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Atypical prediction error learning is associated with prodromal
symptoms in individuals at clinical high risk for psychosis
Colleen E. Charlton 1✉, Jennifer R. Lepock2,3, Daniel J. Hauke 1,4,5, Romina Mizrahi 6,7, Michael Kiang2,3,8,10 and
Andreea O. Diaconescu1,3,8,9,10

Reductions in the auditory mismatch negativity (MMN) have been well-demonstrated in schizophrenia rendering it a promising
biomarker for understanding the emergence of psychosis. According to the predictive coding theory of psychosis, MMN
impairments may reflect disturbances in hierarchical information processing driven by maladaptive precision-weighted prediction
errors (pwPEs) and enhanced belief updating. We applied a hierarchical Bayesian model of learning to single-trial EEG data from an
auditory oddball paradigm in 31 help-seeking antipsychotic-naive high-risk individuals and 23 healthy controls to understand the
computational mechanisms underlying the auditory MMN. We found that low-level sensory and high-level volatility pwPE
expression correlated with EEG amplitudes, coinciding with the timing of the MMN. Furthermore, we found that prodromal positive
symptom severity was associated with increased expression of sensory pwPEs and higher-level belief uncertainty. Our findings
provide support for the role of pwPEs in auditory MMN generation, and suggest that increased sensory pwPEs driven by changes in
belief uncertainty may render the environment seemingly unpredictable. This may predispose high-risk individuals to delusion-like
ideation to explain this experience. These results highlight the value of computational models for understanding the
pathophysiological mechanisms of psychosis.
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INTRODUCTION
Schizophrenia is one of the most disabling mental disorders as it is
associated with cognitive impairment, poor long-term social and
occupational outcomes, and affects over 20 million people
worldwide1. Recently, major clinical and research efforts have
turned towards early intervention, identifying individuals at
clinical high-risk (CHR) for psychosis, with the goal of preventing
or postponing psychosis onset. Among CHR individuals, rates of
transition to a psychotic disorder following clinical presentation
are estimated to be 15% after 1 year, increasing to 25% after 3
years2. In this population, additional nonclinical measures are
needed to clarify the pathophysiological mechanisms of
psychosis3.
One such measure, termed the auditory mismatch negativity

(MMN), has been described as a reproducible, reliable biomarker
for understanding psychosis4. The auditory MMN is an event-
related potential (ERP) involuntarily elicited in response to an
infrequent sound stimulus that deviates from a repeated
sequence of regular sound stimuli, e.g. in duration or frequency.
The MMN serves as an index of surprise during sensory learning
and deficits in the MMN amplitude have been shown to correlate
with the level of function in chronic4 and first-episode schizo-
phrenia5, and CHR individuals6. However, studies of the auditory
mismatch response in CHR patients are variable, with some7–12,
but not all13–16 previous studies reporting attenuated MMN
amplitudes, and MMN abnormalities were found to be greatest
in CHR participants who later convert to psychosis17. Recent
pharmacological studies in healthy human controls reported
significant MMN attenuation following the administration of

ketamine, an N-methyl-D-aspartate (NMDA) antagonist18. Keta-
mine has previously been employed as an experimental model of
psychosis19,20, and taken together, these results suggest that
impairment in NMDA receptor function may contribute to MMN
attenuation and symptoms of psychosis.
Computationally, the MMN has been interpreted from a

predictive coding perspective as a prediction error (PE) signal
that arises from a failure to anticipate an incoming stimulus21–25.
In predictive coding and related theories of hierarchical Bayesian
inference26,27, each level of a cortical hierarchy provides predic-
tions about the state of the level below and evaluates the
discrepancy with actual inputs from that level (i.e. PEs) to update
predictions. Importantly, this updating process also depends on
the relative weight or precision of the error signal (or its inverse,
uncertainty), where the key aspect is the relative precision
assigned to information from lower (sensory input) compared to
higher levels (or top-down prior predictions).
From a hierarchical Bayesian perspective, the auditory MMN can

be viewed as representing statistical learning about environmen-
tal regularities through sequential precision-weighted PE (pwPE)
updates generated at multiple levels of the auditory hierarchy.
Disturbances in this hierarchical information processing have been
proposed to underlie psychotic symptoms28,29.
In recent years, the application of mathematical models to

behavioural, electrophysiological, and neuroimaging data has
allowed for the quantification of PE signals and a mechanistic
understanding of psychotic symptoms as disruptions in hierarch-
ical Bayesian inference30,31. Under this framework, psychotic
symptoms are thought to originate from the misattribution of
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salience to irrelevant sensory stimuli, driving erroneous model
updates and culminating in maladaptive predictions and
unfounded beliefs (i.e. delusions)28,32–34. In generic hierarchical
Bayesian formulations—such as the hierarchical Gaussian filter
(HGF)—a ratio of precisions controls the influence of PEs on belief
updating. In this theoretical framework, we place a greater
emphasis on PEs when lower-level (sensory) inputs are more
precise relative to higher-level predictions35,36. Based on this
hierarchical Bayesian framework, two possible mechanisms under-
lying the emergence of psychotic symptoms have been proposed:
first, a failure to attenuate lower-level sensory precision renders
stimuli persistently surprising and gives rise to overly large
learning rates, and thus a misattribution of salience to irrelevant
stimuli37,38. Alternatively, a reduction in the precision of higher-
level beliefs—i.e. increased informational uncertainty—may ren-
der the environment seemingly unpredictable, leading to an over-
reliance on, and amplification of, low-level pwPE updates28,31,39.
Notably, these explanations may co-exist, as they are not mutually
exclusive. Both mechanisms result in aberrantly strong incoming
PEs that outweigh prior predictions. These unexplained error
signals may lead to a brittle or uncertain model of the world, thus
predisposing an individual to the adoption of extraordinary
unfounded higher-order beliefs culminating in delusions29,31.
In this paper, we conduct a computational, single-trial analysis

of a previously published auditory MMN dataset in help-seeking
antipsychotic-naïve CHR individuals and healthy controls (HC)40,41.
The aim is to investigate the extent to which the trial-by-trial
expression of hierarchically-related pwPEs underlies auditory MMN
generation. Consistent with previous studies, we hypothesised
that the MMN represents hierarchical PE learning25,42,43. Further-
more, based on predictive coding and hierarchical Bayesian
theories of psychosis29, we hypothesise that the attribution of
“aberrant salience” to objectively uninformative or neutral
events34 is reflected in increased expression of low-level, sensory
pwPEs. There has been recent empirical support for this notion in
CHR populations where increased expression of sensory pwPEs in
dorsolateral prefrontal cortex was associated with greater overall
symptom severity in CHR individuals39.

RESULTS
To identify the EEG correlates of pwPEs, we used a general linear
model (GLM) with these computational variables to explain the
observed trial-by-trial ERP responses, over channels and peri
stimulus time (PST) with respect to tone onset. Significant
correlations between model-based pwPE trajectories and single-
trial ERPs was demonstrated in both groups with several
significant scalp x time clusters. Significant effects are summarised
in Figs. 1 and 2 using maximum intensity projections of the
significant clusters over left to right scalp locations, retaining the
anterior-posterior and PST dimensions in the plots. In both groups,
the expression of hierarchical pwPEs (ε2; ε3) was not significantly
correlated with sex or age.

Expression of pwPEs in healthy controls
In HC, there were significant correlations between sensory (low-
level) pwPEs (ε2) and EEG amplitudes between 100 and 214 ms
post-stimulus, corresponding to a negative potential and peaking
at 106 ms in temporal central channels (peak, F(1,22)= 133.1;
p= 6.1e-7; Fig. 1A). In this cluster, higher low-level pwPE values, or
more surprising events, correlated with more negative EEG
amplitudes. The timing of this early cluster coincided with the
timing of the auditory MMN. Further effects of low-level pwPEs
were observed in central channels between 252 and 300ms post-
stimulus corresponding to a positive potential and peaking at
284ms (peak, F(1,22)= 28.7; p= 0.0207; Fig. 1A). The timing of this
effect coincided with the positive-P3a component, with larger

low-level pwPEs correlating with an increased central positivity.
Finally, a late cluster occurred between 366 and 400ms post-
stimulus, corresponding to a negative potential and peaking at
378ms in frontal channels (peak, F(1,22)= 24.4; p= 0.0458; Fig. 1A).
The timing of this late cluster may continue past our analysis time
window of 100 to 400ms post-stimulus and may be indicative of
the reorienting negativity (RON) ERP component44. The RON
component typically peaks around 400 ms, signifying attentional
reorientation and has been shown to be attenuated in first-
episode psychosis and chronic-schizophrenia patients45,46.
Further correlations between single-trial ERPs and volatility

(high-level) pwPEs (ε3) in the HC group resulted in multiple
significant activation foci. The earliest significant cluster occurred
between 100 and 220ms post-stimulus, peaking at 160 ms in
frontocentral channels (peak, F(1,22)= 218.5; p= 7.1e-09; Fig. 1C). A
later cluster occurred between 240 and 304 ms post-stimulus,
peaking at 256ms in central channels (peak, F(1,22)= 97.8;
p= 5.2e-06; Fig. 1C). Again, the timing of the high-level pwPE
effects coincided with the timing of the MMN and P3a
components, respectively. Ergo the MMN component, and to a
lesser extent the P3a, may capture differences in one’s beliefs
about environmental volatility.

Expression of sensory (low-level) and volatility (high-level)
pwPEs in the clinically high-risk group
In the CHR group, there were significant trial-wise correlations
between low-level pwPEs (ε2) and EEG amplitudes between 100
and 228ms post-stimulus, corresponding to a negative potential
and peaking at 186ms in frontal channels (peak, F(1,30)= 275.8;
p= 2.4e-12; Fig. 2A). Once again, this cluster coincides with the
timing of the auditory MMN.
Three significant activation clusters occurred for trial-wise

correlations with high-level pwPEs (ε3). The first cluster appeared
between 104 and 224ms post-stimulus, peaking at 180 ms in
central channels (peak, F(1,30)= 258.8; p= 4.4e-12; Fig. 2C), a
second cluster occurred between 246 and 314 ms post-stimulus,
peaking at 262ms in central channels (peak, F(1,30)= 56.1;
p= 4.9e-05; Fig. 2C), and a third cluster occurred between 398
and 400ms post-stimulus, peaking at 400 ms in frontocentral
channels (peak, F(1,30)= 23.9; p= 0.0212; Fig. 2C). Similar to low-
level pwPE expression in HCs, the three significant clusters
associated with high-level pwPE expression mirrored the series
of negative-positive-negative waveforms reflective of the MMN/
P3a/RON component complex. This complex provides a neuro-
physiological index of involuntary attention controls following a
deviant stimuli46, which may be reflected by hierarchical PE
updates.

Group differences in sensory learning
Details of test statistics for HC and CHR groups are given in Tables
S2 and S3, respectively. No significant group differences were
found in the expression of ε2, the low-level pwPE about stimulus
probability, or in the effects of ε3, the high-level pwPE about
environmental volatility. Additionally, the expression of the
hierarchically-coupled uncertainty trajectories (σ1; σ2; σ3),
unweighted PEs (δ1; δ2) and binary tones, did not differ between
groups. Note that for σ3, there were no surviving voxels in either
group. The absence of group differences in our study was not
surprising. Our dataset was primarily aggregated from Lepock and
colleagues’41 who found no group differences in classical MMN
amplitudes. See Fig. S1 for average ERPs of the classic MMN
response (standard – deviant tones), and pwPE difference
waveforms (15% highest − 15% lowest ε2 and ε3 trials,
respectively) at electrodes within significant clusters close to the
peak effect for both groups.
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Correlations between model parameters and clinical variables
Of the 31 CHR, three CHR converted to psychosis during a 2-year
follow-up period. Due to the low number of converters, we could
not examine whether differences in parameter expression was
related to a subsequent conversion to psychosis. Instead, we
tested for correlations between the effects of the hierarchical
pwPEs (ε2; ε3) and positive prodromal symptom severity (SIPS) at
baseline.
We cannot exclude the possibility that the three CHR converters

had an outsized effect on correlations between model parameters
and positive symptom severity. We therefore additionally report

the results of our high-risk correlation analysis after excluding
these data sets.

Increased expression of low-level sensory prediction errors in the
clinically high-risk group. We found a significant positive
correlation between ε2 and SIPS positive-symptom subscale
total scores between 124 and 146 ms post-stimulus peaking at
140 ms in frontocentral electrodes (peak, F(1,29)= 29.3; p= 0.009;
Cohen’s f2= 0.338; Fig. 3A). This result also held when excluding
the three CHR who later converted to psychosis (now CHR= 28;
peak, F(1,26) = 26.4; p= 0.020; Cohen’s f2= 0.340). Simply put, an
increased expression of low-level pwPE values were associated

Fig. 1 Expression of sensory (low-level) and volatility (high-level) precision-weighted prediction errors (pwPEs) in the control group.
A Maximum intensity projections of the significant clusters over left to right and anterior to posterior scalp locations (left) of the F-statistic for
low-level pwPEs (ε2). Significant cluster-level effects (p < 0.05, whole-volume family wise error (FWE) corrected at the cluster level with a
cluster-defining threshold of p < 0.001) are shown using a jet colour-map and significant peak-level effects (p < 0.05, whole-volume FWE-
corrected at the peak level) are marked by black contours. Coloured area highlights f-values that exceed the cluster-defining threshold of
p < 0.001, uncorrected. Time windows of the significant effects (earliest to latest significant timepoints) are shown by yellow bars on the right
of the F-map. The scalp maps (right) show the peak effect (global maximum) of the given cluster with an F-map at the indicated peristimulus
time, across a 2D representation of the sensor layout. Note that the global peak effect is not always expressed at a specific channel location.
Significant correlations with the low-level pwPE ε2 peaked at 106ms in temporal central channels (sensor C3), at 284ms in central channels
(sensor Cz) and at 378ms in frontal central channels. B Event-related potential waveforms averaged across the 15% highest and the 15%
lowest pwPE values at electrodes within significant clusters. C, D Significant correlations with the high-level pwPEs ε3 peaked at 160ms in
frontal channels (sensor F3) and at 256ms in central channels (sensor Cz).
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with greater SIPS positive subscale total scores at baseline (i.e.
greater psychosis symptom severity).

Increased expression of informational belief uncertainty in the
clinically high-risk group. We additionally tested three possible
mechanisms underlying the positive correlation between low-level
sensory pwPE updates and positive prodromal symptom severity
in the CHR group: aberrantly large sensory PE updates (δ1),
aberrantly high precision of incoming PEs (i.e. irreducible
uncertainty, σ1), or aberrantly low high-level belief precision (i.e.
informational uncertainty, σ2), all of which could lead to an
increase in belief updating (see Eq. (1)).
We observed that σ2 showed significant correlations with SIPS

positive symptoms in the CHR group between 190 and 212 ms
post-stimulus, peaking at 194ms (peak, F(1,29)= 21.9; p= 0.045;
Cohen’s f2= 0.227; Fig. 3C) in frontal channels and 208 ms (peak,
F(1,29)= 22.9; p= 0.037; Cohen’s f2= 0.242; Fig. 3C) in frontocentral
channels. However, this effect did not hold when excluding the
three CHR converters (now CHR= 28; peak, F(1,26)= 13.3;
p= 0.341; Cohen’s f2= 0.129). In other words, CHR individuals
with greater prodromal positive symptom severity at baseline
exhibited increased effects of informational uncertainty. No
significant correlations were found between SIPS positive
symptoms and sensory PEs (δ1) or irreducible uncertainty (σ1).
For completeness, we also investigated the effect of environ-
mental uncertainty (σ3) (c.f.22) but found no significant effects.

Fig. 2 Expression of sensory (low-level) and volatility (high-level) precision-weighted prediction errors (pwPEs) in clinically high-risk
group. A Maximum intensity projections of the significant clusters over left to right and anterior to posterior scalp locations (left) of the
F-statistic for low-level pwPEs (ε2). Significant cluster-level effects (p < 0.05, whole-volume family wise error (FWE) corrected at the cluster level
with a cluster-defining threshold of p < 0.001) are shown using a jet colour-map and significant peak-level effects (p < 0.05, whole-volume
FWE-corrected at the peak level) are marked by black contours. Coloured area highlights f-values that exceed the cluster-defining threshold of
p < 0.001, uncorrected. Time windows of significant cluster-level effects (earliest to latest significant timepoints) are illustrated by yellow bars
on the right of the F-map. The scalp maps (right) show the peak effect of the given cluster with an F-map at the indicated peristimulus time,
across a 2D representation of the sensor layout. Note that the global peak effect is not always expressed at a specific channel location.
Significant correlations with the low-level pwPE ε2 peaked at 186ms in frontocentral channels (sensor F3 and FC1). B Event-related potential
waveforms averaged across the 15% highest and the 15% lowest pwPE values at electrodes within the significant clusters. C, D Significant
correlations with the high-level pwPE ε3 peaked at 180ms and 264ms in central channels (sensor Cz), and at 400ms in frontocentral channels
(sensor FC2).
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These results also held when excluding CHR converters. See
Supplementary Information for a description of the correlations
between informational uncertainty and single-trial ERPs in the HC
and CHR group.

DISCUSSION
In this study, we combined computational modelling with trial-
wise analyses of ERP responses to examine atypical PE learning in

CHR individuals compared to HCs. Current predictive coding
theories of psychosis suggest that positive symptoms, such as
hallucinations and delusions, emerge from the misattribution of
salience to irrelevant sensory stimuli driving specious model
updates and culminating in unsound beliefs28,32,33. Model updat-
ing in the auditory hierarchy has been proposed to underlie MMN
generation, and our computational modelling approach allows for
separation of the MMN component into two hierarchically-
coupled PEs: low-level sensory PEs and high-level volatility PEs.

Fig. 3 Significant positive correlations between prodromal positive symptom severity and both sensory (low-level) pwPEs and
informational uncertainty in the clinically high-risk group. AMaximum intensity projections (MIP) of the significant clusters over left to right
and anterior to posterior scalp locations (left) of the F-statistic for low-level PEs (ε2). Significant cluster-level effects (p < 0.05, whole-volume
family wise error (FWE) corrected at the cluster level with a cluster-defining threshold of p < 0.001) are shown using a jet colour-map and
significant peak-level effects (p < 0.05, whole-volume FWE-corrected at the peak level with a cluster-defining threshold of p < 0.05) are marked
by black contours. Coloured area highlights t-values that exceed the cluster-defining threshold of p < 0.001, uncorrected. Time windows of
significant cluster-level effects (earliest to latest significant timepoints) are marked by yellow bars on the right of the T-map. The scalp maps
(right) show the peak effect of the given cluster at the indicated peristimulus time, across a 2D representation of the sensor layout. Note that
the global peak effect is not always expressed at a channel location. Significant correlations between ε2 and prodromal positive symptom
scores peaked at 140ms in frontocentral channels (sensors FC5 and F3). B ERP waveforms averaged across the 15% highest and the 15%
lowest PE values at electrodes within the significant clusters. C, D Significant correlations with informational uncertainty σ2 peaked at 194ms
in frontal channels (sensor F7) and 208ms in frontocentral channels (sensor FC5).
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In both HC and CHR groups, our model-based analysis revealed
significant correlations between single-trial EEG activity and both
low- and high-level pwPE trajectories that coincided with the
timing of the MMN and P3a response (see Figs. 1, 2). These
findings are consistent with previous studies that modelled single-
trial MMN responses of visual oddball42 and auditory roving
paradigms43, and taken together, these results offer compelling
evidence for the role of hierarchical PEs during auditory
perceptual inference and implicit, statistical learning.
We did not find any significant differences between the CHR

and HC groups in low- or high-level pwPEs. Importantly, however,
we found that within the CHR group, prodromal positive symptom
severity was positively correlated with larger low-level sensory
pwPE updates (Fig. 3A). We further examined the mechanisms
underlying the expression of heightened low-level pwPEs and
found that positive symptom severity was correlated with the
expression of informational uncertainty (i.e. the inverse of belief
precision), however this effect did not hold following the removal
of CHR converters. Despite this lack of significance, we believe our
findings still hold merit. Amongst the CHR group, the three
converters displayed higher than average positive symptom
severity (SIPS positive scores were 13, 16 and 22, respectively).
Hence CHR individuals with the greatest positive symptom burden
also had greater expression of informational uncertainty. This
suggest that impairments in predictive processing, demonstrated
by increased information uncertainty, may represent a core
neurophysiological deficit already present in those at highest risk
of developing psychosis and may highlight an important
predictive mechanism in psychosis progression.
Specifically, these findings suggest that CHR individuals with a

greater positive symptom burden exhibit increased uncertainty
about their internal model of the causes of sensory inputs, thus
rendering the environment seemingly more unpredictable. This
may, in turn, further increase learning from incoming PEs, which
may be perceived as aberrant salience of the underlying stimuli.
Over time, this may lead to adoption of unusual, incorrect higher-
order beliefs that may become resistant to disconfirmatory
evidence (i.e. delusions), as explanations for these experiences.
Our results are consistent with those of Hauke and colleagues47,
who using the same computational approach, found increased
expression of low-level pwPEs, peaking at 137 ms in central
channels, in CHR individuals who later converted to psychosis.
Furthermore, these findings are in line with those of Cole and
colleagues39 wherein computational modelling was applied to
CHR individuals’ behaviour during a probabilistic learning para-
digm. Model-based fMRI analyses revealed that larger low-level
pwPE effects in the dorsolateral prefrontal cortex correlated with
lower global functioning.
Based on this computational approach, we suggest that the

MMN is related to both low- and high-level pwPEs. Recently, a
similar computational modelling method was used to investigate
the effects of ketamine on the MMN43. By using a crossover,
placebo-controlled design during an auditory roving paradigm,
the authors replicated previous findings showing that ketamine
significantly reduced the auditory MMN in HCs43,48, while also
showing that ketamine reduced the expression of high-level
(volatility) pwPEs43. These results provide further support for the
dysconnectivity hypothesis, which proposes that abnormal
neurotransmitter modulation of NMDA receptor mediated plasti-
city may give rise to psychosis symptoms49. Taken together,
increased MMN attenuation throughout the illness course, may be
due to progressive NMDA receptor dysfunction, and reflected
computationally by reductions in the expression of high-level
pwPE updating47. In comparison, increased low-level pwPE
expression may be reflective of the early stages of psychosis,
where individuals attribute increased salience to irrelevant stimuli
giving rise to sensory PEs. In other words, our finding of
correlations between low-level pwPEs and positive prodromal

symptoms in CHR do not necessarily contradict previous findings
of MMN reductions in CHR populations7–12.
In line with this hypothesis, we reproduced Lepock and

colleagues’41 results that found no group differences in classical
MMN amplitudes. Divergent findings have been reported with
regard to reductions in the MMN amplitude in the CHR
population. In a meta-analysis, Erickson, Ruffle and Gold17 found
that the overall effect size of MMN amplitudes in CHR participants
who converted to psychosis vs. controls was large (0.79) and that
CHR participants who did not convert to psychosis had a
nonsignificant effect size of 0.17, which was statistically indis-
tinguishable from controls. Thus, within CHR groups, MMN
abnormalities may be a sensitive marker of clinical progression.
Because MMN impairments are greater among CHR individuals
who later convert to psychosis and MMN deficits progressively
worsen over illness progression17, the absence of group differ-
ences in our study was not surprising given the low number of
converters. In addition, an advantage of our study is that we used
a more graded measure of symptom severity (the SIPS Positive
subscale score) than conversion to psychosis, and this measure
could be more sensitive to relationships between disease
progression and MMN parameters. For example, due to the low
number of converters, we could not examine whether a more
pronounced expression of low-level pwPEs was related to a
subsequent conversion to psychosis. However, the correlation
between positive prodromal symptom severity and low-level
pwPE updates suggest that impairments in predictive processing
may represent a core neurophysiological deficit already present in
those at highest risk of developing psychosis.
Our findings linking pwPE signalling and symptom expression

help elucidate the progressive pathophysiology of psychosis and
model-based parameters may hold great promise as objective
neurophysiological markers for predicting transition to psychosis.
Nonetheless, several important limitations remain. In the present
study, the observed tone contingencies remained stable over all
trials. Hierarchically-related pwPEs are best disentangled when the
stream of sensory input (i.e. tones) exhibit changing volatility, thus
allowing higher-level volatility PEs to be disentangled from low-
level outcome PEs. Given the stability of our task structure, strong
correlations were found between low-level and high-level pwPE
expression rendering it difficult to isolate the effects on learning
about volatility. An additional limitation in our methodology was
the assumption of a Bayes-optimal learner for all participants. The
MMN paradigm is a passive task and did not require behavioural
responses from participants, hence the HGF model could not be fit
to behaviour. Consequently and in line with previous meth-
ods42,43, we fit an optimal Bayesian learner model to the tone
sequence that each participant perceived to obtain belief
trajectories reflecting adaptive learning. Additionally, since parti-
cipants did not have to respond behaviourally to the task, model
selection based on behaviour could not be performed. In the
future, it would be valuable to apply the same computational
modelling approach performed here, to data collected during an
active oddball task e.g. ref. 50, and test it against other theoretical
models of MMN generation. A third limitation is our modest
sample size, which may have limited the power to identify group
differences in PE expression. Longitudinal follow-up in larger
samples is needed to determine whether model-based para-
meters are predictive of illness progression, including conversion
to psychosis. Finally, given the correlational nature of our study,
the results are therefore consistent with a relation between MMN
indices of PEs to psychosis-like symptoms, but do not prove that
this relation is causal.
In conclusion, our results highlight the role of hierarchically-

related pwPEs in auditory MMN generation and suggest that
positive prodromal symptom severity is associated with increased
outcome-related learning (low-level pwPEs). Furthermore, we
validated the use of mechanistic computational models for
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understanding the emergence of prodromal symptoms in
psychosis.

METHODS AND MATERIALS
Participants
We included 31 CHR and 23 HC participants aggregated from two
previous studies40,41. Note that 41 CHR individuals had originally
been recruited but ten participants were excluded from further
analysis for a variety of reasons including concurrent disorders
(n= 2; epilepsy and alcohol use disorder), electrode failure (n= 1),
failure to sufficiently correct for eye-blink artefacts during
preprocessing of EEG data (n= 6) and missing SIPS negative data
(n= 1). Groups were matched for age and pre-morbid IQ to help
ensure that any group differences in MMN measures were likely to
be related to the disease process and not to pre-existing
intellectual differences51–53. CHR participants were help-seeking
outpatients referred to the Focus on Youth Psychosis Prevention
outpatient clinic at the Centre for Addiction and Mental Health
(CAMH) in Toronto. HCs were recruited from the community
through advertisements online, in newspapers and on bulletin
boards. All participants gave written informed consent and the
study was approved by the CAMH Research Ethics Board. CHR
individuals met diagnostic criteria for a psychosis-risk syndrome
using the Criteria of Psychosis-Risk States based on the Structured
Interview for Psychosis-Risk Syndromes (SIPS)54. All CHR partici-
pants were of the attenuated psychosis syndrome subtype55 and
had no history of current or lifetime DSM-IV-TR Axis I psychotic
disorder, or mood disorder with psychotic features56, as deter-
mined via the Structured Clinical Interview for DSM-IV-TR57.
Participants had no history of DSM-IV substance use or
dependence in the last 6 months (except nicotine) and were
antipsychotic-naive. At two-year follow-up, three CHR individuals
had converted to psychosis (n= 10 CHR dropped out of the study
before two-year follow-up). Table 1 shows group demographic,
neuropsychological and clinical characteristics.

Experimental paradigm
Electrophysiological (EEG) was recorded during an auditory
oddball paradigm based on previous established protocols58–62.
Participants were presented with 1830 tones on average
binaurally through foam-inserted earphones (Model ER-3C,
Etymotic Research, Elk Grove Village, IL) with an interstimulus
interval of 500ms. All tones were 85-dB, 1-kHz and had a rise-fall
time of 1-ms. Standard tones (50 ms) and deviant tones (100ms)
were presented in pseudorandom order in 90% and 10% of the
trials, respectively. Meanwhile, participants watched a silent
cartoon video to divert attention from the tones.

EEG collection and preprocessing
A 32-electrode EEG cap (Ag/AgCl, actiCAP system, Brain Products)
with an actiCHamp amplifier (Brain Products, Gilching, Germany) was
used. The electrodes were embedded in the cap at sites
approximately equally spaced across the scalp, positioned according
to a modified International 10–20 System (Fp1-Fp2-F7-F3-Fz-F4-F8-
FC5-FC1-FC2-FC6-T7-C3-Cz-C4-T8-TP9-CP5-CP1-CP2-CP6-TP10-P7-P3-
Pz-P4-P8-PO9-O1-Oz-O2-PO10). Eye movement artefacts (blinks and
eye movements) were monitored via electrodes on the supraorbital
and infraorbital ridges and on the outer canthi of both eyes.
Continuous EEG recordings were referenced online to electrode FCz,
and continuously digitised at 500 Hz. Electrode impedance was kept
below 25 kΩ. EEG data were pre-processed using SPM 12 (http://
www.fil.ion.ucl.ac.uk/spm/; version 7771). Continuous EEG was
bandpass-filtered using a Butterworth filter between 0.5 and 30 Hz.
The eye-blink correction procedure was consistent with previous
single-trial computational analyses of EEG data43. Eye-blinks were
detected using a threshold routine on the vertical EOG channel and
all trials overlapping with eye-blink events were rejected. Corrected
data was epoched into 500ms segments around tone onsets (−100
to 400ms) and baseline-corrected using a −100 to 0ms prestimulus
baseline. Remaining artefactual trials were rejected if the signal
exceeded 100 μV. Channels were rejected and interpolated for
sensor-level statistics if more than 20% of trials in a given channel
were artefactual.
Bad channels occurred for one HC (O1) and two CHR (channel

F4 and channels FP1 and FP2, respectively) participants. The
average number of artefact-free trials was 1423 (SD, 173) for HCs
and 1359 (SD, 161) for CHR; the number of remaining trials did not
differ significantly between groups (see Table S1). ERPs were
analyzed by including all artefact-free trials.

Computational model
To model perceptual inference during the auditory oddball task,
we employed the hierarchical Gaussian filter (HGF), a generic
hierarchical Bayesian model of learning, previously used for
computational analyses of behaviour63–67 and in the context of
modelling single-trial MMN responses of visual oddball42 and
auditory roving paradigms43. The HGF captures subject-specific
approximations to ideal hierarchical Bayesian inference and
describes an individual’s learning under uncertainty. Since the
MMN paradigm did not require behavioural responses from
participants, we simulated the participants’ belief trajectories
using Bayes-optimal parameters, which are defined as the
parameters that result in the minimal overall surprise in response
to a sequence of tone stimuli presented to the participant, in a
given session36. In our current application, we assume the agent
infers on hidden states in the world (x) from sensory inputs (u),
which is reflected through belief updating across the HGF
hierarchy (Fig. 4).

Inversion of the model: the update equations. The HGF update
equations are derived by variational model inversion and
provide approximate Bayes-optimal rules for trial-by-trial

Table 1. Participant characteristics.

Healthy Controls
(n= 23)

CHR Participants
(n= 31)

Age (years) 21.5 (2.8) 20.7 (2.4)

Sex 13 female,
10 male

10 female, 21 male

Handedness 20 right, 3 left 28 right, 3 left

Parental socioeconomic
status74

53.1 (13.9) 53.1 (13.8)

Years of educationa 15.1 (1.8) 14.0 (2.1)

National adult reading test75

estimated pre-morbid verbal IQ
110.3 (5.9) 110.1 (9.6)

Scale of psychosis-risk-symptoms,
Based on the structured interview for psychosis-risk syndromes
(SIPS54;)

Positive scale total 10.5 (3.6)

Negative scale total 12.8 (4.9)

Disorganised scale total 5.6 (3.2)

General scale total 9.6 (4.0)

Demographic, neuropsychological and clinical characteristics of the study
sample (means, and in parentheses standard deviation, given for
continuous variables).
aPatients differed significantly from controls, p= 0.04.
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updating of an agent’s beliefs, given the agent’s particular set of
parameter values35. “Belief” refers to a posterior probability
distribution as described by its sufficient statistics, i.e. mean μ
and variance σ (or its inverse, the precision π) under Gaussian
assumptions.
On trial k, an observed trial outcome u indicates whether the

tone was a “standard” tone (i.e. 50 ms duration) with u(k)= 0 or a
“deviant” (100 ms) with u(k)= 1. The observed outcome u(k)

induces a sensory PE or δ kð Þ
1 , which along with its precision π2

(k)

can be referred to as the sensory pwPE ϵðkÞ2 and it is used to
update μ

kð Þ
2 or the belief about tone transition contingencies.

This update, in turn, leads to a volatility PE or δ kð Þ
2 , which along

with its precision π3
(k) can be referred to as the volatility pwPE or

ϵðkÞ3 . This quantity is used to update μ
kð Þ
3 or the belief about

environmental volatility. This cascade of hierarchical belief
updates can be summarised as follows:

Δμ
kð Þ
i / π̂

kð Þ
i�1

π
kð Þ
i

δ
kð Þ
i�1 (1)

where, μ kð Þ
i denotes the posterior mean of the belief on each trial k

at level i of the hierarchy.
The PE from the level below (δ kð Þ

i�1) is weighted by a ratio of
precisions: the precision of the prediction about the level below
(sensory precision) (π̂ kð Þ

i�1) and the precision of the belief at the
current level in the hierarchy (π kð Þ

i ). The precision-ratio is updated
with each trial and at each hierarchical level serving as a dynamic
learning rate and enabling the flexibility required to adapt to
evolving outcome probabilities and environmental volatility. See
Supplementary Information for further explanation of model
parameters.

Single-trial EEG analysis
To test whether trial-by-trial pwPEs correlated with EEG amplitude
fluctuations, single-trial EEG data were converted into three-
dimensional volumes with two spatial dimensions (anterior to
posterior and left to right directions of the scalp surface) and a
temporal dimension (peristimulus time) for all 32 channels and

timepoints in the 100–400ms post-stimulus interval using a voxel
size of 4.25 ms × 5.38ms × 2ms. Bad channels were linearly
interpolated and images were smoothed using a Gaussian kernel
(full-width at half maximum: 16 mm× 16mm) to ensure that
assumptions of random field theory were met68,69. The scalp ×
time 3D images were subjected to statistical analysis using the
GLM analogous to fMRI analyses70 and applied to scalp EEG data
using the SPM software71. At the single subject level, we pursued
single-trial analyses where the computational model of beha-
vioural responses allowed us to quantify learning trajectories,
including pwPE trajectories (ϵðkÞ2 ; ϵðkÞ3 ). Additional GLMs were
included to unpack the effects of pwPEs: the hierarchically-
coupled uncertainty trajectories (σðkÞ

1 ; σ
ðkÞ
2 ; σ

ðkÞ
3 ), and the

unweighted PEs (δ kð Þ
1 ; δ

kð Þ
2 ). A final GLM incorporating the tone

sequence was included to assess trial-by-trial predictions about
categorical change (standard vs. deviant). For each computational
quantity, we tested the null hypothesis that the parameter
estimates were zero at each sensor and peristimulus time (PST).
A random-effects group analysis was performed across all

subjects in each group. At the group level, significant effects were
inferred, from thresholded F statistical parametric maps (SPM) that
were family wise error (FWE) corrected using random field theory
at peak level (p < 0.05) and at the cluster level (p < 0.05) with a
cluster-defining threshold of p < 0.00172. Group differences were
assessed using a paired t-test. All reported results survived whole-
volume FWE correction at the peak-level (p < 0.05). A measure of
the effect size, Cohen’s f273, was calculated from the partial eta-
squared using the reported F-statistic and degrees of freedom.
Finally, we evaluate the impact of sex and age on pwPE expression
at the group level by performing an analysis of covariance
(ANCOVA).

Relationship with clinical variables
We investigated the association between pwPE representation
during single-trial ERPs and clinical measures of the CHR state. We
performed an ANCOVA at the group level testing the association
between pwPE effects and SIPS positive symptoms.

Fig. 4 The three-level HGF binary perceptual model. An agent infers on multiple hidden states at time point k: stimulus probabilities (x1
(k)),

stimulus transition contingencies (x2
(k)) and the phasic environmental volatility (x3

(k)). Given new sensory input u(k), an agent updates their
beliefs at each hierarchical level using simple one-step update equations of the sufficient statistics, the mean μ and the variance σ.
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