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Figure 1: Left: Husky robot platfrom with mounted FARO Focus M70 scanner. Middle: Rendering from Ricoh Theta Z1
360° camera in the Unity interface. Right: Rendering of FARO pointcloud in the Unity interface. In the proposed framework,
photorealistic is captured and localised autonomously and can readily be reconstructed in the Unity interface.

ABSTRACT

Construction monitoring is vital for the timely delivery of projects.
However, manual data collection and fusion methods are arduous.
‘We propose a framework for autonomous multimodal data collection
and VR visualisation. Based on “work-in-progress” results, we
demonstrate its capabilities in-the-lab and validate its functionality
on a real site. We explore how such a framework could complement
construction-centric deep learning and 4D as-built datasets to aid
human decision-making using VR.
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struction monitoring, laser scanning, human-robot decision making,
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interaction (HCI)—Interaction paradigms—Virtual reality; Com-
puting methodologies—Artificial intelligence—Computer vision—
Reconstruction; Computer systems organization—Embedded and
cyber-physical systems—Robotics—Robotic autonomy

1 INTRODUCTION

The construction industry is important to the world’s economy. It
forms 9% of the world’s GDP [4], 6% of the total workforce of the
UK [26], and will continue to grow over the coming years. However,
the industry faces many challenges in its working practices. Due to
the complexity of projects, it can be difficult to know the state of
ground conditions, impacting decision making and driving up costs
significantly [31]. Safety is also a concern, with the fatality rate of
UK construction workers approximately four times the average and
the non-fatality rate almost twice the average of all industries [24].
Additionally, productivity in construction is amongst the lowest
in industry [11], and it accounts for 11% of the world’s carbon
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footprint [16]. As the industry evolves, these issues remain key
challenges that must be tackled.

The adoption of new technologies and innovations, including
artificial intelligence, the internet of things, big data, robotics and
virtual reality (dubbed “’Industry 4.0”) presents new opportunities
to improve workflows, safety and efficiency. [22]. A key focus of
digitising the industry is to improve the management and monitor-
ing of projects. Effective progress monitoring has been identified
as critically important in ensuring that projects finish on time and
within budget [10]. However, this remains to be a largely manual
process [21] and modern working practices require trained profes-
sionals to collect data with a variety of cameras and terrestrial laser
scanners (TLS), and significant processing time to integrate as-built
information from different data sources into Building Information
Modelling (BIM) to track progress [15]. Therefore, in practice, the
frequency of data collection on site has been reduced to minimise
the time and cost associated [18].

As an extension of the above, there are additional questions
around how best to visualise and present collected datasets for
progress monitoring [17]. The majority of construction monitoring
processes are still completed with traditional means of 2D imagery
and project reports [25]. However, as construction projects are in-
trinsically linked to 3D space and professionals in the industry rely
heavily on imagery for communication, Virtual Reality (VR) tech-
nologies have been identified as an intuitive alternative for progress
monitoring [5]. For example, VR applications have shown poten-
tial benefits for improving collaboration [6], reducing inspection
time of civil infrastructure projects [23] and found as an effective
medium for comparing images captured onsite to pre-generated
models for progress monitoring [12]. Despite this, VR systems are
rarely applied in practice as generating VR visualisations requires
significant manual processing [5], which is compounded by the dif-
ficulty of gathering site data as detailed above. To remedy these
issues, previous works have developed robotic systems integrated
with SLAM and navigation and TLS systems as a means to increase
the regularity of high-quality data capture on-site [13, 14], and ex-
plored combining VR visualisations with data collected from mobile
robotic systems [7,9, 19]. However, there has been limited work
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Figure 2: Flowchart of the proposed framework for automated data collection and visualisation in a VR interface. In this work, the Initial
Configuration, Automated Data Collection and VR Interface are presented.

investigating how VR interfaces can be integrated with robotic plat-
forms to provide a near real-time immersive automated construction
monitoring pipeline.

To address the outlined issues, we present a framework for au-
tonomously capturing multimodal photorealistic datasets, with 360°
images from a high-resolution camera and coloured pointcloud scans
from a terrestrial laser scanner, using a robotic platform.

The robotic platform localises and navigates around a construc-
tion site using a pre-generated 2D laser map and collects data with
the onboard sensor payload. Collected data is then spatially regis-
tered within the map on capture to simplify post-processing. We
also present a Unity interface to visualise datasets as a virtual envi-
ronment for immersive interaction and exploration with VR devices,
enabling immersive construction project monitoring (see Figure 1).
We demonstrate the functionality of the robot platform in both lab
and onsite conditions and present examples of visualisations from
the interface. Additionally, we explore how the full framework
can be used to enable further research within progress monitoring,
including the generation of 4D datasets of as-built construction
progress and the enhancement of collected datasets through the use
of construction-centric deep learning models.

2 SYSTEM DESIGN

The proposed framework comprises a ROS-enabled mobile platform
mounted with a survey-grade terrestrial laser scanner, a 360° cam-
era, and a Unity interface built with SteamVR support. The mobile
base localises itself in an environment through 2D SLAM, moves to
predefined waypoints on the SLAM map and collects data from its
onboard sensors payload. Data from the sensor payload is localised
and saved within the active SLAM map, simplifying post-processing
and dataset organisation. Datasets are then loaded into the Unity
interface and redendered at a 1:1 scale, allowing operators to ex-
plore the 2D map, images and pointclouds as a digital twin of the
construction site using VR devices. An overview of the proposed
framework and process flow chart is shown in Figure 2. We present
a realised prototype with the initial configuration, automated data
collection and VR interface sections of the framework. Although the
information required for scan registration has also been collected,
currently, the pointcloud alignment is completed manually.

2.1

The Clearpath Husky A200 was selected as the mobile base for
its ability to traverse the difficult terrain of construction sites. It
has a payload capacity of 75kg, a standard battery runtime of 3
hours, and a rugged design capable of off-road travel. The plat-
form has an onboard computer running Ubuntu 18.04 with ROS
Melodic, which was used as the master computer of the system, and
a SICK LMS1XX 2D lidar (SICK) for SLAM. The default ROS
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gmapping, AMCL (Advanced Monte Carlo Localisation) algorithm
and move_base were used for mapping, localisation and navigation.
To collect detailed pointcloud data of the environment, the FARO
Focus M70 laser scanner (FARO) was mounted to the platform. With
a range of up to 70m and errors of +=3mm below 25m, this style of
device is already used in scan to BIM processes [28] and has been
integrated into other projects for automated construction progress
monitoring [3]. A separate machine (FARO computer) is mounted
on the platform as a base station for the FARO during operation.
The FARO scanner must be stationary during data capture, mean-
ing that it cannot be used continuously during navigation. Therefore
an additional Ricoh Theta Z1 360° (Z1) camera was also mounted
onto the platform to capture high-resolution 360° pictures and collect
site data more regularly on the fly than if relying on the FARO scan-
ner alone. Additionally, the Z1 camera allows real-time video data
to be analysed during navigation and streamed to remote operators,
although currently, this is not implemented on the platform.

2.2 Software Architecture

Both the Z1 and the FARO scanner were integrated into the ROS
framework to allow ROS messages to trigger data capture. To com-
municate with the FARO scanner, the rosbridge_server package
was adapted to parse messages over WebSocket to the FARO’s base
computer, which then triggered the FARO SDK to collect a scan and
save recorded data.

2.2.1

Localisation and mapping for robot navigation are achieved through
the ros_navigation package. A 2D occupancy grid map is cre-
ated using gmapping by manually controlling the mobile platform
traversing through the site. Gmapping was selected due to its robust
CPU performance and low map error compared to other 2D SLAM
systems [27,30]. The map data is then saved as a YAML file contain-
ing data about the generated map, and a PGM file of the actual map.
AMCL was used to load the generated map from gmapping and
localise the robot within it. After using an initial position provided
by the operator, Odometry and SICK LIDAR data from the Husky
are used to update the position estimation during operation.

Localisation and Mapping

2.2.2 Automated Navigation and Data Capture

Currently, waypoints are required to be defined manually in a config
YAML file for the robot to navigate to the desired destination. A
custom ROS node was created to organise sequential navigation to
waypoints and trigger commands to collect data from the Z1 and
FARO, Once AMCL is started to localise the platform within the
required map, the node loads the waypoints defined in the config
file as an array of robot goal points and then loops through each one
sequentially. For each pose, a plan is generated using move_base,



Figure 3: Example of a dataset rendered in the Unity scene and
construction map. 7op: Rendered ImageNodes (red circles) placed
on the SLAM map using registered image positions. Middle: Point-
cloud data rendered over the map. Botfom: Image sphere with
inverted normals rendered over the map. At all points, the relative
position of ImageNodes are represented spatially in the image.

and the current heading difference between the robot’s orientation
and the desired plan is checked and corrected. Once the orientation
is corrected, the Z1 camera starts to take images with the registered
pose in the map frame until the next waypoint is reached. Then a
FARO laser scan prompt is sent to the FARO computer, and a scan
is conducted with the pose of the vehicle registered with the scan.
Once the scan finishes, the FARO SDK triggers the robot to proceed
to the next waypoint.

As the system uses move_base, there are built-in processes in
place to address if the platform fails to navigate to the desired way-
points. These have been left as the default, meaning that recovery
behaviours are set as clearing the local cost map and rotating on the
spot to gather new information. If these fail, then the ROS node will
skip to the next waypoint and attempt planning again.

2.3 Unity Interface

Once collected, datasets can be transferred and rendered within the
Unity interface. To simplify this process, a standardised data format
has been defined in which every dataset contains a separate direc-
tory for generated SLAM maps, 360° images and pointcloud scans.
Datasets are then placed within a common directory local to the
Unity interface to allow for easy retrieval at runtime. When a dataset
is loaded in the interface, three separate processes render the corre-
sponding data formats. Figure 3 presents an example visualisation
of a dataset rendered in the Unity interface.

MapRenderer The SLAM map’s YAML and PGM data are
parsed into Unity to generate a visualisation in the scene. The map’s
origin and resolution are obtained from the YAML file, whilst the
height and width of the map are taken directly from the PGM data.
A new texture is generated from the PGM data and the scale and
position of the texture’s GameObject are set based on the map’s size,
resolution and scale, with ros-sharp being used to swap between
ROS and Unity’s coordinate systems. The resulting visualisation
of the SLAM map has a 1:1 scale and its origin point is centred on
Unity’s origin (0,0,0).

ImageRenderer The images are retrieved from the data direc-
tory and loaded into an array. Looping through each, the image’s
ID and relative position and orientation are retrieved from metadata.
Prefab GameObjects called ImageNodes are instantiated for each
and assigned to the corresponding positions on the rendered map.
The image is then loaded as a texture and assigned to a field within
the ImageNode object to make them easily retrievable at runtime.

A\ ] - - ik
l 3 \‘u-o-'----o--:o--f 1
L -', ol ol [} f
‘ & r : . |' L
|/ | ~d )t
,'. L ,‘
E | gars
by Ay
| b
L8 i
1 + F e \ ’ ,' 5 |
| "".-- ) f “ - 13
—F=m - I \l

Figure 4: The generated SLAM map and positions of data collection
on the construction site. Green Circles: Scan positions loaded into
the ROS node. Red Circles: Positions of 360° images. Dashed Line:
Trajectory of the robot during navigation

After all nodes are generated, the first image (corresponding to
the lowest image number) is selected and rendered on a sphere
GameObject with inverted texture normals. Using Unity’s layer
mask, ImageNodes are then rendered over the sphere to represent
their location within the image, allowing users to select and load
new images with ray tracing from VR controllers.

PointcloudRenderer  Pointclouds in the dataset are parsed and
rendered through a custom pointloud renderer. As both the map
and the FARO pointclouds are generated through calibrated LIDAR
systems, they both have the correct scale and will therefore align as
long as the localisation of the scans is accurate. Currently, this align-
ment is completed manually. However, automated alignment using
the robot’s localisation system is possible with the collected data and
left for future work. As with the 360° image sphere, ImageNodes
are rendered on top of the pointcloud data to intuitively represent
where other data has been collected within the digital environment.

Virtual Reality Interface  Using the SteamVR Unity plugin, the
interface is compatible with common VR devices such as HTC Vive.
Simple UI was also created to enable users to swap between image
and pointcloud visualisations by enabling and disabling correspond-
ing GameObjects in the interface. Additionally, teleport functionali-
ties were developed to allow users to visualise different ImageNodes
and re-position themselves in the pointcloud environment. The full
interface allows users to immersively explore collected image and
pointcloud data, experiencing a digital 1:1 representation of the
construction project at the time of data capture.

3 PRELIMINARY RESULTS
3.1 Construction Site Use Case

After confirming the system’s capabilities within lab conditions and a
controlled large indoor environment, the robot platform was trialled
on a real construction site - an 18-storey office building post phase 3
of construction. Following the same procedure, the robot platform
was first manually driven around the environment to build a SLAM
map with the gmapping algorithm. Then, specific scanning positions
were defined and loaded into the custom ROS node. The platform
then navigated around the site and collect data autonomously. The
floorplan of the environment was approximately 2500 square meters,
and the platform captured 8 FARO scans, totalling 55681124 points,
and 44 360° images over a duration of approximately 46 minutes,
broken down into 6 minutes total navigation time and 5 minutes per



(a) Pictor-v3 YOLO-(b) Deeplabv3 semantic segmentation. Red: machinery,

V3-Al estimation.  Green: fence, Blue: people
Figure 5: Example of image visualisations from the same perspective
in different stages of the construction project.

scan. An overview of the SLAM map and data collection points
are presented in Figure 4, and examples of registered images and
pointclouds in the dataset are presented in Figure 1.

For performance reference, we used a PC of Intel Xeon E5-2697
V3 with 64GB of RAM and NVIDIA TITAN X (Pascal) GPU for
the Unity interface. Each scan was loaded and rendered in seperate
threads with a mean size of 9280188 £205386 points per scan. Each
scan was rendered in the interface with a mean processing time of
159.08 £17.92 seconds, and during operation the unity interface had
a mean FPS of 86.23 &+ 35.34 with performance varying depending
on the number of points in view of the camera GameObject.

3.2 Deep Learning Models for Construction Analytics

To demonstrate how the presented framework can complement the
applied research of machine learning for construction site analytics,
we present example applications of two deep learning models trained
and applied to data collected from the robotic platform. In the first
instance, we apply the YOLO-v3-A1 model trained with the Pictor-
PPE dataset to detect workers and PPE usage [20]. This model
is applied directly on the raw collected 360° images to generate
2D bounding boxes over construction workers, hard hats and high
visibility safety vests detected in the image, as shown in Figure .

Additionally, we apply a DeeplabV3+ model trained for semantic
segmentation and visual understanding of construction sites [29].
This dataset has 859 images containing 1720 instances of 12 classes
to generate semantic masks of humans, fences, and 9 classes for
construction vehicles and machinery, including excavators, trucks
and cranes. For our application, we merge all construction vehicles
into a singular class called “machinery” to give a total of 3 classes;
humans, fences and machinery. We also augment the dataset with
324 new labelled images collected from our onsite experiments. An
example of the model output is presented in Figure 5b.

Through using the robot platform to capture regular datasets on
site it is hypothesised that the presented framework will reduce the
manual time required to gather training data and provide a means
of readily generating new representations of model classes. Further
work can also integrate such models into the collected datasets
and interface directly by comparing and updating as-built and as-
planned BIM models [25]. Additionally, the models can be applied
in the planning framework of the platform in real-time to ensure that
waypoint trajectories avoid areas with heightened risks based on the
robot’s perception of its environment [1].

3.3 Generation of 4D As-Built Datasets

Additionally, by reusing the same waypoint missions onsite, the
presented framework allows for the simple generation of co-located
datasets at different points in time. In future, it is hoped that these
can then be integrated into full 4D datasets [2], allowing construc-
tion professionals to explore and compare datasets spatiotemporally
with VR devices and track as-built progress with project scheduling.

Figure 6: Example of image visualisations from the same perspective
in different stages of the construction project.

Example images collected by the robot platform from the same per-
spective at different stages of the project is presented in Figure 6.

4 CONCLUSION AND FUTURE WORK

In this work, a framework for autonomous construction progress
monitoring in virtual reality was proposed, and a prototype pipeline
was presented. The system was based upon a Clearpath Husky
ground-based vehicle with a mounted FARO Focus M70 terrestrial
laser scanner for collecting detailed pointcloud data and a Z1 camera
for collecting high-resolution 360° images and videos in real-time.
The mounted sensors were integrated into the ROS framework, and
a custom ROS node was created that was integrated into the ROS
move_base framework to move to defined waypoints autonomously
and trigger data capture on the mounted sensors. Collected datasets
were then rendered in a novel VR-enabled Unity interface to allow
users to explore and inspect the immersive virtual environments. The
proposed system was tuned in a lab environment and tested on a real
construction site, and further work on the presented framework could
be applied for enhancing research around construction progress
monitoring, including using the collected datasets for generating
new training data for deep learning models and creating 4D as-built
progress visualisations for managing purposes.

It is anticipated that this work will act as a starting point for
further work around immersive construction progress monitoring,
and there are many exciting areas for future directions. Firstly, the
proposed pipeline will be implemented in full, with automatic reg-
istration and alignment of pointcloud data. System optimisations
will be implemented, including distance and frustum culling during
pointcloud rendering to increase FPS during operation. More work
is expected in improving Velodyne-type lidar mapping accuracy
matching expectations in civil engineering and improving mapping
efficiency. Also, legged robots or even drones can be investigated
for improving the mobility of the platform on complex terrain in
the construction site. The presented interface will be expanded to
include further data representations, such as 4D BIM integration
with project scheduling to aid with project management [2], and to
provide real-time remote connection and teleoperated control of the
platform [8]. Additionally, the robotic platform will be improved
with better computational power and trained deep learning models
will be configured to run in real-time, allowing for waypoints tra-
jectories to be updated based upon the contextual understanding of
the environment as investigated in [1]. Further work will explore
how construction managers use the presented interface, analysing
the effectiveness of virtual reality systems for detecting change and
exploring collected datasets.
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