
1.  Introduction
The success of the ChemCam and SuperCam instruments onboard the MSL Curiosity and Perseverance rovers 
demonstrates the potential of laser-induced breakdown spectroscopy (LIBS) as an analytical tool (Wiens 
et al., 2013, 2020). In this technique, the laser creates a plasma with spectra consisting of emission lines from 
neutral, singly-, doubly-, and even triply-ionized species; these lines are then used to quantify chemistry.

A key source of variability in LIBS data is plasma temperature (Tokar et  al.,  2015); higher proportions of 
multiply-ionized lines are observed at higher temperatures. Plasma temperatures are largely determined by the 
energy density of the ablation laser on the target surface. In laboratory-based LIBS instruments, ablation parame-
ters such as the focal length and target distance are kept constant, and the energy density on target can be adjusted 
by changing the energy of the laser beam.

The Mars missions cited above calibrated their instruments using spectra collected at a uniform distance and a 
single plasma temperature (Anderson et al., 2022; Clegg et al., 2017). It is now apparent that plasma temperatures 
vary widely in Mars spectra collected under a range of target distances due to changes in the ablation spot size 
(Maurice et al., 2012, 2021; Melikechi et al., 2014; Mezzacappa et al., 2016; Surmick et al., 2021). Mismatches 
between lab data and spectra of unknowns measured on Mars may result in degradation of geochemical accuracy.

This study determines if plasma temperatures must match among spectra collected for calibration purposes and 
those collected in the field for analytical analysis, and evaluates the consequences if they do not. Spectra collected 
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standards using four laser energies (2.4–7.2 mJ) to assess how variations in irradiance from stand-off 
distance affect prediction accuracy. Mismatches in laser energies and plasma temperatures between training 
and prediction datasets introduce substantial uncertainty in major element predictions. For example, using 
2.4 mJ spectra to predict 7.2 mJ data results in errors of ±8.9, ±1.4, ±3.8, ±3.2, ±1.6, ±1.0, ±0.6, and ±1.0 
wt% for SiO2, TiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, and K2O, respectively. When plasma temperatures of 
unknowns are represented in a multiple-plasma-temperature training set, prediction accuracies improve for the 
same oxides: ±3.0, ±0.3, ±1.3, ±1.4, ±1.0, ±0.7, ±0.5, and ±0.5 wt%. These results suggest that accuracies 
reported for Mars LIBS predictions based on single-distance, single laser-power calibration data may be overly 
optimistic except where Mars plasmas serendipitously match those acquired in the laboratory.

Plain Language Summary  Laser-induced breakdown spectroscopy (LIBS) uses a laser to create 
a plasma on a sample surface. The spectrum of light emitted from this plasma is used to determine the 
composition of the target using atomic emission lines. Laser power alters the types of emissions represented in 
the plasma, and thus the observed spectra. A key question is whether the laser power of lab-based calibration 
spectra needs to match the laser power applied to unknown targets to understand their chemistry. A large 
reference collection of standards was sampled at a range of laser energies to examine effects of plasma 
fluctuations on quantitative measurements of chemistry. Models do a poor job of predicting sample chemistries 
when the plasma temperatures of calibration spectra do not match those of predicted targets. Comparatively, 
calibrations trained on a database of spectra covering a wide range of laser energies produce more accurate 
results for predicting unknowns at any energy within that range. Representation of possible plasma temperatures 
in training data is thus critical in LIBS calibrations, which are improved by sampling using a wide range of 
plasma conditions.
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on ∼2,600 geological standards at a range of laser energies mimic the effects of the changing ablation spot size 
observed on Mars. Multivariate models trained on spectra collected at each laser energy are used to predict major 
element compositions with test spectra collected at matched and mis-matched laser energies. This data set is used 
to assess the effects of matching/mismatching plasma temperature between calibrations and unknowns.

2.  Materials and Methods
2.1.  Reference Target Database

Reference targets include 2,562 rock powder standards collected from several sources as part of the Mars Funda-
mental Research program (Dyar et al., 2019). The distribution of rock types is approximately 70% igneous, 25% 
sedimentary, and 5% metamorphic (Figure 1). Included in this database are a series of rocks (from low-Si, high 
Mg-Fe basalts up to nearly pure SiO2 sea sands) doped with trace elements of varying concentrations. These 
standards ensure that rock compositions encompass a range of surface materials anticipated on extraterrestrial 
bodies. Doped elements include Ba, C, Ce, Co, Cr, Cs, Cu, Ga, La, Li, Mn, Mo, Nb, Ni, Pb, Rb, S, Sc, Se, Sn, 
Sr, Y, Zn, and Zr in concentrations ranging from 100 ppm to 10 wt. %. Additional information on the major and 
minor element compositions of reference targets can be found in previous publications (Dyar et al., 2019; Lepore 
et al., 2022). Prior to LIBS analysis, rock powders with a ≪10 μm grain size were pressed into 1.6 cm diameter 
pellets under four tons pressure for 3 min, forming a flat, uniform sample surface.

2.2.  Instrumentation

Spectra were collected on the SuperLIBS instrument in the Mineral Spectroscopy Laboratory at Mount Holy-
oke College using a Nd:YAG laser operating at 1,064 nm, 10 Hz, and a 7 ns pulse width. Laser energies ranged 
from 2.4 to 7.2 mJ on target, with a beam diameter of 110 μm. Plasma emission was separated into the UV 
(240–350  nm), VIS (370–480  nm), and VIS-NIR (508–870  nm) wavelength ranges and detected using two 
PIXIS cameras (UV and VIS) and a PI-MAX4 camera (VIS-NIR), each with 2D CCD detectors (e2v CCD42-10 
back-illuminated high performance AIMO CCD sensors) identical to those on SuperCam on Perseverance. Spec-
tral resolution is ∼0.08 nm in the UV and VIS ranges, and ∼0.40 nm in the VIS-NIR.

2.3.  Spectra Collection

Samples were analyzed in 7 Torr CO2 to mimic the atmospheric conditions on Mars. Spectra were collected on 
each target at four different laser energies (2.4, 4.0, 5.6, and 7.2 mJ) at five locations each. The lens-to-sample 
distance was constant throughout data collection. The range in laser energies resulted in laser fluences between 
3.6 and 11 GW * cm −2. Plasma emission was collected over a 10 ms interval to ensure that the entire lifetime of 
a single plasma was recorded during each integration. Thirty shots were recorded at each location; the first five 

Figure 1.  Distribution of rock types included in a geochemical reference database of 2,562 targets.
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shots were discarded to eliminate any contamination of the target surface. 
Spectra were averaged over 25 shots and five locations to produce a single 
spectrum for each reference target at each laser energy.

2.4.  Spectra Processing

Data were preprocessed using a protocol similar to that used for ChemCam 
and SuperCam (Anderson et  al.,  2022; Wiens et  al.,  2013). Spectra were 
dark-subtracted, denoised, wavelength-aligned to a Ti standard, and corrected 
for instrument response. After preprocessing and before separating spectra 
into training and test sets for model analysis, spectra were masked to remove 
regions of the spectra with low instrument sensitivity. Baseline-correction 
used airPLS (Zhang et  al.,  2010). Normalization was performed inde-
pendently for each wavelength range (UV, VIS, and VIS-NIR), analogous to 
the protocol used by the Mars instruments.

2.5.  Analysis and Modeling Protocols

Data were analyzed using the Python Hyperspectral Analysis Tool (PyHAT) program developed by the USGS 
(Laura et al., 2022). Similar to SuperCam protocol, target outliers were identified using first-order predictions 
of major element compositions (Anderson et al., 2022). Spectral outliers (5% of data) were identified using an 
isolation forest protocol (Liu et al., 2012) to remove spectra that are very poorly predicted by multivariate models, 
likely due to sampling errors (pellet surface irregularities or contamination, e.g.,). Composition-based outliers 
were also identified from the concentrations of each major element using isolation forest, and an additional 5% 
of spectra were removed.

Spectra were separated into five folds, each representative of the composition range of each major element. One 
fold was held out as test spectra and remained unseen by the models trained on the remaining four folds. For 
all laser energies, samples in training and test sets for each major element were identical, ensuring consistency 
among datasets.

Cross-validation of partial least squares (PLS) models was used to identify the optimal number of components 
(from 2 to 30) for training. Compositions of the held-out test set spectra were predicted using the trained model 
and the accuracy and variance of the predicted compositions calculated (RMSE-P and r 2, respectively).

3.  Results
3.1.  Relationship Between Laser Energy and Plasma Temperature

Tokar et al. (2015) identified the ratio of the Si(II) peak at 634.7 nm to the Si(I) peak at 288.2 nm as a proxy 
for plasma temperature, which is impacted by laser-to-sample coupling to each sample as a function of compo-
sition, and the laser energy on target. Similarly, peak ratios can also be observed with ionized and neutral Ca 
peaks (393.4 and 422.7 nm, respectively) (Figure 2). Ionized and neutral peaks were selected from the same 
wavelength region in order to avoid disparities in peak area introduced during normalization. Substantial overlap 
among ratios at different laser energies is likely due to the wide range in sample composition. However, the clear 
trend toward higher ratios at higher laser energies demonstrates the relationship between laser energy and plasma 
temperature.

3.2.  Training-Test Model Combinations

Five total PLS models were trained for each major oxide using spectra collected at each of four laser energies, as 
well as all energies combined into a single data set; in the latter case, there were four spectra for each target. To 
assess test accuracy, the held-out test spectra were separated by laser energy into four test sets for each element. 
An optimal scenario was run in which models trained at each laser energy were used to predict a matching test 
set. In addition, models trained on spectra collected at 2.4 and 7.2 mJ laser energy were used to predict spectra 
collected at 2.4, 4.0, 5.6, and 7.2 mJ.

Figure 2.  Histogram of the distributions of Ca(II)/Ca(I) ratios at 393.4 and 
422.7 nm at each of four different laser energies used to generate a plasma on 
all reference targets.
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3.3.  Models Trained Using One Laser Energy Used to Predict Other 
Laser Energies

PLS models trained using 2.4 mJ laser energy spectra were used to predict 
major elements using spectra acquired at each of the four energies (Figure 3). 
Prediction accuracies (RMSE-P) are worst when laser energies between 
training and test sets are most disparate. Accuracies improve as the plasma 
temperature of the test set approaches that of the training set. Similar trends 
are observed when 7.2 mJ laser energy models are tested (Figure 4). Depend-
ence of accuracy on matching plasma temperatures was most pronounced for 
SiO2, Al2O3, and Fe2O3. However, changes in the variance of predictions were 
most sensitive to plasma temperature changes for Al2O3, Na2O, and K2O.

3.4.  Sensitivity of Different Elements to Plasma Temperature 
Variations

When the plasma temperatures for spectra in the training and test sets do not 
match, element predictions do not follow any specific trends. For example, 
SiO2 is overestimated when a lower-temperature training set is used with a 
higher-temperature test set, and underestimated when the training set has a 
higher temperature (Figure 5). This trend is reversed for Al2O3, Fe2O3 and 
TiO2.

These results likely relate to the different populations of ionization states 
present at varying temperatures. For example, Si displays prominent emis-
sion peaks at 288.2 nm for the neutral species and 634.7 and 637.1 nm for a 

singly-ionized species (Kramida et al., 2022). Training set spectra collected at lower plasma temperatures will 
have smaller Si (II) emission peaks than at high temperatures, resulting in a larger model coefficient. At a higher 
temperature, singly ionized species represented by the 634.7 nm peak will be more abundant, such that the model 
coefficients will be smaller relative to the coefficient at lower temperature. We hypothesize that this effect results 
in overprediction of SiO2.

Ti and Fe have an abundance of ionized emission lines, particularly in the 
UV range. The energy transitions from neutral to singly-ionized states are 
lower for Ti and Fe (13.5755 and 16.19921  eV, respectively) than for Si 
(16.34585  eV). The abundance of lines and relatively low energy cost to 
transition to a higher ionization state indicate that models trained on lower 
temperatures might rely primarily on neutral or singly-ionized lines for 
predictions. When these models are applied to high-temperature test spectra 
that contain fewer low-energy transition lines in favor of higher ionization 
states, compositions might be underpredicted. Conversely, high-temperature 
trained models are still likely to utilize neutral and singly-ionized lines, 
which are enhanced relative to higher ionization states in low-temperature 
test spectra.

Al, like Si, has fewer emission peaks in the observed spectral range. Al also 
has the highest energy transition from the neutral to singly ionized state 
(18.82855 eV) and multivariate models are likely to rely heavily on (i.e., have 
large coefficients for) neutral Al emission lines, specifically the resonant Al 
peaks at 394.4 and 396.2 nm. The relatively low normalized peak intensi-
ties observed at high laser energies indicate substantial self-absorption of 
Al emission at these wavelengths (Figure 6). The high abundances of Al2O3 
in geological materials, coupled with the fact that the most prominent lines 
are highly susceptible to self-absorption (Li et  al.,  2015; Mansour,  2015; 
Marpaung et al., 2022; Tang et al., 2020) indicate that low-temperature spec-
tra are likely to overestimate the composition of Al2O3 when paired with 

Figure 3.  RMSE-P and r 2 values for models trained on spectra collected at 
2.4 mJ and tested on spectra at each laser energy.

Figure 4.  RMSE-P and r 2 values for models trained on spectra collected at 
7.2 mJ and tested on spectra at each laser energy.
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high-temperature training spectra. This is corroborated by the increasing 
trend of Al2O3 predictions with distance reported by Wiens et al., 2021. No 
clear tendency to over- or underestimate is observed for MgO, CaO, Na2O, 
or K2O.

3.5.  Prediction of Individual Spectra Using Multiple Plasma 
Temperature Training Sets

When spectra collected at all laser energies are combined into a single train-
ing set, prediction accuracies are nearly identical to those of the matched 
training-test predictions (Figure  7). Spectra used for training multivariate 
models should encompass the entire range of conditions that are present in 
test, or unknown, spectra to make accurate predictions. By including all laser 
energies into a single training set for each major element, PLS models are 
better at predicting compositions based on spectra collected under a range of 
plasma conditions, as seen here. This result supports that compiling multiple 

Figure 5.  Predicted versus true concentrations of SiO2, Al2O3, Fe2O3, and TiO2 for two model conditions: a low-temperature 
trained model used to predict high-temperature test spectra, and a high-temperature trained model used to predict 
low-temperature test spectra.

Figure 6.  Normalized single-shot intensity spectra of resonant Al peaks 
collected on reference target G2 (basalt) show decreasing intensity with 
increasing laser energy.
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plasma temperature data into one large, diverse model is superior to breaking calibration data into several submod-
els (here based on temperature, but also seen for compositions (Anderson et al., 2017; Lepore et al., 2022) and, 
more generally, data set size (Dyar & Ytsma, 2021)).

4.  Conclusions
Discrepancies in laser energies and resultant plasma temperatures between training and test sets introduce a 
substantial amount of uncertainty in major element predictions. When plasma temperatures match, or when 
even a subset of spectra in the training set have matching plasma temperatures, prediction accuracies are greatly 
improved. Large, diverse calibration datasets produce the most reliable predictions, especially when target analy-
ses are conducted under remote or variable conditions.

This result has important implications for calibration of in-situ instruments on planetary surfaces. It is under-
stood that plasma temperatures vary widely in Mars spectra collected under a range of target distances due to 
changes in the ablation spot size (Melikechi et al., 2014; Mezzacappa et al., 2016; Surmick et al., 2021). Yet the 
calibration suites for both ChemCam and SuperCam were collected using a single stand-off distance and laser 
power (Anderson et al., 2022; Clegg et al., 2017). Because their reported accuracies for those missions depend on 
relatively simplistic lab calibrations, our results show that they are likely overly optimistic for spectra from Mars 
that are collected at different plasma temperatures. Recent attempts to mitigate the effect of decreasing plasma 
temperature with distance are complicated by a limited number of spectra collected at relevant distances, and the 
uncertainty introduced by relying on natural targets as standards with fixed composition (Wiens et al., 2021). The 
SuperLIBS instrument at Mount Holyoke uses spectrometers identical to those on Perseverance's SuperCam; 
therefore the data set used here can be employed to predict Mars data with improved accuracy. Work is in progress 
in our group to apply the multi-laser-power calibration described in Figure  7 to Mars data using calibration 

Figure 7.  RMSE-P and r 2 values for predictions generated using single-energy training sets (blue bars) and combined laser 
energy training sets (green bars) with matching test set spectra.
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transfer in order to provide the community with alternative predictions for not only the major elements described 
here, but also for minor and trace elements.
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