exhaustive Search. The

Random and BR baselines consistently perform the poorest, as expected. The gap

between the methods enabled by our approach (UCT and GIL) are higher in the HC

settings where costs for acquiring the public good differ between players.

Impact of Training Strategies. Additionally, we also explore the impact of the

training strategies used for the Imitation Learning phase in Figure 5.5. Since the

choice of which examples to present to the model as well as their order could have

an impact on the performance of the policy, together with the fact there is no a

priori knowledge of which strategy is optimal, we treat the training strategy as a

tunable hyperparameter. We find that no training strategy is better across the board;

rather, their rankings are consistent depending on the graph model on which the

method is trained. For BA graphs, the mixed strategy performs best; in the case of ER

graphs the curriculum strategy achieves the highest reward; for WS the differences

between the averages are very small. Additionally, for BA and ER graphs, the relative

differences between the methods are higher in the HC setting than in IC. In all cases,

the difference in mean reward between the training strategies is insignificant on

small graphs, and increases in importance the larger the size.

5.5. Discussion 134

15 25 50 75 100
number of players N

101

103

105

E
p

is
od

e
d

u
ra

ti
on

(m
s)

Rand

TH

TLC

ES

BR

PT

SA

UCT

GIL (ours)

Figure 5.6: Mean milliseconds
needed to complete an episode
(i.e., construct an mIS) as a func-
tion of the number of players.

Imitation Learned Policy. We find that the perfor-

mance of the policy learned with GIL is within 99.5%

of that of the planning method, even substantially

exceeding it in certain cases (e.g., in the IC setting for

Watts-Strogatz graphs and both objectives). Given

the timings in Figure 5.6, this closeness in perfor-

mance is even more remarkable since the GIL policy

is approximately three orders of magnitude cheaper

to evaluate than the planning method on the largest

graphs tested.

5.5 Discussion
Limitations. Since the proposed method exploits the connection with the mIS

substructure, it is only applicable for the class of games for which it holds, and cannot

be directly applied to a wider class of networked Public Goods Games. In addition,

given that this method assumes a centralised perspective, it is only applicable in

situations in which the network structure is known or can be reasonably inferred.

Even though the work in this chapter answers the question of what outcomes could be

reached by self-interested players, the design of mechanisms to move towards such

configurations remains a challenging problem. Possible incentivisation mechanisms

that we aim to explore in future work include incentivising individual players as well

as modifying the network structure itself. Since the impact of such interventions on

players’ actions can be captured by Best-Response dynamics, this can be formulated

as a search problem in which the goal is to find the set of interventions that brings us

arbitrarily close to the goal state. At a high level, an approach similar to the proposed

method, which leverages a different deterministic MDP model capturing the impact

of interventions, may be used.

Societal Impact and Implications. The direct implication of this chapter is that our

approach enables a social planner to find beneficial outcomes that can be achieved

and maintained by self-interested players for situations that can be modelled by

networked best-shot games. This class of games is relevant for a variety of scenarios

in which the agents forming a society can choose to contribute effort to a public

good, and our work is motivated by positive societal impact. We cannot foresee

5.6. Summary 135

situations in which this method can be directly misused. This relies, however, on

the assumption that the social planner aims to improve outcomes. Furthermore, this

type of modelling is necessarily abstract and makes simplifying assumptions that

may not hold in the real world.

5.6 Summary
In this chapter, we have endeavoured to find desirable equilibria of the networked

best-shot Public Goods Game, an application of the general problem of finding an

mIS that optimises an objective function, as expressed in RQ4. We have approached

this from the perspective of a principal agent with global knowledge of the game

that aims to find optimal Pure Strategy Nash Equilibria in terms of social welfare and

fairness of outcomes. We have defined an MDP to find desirable mIS substructures

in graphs, and shown that using the UCT algorithm to plan in this MDP yields

better results than existing approaches, especially in the case where the costs of

acquiring the public good differ between players. To address RQ5, we have also

proposed a Graph Imitation Learning method which is able to learn the structure of

these equilibria, yielding performance within 99.5% of the planning method while

generalising to different game instances and generating predictions approximately

three orders of magnitude quicker than UCT on the largest graphs tested.

The proposed method is directly applicable to other settings in which mIS are

of interest (see, e.g., [89]). More broadly, the method for performing planning and

Imitation Learning presented in this chapter can be used for a variety of problems

that can be formulated as a decision-making process on a graph with the goal of

maximising a given objective function. Areas in which this may be of interest include

combinatorial optimisation and algorithmic reasoning over graphs [31, 58], provided

that the horizon for the task is manageable by a search procedure. While we have

focussed on constructing generalisable models, if predictions need to be made for a

single graph instance, one could also consider combining the planning and Imitation

Learning steps similarly to the ExIt algorithm [11, 315]. This chapter is related

to other recent work that considers learning in network games (e.g., [337] treats

network emergence games) as well as more broadly to ongoing efforts in the area of

cooperation in multi-agent systems and its impact on societal problems [84].

Chapter 6

Graph Neural Modelling of Network

Flows

In this chapter, we depart from the model pursued so far of formulating

combinatorial optimisation problems as MDPs. Instead, we focus on learning

representations, an important component of data-driven methods for solv-

ing them. To isolate concerns, we adopt a Supervised Learning setting,

which involves predicting the objective function outcome when applying

known algorithms. Particularly, we focus on Multi-Commodity Network

Flow problems, which involve distributing traffic over a network such that

the infrastructure is used efficiently.

Due to their ubiquity in transportation and logistics, together with

the appeal of data-driven optimisation, MCNF scenarios have increasingly

been approached using graph learning methods. However, we hypothesise

that the global message function typically used in such works constrain

the routing unnecessarily. To address this issue, we propose a learning

representation based on GNNs that uses distinctly parametrised message

functions along each link, akin to a relational model where all edge types

are unique. We extensively evaluate the proposed approach through an

Internet routing case study using 17 Service Provider topologies and two

flow routing schemes.

6.1. Introduction 137

6.1 Introduction

Flow routing represents a fundamental problem that captures a variety of opti-

misation scenarios that arise in real-world networks [6, Chapter 17]. One classic

example is the maximum flow problem, which seeks to find the best (in terms of

maximum capacity) path between a source node and a sink node. The more general

Multi-Commodity Network Flow problem allows for multiple flows of different

sizes between several sources and sinks that share the same distribution network.

Amongst other things, it serves as a formalisation of the distribution of packets in a

computer network, of goods in a logistics network, or cars in a rail network [180]. To

aid understanding, we illustrate the MCNF family of problems in Figure 6.1.

For maximum flow problems, efficient algorithms have been developed [80,

Chapter 24], including a recent near-linear time approach [66]. For the more com-

plex MCNF problems, Linear Programming solutions can be leveraged in order to

compute, in polynomial time, the optimal routes given knowledge of pairwise de-

mands between the nodes in the graph [124, 331]. At the other end of the spectrum,

oblivious routing methods derive routing strategies with partial or no knowledge

of traffic demands, optimising for “worst-case” performance [285]. As recognised

by existing works, a priori knowledge of the full demand matrix is an unrealistic

assumption, as loads in real systems continuously change. Instead, ML techniques

may enable a middle ground [339]: learning a model trained on past loads that

can perform well in a variety of traffic scenarios, without requiring a disruptive

redeployment of the routing strategy [125].

From a more practical point of view, this shift towards data-driven approaches is

illustrated by the concepts of data-driven computer networking [189] and self-driving

networks [120]. Early works in this area were based on MLP architectures [339, 287].

More recently, models purposely designed to operate on graphs, including variants

of the expressive Message Passing Neural Networks [300, 10] and Graph Nets [24],

have been adopted.

In particular, we focus on the prediction of the maximum utilisation among

all links in a network, given traffic demands and a predefined routing strategy.

The requirements are quantified using a matrix that specifies the amount of traffic

between pairs of nodes in the graph. The underlying network infrastructure is

6.1. Introduction 138

?
?

?
?
? ? ? ?

?
??
? ? ?

?
GNN

Model
train predict

Figure 6.1: Top. An illustration of the Multi-Commodity Network Flow family of problems.
The requirements of the routing problem are defined using a matrix that specifies the total
amount of traffic that has to be routed between each pair of nodes in a graph. We are also
given a graph topology in which links are equipped with capacities. All flows have an
entry and exit node and share the same underlying transportation infrastructure. Under a
particular routing scheme, such as shortest path routing, the links are loaded by the total
amount of traffic passing over them. Bottom. A model is trained using a dataset of the link
utilisations for certain demand matrices and graph topologies. This model is then used to
predict the Maximum Link Utilisation for an unseen demand matrix.

given using a weighted graph, where each weight represents the capacity of a link.

Under a given routing scheme, such as shortest path routing, the links are loaded

by the total amount of traffic passing over them. The learning task is to predict,

given a routing scheme and a dataset of demand matrices and loads, the Maximum

Link Utilisation for an unseen demand matrix. While the link utilisations can be

computed analytically given a particular demand matrix, the goal is to obtain one

model that can predict them accurately for several demand matrices with a single

set of parameters.

In this chapter, we propose a novel approach based on GNNs for the MCNF

problem. The intuition is that a GNN may perform better than structure-agnostic

learning architectures such as the MLP due to the algorithmic alignment [367] be-

tween the computational mechanism of GNNs and the task itself. In the context of

this problem, the message-passing mechanism is akin to receiving the flows from

neighbouring nodes in one round, then deciding how to split the flows among the

neighbours in the subsequent round. Despite the fact that graph learning methods

show promise in this space, current works nevertheless adopt schemes that aggregate

messages along neighbouring edges using the same weight vectors. In the context

of routing flows over graphs, this constrains the model unnecessarily. Instead, we

argue that nodes should be able to weight flows along each link separately, so that

6.1. Introduction 139

each node may independently update its state given incoming and outgoing traffic.

We illustrate this in Figure 6.2.

Furthermore, the ways in which prior works encode the demands as node

features varies between the full demand matrix [339, 380] and a node-wise summa-

tion [175], and it is unclear when either is beneficial. Besides the learning represen-

tation aspects, existing approaches in this area are evaluated using very few graph

topologies (typically 1 or 2) of small sizes (typically below 20 nodes). This makes

it difficult to assess the gain that graph learning solutions bring over vanilla archi-

tectures such as the MLP. Additionally, a critical point that has not been considered

is the impact of the underlying graph topology on the effectiveness of the learning

process. To address these shortcomings, we make a series of contributions along the

following axes:

• Learning representations for data-driven flow routing. We propose a novel

mechanism for aggregating messages along each link with a different parametri-

sation, which we refer to as Per-Edge Weights (PEW). This is equivalent to a

relational method such as R-GCN in which every edge is given a different

relation type and is compatible with any relational architecture. Despite its

simplicity, we show that this mechanism yields substantial predictive gains

over architectures that use the same message function for all neighbours. We

also find that equipping a GNN with PEW can exploit the complete demand

matrix as node features, while standard methods perform better with the lossy

node-wise sum used in prior work.

• Rigorous evaluation and systematic comparison of existing approaches.

Whereas existing works test on few, small-scale topologies, we evaluate the pro-

posed method and related baselines on 17 real-world Internet Service Provider

topologies and 2 different routing schemes in the context of a case study in

computer networks. Perhaps surprisingly, we find that a well-tuned MLP often

outperforms a vanilla GNN architecture without PEW when the methods are

given equal hyperparameter and training budgets.

• Understanding the impact of topology. The range of experiments we carry

out allows us to establish that a strong link exists between topology and the

6.2. Methods 140

Figure 6.2: Left. An illustration of the MPNN used in previous flow routing works, which
uses the same message function M (l) for aggregating neighbour messages. Right. An
illustration of our proposed Per-Edge Weights (PEW), which uses uniquely parametrised
per-edge message functions.

difficulty of the prediction task, which is consistent across routing schemes.

Generally, the predictive performance decreases with the size of the graph (in

terms of number of nodes, diameter and edge density), but it increases the more

heterogeneous the graph is in terms of capacities, degrees and betweenness of

the nodes. Moreover, we find that, when graph structure varies through the

presence of different subsets of nodes, the predictive performance of the GNN-

based methods increases compared to simpler, structure-agnostic methods,

such as MLP.

6.2 Methods

6.2.1 Routing Formalisation and Learning Task

Flow routing formalisation. We assume the splittable-flow routing formalisation

proposed by Fortz and Thorup [126]. We let G = (V,E) be a directed graph, with

V representing the set of nodes and E the set of edges. We use N = |V | and

m = |E| as shorthands, as well as vi and ei,j to denote specific nodes and edges,

respectively. Each edge has an associated capacity κ(ei,j) ∈ R+. We also define a

demand matrix D ∈ RN×N where entry Dsrc,dst is the traffic that source node src

sends to destination dst . With each tuple (src, dst , ei,j) ∈ V × V × E we associate

the quantity f (src,dst)
ei,j ≥ 0, which specifies the amount of traffic flow from src to dst

that goes over the edge ei,j . The load of edge ei,j , load(ei,j), is the total traffic flow

traversing it, i.e., load(ei,j) =
∑

(src,dst)∈V×V f
(src,dst)
ei,j . Furthermore, the quantities

f
(src,dst)
ei,j must obey the following flow conservation constraints:

6.2. Methods 141

∑
e∈δ+(vi)

f (src,dst)
e −

∑
e∈δ−(vi)

f (src,dst)
e =


Dsrc,dst if vi = src,

−Dsrc,dst if vi = dst ,

0 otherwise.

(6.1)

where the sets δ+(vi), δ
−(vi) are node vi’s outgoing and incoming edges respectively.

Intuitively, these constraints capture the fact that traffic sent from src to dst originates

at the source (first clause), must be absorbed at the target (second clause), and

ingress equals egress for all other nodes (final clause).

Routing schemes. A routing scheme R specifies how to distribute the traffic flows.

Specifically, we consider two well-known routing schemes. The first is the Standard

Shortest Paths (SSP) scheme in which, for a given node, the full flow quantity with

destination dst is sent to the neighbour on the shortest path to dst . The widely used

ECMP scheme [177] instead splits outgoing traffic among all the neighbours on the

shortest path to dst if multiple such neighbours exist.

Prediction target. A common way of evaluating a routing strategy R is Maximum Link

Utilisation (MLU), i.e., the maximal ratio between link load and capacity. Formally,

given a demand matrix D, we denote it as MLU(D) = maxei,j∈E
load(ei,j)
κ(ei,j)

. This target

metric has been extensively studied in prior work [195] and is often used by ISPs to

gauge when the underlying infrastructure needs to be upgraded [151].

Supervised learning setup. We assume that we are provided with a dataset of

traffic matrices D = ∪k{D(k), MLU(D(k))}. Given that our model produces an

approximation M̂LU(D(k)) of the true Maximum Link Utilisation, the goal is to

minimise the Mean Squared Error
∑
k (MLU(D(k))−M̂LU(D(k)))2

|D| .

6.2.2 Per-Edge Weights

We propose a simple mechanism to increase the expressivity of models for data-

driven flow routing. As previously mentioned, several works in recent years have

begun adopting various graph learning methods for flow routing problems such as

variants of Message Passing Neural Networks [142, 300, 10] or Graph Networks [175].

Recall, as described in Section 2.4.3, that MPNNs derive hidden features h(l)
vi for node

vi in layer l + 1 by computing messages m(l+1) and applying updates of the form:

6.2. Methods 142

m(l+1)
vi =

∑
vj∈N (vi)

M (l)
(
h(l)
vi ,h

(l)
vj ,xei,j

)
h(l+1)
vi = U (l)

(
h(l)
vi ,m

(l+1)
vi

) (6.2)

where N (vi) is the neighbourhood of node vi, xei,j are edge features for edge ei,j ,

and M (l) and U (l) are the differentiable message (sometimes also called edge) and

vertex update functions in layer l. Typically,M (l) is some form of MLP that is applied

in parallel when computing the update for each node in the graph. An advantage of

applying the same message function M (l) across the entire graph is that the number

of parameters remains fixed in the size of the graph, enabling a form of combinatorial

generalisation [24]. However, while this approach has been very successful in many

graph learning tasks such as graph classification, we argue that it is not best suited

for flow routing problems.

Instead, for this family of problems, the edges do not have uniform semantics.

Each of them plays a different role when the flows are routed over the graph and,

as shown in Figure 6.1, each will take on varying levels of load. Equivalently, from

a node-centric perspective, each node should be able to decide flexibly how to

distribute several flows of traffic over its neighbouring edges. This intuition can be

captured by using a different message function M (l)
i,j when aggregating messages

received along each edge ei,j . We call this mechanism Per-Edge Weights, or PEW. We

illustrate the difference between PEW and a typical MPNN in Figure 6.2.

Even though the applications are unrelated, similar graph learning techniques

have been applied for modelling knowledge bases, another area in which the different

semantics of edges play an important role. Knowledge bases are often modelled as

graphs in which edges between nodes (entities) are labelled with types out of a set

of possible relations X . Relational graph learning architectures, such as the RGCN,

use a different message function M (l)
χ for each relation type χ. Hence, we can draw a

correspondence with relational models: our proposed approach is equivalent to a

relational graph learning model in which there exists a relation type for each edge,

i.e., X ≡ E. This correspondence lets us exploit existing relational architectures and

implementations. For completeness, let us now describe a possible realisation of

PEW by drawing an analogy to the RGCN relational architecture, noting that PEW

is compatible with any other relational model (and, indeed, in our experiments we

6.3. Evaluation Protocol 143

use the more complex RGAT since it supports edge features). Each layer applies the

update rule:

h(l+1)
vi = ReLU

 ∑
vj∈N (vi)

1

µi,j
W

(l)
i,jh

(l)
vj + W

(l)
0 h(l)

vi

 (6.3)

where N (vi) denotes the set of neighbours of vi, W(l)
i,j is an edge-specific weight

matrix, µi,j is a problem-specific normalisation constant that can be fixed or learned,

and ReLU may be replaced by another non-linearity.

A possible disadvantage of PEW is that the number of parameters grows lin-

early with the edge count. However, given the relatively small scale of the typical

network considered in such problems (several hundreds of nodes), in practice the

impact in terms of memory usage or execution time has not been significant in our

experiments: the largest RGAT+PEW model, used for the Uninett2011 graph, has

approximately 800, 000 parameters. Furthermore, solutions have already been de-

veloped and validated for the much larger-scale relational graphs with millions of

nodes and thousands of relations, such as the basis and block-diagonal decomposi-

tions proposed in [305], which can help in keeping the number of parameters low.

Other routing-specific options that may be investigated in future work could be the

“clustering” of the edges depending on the structural roles that they play (such as

peripheral or backbone links) or the use of differently parametrised neighbourhoods

for the regions of the graph, which may perform well in case a significant proportion

of the traffic is local.

6.3 Evaluation Protocol
This section describes the experimental setup we use for our evaluation. We focussed

on a case study on routing flows in computer networks to demonstrate its effective-

ness in real-world scenarios, which can be considered representative of a variety

of settings in which we wish to predict the properties of a routing scheme from an

underlying network topology and a set of observed demand matrices.

Model architectures. Due to the importance of the link capacities for the prediction

objective, we opt for the RGAT [55] architecture, which supports edge features. To

make sure that implementations are aligned, we compare RGAT+PEW with the

standard RGAT with a single relation type, which is equivalent to a GAT [343].

6.3. Evaluation Protocol 144

We also compare against a standard MLP architecture made up of fully-connected

layers followed by ReLU activations. The features provided as input to the three

methods are the same: for the GNN methods, the node features are the demands D

in accordance with the demand input representations defined later in this section,

while the edge features are the capacities κ, and the adjacency matrix A governs

the message passing. For the MLP, we unroll and concatenate the demand input

representation derived from D, the adjacency matrix A, and all edge capacities κ in

the input layer. We note that other non-ML baselines, such as Linear Programming,

are not directly applicable for this task: while they can be used to derive a routing

strategy, in this chapter the goal is to predict a property of an existing routing strategy

(SSP or ECMP, as defined in Section 6.2.1).

Traffic generation. In order to generate synthetic flows of traffic, we use the “gravity”

approach proposed by Roughan [297]. Akin to Newton’s law of universal gravitation,

the traffic Di,j between nodes vi and vj is proportional to the amount of traffic, Din
i ,

that enters the network via vi and Dout
j , the amount that exits the network at vj . The

values Din
i and Dout

j are random variables that are identically and independently

distributed according to an exponential distribution. Despite its simplicity in terms

of number of parameters, this approach has been shown to synthesise traffic matrices

that correspond closely to those observed in real-world networks [297, 162]. We

additionally apply a rescaling of the volume by the MLU (defined in Section 6.2.1)

under the LP solution of the MCNF formulation, as recommended in the networking

literature [157, 154].

Network topologies. We consider real-world network topologies that are part of

the Repetita and Internet Topology Zoo repositories [138, 212]. In case there are

multiple snapshots of the same network topology, we only use the most recent so

as not to bias the results towards these graphs. We limit the size of the considered

topologies to between [20, 100] nodes, which we note is still substantially larger than

topologies considered in prior work on ML for routing flows. Furthermore, we

only consider heterogeneous topologies with at least two different link capacities.

Given the traffic model above, for some topologies the MLU dependent variable is

nearly always identical regardless of the demand matrix, making it trivial to devise

a good predictor. Out of the 39 resulting topologies, we filter out those for which

6.3. Evaluation Protocol 145

the minimum MLU is equal to the 90th percentile MLU over 100 demand matrices,

leaving 17 unique topologies. The properties of these topologies are summarised in

Table 6.1 in the Appendix. For the experiments in Section 6.4.2, we use variations in

the original topology. These variations are generated as follows: a number of nodes

to be removed from the graph is chosen uniformly at random in the range [1, N5],

subject to the constraint that the graph does not become disconnected. Demand

matrices are generated starting from this modified topology.

Table 6.1: Properties of the topologies.

Graph N m Diameter m
N Flows in D

Aconet 23 62 4 2.70 1587000
Agis 25 60 7 2.40 1875000
Arnes 34 92 7 2.71 3468000
Cernet 41 116 5 2.83 5043000
Cesnet201006 52 126 6 2.42 8112000
Grnet 37 84 8 2.27 4107000
Iij 37 130 5 3.51 4107000
Internode 66 154 6 2.33 13068000
Janetlense 20 68 4 3.40 1200000
Karen 25 56 7 2.24 1875000
Marnet 20 54 3 2.70 1200000
Niif 36 82 7 2.28 3888000
PionierL3 38 90 10 2.37 4332000
Sinet 74 152 7 2.05 16428000
SwitchL3 42 126 6 3.00 5292000
Ulaknet 82 164 4 2.00 20172000
Uninett2011 69 192 9 2.78 14283000

Datasets. The datasets Dtrain, Dvalidate, Dtest of demand matrices are disjoint and

contain 103 demand matrices each. Both the demands and capacities are standardised

by dividing them by the maximum value across the union of the datasets.

Demand input representation. We also consider two different demand input rep-

resentations that appear in prior work, which we term raw and sum. In the former,

the feature vector xraw
vi ∈ R2N for node vi is [D1,i, . . . , DN,i, Di,1, . . . , Di,N], which

corresponds to the concatenated outgoing and incoming demands respectively. The

latter is an aggregated version xsum
vi ∈ R2 equal to [

∑
j Di,j ,

∑
iDj,i], i.e., it contains

the summed demands.

Training and evaluation protocol. Training and evaluation are performed separately

for each graph topology and routing scheme. To compute means and confidence

intervals, we repeat training and evaluation across 10 different random seeds. Train-

6.4. Evaluation Results 146

Aco
ne

t
Agi

s

Arn
es

Cer
ne

t

Ces
ne

t2
01

00
6

G
rn

et Iij

In
te

rn
od

e

Ja
ne

tle
ns

e

K
ar

en

M
ar

ne
t

Niif

Pio
ni

er
L3

Si
ne

t

Sw
itc

hL
3

Ula
kn

et

Uni
ne

tt
20

11
0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

M
S

E SSP

Aco
ne

t
Agi

s

Arn
es

Cer
ne

t

Ces
ne

t2
01

00
6

G
rn

et Iij

In
te

rn
od

e

Ja
ne

tle
ns

e

K
ar

en

M
ar

ne
t

Niif

Pio
ni

er
L3

Si
ne

t

Sw
itc

hL
3

Ula
kn

et

Uni
ne

tt
20

11
0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

M
S

E ECMP RGAT+PEW

RGAT

MLP

Figure 6.3: Normalised MSE obtained by the predictors on different topologies for the
SSP (top) and ECMP (bottom) routing schemes. Lower values are better. PEW improves
performance over vanilla GAT substantially. An MLP outperforms the graph learning method
without PEW in 80% of cases.

ing is done by mini-batch SGD using the Adam optimiser [207] and proceeds for

3000 epochs with a batch size of 16. We perform early stopping if the validation

performance does not improve after 1500 epochs, also referred to as “patience” in

other graph learning works [343, 116]. Since the absolute value of the MLUs varies

significantly in datapoints generated for different topologies, we apply a normal-

isation when reporting results such that they are comparable. Namely, the MSE

of the predictors is normalised by the MSE of a simple baseline that outputs the

average MLU for all DMs in the provided dataset. We refer to this as Normalised

MSE (NMSE).

6.4 Evaluation Results

6.4.1 Benefits of PEW for Flow Routing

The primary results are shown in Figure 6.3, which compares the normalised MSE ob-

tained by the three architectures (RGAT+PEW, RGAT and MLP) for the 17 topologies.

The two rows correspond to the SSP and ECMP schemes respectively.

We find that PEW improves the predictive performance over a vanilla RGAT

in nearly all (88%) of the settings tested, and that it performs the best out of all

predictors in 76% of topologies. As later shown in Table 6.2, the latter figure rises

to 82% when different subsets of the nodes are present and generating demands.

6.4. Evaluation Results 147

Hence, this highlights the importance of parametrising links differently, suggesting

that it is an effective inductive bias for this family of problems. Interestingly, when

excluding PEW, the MLP performs better than RGAT in 80% of the considered cases.

This echoes findings in other graph learning works [116], i.e., the fact that a well-

tuned MLP can be competitive with GNN architectures and even outperform them.

Furthermore, both the relative differences between predictors and their absolute

normalised MSEs are fairly consistent across the different topologies.

6.4.2 Varying Graph Structure

Table 6.2: Mean Reciprocal Rank and Win Rates for
the different predictors. The performance of the GNN-
based approaches increases relative to the MLP when
the graph structure varies by means of different sub-
sets of nodes being present and generating demands.

MLP RGAT RGAT+PEW

R metric Graph

SSP MRR ↑ Original 0.588 0.382 0.863

Variations 0.520 0.412 0.902

WR ↑ Original 23.529 0.000 76.471

Variations 11.765 5.882 82.353

ECMP MRR ↑ Original 0.578 0.392 0.863

Variations 0.500 0.422 0.912

WR ↑ Original 23.529 0.000 76.471

Variations 11.765 5.882 82.353

Next, we investigate the impact of

variations in topology on the pre-

dictive performance of the mod-

els. In this experiment, the sole

difference to the setup described

above is that the datasets contain

103 demand matrices that are in-

stead distributed on 25 variations

in topology of the original graph

(i.e., we have 40 DMs per varia-

tion making up each dataset). To

evaluate how the different meth-

ods rank, we use two metrics: the

Win Rate (WR) is the percentage of topologies for which the method obtains the

lowest normalised MSE, and the Mean Reciprocal Rank (MRR) is the arithmetic

average of the complements of the ranks of the three predictors. For both metrics,

higher values are better. Results are shown in Table 6.2. We find that the relative

performance of the GNN-based methods increases while that of the MLP decreases

when varying subsets of the nodes in the original graph are present. This suggests

that GNN-based approaches are more resilient to changes in graph structure (e.g.,

nodes joining and leaving the network), a common phenomenon in practice.

6.4.3 Best Demand Input Representation

To compare the two demand input representations, we additionally train the model

architectures on subsets of 5%, 10%, 25% and 50% of the datasets. Recall that the raw

6.4. Evaluation Results 148

representation contains the full demand matrix while the sum representation is a

lossy aggregation of the same information. The latter may nevertheless help to avoid

overfitting and, given that the distribution of the demands is exponential, the largest

flows will dominate the features.

250 500 750 1000
of training DMs

−0.2

−0.1

0.0

0.1

0.2

ra
w

N
M

S
E
−

su
m

N
M

S
E

ra
w

d
em

an
d

s
b

et
te

r

su
m

d
em

an
d

s
b

et
te

r

SSP

250 500 750 1000
of training DMs

ra
w

d
em

an
d

s
b

et
te

r

su
m

d
em

an
d

s
b

et
te

r

ECMP

RGAT+PEW RGAT

Figure 6.4: Difference in normalised MSE be-
tween the raw and sum demand input represen-
tations as a function of the number of training
datapoints for RGAT+PEW and RGAT for the
SSP (left) and ECMP routing schemes (right).
As the dataset size increases, RGAT+PEW is
able to exploit the granular demand informa-
tion, while RGAT performs better with a lossy
aggregation of the demand information.

Results are shown in Figure 6.4. The

x-axis indicates the number of demand

matrices used for training and evalua-

tion, while the y-axis displays the dif-

ference in normalised MSE between the

raw and sum representations, averaged

across all topologies. As marked in the

figure, y > 0 means that the raw repre-

sentation performs better, while the re-

verse is true for y < 0. With very few dat-

apoints, the two input representations

yield similar errors for both RGAT+PEW

and GAT. Beyond this, two interesting

trends emerge: as the number of data-

points increases, RGAT+PEW performs

better with the raw demands, while the

vanilla GAT performs better with the lossy representation. This suggests that, while

the RGAT+PEW model is able to exploit the granular information in the raw de-

mands, they instead cause the standard RGAT to overfit and obtain worse generali-

sation performance.

6.4.4 Impact of Topology

Our final set of experiments examines the relationship between the topological char-

acteristics of graphs and the relative performance of our proposed model architecture.

The six properties that we examine are defined as follows, noting that the first three

are global properties while the final three measure the variance in local node and

edge properties.

• Number of nodes: the cardinality N of the node set V ;

• Diameter: the maximum length among all pairwise shortest paths;

6.4. Evaluation Results 149

25 50 75

0.00

0.25

0.50

0.75

1.00
S

S
P

R
G

A
T

+
P

E
W

N
M

S
E

5 10 2 3 0.0 0.1 0.0 0.1 0.2 0.02 0.04

25 50 75
number of
nodes N

0.00

0.25

0.50

0.75

1.00

E
C

M
P

R
G

A
T

+
P

E
W

N
M

S
E

5 10
diameter

2 3
edge

density mN

0.0 0.1
capacity
variance

0.0 0.1 0.2
degree

variance

0.02 0.04
weighted betweenness

variance

Aconet

Agis

Arnes

Cernet

Cesnet201006

Grnet

Iij

Internode

Janetlense

Karen

Marnet

Niif

PionierL3

Sinet

SwitchL3

Ulaknet

Uninett2011

Figure 6.5: Impact of topological characteristics on the predictive performance of
RGAT+PEW. Performance degrades as the graph size increases (first 3 columns), but im-
proves with higher levels of heterogeneity of the graph structure (last 3 columns).

• Edge density: the ratio of links to nodes m
N ;

• Capacity variance: the variance in the normalised capacities κ(ei,j);

• Degree variance: the variance in the degree centralities deg(vi)
N ;

• Weighted betweenness variance: the variance in the values of a weighted

version of betweenness centrality [47], which measures the fraction of shortest

paths between all pairs of nodes in the network passing through each node.

The results of this analysis are shown in Figure 6.5. As previously, the nor-

malised MSE of the RGAT+PEW model is shown on the y-axis, while the x-axis

measures properties of the graphs. Each datapoint represents one of the 17 topolo-

gies. Additionally, to complement the absolute values shown, Figures 6.7 and 6.8

relate topological characteristics to the percentage changes of RGAT+PEW to RGAT

and RGAT to MLP, so that the relative benefits of the model compared to standard

architectures can be understood.

We find that topological characteristics do not fully determine model perfor-

mance but, nevertheless, it is possible to make a series of observations related to

them. Generally, the performance of the method decreases as the size of the graph

grows in number of nodes, diameter, and edge density (metrics that are themselves

correlated). This result can be explained by the fact that our experimental protocol

6.5. Discussion 150

relies on a fixed number of demand matrices, which represent a smaller sample of

the distribution of demand matrices as the graph increases in size. Hence, this can

lead to a model with worse generalisation from the training to the test phase, despite

the larger parameter count. This is corroborated by the analysis in Figure 6.7. On the

other hand, the performance of the method typically improves with increasing het-

erogeneity in node and link-level properties (namely, variance in the capacities and

degree / weighted betweenness centralities). The relationship between the NMSE

and some properties (e.g., weighted betweenness) may be non-linear. Regarding

the benefits of a standard RGAT with respect to an MLP, the only clear relationship

emerging in Figure 6.8 is that the RGAT performs better in graphs with a high edge

density. Such graphs contain more alternative paths that the flows can take to reach

the destinations, which can make the routing outcome more tied to graph structure.

6.4.5 Learning Curves

Representative learning curves for the Uninett2011 graph (the largest in terms of

edge count) are shown in Figure 6.6. The remaining learning curves are delegated

to Appendix D.5. For their generation, we report the MSE on the held-out valida-

tion set of the best-performing hyperparameter combination for each architecture

and demand input representation. To smoothen the curves, we apply exponential

weighting with an αEW = 0.92. We also skip the validation losses for the first 5 epochs

since their values are on a significantly larger scale and would distort the plots. As

large spikes sometimes arise, validation losses are truncated to be at most the value

obtained after the 5 epochs. An interesting trend shown by the learning curves is

that the models consistently require more epochs to reach a low validation loss in

the ECMP case than for SSP, reflecting its increased complexity.

6.5 Discussion

A key assumption behind the PEW approach is that a set of labels that identify the

nodes is known, so that when topologies vary, the mapping to a particular weight

parametrisation is kept consistent. This is a suitable assumption for a variety of

real-world networks. For example, backbone networks at the scale of an Internet

Service Provider are characterised by infrequent upgrades in infrastructure. The

structure of large-scale logistics and transportation networks also tends to evolve

6.5. Discussion 151

0 1000 2000 3000

0.05

0.06

SSP
M

L
P

,
su

m

0 1000 2000 3000
0.05

0.06

0.07
ECMP

0 1000 2000 3000

0.06

0.08

R
G

A
T

,
su

m

0 1000 2000 3000

0.075

0.100

0.125

0.150

0 500 1000 1500

0.04

0.05

R
G

A
T

+
P

E
W

,
su

m

0 500 1000 1500 2000

0.03

0.04

0.05

0 1000 2000

0.055

0.060

0.065

0.070

M
L

P
,

ra
w

0 500 1000 1500 2000
0.0550

0.0575

0.0600

0.0625

0 1000 2000 3000

0.075

0.100

0.125

R
G

A
T

,
ra

w

0 500 1000 1500
0.05

0.10

0.15

0 500 1000 1500
epoch

0.045

0.050

0.055

R
G

A
T

+
P

E
W

,
ra

w

0 500 1000 1500
epoch

0.050

0.055

0.060

0.065

Graph Uninett2011

Figure 6.6: Learning curves for Uninett2011.

6.5. Discussion 152

25 50 75

−50

0

50
S

S
P

%
ch

an
ge

R
G

A
T

to
R

G
A

T
+

P
E

W

5 10 2 3 0.0 0.1 0.0 0.1 0.2 0.02 0.04

R
G

A
T

b
et

te
r

R
G

A
T

+
P

E
W

b
et

te
r

25 50 75
number of
nodes N

−50

0

50

E
C

M
P

%
ch

an
ge

R
G

A
T

to
R

G
A

T
+

P
E

W

5 10
diameter

2 3
edge

density mN

0.0 0.1
capacity
variance

0.0 0.1 0.2
degree

variance

0.02 0.04
weighted betweenness

variance

R
G

A
T

b
et

te
r

R
G

A
T

+
P

E
W

b
et

te
r

Aconet

Agis

Arnes

Cernet

Cesnet201006

Grnet

Iij

Internode

Janetlense

Karen

Marnet

Niif

PionierL3

Sinet

SwitchL3

Ulaknet

Uninett2011

Figure 6.7: Relationship between the percentage changes in NMSE from RGAT to
RGAT+PEW and the topological characteristics of the considered graphs.

25 50 75

−50

0

50

100

S
S

P
%

ch
an

ge
R

G
A

T
to

M
L

P

5 10 2 3 0.0 0.1 0.0 0.1 0.2 0.02 0.04

R
G

A
T

b
et

te
r

M
L

P
b

et
te

r
25 50 75

number of
nodes N

−50

0

50

100

E
C

M
P

%
ch

an
ge

R
G

A
T

to
M

L
P

5 10
diameter

2 3
edge

density mN

0.0 0.1
capacity
variance

0.0 0.1 0.2
degree

variance

0.02 0.04
weighted betweenness

variance

R
G

A
T

b
et

te
r

M
L

P
b

et
te

r

Aconet

Agis

Arnes

Cernet

Cesnet201006

Grnet

Iij

Internode

Janetlense

Karen

Marnet

Niif

PionierL3

Sinet

SwitchL3

Ulaknet

Uninett2011

Figure 6.8: Relationship between the percentage changes in NMSE from RGAT to MLP and
the topological characteristics of the considered graphs.

relatively slowly and, in any case, the computational time is negligible compared

to the timescale and resource cost of these changes. However, performance may

degrade in highly dynamic networks, where the timescale of the structural changes

is substantially lower than the time needed to recalculate link utilisations and the

subsequent adaptations of the systems making use of such a predictive model.

While this chapter has focussed on learning the properties of existing routing

protocols in order to isolate concerns, in future work we aim to pursue learning new

routing protocols given the proposed learning representation and broader insights

in this problem space that we have obtained.

6.6. Summary 153

6.6 Summary
In this chapter, we have addressed the problem of data-driven routing of flows

across a graph, which has several applications of practical relevance in areas as

diverse as logistics and computer networks. We have proposed Per-Edge Weights, an

effective model architecture for predicting link loads in a network based on historical

observations, given a traffic demand matrix and a routing strategy. The novelty of

our approach resides in the use of weight parametrisations for aggregating messages

that are unique for each edge of the graph.

We have demonstrated that the proposed solution brings substantial gains in

predictive performance over standard graph learning and MLP approaches, besides

having the added benefit of simplicity. Furthermore, in our exploration of other facets

of RQ6, we have shown that this architecture is able to exploit the full demand matrix,

unlike previous methods for which a lossy aggregation of features is preferable. Our

findings also highlight the importance of topology for data-driven routing. We

have shown that performance typically decreases when the graph grows in size, but

increases with higher levels of heterogeneity of local properties. Additionally, the

gain in predictive performance of GNN-based methods over a simple MLP increases

when the observed graph structures are heterogeneous due to different subsets of

nodes being present in the network.

Chapter 7

Conclusion

In this section, we first summarise the contributions of this thesis. Then, we

discuss its limitations, notable directions for future work, as well as possible

areas of impact for the proposed techniques. We conclude with high-level

closing thoughts.

7.1 Summary and Contributions

In this thesis, we proposed and evaluated learning-based approaches for optimising

the outcomes of processes taking place on graphs. The core insight is that viewing

such combinatorial optimisation problems as decision-making processes can bring a

host of advantages over prior methods, which include: a greater level of flexibility

with respect to the objectives to be optimised; the ability to discover algorithms that

are more effective than prior methods; and the possibility of achieving fast evaluation

times after having undergone training.

These characteristics were consistently demonstrated throughout the previous

chapters, in which we discussed computationally challenging problems of practical

interest. The thesis contributed formulations of these problems as decision-making

processes on graphs; solution methods for MDPs that extend standard algorithms and

are particularly tailored for network-structured systems; and learning representations

that encode appropriate inductive biases.

We began, in Chapter 3, by considering the problem of optimising graph struc-

tural properties through edge additions. We presented a formulation of this problem

as a decision-making process, and proposed an approach based on RL and GNNs to

7.1. Summary and Contributions 155

discover heuristics for graph construction, answering RQ1 positively. We demon-

strated the ability of the proposed method to optimise the structure of networks in

the presence of random node failures and targeted attacks in a way that outperforms

prior hand-designed heuristics while being faster to evaluate after training (RQ2).

Furthermore, we showed that the approach is able to effectively scale, in some cases,

to larger graphs than encountered during training (RQ3).

Chapter 4 focussed on optimising graph structure with RL (RQ1). We demon-

strated the scalability and practicality of such approaches for real-world problems

(RQ3). Firstly, in case a stakeholder is interested in the optimisation of a particular

spatial network, rather than a generalisable predictive model, one can use planning

approaches to sidestep the cost of model training entirely. Secondly, we proposed

an MDP formulation that goes beyond raw topology, encapsulating several realistic

traits of networks positioned in physical space, such as restrictions on connection

densities and lengths. The proposed algorithm was shown to substantially outper-

form prior search-based methods for the optimisation of the efficiency and attack

resilience of networks, while using a similar computational budget to them (RQ2).

In Chapter 5, we treated the problem of finding a Maximal Independent Set of

nodes that maximises a given objective function. Formulating this task as an MDP

to address RQ4, we showed that one can outperform prior heuristics by using a

decision-time planning technique. Furthermore, in our quest to answer RQ5, we

proposed a method for performing Imitation Learning of a policy defined on graphs,

which gives “the best of both worlds”: the ability to maintain much of the solid

performance of the original algorithm while being orders of magnitude faster to

evaluate. As motivating case study, the approach was applied to finding desirable

equilibria of the networked best-shot Public Goods Game, a social dilemma scenario.

In this relevant application for RQ4, the approach was able to find equilibrium

configurations of high fairness and social welfare, which a social planner might

incentivise a society to move towards.

Finally, Chapter 6 focussed on learning representations, an important compo-

nent of solutions that use ML for combinatorial optimisation. It called into question

the use of GNN architectures with a single, identical global message function for

treating Multi-Commodity Network Flow problems – answering the first part of RQ6

7.2. Limitations and Future Work 156

negatively through experimental evidence. We proposed a GNN model with per-

edge parametrised message functions, which is akin to allowing nodes to distribute

flow quantities along outgoing edges in a flexible fashion. Our experimental evalua-

tion, which addresses the latter parts of RQ6, showed that the proposed method

is able to outperform existing architectures in terms of predictive performance in a

Supervised Learning setting; it can utilise the full matrix of demands as input; and it

performs comparatively better in graphs with heterogeneous characteristics.

7.2 Limitations and Future Work
We now discuss the high-level limitations of the proposed methods, which are shared

with other works that apply ML to combinatorial optimisation problems.

Firstly, an important issue is the fact that one cannot guarantee that the learned

models will generalise well when encountering instances outside of the training

distribution – this is a fundamental limitation of ML approaches and a direct conse-

quence of the No Free Lunch theorems [362]. In online decision-making scenarios,

one may want to have the tools in place to detect distribution shift, and possibly use a

fall-back approach whose properties and expected performance are well-understood.

Secondly, ML-based approaches typically require spending an overhead in terms

of experimentation and computational resources for the various stages of the pipeline,

such as setting up the datasets, performing feature engineering, training the model,

and selecting the values of the hyperparameters. However, once such a model is

trained, it can typically be used to perform predictions whose computational cost is

negligible in comparison. Costs may be mitigated in the future by collective efforts to

train generalist “foundation models” that can be shared among researchers working

on similar problems, akin to the current dynamics of sharing large language and

protein folding models. However, the unique nature of different graph combinatorial

optimisation problems may prove challenging in this sense.

Lastly, an important limitation that was alluded to, but not addressed in the

present thesis, is the interpretability of the learned models and algorithms. We have

seen that the proposed approaches can optimise the given objectives remarkably

well, but we are not necessarily able to identify the mechanisms that lead to this

observed performance. This is an important part of our future research agenda.

Much like physicists would simulate a process of interest then work backwards to

7.2. Limitations and Future Work 157

try to derive physical laws, interpretability of an algorithm learned through RL may

help us in formulating it a traditional way, potentially allowing for optimisations

that can dramatically speed up performance.

Existing interpretability techniques are not directly applicable in this scenario

given the graph-structured data and our framing of the problems in the RL setting.

Interpretability of both GNNs and RL are areas of active interest in the ML commu-

nity (e.g., [371, 345]) but there remains significant work to be done, especially at

their intersection. Notably, a recent work [141] adapts concept-based explainability

methods to GNNs in the Supervised Learning setting, showing that logical rules for

several classic graph algorithms, such as Breadth-First Search and Kruskal’s method

for finding a minimal spanning tree, can be extracted. Akin to work that tackles the

explainability of RL in visual domains (e.g., [256] treats Atari games), we consider

that there is scope for developing techniques that are tailor-made for explaining

policies learned by RL on graphs for solving combinatorial optimisation problems.

Let us move on to discussing some areas for future work. Opportunities for direct

extension, which may be seen as “low-hanging fruit”, were discussed throughout

the thesis chapters. To briefly summarise, the proposed methods can be directly

applied to the optimisation of another objective function by simply substituting it

with the quantity of interest. As discussed in Chapter 3, such methods can also be

applied for optimising a weighted combination of objectives, since in the real world

there may be different, competing metrics. To encapsulate real-world constraints,

one can also define restrictions on the action space or disallowed states, in a similar

fashion to the method presented in Chapter 4.

Even though the thesis has made contributions to improving the scalability

of the proposed methods, we believe that this is a fundamental aspect which a

future research agenda should be focussed on. Another possible path to improving

scalability is to consider actions that, instead of depending on the node labels, execute

certain predefined transformations that have a high chance of improving the solution

(e.g., swapping two components of the solution based on a greedy criterion). This

would aid scalability by decreasing the size of the state and action spaces, with the

downside of a possible loss of generality as a result. This type of approach is common

in metaheuristics such as the ALNS [291] and is currently being pursued in some

7.3. Applications and Impact 158

of our further work [191] with applications to the VRP [335]. Another avenue for

improving scalability is treating the problem hierarchically, for example by grouping

nodes based on geographical regions, community structure, or roles that they play

in the system.

This thesis has focussed on optimising the outcome of processes from the point

of view of a single, central, planner. This has some appealing characteristics such as

providing full observability and control over the construction of the solution. For

certain systems, a decentralised, multi-agent formulation in which an agent only

has local observability and control may be a viable approach. If the setting is not

fully cooperative, potential issues with agents maximising their own gain to the

detriment of the common good may arise. Nevertheless, multi-agent modelling can

be a viable tool for obtaining complex, emergent behaviour from local decisions,

especially when the size of the problem exceeds the scope and capacity of a single

central planner.

7.3 Applications and Impact
Given the generality of graph representations, the work herein may find applications

in diverse fields, in ways that are difficult to anticipate. Below, we make an attempt

to summarise the areas in which we foresee a path to impact.

Overall, the present thesis is highly relevant to the operations research discipline

(which significantly overlaps with industrial engineering and management science),

since it contributes flexible approaches for decision-making on networks such that

resources and budgets are efficiently used. Possible application areas include the

optimisation of supply chains, logistics and transportation systems, and network

engineering. Given the practical relevance of these fields of study, we expect impact

might occur not only in an academic setting, but that technologies based on the pro-

posed methods may have an impact in practice. We envision that such technologies

can lead to reduced operational costs and usage of resources (natural or human).

The work on graph construction presented in Chapters 3 and 4 is highly relevant

to engineering and the physical sciences. There are possible applications of the

proposed techniques in designing structures, both at a macroscopic and microscopic

level. With respect to the former, we mention structural engineering for the stability

and resilience of human-made buildings, as well as the robustness of transportation

7.4. Closing Thoughts 159

networks. Regarding the latter, similar techniques may be used to discover materials

and compounds with desirable properties.

Potentially, the proposed work may also find applications in decision-making

and policy design of local authorities and governments. Approaches similar to the

work in Chapter 5 can be used to run simulations that assess the right means of

targeting interventions in a networked system such as to encourage certain desirable

outcomes. As an example scenario, important health factors such as smoking and

obesity are known to be linked to individuals’ social networks [71, 72], and hence a

policy-maker could be interested in the best way of targeting a public health campaign.

Furthermore, this type of technique may assist authorities in deciding how to best

invest and spend available resources to, for example, extend a transportation network

or invest in public infrastructure. Such methods may help in making decisions that

have a well-specified, objective, target outcome.

We note that the type of mathematical modelling used in this thesis necessarily

makes simplifying assumptions about the real world and cannot capture all of its

complexity. Due to this, we highlight the importance of involving stakeholders and

domain experts in the modelling process when considering practical applications,

so that assumptions, risks, and benefits are thoroughly analysed and specified. By

doing so, negative impacts may be foreseen and mitigated.

7.4 Closing Thoughts
More broadly, when taken together, the chapters of this thesis give a blueprint for

approaching graph combinatorial optimisation problems in a data-driven way. One

needs to specify:

1. The elements that make up the state of the world and are visible to the decision-

making agent. Typically, the state will contain both static elements (out of the

control of the agent) and dynamic parts (may be modified through the agent’s

decisions). The constituents of a state can take the form of a subset of nodes or

edges, subgraphs, as well as features and attributes that are global or attached

to nodes and edges.

2. What are the levers that the agent can use to exert change in the world and

modify part of the state. More complex operations can be defined using com-

7.4. Closing Thoughts 160

positionality (e.g., analogously to the decomposition of edge additions in the

selection of two nodes used in Chapters 3 and 4), which, in keeping with the

spirit of the Markov assumption, is important for achieving scalability.

3. The ways in which the world changes as a result of the actions and/or outside

interference. While we have treated deterministic cases in this thesis, one can

also consider situations with stochastic properties. These are manageable as-is

by model-free RL techniques, while planning methods can be extended to

stochastic settings, for example by “averaging out” several outcomes [51].

4. Finally, the quantity that one cares about, and seeks to optimise. This would

typically take the form of an objective function for which the set of world states

is the domain.

To give an example, in a follow-up work [107], we have extended the method in

Chapter 3 to the problem of rewiring a computer network such that the navigation

of an attacker is impeded, a common scenario in cybersecurity. Even though the

applications and technical details differ substantially, at a high level the work follows

this blueprint quite faithfully.

Given the ubiquity of optimisation problems and the wide applicability of the

methodology described above, it can be worthwhile to reduce the barrier to entry.

Currently, we expect it is high due to needing to master several deeply technical

areas. Looking further ahead, it should be possible to allow an end user to specify

the system states, actions, and constraints – while letting a software package take

care of aspects such as learning mechanics, feature design, and model training. It

may even be possible to develop a concise language for expressing these elements,

through which the necessary learning environment can be generated automatically.

Doing so would advance its level of maturity in the technological cycle.

Can we, therefore, collectively hang up our boots, leaving the machines to

discover how to solve these problems? We argue that this not the case. Generic

decision-making algorithms and learning representations are clearly not a silver

bullet since they do not necessarily exploit problem structure efficiently. Examples

of this were shown in various parts of the thesis, such as the clear gain obtained

by using a cost-sensitive simulation policy in the SG-UCT algorithm proposed in

7.4. Closing Thoughts 161

Chapter 4, or the harm in using the wrong inductive bias for a learning representation

in Chapter 6. There are substantial improvements to be made by encoding knowledge

and understanding about the problem into these solution approaches. We envisage

the future of algorithm development as leveraging both deep problem insights and

highly efficient machine-learned components.

Appendix A

Appendix for Chapter 3: Goal-directed

Graph Construction using Reinforcement

Learning

A.1 Implementation
Source code is available at https://github.com/VictorDarvariu/graph-constr

uction-rl. A version of the source code without the GPU dependency is available

at https://github.com/VictorDarvariu/graph-construction-rl-lite. For full

details about how to set up the experimental infrastructure, run the experiments, and

reproduce the results, please see the instructions in the repository. The RNet–DQN

implementation uses PyTorch and is bootstrapped from the RL-S2V implementation

provided by Dai et al.1, which is based on the authors’ implementation of the S2V

GNN2. We implement the performance-critical robustness simulations in a custom

C++ module. For completeness, details of how the robustness objective functions

are calculated are shown in Algorithm 1.

A.2 Data Availability
The original real-world datasets used in this research (Scigrid, Euroroad) are publicly

available and were retrieved via the Scigrid [247] project website (https://www.powe

r.scigrid.de/pages/downloads.html) and KONECT [218] (http://konect.cc/)

respectively. They can be downloaded without registration. Scigrid is licensed under

the Open Database License (ODbL) v1.0, while Euroroad is license-free. The scripts

1https://github.com/Hanjun-Dai/graph adversarial attack
2https://github.com/Hanjun-Dai/pytorch structure2vec

https://github.com/VictorDarvariu/graph-construction-rl
https://github.com/VictorDarvariu/graph-construction-rl
https://github.com/VictorDarvariu/graph-construction-rl-lite
https://www.power.scigrid.de/pages/downloads.html
https://www.power.scigrid.de/pages/downloads.html
http://konect.cc/
https://github.com/Hanjun-Dai/graph_adversarial_attack
https://github.com/Hanjun-Dai/pytorch_structure2vec

A.3. Parameters 163

Algorithm 3 Pseudocode of algorithm for estimating the robustness of graphs to
targeted and random removals of nodes.
Input: undirected graph G
Parameters: node removal strategy (random or targeted),
number of Monte Carlo simulations bMC
Output: estimated robustness F

1: fracs = Array(bMC)
2: for simulation i = 1 to bMC do . Trivially parallelisable
3: ξ ← GeneratePermutation(G) . Depends on node removal strategy
4: for permutation index j = 1 to N do
5: v ← ξ[j] . Select next node in permutation
6: RemoveNode(G, v) . Remove the node and all its edges
7: ncc← NumConnectedComponents(G)
8: if ncc > 1 then
9: fracs[i]← j/N . Critical Fraction reached

10: break
11: return mean(fracs)

and instructions used to extract the subgraphs corresponding to individual countries

in the infrastructure networks are available in the code repository.

A.3 Parameters
General Parameters. We train for 4 × 104η steps using the Adam optimiser and a

batch size of 50. For RNet–DQN, we use an experience replay buffer of size equal

to the number of steps. We let γ = 1, since we are in the finite horizon case. Target

network weights are updated every 50 steps. For SL, we perform early stopping

if the validation loss does not improve after 104 steps. We do not use any weight

regularisation or normalisation. We do not perform any gradient clipping when

computing the DQN or MSE losses. Weights are initialised using Glorot initialisation.

We use a learning rate α = 0.0001. During training, we scale the rewards linearly by

a factor of 100 in order to improve numerical stability.

Parameters for Synthetic Graphs. For synthetic graphs, we use a number of message

passing rounds L = 3. The MLP layer has 128 hidden units. For RNet–DQN, we

decay the exploration rate ε linearly from ε = 1 to ε = 0.1 for the first half of training

steps, then fix ε = 0.1 for the rest of the training. To estimate the values of the

objective functions we use 2|V |Monte Carlo simulations.

Parameters for Real-World Graphs. We use L = 5 as these graphs are larger in

size and diameter. The MLP layer has 32 hidden units. For RNet–DQN, we decay ε

A.4. Runtime Details 164

linearly from ε = 1 to ε = 0.1 in the first 10% of training steps, then fix ε = 0.1 for the

rest of the training. To estimate the objective functions, we use 40 MC simulations.

A.4 Runtime Details
For the computational experiments presented in this chapter, we used a machine

with 2 Intel Xeon E5-2637 v4 processors, 64GB RAM, and a NVIDIA Tesla P100 GPU.

For synthetic graphs, the time per RNet–DQN training run for a specific robustness

objective function and graph family is approximately 3.5 hours with η = 5. The

computational time for the synthetic graph experiments is approximately 1350 hours

(56 days), while the experiments on real-world graphs took approximately 1240 hours

(51 days). Since most of the cost is due to considering a large number of random

initialisations in order to provide statistically robust evaluations, the experiments

can be trivially parallelised.

Appendix B

Appendix for Chapter 4: Planning Spatial

Networks with Monte Carlo Tree Search

B.1 Implementation
We implement all approaches and baselines in Python using a variety of numerical

and scientific computing packages [181, 158, 246, 351], while the calculations of

the objective functions (efficiency and robustness) are performed in a custom C++

module as they are the main speed bottleneck. The implementation is provided

as Docker containers together with instructions that enable reproducing (up to

hardware differences) all the results reported in the chapter, including tables and

figures. The implementation is available at https://github.com/VictorDarvariu/

planning-spatial-networks-mcts.

B.2 Data Availability
The Internet dataset is publicly available without any restrictions and can be down-

loaded via the Internet Topology Zoo website, http://www.topology-zoo.o

rg/dataset.html. The Metro dataset was originally used in [296], and was li-

censed to us by the authors for the purposes of this chapter. A copy of the Metro

dataset can be obtained by others by contacting its original authors for licensing (see

https://www.quanturb.com/data).

B.3 Parameters
Hyperparameter optimisation for UCT and SG-UCT is performed separately for

each objective function and synthetic graph model / real-world network dataset.

For synthetic graphs, hyperparameters are tuned over a disjoint set of graphs. For

https://github.com/VictorDarvariu/planning-spatial-networks-mcts
https://github.com/VictorDarvariu/planning-spatial-networks-mcts
http://www.topology-zoo.org/dataset.html
http://www.topology-zoo.org/dataset.html
https://www.quanturb.com/data

B.4. Runtime Details 166

real-world graphs, hyperparameters are optimised separately for each graph. We

consider an exploration constant εUCT ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 1}. Since the ranges

of the rewards may vary in different settings, we further employ two means of

standardisation: during the tree search we instead use F(GT) as the final reward

RT , and further standardise εUCT by multiplying with the average reward observed

at the root in the previous timestep – ensuring consistent levels of exploration. The

hyperparameters for the ablation study are bootstrapped from those of standard UCT,

while β ∈ {0.1, 0.25, 0.5, 1, 2.5, 5, 10} for the SG-UCTMINCOST variant is optimised

separately. These results are used to reduce the hyperparameter search space for

SG-UCT for both synthetic and real-world graphs. Values of hyperparameters used

are shown in Table B.1. For estimating FR we use |V |/4 Monte Carlo simulations.

B.4 Runtime Details
Experiments were carried out on an internal cluster of 8 machines, each equipped

with 2 Intel Xeon E5-2630 v3 (2014) processors and 128GB RAM. On this infras-

tructure, all experiments reported in this chapter took approximately 21 days to

complete.

B.4. Runtime Details 167

Table B.1: Hyperparameters used for UCT and SG-UCT.

εUCT φ β
Objective FE FR FE FR FE FR

Experiment Graph Agent

Internet Colt SG-UCT 0.05 0.05 AECS-40 AECS-40 25 25
UCT 0.1 0.1 — — — —

GtsCe SG-UCT 0.1 0.05 AECS-40 AECS-40 25 25
UCT 0.25 0.1 — — — —

TataNld SG-UCT 0.05 0.05 AECS-40 AECS-40 25 25
UCT 0.1 0.1 — — — —

UsCarrier SG-UCT 0.05 0.05 AECS-40 AECS-40 25 25
UCT 0.05 0.1 — — — —

Metro Barcelona SG-UCT 0.05 0.05 AECS-40 AECS-40 25 25
UCT 0.05 0.05 — — — —

Beijing SG-UCT 0.05 0.05 AECS-40 AECS-40 25 25
UCT 0.05 0.05 — — — —

Mexico SG-UCT 0.05 0.05 AECS-40 AECS-40 25 25
UCT 0.25 0.05 — — — —

Moscow SG-UCT 0.25 0.1 AECS-40 AECS-40 25 25
UCT 0.05 0.05 — — — —

Osaka SG-UCT 0.05 0.05 AECS-40 AECS-40 25 25
UCT 0.05 0.25 — — — —

KH-25 — SG-UCT 0.05 0.25 AECS-40 AECS-40 25 25
UCT 0.1 0.1 — — — —
SG-UCTMINCOST 0.1 0.1 — — 25 25

KH-50 — SG-UCT 0.05 0.05 AECS-40 AECS-40 25 25
UCT 0.05 0.25 — — — —
SG-UCTMINCOST 0.05 0.25 — — 10 25

KH-75 — SG-UCT 0.05 0.05 AECS-40 AECS-40 25 25
UCT 0.05 0.1 — — — —
SG-UCTMINCOST 0.05 0.1 — — 25 25

Appendix C

Appendix for Chapter 5: Solving

Graph-based Public Goods Games with

Monte Carlo Tree Search and Imitation

Learning

C.1 Implementation
Our implementation is available at https://github.com/VictorDarvariu/so

lving-graph-pgg as Docker containers together with instructions that enable

reproducing (up to hardware differences) all the results reported in the chapter,

including tables and figures. For complete instructions to reproduce the results,

please consult the README.md file in the repository. We implement all approaches

and baselines in Python using a variety of numerical and scientific computing pack-

ages [181, 158, 246, 270, 351]. For GIL, we use the PyTorch implementation of

structure2vec provided by the original authors [85].

C.2 Data Availability
The provided implementation contains the necessary code and instructions to gener-

ate the synthetic data on which the experiments are carried out. Please consult the

README.md file in the root of the repository.

C.3 Parameters
Hyperparameters. We optimise hyperparameters for UCT, GIL, and the SA methods;

the other methods are hyperparameter-free. For UCT, we use a random simulation

https://github.com/VictorDarvariu/solving-graph-pgg
https://github.com/VictorDarvariu/solving-graph-pgg

C.4. Runtime Details 169

policy and a number of node expansions per move bsims = 20N (larger values provide

diminishing returns). At each step, once simulations are completed, we select the

child node with the largest number of visits as the action (RobustChild). We treat

the exploration parameter εUCT as a hyperparameter to be optimised, and for each

problem instance we consider εUCT ∈ {0.05, 0.1, 0.25, 0.5, 1, 2.5}. Since the ranges of

the rewards may vary in different settings, we further standardise εUCT by multiplying

with the average reward observed at the root in the previous timestep – ensuring

consistent levels of exploration. For GIL, the learning rate α ∈ {10−2, 10−3, 10−4},
the number of S2V message passing rounds L ∈ {3, 4, 5, 6}, and the training strategy

(separate, mixed, or curriculum) are optimised using a grid search. For SA, we

consider τSA ∈ {101, 102, 103, 104}, stop the optimisation after 104 steps without an

improvement, and use a cut-off of 107 steps. For SA, the lowest tested value τSA = 10

of the simulated annealing temperature was optimal across all settings tested (we

did not explore lower values since the method would become significantly more

expensive to run, and is already slow as shown in Figure 5.6).

GIL Training. GIL is the only method that requires training. The datasets on

which this method is trained correspond to demonstrations of the hyperparameter-

optimised UCT. We carry out the Imitation Learning procedure as described in

Section 5.2.4 and evaluate performance on the validation instances every 50 steps.

We train using the Adam [207] optimiser for 2 · 103 steps and use a batch size of 5

in all cases (larger batch sizes proved harmful). The dimension of the proto-action

vector ψ and the number of S2V latent variables are both 64. The temperature τGIL is

initialised to 10.

C.4 Runtime Details
Experiments were carried out on an internal cluster of 8 machines, each equipped

with 2 Intel Xeon E5-2630 v3 processors and 128GB RAM. On this infrastructure, the

experiments reported in this chapter took approximately 14 days to complete.

C.4. Runtime Details 170

Table C.1: Mean rewards obtained by the methods split by cost setting, graph model,
objective function, and number of players.

Rand TH TLC BR PT SA UCT GIL (ours)
c G F N

HC BA FGF 15 0.757±0.005 0.814 0.785 0.753±0.006 0.797±0.016 0.825±0.001 0.848±0.000 0.845±0.001

25 0.750±0.005 0.806 0.774 0.747±0.007 0.794±0.017 0.820±0.002 0.842±0.000 0.839±0.000

50 0.742±0.007 0.797 0.773 0.741±0.005 0.788±0.016 0.811±0.001 0.835±0.000 0.832±0.001

75 0.741±0.006 0.797 0.772 0.736±0.004 0.789±0.014 0.810±0.001 0.831±0.000 0.828±0.002

100 0.737±0.005 0.796 0.767 0.732±0.004 0.787±0.012 0.808±0.001 0.829±0.000 0.826±0.001

FSW 15 0.708±0.007 0.793 0.738 0.702±0.009 0.763±0.020 0.806±0.001 0.827±0.000 0.825±0.000

25 0.702±0.008 0.782 0.728 0.698±0.011 0.762±0.023 0.801±0.002 0.820±0.000 0.819±0.000

50 0.694±0.010 0.774 0.726 0.691±0.007 0.756±0.021 0.791±0.001 0.813±0.000 0.811±0.000

75 0.692±0.009 0.774 0.726 0.684±0.007 0.759±0.018 0.790±0.001 0.809±0.000 0.806±0.001

100 0.688±0.008 0.774 0.720 0.680±0.007 0.757±0.016 0.788±0.001 0.807±0.001 0.804±0.001

ER FGF 15 0.806±0.004 0.839 0.861 0.807±0.002 0.839±0.007 0.849±0.002 0.895±0.000 0.892±0.001

25 0.841±0.002 0.865 0.889 0.840±0.001 0.881±0.004 0.879±0.002 0.925±0.000 0.920±0.001

50 0.893±0.001 0.909 0.934 0.892±0.001 0.930±0.001 0.924±0.001 0.958±0.000 0.954±0.000

75 0.916±0.001 0.928 0.953 0.915±0.001 0.946±0.001 0.940±0.000 0.970±0.000 0.965±0.006

100 0.930±0.001 0.940 0.962 0.930±0.001 0.957±0.001 0.951±0.001 0.977±0.000 0.969±0.011

FSW 15 0.782±0.004 0.823 0.841 0.782±0.001 0.820±0.008 0.836±0.002 0.882±0.000 0.878±0.001

25 0.829±0.002 0.856 0.877 0.827±0.001 0.871±0.005 0.872±0.002 0.918±0.000 0.912±0.000

50 0.887±0.001 0.905 0.931 0.887±0.001 0.927±0.002 0.921±0.001 0.956±0.000 0.948±0.002

75 0.913±0.001 0.925 0.951 0.912±0.001 0.944±0.001 0.938±0.000 0.969±0.000 0.965±0.001

100 0.928±0.001 0.939 0.960 0.928±0.001 0.955±0.001 0.950±0.001 0.976±0.000 0.971±0.002

WS FGF 15 0.818±0.007 0.817 0.868 0.814±0.005 0.833±0.007 0.848±0.006 0.904±0.002 0.903±0.000

25 0.799±0.006 0.807 0.867 0.801±0.004 0.817±0.006 0.828±0.003 0.891±0.000 0.890±0.000

50 0.801±0.002 0.805 0.864 0.801±0.003 0.819±0.005 0.830±0.001 0.890±0.000 0.890±0.000

75 0.799±0.002 0.800 0.862 0.801±0.003 0.818±0.003 0.827±0.001 0.886±0.000 0.886±0.000

100 0.800±0.001 0.802 0.863 0.801±0.002 0.818±0.004 0.828±0.001 0.887±0.000 0.888±0.000

FSW 15 0.795±0.009 0.797 0.850 0.790±0.006 0.811±0.008 0.832±0.008 0.889±0.002 0.888±0.000

25 0.775±0.008 0.784 0.847 0.779±0.005 0.797±0.007 0.812±0.003 0.875±0.000 0.873±0.001

50 0.778±0.003 0.784 0.845 0.780±0.005 0.799±0.005 0.815±0.001 0.876±0.000 0.875±0.000

75 0.777±0.002 0.779 0.843 0.780±0.003 0.798±0.003 0.812±0.001 0.871±0.000 0.871±0.000

100 0.778±0.001 0.781 0.844 0.780±0.003 0.798±0.004 0.813±0.001 0.871±0.000 0.872±0.000

IC BA FGF 15 0.837±0.001 0.851 — 0.837±0.001 0.846±0.005 0.855±0.000 0.855±0.000 0.855±0.000

25 0.835±0.001 0.845 — 0.835±0.000 0.844±0.006 0.851±0.000 0.852±0.000 0.850±0.000

50 0.832±0.000 0.842 — 0.832±0.000 0.840±0.006 0.848±0.000 0.846±0.000 0.845±0.001

75 0.832±0.001 0.841 — 0.832±0.001 0.839±0.005 0.846±0.000 0.843±0.000 0.843±0.001

100 0.831±0.001 0.840 — 0.832±0.001 0.838±0.004 0.844±0.000 0.840±0.000 0.842±0.001

FSW 15 0.710±0.008 0.794 — 0.703±0.010 0.760±0.021 0.805±0.001 0.807±0.000 0.807±0.000

25 0.702±0.009 0.779 — 0.698±0.010 0.759±0.023 0.799±0.001 0.800±0.000 0.800±0.000

50 0.695±0.008 0.776 — 0.692±0.007 0.756±0.020 0.792±0.001 0.793±0.000 0.793±0.001

75 0.689±0.009 0.774 — 0.682±0.006 0.756±0.017 0.789±0.001 0.790±0.000 0.790±0.001

100 0.687±0.008 0.772 — 0.679±0.006 0.755±0.016 0.785±0.001 0.786±0.000 0.786±0.001

ER FGF 15 0.844±0.001 0.860 — 0.844±0.001 0.855±0.003 0.868±0.001 0.873±0.000 0.872±0.000

25 0.865±0.001 0.880 — 0.864±0.001 0.881±0.001 0.892±0.001 0.899±0.000 0.898±0.001

50 0.901±0.001 0.916 — 0.900±0.001 0.918±0.000 0.927±0.000 0.932±0.000 0.931±0.000

75 0.921±0.000 0.931 — 0.921±0.000 0.935±0.000 0.943±0.000 0.948±0.000 0.943±0.006

100 0.934±0.001 0.943 — 0.934±0.001 0.945±0.000 0.953±0.000 0.957±0.000 0.951±0.006

FSW 15 0.780±0.002 0.818 — 0.777±0.002 0.807±0.007 0.834±0.001 0.843±0.000 0.841±0.000

25 0.829±0.002 0.855 — 0.827±0.001 0.856±0.002 0.873±0.001 0.884±0.000 0.882±0.001

50 0.886±0.001 0.906 — 0.885±0.001 0.909±0.001 0.920±0.000 0.926±0.000 0.922±0.002

75 0.912±0.001 0.925 — 0.912±0.001 0.930±0.000 0.939±0.000 0.944±0.000 0.942±0.002

100 0.928±0.001 0.939 — 0.928±0.001 0.942±0.000 0.950±0.000 0.954±0.000 0.951±0.004

WS FGF 15 0.843±0.003 0.844 — 0.841±0.003 0.846±0.003 0.856±0.002 0.864±0.001 0.865±0.001

25 0.841±0.002 0.843 — 0.843±0.002 0.848±0.002 0.856±0.001 0.861±0.000 0.863±0.000

50 0.841±0.001 0.843 — 0.842±0.002 0.846±0.002 0.856±0.000 0.861±0.000 0.864±0.000

75 0.841±0.000 0.842 — 0.842±0.001 0.847±0.001 0.856±0.000 0.861±0.000 0.864±0.000

100 0.842±0.001 0.843 — 0.842±0.001 0.846±0.001 0.856±0.000 0.860±0.000 0.864±0.000

FSW 15 0.779±0.007 0.783 — 0.774±0.007 0.790±0.007 0.812±0.004 0.829±0.001 0.828±0.002

25 0.775±0.006 0.781 — 0.782±0.006 0.794±0.006 0.812±0.002 0.823±0.000 0.826±0.000

50 0.777±0.003 0.782 — 0.778±0.005 0.791±0.005 0.813±0.001 0.824±0.000 0.829±0.001

75 0.777±0.001 0.780 — 0.780±0.003 0.792±0.003 0.812±0.001 0.822±0.000 0.828±0.001

100 0.778±0.002 0.781 — 0.779±0.003 0.791±0.003 0.812±0.000 0.821±0.000 0.828±0.000

C.4. Runtime Details 171

Table C.2: Win Rates (%) for the different methods.

Rand TH TLC BR PT SA UCT GIL (ours)
c G F N

HC BA FGF 15 1.800 1.000 0.400 0.900 17.100 9.300 43.100 26.400
25 0.400 0.300 0.400 0.100 20.200 5.000 47.900 25.700
50 0.000 0.000 0.000 0.000 12.900 2.300 62.800 22.000
75 0.000 0.000 0.100 0.000 13.400 0.800 66.400 19.300
100 0.000 0.000 0.000 0.000 11.200 0.700 73.800 14.300

FSW 15 1.800 0.700 0.400 0.900 18.400 12.000 39.500 26.300
25 0.300 0.100 0.400 0.300 20.600 8.900 41.500 27.900
50 0.100 0.000 0.000 0.000 14.900 3.600 60.800 20.600
75 0.100 0.100 0.100 0.000 15.400 2.200 62.600 19.500
100 0.000 0.000 0.000 0.000 13.000 2.000 68.400 16.600

ER FGF 15 0.900 0.100 1.100 0.900 7.700 5.200 54.600 29.500
25 0.300 0.000 0.200 0.100 5.000 2.400 64.800 27.200
50 0.000 0.000 0.600 0.000 3.100 0.900 65.500 29.900
75 0.000 0.000 0.600 0.000 1.700 0.200 64.400 33.100
100 0.000 0.000 0.300 0.000 1.200 0.400 67.800 30.300

FSW 15 0.800 0.200 1.100 0.600 7.300 5.700 53.800 30.500
25 0.200 0.100 0.500 0.100 4.900 2.400 60.600 31.200
50 0.000 0.000 0.800 0.000 2.700 1.500 74.800 20.200
75 0.000 0.000 0.500 0.000 1.700 0.100 69.000 28.700
100 0.000 0.000 0.200 0.000 1.400 0.000 73.500 24.900

WS FGF 15 0.300 0.000 0.800 0.200 0.700 3.100 58.200 36.700
25 0.000 0.000 0.600 0.000 0.500 0.500 57.200 41.200
50 0.000 0.000 0.100 0.000 0.000 0.000 55.700 44.200
75 0.000 0.000 0.000 0.000 0.000 0.000 50.700 49.300
100 0.000 0.000 0.000 0.000 0.000 0.000 43.700 56.300

FSW 15 0.600 0.000 0.700 0.300 0.900 3.100 55.800 38.600
25 0.000 0.000 0.500 0.000 0.400 1.200 61.600 36.300
50 0.000 0.000 0.000 0.000 0.000 0.000 60.600 39.400
75 0.000 0.000 0.000 0.000 0.000 0.000 49.800 50.200
100 0.000 0.000 0.000 0.000 0.000 0.000 47.200 52.800

IC BA FGF 15 4.500 1.400 — 3.100 18.200 24.700 25.100 23.000
25 2.100 0.400 — 2.200 22.800 22.900 31.700 17.900
50 0.400 1.200 — 0.600 21.400 34.000 25.400 17.000
75 0.200 0.800 — 0.300 20.300 40.200 20.500 17.700
100 0.000 0.100 — 0.100 21.700 48.200 14.900 15.000

FSW 15 1.900 1.800 — 1.600 19.200 24.200 25.600 25.700
25 0.600 0.900 — 0.400 22.800 24.600 27.200 23.500
50 0.100 0.600 — 0.000 21.200 24.300 27.600 26.200
75 0.000 0.300 — 0.000 20.200 25.800 25.100 28.600
100 0.000 0.000 — 0.000 21.500 24.500 25.300 28.700

ER FGF 15 2.300 1.000 — 2.400 9.600 20.300 35.300 29.100
25 0.600 0.300 — 0.000 6.800 19.200 39.600 33.500
50 0.000 0.100 — 0.000 1.900 17.000 43.600 37.400
75 0.000 0.100 — 0.000 1.500 15.000 57.200 26.200
100 0.000 0.100 — 0.000 0.500 14.000 55.700 29.700

FSW 15 2.300 0.800 — 1.700 10.000 19.600 35.100 30.500
25 0.800 0.500 — 0.300 7.500 18.700 42.100 30.100
50 0.200 0.400 — 0.100 3.800 18.500 49.000 28.000
75 0.000 0.200 — 0.000 1.200 12.600 49.600 36.400
100 0.000 0.100 — 0.000 0.700 13.100 54.400 31.700

WS FGF 15 1.200 0.000 — 0.200 1.500 12.800 37.500 46.800
25 0.200 0.000 — 1.200 2.500 14.800 36.200 45.100
50 0.000 0.000 — 0.000 0.100 3.700 27.200 69.000
75 0.000 0.000 — 0.000 0.000 1.300 18.400 80.300
100 0.000 0.000 — 0.000 0.000 0.400 9.700 89.900

FSW 15 0.700 0.100 — 1.000 2.300 15.400 41.400 39.100
25 0.000 0.100 — 1.100 2.000 13.200 34.900 48.700
50 0.000 0.000 — 0.000 0.100 2.800 27.200 69.900
75 0.000 0.000 — 0.000 0.000 1.600 19.000 79.400
100 0.000 0.000 — 0.000 0.000 0.600 12.000 87.400

Appendix D

Appendix for Chapter 6: Graph Neural

Modelling of Network Flows

D.1 Implementation
In the future, the implementation will be made publicly available as Docker contain-

ers together with instructions that enable reproducing (up to hardware differences)

all the results reported in the chapter, including tables and figures. We implement

all approaches and baselines in Python using a variety of numerical and scientific

computing packages [181, 158, 246, 270, 351].

D.2 Data Availability
The network topology data used in this chapter is part of the Repetita suite [138]

and it is publicly available at https://github.com/svissicchio/Repetita. We

also use the synthetic traffic generator from [154], available at https://github.com

/ngvozdiev/tm-gen.

D.3 Parameters
All methods are given an equal grid search budget of 12 hyperparameter configu-

rations consisting of the two choices of demand input representations mentioned

above, three choices of learning rate α ∈ {10−2, 5× 10−3, 10−3} and two choices of

model complexity as follows: the MLP is initialised with a first hidden layer size in

{64, 256} for the sum representation and {64, 128} for the raw representation, with

subsequent layers having half the units. For RGAT, the size of the hidden features is

{8, 32}, while for RGAT+PEW it is {4, 16} to account for the larger parameter count.

For the GNN-based methods, sum pooling is used to compute a graph-level embed-

https://github.com/svissicchio/Repetita
https://github.com/ngvozdiev/tm-gen
https://github.com/ngvozdiev/tm-gen

D.4. Runtime Details 173

ding from the node-level features. Despite potential over-smoothing issues of GNNs

in graph classification (e.g., as described in [65]), for the flow routing problem, we

set the number of layers equal to the diameter so that all traffic entering the network

can also exit, including traffic between pairs of points that are the furthest away in

the graph.

D.4 Runtime Details
Experiments were carried out on a cluster of 8 machines, each equipped with 2

Intel Xeon E5-2630 v3 processors and 128GB RAM. On this infrastructure, all the

experiments reported in this chapter took approximately 28 days to complete. The

training and evaluation of models were performed exclusively on CPUs.

D.5 Learning Curves
We next show learning curves for all graphs except Uninett2011, for which the curves

were presented in Figure 6.6. They are generated as discussed in Section 6.4.5.

D.5. Learning Curves 174

0 1000 2000 3000

0.02

0.04

0.06

0.08
SSP

M
L

P
,

su
m

0 500 1000 1500

0.02

0.04

ECMP

0 1000 2000 3000

0.02

0.04

0.06

0.08

R
G

A
T

,
su

m

0 1000 2000 3000

0.02

0.04

0 1000 2000 3000

0.01

0.02

0.03

R
G

A
T

+
P

E
W

,
su

m

0 1000 2000 3000

0.01

0.02

0 1000 2000 3000

0.025

0.050

0.075

M
L

P
,

ra
w

0 1000 2000 3000

0.02

0.04

0 500 1000 1500
0.02

0.04

0.06

0.08

R
G

A
T

,
ra

w

0 500 1000 1500

0.02

0.03

0.04

0 1000 2000 3000
epoch

0.00

0.02

0.04

0.06

R
G

A
T

+
P

E
W

,
ra

w

0 1000 2000 3000
epoch

0.00

0.02

0.04

Graph Aconet

Figure D.1: Learning curves for Aconet.

D.5. Learning Curves 175

0 1000 2000 3000

0.010

0.015

0.020

0.025

SSP
M

L
P

,
su

m

0 1000 2000 3000

0.01

0.02

0.03

ECMP

0 500 1000 1500 2000 2500

0.030

0.035

0.040

R
G

A
T

,
su

m

0 1000 2000 3000

0.040

0.045

0.050

0.055

0 500 1000 1500 2000

0.02

0.03

R
G

A
T

+
P

E
W

,
su

m

0 500 1000 1500 2000
0.015

0.020

0.025

0.030

0 1000 2000 3000

0.015

0.020

M
L

P
,

ra
w

0 1000 2000 3000

0.02

0.03

0 1000 2000 3000

0.02

0.04

R
G

A
T

,
ra

w

0 1000 2000 3000

0.02

0.03

0 500 1000 1500 2000
epoch

0.015

0.020

R
G

A
T

+
P

E
W

,
ra

w

0 500 1000 1500 2000
epoch

0.020

0.025

Graph Agis

Figure D.2: Learning curves for Agis.

D.5. Learning Curves 176

0 1000 2000 3000

0.035

0.040

0.045
SSP

M
L

P
,

su
m

0 1000 2000 3000

0.030

0.035

0.040

ECMP

0 500 1000 1500 2000

0.045

0.050

0.055

R
G

A
T

,
su

m

0 500 1000 1500

0.05

0.06

0 1000 2000

0.030

0.035

0.040

R
G

A
T

+
P

E
W

,
su

m

0 500 1000 1500 2000 2500

0.025

0.030

0.035

0 1000 2000 3000

0.04

0.05

M
L

P
,

ra
w

0 1000 2000 3000

0.04

0.05

0 500 1000 1500 2000 2500

0.04

0.05

0.06

R
G

A
T

,
ra

w

0 1000 2000 3000

0.04

0.05

0.06

0 1000 2000
epoch

0.0400

0.0425

0.0450

R
G

A
T

+
P

E
W

,
ra

w

0 500 1000 1500 2000
epoch

0.036

0.038

0.040

0.042

Graph Arnes

Figure D.3: Learning curves for Arnes.

D.5. Learning Curves 177

0 500 1000 1500

0.06

0.08

0.10

0.12
SSP

M
L

P
,

su
m

0 1000 2000 3000

0.050

0.055

0.060

ECMP

0 1000 2000 3000

0.04

0.06

0.08

R
G

A
T

,
su

m

0 1000 2000 3000

0.04

0.06

0.08

0 500 1000 1500

0.04

0.06

R
G

A
T

+
P

E
W

,
su

m

0 500 1000 1500 2000

0.02

0.04

0.06

0 500 1000 1500

0.054

0.055

0.056

M
L

P
,

ra
w

0 500 1000 1500
0.055

0.056

0.057

0 500 1000 1500
0.04

0.06

0.08

R
G

A
T

,
ra

w

0 500 1000 1500

0.04

0.05

0.06

0 1000 2000 3000
epoch

0.045

0.050

0.055

R
G

A
T

+
P

E
W

,
ra

w

0 1000 2000 3000
epoch

0.045

0.050

0.055

0.060

Graph Cernet

Figure D.4: Learning curves for Cernet.

D.5. Learning Curves 178

0 500 1000 1500

0.015

0.020

0.025

SSP
M

L
P

,
su

m

0 500 1000 1500 2000 2500

0.015

0.020

0.025
ECMP

0 1000 2000
0.025

0.030

0.035

0.040

R
G

A
T

,
su

m

0 1000 2000 3000

0.020

0.025

0.030

0 500 1000 1500 2000

0.005

0.010

0.015

R
G

A
T

+
P

E
W

,
su

m

0 500 1000 1500

0.0075

0.0100

0.0125

0 1000 2000
0.0175

0.0200

0.0225

0.0250

M
L

P
,

ra
w

0 1000 2000 3000

0.016

0.018

0.020

0 500 1000 1500

0.02

0.04

R
G

A
T

,
ra

w

0 500 1000 1500
0.01

0.02

0.03

0.04

0 500 1000 1500
epoch

0.0100

0.0125

0.0150

R
G

A
T

+
P

E
W

,
ra

w

0 500 1000 1500
epoch

0.010

0.012

0.014

Graph Cesnet201006

Figure D.5: Learning curves for Cesnet201006.

D.5. Learning Curves 179

0 500 1000 1500

0.008

0.010

0.012 SSP
M

L
P

,
su

m

0 500 1000 1500

0.004

0.005

0.006

ECMP

0 1000 2000 3000

0.008

0.010

0.012

R
G

A
T

,
su

m

0 1000 2000 3000
0.004

0.005

0.006

0.007

0 500 1000 1500

0.004

0.005

0.006

0.007

R
G

A
T

+
P

E
W

,
su

m

0 500 1000 1500
0.001

0.002

0.003

0.004

0 1000 2000 3000
0.008

0.009

0.010

0.011

M
L

P
,

ra
w

0 1000 2000 3000

0.005

0.006

0 500 1000 1500

0.008

0.010

0.012

R
G

A
T

,
ra

w

0 500 1000 1500 2000

0.004

0.005

0.006

0 500 1000 1500
epoch

0.007

0.008

0.009

0.010

R
G

A
T

+
P

E
W

,
ra

w

0 500 1000 1500
epoch

0.003

0.004

0.005

Graph Grnet

Figure D.6: Learning curves for Grnet.

D.5. Learning Curves 180

0 1000 2000 3000
0

1

2
SSP

M
L

P
,

su
m

0 1000 2000 3000
0.0

0.5

1.0

ECMP

0 1000 2000 3000

0.10

0.15

0.20

R
G

A
T

,
su

m

0 1000 2000

0.06

0.08

0 500 1000 1500 2000
0.025

0.050

0.075

0.100

R
G

A
T

+
P

E
W

,
su

m

0 500 1000 1500

0.02

0.04

0.06

0 1000 2000 3000

0.07

0.08

0.09

0.10

M
L

P
,

ra
w

0 1000 2000 3000
0.035

0.040

0.045

0.050

0 500 1000 1500 2000 2500

0.075

0.100

0.125

0.150

R
G

A
T

,
ra

w

0 500 1000 1500 2000 2500

0.04

0.06

0 500 1000 1500
epoch

0.06

0.08

R
G

A
T

+
P

E
W

,
ra

w

0 500 1000 1500 2000 2500
epoch

0.025

0.030

0.035

Graph Iij

Figure D.7: Learning curves for Iij.

D.5. Learning Curves 181

0 500 1000 1500

0.040

0.045

0.050

SSP
M

L
P

,
su

m

0 500 1000 1500

0.035

0.040

ECMP

0 500 1000 1500 2000

0.07

0.08

R
G

A
T

,
su

m

0 1000 2000 3000

0.06

0.08

0.10

0 500 1000 1500

0.05

0.10

0.15

R
G

A
T

+
P

E
W

,
su

m

0 500 1000 1500 2000

0.04

0.06

0.08

0 500 1000 1500 2000 2500

0.05

0.06

M
L

P
,

ra
w

0 1000 2000 3000

0.040

0.045

0 500 1000 1500
0.04

0.06

0.08

R
G

A
T

,
ra

w

0 1000 2000 3000
0.03

0.04

0.05

0 1000 2000
epoch

0.045

0.050

0.055

R
G

A
T

+
P

E
W

,
ra

w

0 500 1000 1500 2000 2500
epoch

0.040

0.045

Graph Internode

Figure D.8: Learning curves for Internode.

D.5. Learning Curves 182

0 1000 2000 3000

0.2

0.4

0.6

SSP
M

L
P

,
su

m

0 1000 2000

0.05

0.10

0.15
ECMP

0 1000 2000 3000

0.06

0.08

R
G

A
T

,
su

m

0 1000 2000 3000

0.005

0.010

0.015

0 500 1000 1500 2000

0.04

0.06

R
G

A
T

+
P

E
W

,
su

m

0 1000 2000 3000

0.004

0.006

0.008

0 1000 2000 3000

0.07

0.08

0.09

0.10

M
L

P
,

ra
w

0 1000 2000 3000

0.010

0.012

0 500 1000 1500

0.05

0.06

0.07

R
G

A
T

,
ra

w

0 500 1000 1500

0.0075

0.0100

0.0125

0.0150

0 1000 2000 3000
epoch

0.04

0.05

0.06

R
G

A
T

+
P

E
W

,
ra

w

0 500 1000 1500 2000
epoch

0.006

0.008

0.010

Graph Janetlense

Figure D.9: Learning curves for Janetlense.

D.5. Learning Curves 183

0 1000 2000 3000
0.00

0.05

0.10
SSP

M
L

P
,

su
m

0 1000 2000 3000
0.000

0.025

0.050

0.075
ECMP

0 1000 2000 3000

0.2

0.3

R
G

A
T

,
su

m

0 1000 2000 3000

0.10

0.15

0 500 1000 1500 2000 2500
0.00

0.05

R
G

A
T

+
P

E
W

,
su

m

0 1000 2000 3000
0.000

0.025

0.050

0.075

0 1000 2000 3000
0.00

0.05

0.10

M
L

P
,

ra
w

0 1000 2000 3000

0.02

0.04

0.06

0 500 1000 1500

0.05

0.10

R
G

A
T

,
ra

w

0 500 1000 1500 2000

0.025

0.050

0.075

0 1000 2000 3000
epoch

0.02

0.04

0.06

0.08

R
G

A
T

+
P

E
W

,
ra

w

0 1000 2000 3000
epoch

0.02

0.04

Graph Karen

Figure D.10: Learning curves for Karen.

D.5. Learning Curves 184

0 1000 2000 3000

0.03

0.04

0.05

SSP
M

L
P

,
su

m

0 1000 2000 3000

0.10

0.15

ECMP

0 1000 2000 3000
0.05

0.06

0.07

0.08

R
G

A
T

,
su

m

0 1000 2000 3000
0.2

0.4

0.6

0 1000 2000 3000

0.02

0.03

0.04

R
G

A
T

+
P

E
W

,
su

m

0 1000 2000 3000

0.10

0.15

0.20

0 1000 2000 3000

0.03

0.04

M
L

P
,

ra
w

0 1000 2000 3000
0.10

0.15

0.20

0 1000 2000 3000

0.04

0.06

R
G

A
T

,
ra

w

0 500 1000 1500 2000

0.2

0.3

0 500 1000 1500
epoch

0.03

0.04

R
G

A
T

+
P

E
W

,
ra

w

0 1000 2000 3000
epoch

0.075

0.100

0.125

0.150

Graph Marnet

Figure D.11: Learning curves for Marnet.

D.5. Learning Curves 185

0 1000 2000 3000

0.025

0.030

0.035

SSP
M

L
P

,
su

m

0 500 1000 1500 2000
0.02

0.03

0.04
ECMP

0 1000 2000 3000
0.02

0.03

0.04

R
G

A
T

,
su

m

0 1000 2000 3000

0.04

0.06

0 500 1000 1500
0.01

0.02

0.03

R
G

A
T

+
P

E
W

,
su

m

0 500 1000 1500
0.010

0.015

0.020

0.025

0 1000 2000 3000

0.0250

0.0275

0.0300

0.0325

M
L

P
,

ra
w

0 1000 2000 3000

0.025

0.030

0.035

0 500 1000 1500 2000

0.025

0.030

0.035

R
G

A
T

,
ra

w

0 500 1000 1500 2000
0.02

0.03

0.04

0 500 1000 1500
epoch

0.020

0.022

0.024

R
G

A
T

+
P

E
W

,
ra

w

0 500 1000 1500 2000
epoch

0.0200

0.0225

0.0250

Graph Niif

Figure D.12: Learning curves for Niif.

D.5. Learning Curves 186

0 1000 2000 3000

0.015

0.020

0.025

SSP
M

L
P

,
su

m

0 500 1000 1500

0.012

0.014

0.016
ECMP

0 1000 2000 3000

0.018

0.019

0.020

0.021

R
G

A
T

,
su

m

0 1000 2000 3000

0.014

0.016

0 1000 2000

0.012

0.014

R
G

A
T

+
P

E
W

,
su

m

0 1000 2000 3000

0.009

0.010

0 1000 2000 3000

0.014

0.016

0.018

M
L

P
,

ra
w

0 1000 2000 3000

0.012

0.014

0.016

0 1000 2000 3000

0.0150

0.0175

0.0200

0.0225

R
G

A
T

,
ra

w

0 1000 2000

0.012

0.014

0.016

0 500 1000 1500 2000
epoch

0.013

0.014

0.015

0.016

R
G

A
T

+
P

E
W

,
ra

w

0 500 1000 1500 2000
epoch

0.011

0.012

0.013

Graph PionierL3

Figure D.13: Learning curves for PionierL3.

D.5. Learning Curves 187

0 500 1000 1500

0.015

0.020

0.025
SSP

M
L

P
,

su
m

0 1000 2000 3000

0.010

0.015

ECMP

0 1000 2000 3000

0.018

0.020

0.022

R
G

A
T

,
su

m

0 500 1000 1500 2000 2500

0.016

0.018

0.020

0 500 1000 1500

0.020

0.025

R
G

A
T

+
P

E
W

,
su

m

0 500 1000 1500

0.014

0.016

0.018

0.020

0 1000 2000 3000
0.013

0.014

0.015

M
L

P
,

ra
w

0 1000 2000 3000

0.012

0.013

0.014

0 1000 2000 3000
0.016

0.018

0.020

0.022

R
G

A
T

,
ra

w

0 500 1000 1500

0.015

0.020

0.025

0 500 1000 1500 2000
epoch

0.013

0.014

0.015

R
G

A
T

+
P

E
W

,
ra

w

0 1000 2000 3000
epoch

0.0115

0.0120

0.0125

Graph Sinet

Figure D.14: Learning curves for Sinet.

D.5. Learning Curves 188

0 1000 2000 3000
0.04

0.05

0.06

0.07
SSP

M
L

P
,

su
m

0 1000 2000 3000

0.040

0.045

0.050

ECMP

0 1000 2000 3000

0.10

0.15

R
G

A
T

,
su

m

0 1000 2000 3000

0.06

0.08

0 1000 2000

0.03

0.04

R
G

A
T

+
P

E
W

,
su

m

0 1000 2000 3000

0.02

0.03

0 1000 2000 3000

0.06

0.07

M
L

P
,

ra
w

0 1000 2000 3000

0.045

0.050

0.055

0.060

0 1000 2000 3000
0.04

0.06

0.08

R
G

A
T

,
ra

w

0 500 1000 1500 2000
0.04

0.05

0.06

0.07

0 500 1000 1500 2000
epoch

0.040

0.045

0.050

0.055

R
G

A
T

+
P

E
W

,
ra

w

0 500 1000 1500 2000 2500
epoch

0.0325

0.0350

0.0375

0.0400

Graph SwitchL3

Figure D.15: Learning curves for SwitchL3.

D.5. Learning Curves 189

0 1000 2000 3000
0.00

0.02

0.04
SSP

M
L

P
,

su
m

0 1000 2000 3000
0.00

0.02

0.04
ECMP

0 1000 2000 3000

0.04

0.06

0.08

R
G

A
T

,
su

m

0 1000 2000 3000

0.04

0.06

0.08

0 1000 2000
0.000

0.025

0.050

0.075

R
G

A
T

+
P

E
W

,
su

m

0 1000 2000
0.00

0.05

0 1000 2000

0.028

0.030

0.032

M
L

P
,

ra
w

0 1000 2000 3000

0.028

0.030

0.032

0 1000 2000 3000

0.02

0.04

0.06

R
G

A
T

,
ra

w

0 1000 2000 3000
0.00

0.02

0.04

0.06

0 1000 2000 3000
epoch

0.02

0.04

R
G

A
T

+
P

E
W

,
ra

w

0 1000 2000 3000
epoch

0.02

0.04

Graph Ulaknet

Figure D.16: Learning curves for Ulaknet.

Bibliography

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse rein-

forcement learning. In ICML, 2004.

[2] Kenshin Abe, Zijian Xu, Issei Sato, and Masashi Sugiyama. Solving NP-

hard Problems on Graphs with Extended AlphaGo Zero. arXiv preprint

arXiv:1905.11623, 2019.

[3] B. Abramson. Expected-outcome: a general model of static evaluation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 12(2):182–193, 1990.

[4] Richa Agarwala, David L. Applegate, Donna Maglott, Gregory D. Schuler, and

Alejandro A. Schäffer. A fast and scalable radiation hybrid map construction

and integration strategy. Genome Research, 10(3):350–364, 2000.

[5] Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for

maximum independent sets. In ICML, 2020.

[6] Ravindra K. Ahuja. Network Flows: Theory, Algorithms, and Applications. Prentice

Hall, Englewood Cliffs, NJ, 1993.

[7] Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin, and M. R. Reddy.

Chapter 1 Applications of network optimization. In Handbooks in Operations

Research and Management Science, volume 7 of Network Models, pages 1–83.

Elsevier, 1995.

[8] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error and attack

tolerance of complex networks. Nature, 406(6794):378–382, 2000.

[9] Stefano Allesina, Antonio Bodini, and Mercedes Pascual. Functional links

BIBLIOGRAPHY 191

and robustness in food webs. Philosophical Transactions of the Royal Society B:

Biological Sciences, 364(1524):1701–1709, 2009.

[10] Paul Almasan, José Suárez-Varela, Bo Wu, Shihan Xiao, Pere Barlet-Ros, and

Albert Cabello. Towards real-time routing optimization with deep reinforce-

ment learning: Open challenges. In HPSR, 2021.

[11] Thomas Anthony, Zheng Tian, and David Barber. Thinking Fast and Slow

with Deep Learning and Tree Search. In NeurIPS, 2017.

[12] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time Analysis of the

Multiarmed Bandit Problem. Machine Learning, 47(2):235–256, 2002.

[13] Daniel Awduche, Angela Chiu, Anwar Elwalid, Indra Widjaja, and XiPeng

Xiao. Overview and principles of internet traffic engineering. RFC 3272, RFC

Editor, May 2002.

[14] Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algo-

rithms for parameter optimization. Evolutionary Computation, 1(1):1–23, 1993.

[15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine

Translation by Jointly Learning to Align and Translate. In ICLR, 2016.

[16] Michael Bain and Claude Sammut. A framework for behavioural cloning. In

Machine Intelligence 15, pages 103–129, 1999.

[17] Per Bak. How Nature Works: the Science of Self-organized Criticality. Copernicus,

New York, NY, USA, 1996.

[18] Albert-László Barabási. Network Science. Cambridge University Press, 2016.

[19] Albert-László Barabási and Réka Albert. Emergence of Scaling in Random

Networks. Science, 286(5439):509–512, 1999.

[20] Alain Barrat, Marc Barthélemy, and Alessandro Vespignani. Dynamical Pro-

cesses on Complex Networks. Cambridge University Press, 2008.

[21] Thomas D. Barrett, William R. Clements, Jakob N. Foerster, and A. I. Lvovsky.

Exploratory Combinatorial Optimization with Reinforcement Learning. In

AAAI, 2020.

BIBLIOGRAPHY 192

[22] Marc Barthélemy and Alessandro Flammini. Modeling urban street patterns.

Physical Review Letters, 100(13):138702, 2008.

[23] Marc Barthélemy. Spatial networks. Physics Reports, 499(1-3), 2011.

[24] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Álvaro Sánchez-González,

Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo,

Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Bal-

lard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash,

Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli,

Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational induc-

tive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,

2018.

[25] Mikhail Belkin and Partha Niyogi. Laplacian Eigenmaps and Spectral Tech-

niques for Embedding and Clustering. In NeurIPS, 2002.

[26] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David

Saxton, and Remi Munos. Unifying Count-Based Exploration and Intrinsic

Motivation. In NeurIPS. 2016.

[27] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspec-

tive on reinforcement learning. In ICML, 2017.

[28] Richard A. Bellman. Dynamic Programming. Princeton University Press, 1957.

[29] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio.

Neural Combinatorial Optimization with Reinforcement Learning. In ICLR

Workshops, 2017.

[30] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Cur-

riculum learning. In ICML, 2009.

[31] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine Learning for

Combinatorial Optimization: a Methodological Tour d’Horizon. European

Journal of Operational Research, 290:405–421, 2021.

[32] Alan A. Berryman. The origins and evolution of predator-prey theory. Ecology,

73(5):1530–1535, 1992.

BIBLIOGRAPHY 193

[33] Giulia Bertagnolli, Riccardo Gallotti, and Manlio De Domenico. Quantifying

efficient information exchange in real network flows. Communications Physics,

4(1):1–10, 2021.

[34] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume 1.

Athena Scientific, 1995.

[35] Alina Beygelzimer, Geoffrey Grinstein, Ralph Linsker, and Irina Rish. Im-

proving Network Robustness by Edge Modification. Physica A, 357:593–612,

2005.

[36] Leonora Bianchi, Marco Dorigo, Luca Maria Gambardella, and Walter J. Gut-

jahr. A survey on metaheuristics for stochastic combinatorial optimization.

Natural Computing, 8(2):239–287, 2009.

[37] Monica Bianchini, Marco Gori, and Franco Scarselli. Inside PageRank. ACM

Transactions on Internet Technology, 5(1):92–128, February 2005.

[38] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,

Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against ma-

chine learning at test time. In ECML-PKDD, 2013.

[39] Norman Biggs, E. Keith Lloyd, and Robin J. Wilson. Graph Theory, 1736-1936.

Oxford University Press, 1986.

[40] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Computing Surveys (CSUR), 35

(3):268–308, 2003.

[41] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan

Günnemann. NetGAN: Generating Graphs via Random Walks. In ICML,

2018.

[42] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

Freebase: a collaboratively created graph database for structuring human

knowledge. In SIGMOD, 2008.

BIBLIOGRAPHY 194

[43] Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, and

Tobias Friedrich. What’s wrong with deep learning in tree search for combi-

natorial optimization. In ICLR, 2022.

[44] Justin A. Boyan and Michael L. Littman. Packet Routing in Dynamically

Changing Networks: A Reinforcement Learning Approach. In NeurIPS, 1994.

[45] John Bradshaw, Brooks Paige, Matt J. Kusner, Marwin H. S. Segler, and

José Miguel Hernández-Lobato. A Model to Search for Synthesizable

Molecules. In NeurIPS, 2019.

[46] Yann Bramoullé and Rachel Kranton. Public goods in networks. Journal of

Economic Theory, 135(1):478–494, 2007.

[47] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathe-

matical Sociology, 25(2):163–177, 2001.

[48] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual

web search engine. Computer Netwowrks and ISDN Systems, 30:107–117, 1998.

[49] Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an

undirected graph. Communications of the ACM, 16(9):575–577, 1973.

[50] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre

Vandergheynst. Geometric Deep Learning: Going beyond Euclidean data.

IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[51] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas,

Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyri-

don Samothrakis, and Simon Colton. A Survey of Monte Carlo Tree Search

Methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1):

1–43, 2012.

[52] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral

Networks and Locally Connected Networks on Graphs. In ICLR, 2014.

[53] Ed Bullmore and Olaf Sporns. The economy of brain network organization.

Nature Reviews Neuroscience, 13(5):336–349, 2012.

BIBLIOGRAPHY 195

[54] Luciana S. Buriol, Mauricio G. C. Resende, Celso C. Ribeiro, and Mikkel

Thorup. A memetic algorithm for OSPF routing. In INFORMS Telecom, 2002.

[55] Dan Busbridge, Dane Sherburn, Pietro Cavallo, and Nils Y. Hammerla. Rela-

tional graph attention networks. arXiv preprint arXiv:1904.05811, 2019.

[56] Duncan S. Callaway, M. E. J. Newman, Steven H. Strogatz, and Duncan J. Watts.

Network robustness and fragility: Percolation on random graphs. Physical

Review Letters, 85:5468–5471, 2000.

[57] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue.

Artificial Intelligence, 134(1-2):57–83, 2002.

[58] Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher

Morris, and Petar Veličković. Combinatorial optimization and reasoning with

graph neural networks. In IJCAI, 2021.

[59] Tristan Cazenave. Reflexive Monte-Carlo search. In Computer Games Workshop,

2007.

[60] Tristan Cazenave. Nested Monte-Carlo search. In IJCAI, 2009.

[61] Hale Cetinay, Karel Devriendt, and Piet Van Mieghem. Nodal vulnerability to

targeted attacks in power grids. Applied Network Science, 3(1):34, 2018.

[62] Donald Chan and Daniel Mercier. Ic insertion: an application of the travelling

salesman problem. The International Journal of Production Research, 27(10):

1837–1841, 1989.

[63] Olivier Chapelle and Lihong Li. An Empirical Evaluation of Thompson Sam-

pling. In NeurIPS, 2011.

[64] Guillaume M. J-B. Chaslot, Mark H. M. Winands, H. Jaap Van Den Herik, Jos

W. H. M. Uiterwijk, and Bruno Bouzy. Progressive Strategies for Monte-Carlo

Tree Search. New Mathematics and Natural Computation, 04(03):343–357, 2008.

[65] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and

relieving the over-smoothing problem for graph neural networks from the

topological view. In AAAI, 2020.

BIBLIOGRAPHY 196

[66] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Guten-

berg, and Sushant Sachdeva. Maximum flow and minimum-cost flow in

almost-linear time. In FOCS, 2022.

[67] Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for

combinatorial optimization. In NeurIPS, 2019.

[68] Marco Chiesa, Guy Kindler, and Michael Schapira. Traffic engineering with

equal-cost-multipath: An algorithmic perspective. IEEE/ACM Transactions on

Networking, 25(2):779–792, 2017.

[69] Marco Chiesa, Gábor Rétvári, and Michael Schapira. Oblivious routing in ip

networks. IEEE/ACM Transactions on Networking, 26(3):1292–1305, 2018.

[70] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Repre-

sentations using RNN Encoder-Decoder for Statistical Machine Translation.

In EMNLP, 2014.

[71] Nicholas A. Christakis and James H. Fowler. The spread of obesity in a large

social network over 32 years. New England Journal of Medicine, 357(4):370–379,

2007.

[72] Nicholas A. Christakis and James H. Fowler. The collective dynamics of

smoking in a large social network. New England Journal of Medicine, 358(21):

2249–2258, 2008.

[73] Gian Paolo Cimellaro, Andrei M. Reinhorn, and Michel Bruneau. Framework

for analytical quantification of disaster resilience. Engineering Structures, 32:

3639–3649, 2010.

[74] Geoff Clarke and John W. Wright. Scheduling of vehicles from a central depot

to a number of delivery points. Operations Research, 12(4):568–581, 1964.

[75] Felipe Codevilla, Matthias Müller, Antonio López, Vladlen Koltun, and Alexey

Dosovitskiy. End-to-end driving via conditional imitation learning. In ICRA,

2018.

BIBLIOGRAPHY 197

[76] Reuven Cohen, Keren Erez, Daniel ben Avraham, and Shlomo Havlin. Re-

silience of the Internet to Random Breakdowns. Physical Review Letters, 85

(21):4626–4628, 2000.

[77] Reuven Cohen, Keren Erez, Daniel ben Avraham, and Shlomo Havlin. Break-

down of the Internet under Intentional Attack. Physical Review Letters, 86(16):

3682–3685, 2001.

[78] Vincent Conitzer and Tuomas Sandholm. Complexity Results about Nash

Equilibria. In IJCAI, 2003.

[79] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC,

1971.

[80] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. MIT Press, Fourth edition, 2022.

[81] Georges A. Croes. A method for solving traveling-salesman problems. Opera-

tions Research, 6(6):791–812, 1958.

[82] George Cybenko. Approximation by superpositions of a sigmoidal function.

Mathematics of control, signals and systems, 2(4):303–314, 1989.

[83] Paulo da Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning

2-opt heuristics for the traveling salesman problem via deep reinforcement

learning. In ACML, 2020.

[84] Allan Dafoe, Edward Hughes, Yoram Bachrach, Tantum Collins, Kevin R.

McKee, Joel Z Leibo, Kate Larson, and Thore Graepel. Open Problems in

Cooperative AI. In NeurIPS Cooperative AI Workshop, 2020.

[85] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable

models for structured data. In ICML, 2016.

[86] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.

Adversarial attack on graph structured data. In ICML, 2018.

[87] Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-Directed

Variational Autoencoder for Structured Data. In ICLR, 2018.

BIBLIOGRAPHY 198

[88] Jesper Dall and Michael Christensen. Random geometric graphs. Physical

Review E, 66(1):016121, 2002.

[89] Luca Dall’Asta, Paolo Pin, and Abolfazl Ramezanpour. Statistical Mechanics

of maximal independent sets. Physical Review E, 80(6):061136, 2009.

[90] Luca Dall’Asta, Paolo Pin, and Abolfazl Ramezanpour. Optimal Equilibria of

the Best Shot Game. Journal of Public Economic Theory, 13(6):885–901, 2011.

[91] George B. Dantzig and Mukund N. Thapa. Linear Programming, 1: Introduction.

Springer, 1997.

[92] George B. Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-

scale traveling-salesman problem. Journal of the Operations Research Society of

America, 2(4):393–410, 1954.

[93] Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Goal-

directed graph construction using reinforcement learning. Proceedings of

the Royal Society A: Mathematical, Physical and Engineering Sciences, 477(2254):

20210168, 2021.

[94] Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Solving

Graph-based Public Goods Games with Tree Search and Imitation Learning. In

Proceedings of the Thirty-fifth Conference on Neural Information Processing Systems

(NeurIPS), 2021.

[95] Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Graph

Neural Modeling of Network Flows. arXiv preprint arXiv:2209.05208, 2022.

[96] Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Planning

spatial networks with Monte Carlo tree search. Proceedings of the Royal Society

A: Mathematical, Physical and Engineering Sciences, 479(2269):20220383, 2023.

[97] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Du-

rugkar, Akshay Krishnamurthy, Alex Smola, and Andrew McCallum. Go for

a walk and arrive at the answer: Reasoning over paths in knowledge bases

using reinforcement learning. In ICLR, 2017.

BIBLIOGRAPHY 199

[98] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou.

The Complexity of Computing a Nash Equilibrium. SIAM Journal on Computing,

39(1):195–259, 2009.

[99] Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for

small molecular graphs. In ICML Deep Generative Models Workshop, 2018.

[100] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional

Neural Networks on Graphs with Fast Localized Spectral Filtering. In NeurIPS,

2016.

[101] Vic Degraeve, Gilles Vandewiele, Femke Ongenae, and Sofie Van Hoecke.

R-GCN: The R could stand for random. arXiv preprint arXiv:2203.02424, 2022.

[102] Marc Peter Deisenroth, Carl Edward Rasmussen, and Dieter Fox. Learning to

control a low-cost manipulator using data-efficient reinforcement learning. In

RSS, 2011.

[103] Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all

pairs shortest paths. Journal of the ACM (JACM), 51(6):968–992, 2004.

[104] Sybil Derrible and Christopher Kennedy. The complexity and robustness of

metro networks. Physica A: Statistical Mechanics and its Applications, 389(17):

3678–3691, 2010.

[105] Bistra Dilkina, Katherine J. Lai, and Carla P. Gomes. Upgrading shortest paths

in networks. In CPAIOR, 2011.

[106] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning

Structural Node Embeddings Via Diffusion Wavelets. In KDD, 2018.

[107] Christoffel Doorman, Victor-Alexandru Darvariu, Stephen Hailes, and Mirco

Musolesi. Dynamic Network Reconfiguration for Entropy Maximization using

Deep Reinforcement Learning. In Proceedings of the First Learning on Graphs

(LoG) Conference, 2022.

[108] James E. Doran and Donald Michie. Experiments with the graph traverser

program. Proceedings of the Royal Society of London. Series A. Mathematical and

Physical Sciences, 294(1437):235–259, 1966.

BIBLIOGRAPHY 200

[109] Marco Dorigo, Mauro Birattari, and Thomas Stützle. Ant colony optimization.

IEEE Computational Intelligence Magazine, 1(4):28–39, 2006.

[110] Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc An-

dreoli. BQ-NCO: Bisimulation quotienting for generalizable neural combina-

torial optimization. arXiv preprint arXiv:2301.03313, 2023.

[111] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag,

Timothy Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas

Degris, and Ben Coppin. Deep Reinforcement Learning in Large Discrete

Action Spaces. In ICML, 2015.

[112] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael

Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams.

Convolutional Networks on Graphs for Learning Molecular Fingerprints. In

NeurIPS, 2015.

[113] Wendy Ellens, Floske M. Spieksma, Piet Van Mieghem, Almerima Jamakovic,

and Robert E. Kooij. Effective graph resistance. Linear Algebra and its Applica-

tions, 435(10):2491–2506, 2011.

[114] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math.

Inst. Hung. Acad. Sci, 5(1):17–60, 1960.

[115] M. Ericsson, Mauricio G. C. Resende, and Panos M. Pardalos. A genetic algo-

rithm for the weight setting problem in OSPF routing. Journal of Combinatorial

Optimization, 6(3):299–333, 2002.

[116] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair

comparison of graph neural networks for graph classification. In ICLR, 2020.

[117] Ernesto Estrada and Naomichi Hatano. Communicability in complex networks.

Physical Review E, 77(3):036111, 2008.

[118] Shimon Even. Graph Algorithms. Cambridge University Press, 2011.

[119] Jonas K. Falkner and Lars Schmidt-Thieme. Learning to solve vehicle rout-

ing problems with time windows through joint attention. arXiv preprint

arXiv:2006.09100, 2020.

BIBLIOGRAPHY 201

[120] Nick Feamster and Jennifer Rexford. Why (and how) networks should run

themselves. arXiv preprint arXiv:1710.11583, 2017.

[121] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, Jennifer

Rexford, and Fred True. Deriving traffic demands for operational ip networks:

Methodology and experience. IEEE/ACM Transactions On Networking, 9(3):

265–279, 2001.

[122] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical

Journal, 23(2):298–305, 1973.

[123] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection

between generative adversarial networks, inverse reinforcement learning, and

energy-based models. arXiv preprint arXiv:1611.03852, 2016.

[124] Bernard Fortz and Mikkel Thorup. Internet Traffic Engineering by Optimizing

OSPF Weights. In IEEE INFOCOM, 2000.

[125] Bernard Fortz and Mikkel Thorup. Optimizing OSPF/IS-IS Weights in a

Changing World. IEEE Journal on Selected Areas in Communications, 20(4):

756–767, 2002.

[126] Bernard Fortz and Mikkel Thorup. Increasing internet capacity using local

search. Computational Optimization and Applications, 29(1):13–48, 2004.

[127] Feng Fu, Daniel I. Rosenbloom, Long Wang, and Martin A. Nowak. Imitation

dynamics of vaccination behaviour on social networks. Proceedings of the Royal

Society B: Biological Sciences, 278(1702):42–49, 2011.

[128] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adver-

sarial inverse reinforcement learning. In ICLR, 2018.

[129] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approxi-

mation error in actor-critic methods. In ICML, 2018.

[130] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model

for a mechanism of pattern recognition unaffected by shift in position. Biologi-

cal Cybernetics, 36:193–202, 1980.

BIBLIOGRAPHY 202

[131] Andrea Galeotti, Sanjeev Goyal, Matthew O. Jackson, Fernando Vega-

Redondo, and Leeat Yariv. Network Games. Review of Economic Studies, 77(1):

218–244, 2009.

[132] Alexander A. Ganin, Emanuele Massaro, Alexander Gutfraind, Nicolas Steen,

Jeffrey M. Keisler, Alexander Kott, Rami Mangoubi, and Igor Linkov. Opera-

tional resilience: Concepts, design and analysis. Scientific Reports, 6(1):1–12,

2016.

[133] Javier Garcı́a and Fernando Fernández. A Comprehensive Survey on Safe

Reinforcement Learning. Journal of Machine Learning Research, 16(42):44, 2015.

[134] Michael R. Garey and David S. Johnson. Computers and Intractability. A Guide

to the Theory of NP-Completeness. W. H. Freeman and Co, 1979.

[135] Vikas Garg and Tommi Jaakkola. Learning tree structured potential games.

In NeurIPS, 2016.

[136] Michael T. Gastner and M. E. J. Newman. Shape and efficiency in spatial

distribution networks. Journal of Statistical Mechanics: Theory and Experiment,

2006(01):P01015, 2006.

[137] Michael T. Gastner and M. E. J. Newman. The spatial structure of networks.

The European Physical Journal B, 49(2):247–252, 2006.

[138] Steven Gay, Pierre Schaus, and Stefano Vissicchio. Repetita: Repeatable exper-

iments for performance evaluation of traffic-engineering algorithms. arXiv

preprint arXiv:1710.08665, 2017.

[139] Sylvain Gelly and David Silver. Combining online and offline knowledge in

UCT. In ICML, 2007.

[140] Dobrik Georgiev and Pietro Liò. Neural bipartite matching. In ICML Workshop

on Graph Representation Learning and Beyond (GRL+), 2020.

[141] Dobrik Georgiev, Pietro Barbiero, Dmitry Kazhdan, Petar Veličković, and

Pietro Liò. Algorithmic concept-based explainable reasoning. In AAAI, 2022.

BIBLIOGRAPHY 203

[142] Fabien Geyer and Georg Carle. Learning and Generating Distributed Routing

Protocols Using Graph-Based Deep Learning. In Big-DAMA, 2018.

[143] Itzhak Gilboa and Eitan Zemel. Nash and correlated equilibria: Some com-

plexity considerations. Games and Economic Behavior, 1(1):80–93, 1989.

[144] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and

George E. Dahl. Neural Message Passing for Quantum Chemistry. In ICML,

2017.

[145] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adver-

sarial Nets. In NeurIPS, 2014.

[146] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016.

[147] Sanjeev Goyal. Connections: An Introduction to the Economics of Networks. Prince-

ton University Press, 2012.

[148] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recogni-

tion with deep recurrent neural networks. In ICASSP, 2013.

[149] Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for

Networks. In KDD, 2016.

[150] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous

deep q-learning with model-based acceleration. In ICML, 2016.

[151] Jim Guichard, François Le Faucheur, and Jean-Philippe Vasseur. Definitive

MPLS Network Designs. Cisco Press, 2005.

[152] Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Carlos Outeiral, Pedro

Luis Cunha Farias, and Alán Aspuru-Guzik. Objective-Reinforced Generative

Adversarial Networks (ORGAN) for Sequence Generation Models. arXiv

preprint arXiv:1705.10843, 2018.

[153] Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L. Lewis, and Xiaoshi

Wang. Deep Learning for Real-Time Atari Game Play Using Offline Monte-

Carlo Tree Search Planning. In NeurIPS, 2014.

BIBLIOGRAPHY 204

[154] Nikola Gvozdiev, Stefano Vissicchio, Brad Karp, and Mark Handley. On low-

latency-capable topologies, and their impact on the design of intra-domain

routing. In SIGCOMM, 2018.

[155] Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel

Hernández-Lobato, Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge

Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-

Guzik. Automatic Chemical Design Using a Data-Driven Continuous Repre-

sentation of Molecules. ACS Central Science, 4(2):268–276, 2018.

[156] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft

actor-critic: Off-policy maximum entropy deep reinforcement learning with a

stochastic actor. In ICML, 2018.

[157] Hamed Haddadi and Olivier Bonaventure (Editors). Recent Advances in

Networking, 2013.

[158] Aric Hagberg, Pieter Swart, and Daniel S. Chult. Exploring network structure,

dynamics, and function using networkx. In SciPy, 2008.

[159] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning

on graphs: Methods and applications. IEEE Data Engineering Bulletin, 40(3):

52–74, 2017.

[160] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representa-

tion Learning on Large Graphs. In NeurIPS, 2017.

[161] Frank Harary and Edgar M. Palmer. Graphical Enumeration. Academic Press,

New York, 1973.

[162] Renaud Hartert, Stefano Vissicchio, Pierre Schaus, Olivier Bonaventure,

Clarence Filsfils, Thomas Telkamp, and Pierre Francois. A declarative and

expressive approach to control forwarding paths in carrier-grade networks.

ACM SIGCOMM Computer Communication Review, 45(4):15–28, 2015.

[163] Yehuda Hassin and David Peleg. Sparse communication networks and efficient

routing in the plane (extended abstract). In PODC, 2000.

BIBLIOGRAPHY 205

[164] Ji He, Mari Ostendorf, Xiaodong He, Jianshu Chen, Jianfeng Gao, Lihong Li,

and Li Deng. Deep Reinforcement Learning with a Combinatorial Action

Space for Predicting Popular Reddit Threads. In EMNLP, 2016.

[165] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep Convolutional Networks

on Graph-Structured Data. arXiv preprint arXiv:1506.05163, 2015.

[166] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Os-

trovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David

Silver. Rainbow: Combining Improvements in Deep Reinforcement Learning.

In AAAI. 2018.

[167] Jack Hirshleifer. From weakest-link to best-shot: The voluntary provision of

public goods. Public Choice, 41(3):371–386, 1983.

[168] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning.

In NeurIPS, 2016.

[169] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

Computation, 9(8):1735–1780, 1997.

[170] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochas-

tic blockmodels: First steps. Social Networks, 5(2):109–137, 1983.

[171] Richard A. Holley and Thomas M. Liggett. Ergodic theorems for weakly

interacting infinite systems and the voter model. The Annals of Probability,

pages 643–663, 1975.

[172] Petter Holme, Beom Jun Kim, Chang No Yoon, and Seung Kee Han. Attack

vulnerability of complex networks. Physical Review E, 65(5), 2002.

[173] Jean Honorio and Luis E. Ortiz. Learning the structure and parameters of

large-population graphical games from behavioral data. Journal of Machine

Learning Research, 16(1):1157–1210, 2015.

[174] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and

their applications. Bulletin of the American Mathematical Society, 43(04):439–562,

2006.

BIBLIOGRAPHY 206

[175] Oliver Hope and Eiko Yoneki. GDDR: GNN-based Data-Driven Routing. In

ICDCS, 2021.

[176] John J. Hopfield and David W. Tank. “Neural” computation of decisions in

optimization problems. Biological Cybernetics, 52(3):141–152, 1985.

[177] C. Hopps. Analysis of an equal-cost multi-path algorithm. RFC 2992, RFC

Editor, November 2000.

[178] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-

ward networks are universal approximators. Neural Networks, 2(5):359–366,

1989.

[179] André Hottung and Kevin Tierney. Neural large neighborhood search for the

capacitated vehicle routing problem. In ECAI, 2020.

[180] T. Chiang Hu. Multi-commodity network flows. Operations Research, 11(3):

344–360, 1963.

[181] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science &

Engineering, 9(3):90–95, 2007.

[182] Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi

Bennani, Róbert Csordás, Andrew Dudzik, Matko Bošnjak, Alex Vitvitskyi,

Yulia Rubanova, Andreea Deac, Beatrice Bevilacqua, Yaroslav Ganin, Charles

Blundell, and Petar Veličković. A generalist neural algorithmic learner. In

LoG, 2022.

[183] Mohammad Irfan and Luis Ortiz. A game-theoretic approach to influence in

networks. In AAAI, 2011.

[184] Swami Iyer, Timothy Killingback, Bala Sundaram, and Zhen Wang. Attack

Robustness and Centrality of Complex Networks. PLoS ONE, 8(4):e59613,

April 2013.

[185] Matthew O. Jackson and Yves Zenou. Chapter 3 - Games on Networks. In

Handbook of Game Theory with Economic Applications, volume 4, pages 95–163.

Elsevier, 2015.

BIBLIOGRAPHY 207

[186] Adam B. Jaffe, Manuel Trajtenberg, and Rebecca Henderson. Geographic

localization of knowledge spillovers as evidenced by patent citations. The

Quarterly Journal of Economics, 108(3):577–598, 1993.

[187] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Ar-

jun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan

Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experience with a

globally-deployed software defined WAN. In SIGCOMM, 2013.

[188] Tommy R. Jensen and Bjarne Toft. Graph Coloring Problems. Wiley, New York,

1995.

[189] Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang. Unleashing the potential

of data-driven networking. In COMSNETS, 2017.

[190] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction Tree Variational

Autoencoder for Molecular Graph Generation. In ICML, 2018.

[191] Syu-Ning Johnn, Victor-Alexandru Darvariu, Julia Handl, and Joerg Kalc-

sics. Graph Reinforcement Learning for Operator Selection in the ALNS

Metaheuristic. In Proceedings of the International Conference in Optimization and

Learning (OLA2023), 2023.

[192] Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph

convolutional network technique for the travelling salesman problem. arXiv

preprint arXiv:1906.01227, 2019.

[193] Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas

Laurent. Learning the travelling salesperson problem requires rethinking

generalization. Constraints, pages 1–29, 2022.

[194] Marcus Kaiser and Claus C. Hilgetag. Spatial growth of real-world networks.

Physical Review E, 69(3):036103, 2004.

[195] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna Charny. Walking the

tightrope: Responsive yet stable traffic engineering. In SIGCOMM, 2005.

[196] Richard M. Karp. Reducibility among combinatorial problems. In Complexity

of Computer Computations, pages 85–103. Springer, 1972.

BIBLIOGRAPHY 208

[197] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architec-

ture for Generative Adversarial Networks. In CVPR, 2019.

[198] Michael Kearns, Michael L. Littman, and Satinder Singh. Graphical Models

for Game Theory. In UAI, 2001.

[199] Ralph L. Keeney, Howard Raiffa, and Richard F. Meyer. Decisions with multiple

objectives: preferences and value trade-offs. Cambridge University Press, 1993.

[200] David Kempe, Sixie Yu, and Yevgeniy Vorobeychik. Inducing Equilibria in

Networked Public Goods Games through Network Structure Modification. In

AAMAS, 2020.

[201] Donald Kennedy. Sustainability and the Commons. Science, 302(5652):1861–

1861, 2003.

[202] William Ogilvy Kermack and Anderson G McKendrick. A contribution to the

mathematical theory of epidemics. Proceedings of the Royal Society of London

Series A, 115(772):700–721, 1927.

[203] Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning

combinatorial optimization algorithms over graphs. In NeurIPS, 2017.

[204] Elias B. Khalil, Christopher Morris, and Andrea Lodi. MIP-GNN: A data-

driven framework for guiding combinatorial solvers. In AAAI, 2022.

[205] Minsu Kim and Jinkyoo Park. Learning collaborative policies to solve np-hard

routing problems. In NeurIPS, 2021.

[206] Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging sym-

metricity for neural combinatorial optimization. In NeurIPS, 2022.

[207] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-

tion. In ICLR, 2015.

[208] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In

ICLR, 2013.

[209] Thomas N. Kipf and Max Welling. Variational Graph Auto-Encoders. In

NeurIPS ’16 Bayesian Deep Learning Workshop, 2016.

BIBLIOGRAPHY 209

[210] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph

Convolutional Networks. In ICLR, 2017.

[211] Scott Kirkpatrick, C. Daniel Gelatt Jr., and Mario P. Vecchi. Optimization by

simulated annealing. Science, 220(4598):671–680, 1983.

[212] Simon Knight, Hung X. Nguyen, Nickolas Falkner, Rhys Bowden, and

Matthew Roughan. The Internet Topology Zoo. IEEE Journal on Selected

Areas in Communications, 29(9):1765–1775, 2011.

[213] Levente Kocsis and Csaba Szepesvári. Bandit Based Monte-Carlo Planning.

In ECML, 2006.

[214] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and

techniques. MIT Press, 2009.

[215] Peter Kollock. Social Dilemmas: The Anatomy of Cooperation. Annual Review

of Sociology, 24(1):183–214, 1998.

[216] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve

routing problems! In ICLR, 2019.

[217] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In NeurIPS, 2012.

[218] Jérôme Kunegis. KONECT: the Koblenz network collection. In WWW Com-

panion, 2013.

[219] Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar

Variational Autoencoder. In ICML, 2017.

[220] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon,

and Seungjai Min. Pomo: Policy optimization with multiple optima for rein-

forcement learning. In NeurIPS, 2020.

[221] Alisa H. Land and Alison G. Doig. An automatic method of solving discrete

programming problems. Econometrica, 28(3):497–520, 1960.

[222] Alexandre Laterre, Yunguan Fu, Mohamed Khalil Jabri, Alain-Sam Cohen,

David Kas, Karl Hajjar, Torbjorn S. Dahl, Amine Kerkeni, and Karim Beguir.

BIBLIOGRAPHY 210

Ranked reward: Enabling self-play reinforcement learning for combinatorial

optimization. arXiv preprint arXiv:1807.01672, 2018.

[223] Vito Latora and Massimo Marchiori. Efficient Behavior of Small-World Net-

works. Physical Review Letters, 87(19):198701, 2001.

[224] Vito Latora and Massimo Marchiori. Economic small-world behavior in

weighted networks. The European Physical Journal B-Condensed Matter and

Complex Systems, 32(2):249–263, 2003.

[225] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE, 86

(11):2278–2324, 1998.

[226] John O. Ledyard. Public Goods: A Survey of Experimental Research, pages 111–194.

Princeton University Press, 1995.

[227] Yan Leng, Xiaowen Dong, Junfeng Wu, and Alex Pentland. Learning quadratic

games on networks. In ICML, 2020.

[228] Leonid Anatolevich Levin. Universal sequential search problems. Problemy

peredachi informatsii, 9(3):115–116, 1973.

[229] Sergey Levine and Vladlen Koltun. Guided policy search. In ICML, 2013.

[230] Vadim Levit, Zohar Komarovsky, Tal Grinshpoun, and Amnon Meisels.

Incentive-based search for efficient equilibria of the public goods game. Artifi-

cial Intelligence, 262:142–162, 2018.

[231] Kevin Leyton-Brown and Yoav Shoham. Essentials of game theory: A concise

multidisciplinary introduction. Synthesis Lectures on Artificial Intelligence and

Machine Learning, 2(1):1–88, 2008.

[232] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated Graph

Sequence Neural Networks. In ICLR, 2017.

[233] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learn-

ing Deep Generative Models of Graphs. In ICML, 2018.

BIBLIOGRAPHY 211

[234] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial Optimization

with Graph Convolutional Networks and Guided Tree Search. In NeurIPS,

2018.

[235] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L.

Hamilton, David Duvenaud, Raquel Urtasun, and Richard S. Zemel. Efficient

Graph Generation with Graph Recurrent Attention Networks. In NeurIPS,

2019.

[236] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. In ICLR, 2016.

[237] Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method

for solving vehicle routing problems. In ICLR, 2020.

[238] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search

provides a competitive approach to reinforcement learning. arXiv preprint

arXiv:1803.07055, 2018.

[239] Yishay Mansour and David Peleg. An approximation algorithm for minimum

cost network design, Technical Report CS94-22. Weizmann Institute of Science,

Faculty of Mathematical Sciences, 1994.

[240] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Prov-

ably Powerful Graph Networks. In NeurIPS, 2019.

[241] James L. McClelland and David E. Rumelhart. Parallel Distributed Processing:

Explorations in the Microstructure of Cognition: Foundations. MIT Press, 1987.

[242] James L. McClelland and David E. Rumelhart. Parallel Distributed Processing:

Explorations in the Microstructure of Cognition: Psychological and Biological Models.

MIT Press, 1987.

[243] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas im-

manent in nervous activity. The Bulletin of Mathematical Biophysics, 5:115–133,

1943.

BIBLIOGRAPHY 212

[244] Richard D. McKelvey and Andrew McLennan. Computation of equilibria in

finite games. Handbook of Computational Economics, 1:87–142, 1996.

[245] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry

Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow:

enabling innovation in campus networks. ACM SIGCOMM Computer Commu-

nication Review, 38(2):69–74, 2008.

[246] Wes McKinney. pandas: a foundational Python library for data analysis and

statistics. Python for High Performance and Scientific Computing, 14(9):1–9, 2011.

[247] Wided Medjroubi, Ulf Philipp Müller, Malte Scharf, Carsten Matke, and David

Kleinhans. Open Data in Power Grid Modelling: New Approaches Towards

Transparent Grid Models. Energy Reports, 3:14–21, 2017.

[248] Eli Meirom, Haggai Maron, Shie Mannor, and Gal Chechik. Controlling graph

dynamics with reinforcement learning and graph neural networks. In ICML,

2021.

[249] Manfred Milinski, Dirk Semmann, Hans-Jürgen Krambeck, and Jochem

Marotzke. Stabilizing the Earth’s climate is not a losing game: Supporting

evidence from public goods experiments. PNAS, 103(11):3994–3998, 2006.

[250] Marvin Minsky and Seymour Papert. Perceptrons: an Introduction to Computa-

tional Geometry. MIT Press, 1969.

[251] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, et al.

Human-level control through deep reinforcement learning. Nature, 518(7540):

529–533, 2015.

[252] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves,

Tim Harley, Timothy P Lillicrap, David Silver, and Koray Kavukcuoglu. Asyn-

chronous Methods for Deep Reinforcement Learning. In ICML, 2016.

[253] P. Read Montague, Peter Dayan, and Terrence J. Sejnowski. A framework for

mesencephalic dopamine systems based on predictive Hebbian learning. The

Journal of Neuroscience, 16(5):1936–1947, 1996.

BIBLIOGRAPHY 213

[254] Federico Monti, Michael M. Bronstein, and Xavier Bresson. Geometric Matrix

Completion with Recurrent Multi-Graph Neural Networks. In ICML, 2017.

[255] Mouad Morabit, Guy Desaulniers, and Andrea Lodi. Machine-learning–based

column selection for column generation. Transportation Science, 55(4):815–831,

2021.

[256] Alexander Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo

Jimenez Rezende. Towards interpretable reinforcement learning using atten-

tion augmented agents. In NeurIPS, 2019.

[257] John Moy. OSPF Version 2. RFC 2328, RFC Editor, April 1998.

[258] John Nash. Some games and machines for playing them. Technical Report

D-1164, Rand Corporation, 1952.

[259] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin

Takáč. Reinforcement Learning for Solving the Vehicle Routing Problem. In

NeurIPS, 2018.

[260] M. E. J. Newman. Assortative mixing in networks. Physical Review Letters, 89

(20), 2002.

[261] M. E. J. Newman. Mixing patterns in networks. Physical Review E, 67(2),

February 2003.

[262] M. E. J. Newman. The Structure and Function of Complex Networks. SIAM

Review, 45(2), 2003.

[263] M. E. J. Newman. Networks. Oxford University Press, 2018.

[264] Andrew Y. Ng and Stuart J. Russell. Algorithms for Inverse Reinforcement

Learning. In ICML, 2000.

[265] OEIS Foundation. The on-line encyclopedia of integer sequences, 2020. URL

https://oeis.org/A001187.

[266] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, and Satinder

Singh. Action-conditional video prediction using deep networks in atari

games. In NeurIPS, 2015.

https://oeis.org/A001187

BIBLIOGRAPHY 214

[267] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,

Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray

Kavukcuoglu. WaveNet: A Generative Model for Raw Audio. arXiv preprint

arXiv:1609.03499, 2016.

[268] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric

Transitivity Preserving Graph Embedding. In KDD, 2016.

[269] George Panagopoulos, Giannis Nikolentzos, and Michalis Vazirgiannis. Trans-

fer graph neural networks for pandemic forecasting. In AAAI, 2021.

[270] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

Soumith Chintala. PyTorch: An imperative style, high-performance deep

learning library. In NeurIPS, 2019.

[271] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley Longman Publishing Co., Inc., 1984.

[272] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, 1988.

[273] Srinivas Peeta, F. Sibel Salman, Dilek Gunnec, and Kannan Viswanath. Pre-

disaster investment decisions for strengthening a highway network. Computers

& Operations Research, 37(10):1708–1719, 2010.

[274] Tiago P. Peixoto. Hierarchical block structures and high-resolution model

selection in large networks. Physical Review X, 4(1):011047, 2014.

[275] Tiago P. Peixoto. Reconstructing networks with unknown and heterogeneous

errors. Physical Review X, 8(4):041011, 2018.

[276] Tiago P. Peixoto. Bayesian stochastic blockmodeling. Advances in Network

Clustering and Blockmodeling, pages 289–332, 2019.

[277] Mathew D. Penrose. Random Geometric Graphs. Oxford University Press, 2003.

BIBLIOGRAPHY 215

[278] Mathew D. Penrose. Connectivity of soft random geometric graphs. The

Annals of Applied Probability, 26(2):986–1028, 2016.

[279] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online Learning

of Social Representations. In KDD, 2014.

[280] Leonid Peshkin and Virginia Savova. Reinforcement learning for adaptive

routing. In IJCNN, 2002.

[281] Jervis Pinto and Alan Fern. Learning partial policies to speedup mdp tree

search via reduction to iid learning. The Journal of Machine Learning Research,

18(1):2179–2213, 2017.

[282] Pavel G. Polishchuk, Timur I. Madzhidov, and Alexandre Varnek. Estimation of

the size of drug-like chemical space based on gdb-17 data. Journal of Computer-

aided Molecular Design, 27(8):675–679, 2013.

[283] Dean A. Pomerleau. ALVINN: An autonomous land vehicle in a neural net-

work. In NeurIPS, 1988.

[284] Dean A. Pomerleau. Efficient training of artificial neural networks for au-

tonomous navigation. Neural Computation, 3(1):88–97, 1991.

[285] Harald Räcke. Optimal hierarchical decompositions for congestion minimiza-

tion in networks. In STOC, 2008.

[286] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representa-

tion Learning with Deep Convolutional Generative Adversarial Networks. In

ICLR, 2016.

[287] Joao Reis, Miguel Rocha, Truong Khoa Phan, David Griffin, Franck Le, and

Miguel Rio. Deep neural networks for network routing. In IJCNN, 2019.

[288] Leonardo F. R. Ribeiro, Pedro H. P. Savarese, and Daniel R. Figueiredo.

struc2vec: Learning Node Representations from Structural Identity. In KDD,

2017.

[289] Martin Riedmiller. Neural Fitted Q Iteration – First Experiences with a Data

Efficient Neural Reinforcement Learning Method. In ECML, 2005.

BIBLIOGRAPHY 216

[290] Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley.

A Survey of Multi-Objective Sequential Decision-Making. Journal of Artificial

Intelligence Research, 48:67–113, 2013.

[291] Stefan Ropke and David Pisinger. An adaptive large neighborhood search

heuristic for the pickup and delivery problem with time windows. Transporta-

tion Science, 40(4):455–472, 2006.

[292] Frank Rosenblatt. The perceptron: a probabilistic model for information

storage and organization in the brain. Psychological Review, 65(6):386, 1958.

[293] Christopher D. Rosin. Nested Rollout Policy Adaptation for Monte Carlo Tree

Search. In IJCAI, 2011.

[294] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation

learning and structured prediction to no-regret online learning. In AISTATS,

2011.

[295] Emanuele Rossi, Federico Monti, Yan Leng, Michael Bronstein, and Xiaowen

Dong. Learning to infer structures of network games. In ICML, 2022.

[296] Camille Roth, Soong Moon Kang, Michael Batty, and Marc Barthélemy. A

long-time limit for world subway networks. Journal of The Royal Society Interface,

9(75):2540–2550, 2012.

[297] Matthew Roughan. Simplifying the synthesis of internet traffic matrices. ACM

SIGCOMM Computer Communication Review, 35(5):93–96, 2005.

[298] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning

representations by back-propagating errors. Nature, 323(6088):533–536, 1986.

[299] Adam Runions, Martin Fuhrer, Brendan Lane, Pavol Federl, Anne-Gaëlle

Rolland-Lagan, and Przemyslaw Prusinkiewicz. Modeling and visualization

of leaf venation patterns. In SIGGRAPH. 2005.

[300] Krzysztof Rusek, José Suárez-Varela, Albert Mestres, Pere Barlet-Ros, and

Albert Cabellos-Aparicio. Unveiling the potential of graph neural networks

for network modeling and optimization in SDN. In SOSR, 2019.

BIBLIOGRAPHY 217

[301] Stuart J. Russell and Peter Norvig. Artificial Intelligence: a Modern Approach.

Prentice Hall, Third edition, 2010.

[302] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evo-

lution strategies as a scalable alternative to reinforcement learning. arXiv

preprint arXiv:1703.03864, 2017.

[303] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and

Gabriele Monfardini. The Graph Neural Network Model. IEEE Transactions

on Neural Networks, 20(1):61–80, 2009.

[304] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized

experience replay. In ICLR, 2016.

[305] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan

Titov, and Max Welling. Modeling relational data with graph convolutional

networks. In ESWC, pages 593–607. Springer, 2018.

[306] Christian M. Schneider, André A. Moreira, Joao S. Andrade, Shlomo Havlin,

and Hans J. Herrmann. Mitigation of malicious attacks on networks. PNAS,

108(10):3838–3841, 2011.

[307] Christian M. Schneider, Nuri Yazdani, Nuno A. M. Araújo, Shlomo Havlin,

and Hans J. Herrmann. Towards designing robust coupled networks. Nature

Scientific Reports, 3(1), December 2013.

[308] Alexander Schrijver. On the history of combinatorial optimization (till 1960).

Handbooks in Operations Research and Management Science, 12:1–68, 2005.

[309] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp

Moritz. Trust region policy optimization. In ICML, 2015.

[310] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and

Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347, 2017.

[311] Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, and Jianfeng Gao.

M-Walk: Learning to Walk over Graphs using Monte Carlo Tree Search. In

NeurIPS, 2018.

BIBLIOGRAPHY 218

[312] David Silver. Reinforcement Learning of Local Shape in the Game of Go. In

IJCAI, 2007.

[313] David Silver, J. Andrew Bagnell, and Anthony Stentz. High performance

outdoor navigation from overhead data using imitation learning. In RSS.

2008.

[314] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,

George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Ve-

davyas Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe,

John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine

Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering

the game of Go with deep neural networks and tree search. Nature, 529(7587):

484–489, 2016.

[315] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian

Bolton, Yutian Chen, Timothy P. Lillicrap, Fan Hui, Laurent Sifre, George

van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game

of Go without human knowledge. Nature, 550(7676):354–359, 2017.

[316] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,

Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,

Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. A

general reinforcement learning algorithm that masters chess, shogi, and Go

through self-play. Science, 362(6419):1140–1144, 2018.

[317] Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards Generation

of Small Graphs Using Variational Autoencoders. In ICANN, 2018.

[318] Kate A. Smith. Neural Networks for Combinatorial Optimization: A Review

of More Than a Decade of Research. INFORMS Journal on Computing, 11(1):

15–34, 1999.

[319] Ricard V. Solé, Martı́ Rosas-Casals, Bernat Corominas-Murtra, and Sergi

Valverde. Robustness of the European power grids under intentional attack.

Physical Review E, 77(2):026102, 2008.

BIBLIOGRAPHY 219

[320] Alessandro Sperduti and Antonina Starita. Supervised neural networks for

the classification of structures. IEEE Transactions on Neural Networks, 8(3):

714–735, 1997.

[321] Dietrich Stauffer and Ammon Aharony. Introduction to Percolation Theory.

Taylor & Francis, 1992.

[322] Peter Stone. TPOT-RL Applied to Network Routing. In ICML, 2000.

[323] Ethan Stump, Ali Jadbabaie, and Vijay Kumar. Connectivity management in

mobile robot teams. In ICRA, 2008.

[324] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of

semantic knowledge. In WWW, 2007.

[325] John E. Sulston, Einhard Schierenberg, John G. White, and J. Nichol Thom-

son. The embryonic cell lineage of the nematode caenorhabditis elegans.

Developmental Biology, 100(1):64–119, 1983.

[326] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

MIT Press, 2018.

[327] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru

Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural

networks. In ICLR, 2014.

[328] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan,

John Schulman, Filip DeTurck, and Pieter Abbeel. #Exploration: A Study of

Count-Based Exploration for Deep Reinforcement Learning. In NeurIPS. 2017.

[329] Toshi Tanizawa, Gerald Paul, Reuven Cohen, Shlomo Havlin, and H. Eugene

Stanley. Optimization of network robustness to waves of targeted and random

attacks. Physical Review E, 71(4), 2005.

[330] Nigel Tao, Jonathan Baxter, and Lex Weaver. A Multi-Agent, Policy-Gradient

approach to Network Routing. In ICML, pages 553–560, 2001.

[331] Éva Tardos. A strongly polynomial algorithm to solve combinatorial linear

programs. Operations Research, 34(2):250–256, 1986.

BIBLIOGRAPHY 220

[332] Gerald Tesauro and Gregory R. Galperin. On-line Policy Improvement using

Monte-Carlo Search. In NeurIPS, 1997.

[333] Paul R. Thie and Gerard E. Keough. An Introduction to Linear Programming and

Game Theory. John Wiley & Sons, 2011.

[334] Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua

Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers,

Jakob Uszkoreit, Mario Lucic, and Alexey Dosovitskiy. MLP-Mixer: An all-

MLP architecture for vision. In NeurIPS, 2021.

[335] Paolo Toth and Daniele Vigo, editors. Vehicle routing: problems, methods, and

applications. Society for Industrial and Applied Mathematics, Second edition,

2015.

[336] Jeffrey Travers and Stanley Milgram. An experimental study of the small

world problem. Sociometry, 32(4):425–443, 1969.

[337] Rakshit Trivedi and Hongyuan Zha. Learning strategic network emergence

games. In NeurIPS, 2020.

[338] Rakshit Trivedi, Jiachen Yang, and Hongyuan Zha. GraphOpt: Learning

Optimization Models of Graph Formation. In ICML, 2020.

[339] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar. Learning

to route. In ACM HotNets, 2017.

[340] André X. C. N. Valente, Abhijit Sarkar, and Howard A. Stone. Two-Peak and

Three-Peak Optimal Complex Networks. Physical Review Letters, 92(11), 2004.

[341] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learn-

ing with double Q-learning. In AAAI, 2016.

[342] Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns,

2(7):100273, 2021.

[343] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,

Pietro Liò, and Yoshua Bengio. Graph attention networks. In ICLR, 2018.

BIBLIOGRAPHY 221

[344] Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles

Blundell. Neural Execution of Graph Algorithms. In ICLR, 2020.

[345] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and

Swarat Chaudhuri. Programmatically interpretable reinforcement learning.

In ICML, 2018.

[346] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer Networks. In

NeurIPS, 2015.

[347] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential

families, and variational inference. Foundations and Trends in Machine Learning,

1(1–2):1–305, 2008.

[348] Huijuan Wang and Piet Van Mieghem. Algebraic connectivity optimization

via link addition. In Bionetics, 2008.

[349] Linnan Wang, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, and Rodrigo Fonseca.

Neural Architecture Search using Deep Neural Networks and Monte Carlo

Tree Search. In AAAI, 2020.

[350] Xiangrong Wang, Evangelos Pournaras, Robert E. Kooij, and Piet

Van Mieghem. Improving robustness of complex networks via the effective

graph resistance. The European Physical Journal B, 87(9):221, 2014.

[351] Michael L. Waskom. Seaborn: statistical data visualization. Journal of Open

Source Software, 6(60):3021, 2021.

[352] Christopher J. C. H. Watkins and Peter Dayan. Technical note: Q-learning.

Machine Learning, 8(3-4):279–292, 1992.

[353] Duncan J. Watts. A simple model of global cascades on random networks.

Proceedings of the National Academy of Sciences, 99(9):5766–5771, 2002.

[354] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’

networks. Nature, 393(6684):440, 1998.

[355] Bernard M. Waxman. Routing of multipoint connections. IEEE Journal on

Selected Areas in Communications, 6(9):1617–1622, 1988.

BIBLIOGRAPHY 222

[356] David Weininger. Smiles, a chemical language and information system. 1. in-

troduction to methodology and encoding rules. Journal of Chemical Information

and Computer Sciences, 28(1):31–36, 1988.

[357] Walter E. Westman. Measuring the inertia and resilience of ecosystems. Bio-

Science, 28(11):705–710, 1978.

[358] Norbert Wiener. Cybernetics or Control and Communication in the Animal and the

Machine. MIT Press, 1948.

[359] Matthew J. Williams and Mirco Musolesi. Spatio-temporal networks: Reach-

ability, centrality and robustness. Royal Society Open Science, 3(6):160–196,

2016.

[360] Ronald J. Williams. Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning. Machine Learning, 8(3-4):229–256, 1992.

[361] David P. Williamson and David B. Shmoys. The Design of Approximation Algo-

rithms. Cambridge University Press, 2011.

[362] David H. Wolpert and William G. Macready. No free lunch theorems for

optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[363] John Wreathall. Properties of resilient organizations: an initial view. In

Resilience Engineering, pages 275–285. CRC Press, 2017.

[364] Xiaojian Wu, Daniel Sheldon, and Shlomo Zilberstein. Optimizing resilience

in large scale networks. In AAAI, 2016.

[365] Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning

improvement heuristics for solving routing problems. IEEE Transactions on

Neural Networks and Learning Systems, 2021.

[366] Zhi-Xi Wu and Petter Holme. Onion structure and network robustness. Physical

Review E, 84(2), 2011.

[367] Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi,

and Stefanie Jegelka. What can neural networks reason about? In ICLR, 2020.

BIBLIOGRAPHY 223

[368] Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang,

Chi Harold Liu, and Dejun Yang. Experience-driven networking: A deep

reinforcement learning based approach. In IEEE INFOCOM, 2018.

[369] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamil-

ton, and Jure Leskovec. Graph Convolutional Neural Networks for Web-Scale

Recommender Systems. In KDD, 2018.

[370] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamil-

ton, and Jure Leskovec. Hierarchical Graph Representation Learning with

Differentiable Pooling. In NeurIPS, 2018.

[371] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.

GNNExplainer: Generating explanations for graph neural networks. In

NeurIPS, 2019.

[372] Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. Graph

Convolutional Policy Network for Goal-Directed Molecular Graph Generation.

In NeurIPS, 2018.

[373] Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec.

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models.

In ICML, 2018.

[374] Lantao Yu, Jiaming Song, and Stefano Ermon. Multi-agent adversarial inverse

reinforcement learning. In ICML, 2019.

[375] Sixie Yu, Kai Zhou, P. Jeffrey Brantingham, and Yevgeniy Vorobeychik. Com-

puting Equilibria in Binary Networked Public Goods Games. In AAAI, 2019.

[376] Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J. Mankowitz, and Shie

Mannor. Learn What Not to Learn: Action Elimination with Deep Reinforce-

ment Learning. In NeurIPS, 2018.

[377] Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint

arXiv:1410.4615, 2014.

BIBLIOGRAPHY 224

[378] Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi.

Learning to dispatch for job shop scheduling via deep reinforcement learning.

In NeurIPS, 2020.

[379] Denghui Zhang, Zixuan Yuan, Hao Liu, Hui Xiong, et al. Learning to walk

with dual agents for knowledge graph reasoning. In AAAI, 2022.

[380] Junjie Zhang, Minghao Ye, Zehua Guo, Chen-Yu Yen, and H. Jonathan Chao.

CFR-RL: Traffic engineering with reinforcement learning in SDN. IEEE Journal

on Selected Areas in Communications, 38(10):2249–2259, 2020.

[381] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey.

Maximum entropy inverse reinforcement learning. In AAAI, 2008.

[382] Lovro Šubelj and Marko Bajec. Robust network community detection using

balanced propagation. The European Physical Journal B, 81(3):353–362, 2011.

	Introduction
	Networks and Combinatorial Optimisation
	Machine Learning for Combinatorial Optimisation: Beyond Canonical Problems
	Research Questions
	Thesis Outline and Contributions
	List of Publications

	Background and Related Work
	Graph Fundamentals and Properties
	Classic Graph Generative Models
	Graph Processes
	Robustness
	Efficiency
	Network Flows
	Network Games

	Artificial Neural Networks on Graphs
	Artificial Neural Networks
	Graph Representation Learning
	Deep Graph Embedding Methods

	Decision-making Processes and Solution Methods
	Markov Decision Processes
	Dimensions of RL Algorithms
	Policy Iteration Methods
	Learning a Policy Directly
	Search and Decision-Time Planning Methods
	Overview of Other Relevant RL Techniques

	ML for Optimising Graph Processes
	Classic Graph Combinatorial Optimisation Problems
	Learning to Construct Graphs
	Learning to Route Network Flows
	Learning to Optimise Other Graph Processes

	Summary

	Goal-directed Graph Construction using Reinforcement Learning
	Introduction
	Methods
	Robust Graph Construction as an MDP
	Learning to Build Graphs with Function Approximation

	Evaluation Protocol
	Evaluation Results
	Discussion
	Summary

	Planning Spatial Networks with Monte Carlo Tree Search
	Introduction
	Methods
	Spatial Networks and Objectives
	Spatial Graph Construction as an MDP
	Algorithm

	Evaluation Protocol
	Evaluation Results
	Optimising Graph Structure
	Running Time and Scalability

	Discussion
	Summary

	Solving Graph-based Public Goods Games with Tree Search and Imitation Learning
	Introduction
	Methods
	Preliminaries and Problem Statement
	MDP Definition
	Collection of Demonstrations by Monte Carlo Tree Search
	Graph Imitation Learning

	Evaluation Protocol
	Evaluation Results
	Discussion
	Summary

	Graph Neural Modelling of Network Flows
	Introduction
	Methods
	Routing Formalisation and Learning Task
	Per-Edge Weights

	Evaluation Protocol
	Evaluation Results
	Benefits of PEW for Flow Routing
	Varying Graph Structure
	Best Demand Input Representation
	Impact of Topology
	Learning Curves

	Discussion
	Summary

	Conclusion
	Summary and Contributions
	Limitations and Future Work
	Applications and Impact
	Closing Thoughts

	Appendices
	Appendix for Chapter 3: Goal-directed Graph Construction using Reinforcement Learning
	Implementation
	Data Availability
	Parameters
	Runtime Details

	Appendix for Chapter 4: Planning Spatial Networks with Monte Carlo Tree Search
	Implementation
	Data Availability
	Parameters
	Runtime Details

	Appendix for Chapter 5: Solving Graph-based Public Goods Games with Monte Carlo Tree Search and Imitation Learning
	Implementation
	Data Availability
	Parameters
	Runtime Details

	Appendix for Chapter 6: Graph Neural Modelling of Network Flows
	Implementation
	Data Availability
	Parameters
	Runtime Details
	Learning Curves

