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Abstract

Ensuring that data and devices are secure is of critical importance to information

technology. While access control has held a key role in traditional computer secu-

rity, its role in the evolving Internet of Things is less clear. In particular, the access

control literature has suggested that new challenges, such as multi-user controls,

fine-grained controls, and dynamic controls, prompt a foundational re-thinking of

access control. We analyse these challenges, finding instead that the main foun-

dational challenge posed by the Internet of Things involves decentralization: ac-

curately describing access control in Internet of Things environments (e.g., the

Smart Home) requires a new model of multiple, independent access control sys-

tems. To address this challenge, we propose a meta-model (i.e., a model of mod-

els): Smart Object-Oriented Access Control (SOOAC). This model is an extension

of the XACML framework, built from principles relating to modularity adapted

from object-oriented programming and design.

SOOAC draws attention to a new class of problem involving the resolution

of policy conflicts that emerge from the interaction of smart devices in the home.

Contrary to traditional (local) policy conflicts, these global policy conflicts emerge

when contradictory policies exist across multiple access control systems. We give

a running example of a global policy conflict involving transitive access. To auto-

matically avoid global policy conflicts before they arise, we extend SOOAC with

a recursive algorithm through which devices communicate access requests before

allowing or denying access themselves. This algorithm ensures that both individual

devices and the collective smart home are secure. We implement SOOAC within

a prototype smart home and assess its validity in terms of effectiveness and effi-
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ciency. Our analysis shows that SOOAC is successful at avoiding policy conflicts

before they emerge, in real time. Finally, we explore improvements that can be

made to SOOAC and suggest directions for future work.



Impact Statement

This thesis has the potential to impact work carried out inside and outside

academia. In particular, contributions include:

• to the theory of access control, by providing

– a re-analysis of the field from its origins,

– a new paradigm for decentralized access control,

– a policy model to contrast with existing models;

• to Internet of Things (IoT) security research, by providing

– a new access control model tailor-made for the IoT and the Smart Home,

– a solution to existing threats in the current Smart Home;

• to industry, through

– the development of software for resolving policy conflicts in IoT access

control;

• and to security practitioners, by providing

– tools for analyzing and resolving real-world problems.
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Chapter 1

Introduction

Life was simple before World War

II. After that, we had systems.

Grace Hopper

In this chapter:

• we identify the main problems in the thesis;

• we motivate the need for solutions to these problems;

• we provide a running example showing the main problem and motivating its

solution;

• we identify the original contributions of the thesis;

• we define the success criteria for our proposed solution;

• we describe the thesis structure.
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1.1 Motivations
Ensuring that data and devices are secure is of critical importance to information

technology. Access control — that is, the restricting of operations that can be per-

formed by subjects (e.g., users, processes) on objects (e.g., data, devices) — has

historically held a preeminent role in security, being “the traditional center of grav-

ity of computer security” [16].

Despite this strong tradition, researchers have been led to question to what

extent access control models developed nearer the dawn of computer security are

still relevant today [125, 135, 119, 138, 120]. In particular, the Internet of Things,

“which brings internet connectivity, data processing and analytics to the world of

physical objects,” [72] has been considered to pose significant challenges to access

control. For example, Internet of Things environments typically include many dif-

ferent types of devices, with varying operational capabilities; are dynamic, liable to

change quickly; and must satisfy the differing needs of many users.

Such challenges have prompted some to call for a re-understanding of access

control from its foundations. As Calo et al [39] put it, "we need to envision a

new type of access control paradigm [as traditional models] may turn out to be

inadequate to deal with the Internet of Things.”

Our initial motivation is to assess the validity of this claim, which we sum-

marise in the following research question.

RQ 1: What new challenges for access control are posed by the Internet

of Things?

Addressing this question requires both an assessment of what traditional access

control has been (including the challenges it has faced in the past) and what is

required of it in the context of the Internet of Things. We therefore separate out RQ

1 into the following component parts.

RQ 1.1: What historical access control models are there and what chal-

lenges led to their introduction?

RQ 1.2: What are the challenges posed by the Internet of Things and

do they prompt a re-understanding of access control?
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Our main findings in response to these questions are that (i) traditional access

control models are characterized by centralization: they assume that a single en-

tity is responsible for restricting access on behalf of all subjects and objects within

a given system, and (ii) the Internet of Things, as it currently exists, and in the

direction it appears to be heading, is incompatible with such centralization.

Rather than being centralized, we find that access control in the Internet of

Things is currently decentralized: multiple entities are responsible for controlling

access in the Internet of Things. This is seen particularly clearly in the Smart Home,

in which devices form distinct ecosystems of devices, each with their own associ-

ated access control, within one broader system of the home environment.

While there is a rich history of modelling centralized access control, models

for decentralized access control are less developed. Our second research questions

seeks to address this.

RQ2: Can a model for decentralized access control be constructed?

To answer this question, we propose extending the XACML architecture [152]

to form the basis for a new access control meta-model (i.e. a model of access con-

trol models [22]), which we term Smart Object-Oriented Access Control (SOOAC).

We construct this meta-model according to modular principles of object-oriented

programming and design. This meta-model allows us to capture a general notion

of access control, using the concept of the Access Control Unit, which allows us to

distinguish centralized from decentralized access control.

Using this meta-model, we observe that a significant challenge for decentral-

ized access control is the emergence of policy conflicts across ecosystems of devices

(see Section 1.2). We identify this new problem, which we term global policy con-

flict resolution. We recognize that resolving global policy conflicts requires that

the entities responsible for access control collaborate. Borrowing from Roman et al

[137], we term this type of decentralized access control distributed access control.

This leads to our third research question.

RQ 3: Can a model for distributed access control be constructed?
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To address RQ 3, we equip devices with a systematic procedure for commu-

nicating appropriate information with each other in order to avoid global policy

conflicts. We require that when a device is requested access, it must first send an

appropriately modified access request to any devices that it has access to before

returning a response. This process is recursive in the sense that each device in an

access chain carries out the same procedure. In this way, though individual devices

are secured separately, they attain a body of knowledge that allows them to secure

the system as a whole.

In order to assess SOOAC’s practicability in the real world, we implement it in

a prototype smart home with a number of users and devices. In this way, we address

the following research question.

RQ 4: Can a model for distributed access control be implemented in a

real-world smart home?

We separate out this question according two metrics, which define the success

criteria of the approach: efficiency and effectiveness. These form the final research

questions.

RQ 4.1: Can this model run efficiently, in a timely manner without

without impacting the user experience in the Smart Home?

RQ 4.2: Can this model run effectively, avoiding policy conflicts in a

smart home with multiple users and devices?

To get a sense of the type of problem we are attempting to resolve with

SOOAC, we give the following running example, which we will refer to throughout.

1.2 The Running Example — Resolving Global Pol-

icy Conflicts
Consider a simple smart home with an admin (e.g., the home owner), a guest, a

smart speaker, and a smart (door) lock. The admin controls access to the speaker



1.2. The Running Example — Resolving Global Policy Conflicts 16

Figure 1.1: The main problem of the thesis: resolving policy conflicts for decentralized
access control. Setting policies for devices in separate ecosystems can lead to
conflicts in the broader system of the Smart Home. How can these conflicts be
resolved in a systematic way?

and the lock on separate apps. In other words, policies are set separately for the two

devices. This situation is depicted in Figure 1.1 and is described as follows.

The admin would like the smart lock to be accessible from the smart speaker

(Policy 1, set at the smart lock) in order to lock and unlock the front door by voice

command. They would also like the guest to have access to the smart speaker (Pol-

icy 2, set at the smart speaker), so that the guest can play music when they come to

visit. However, the admin would not like the guest to be able to lock and unlock the

front door, so access between the guest and the lock should be denied (Policy 3, set

at the smart lock).

The admin is concerned, though, that these three policies could undermine the

security of the smart home because of transitive access: the guest can use their

access to the speaker (Policy 2) to piggyback on the speaker’s access to the lock
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(Policy 1) to issue a command to lock or unlock the door (violating Policy 3). From

the local perspective of both access control apps (Policies 1 and 3 at the smart lock,

and Policy 2 at the smart speaker), there will be no policy conflict, but from the

global perspective of the smart home (Policies 1–3), there will be a conflict.

To resolve this conflict manually, the admin can simply choose to not give the

guest access to the smart speaker. But this is not a general solution; there may be

many devices involved in a conflict, creating complex access chains, and so ideally

the conflicts would be resolved automatically. The main contribution of this thesis

is providing such a solution in which devices avoid global conflicts themselves.

1.3 Thesis Routemap

In the next chapter, we (i) give a working definition of access control, (ii) give an

account of access control’s historical role in security, and (iii) delineate some of the

different terms closest related to access control in the literature. We use (i)–(iii)

as the conceptual groundwork to describe historical (i.e., pre-Internet of Things)

access control models. We simultaneously highlight challenges for historical access

control, describing requirements of these models that reflect ‘good’ access control.

We conclude Chapter 2 by introducing a more formal definition of access control —

the Access Control Unit (ACU) — which is based on the XACML framework. We

show that traditional access control models are expressible using this framework

and that they can be characterized as centralized in the sense that they describe

systems which only contain a single ACU. In summary, Chapter 2 addresses the

first part of RQ 1 — RQ 1.1 — concerning the question of what traditional access

control has been and what challenges it has faced historically.

In Chapter 3, we focus on Internet of Things access control. Of particular

interest in this chapter are accounts from the literature that claim that the Internet

of Things poses new challenges to access control. We document these claims and

assess them in light of the challenges described in Chapter 2. In concluding Chapter

3, we argue that these challenges are novel only insofar as the Internet of Things,

as it currently manifests in the Smart Home, is not a system which contains a single
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ACU — it is a decentralized system. Moreover, we give arguments for why this

state of affairs should be embraced, not rejected. In summary, Chapter 3 completes

our answer to RQ 1 by addressing RQ 1.2, describing what new challenges face

Internet of Things access control.

From our analysis of Internet of Things access control in Chapter 3, in Chapter

4, we are led to propose a meta-model (i.e., a model of models) which describes

a single system with multiple ACUs. We term this model Smart Object-Oriented

Access Control as it is built from object-oriented principles. By introducing this

model we address RQ 2, concerning the introduction of a decentralized access con-

trol model suitable for representing the current Smart Home. Revisiting the Running

Example, we observe that a significant challenge to Internet of Things access con-

trol involves global policy conflicts, which emerge from the interaction of multiple

ACUs. We propose an algorithm for the automatic avoidance of policy conflicts

before they are allowed to emerge. This algorithm involves the systematic com-

munication between ACUs, in which they recursively issue access requests to one

another in order to secure the entire system. This part of Chapter 4 addresses RQ 3,

concerning the introduction of a model for distributed access control.

In Chapter 5 we implement SOOAC in a smart home containing real-world

smart devices (RQ 4). We assess the performance of this model along the two met-

rics described in RQ 4.1 and RQ 4.2, respectively: efficiency and efficacy. The for-

mer metric assesses whether the implementation of SOOAC runs in a timely manner

without negatively impacting the user experience in the Smart Home. We compare

these results to a centralized policy conflict resolver. The latter metric assesses to

what extent the implementation of SOOAC avoids potential policy conflicts that

arise in a real smart home.

Finally, in Chapter 6, we discuss challenges to our account and point to future

work to overcome these challenges.



Chapter 2

Access Control: Principles and

Foundations

All models are wrong, but some are

useful.

George Box

In this chapter:

• we provide a working definition for access control;

• we situate access control within the broader security context, identifying in-

and out-of-scope topics;

• we clarify the meaning of common access control terms, such as policies,

models, and policy conflicts;

• we describe important historical (i.e., pre-Internet of Things) access control

models and the challenges that led to their introduction (RQ 1.1);

• we identify access control requirements gleaned from the described models;

• we provide a generalized model that encapsulates the historical models;

• we provide a characterization of traditional access control as centralized.
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2.1 Access Control Principles

2.1.1 A Working Definition

Access control is about limiting what can be done to things in order to make those

things secure. People have been doing access control for as long as we have his-

torical records: the discovered locked boxes of Ancient Egypt [54] are evidence of

early attempts, controlling access to just those people with correctly shaped physi-

cal keys. In the 1960s and 70s, the rise of digital computing encouraged an analysis

of access control. This shift from practice to theory was motivated by the need to

understand how to control access for multiple users interacting with terminal ma-

chines connected to a single mainframe computer.

In particular, Lampson’s work on Access Control Matrices [107] is now seen

as a crucial model for understanding access control. One reason for this is that

it highlights three key elements of access control: subject, object, and operation

[142, 53]. These elements form the basis for our initial, working definition for

access control:

Access control restricts the operations that can be performed by sub-

jects on objects.

We depict our working definition, along with the additional notion of the reference

monitor, which is sometimes included in definitions of access control (see e.g.,

[142, 53, 87]), in Figure 2.1. We describe each of the four elements, with examples,

as follows.

• Subjects (sometimes referred to as ‘principals’, or ‘agents’) are the entities

that request access and are granted or denied access. Examples include people

(‘users’), processes, and devices. We will assume throughout this thesis that

subjects have been pre-authenticated; that is, the identities of subjects have

been determined prior to access control. This is commonly done in the litera-

ture [16], though not universally [77]. We discuss the issue of authentication

in Subsection 6.1.6.
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Figure 2.1: The three key elements of access control: access control is about restricting the
operations that subjects can perform on objects. In some accounts (e.g., [142,
53, 87]), the mechanism that enforces which operations are performable by
which subjects on which objects — the reference monitor — is also referenced
explicitly.

• Objects (‘resources’, ‘assets’) are the entities intended to be secured. The

nature of objects can be varied, being hardware (e.g., buildings) or software

(e.g., files), as can be their complexity, being relatively passive entities that

only need securing (e.g., documents) or more active entities that carry out

processes themselves (e.g., devices). This latter class of objects will become

more relevant when we consider Internet of Things devices in Chapter 3.

• Operations (‘functions’, ‘capabilities’) are actions that are capable of being

performed by subjects on objects. As such, they are dependent on the sub-

jects and objects under consideration, relying in principle (i.e., before access

control) on (i) what subjects can do and (ii) what can be done to objects. Sim-

ple examples include read and write operations for files and the switching on

or off of a device. Usually we will refer to access in terms of access to an

operation, but sometimes we will omit the qualifier, referring instead just to

access to an object.

• The Reference Monitor, introduced by Anderson [15], is the entity respon-

sible for enforcing access control. It may be a physical keycard system in the

case of access to a building, or a piece of software in the case of file systems.

In information security, it typically falls under the domain of (system) admin-

istrators and is closely related to policies, more about which we will discuss
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in Subsection 2.1.4.

Before using our working definition to explore historical (i.e., pre-Internet of

Things) access control, we will first clarify access control’s role in the broader con-

text of security.

2.1.2 The Security Context

As noted in Chapter 1, access control has held a historically important role at the

heart of computer security [16]. For several decades now, another prominent con-

cept within computer security has been the so-called “CIA triad", consisting of con-

fidentiality, integrity, and availability [139]. These three properties can be stated

using the access control elements described previously: maintaining confidentiality

means that objects are not disclosed to unauthorised subjects; maintaining integrity

means that objects should not be modified by unauthorized subjects; and maintain-

ing availability means that objects can be accessed by authorized subjects when

required. In short, security can be understood as being about keeping things secret,

correct, and obtainable.

Despite its widespread usage, the CIA triad as formulated does not by itself

provide a comprehensive account of how security is practised. Most obviously, it

is opaque as to what constitutes authorised and unauthorised agents. Moreover,

security literature is awash with additional terms that are often not defined with

respect to the CIA triad. These include ‘policies’, ‘models’, and ‘policy models’.

These terms have occasionally been proposed as extensions to the triad (see, e.g.

[128]). This state of affairs shows the need for conceptual clarity. What would be

helpful would be an ontology with which to situate these ideas within the broader

context of security to give an account of their nature and how they relate to one

another.

2.1.3 An Information Security Ontology

Beautement and Pym [24] develop a security ontology based on the distinction be-

tween declarative and operational concepts. Declarative concepts describe the se-

curity objectives within a given system. These are the security-relevant properties
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that system-controllers desire to be the case. In general, they include the CIA triad.

More specifically, they consist of statements that describe the character and extent

of the confidentiality, integrity, and availability that objects within the system are

expected to have. This will be dependent on the system at hand. For example, in

government organisations the confidentiality of information is typically prioritised;

in banks, the integrity of accounts; and in retail, the availability of goods. Opera-

tional concepts, on the other hand, describe the security mechanisms present within

a given system. These are the tools designed to achieve the proposed security ob-

jectives. Security mechanisms can be physical (e.g. entry barriers, credit cards,

scanners), digital (passwords, biometrics), and include policies prescribing desired

behaviours (“no tailgating", “do not share your password with anyone"). In essence,

while declarative concepts state what security means within a system, operational

concepts explain how security is brought about.

The relationship between the declarative and the operational is at the heart of

security management. In organisations, security managers are typically tasked with

(i) understanding the security objectives, (ii) organising the security mechanisms,

and (iii) assessing whether the security mechanisms successfully achieve the secu-

rity objectives. Using the physical entry barrier example, security managers must

consider how such mechanisms achieve the desired security objectives within the

organisation. The declarative-operational distinction makes it clear that alternative

and additional mechanisms should be considered in light of how they affect these

security objectives. If, for example, the security managers propose the policy that

key-cards should be worn at all times within the building, this proposal should be

considered in light of how it will affect the confidentiality, integrity, and availability

of the objects as desired by the organisation.

Outside of organisations, individuals typically carry out procedures (i)–(iii)

implicitly. When sharing a document via email, for example, a user may expect

the document to be sent only to the recipient specified (confidentiality), expect it

to be received as sent (integrity), and expect it to be received in a timely manner

(availability). If a user is concerned that traditional email allow documents to be
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forwarded to third parties without their knowledge, they may consider showing the

recipient the document in person, increasing confidentiality but reducing availabil-

ity. Again, the declarative-operational distinction makes it clear that operational

choices may affect desired security objectives, showing the trade-offs that often oc-

cur within the CIA triad. For a fuller discussion on trade-offs and the CIA triad, see

[41].

This ontology provides a conceptual basis with which to situate our security

terms. It makes clear, for example, that what it means to be authorised or unautho-

rised depends solely on the security objectives within a given system. It also helps

to conceptually guard against making category errors in proposing operational ex-

tensions to the CIA triad. For our purposes, the ontology is useful in identifying

access control as an operational concept, a point rarely made clear in the literature.

We will now look in more detail at how this ontology helps to clarify the most im-

portant security concepts in this thesis, namely, policies, models, policy models,

and policy conflicts.

2.1.4 Policies, Models, and Policy Conflicts

2.1.4.1 Policies

Aligned with the declarative-operational ontology described, policies come in two

flavours. In the literature, this distinction is sometimes described as being between

‘high-’ and ‘low-level’ policies, respectively (see, e.g., [6, 23]).

Declarative policies are statements that describe the security objectives of a

given system. At the highest level, these type of policies cover the CIA triad de-

scribed previously. They can also refer to more specific policies that nonetheless

still describe security objectives of a system. For example, a declarative policy in

an office environment might state that the confidentiality of a specific set of docu-

ments should be maintained.

On the other hand, operational policies are statements that describe how

declarative policies can be brought about. In this thesis, of central concern will be

the operational policies involved with access control. These are sometimes referred

to as ‘access control policies’ (see, e.g., [170]) or even ‘access control rules’ (see,
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e.g., [76]). Given our definition of access control in Subsection 2.1.1, these policies

are statements that specify the restrictions of subject-object operations. For exam-

ple, an operational policy in an office environment might be that a set of documents

(branded ‘confidential’) cannot be removed from the premises.

In this thesis, we will throughout use the words ‘policy’ and ‘policies’ to refer

to operational (low-level) access control policies. At times when we need to refer

to declarative (high-level) policies, we will make this alternative usage clear.

2.1.4.2 Models

Models are reasoning aids that can be used at both the declarative level and the

operational level. In Subsection 2.2, we will see how they are used at the operational

level to reason about access control and access control policies. These models allow

practitioners to better understand the security mechanisms implemented within a

given system.

Policy models are a particular type of model that help security practitioners

bridge the gap between declarative and operational policies, ensuring that the se-

curity objectives of a system are met by the security implementations. In 2.2.1.3,

we will consider some historically important policy models, but the main focus on

models will be at the operational level rather than at the declarative level on policy

models.

Another distinction that is helpful in this context is between descriptive and

prescriptive models. The former refer to representations of how security systems

are, while the latter are specifications for how they should be. When looking at his-

torical models, we will often find a relationship between these two types of model.

This is because representations were often introduced in order to capture some sys-

tem at hand and then developed on in order to improve the security of that system

in implementation. This distinction is natural given security’s dual role as a science

and a technology [150]. When we come to introduce our own model in Chapter 4,

it will also be a model that is both descriptive and prescriptive.
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2.1.4.3 Policy Conflicts

In this thesis, we will use the term ‘policy conflict’ to refer to an inconsistent set of

access control policies — that is, when a contradiction follows from the assumption

that a set of specified (operational) access control policies are true. This definition

is common in the literature (see, e.g., [8, 82, 161, 169]), though sometimes comes

under the slightly different heading: ‘access control conflict’. The simplest kind

of policy conflict is when a subject is both granted and denied access to an object

operation.

Much like policies themselves, policy conflicts can arise at the declarative as

well as operational level. Alkhabbas et al [9] implicitly use the distinction (in the

context of the Internet of Things) when they distinguish between ‘Goal Level’ and

‘Things Level’ conflicts. In the former (declarative) case, conflicts arise from user

intentions, for instance arising when users “request goals that can not be achieved

simultaneously.” In the latter (operational) case, conflicts arise when devices are

requested to be in multiple states simultaneously, being “assigned to multiple roles

and requested to perform [multiple] capabilities.”

In addition to these two types of policy conflict, a third (see, e.g., [42, 38])

involves the relationship between operational and declarative policies and therefore

relates closely to policy models. More specifically, this is when a set of specified

(operational) access control policies fail to align with the declarative security poli-

cies intended for a system. We will consider this alternative type of policy conflict

in Chapter 6. However, when we refer to ‘policy conflicts’ we will always mean op-

erational policy conflicts that arise from the setting of contradictory access control

rules.

In the next section we look in detail at historical models that have been applied

to systems that predate the Internet of Things, beginning with Lampson’s access

control model. This account will draw attention to requirements deemed important

historically for access control and will help us to characterise the traditional systems

for which they have been applied.
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Table 2.1: An example of an access control matrix. The subjects (Alice, Bob, and Charlie)
have access to different operations (read, write, execute) on different objects
(File 1, File 2, and File 3).

File 1 File 2 File 3
Alice Read, Write - Execute
Bob Read Read, Write, Execute Read, Write, Execute

Charlie Write Write Read

2.2 Access Control Foundations: Historical Models

The Access Control Matrix (ACM), introduce by Lampson [107] is a tabular model

that represents subjects as rows, objects as columns, and operations within table

elements (i.e., at the intersection of rows and columns). If an operation exists at the

intersection of a row (subject) and column (object), that operation can be performed

by the subject on the object; otherwise, the operation cannot be performed. In

other words, access to an object is granted to a subject, in terms of some specific

operation, if that operation is listed as a subject-object’s table element; otherwise,

access is denied.

Table 2.1 depicts an example ACM. This shows how (low-level) policies can

be recovered from an ACM. For instance, Alice has read and write access to File

1, but neither for File 2; while Bob has only read access to File 1, but full access

(read, write, and execute) to File 2. These policies can be stated explicitly in list

form (e.g., ‘Alice has read access to File 1’, ‘Alice has write access to File 1’, and

so on), but the ACM provides an efficient representation of the same information.

Table 2.1 is indicative of Lampson’s original use case. It is also indicative

for where ACMs remain in use today, namely in file systems. Implementations

of ACMs are present in the so-called permission bits of Unix-based systems (e.g.,

Linux, Android, and iOS) and Microsoft Windows’ NTFS [83].

It is important to stress that the key problem that ACMs solve in the context

of file systems is the delineation of access for multiple subjects (i.e., access control

for multi-user systems). While an ACM can have utility in systems containing

just a single subject (for example, it can restrict a user from overwriting their own

documents by mistake), the historical motivation was to isolate files that exist within
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one file system to specific users.

In Subsection 2.1.1, we said that that ACMs are foundational for access control

in highlighting the three key elements of subject, object, and operation. They are

also foundational as the starting point for two broad research threads: Capability

Lists and Access Control Lists. As Gollmann [76] puts it, these two threads are two

perspectives on access control: “what a principal [i.e., subject] is allowed to do, or

what may be done with an object.” As we will see, this focus on subjects on one

hand, and objects on the other, is a helpful way of separating out historical access

control models.

2.2.1 Two Threads of Access Control: Subject-focused and

Object-focused

In their simplest formulation, Capability Lists associate with each subject a set of

(object, operation) pairs, while Access Control Lists (ACLs) associate with each

object a set of (subject, operation) pairs. Insofar as ACMs contain the information

present in both, the claim that Capability Lists and ACLs are conceptually distinct

has been questioned in the literature (see, e.g., [44, 78]). As others [118, 49, 154]

have noted though, the distinction is relevant in implementation: if we want to know

what access a given subject has, it is more efficient to use Capability Lists; if we

want to know what has access to a given object, it is more efficient to use ACLs. In

any case, the problems associated with each are distinct and have historically given

rise to distinct new models.

2.2.1.1 From Capability Lists to Role-Based Access Control

Capability Lists are an example of the larger category of Identity-Based Access

Control (IBAC): the decision of whether to grant access or not is based on the iden-

tity of the subject. In the organizational context in particular, IBAC is now consid-

ered overly restrictive [100]. A standard issue for system administrators responsible

for access control in organizations is setting policies for the regular inflow of new

users. If policies depend on the identity of a subject, then each time a new user

arrives, a new set of policies for that user has to be created. This creates a lot of
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work for an administrator and does not scale well as the number of users increase.

The same can be said for when an administrator needs to change policies for many

users simultaneously. In short, IBAC cannot easily handle changes in access over

time; they do not cater for dynamic access control.

To address this issue, Role-Based Access Control (RBAC) was developed

[141], whereby policies refer to subject roles — which need changing less often

— rather than subject identities. When an administrator needs to set policies for a

new subject using using RBAC, they simply give that subject the necessary role (or

roles, as the case may be), and the policies themselves do not need changing. Sim-

ilarly, when an administrator needs to apply a change for many subjects, they can

simply apply the policy change to the role. Conceptually, a role can be understood

as the property of a subject, the property of belonging to a specific group of subjects.

This was perhaps the earliest way of increasing the dynamicity of access control. It

has since been recognized as an important requirement for any access control ap-

proach [105, 122, 71]. There is evidence that arbitrarily new roles, however can

lead to so-called role explosion, where administrators have to manage permissions

for too many roles, leading back to the original lack of dynamicity problem [62].

This indicates that measures introduced to improve dynamicity cannot be relied on

blindly, but must be managed with care. In the particular case of role-explosion, for

example, roles should only be created when necessary, or some automated process

should aid role management [62].

2.2.1.2 From ACLs to Attribute-Based Access Control

ACLs have experienced their own extensions, brought about by their own problems.

One such limitation that was quickly noticed was that the complex nature of some

objects calls for more fine-grained control over operations. Take, for example, the

problem of controlling a text document for collaboration: is it possible to give read

access to a title and write access to the rest of the document? If the only available

operations to be controlled are read/write/execute for the entire document (as we

saw in Table 2.1), this is not possible. The earliest attempt to provide such fine-

grained, line-by-line access was developed by Shen and Dewan [145].
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Like dynamicity, fine-grainedness has since been recognised as a key require-

ment for any access control model [108]. As object complexity increases, so does

the need for further fine-grained controls. Having said this, more controls are not al-

ways better. Dalal et al [51] give empirical evidence that users find overly complex

controls unhelpful. As Beautement et al [25] and Anderson et al [14] argue, if the

security burden on users becomes too great, they are likely to not use any controls

and behave insecurely. What appears more appropriate, therefore, is that access

control requires responsible fine-grained controls: controls that empower users to

perform complex tasks simply.

Fine-grainedness is proportional to the number of unique operations that can

be performed on an object. This depends on how complex the object is –— on what

the attributes of the object are. Exploring this idea encouraged an important exten-

sion of ACLs, namely, Attribute-Based Access Control (ABAC) [90]. One way to

understand this extension is through analogy: ABAC is to ACLs what RBAC is to

IBAC. More specifically, ABAC is a model that allows for the attributes of objects

to be relevant to the access control decision. Even more than this, ABAC allows

for arbitrary properties of subjects, objects, operations, and the system (the ‘envi-

ronment’) to be considered in access control decisions. It can therefore represent

any of the previously mentioned models. In this sense, ABAC is the culmination

of historical access control. We give an overview of the models discussed so far in

Figure 2.2.

2.2.1.3 Orthogonal Models

Parallel to the timeline of access control models described, there exist a number of

orthogonal approaches to access control. These include policy models and broad

approaches covering policies.

Perhaps the most important policy model developed at a similar time to Lamp-

son’s ACM is the Bell-LaPadula policy model [26]. This was designed to reason

about, and improve on, the US Department of Defense’s method of sharing clas-

sified documents. Each document (i.e., object) and subject within this system is

allocated a classification — ‘classified’, ‘secret’, and ‘top secret’ — which obey
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Figure 2.2: Two threads of access control originating from the Access Control Matrix:
subject-focused and object-focused. Challenges that drove the particular mod-
els are shown in red. In that Attribute-Based Access Control is expressive
enough to represent the other models, it is the culmination of historical (i.e.,
pre-IoT) access control.

a strict ordering. Access is controlled to two possible object operations, read and

write, through two associated operational policies: ‘no write down’, prohibiting a

subject of a given classification (e.g., secret) writing to a lower classification (e.g.,

classified) ; and ‘no read up’, prohibiting a subject of a given classification (e.g.,

secret) reading a document of a higher classification (e.g., top secret). Bell and La-

Padula showed formally that, if these two policies are adhered to, the system will

satisfy the declarative policy that all documents should be confidential. The Biba

policy model [32] is closely related to the Bell-LaPadula model, focusing on the

integrity declarative policy rather than confidentiality.

The Clark-Wilson policy model [48] is the commercial analogue to the
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government-based Bell-LaPadula model. This model is notable for advancing what

we would now refer to as access control transparency. This is the idea that it should

be possible to see what objects have been accessed by subjects and in what way.

Transparency is achieved by storing a log, which starts life as a blank document,

that records all ‘transactions’ that take place in the system (i.e., operations on ob-

jects). As the policy model is stateful, this allows a full reconstruction of any state

at a previous time, allowing auditors to check for policy infringements, that is pol-

icy conflicts relating to a mismatch between declarative and operational policies.

Transparency has been further advanced by Povey [134], in which it is argued that

access can be granted to all objects by default, as long as all historical operations to

an object are recorded. If unwanted behaviour occurs, the resource can be returned

to a previous state, and those responsible can be potentially denied access from that

point on. Implementation of this retrospective style of access control is best seen in

Wikipedia [99].

Transparency is now considered an ideal access control requirement for both

individuals and organizations [127]. A related requirement is break-glass mech-

anisms. As described at length by Petritsch [133], this is the idea that, akin to

breaking the glass cover of an alarm in an emergency, default policies may occa-

sionally be violated in order to carry out a task that must be done immediately. It

has been stressed in the literature that they must only be applied in exceptional cir-

cumstances. The case of Windows UAC, where users bombarded with permission

requests are more likely to accept them blindly, shows that they cannot be the norm

[55]. It is also vital for auditing that they are recorded, and are hence transparent.

Further considerations may be about whether anyone is able to break-glass or just

certain individuals. The work in [35] shows how to extend historical access control

models to allow for break-glass mechanisms.

Finally, due to its notoriety, it is worth mentioning the distinction between

mandatory and discretionary access control (MAC and DAC, respectively). These

are operational (but broad) policies, the former stating that access be controlled

only by the controller of the system (i.e., the system administrator), while the lat-
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ter allows object owners to set their own policies. MAC has been associated with

government systems (i.e., the system that Bell-LaPadula is a model of), while DAC

is associated with file systems (the systems ACMs are models of). It is because

of these close associations to particular models that it is common to see MAC and

DAC misrepresented. It is common, for example, to hear words of the effect that

MAC, DAC, and RBAC presented as “the three main approaches to access con-

trol” [96, 108]. Taken literally, this statement is making a category error: RBAC

is a model, through which policies can stated; while MAC and DAC are policies.

Indeed, it has been clearly shown in [124] that RBAC can be made to implement

MAC or DAC.

Mistakes of this nature are symptomatic of the more general ontological issues

that have emerged in the field of access control as a consequence of the proliferation

of new models [21]. While it is understandable why new approaches to access con-

trol appear — they are often needed when trying to understand existing systems and

create new ones — if they are orthogonal, they should be described as such, and not

be put into direct comparison. A case in point is the practice of describing models

in terms of abstractions. It is perfectly reasonable to speak of mathematically mod-

elling Bell-LaPadula implementing MAC as lattice-based access control (LBAC)

[140], but it is unhelpful to say BLP is MAC is LBAC. Similarly, while RBAC can

be mathematically understood in terms of graphs, RBAC and graph-based access

control are not equivalent. Mathematical abstractions, models, policy models, and

policies are helpful terms in distinguishing these different approaches.

2.2.2 Access Control Requirements

We have looked at the historical models of ACMs, Capability Lists, ACLs, Role-

Based Access Control, and Attribute-Based Access Control, and the orthogonal

models of Bell-LaPadula, Clark-Wilson and Petritsch. From looking at these two

sets of models, we have identified a number of requirements. The former of these

can be considered necessary requirements for ‘good’ access control; the latter are

additional requirements for ‘ideal’ access control. We summarise these two sets of

requirements as follows.
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2.2.2.1 Requirements for ‘good’ access control

• Multi-User. An access control model should capture many subjects interact-

ing with potentially the same objects within one system.

• Dynamic. An access control model should capture changes in subjects, ob-

jects, and operations over time.

• Fine-Grained. An access control model should capture the range of opera-

tions possible, dependent on what operations are afforded by the objects, and

are performable by the subjects, within the system.

2.2.2.2 Additional requirements for ‘ideal’ access control

• Transparency. An access control model should store records of historical

policies and accesses for auditing at a later date.

• Break-Glass Mechanisms. An access control model should, in time-critical

or other emergency situations, allow for policies to be overridden, given that

necessary safeguards are in place to avoid abuse.

2.3 Generalizing Access Control

2.3.1 The ACU Model

We have seen a number of historical access control models culminating in ABAC.

We have also defined a set of ‘good’ requirements that are desirable by any access

control model. We will now define the Access Control Unit (ACU) and show how

modelling an ACU can be used to model ABAC and capture the ‘good’ require-

ments. An ACU has four abilities:

• Enforcement: the ability to receive access requests and to return responses

to subjects that request access;

• Information retrieval: the ability to retrieve relevant attributes (e.g., subject

attributes, object attributes, and system attributes);
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• Administration: the ability to write policies, store policies, and return re-

sponses about policies when queried;

• Decision-making: the ability to make an access control decision based on the

access request, existing policies, and information retrieved.

These four abilities correspond to the well-established ‘points’ of an access

control system described in the XACML architecture [152]: policy enforcement

points (PEPs), policy information points (PIPs), policy adminstration points (PAPs),

and policy decision points (PDPs), respectively. Put succinctly, an ACU has a PEP,

a PAP, a PIP, and a PDP. Figure 2.3 shows the main components of the ACU Model

and how they relate to one another.

Figure 2.3: The Access Control Unit (ACU) Model showing how the main components of
an ACU (PEP, PDP, PAP, PIP) relate to one another in order to decide upon an
access control request.

2.3.2 Representing Historical Models Through the ACU Model

An ACU thus defined can be used to represent a range of access control models

[18]. For example, it can define ABAC in the following way. Policies (technically,
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in the XACML format) relating to subject, object, operation, and system attributes

are written at the PAP (Step 1). An access request (in a native format, specific to the

subject) is sent by the subject to the PEP (Step 2). This request is converted to the

XACML format and sent to the PDP (Step 3), which requests information about the

subject, object, operation, and system from the PIP (Step 4). Once the PIP retrieves

this information (Step 5), it sends it back to the PDP (Step 6). The PDP then queries

the policy set stored at the PAP as to whether the specified policy exists (Step 7).

If the policy exists, the PAP returns its response (e.g., ‘True’) to the PDP (Step 8).

The PDP converts the response to the native format and sends it to the PEP (Step

9), which returns the access decision to the subject (Step 10).

Given that ABAC can be defined through the ACU Model, and ABAC is ex-

pressive enough to model the historical models, it follows that the ACU Model is

capable of defining the historical models.

It should be noted that XACML is first and foremost a policy language. In

the present context, what is most important is the architecture described, which is

a model. This means that certain features described will not generally be relevant;

for example, the fact that a PEP has to convert an access request into the XACML

format will not generally be true for all ACUs. This point will be particularly rele-

vant in Chapter 4. For this reason, we refer to the model as the ‘ACU Model’ rather

than the ‘XACML Framework’.

2.3.3 Centralized Nature of Historical Access Control

Now that we have seen how the historical models can be defined through the ACU

Model, it is possible to characterize these models through the ACU Model.

Most importantly, the ACU Model represents just a single ACU. This means

that for all subjects and objects within a system, there is at most one PAP, PDP, PIP,

and PEP. As a consequence, the historical models are only capable of representing

systems in which there is one authority that carries out the process of controlling

access within that system. We refer to this property by saying that access control is

centralized for historical access control.

This characteristic is understandable given access control’s historical founda-
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tions: models emerged from attempts to reason about file systems (ACM) and doc-

uments within government environments (Bell-LaPadula). These are highly con-

trolled environments with clear boundaries separating that which is inside the sys-

tem and that which is outside the system. A second observation is that files and

documents are passive entities: typically understood, they have no internal secu-

rity mechanisms themselves. As such, objects require controlling from an external,

system-level mechanism. As we will see in the next chapter, neither of these obser-

vations hold for the Internet of Things.

2.4 Summary
In this chapter, we gave a working definition for access control (Subsection 2.1.1),

situated access control within the broader context of security (Subsection 2.1.2),

and described important historical (i.e., pre-Internet of Things) access control mod-

els (Section 2.2). From the historical models, we gleaned a set of access control

requirements that encapsulate ‘good’ access control and considered further optional

requirements (Subsection 2.2.2). Describing these requirements satisfied the ques-

tion posed by RQ 1.1.

We improved on our initial working definition by defining the Access Con-

trol Unit (ACU) Model, based on the XACML Framework (Subsection 2.3.1). We

showed how this model is general — that is, capable of representing the histori-

cal models and embodying their requirements (Subsection 2.3.2). In this sense, the

ACU Model can be understood as the culmination of historical access control prior

to the Internet of Things. Finally, we argued that this model is characterized by a

notion of centralization: it depicts the operating of a single ACU within a system.

As such, the ACU secures all objects within that system and is effectively inde-

pendent from them (Subsection 2.3.3). In the next chapter, we will see how this

characterization becomes crucial for access control in the emerging context of the

Internet of Things.



Chapter 3

Internet of Things Access Control

The Internet gave us access to

everything; but it also gave

everything access to us.

James Veitch

In this chapter:

• we give a definition of the IoT based on existing definitions in the literature;

• we give an overview of current smart home access control;

• we identify challenges to smart home access control proposed in the litera-

ture;

• we critically analyse said challenges according to the traditional requirements

described in Chapter 2 (RQ 1.2);

• we provide definitions for decentralized and distributed access control;

• we introduce the distinction between local and global policy conflicts;

• we consider the main challenge for decentralized access control, in the Run-

ning Example;

• we give a set of requirements for smart home access control;

• we assess related literature based on these requirements.
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3.1 The Internet of Things

3.1.1 Defining the Internet of Things

Numerous definitions for the Internet of Things (IoT) have been proposed [132,

156, 73, 84]. There have also been attempts to provide taxonomies for the IoT

[162, 164], as well as descriptions of different ‘waves’ of the IoT [19].

The term was initially coined in a narrow sense by Kevin Ashton in 1999 as

a label for his work in applying Radio Frequency Identification (RFID) to sup-

ply chains [17]. It has since entered common usage to describe something much

broader in scope, both in terms of communication protocols (including RFID, WiFi,

BlueTooth, MQTT, CoAP) and application environments (health care, agriculture,

industry, the automotive sector, critical infrastructure, and the home).

In order to capture as much of the term as it is commonly used, we provide

the following broad definition, which is similar to definitions given by Bertino et al

[28] and Sfar et al [143]:

The Internet of Things consists of physically embedded devices interacting via

internet-like networks.

By referring to IoT devices as ‘physically embedded’ we indicate that they

have some physical component (the ‘thing’ in the IoT), including sensors and ac-

tuators through which they can sense and act in their surroundings. Through these

capabilities, IoT devices can react to physical stimuli and enact physical change di-

rectly in the world. For example, in the Smart Home, smart speakers can receive

and respond to voice commands spoken by members of the household.

By referring to ‘internet-like networks’, we are accounting for the fact that IoT

devices have a digital component, typically existing on and transmitted through the

internet (the ‘internet’ part of the IoT). As well as this, we also include devices that

have an indirect or minimal connection to the internet (e.g., through a hub) or no

connection to the broader internet, but are nevertheless interconnected with other

devices (e.g., on Local Area Networks). The latter class of devices includes those

that can behave as if online (e.g., SCADA systems).1 In the Smart Home, users

1As Stuxnet showed (see, e.g., [151]), even devices designed to be offline can be attacked. In
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have become increasingly concerned about having their IoT devices connected to

the internet and so some are favouring just local connections [121]. Such devices

require securing (e.g., through access control) just as those with direct connections

to the internet do [60].

As a consequence of this definition, some devices that pre-date the IoT, such

as phones and laptops, will qualify as IoT devices. In some contexts employing

such a broad definition for the IoT might be problematic.2 In the context of this

thesis, however, the breadth of definition here is a benefit because these device that

would otherwise be excluded are typically involved in access control; of particular

relevance is the role phones play for administrators to control access and users to

have access to devices in the Smart Home.

3.1.2 Access Control in the Smart Home

IoT devices are now all around us (they are ubiquitous) and often blend seamlessly

into our daily lives (they are embedded) [67]. This is perhaps no more evident than

in our homes, in which a variety of so-called ‘smart’3 devices make up the so-called

Smart Home. An overview of a smart home is shown in Figure 3.1.

Typically, a smart home will have a single access point, through which IoT

devices can send and receive data. For offline-capable IoT devices, a smartphone

connected to the WLAN (generated by the access point) will have an app or apps

through which IoT devices are controlled and policies are ‘written’. This process

will typically involve downloading an app, setting up an account, and pairing a de-

general, this case reminds us of the warning: “don’t believe in airgaps!”; that is, it is incredibly hard
to create systems in which devices are truly separated from the internet.

2This does not just include the issue of anachronism in labelling devices as IoT that existed before
‘the IoT’ was a term; there can also be technical reasons for avoiding such a broad definition for the
IoT. For example, in the area of device identification (see, e.g., [144, 47, 146]), producing algorithms
that can identify general purpose devices (like phones and laptops) as well as operationally narrow
devices (like temperature sensors and smart locks) is a challenge, for one reason because the general
purpose devices may be carrying out some of the operations of the operationally narrow devices;
it may therefore make sense in this context to use a narrower definition for the IoT in order to use
different algorithms for the two classes of device. We will return to the issue of identifying IoT
devices when we discuss authentication in Chapter 6.

3This term is rarely defined. In common usage it is often used to mark out devices whose primary
function pre-date the IoT (e.g., smart TVs, smartphones, smart kettles). In agency access control
papers (see, e.g., [106, 59, 69, 68, 70]), the term ‘smart object’ refers to devices that exhibit context
awareness in IoT environments. We leverage this idea in our usage of ‘smart’ in the Smart Object-
Oriented Access Control model we propose in Chapter 4.
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Figure 3.1: Smart Home Overview. Typically, a smart home will have one access point,
through which wired and wireless devices communicate to each other and the
Internet. Some resource constrained devices (e.g., the smart bulbs shown) may
first communicate to a hub. Software (e.g., Home Assistant) may be present
on local hardware that controls access to certain devices, and cloud services
(e.g., IFTTT) may perform a similar role outside the Smart Home on the Inter-
net. Operations on devices are typically controlled (inside or outside the Smart
Home) through smartphones.

vice. Levels of access to specific operations on each device will depend on the

app at hand. If multiple IoT devices are made by one manufacturer (especially the

larger manufacturers), it is likely that a single app will afford controls to each of

them. Hubs may also be involved that use their own (wired or wireless) protocol to

communicate with their respective devices (the smart bulbs shown in Figure 3.1).

Standalone physical devices (e.g., Home Assistant [159] running on a PC or Rasp-

berry Pi) may allow the smartphone to control many IoT devices (irrespective of

manufacturer) within one app.

If the access point is also connected to the internet (the most common smart

home setup), it will usually be possible to use the smartphone app(s) without being

connected to the WLAN (i.e., remotely). With connection to the internet it is also
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possible to leverage cloud services. For example, with IFTTT [93], operations car-

ried out on one device can be chained together with operations on other devices for

automation purposes.

The location at which access control requests are deliberated upon varies. Most

often, it will take place in the cloud on server databases [148]. It can also, in princi-

ple, be controlled at the ‘edge’ (i.e., within devices themselves) [88]. Using an ex-

ternal device for access control (e.g., running Home Assistant) falls between these

two extremes, allowing access to be controlled within the physical bounds of the

home but away from the specific IoT devices themselves.

At a basic level, the role access control plays in the smart home is no different

from from the role it plays in other environments (as described in Subsection 2.1.1):

access control restricts what subjects (e.g., users, IoT devices, processes) have ac-

cess to what objects (e.g., users, IoT devices, processes, data).

Despite this, it is widely stated in the literature that the Smart Home raises

a number of novel challenges for access control. Whether our understanding of

access control needs to change in light of the IoT rests precisely on the question

of how novel these challenges are; that is, the degree to which the challenges are

genuinely new will dictate whether our access control models — be they descriptive

or prescriptive (as described in Subsection 2.1.4.2) — need only modification or

overhaul. This is still very much an open question [125].

3.1.3 Overview of Proposed Challenges for Internet of Things

Access Control

In the next section we will assess to what extent proposed challenges from the IoT

access control literature answer this question. These challenges (3.2.1.1–3.2.1.5)

are commonly cited in surveys (see, e.g., [135]) as well as individual papers. We

will assess these challenges, bearing in mind the following points of clarification.

First, there is no widespread agreement on the meaning of the terms used to

describe these challenges and, as we will see, terms are often conflated with one an-

other or used collectively; in short, the syntactic agreement in terminology is rarely

reflected semantically. We will therefore have to be careful to describe what specific
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challenges are being posed for each term. In cases where challenges involve the tra-

ditional requirements (e.g., Multi-User, Dynamic, and Fine-Grained) described in

Subsection 2.2.2, we will make this link clear. When we assess that a proposed

challenge is covered by a traditional requirement, we will use this as an argument

for IoT access control not being significantly novel and therefore not requiring an

overhaul.

Second, it is not always explicit in the literature whether proposed challenges

are challenges for the IoT broadly or for access control specifically. In general,

we will only consider as genuine challenges those challenges that involve access

control, so we will be careful to draw out the two cases where necessary.

Third, it is often unclear in the literature whether proposed challenges are chal-

lenges for smart home access control in principle, or just challenges for how smart

home access control is currently implemented. As we will see, this is problematic,

as there is a significant mismatch between what papers in the literature expect and

what consumer implementations achieve. When a proposed challenge is covered

by a traditional requirement, but not implemented in today’s smart homes, we will

again use this as an argument for IoT access control not being significantly novel

and therefore not requiring an overhaul.

Each of these three points will therefore be relevant as to whether challenges

posed in the literature call for new access control models for the IoT. We will sum-

marise these challenges in Subsection 3.2.2, leading to an analysis of what we do

think is a novel challenge.

3.2 Challenges for Internet of Things Access Control

3.2.1 Proposed Challenges from the Literature

3.2.1.1 Smart Home Multi-User Controls

For Rotondi et al [138], the challenge of multi-user controls in the Smart Home

arises from the “unbounded number of interacting subjects (devices, applications,

humans).” In that access control should be scalable both in the sense of number of

subjects and number of types of subjects, this challenge is captured by the Multi-
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User requirement. It also bears on the Dynamic requirement, whereby the setting of

policies should be scalable with respect to the subjects and objects within the Smart

Home.

As Mohammad et al [120] point out, it is not uncommon for a smart home to

be designed as “a single-user domain.” This means that in practice, typical smart

homes not only fail to meet the Multi-User requirement; they also fail to meet the

Fine-Grained requirement, because a single user might as well have full access to

all devices; and the Dynamic requirement, because the “home owner is the only

user responsible for having control over smart devices” [120]. Similarly, the need

for users to access resources anytime and anywhere falls within the definition of the

Dynamic requirement.

The specific variety of users in the Smart Home has led to a body of literature

in human-computer interaction. One challenge in this area involves the fact that

administrators in the smart home are typically not technology experts [173]. This

means that they may be “unaware of security vulnerabilities and the protection

mechanisms needed for the home environment” [31]. This state of affairs is quite

unlike the organizational environment, in which trained administrators are dedicated

to understanding and implementing the security goals of the organization.

Relatedly, the challenge raised (e.g.,) by Zeng et al [174], is that “smart homes

can be focal points of conflict between people in the home, both due to explicit

malice (e.g., abuse) and due to ordinary conflicts between household members.”

They continue, citing examples involving “conflicts arising due to differences in

opinion on thermostat setting [75, 173], due to conflicting goals between parents

and teens in the context of entryway surveillance [167], or due to the potential use of

recorded evidence in household disputes [46].” Though conflicts of this nature are

not unheard of in organizational settings, we recognize that the relationship between

users in the Smart Home is different from that between colleagues in organizations,

and the Smart Home is therefore likely to give rise to new kinds of conflict.

Despite this, the conflicts described are declarative in nature (see Subsubsec-

tion 2.1.4.3), involving intended, higher-level policies. They therefore fall out of
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scope from direct analysis in this thesis, though we will return to discuss them in

Chapter 6. Where transparency is raised as a potential solution to the power im-

balances between users in the Smart Home — for example, to give greater power

to users to know what access controls are available to them (see, e.g., [174]) —

this issue touches on the Transparency requirement, which we will again discuss in

Chapter 6.

3.2.1.2 Smart Home Fine-Grained Controls

Writing in 2012, Rotondi et al [138] state that “existing smart home platforms

mostly offer binary control mode where a user gets all the control or no control

at all.” As Sikder et al [149] observe in 2020, this state of affairs has continued

in the intervening years. Rather than meeting the Fine-Grained requirement, it is

instead the case that coarse-grained access control is the standard in consumer IoT

[136, 65]. He et al [86] offer relevant examples:

“Current home IoT devices have relatively limited affordances for access con-

trol. For example, the Nest Thermostat supports a binary model where additional

users either have full or no access to all of the thermostat’s capabilities. The August

Smart Lock offers a similar model with guest and owner levels. Withings wireless

scales let users create separate accounts and thus isolate their weight measurements

from other users. On Apple HomeKit, one can invite additional users, restricting

them to: (a) full control, (b) view-only control, (c) local or remote control. Some

devices offer slightly richer access-control-policy specification. The Kwikset Kevo

Smart Lock allows access-control rules to be time-based; an owner can grant ac-

cess to a secondary user for a limited amount of time.”

Where this challenge refers to limits of controls on IoT devices (e.g., the binary

model of the Nest Thermostat capabilites), this falls under the Fine-Grained require-

ment; where the challenge is about delegating rights to other users (the Kwikset

Kevo Smart Lock case), this falls under the Dynamic requirement.

Because IoT devices have a physical as well as a digital component, it is unsur-

prising that it is a challenge to afford users the scale of operations possible within

the Smart Home. For example, this challenge does not simply involve controlling
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access to sense and action operations on devices, it can also involve restricting the

access to data from the device [91] (e.g., the historical entry logs from a smart lock).

3.2.1.3 Dynamic Smart Home Controls

Affording administrators appropriate policy management tools is also a commonly

cited challenge. Similar to multi-user controls, this challenge is sometimes phrased

in relation to the unbounded number of devices present in a smart home. For ex-

ample, Pereira et al [129] indidicate that “as the number of devices proliferates,

and as chance encounters between unfamiliar devices become the norm, manual

specification of access control policies becomes unscalable.”

Elsewhere, this challenge is identified as being about the structure of the Smart

Home. Ravidas et al [136] declare that an “IoT ecosystem is dynamic by design

wherein the network topology and connectivity can constantly change [163]. For

instance, [IoT devices] can leave the system or new [IoT devices] can join the sys-

tem [52].” Because new devices are often added in an ad-hoc manner, policy man-

agement itself becomes ad-hoc [31]. Insofar as these challenges relate to the quick,

easy, and accurate writing of policies in the face of an ever-changing environment,

these challenges are captured by the Dynamic requirement.

3.2.1.4 Smart Home Heterogeneity

‘Heterogeneity’ often, but not always, refers to two distinct features of the Smart

Home, which we will refer to as device heterogeneity involving the varied capa-

bilities of IoT devices (e.g., that thermostats, locks and TVs do different things),

and protocol heterogeneity involving the varied mechanisms that IoT devices use to

communicate to one another, access points, and the internet (e.g., that 802.11, eth-

ernet and MQTT are different ways of sending and receiving data). Occasionally,

these two versions of heterogeneity are not distinguished, being defined collectively

(see, e.g., [119, 103]).

Device heterogeneity is a broad challenge that often falls out of scope of access

control. This is because it is a general design challenge to equip IoT devices with

the wide range of operations that users expect [138]. Where it does fall within

scope of access control (see, e.g., [147, 37]), device heterogeneity boils down to the
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following question: ‘within one system (i.e., the Smart Home), how can we control

access to the wide range of operations afforded by IoT devices?’ This question is

captured by the Fine-Grained requirement.

Similarly, protocol heterogeneity, sometimes referred to as ‘interoperability’,

often falls out of scope of access control, describing the challenge of how devices

can be designed to communicate together [172, 65]. In some papers, which we will

discuss in Section 3.3, this challenge is more particular, posing the question of how

IoT devices can communicate their access control decisions.

Ur et al [167] use the term ‘heterogeneity’ in a third sense, relating it instead to

users and their potentially distinct needs. They state: “The home is a heterogeneous

environment. Access control must account for guests [98], children [36], and all

manner of temporary workers and visitors [104].” Insofar as access control must

account for different users, this definition of heterogeneity is captured by the Multi-

User requirement; insofar as different users require different controls, including

temporary controls, this definition of heterogeneity is captured by the Fine-Grained

requirement.

3.2.1.5 Other Posed Challenges

Other prospective challenges are raised in the literature relating to the IoT, though

they are less common with respect to the Smart Home than those so far discussed.

For example, in the IoT literature more broadly, the challenge of resource con-

strained devices is common, though this is usually raised in the context of industrial

IoT, in which it is a challenge to design expressive operations and communications

for computationally limited sensors and actuators [37]. Another context in which

resource constraints are often pointed to is with respect to authentication, the point

being that encryption is a strain on processing for resource constrained IoT devices

[120]. While we will return to authentication in Chapter 6, it is beyond access con-

trol, as we have defined it (and as it is commonly defined), and is therefore beyond

the main scope of this thesis.

Finally, it is sometimes mentioned that access control policies in the Smart

Home should be flexible, allowing for rare exceptions. For example, Mohammad
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et al [120] state that smart home access control “should be be more tolerant with

some changeable attributes and not too strict with the rules. For instance, a user

may be out of the country and want to access smart home resources.” Insofar as this

need reflects rare exceptions to specific policies, this is captured by the Break-Glass

Mechanisms requirement; insofar as it calls for quick and easy policy management,

it is captured by the Dynamic requirement.

3.2.2 Summary

As described in Chapter 2, Multi-User, Dynamic, and Fine-Grained controls (and

Transparent controls and Break-Glass Mechanisms) are requirements of traditional

access control and were recognised, in industry and academia, decades prior to

the IoT becoming established. That these challenges have not been met through

consumer IoT suggests a failure of engagement between academia and industry.

It also suggests that these challenges are challenges of extent, rather than of

kind: the Smart Home may involve more complex interactions between users, it

may require more complex controls, and more complex policy management, but

these are not fundamentally new challenges for access control. That ‘scalability’ —

in its various guises (e.g., that the Smart Home involves more users, more controls,

and more policy setting) — is so often mentioned bears witness to this. As a con-

sequence, if these were the only challenges for IoT access control, it seems more

likely that existing models should be modified rather than rejected.

Insofar as these challenges, and other challenges (e.g., heterogeneity and re-

source constraints) are distinct from the three requirements, they either fall outside

of the scope of access control (e.g., in the design of heterogeneous devices, or pro-

viding authentication for resource constrained devices), or point at something that

is, genuinely, different in kind, namely decentralization, which we will address in

the next section.

3.3 From Centralized to Distributed Access Control
As we touched on in our discussion of Figure 3.1, the typical Smart Home of today

will involve the orchestration of multiple smartphone apps. This is suggestive of a
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critical difference between smart home access control and traditional access control,

namely that the current smart home is not an environment that contains a single

access control system. This means that, even when there is a sole administrator

(e.g., home owner), whose role is to set policies across the entire smart home, there

are nevertheless multiple decision-making authorities that determine whether access

requests are granted or denied. While this point is occasionally mentioned in the

literature (e.g., “we find that each device has its own siloed access-control system”

[167]; that there is “user annoyance that may be caused by two apps” [31]), it

is rarely cited as a challenge in itself, and it is therefore rarely a challenge that is

attempted to be resolved directly.

3.3.1 Defining Decentralized and Distributed Access Control

We can spell out what this challenge is in more detail by using the ACU model

defined in Chapter 2. This will also allow us to distinguish these definitions from

related definitions found in the literature.

• Access control is centralized, within a system, if the system contains just

one ACU.

• Access control is decentralized, within a system, if the system contains

multiple ACUs.

• Access control is distributed, within a system, if the system contains mul-

tiple ACUs that communicate with one another.

Roman et al [137] use a similar three-fold distinction between centralized, de-

centralized4, and distributed access control. Unlike our distinction, theirs is based

partly on the location at which access control decisions are made:

• Centralized access control is provided by one entity, typically in the cloud,

remote from IoT devices. IoT devices are themselves “passive: their only

task is to provide data.”

4While Roman et al initially frame their distinction in terms of ‘decentralized’ and ‘distributed
systems’, their final taxonomy instead opts for the terms ‘connected’ and ‘distributed systems’.
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• Decentralized access control is provided by IoT devices that can “actually

process local information,” but they do not share information between them-

selves.

• Distributed access control is provided by IoT devices that can “retrieve, pro-

cess, combine, and provide information and services to other entities.”

The location at which access control decisions are made – be it in the cloud,

at the ‘edge’ (i.e., within IoT devices), or in the ‘fog’ (somewhere in between, as

described e.g., in [101]) – is, for us, not relevant to the distinction. Instead, our

distinction rests on the number of, and connections between, the entities responsible

for access control: if one entity is responsible for deciding access on behalf of

all IoT devices in the system (e.g., the Smart Home), it is centralized; if multiple

entities decide, it is decentralized; and if multiple entities collaborate to decide, it is

distributed.

Consequently, we would, for example, describe a smart home with two de-

vices, that defer their access control decisions to two remote servers in the cloud, as

decentralized, while Roman et al would describe the same system as centralized.

However, insofar as Roman et al distinguish between decentralized and dis-

tributed access control in terms of the respective absence and presence of collab-

oration between decision-making entities, our definitions agree. This means that,

for example, both our definitions would deem two IoT devices making their own

access control decisions as decentralized, and the same two devices communicating

to make an access control decision as distributed.

In summary, the difference between our definitions can be put in terms of

decision-making architectures: our definitions describe the logical decision-making

architectures within a system, involving how the entities that make decisions con-

nect; Roman et al describe the physical decision-making architectures within a sys-

tem, involving where the entities that make decisions connect.

While Roman et al’s definitions have gained some traction in the literature

(see, e.g., [125, 135, 92, 126]), we think that our definitions are more useful for

modelling access control in the Smart Home. This can be borne out by looking at



3.3. From Centralized to Distributed Access Control 51

the advantages of decentralized access control over centralized access control.

3.3.2 Arguments For Decentralized Access Control

The arguments for decentralized access control over centralized access control fall

into two categories: necessary arguments, that relate to how we need to under-

stand the current Smart Home; and contingent arguments, that relate to how we

can develop smart home access control in the future. Using the model terminology

introduced in Subsection 2.1.4.2, the former case is suggestive of new descriptive

models, while the latter is suggestive of new prescriptive models.

The necessary arguments relate to the fact that access control in the current

Smart Home is fundamentally decentralized. In spite of this fact, there exist a num-

ber of limited solutions that attempt to reduce decentralization (i.e., attempts to re-

duce the the number of access control systems needed to control all devices in one

smart home). Examples include Home Assistant software [159] running on dedi-

cated physical hubs to control multiple devices locally, as well as web-services such

as IFTTT [93] to manage connections between devices online. Moreover, devices

made by the larger manufacturers are typically controllable via one app, creating

‘ecosystems’ of devices [3, 79, 12]. However, not all devices currently on the mar-

ket are controllable through just one physical hub [160], are compatible with IFTTT

[95], or fall within one manufacturer’s ecosystem [2, 81, 11]. It is therefore incredi-

bly difficult to construct a smart home that is centralized, so most are not. It follows

that in order to model the current Smart Home faithfully, we have little choice but

to embrace decentralized access control.5

While we found that the proposed challenges in the literature, given in 3.2.1.1–

3.2.1.5, were not credibly novel challenges, we do think that having an accurate

descriptive model for the current Smart Home would help to alleviate these chal-

lenges. For example, designing separate ACUs for devices (as opposed to a single

ACU for all) encourages less of a ‘one size fits all’ solution, allowing for a specific

device to have levels of granularity of control appropriate to that device.

5Note that we are unable to describe the current Smart Home as ‘decentralized’ in the Roman et
al sense: the Smart Home is not currently filled with IoT devices that are carrying out access control
at the edge.



3.3. From Centralized to Distributed Access Control 52

Even if it was possible in practice for access control in the smart home to

be fully centralized (i.e. that access to every device could be controlled by one

ACU), it would not necessarily be desirable. These are the contingent arguments

for decentralized access control.

One clear benefit of decentralization relates to efficiency: no single access

control system has to store every policy and decide every access request [85]. This

means that the access control systems can be computationally simpler and run faster.

Another benefit relates to reliability: there is no single point of failure if one access

control system stops working [13].

The challenge of scalability of users and devices described in the previous

section is also more likely to be met by decentralized access control, because de-

centralized access control is more compatible with the ad-hoc nature of the Smart

Home, which involves dynamically changing users and devices. Moreover, because

our (logical) definition of decentralization is flexible enough to be compatible with

the location definition of decentralization found in Roman et al, we can also benefit

from further advantages: for example, the increased security of fully local access

control that is segmented away from the internet. While time will tell whether IoT

access control will continue to become more fragmented, moving closer to the edge,

based on current trends this appears to be the case.

However, this does not mean that embracing decentralization is a panacea that

will solve all access control problems in the Smart Home; decentralization also

has disadvantages relative to centralization. In general, we think that the most sig-

nificant challenge to decentralized access control involves policy management. In

particular, policy conflict detection and avoidance is considerably harder for decen-

tralized access control. Intuitively, this is because different apps can collectively

have contradictory policies that affect all users and devices in a single smart home.

The next section will spell out how these conflicts arise, and why they are difficult

to resolve.
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3.3.3 Policy Conflicts in the Smart Home

Within one ACU, policy conflicts are inherently easier to detect and avoid, as all

policies are stored in one place (the PAP) and can be analysed collectively (by the

PDP and PIP). In contrast, when policies exist across multiple ACUs, reasoning

about whether there is a conflict is not trivial. This can be explained by distinguish-

ing between local and global policy conflicts.

3.3.3.1 The Global/Local Policy Conflict Distinction

A local policy conflict occurs when there is an inconsistent set6 of policies within

one access control system; a global policy conflict occurs when there is an incon-

sistent set of policies across multiple access control systems. More specifically, a

local policy conflict occurs when the set of policies in a single ACU’s PAP is in-

consistent, while a global policy conflicts occurs when the union of sets of policies

across multiple ACU’ PAPs is inconsistent.

For example (see top of Figure 3.2), suppose a smart TV app allows control

of the TV to be set automatically, according to the time of day. Two policies are

set within the app (which, for simplicity, will be assumed to be the access control

system): ‘If it’s 5PM, then turn the TV on’, and ‘If it’s 5PM, turn the TV off’. This

gives rise to a local policy conflict, as these two policies cannot simultaneously hold

within the one access control system: at 5PM the TV will need to both switch on

and switch off, which is impossible.

In contrast (see bottom of Figure 3.2), suppose a smart air conditioner app

allows an air conditioning unit to be controlled automatically, according to the tem-

perature in the room; and a smart window app allows a window to be opened and

closed automatically, according to the temperature in the room and whether the air

conditioning unit is on. Three policies are set: the policy ‘If it’s above 25◦C turn the

air conditioning unit on’ is set on the air conditioning unit app, and the policies ‘If

the temperature is above 25◦C, then open the window’, and ‘If the air conditioning

unit is on, then close the window’ are set on the smart window app. This gives rise

6In general, a set is inconsistent when the assumption that all elements of that set are true leads
to a contradiction [34].
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Figure 3.2: Examples showing the distinction between local and global policy conflicts. In
the top example, there are two contradictory policies existing in one ACU (the
TV PAP). The TV PAP is therefore inconsistent and, when the time is 5PM,
the TV will be in the impossible state of being both on and off. In the bottom
example, no individual PAP is inconsistent, but the union of the air conditioning
unit PAP and the window PAP is. As a result, when the temperature is above
25°C, the window will be in the impossible state of being both open and closed.
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to a global policy conflict, as these three policies cannot all hold: if the temperature

in the room is above 25◦C, the air conditioning unit will turn on, and the window

will need to both open and close, which is impossible.

In the latter case, the feature that makes this an example of a global policy

conflict is that the three policies exist across more than one access control system.

If there was only one app (or physical hub, or cloud-based server) which stored and

checked against policies for both devices, the policy conflict would be local. Indeed,

the local variant of this example is adapted from Alharithi [8] and is an example of

a policy conflict within IFTTT.

In what follows, we will focus on one example of a global policy conflict, first

introduced in Chapter 1 (shown again in Figure 3.3). This example is a form of

privilege escalation [168] and has been recognised in the literature [109, 171]. It is

most readily seen as affecting the confidentiality and integrity of the smart home.

More generally, policy conflicts can affect the confidentiality, integrity, availability,

and safety of information systems [166]. Detecting and resolving policy conflicts is

therefore an important security and safety issue.

In discussing the Running Example in Chapter 1, we noted that the admin of

the smart home wants to give the smart speaker access to the smart lock (Policy

1, grey arrow), the guest access to the smart speaker (Policy 2, grey arrow with

question mark), and deny the guest access to the smart lock (Policy 3, grey arrow

with cross).

Reasoning about transitive access suggests to the admin that there is policy

conflict in this system: the guest can use its access to the smart speaker (Policy 2)

to access the smart lock (through Policy 1), giving the guest access to the smart

lock; this means that Policy 3 both holds and does not hold, and a conflict has

emerged. The admin should therefore decide against giving the guest access to the

smart speaker. However, we argued that this solution is not general, relying on the

admin’s ability to reason about transitive access, which may be very complicated

with many subjects and objects in the system.7

7It may be questioned whether a better solution to the problem may be to give fine-grained control
to the guest’s access to the smart speaker. For example, if the guest were only given access to play
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Figure 3.3: The main problem of the thesis: resolving policy conflicts for decentralized
access control. Setting policies for devices in separate ecosystems can lead to
conflicts in the broader system of the Smart Home. How can these conflicts be
resolved in a systematic way?

In a centralized system, resolving the conflict is relatively straightforward as

the collective policies are stored in one place and can be reasoned about as a whole.

Indeed, this is essentially the reasoning carried out by the admin. The real question

is how such a process can work when the policies are stored separately. A solution

to this question necessarily involves some information sharing between the separate

ACUs.

music on the smart speaker, then they wouldn’t be able to use the smart speaker’s access to the smart
lock. This is an ad hoc solution that only pushes back the real problem, leaving it open to appear
again. For example, it may be that allowing the guest access to the smart speaker’s music-playing
functionality also gives that guest access to previously played songs, when they played them, and
other data that the admin might consider sensitive. The point is that the same problem of transitive
access arises for fine-grained controls, just as it does for the simple case of unconditioned access
involved in the Running Example. Solving the simple case therefore informs us as to the broader
solution involving fine-grained controls.
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3.3.4 Summary of Smart Home Access Control Requirements

In order to reason about the Running Example — and more generally, to under-

stand how global policy conflicts can be resolved locally — we will need a model.

This model will first need to be capable of representing the smart speaker and smart

lock’s access control systems. Second, the model will need to be capable of rep-

resenting both access control systems simultaneously. Finally, the model will need

to be capable of representing communication between the smart speaker and smart

lock’s access control systems that facilitates the resolution of policy conflicts.

A model that meets these requirements will be an access control meta-model;

that is, a model of access control models [22]. We generalize the requirements for

this meta-model as follows.

• Expressive Requirement: the proposed model should be capable of captur-

ing the traditional requirements described in Chapter 2;

• Decentralized Requirement: the proposed model should be capable of rep-

resenting multiple ACUs simultaneously;

• Distributed Requirement: the proposed model should be capable of repre-

senting the communication between ACUs that allow for their collaboration,

in order to resolve global policy conflicts.

It is now possible to assess to what extent related work in the literature meet

these requirements.

3.3.5 Related Work on Distributed Access Control and Policy

Conflicts in the Smart Home

Policy conflict resolution in the smart home is considered by Liang et al [110], with

further developments in [157, 42, 113]. These papers focus in particular on conflicts

generated from IFTTT [93]. As IFTTT provides a centralized web-based service for

the formulation of access control policies, these papers do not consider or account

for global policy conflicts that arise from multiple ACUs. They therefore fail to

meet the decentralized and distributed requirements.
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Celik et al [42] look at the ‘violations’ that occur in multi-app environments

(i.e., global policy conflicts). However, the graphical models they use for avoiding

these conflicts are constructed at run time in a centralized device (the ‘IoTGuard’).

Liu et al [113] present a more sophisticated approach to statically resolving

IFTTT policy conflicts that goes beyond simply “reporting the conflict [...] and

blocking the conflicting behaviour” to provide so-called ‘remedial actions’. Re-

medial actions are alternative, operationally conflict-free access requests that bring

about the same intended behaviour (i.e., declarative policies). While their approach

still rests on a centralized architecture, their methods may be general enough to ex-

tend any policy conflict resolver (centralized or decentralized). We will return to

this issue in Chapter 6.

Similarly, most access control models developed for reasoning about the smart

home have been centralized [136]. One exception includes the model provided by

Hernandez-Ramos et al [88], in which capability-based access control is imple-

mented in resource constrained devices, enabling multiple devices to carry out their

own access control. It is not clear that their approach is general enough to model

the complexity of devices found in a typical smart home. It is therefore unlikely to

meet the expressive requirement. They also do not consider the resolution of global

policy conflicts, and therefore fail to meet the distributed requirement.

In a position paper, Calo et al [39] argue that current access control is inappro-

priate for the IoT and should be replaced with a localised approach in which “the

intelligence to provide access control [is] embedded with the resources themselves”

so that “resources generate and manager their access control policies dynamically

on their own”. Their focus on collections of access control systems is consistent

with our own view. While their paper raises the issue of policy conflicts emerging

from the “dynamic interactions among different intelligent systems”, they do not

go into any detail about how they arise, nor do they describe how they should be

detected and resolved.

The ACU model, in its guise as the XACML architecture [152], is putatively

a model that considers policy conflicts. The XACML specification does not de-
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scribe a decentralized architecture; instead, it describes a non-normative centralized

architecture [56]. Also, as Mazzoleni et al [116] point out, the pre-defined policy

combining algorithms (e.g., ‘deny-override’) are not applicable to resolving pol-

icy conflicts when multiple entities are involved. They therefore fail to meet the

decentralized and distributed requirements.

There have been a number of attempts to decentralize parts of the XACML ar-

chitecture. Lorch et al [114] describe a model suitable for grid computing, consist-

ing of a centralized PDP that checks policies within decentralized PAPs. We think it

unlikely that partial access control decentralization is suitable for the Smart Home,

which involves multiple access control systems (i.e., multiple PAPs and PDPs).

Similarly, Diaz-Lopez et al [58] describe decentralized ‘master’ and ‘slave’ PAPs

in order to model access control in hierarchical organizations. Though they high-

light the need to avoid policy conflicts that arise from interactions between security

domains, they leave this issue for future work.

Finally, Charaf et al [45] call for a fully decentralized extension to the XACML

architecture appropriate for modelling the decentralized IoT. Introducing the notion

of a XACML ‘module’ that consists of a PEP, PIP, PDP, and PAP, they propose that

each IoT device should be assigned “its own XACML module in order to manage

users’ requests”. As we will describe in the next chapter, we think this is precisely

the sort of model that is needed for the Smart Home. However, Charaf et al give

no description of how multiple modules (i.e., ACUs) should interact and therefore

how they may avoid policy conflicts collaboratively. They therefore fail to meet the

distributed requirement.



Chapter 4

Smart Object-Oriented Access

Control

Make everything as simple as

possible, but not simpler.

A clever person solves a problem. A

wise person avoids it.

Albert Einstein

In this chapter:

• we identify and define the key principles of object-orientation based on

object-oriented programming and design;

• we use the key principles of object-orientation to build a new meta-model for

access control (RQ 2);

• we clarify the relationship to previous object-oriented access control work in

the literature;

• we apply the meta-model to resolve the policy conflict described in the Run-

ning Example (RQ 3).
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In Chapter 2, we described prominent historical access control models and

gleaned from them desirable model properties, such as multi-user controls, fine-

grained controls, and dynamic controls. We concluded Chapter 2 showing that the

Access Control Unit (ACU) Model, based on the XACML architecture, is capable

of capturing these historical models and their desirable properties.

In Chapter 3, we argued that the key challenge to the ACU Model, with regards

to the Smart Home, is not, as some authors have suggested, the absence of any

one of the desirable properties gleaned from historical access control, but instead

concerns centralization: the Smart Home of today contains multiple access control

systems, so no one model (i.e., a model that represents just one ACU) can faithfully

describe it.

While, in principle, smart homes can be constructed in which access to every

device can be controlled in one place (i.e., centrally), we argued that in practice this

is very difficult (e.g., because of the wide range of current vendor’s independent

ecosystems). We referred to this argument against centralization as necessary and

descriptive, as it rests on how access control within typical smart homes exists today.

Moreover, we argued, even if centralization were possible in practice, disad-

vantages such as having a single point of failure and problems relating to decisions

being made away from devices, such as longer times for access decisions to be

made, would make the Smart Home less secure than if access were controlled in

multiple places simultaneously. We referred to this argument as contingent and pre-

scriptive, as it states that, irrespective of how the Smart Home currently exists, the

advantages to decentralized access control outweigh the advantages to centralized

access control. Furthermore, we noted that recent trends in fog and edge computing

suggest that Internet of Things access control is likely to become more decentral-

ized, not less so.

Finally, we observed that the significant challenge for decentralized access

control involves the processing of access requests in multiple locations with an

awareness of the security of the smart home as a whole. This challenge is em-

bodied in the Running Example, in which the global policy conflict of a transitive
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access attack is shown.

Based on these arguments, at the conclusion of Chapter 4, we defined three

requirements for modelling Smart Home access control: the model must be Expres-

sive (i.e., capable of capturing desirable historical model properties), Decentralized

(i.e., capable of representing multiple ACUs within one system), and Distributed

(i.e., capable of representing appropriate communication between ACUs).

Chapter 2 showed that the ACU model satisfies this first requirement, and

Chapter 3 showed the applicability of the first requirement to the Smart Home.

Creating a model that theoretically satisfies the latter two requirements will be the

focus of this chapter. (Showing that this model practically satisfies the latter two

requirements by implementing it within a prototype smart home will be the focus

of Chapter 5.)

To this end, we propose a novel access control meta-model — Smart Object-

Oriented Access Control (SOOAC) — which models the communication of multi-

ple ACUs within one Smart Home. In Section 4.1 we lay the conceptual foundations

for this model by describing the object-oriented paradigm, its principles, and its re-

lation to distributed access control. We also clarify the relationship between our

usage of these principles and existing literature which sometimes refers to ‘object-

oriented access control’. We then apply object-oriented principles to develop a sim-

plified ACU model that is capable of representing the local version of the Running

Example. We build on this model to develop SOOAC, which addresses the (full)

Running Example. Finally, in Section 4.2.3, we outline how this simplified ACU

model can be extended to account for more complex forms of access.

4.1 Object-Orientation

To meet the Decentralized and Distributed requirements, we follow design princi-

ples from the object-oriented paradigm. These principles were initially developed

for programming languages [50], but have since emerged as a more general set of

design principles [27]. As Achaur [7] notes, “the object-oriented paradigm has

attracted much interest because it achieves data abstraction [and] software modu-
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larity in a natural way. Operations on an object are invoked by sending messages to

the object. Thus, communicating among objects maps readily to the communication

in a distributed system.” In overview, it is precisely object-orientation’s ability to

represent modules that communicate that we will leverage in the construction of our

own meta-model. We describe the principles more specifically in what follows.

4.1.1 Principles of Object-Orientation

Abstraction. This principle encourages “taking away inessential features,

until only the essence of [concepts] remain” [89]. We will use this principle repeat-

edly in the construction of our model, but we will be careful to state whenever it is

applied and give justifications for its application. Where features are removed that

might be considered essential, we will describe either how they are not, or how they

can be recovered. In this way, we adhere to Einstein’s maxim quoted at the begin-

ning of the chapter: we “make everything as simple as possible, but not simpler.”

Modularity. This principle states that our designs should consist of objects

that have all the properties (or ‘fields’) and behaviours (‘methods’) necessary to be

self-contained entities [117]. This principle will mainly be applied to represent ac-

cess control units (ACUs) as objects in order to satisfy the Decentralized model re-

quirement. These will not be the only types (or ‘classes’) of object we will consider,

though. In particular, IoT devices can be seen as objects. For programming, modu-

lar code should behave the same way wherever it is put (i.e., it will be ’portable’);

for devices, we want them to be secure wherever they are (i.e., to always fall within

the reach of an ACU).1

Encapsulation. This principle states that objects cannot be interacted with

arbitrarily, but only through their pre-defined methods [117]. Such encapsulated

systems consist of objects that interact through message-passing. For programming,

this has the consequence that well-behaving objects will continue to behave well no

matter how they are interacted with; in the present context, the intention is that

1The principle of Modularity is particularly well-suited to the idea that devices carry around
with them their own ACU (i.e., when access control occurs ’at the edge’), but we do not insist on
this restriction; we will only assume that, insofar as an access control system contains everything it
needs to make an access decision, an ACU will always determine access to all devices in the smart
home.
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secure objects will continue to be secure no matter how they are interacted with.

This principle will be particularly useful when we come to satisfy the Distributed

model requirement for collaborating ACUs. It is also useful throughout, though, to

focus attention on the encapsulation boundaries (i.e., interfaces) between objects.

Persistence. This principle states that objects will continue to act as objects

through time. Put another way, this principle ensures that an object always retains

its structure (fields) and capabilities (methods). For example, an ACU (as it is an

object) will continue to have a policy set through time, though the content of this

policy set can change. Another specific case of this principle is that object names

will remain unique and constant. This will be particularly useful when we come to

the implementation in Chapter 5.

The impact of each of these principles will be more clearly apparent as we

develop our model. Other object-oriented principles, such as inheritance and poly-

morphism, may also be useful in the security context of the Smart Home, but we

leave this for future research. An alternative formulation of some of these princi-

ples, and its applicability to access control, is given in Cattermole et al [40].

4.1.2 Distinguishing SOOAC from Object-Oriented Access

Control in the Literature

There is a considerable body of literature in the field of access control for object-

oriented systems [29, 74, 30, 66, 158]. Much of this work took place in the 1990s

and stemmed from the challenge of adapting and extending existing access con-

trol mechanisms in databases for use in object databases. A survey of this litera-

ture can be found in [111]. Somewhat confusingly, approaches in this area have

sometimes been referred to in terms of (or similar to) ‘object-oriented access con-

trol’ [63, 64, 155]. It is therefore easily misunderstood to be access control that is

object-oriented — the approach taken in this thesis — and not access control for

object-oriented systems. The distinction, though, becomes clear when looking at

the details: “Object-oriented access controls [OOAC] simply deal with controlling

the flow of messages among objects of an object database” [63]; “OOOAC inter-

cepts the message sending process and applies access controls in that it evaluates
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whether the source objects is allowed to send the particular message to the target

object” [47]. Moreover, unlike the present work, it is also clear that “OOAC are

not intended to replace legacy access control mechanisms which mainly have been

designed and applied in non-object environments. Instead, they provide the basis

for applying these concepts in true object-oriented environments” [63]. As such,

this work is still very much in a tradition of centralized access control at the level

of systems.

Work in this field, and in the same spirit, is continuing to be done. For exam-

ple, in [155], it is shown how role-based access control can be extended and applied

to object-oriented software projects. An explicitly stated goal of this work is to-

wards the centralization of access control and not away from it, and is hence quite

different from the approach taken in this thesis. Similar work, with the same goal

of centralization, is being done in databases for CRUD operations (create, read, up-

date, delete) [130, 131, 165]. There are also related approaches to securing access

in object-oriented programming languages, for example in Java [64] and JavaScript

[102].

Again, this body of work must be clearly distinguished from the present one.

The distinction is between access control for object-oriented systems on the one

hand, and access control that is constructed from object-oriented principles (which

allows multiple ACUs to communicate appropriately) on the other hand. Unlike the

existing literature in this area, SOOAC is a meta-model firmly captured by the latter

description.

4.2 Theory of Automated Policy Conflict Resolution

From the outset, we have argued that the significant challenge for decentralized ac-

cess control involves the resolution of global policy conflicts. Before we address

this problem head-on, we will first address the simpler, but related problem of re-

solving local policy conflicts. By modelling a centralized ACU, we will develop

a theory of automated local policy conflict resolution and show explicitly how the

local version of the Running Example can be resolved. We will build on this theory
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Figure 4.1: The local version of the running example. A single ACU controls access to a
smart speaker and smart lock. By policy, the smart speaker has access to the
smart lock, and the guest does not have access to the smart lock. How can the
guest’s access to the smart lock be determined automatically, so as to avoid a
local policy conflict?

in Subsection 4.2.2 to develop the full theory which will address the (full) Running

Example.

4.2.1 Automated Policy Conflict Resolution in Centralized Ac-

cess Control

The local version of the Running Example is shown in Figure 4.1. The only differ-

ence between it and the (full, global) Running Example is that access to the smart

speaker and smart lock is determined by a single ACU. Other than this, the admin

faces the same problem: they have granted the smart speaker access to the smart

lock; they have denied the guest access to the smart lock; and they want to automat-

ically avoid the policy conflict of giving the guest transitive access to the smart lock

via the smart speaker.
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Much like the Running Example, this example involves unconditioned access

and not access involving operations, roles, or attributes. The access control system

we need to model is therefore very simple. By the object-oriented principle of Ab-

straction, we will restrict our focus to just this form of access. In Section 4.2.3, we

will discuss how more complex forms of access (e.g., access to specific operations)

can be recovered.

We define policies and access requests as pairs of device2 names. For exam-

ple, (a,b) indicates that the device a has access to the device b. Where appropriate,

we will write (a,b)? to indicate that a question is being asked about whether a has

access to b. This can occur in two ways: when an access request is received by a

PEP (as defined by Enforcement in Chapter 2), and when a policy set is queried for

elementhood (as defined by Administration in Chapter 2). The distinction between

these two cases, and the distinction between them and (non-interrogative) policies

(e.g., (a,b)) will be clear from context. By the object-oriented principle of Persis-

tence, we will require that device names remain constant and unique through time.

Without this requirement we could not rely on the consistent interpretation of access

requests and policies.

Also by the principle of Abstraction, we will restrict our ACUs to contain

only PDPs and PAPs. This will provide clarity to our model without rendering

it unfaithful at representing the local version of the Running Example. PIPs are

superflous in this context, as we assume that an access request contains the subject’s

name; and we can assume that the role of a PEP in receiving access requests and

returning access decisions is carried out by a PDP. As we are not using the XACML

language as the format for our internal messages within an ACU (we are simply

using pairs of device names), there is no need for the PEP’s conversion functionality.

When we come to implement our model in Chapter 5, it will be clear that the PEP’s

conversion functionality is not even necessary when resolving policy conflicts in

practice, but we will consider this issue in more detail in Chapter 6. We will first

2Even when we refer to human users (e.g., admin, guest), we will always have in mind some
device belonging to them. This is made more explicit when we come to implementation in Chapter
5: users will be their smartphones.
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define the capabilities of a centralized PDP.

Centralized PDP Capabilities

A centralized PDP can:

(1) take in an access request (of the form (a,b)?);

(2) send an access request to a PAP (of the form (a,b)?);

(3) return an access decision (‘True’ or ‘False’);

(4) transform an access request, by substituting its first entry with its second en-

try, and its second entry with a variable3 (e.g., (a,b)? will become (b,x)?);

(5) transform an access request by substituting its first entry with the first entry

of a policy (e.g., (a,b)? and (c,d) will become (c,b)?).

Capabilities (1)–(3) above refer to standard access control abilities described

in Chapter 2: (1) and (3) are captured by the Enforcement ability, and (2) is captured

by the Decision-Making ability (it involves basing a decision on existing policies).

We introduce the new capabilities (4) and (5). These involve transforming requests

and policies, respectively. Intuitively, capability (4) enables the PDP to ask what

further access the object of an initial access request has. In other words, when

given a request (a,b)?, it enables the PDP to ask what b has access to. Capability

(5) enables the PDP to generate the appropriate transitive request, given a previous

request and a policy. We have specified capability (5) in general terms involving

four devices (a,b,c,d), but in practice, as we will see, a and d will always refer

to the same device. Capability (5) is therefore better understood as taking a chain

(c→ a→ b) (i.e., the policies (c,a) and (a,b)) and skipping a to form c→ b (i.e.,

(c,b)). This will make more sense by considering how the PDP interacts with the

PAP.

3A variable should not refer to any named device.
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Centralized PAP Capabilities

A centralized PAP can:

(1) take in (i.e., ‘write’) a policy (of the form (a,b));

(2) store policies in a policy set (e.g., {(a,b),(b,c)});

(3) take in an access request from the PDP and return a response (‘True’ or

‘False’), based on whether the policy is in its policy set or not (e.g., if (a,b)? is

the access request and {(a,b),(b,c)} the policy set, then the PDP will return

‘True’);

(4) take in an access request from the PDP of the form (a,x)? and return all

policies of the form (a,d) (e.g., if the policy set is {(a,b), (b,c)} and (a,x)?

is taken in, (a,b) will be returned).

Again, capabilities (1)–(3) refer to standard access control abilities described

in Chapter 2: they are all captured by the Administration ability. We introduce the

new capability (4) which enables the PAP to find new policies that link a known

device to other devices. This capability acts between the PDP capabilities (4) and

(5) in the following way. Suppose there is a chain (a→ b→ c) consisting of the

policies (a,b) and (b,c). The PDP takes the policy (a,b) and transforms it, by

PDP capability (4), to form the new request (b,x)?. This request is sent to the PAP,

returning the policy (b,c), by PAP capability (4). The PDP transforms this policy

to the new request (a,c)? which will be sent back to the PAP. This process checks

whether transitivity holds for the chain a→ b→ c. As shown, this approach is in the

object-oriented spirit that “the structure of the software should mirror the structure

of the problem” [27].

A centralized ACU, containing one centralized PDP and one centralized PAP,

detects and resolves local policy conflicts by carrying out Centralized In-Access

Recursion. This algorithm is shown in Algorithm 1 and is described as follows.



4.2. Theory of Automated Policy Conflict Resolution 70

When an access request is made (Step 1) involving a subject device (a) and

object device (b), it is first checked that the request exists as a policy (Steps 2 and 3).

If it does not exist (Steps 3.1 and 3.1.1), the ACU returns ‘False’ and the procedure

terminates. If it does exist, it is checked whether any policies exist that specify

access between the original object (b) and other objects (c) (Steps 3.2, 3.2.1, and

3.2.2). New requests (of the form (a,c)?) are created between the original subject

(a) and other objects (c) (Step 3.2.3). These new requests return to Step 1 in order

to be recursively checked themselves (Step 3.2.4). If, once this process has been

completed, no access request has returned ‘False’, the ACU returns ‘True’ (Step 4).

At each step of the algorithm it is possible to specify which PDP or PAP capa-

bility is being put to use: Step 1 relies on PDP (1); Step 2 relies on PDP(2); Steps

3 and 3.1 rely on PAP (3); Step 3.1.1 relies on PDP (3); Step 3.2 relies on PDP (4);

Step 3.2.1 relies on PDP (2); Step 3.2.2 relies on PAP (4); Step 3.2.3 relies on PDP

(5); Step 3.2.4 relies on PDP (1); and Step 4 relies on PDP (3).
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Centralized In-Access Recursion forces an access control decision to be with-

held by an ACU until every recursive chain of requests derivable from existing

policies have themselves been decided upon. If either the original request or any

subsequent request fails to be satisfied by a policy, access is denied; otherwise, ac-

cess is granted.4 This process occurs at ‘runtime’, that is, when an access request is

made to an ACU.5

Intuitively, this process is perhaps best understood in terms of trust, which is a

relationship that is converse to access (i.e., a has access to b if and only if b trusts

a). For a device b to trust a device a, it is must be checked what devices also trust b.

If a device c trusts b, then it should be checked whether c trusts a. This process is

necessarily recursive, as any device that trusts c should also be checked, and so on.

Centralized In-Access Recursion makes formal the informal reasoning used

by the admin in the Running Example, allowing for the local policy conflict to be

detected and guest access denied.

Let a,b,c refer to the guest, the smart speaker, and the smart lock, respectively.

The local version of the Running Example is resolved as follows (see in parallel

with Figure 4.2).

4It should be noted that we do not consider access chains that form loops. For example, if a
request (a,b)? is made and the policy set contains the policies (a,b) and (b,a), In-Access Recursion
will enforce the checking of (a,b)? and then the reflexive request (a,a)?. Access will be denied as
(a,a) is not in the policy set. If we allow reflexive access to always hold (as would make intuitive
sense), In-access Recursion will create the access request (a,b)? again, and an endless cycle will
ensue. Accounting for this is not problematic: once a reflexive access request is made, access should
automatically be granted and no further recursion should occur (on that chain). For simplicity, as per
the object-oriented Abstraction principle, our definition of In-Access Recursion avoids this minor
complication by ignoring loops.

5For a more detailed discussion about the distinction between static (pre-runtime) and dynamic
(runtime) policy setting, see Dunlop [61]. See also Chapter 6 for our own contribution to this issue.



4.2. Theory of Automated Policy Conflict Resolution 72

Figure 4.2: Flow chart showing how Centralized In-Access Recursion detects and resolves
the Running Example in a centralized manner. Note that there is only one ACU,
containing one PDP and PAP; that is, access to the smart speaker and smart lock
is controlled by a single ACU.

1. The admin writes the policy (b,c).

2. The admin writes the policy (a,b).

3. The guest sends the access request (a,b)? to the PDP.

4. The PDP sends (a,b)? to the PAP.

5. The PAP checks whether (a,b) ∈ {(a,b),(b,c)}. It is, so the PAP returns

‘True’ to the PDP.

6. The PDP transforms (a,b) into (b,x)? and sends it to the PAP.

7. The PAP returns (b,c) to the PDP.

8. The PDP transforms the policy (b,c) and the access request (a,b) into (a,c)?

and sends it to the PAP.

9. The PAP checks whether (a,c) ∈ {(a,b),(b,c)}. It is not, so the PAP returns

‘False’ to the PDP.

10. The PDP returns denies access to the guest.
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4.2.2 Automated Policy Conflict Resolution in Distributed Ac-

cess Control: SOOAC

We have designed a centralized ACU with a single PDP and PAP. The formulation

of a centralized ACU was guided by the object-oriented principles of Abstraction

and, to some extent, Modularity, but only in so far as an ACU is understood as a

standalone security object that has everything it needs to make an access control

decision. The full power of the Modularity principle comes when we understand

the ACU as a class, of which multiple instances can exist within the same model.

This satisfies the Decentralized model requirement. This alone, however, will not

be enough to avoid policy conflicts: it is not enough to have multiple disconnected

ACUs; they will need to interact. It is here where the object-oriented principle of

Encapsulation will be useful. To understand how, we will need to consider what

design choices we have.

Given how we’ve defined an ACU, to link two of them together, we only re-

ally have two choices: PDP-PDP connections or PDP-PAP connections. (PAP-PAP

connections are not possible as a PAP has no ability to do anything itself; it can only

respond to requests from a PDP.) Although a PAP can return policies to a PDP, this

occurs within a single ACU, through internal message-passing. By the principle of

Encapsulation, message-passing must occur using existing object methods. Hence

we do not allow a PDP from one ACU to communicate to a PAP from another ACU.

Instead, we rely on the external message-passing ability already present in a PDP,

namely the ability to receive access requests. As described in Subsection 4.1.1, this

will help ACUs to be more secure. The new capability of a PDP is given given

below.

Distributed PDP Capabilities

A distributed PDP can:

(1)-(5) do everything a centralized PDP can;

(6) make access requests to other ACUs’ PDPs.
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ACUs will now be able to speak to each other, satisfying the Distributed re-

quirement, but they will not necessarily have the right things to say. This is because,

by default, an ACU will only store policies that relate to itself as the object of an

access control request (i.e., ACUb will only store policies of the form (a,b)). This

means that an ACU will not, by default, be able to issue a request suitable for

resolving the Running Example. For example, if PAPb has a policy (a,b), and PAPc

has a policy (b,c), ACUb and ACUc will be connected, but only insofar as ACUc

has a policy that connects them. This means that when PDPb receives the acecss

request (a,b)?, it will not be able to make the request (a,c)?, because it has no

policy (b,c) to transform. To rectify this, we introduce the following restriction to

policy writing at a PAP.6 (PAPs are otherwise unchanged.)

Simultaneous Policy Restriction

Whenever a policy (a,b) is written at PAPb, it must be simultaneously written

at PAPa.

The simultaneous policy restriction ensures that every ACU stores all policies

that refer to itself as object or subject. The restriction should hold for any devices

intended to be guarded against transitive access conflicts. Enforcement of the re-

striction will depend on the policy-making authorities within the system at hand.7

The object-oriented principle of Persistence is also important for distributed

ACUs: every named device must stay constant and unique through time. Without
6Interestingly, if subjects — rather than objects — were to hold the authority in access control

decision-making (e.g., that an object a alone held the policy (a,b)), the Simultaneous Policy Re-
striction would not be necessary. This would, however, go against a seemingly unbreakable rule of
access control, namely, that the things which want access should not be responsible for deciding
access. It is nevertheless interesting to ponder whether certain trusted environments (which perhaps
includes the Smart Home) give subjects such power.

7For example, in the transitive access attack example, the admin is assumed only to be the policy
maker for the smart speaker and smart lock, not for the guest. This means that the simultaneous
policy restriction only holds for these two devices. In general, the simultaneous policy restriction
creates trusted zones of devices, outside of which, devices cannot be assumed to be free of policy
conflicts. Where multiple policy-making authorities exist within one smart home (for example, in
flat-shares), an additional mechanism will be required to enforce the simultaneous policy restriction.
One potential candidate is sticky policies [43].
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this, not only will internal policies stored at one ACU be inconsistent, but so will an

ACU’s ability to reliably send messages to other ACUs.

With these additions to PDPs and PAPs, we can provide the step-by-step pro-

cedure for resolving the transitive access example. To do this, we define In-Access

Recursion, shown in Algorithm 2.

When an access request is made to ACUb (Step 1) between a subject (a) and

object (b), it is first checked that the request exists as a policy (Steps 2 and 3).

If it does not exist (Steps 3.1 and 3.1.1), ACUb returns ‘False’. If it does exist,

it is checked whether any policies exist that specify access between the original

object (b) and other objects (c) (Steps 3.2, 3.2.1, and 3.2.2). New requests (of the

form (a,c)) are created between the original subject (a) and other objects (c) (Step

3.2.3). These new requests are sent to every ACUc in order to be recursively checked

themselves (Step 3.2.4). If any ACUc returns ‘False’ to PDPb, ACUb returns ‘False’

(Step 3.2.4.1); otherwise, ACUb returns ‘True’ to the original request (Step 3.2.4.2).
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There are two ways to interpret the communication between new objects that

occurs in Steps 3.2.4 and 3.2.4.1: In Series and In Parallel. In the former case,

which we will follow, the initial ACU (i.e., ACUb) waits to hear back a response

from the first new object (ACUc1), before the second (ACUc2), and so on. In the

latter case, which we consider in Chapter 6, ACUb can issue a request to ACUc2

while it is waiting to hear back from ACUc1 . With the In Series interpretation,

In-Access Recursion carries out a depth-first search through devices in an access

chain, stopping the search immediately if the initial ACU does not have transitive

access. In effect, this means that an access control decision is withheld by an ACU

until every recursively connected ACU has been asked whether it too would have

granted the request if they had been asked. The work of checking policies and

creating transitive chains is therefore outsourced from any one single ACU to all

ACUs that have policies involved in the access chain. This ensures that if the initial

ACU is not transitively closed with respect to other devices in the access chain,

access is denied.

It is now possible to show explicitly how the Running Example can be avoided

automatically. Let a,b,c refer to the guest, the smart speaker and the smart lock,

respectively. Let their ACUs, PDPs and PAPs be indexed accordingly. The step-by-

step process in which the global policy conflict is avoided is given as follows (see

in parallel with Figure 4.3).

1. The admin writes the simultaneous policy (b,c) to PAPb and PAPc.

2. The admin writes the policy (a,b) to PAPb.

3. The guest sends the access request (a,b)? to PDPb.

4. PDPb sends (a,b)? to PAPb.

5. PAPb checks whether (a,b) ∈ {(a,b),(b,c)}. It is, so PAPb return ‘True’ to

PDPb.

6. PDPb transforms (a,b) into (b,x)? and sends it to PAPb.

7. PAPb returns (b,c) to PDPb.

8. PDPb transforms the policy (b,c) and the access request (a,b) into (a,c)? and

sends it to PDPc.
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Figure 4.3: Flow chart showing how In-Access Recursion detects and avoids the transitive
access example conflict. Note that there are two ACUs (with their own PDPs
and PAPs) that communicate to avoid the policy conflict.

9. PDPc sends (a,c)? to PAPc.

10. PAPc checks whether (a,c) ∈ {(b,c)}. It is not, so PAPc returns ‘False’ to

PDPc.

11. PDPc returns ‘False’ to PDPb.

12. PDPb denies access to the guest.

4.2.3 Extension to Arbitrary Global Policy Conflicts

As shown, decentralized, distributed In-Access Recursion detects and resolves the

global policy conflict in the Running Example. A crucial part of this process is

that the smart speaker rewrites its policy (b,c), using the initial request (a,b)?, to

form the new request (a,c)?, which is then sent to the smart lock to be checked. In

general, resolving global policy conflicts that arise from arbitrary models requires

arbitrary policy rewriting.

For conflicts arising from ACM models, in which permitted access to oper-

ations can be specified, policy rewriting should be indexed according to opera-
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tions. That is, if an initial request is of the form (a,b,op), then the recursively

generated new requests should be of the form (b,x,op). Returning to the ex-

ample given in 3.3.3.1, if an initial request is (Guest,SmartSpeaker,PlayMusic)?

and this exists as a policy, it should be checked whether any policies exist of

the form (SmartSpeaker,x,PlayMusic). As a result, if there exists a policy

(SmartSpeaker,SongList,PlayMusic), this will be rewritten to form the new re-

quest (Guest,SongList,PlayMusic). If the admin is reluctant to allow the guest to

play previous songs, this can be stated as a policy and the conflict can be automati-

cally detected and resolved by denying the guest access to the PlayMusic operation

on the smart speaker. Similarly, for ABAC, in which permitted access to operations

can be specified according to attributes of the subject, object, and environment, new

requests should be indexed according to the operation and all attributes.

For IFTTT-like conditional statements that specify the pre- and post-conditions

of some event, new requests will be formed by the rewriting of events accord-

ing to their pre- and post-conditions. Returning to the example in 3.3.3.1, if an

initial access request (> 25◦,AC.ON)? is made, this exists as a policy at the AC

app, so it will be checked whether any policies of the form (AC.ON,x) exist.

There exists the policy (AC.ON,window.close) at the AC app, so the new request

(> 25◦,window.close)? will be sent to the window app. This request will be denied

by the window app as only the contradictory policy (> 25◦,window.open) exists,

resulting in the initial request being denied by the AC app.

As described, the same fundamental elements needed to resolve the charac-

teristic transitive access attack present in the Running Example are present when

resolving arbitrary policy conflicts. In this way, the principles of Smart Object-

Oriented Access Control can be applied beyond the Running Example to resolve

arbitrary global policy conflicts. To formalise this precisely would require a general

policy language, of which the XACML language is a good candidate. We leave this

as further work.



Chapter 5

Implementation and Evaluation

Today’s scientists have substituted

mathematics for experiments, and

they wander off through equation

after equation, and eventually build

a structure which has no relation to

reality.

Nikola Tesla

In this chapter:

• we describe how Smart Object-Oriented Access Control (SOOAC) can be

embedded within a prototype smart home;

• we show how the policy conflict present in the Running Example can be re-

solved in practice;

• we calculate the efficiency of SOOAC (RQ 4.1) and compare it to a central-

ized access control policy conflict resolver;

• we calculate the effectiveness of SOOAC (RQ 4.2) in a protype smart home;

• we summarise the advantages of SOOAC in quantitative and qualitative terms

based on the implementation.
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In Chapter 4, we described Smart Object-Oriented Access Control (SOOAC)

and showed how it models IoT devices that detect and resolve global policy con-

flicts locally. SOOAC is based on the idea that policy conflicts can be avoided if

devices, when issued with an access request, can rewrite their relevant policies ap-

propriately and issue them as new requests to other devices, before they allow or

deny access themselves. This process is recursive in the sense that every device

issued a new request along the access chain carries out the same process. In this

chapter we will embed the SOOAC model within a prototype smart home and com-

pare its performance to centralized access control. More specifically, in Section 5.1,

we show how individual ACUs can be assigned to IoT device in a prototype smart

home. In Section 5.2, we describe the setups and results for two experiments that

compare SOOAC with centralized access control. Finally, in Section 5.3, we con-

clude our comparative analysis by drawing on the advantages and disadvantages of

distributed access control that we described in Chapter 3.

5.1 Embedding SOOAC in the Smart Home
We set up a smart home (in a number of different configurations, shown in Figure

5.1) consisting of seven smart devices: two iOS smart phones (admin and guest),

an Ener-J smart lock, a Homepod Mini Siri smart speaker, a BT Hive smart bulb, a

TP-Link smart plug, and a Samsung smart TV.

As the access control systems used by the various manufacturers are not open

source, we are not able to directly equip the smart devices with the ability to recur-

sively issue access requests. Instead, we assign each smart device (excluding the

smartphones) its own Raspberry Pi that acts as the device’s ACU. By the principle

of Modularity, each Pi is a standalone entity which can completely determine ac-

cess to its associated device, according to the design of distributed ACUs given in

Subsection 4.2.2.

Each Pi (excluding the smart speaker’s) interacts with their corresponding

smart device through public APIs1. For the smart speaker, a more complex im-

1APIs allow for information to be sent to and received from IoT devices. In centralized systems,
such as Home Assistant and IFTTT, APIs are used to issue commands to IoT devices in one place
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Figure 5.1: Overview of smart home setups showing configurations (C1–C6) of policies
(arrows) for seven smart devices. Two experiments are performed on these
configurations in Section 5.2: Experiment 1 gathers response times based on
each possible policy as an initial request, and Experiment 2 checks for erro-
neous access decisions based on random initial requests.
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plementation is necessary, as the speaker acts as its own interface (i.e. through its

voice interface). This will be explained at the end of this section. By the princi-

ple of Abstraction, the behaviour of each smart device can be understood as being

completely determined by the Pi which determines access to it. The distinction be-

tween each Pi and its corresponding smart device is therefore not significant in our

implementation. We will therefore, from time to time, refer to smart devices when,

technically, we mean their respective ACUs.

Each Pi runs an identical Python script (given in Appendix B) that performs the

In-Access Recursion algorithm described in Algorithm 2 in Subsection 4.2.2. This

script also contains the ACU’s set of local policies, implemented as a list of pairs

of IP addresses. By the principle of Persistence, the Pis are assigned permanent

names, which we implement as static IP addresses. These addresses are used to

issue requests reliably between the Pis.

By the principle of Encapsulation, each Pi is capable of receiving requests as

messages. As we argued in Subsection 4.2.2, this ensures that the ACUs will be

secure, as they cannot arbitrarily interfere with another and can only message one

another. To facilitate a uniform request language, we implement a simple UDP pro-

tocol.2 The Pis can receive three types of input message: a request to perform a

device operation (‘ACTION’), an access request (‘REQUEST’), and a response to

an access request (‘RESPONSE’). REQUESTS and RESPONSES work exactly as

described in Subsection 4.2.2. The two smartphones can issue ACTIONS from the

“UDP Sender/Receiver” app [5] of the form “ACTION operation-name”, indicating

the operation the user wishes to perform. As our prototype does not facilitate fine-

grained controls on operations, we only consider one operation on each device (see

Appendix B for the operations for each device). REQUESTS are of the form “RE-

QUEST IP-address-sender IP-address-receiver”. RESPONSES are “RESPONSE

True” or “RESPONSE False”. All the Pis can issue as well as receive these three

[1, 94]; in keeping with our overall approach, for SOOAC, we use APIs in a more decentralized
manner: each Pi associated with a device has an API that allows the Pi to control it. It should be
stressed that besides their specific APIs and local policies, each Pi is otherwise identical.

2All Pis use the Python socket module [4]. Alternate protocols could be used (e.g., TCP, SSL,
MQTT). In a deployed implementation, the payloads of communications should be encrypted, but
this is beyond the scope of this thesis. We return to the challenge of using UDP reliably in Chapter 6.
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types of message.

Each Pi transitions through a series of states, embodying the SOOAC model:

• they start in a listen state, waiting for an ACTION, REQUEST, or RE-

SPONSE;

• if they receive an ACTION, this is converted to a REQUEST with the sender

IP address and their own IP address;

• they check their internal policy set for the existence of this policy;

• if no such policy exists, they issue the response “RESPONSE False” to the IP

address of the original sender;

• if the policy exists, they check their policy set for any related policies;

• they issue the appropriate access request to every IP address named in the

related policy;

• if no response returns “RESPONSE False”, the access request is accepted and

the operation called for is performed.

The admin smartphone, as it acts as its own interface from which to send and

receive ACTIONS, REQUESTS, and RESPONSES, is not embedded with SOOAC.

The same is true, in Experiment 2, for the guest smartphone. As the Homepod smart

speaker also acts as its own interface (by receiving and sending audio messages), it

also does not have its own Pi. To capture the desired behaviour as described in our

running example, our setup relies on individual voice profiles being set up on both

iOS smartphones. These smartphones contain a python script (using the Pythonista

app [123]) which is run automatically when the voice command, “open smart lock”

is said. This is carried out as a ‘Shortcut’ through the ‘Home’ app on each device.

Similar solutions to the problem of embedding SOOAC for other smart speakers

should be possible. For example, with Alexa, this should be possible as a ‘Skill’

[10], and with Google Assistant, this should be possible using the SDK platform

[80]. Having said that, we have not tested these different approaches.
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5.1.1 ACTIONS and REQUESTS

Typically, the distinction between a request to carry out an operation (‘ACTION’)

and a request to know whether an operation can be performed (‘REQUEST’) is

not significant. For SOOAC, this distinction is necessary because the order that

operations are performed on a successful request will not be the same as the order

that the requests were received. To see this in action, we look at configuration C3,

and specifically at ACTIONs between the admin smartphone, the smart bulb and the

smart plug. This can be seen as a decentralized version of an IFTTT-style policy.

The intention is that when the admin switches the smart bulb on, the smart plug

automatically switches on too.

In Figure 5.2, we show the terminal dialogue boxes associated with both Pis

after the admin attempts to switch the smart bulb on through an ACTION. Acting as

the smart bulb’s ACU, smart-bulb-pi first converts the ACTION into a REQUEST

with the appropriate IP addresses. smart-bulb-pi checks whether this access request

exists as a policy in its policy set. It exists, so smart-bulb-pi checks its policy set

for any related policies. It finds the policy linking itself to smart-plug-pi, and duly

requests access to smart-plug-pi on behalf of the admin. smart-plug-pi checks that

this request exists within its local policies. It does, so smart-plug-pi checks its

policies for any related policies. There are none, so smart-plug-pi responds to smart-

bulb-pi ‘True’. smart-bulb-pi receives ‘True’ and grants the admin’s operational

request, by issuing the operation through the BT Hive API associated with the smart

bulb. This causes the smart bulb to switch on. Performing this operation causes the

smart-bulb-pi to issue an ACTION to smart-plug-pi. smart-plug-pi converts this

message into a REQUEST and checks its policy set for the existence of the request.

It exists, and there are no related policies, so the smart-plug-pi, calls the TP-Link

API, performs the operation, and switches the smart plug on.

This case shows why ACTIONS are required and why there needs to be a dis-

tinction between requesting access to a device operation and requesting that a device

operation be performed. If we do not allow for ACTIONS and do not maintain the

distinction, it is not clear how we could reliably implement operations while also
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Figure 5.2: Python script terminals for the smart bulb and smart plug Raspberry Pis (smart-
bulb-pi and smart-plug-pi, respectively) showing the main steps of a successful
operational request by the admin. In Step 1, the admin issues the command to
smart-bulb-pi to switch the smart bulb on. This command is converted into an
access request which is recursively sent to smart-plug-pi in Step 2. After the
request is granted by the smart-plug-pi in Step 3, smart-bulb-pi performs the
operation by switching on the smart bulb in Step 4. Performing this operation
causes a new operational request, to switch the smart plug on, to be sent by
smart-bulb-pi to smart-plug-pi in Step 5. This request is granted by smart-
plug-pi, which switches the plug on in Step 6.
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resolving policy conflicts. For example, if we assume that requesting access to an

operation performs that operation, the smart plug would actually switch on before

the smart bulb! Even worse, if there was another device linked by a policy to the

smart bulb that denied access, the smart plug would switch on and the smart bulb

would not, thereby going against what should occur.

It should be noted that ACTIONS demand further recursion of access requests

and therefore more processing power and time. This is not ideal, but appears un-

avoidable, either for SOOAC or a centralized conflict resolver.

5.2 Performance Experiments
To test devices’ ability to avoid different policy conflicts efficiently and effectively

under the SOOAC model, we performed two experiments. Experiment 1 tested

whether access requests are responded to in a timely manner, not significantly

slower than the equivalent centralized system. Experiment 2 tested whether using

the connectionless UDP protocol affects the number of accurate responses.

5.2.1 Experiment 1: Testing the Efficiency of SOOAC

We formulated a list of policies, and formed six policy configurations (C1–C6)

as subsets of this list. These configurations were chosen to show some variety of

smart home setups, while giving some potential IFTTT-style connections between

real-world devices that would be useful to users, using the seven devices we have.

The full list of policies are given in Appendix A. The configurations are shown in

Figure 5.1.

5.2.1.1 Experiment 1 Design

For each policy in a configuration, we used a desktop PC (acting as a user) to send

an initial access request for each policy and measure the time taken to receive a

response. For example, in C1, the PC issued the initial requests P1–P6, P11, P18,

and P20. The PC then waited for a response to the request. As we are using UDP,

we set a long time-out value (5s), and if a request was not received within that time,

no data was collected and the same request was re-sent, so as to get accurate data for

the system working under optimal conditions. The experimental design is shown in
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Figure 5.3: Experiment 1: testing the efficiency of SOOAC. A desktop PC issued access
requests according to the policies in each configuration (C1–C6). The total
times measured by the PC were recorded and then averaged, giving an average
response time (∆ t) for the configuration. If responses were not received before
the end of a time-out period (5s), they were ignored, giving results for the
system working under optimal conditions.

Figure 5.3.

We gathered data (shown in Table 5.1) according to a number of metrics, which

are described as follows:

• For each policy configuration (Row 1), we recorded the no. of devices (Row

2), and the total no. of policies across the smart home for that configuration

(Row 3);

• The centralized no. of policies (Row 4) is the number of policies necessary

to represent the same smart home configuration under a centralized access

control system.

• The no. of conflicts (Row 5) is the number of unique pair-wise requests that

are denied access in a configuration. Put another way, this is the number

of policies in the configuration that, when issued as initial requests by the

external device, are denied.

• Each initial request may lead on to zero or more recursive requests before

receiving a response. This is the number of unique arrows that can be made
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from one starting arrow, before either reaching a contradiction or exhausting

all arrows (Row 6).

• For each configuration, we sum together these numbers to form the no. of

requests for response (Row 7).

• When an access chain contains multiple devices that have access to each

other, it is possible to have redundant access requests. These are transitive

checks that have already been made while following the access chain for one

initial request. The total number of redundant checks in one configuration is

given as the no. of redundant requests (Row 8).

• Finally, we measured the time taken for the PC to hear back a response for

each request. The experiment was performed 100 times to generate an accu-

rate response time average for each possible initial request. These numbers

were then summed and divided by the number of possibles requests (i.e., poli-

cies) to form the av. response time (Row 9).

All of these metrics, except av. response time are derivable from the configura-

tion graphs in Figure 5.1. To ensure our system was working correctly, we verified

these numbers during the running of Experiment 1. Because of SOOAC’s decentral-

ized approach, some of these metrics can be given in finer granularity, such as the

number of policies for each specific device, and the response times for each request.

The complete data set is given in Appendix A.

5.2.1.2 Experiment 1 Results

As shown in Table 5.1, the no. of policies in each configuration is at most double

the number of policies present in a centralized system. This is a consequence of the

simultaneous policy restriction, introduced in Subsection 4.2.2. For configurations

in which it is less than double (C1, C5, C6), this is due to the guest smartphone,

which does not adhere to this restriction. The low values for av. no. of policies per

device is a consequence of the Modularity principle we used in the design of ACUs.

The specific numbers of policies present in each device can vary from this value.

For example, in C5, the smart speaker has 6 policies, while the smart TV has just 1

(see Appendix A, C5 Results).
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Table 5.1: Results of Experiment 1 primarily showing the efficiency of SOOAC (in bold).

Policy
configuration C1 C2 C3 C4 C5 C6

No. of
devices 7 4 4 6 7 7

No. of
policies 19 10 10 10 26 26

Centralized
no. of policies 10 5 5 5 15 15

Av. no. of policies
per device 2.71 2.50 2.50 1.67 3.71 3.71

No. of
conflicts 1 2 0 0 2 16

No. of requests
for response 17 9 7 5 42 45

No. of redundant
requests 1 0 0 0 11 0

Av. response time
for request (s) 0.03 0.03 0.03 0.02 0.06 0.06

Table 5.1 also shows that the no. of conflicts within a configuration is indepen-

dent of the number of devices and policies within a configuration (e.g., compare C2

to C3 and C5 to C6). The lack of conflicts for C3, despite its superficial similarity to

C2, can be explained by it containing two transitively closed chains, while C2 has

only one chain that is not transitively closed. The high number of conflicts for C6

can be explained by the fact that, because the final device in the chain is only con-

nected to the penultimate one, every other device in the chain fails to have transitive

access. In contrast, because C5 has a device early in the chain that is connected to a

device connected to no others, only two devices fail to have transitive access. This

also explains why the no. of redundant requests is high for C5 and low for C6: in

C6, because the In-Access Recursion algorithm carries out a depth-first search, the

conflict is quickly found, while in C5, many identical requests are checked multiple

times before a conflict is found. The no. of requests for response appears to be ap-

proximated by the number of policies in a configuration, but also appears inversely

proportional to the number of redundant checks.

Finally, Table 5.1 suggests that while response times do tend to increase with
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the number of policies present in a configuration, they do not increase at a signif-

icant rate. C4 can be understood to be the minimum response time to any request

(roughly 0.002s), as this configuration has no chains of devices. This value is also

the baseline response time for centralized access control. The longest response time

for any request (given in Appendix A, Results C5), involves the admin smartphone

and smart speaker (0.234s). This is still well within standard user tolerances [42],

and provides no significant increase in time compared to centralized access control.

5.2.2 Experiment 2: Testing the Effectiveness of SOOAC

As UDP is a connectionless protocol, dropped packets may result in requests and

responses never reaching their targets. This may occur when a message is sent when

an ACU is out of its listen state, or it may occur when multiple initial requests are

sent to the same listening device at the same time. The latter will occur when there

are multiple users in the smart home.3 We tested how well the system performs

under these conditions by investigating how likely it is that an initial request is not

responded to. We chose C2 and C5 as representative for the smart home, being the

simplest (excluding the trivial configuration C4) and most complicated configura-

tions, respectively.

5.2.2.1 Experiment 2 Design

We used an external device to issue initial requests to any of the devices in the

system by randomly choosing a policy for that configuration. In Test 1, we use

one external device that issues 1000 initial requests. After one request is sent, this

device listens for a response, and then issues another initial request, and so on. We

employ a time-out on this device and all smart devices within the system, so that if

no response is received within 2s, it is presumed that at least one packet along the

chain has been lost. (2s was chosen as this is significantly longer than any response

time from Experiment 1.) We keep a record of these with the integer denoted Fails.

By default, a time-out returns False to any request, so no request can be allowed

3It may also occur when a device sends an initial request due to some internal state (e.g., based
on its internal clock) but as the effect is the same, cases such as this are also covered in Experiment
2.
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Figure 5.4: Experiment 2: testing the effectiveness of SOOAC. In Test 1, a desktop PC
issued 1000 access requests according to the policies in Configurations C2 and
C5. The number of Successes (i.e., received a correct response — allow or
deny as appropriate — within the time-out period) and Fails (received a deny
when it should have been an allow due to falling outside of the time-period)
was measured, giving a measure for how effective SOOAC is. In Test 2 we
introduced a second desktop PC issuing 1000 more requests, and in Test 3,
we introduced a third desktop PC issuing 1000 more requests, simulating the
scalability of effectiveness of SOOAC as the number of users in the system
increases.

that should be denied (i.e., no false positives). Out of order UDP packets can also

never give a false positive. It may be possible though, that when a time-out is

reached, the initial request should have been allowed but was not (i.e., there may be

false negatives). Every initial request that is responded to within 2s will increment

the integer denoted Successes. In Tests 2 and 3, we recorded how the number of

Successes and Fails change as we increase the number of users. In each case we

increased the number of requests issued by 1000. An overview of the design for

Experiment 2 is given in Figure 5.4.

It should be noted that this experiment places SOOAC under pressure beyond

normal operating conditions, as a typical smart home would not receive so many
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Table 5.2: Results of Experiment 2 showing the effectiveness of SOOAC.

C2 Test 1 Test 2 Test 3
User 1 User 1 User 2 User 1 User 2 User 3

Successes 985 973 959 961 934 952
Fails 15 27 41 39 66 48

C5 Test 1 Test 2 Test 3
User 1 User 1 User 2 User 1 User 2 User 3

Successes 973 943 938 929 902 913
Fails 27 57 62 71 98 87

initial requests within such a short space of time. It is therefore best understood as

a ‘stress test’.

5.2.2.2 Experiment 2 Results

The baseline results given under the Test 1 column indicate that, even at the high

request rates provided by the external devices, SOOAC is capable of getting over

97% of access requests responded to correctly, even in the most complicated con-

figuration C5. As discussed, when SOOAC does give an incorrect response, it is

only ever an incorrect denial. This means that in rare cases when access is denied

incorrectly, the user can just try the request again and they will likely be allowed

access on the second attempt.

As expected, the effectiveness of SOOAC is dependent on the complexity of

the smart home (i.e., the number of access chains present), as shown by the lower

numbers of successes across tests in C5 compared to C2. Nevertheless, the success

numbers are high enough to suggest that a smart home involving dozens of devices

would still be very usable under SOOAC, not significantly negatively affecting the

user experience.

As the number of external devices (Users) increases (Test 1, Test 2, Test 3),

the number of failed requests increases, but not drastically so. This shows that our

approach accommodates typical numbers of users in a smart home (three residents

[153] and several guests).

These results show that taking a simple approach by using UDP (avoiding the

need to manage multiple connections simultaneously between the various devices)
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does not significantly undermine the decentralized nature of our approach: access

requests can be sent freely without significant impact on users.

5.3 Summary of advantages of SOOAC over central-

ized access control
In Chapter 3 (specifically, in Subsection 3.3.2) we gave arguments for decentralized

access control in the IoT. We separated out these arguments into necessary and

contingent arguments, the former relating to the need for a model that accurately

describes current access control in the Smart Home, and the latter relating to the

benefits of prescribing a model in which multiple access control systems exist in

one smart home. Carrying out the experiments described in the present chapter have

given us qualitative and quantitative empirical evidence justifying these arguments.

With respect to the necessary arguments, the diversity of device manufactur-

ers involved in the Smart Home Configurations C1–C6 necessitate a decentralized

model. Only the smart speaker and smartphones fall under one manufacturer (Ap-

ple), meaning that by default constructing these configurations would involve man-

aging multiple independent apps. Even if attempts were made to reduce this de-

centralization by using, for example, IFTTT, doing so is not, at the time of writing,

possible because the Ener-J smart lock is not compatible with IFTT. It is therefore

not currently possible to construct a faithful centralized model for these configura-

tions. While the Ener-J smart lock may, in time, be made compatible with IFTTT,

it is impossible that every new device on the market will be. Faithfully describing

the Smart Home configurations chosen therefore necessitates a decentralized model

like SOOAC.

With respect to the contingent arguments, we see the efficiency and reliability

arguments played out in practice. In Experiment 1, we saw that the average number

of policies required for each device is significantly lower than the total that would

exist in one centralized ACU. This means that individual requests can be checked

faster and simultaneously across devices (not possible with a centralized ACU). It

also means that an ACU for an individual device may break and yet not bring down
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the Smart Home as a whole. We gained further empirical evidence in Experiment 2

that many requests can be made to devices in a short space of time without reducing

the user experience.



Chapter 6

Conclusion

In the preceding chapter, the experimental results collected from implementing

SOOAC in a prototype smart home addressed our final research question, RQ 4.

More specifically, we showed that SOOAC is efficient (RQ 4.1): it adds no sig-

nificant increase in time for access requests to be deliberated on compared to the

centralized case, and therefore does not negatively impact the user experience. We

also showed SOOAC to be effective (RQ 4.2): even using the connectionless UDP

protocol, almost all access requests were responded to correctly, and when they

were not, there were no false positives (i.e., it only denied access when it should

have granted it; it never granted access when it should have denied it). However,

there remain a number of improvements that can be made to SOOAC — brought

about by its limitations — that lead to further work.

6.1 Limitations and Further Work

6.1.1 Resolving Arbitrary Conflicts

In Chapter 4, we argued that modelling the Running Example only requires a sim-

ple policy language in which (‘unconditioned’) access control policies can be rep-

resented as pairs of devices. We showed how the Running Example can be resolved

if ACUs can rewrite these policies and issue them as new access requests. Gen-

eralising our approach to avoid all global policy conflicts requires arbitrary policy

rewriting. To do this requires extending the present work with a more complex

access control policy language. This language should be capable of expressing
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fine-grained policies, should allow for negative policies to be expressed explicitly,

and enable ACUs to carry out more logical operations (beyond the transformations

we have described).

A full treatment of decentralized policy conflicts would involve extending the

present model to cover the ‘good’ and ‘ideal’ requirements described in 2.2.2. Fu-

ture work should be carried out to investigate whether the XACML policy language

can serve this desired purpose. Another avenue for future research would be to use

languages specifically designed for distributed environments (see, e.g., [57]).

6.1.2 Reducing Run-Time Delays

Our results show that SOOAC introduces some delay to the time it takes for a re-

sponse to be received from an access request. This is a consequence of the In-Access

Recursion algorithm (see Subsection 4.2.2). Dunlop et al [61] argue that policy con-

flict detection should ideally be carried out statically (i.e., before run time), so as to

not burden users with delays. SOOAC can allow for this by modifying In-Access

Recursion to Pre-Access Recursion. When setting a policy, the same recursive re-

quests should be formed. If these requests rely on policies external to an ACU, these

policies should be attempted to be written to the initial ACU. If writing the policy

invokes a contradiction, it should not be written; otherwise, it should be. Then,

when making a request, only local policies need to be checked. As a consequence,

time delays will no longer be felt by users — but by admins, who write the policies,

instead.

It may be the case that certain Internet of Things environments are more ap-

plicable to one or the other type of recursion. For example, while Pre-Access Re-

cursion may be faster for users in relatively static environments, more dynamic

environments may cause additional waiting times (the additional time it takes for

admins to update policies). Further research should be carried out to systematically

compare In-Access and Pre-Access Recursion. Ideally, this research would involve

human-centred studies to explore which is better for users and admins in real-world

Internet of Things environments.
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6.1.3 In-Parallel Requests and PDP-PAP Encapsulation

It is a limitation of our work that we chose the In Series rather than In Parallel

issuing of access requests (see Subsection 4.2.2). This design choice led us to us-

ing UDP as the communication protocol in our implementation of SOOAC, forcing

devices to enter listening states. If, instead, requests can be checked and communi-

cated in parallel, more concurrent processes can occur, improving efficiency. This is

implementable using TCP, but requires socket threading, a more complicated tran-

sition between states for ACUs, and care to avoid racing conditions. Significant

optimization benefits will result from such an implementation [97], which we plan

to carry out.

Similarly, it is worth investigating whether modifying our design choice of

PDP-PDP connections (see Subsection 4.2.2) to PDP-PAP connections would af-

fect the performance of SOOAC in implementation. By choosing PDP-PDP con-

nections, we force (initially requested) ACUs to outsource policy-checking to other

ACUs; PDP-PAP connections would require ACUs to do all policy-checking them-

selves. Like transitioning to In Parallel Recursion, significant care would need to

be made to avoid racing conditions, as multiple ACUs could then require informa-

tion from the same PAP simultaneously. Further work should compare these design

choices.

6.1.4 Decentralized Policy Setting

One important assumption we have made is that smart home policies are set indi-

vidually within each ACU. Setting policies in this way is time consuming and is a

disadvantage of any decentralized approach. Indeed, as we noted in Section 3.2,

this disadvantage is already experienced by smart home admins when they have

to manage many apps. One solution is to allow ACUs to intermittently update

their policies from a centralized policy store. While this shift towards centralization

would go against the spirit of our approach, many of the benefits of decentraliza-

tion (e.g., efficient response time to requests, no single point of failure) would still

be held. Further research, ideally human-based studies, should be carried out to

explore whether this idea is workable in practice.
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6.1.5 Going Beyond Avoidance of Policy Conflicts

At present, SOOAC avoids policy conflicts by effectively ignoring policies that

would lead to conflict. Ideally, though, information should be present to admins

and users as to why certain policies are ignored. As Mare et al [115] put it:

“Ask for post-failure actions. When a user creates an automation, asking the

user what the smart home should do when the automation fails may serve two goals:

i) educating the user by informing that the automation could fail – something the

user may not be aware of – and the system could offer some information on how

that automation could fail; and ii) increasing user confidence in the smart home’s

reliability, by educating the user and giving her more control.”

An appropriate user interface for admins (when setting policies) and users

(when desired behaviour is not allowed) should be implemented for SOOAC. More-

over, work should be carried out to go beyond the avoidance of operational policy

conflicts (see Subsection 2.1.4 for the distinction between declarative and opera-

tional policy conflicts). Ideally, the desired intentions of users should be met by

SOOAC automatically, meaning that operational policy conflicts are avoided while

adhering to declared policies. For example, rather than simply refusing access to all

operations on a certain device, some subset of operations should be allowed. Celik

et al [42] have carried out similar work involving centralized policy conflicts that

may be adaptable to the decentralized case.

6.1.6 Authentication

In Chapter 2, when first defining access control, we were clear that, for us, ac-

cess control is about authorization and not authentication; that is, we assumed that

when considering what access some given subjects have, those subjects’ identities

are known. This move is a common one in the access control literature [16], and

is sometimes made more explicit by referring to subjects as principals (i.e., pre-

authenticated entities). In Chapter 4, we embodied this idea within the principle of

Persistence, ensuring that all identities within a system remained unique and con-

stant over time, and in Chapter 5, we implemented it by defining policies as pairs of

IP addresses. This effectively allows each ACU to correctly know the identities of



6.2. Conclusion 99

subjects within the system.

For models that attempt to represent centralized systems, distinguishing autho-

rization and authentication — and focusing only on authorization — is less con-

troversial than for doing the same in decentralized systems. This is because in

centralized systems, there is presumably only one trustworthy entity responsible for

identifying subjects in a system; for us, by modelling multiple ACUs, we would

presumably require multiple trustworthy authenticating entities.

It is therefore a lacuna in our account as to what mechanism can ensure that

each ACU can trust the identities of subjects within a system. Potential candi-

dates may include blockchain technologies [125, 112, 20] or consensus-based ap-

proaches more broadly [33]. Other promising approaches may involve automated

device recognition [144, 47, 146], sometimes used to detect network intrusion in

the Internet of Things. Further work should be carried out to implement such meth-

ods in tandem with the access control framework we have described. Crucially, the

mechanism chosen should retain the decentralized nature of the present work so that

ACUs do not lose the benefits afforded to them by being independent. This work

should also be careful to account for resource constrained devices.

6.2 Conclusion

This thesis has presented a novel meta-model for access control that is applicable

to decentralized systems, particular to the Internet of Things and the Smart Home.

This model was borne out of an analysis of historical models for access control and

the challenges that guided their introduction, as well as an analysis of the proposed

challenges facing Internet of Things access control. We have argued that any faith-

ful analysis of the Smart Home of today requires an embracing of decentralization,

not a rejection of it. We have drawn attention to the new challenge of policy con-

flict resolution between access control systems (i.e., global policy conflicts), and we

have given a distributed algorithm (In-Access Recursion) in which devices commu-

nicate with one another to address this challenge.

We have also indicated improvements to our approach that lead to future work.
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These have been outlined in this chapter and elsewhere in the thesis. They include:

the resolution of policy conflicts involving arbitrary policies, not just simple, uncon-

ditioned access between devices; resolution that goes beyond avoidance, to enable

users to carry out their desired intentions in an operationally secure manner; the

investigation of alternate placement of recursive checks to place the time burden

away from users; the issue of updating decentralized policies efficiently; and the

challenge of coupling a decentralized authentication mechanism with the proposed

access control model.

The Internet of Things seems destined to grow, its devices becoming ever more

part of our lives. Their security cannot be left behind. As devices become smarter

— more human — so should their security. This means giving devices the power

to make their own security decisions. Our work in enabling devices to themselves

automatically avoid policy conflicts is a step towards that ideal.



Appendix A

Policy Configurations and Results

from Chapter 5

A.1 List of smart devices
Code Device name
a Admin smartphone
b Guest smartphone
c Smart speaker
d Smart lock
e Smart bulb
f Smart plug
g Smart TV
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A.2 List of Policies (/initial access requests)

Code Description Pair
P1 The admin smartphone can access the smart speaker. (a,c)
P2 The admin smartphone can open the smart lock. (a,d)
P3 The admin smartphone can switch on the smart bulb. (a,e)
P4 The admin smartphone can switch on the smart plug. (a, f )
P5 The admin smartphone can switch on the smart TV. (a,g)
P6 The guest smartphone can access the smart speaker. (b,c)
P7 The guest smartphone can open the smart lock. (b,d)
P8 The guest smartphone can switch on the smart bulb. (b,e)
P9 The guest smartphone can switch on the smart plug. (b,g)
P10 The guest smartphone can switch on the smart TV. (b,g)
P11 The smart speaker can open the smart lock. (c,d)
P12 The smart speaker can switch on the smart bulb. (c,e)
P13 The smart speaker can switch on the smart plug. (c, f )
P14 The smart speaker can switch on the smart TV. (c,g)
P15 If the smart lock is open, then switch the smart bulb on. (d,e)
P16 If the smart lock is open, then switch on the smart plug. (d, f )
P17 If the smart lock is open, the switch on the smart TV. (d,g)
P18 If the smart bulb is on, then switch on the smart plug. (e, f )
P19 If the smart bulb is on, then switch on the smart TV. (e,g)
P20 If the smart plug is on, then switch on the smart TV. ( f ,g)

A.3 List of policy configurations

Code Description
C1 P1—6, P11, P18—20
C2 P3—5, P18, P20
C3 P3—5, P18, P19
C4 P1—5
C5 P1—4, P6—9, P11—16, P18
C6 P1—4, P6—9, P11—13, P15, P16, P18, P20

A.4 Results
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Appendix B

Python Code

Listing B.1: Generic ACU Python Code (example given is for the smart bulb in C1)

from send import send_message

from r e c e i v e import ge t_message

import random , t ime

# ====================================

# S t a t i c IP a d d r e s s e s f o r smar t d e v i c e s ( t h e i r P i s ) . Change as a p p r o p r i a t e .

admin = " 1 9 2 . 1 6 8 . 1 . 1 5 1 "

g u e s t = " 1 9 2 . 1 6 8 . 1 . 1 5 2 "

s p e a k e r = " 1 9 2 . 1 6 8 . 1 . 1 5 3 "

l o c k = " 1 9 2 . 1 6 8 . 1 . 1 5 4 "

bu lb = " 1 9 2 . 1 6 8 . 1 . 1 5 5 "

p lug = " 1 9 2 . 1 6 8 . 1 . 1 5 6 "

t v = " 1 9 2 . 1 6 8 . 1 . 1 5 7 "

t h i s _ m a c h i n e = bu lb # Change as a p p r o p r i a t e .

# ====================================

# Loca l p o l i c i e s . Change as a p p r o p r i a t e .

p o l i c y _ s e t =[

( admin , bu lb ) ,

( bulb , p lug ) ,

( bulb , t v )

]

# ====================================

# Main program ( i n c l u d e s SOOAC)

def a c c e s s ( sub j , o b j ) :

i f ( sub j , o b j ) not in p o l i c y _ s e t :

re turn F a l s e

f o r p o l i c y in p o l i c y _ s e t :

i f p o l i c y [ 0 ] == o b j :

new_obj = p o l i c y [ 1 ]

send_message ( p o l i c y [ 1 ] , "REQUEST" , sub j , p o l i c y [ 1 ] )
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i f ge t_message ( t h i s _ m a c h i n e , 3 ) [ 0 ] [ 1 ] == " F a l s e " :

re turn F a l s e

re turn True

whi le True :

c u r r e n t _ u d p = ge t_message ( t h i s _ m a c h i n e )

p r i n t ( " . " )

r e q u e s t e r = c u r r e n t _ u d p [ 1 ] [ 0 ]

i f c u r r e n t _ u d p [ 0 ] [ 0 ] == "REQUEST" :

s u b j = c u r r e n t _ u d p [ 0 ] [ 1 ]

o b j = c u r r e n t _ u d p [ 0 ] [ 2 ]

i f a c c e s s ( sub j , o b j ) :

send_message ( r e q u e s t e r , "RESPONSE" , " True " )

e l s e :

send_message ( r e q u e s t e r , "RESPONSE" , " F a l s e " )

Listing B.2: Generic ACU send.py Python code

import s o c k e t

def send_message ( a d d r e s s , c a t e g o r y , * a r g s ) :

i f c a t e g o r y == "REQUEST" :

message = a r g s [ 0 ] + " " + a r g s [ 1 ]

i f c a t e g o r y == "RESPONSE" :

message = a r g s [ 0 ]

message = c a t e g o r y + " " + message

sock = s o c k e t . s o c k e t ( s o c k e t . AF_INET , s o c k e t .SOCK_DGRAM)

sock . s e n d t o ( message . encode ( ' u t f −8 ' ) , ( a d d r e s s , 5 0 0 5 ) )

re turn

Listing B.3: Genereric ACU receive.py Python code

import s o c k e t

def ge t_message ( a d d r e s s , t i m e o u t = 2 ) :

sock = s o c k e t . s o c k e t ( s o c k e t . AF_INET , s o c k e t .SOCK_DGRAM)

sock . b ind ( ( a d d r e s s , 5 0 0 5 ) )

i f t i m e o u t != " None " :

sock . s e t t i m e o u t ( t i m e o u t )

t r y :

da t a , r e q u e s t e r = sock . r e c v f r o m ( 1 0 2 4 )

l i s t _ m e s s a g e = [ e n t i t y . decode ( " u t f −8 " ) f o r e n t i t y in d a t a . s p l i t ( ) ]

re turn l i s t _ m e s s a g e , r e q u e s t e r

e xc ep t :

re turn ( ( "RESPONSE" , " F a l s e " ) , " None " )

Listing B.4: Experiment 1 Python code

from send import send_message

from r e c e i v e import ge t_message

import random , t ime

# ====================================

# S t a t i c IP a d d r e s s e s f o r smar t d e v i c e s ( t h e i r P i s )

admin = " 1 9 2 . 1 6 8 . 1 . 1 5 1 "

g u e s t = " 1 9 2 . 1 6 8 . 1 . 1 5 2 "
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s p e a k e r = " 1 9 2 . 1 6 8 . 1 . 1 5 3 "

l o c k = " 1 9 2 . 1 6 8 . 1 . 1 5 4 "

bu lb = " 1 9 2 . 1 6 8 . 1 . 1 5 5 "

p lug = " 1 9 2 . 1 6 8 . 1 . 1 5 6 "

t v = " 1 9 2 . 1 6 8 . 1 . 1 5 7 "

d e s k t o p _ p c = " 1 9 2 . 1 6 8 . 1 . 1 5 0 "

t h i s _ m a c h i n e = d e s k t o p _ p c # change a c c o r d i n g t o what machine t h i s i s

# ====================================

p o l i c y _ s e t = [

( admin , s p e a k e r ) , ( admin , l o c k ) , ( admin , bu lb ) , ( admin , p lug ) , ( admin , t v ) ,

( g u e s t , s p e a k e r ) ,

( s p e a k e r , l o c k ) ,

( bulb , p lug ) , ( bulb , t v ) ,

( p lug , t v )

]

p o l i c y _ s e t _ n a m e s = [

( " admin " , " s p e a k e r " ) , ( " admin " , " l o c k " ) , ( " admin " , " bu lb " ) , ( " admin " , " p lug " ) , ( " admin " , " t v " ) ,

( " g u e s t " , " s p e a k e r " ) ,

( " s p e a k e r " , " l o c k " ) ,

( " bu lb " , " p lug " ) , ( " bu lb " , " t v " ) ,

( " p lug " , " t v " )

]

t o t a l _ e x p _ l e n g t h = 100

t o t a l s = [ 0 . 0 f o r i in range ( l e n ( p o l i c y _ s e t ) ) ]

f o r d u r a t i o n in range ( t o t a l _ e x p _ l e n g t h ) :

f o r i in range ( l e n ( p o l i c y _ s e t ) ) :

r e q u e s t = p o l i c y _ s e t [ i ]

check = F a l s e

whi le check != True :

t i m e _ s t a r t = t ime . t ime ( )

send_message ( r e q u e s t [ 1 ] , "REQUEST" , r e q u e s t [ 0 ] , r e q u e s t [ 1 ] )

r e p l y = ge t_message ( t h i s _ m a c h i n e )

r e s p o n s e _ t i m e = t ime . t ime ( ) − t i m e _ s t a r t

i f r e s p o n s e _ t i m e < 2 :

check = True

t o t a l s [ i ] += r e s p o n s e _ t i m e

p r i n t ( p o l i c y _ s e t _ n a m e s [ i ] , r e s p o n s e _ t i m e )

p r i n t ( r e p l y )

p r i n t ( " " )

t o t a l s = [ i / t o t a l _ e x p _ l e n g t h f o r i in t o t a l s ]

p r i n t ( "====RESULTS===== " )

f o r i in range ( l e n ( t o t a l s ) ) :

p r i n t ( p o l i c y _ s e t _ n a m e s [ i ] , t o t a l s [ i ] )

Listing B.5: Experiment 2 Python code

from send import send_message

from r e c e i v e import ge t_message
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import random , t ime

# ====================================

# S t a t i c IP a d d r e s s e s f o r smar t d e v i c e s ( t h e i r P i s )

admin = " 1 9 2 . 1 6 8 . 1 . 1 5 1 "

g u e s t = " 1 9 2 . 1 6 8 . 1 . 1 5 2 "

s p e a k e r = " 1 9 2 . 1 6 8 . 1 . 1 5 3 "

l o c k = " 1 9 2 . 1 6 8 . 1 . 1 5 4 "

bu lb = " 1 9 2 . 1 6 8 . 1 . 1 5 5 "

p lug = " 1 9 2 . 1 6 8 . 1 . 1 5 6 "

t v = " 1 9 2 . 1 6 8 . 1 . 1 5 7 "

# t h i s l i n e i s o n l y f o r per fo rmance t e s t s i n S u b s e c t i o n 5 . 3

d e s k t o p _ p c _ 1 = " 1 9 2 . 1 6 8 . 1 . 1 5 0 "

d e s k t o p _ p c _ 2 = " 1 9 2 . 1 6 8 . 1 . 1 5 8 "

d e s k t o p _ p c _ 3 = " 1 9 2 . 1 6 8 . 1 . 1 5 9 "

t h i s _ m a c h i n e = d e s k t o p _ p c _ 1 # change a c c o r d i n g t o what machine t h i s i s

# ====================================

# Each p o l i c y s e t ( a l i s t ) c o r r e s p o n d s t o a C o n f i g u r a t i o n

# i . e . , p o l i c y _ s e t s [ 0 ] i s C1 , p o l i c y _ s e t [ 1 ] i s C2 , e t c .

p o l i c y _ s e t = [

( admin , bu lb ) , ( admin , p lug ) , ( admin , t v ) ,

( bulb , p lug ) ,

( p lug , t v )

]

def qm( sub j , o b j ) :

t i m e _ s t a r t = t ime . t ime ( )

a = ( sub j , o b j )

t o _ b e _ s e n t = a [ 1 ] , "REQUEST" , a [ 0 ] , a [ 1 ]

send_message ( a [ 1 ] , "REQUEST" , a [ 0 ] , a [ 1 ] )

x = ge t_message ( t h i s _ m a c h i n e )

re turn t ime . t ime ( ) − t i m e _ s t a r t

bad_coun t = 0

good_coun t = 0

f o r i in range ( 1 0 0 0 ) :

i = random . c h o i c e ( p o l i c y _ s e t )

temp = qm( i [ 0 ] , i [ 1 ] )

p r i n t ( temp )

i f temp > 2 . 0 :

bad_coun t += 1

e l s e :

good_count += 1

p r i n t ( f l o a t ( good_count ) / f l o a t ( good_count + bad_coun t ) )
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