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The molecular make up of smoldering myeloma
highlights the evolutionary pathways leading
to multiple myeloma
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Smoldering myeloma (SMM) is associated with a high-risk of progression to myeloma (MM).

We report the results of a study of 82 patients with both targeted sequencing that included a

capture of the immunoglobulin and MYC regions. By comparing these results to newly

diagnosed myeloma (MM) we show fewer NRAS and FAM46Cmutations together with fewer

adverse translocations, del(1p), del(14q), del(16q), and del(17p) in SMM consistent with their

role as drivers of the transition to MM. KRAS mutations are associated with a shorter time to

progression (HR 3.5 (1.5–8.1), p= 0.001). In an analysis of change in clonal structure over

time we studied 53 samples from nine patients at multiple time points. Branching evolu-

tionary patterns, novel mutations, biallelic hits in crucial tumour suppressor genes, and

segmental copy number changes are key mechanisms underlying the transition to MM, which

can precede progression and be used to guide early intervention strategies.
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Smoldering multiple myeloma (SMM) is an asymptomatic
plasma cell disorder, distinguished from monoclonal gam-
mopathy of undetermined significance (MGUS) by a higher

rate of progression to symptomatic multiple myeloma (MM)1–3.
The nature of SMM as a discreet disease entity has been called
into question because of the triphasic shape of the Kaplan–Meier
curves associated with its progression to MM4. These curves have
been interpreted as being consistent with a low-risk group similar
to MGUS, a high-risk group of “early myeloma” who progress
quickly, and an intermediate risk group the nature of which is
uncertain. The International Myeloma Working Group (IMWG)
re-defined SMM5 to take account of a number of risk factors
including serum-free light chain (SFLC) ratio6,7, bone marrow
tumor burden8, and bone lesions on magnetic resonance imaging
(MRI) to identify a high-risk group3,9,10. A group with an 80% 2-
year progression-free survival (PFS) was identified that was re-
defined as MM8. Here, to enhance historical comparison, we use
the term Early myeloma (EM), to identify patients that fail to
meet the current criteria but would have been defined as SMM
previously.

Importantly, newly defined SMM retains significant variation
in the time to progression to MM, the molecular basis for which
is uncertain. Efforts to recognize acquired genetic factors that can
explain this variation have focused on MM related genetic factors
including del(17p), t(4;14), MYC translocations11, gain(1q)12,13,
and GEP risk scores14. Next-generation sequencing (NGS)
allowed a better understanding of the molecular drivers of MM
but until recently has not been widely applied to SMM11,15.

NGS data from MM showed that there is clear spatio-temporal
genetic variation consistent with an important role for evolu-
tionary mechanisms. Further, current theories suggest that the
majority of the genetic changes necessary to give rise to MM are
present at the SMM stage and that there is either no change or
limited changes in the sub-clonal architecture on the transition of
SMM to MM15,16. However, currently, there are little NGS data
available to inform our understandings of early disease stages
when the so-called “trunk” of the MM “tree” is developing, and
which gives rise to the observed variation in outcome17. To define
the key genomic drivers for SMM, their impact on the sub-clonal
structure, and on the outcome, we have analyzed a cross-sectional
study of SMM cases and combined it with a study of multiple
sequential samples derived from the same patients.

Here we identify fewer NRAS and FAM46C mutations together
with fewer adverse translocations, del(1p), del(14q), del(16q), and
del(17p) in SMM consistent with their role as drivers of the
transition to MM. KRAS mutations are independently associated
with a shorter time to progression. In an analysis of change in
clonal structure over time, branching evolutionary patterns, novel
mutations, biallelic hits in crucial tumor suppressor genes, and
segmental copy-number changes are key mechanisms underlying
the transition to MM.

Results
Identifying significant genomic differences between SMM and
MM. Genetic abnormalities that are more frequent in MM have
been suggested to be drivers of progression. Thus, in order to
determine the spectrum of genomic differences characterizing
SMM, we performed targeted sequencing to interrogate known
drivers and immunoglobulin (Ig) translocations in a set of 82
previously untreated SMM patients and compared the results to a
published data set of 223 MM patients analyzed using the same
sequencing approach (Table 118).

Copy-number abnormalities and translocation frequency dif-
fers between SMM and MM. Translocations, copy-number

abnormalities (CNA), and mutations are known to be drivers of
MM. Overall, 35% (n= 29/82) of SMM samples had a canonical
translocation, a frequency that is identical to that seen in MM,
37% (n= 82/223, non-Yates adjusted, χ2= 0.008, p= 0.82). The
most common translocation in the SMM data set was the t(11;14)
seen in 23% of cases (n= 19/82) followed by the t(4;14) (4.9%,
n= 4/82), t(6;14) (3.7%, n= 3/82), and t(14;16) (2.4%, n= 2/82).
Two samples were identified with a MAFB translocation [one t
(14;20) and one t(20;22)]. There were significantly fewer t(4;14)
among the SMM patients (non-Yates adjusted χ2= 4.4, p= 0.03)
and more t(11;14) (non-Yates adjusted χ2= 4.6, p= 0.03), sug-
gesting that SMM carried fewer adverse risk cytogenetic groups [t
(4;14), t(14;16), t(14;20)] than MM (9.8% versus 20%, non-Yates
adjusted χ2= 4.5, p= 0.03) (Fig. 1a).

The genomic partners of translocations and secondary
rearrangements detected at the MYC locus were similar in the
two datasets but differed in frequency. Rearrangements involving
MYC were seen in 35% (n= 29/82) of SMM cases, which is fewer
than were found in MM (55%, n= 124/223, χ2= 6.9, p= 0.009).
Fifty-five percent of the rearrangements (n= 16/29) involved a
translocation with the remainder being either duplications,
inversions, or gain of a region surrounding 8q24. Most
translocations to MYC involved non-Ig partners (11/16, 69%),
with the remainder involving IGH (3/5) or IGL (2/5). This
frequency is similar to that seen in MM (63% non-Ig).

In SMM, among the other translocations (non-canonical Ig
translocation, and non-Ig-MYC translocations), the two recurrent
partners identified were FAM46C (n= 2) and TXNDC5 (n= 2),
which are also the most common recurrent partners in MM (n=
6 and n= 4, respectively). Some translocation partners were
specific to SMM or MM, but they were non-recurrent and not
reflective of a significant difference (Fig. 1b).

CNA have been shown to be prognostically important in MM
and to accurately determine their spectrum in SMM, we
performed ultra low-pass whole-genome sequencing (ULP-
WGS) on a subset of patients (69 patients with SMM and 116
newly diagnosed MM (NDMM) patients) to determine CNA
across the genome. The recurrent regions identified were similar
to those seen in MM (Fig. 1c). Using the targeted panel on the
whole data set, CNAs which were less frequent in SMM included
del(1p) (FAF1/CDKN2C; 2% vs. 17%, χ2= 11.2, p= 0.0008), del
(8p) (NSD3) (3.6% vs. 15%, χ2= 6.5, p= 0.01), del(14q) (TRAF3)
(7% vs. 19%, χ2= 5.5, p= 0.02), del(16q) (CYLD) (13% vs. 28%,
χ2= 5.8, p= 0.01), and del(17p) (TP53) (6% vs. 15%, χ2= 4.0,
p= 0.04) (Supplemental Table 1).

The frequency of known driver gene mutations is greater in
MM. We next investigated the frequency of important mutations
in SMM and MM using the same targeted sequencing panel. We
applied analysis of a catalog of key MM mutations18 to cases with
MGUS, SMM, EM, and MM. There was a significant difference in
the overall number of mutations identified at various disease
stages (Supplemental Fig. 1).

Overall, 61% and 82% of SMM and MM had a mutation in one
of the previously described mutational drivers that were present
on the panel (Supplemental Table 319). There were no IDH2,
MAX, XBP1, CDKN2C, RB1, and SET2D mutations in the SMM
group. The genomic abnormalities identified in each SMM
sample are summarized in Fig. 2. The most frequently mutated
gene in SMM was KRAS (n= 11, 13.4%). In comparison to
NDMM, fewer NRAS (4.5% versus 17%, χ2= 6.4, p= 0.01), and
FAM46C (0% versus 7%, Fisher’s, p= 0.008) mutations were
detected and there was a trend towards fewer KRAS (13% vs 22%)
mutations in SMM (Fig. 2a and Supplemental Fig. 2). A
comparison of rare mutations was not possible given the sample

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20524-2

2 NATURE COMMUNICATIONS |          (2021) 12:293 | https://doi.org/10.1038/s41467-020-20524-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Table 1 Summary of patient’s characteristics.

Characteristic SMM (n= 82) MM (n= 223)

Median age at diagnosis (range) 63 years (37–85) 59 years (30–75)
Median age at sample collection (range) 65 years (38–85) 59 years (30–75)
Median follow-up (95% CI) 5.18 years (95% CI 3.53–6.89) 8.14 years (95% CI 7.35–8.96).
5-year progression-free survival (95% CI) to
symptomatic MM

69.9% (95% CI 58–83%) NA

5-year overall survival (95% CI) 96.5% (95% CI 92–100%) 6.17 years (95% CI 5.18–7.75)
Timepoint Diagnosis: 44%

Follow-up: 56% after a median time 2.9 years
from diagnosis

Diagnosis: 100%

Gender ratio (female:male) 1:1.15 1:1.8
Race 24% African-American

71% White-Caucasian
5% Other (Native American, Pacific Islander or
unknown)

10% African-American
88% White-Caucasian
2% Other (Native American, Pacific Islander or
unknown)

Isotype IgA: 30% (n= 25)
IgG: 60% (n= 49)
IGD: 1.2% (n= 1)
LCO: 8% (n= 7)

Fig. 1 Structural events in smoldering multiple myeloma (SMM) compared to newly diagnosed myeloma (MM). a Frequency of cytogenetic subgroups
and main translocations in SMM and MM suggesting that fewer SMM have high-risk features. b Circos plot of the landscape of non-Ig-MYC and non-
canonical Ig translocations highlighting FAM46C and TXNDC5 as current recurrent partners. c Copy-number changes in 160 recurrently altered regions
covering the known drivers (Supplemental Table 4) in SMM and MM suggesting the landscape is similar but there are fewer copy-number abnormalities.
Adverse translocations = t(4;14), t(14;16), t(14;20). Favorable cytogenetics = t(11;14), HRD.
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size and so we restricted our analysis to the comparison of
mutations occurring in known myeloma relevant pathways.
Overall, we identified a significant difference in the frequency of
mutations in the MAPK pathway (BRAF, NRAS, or KRAS
mutation) between SMM and MM (24% vs. 44%, χ2= 9.2, p=
0.002). There were also fewer patients with NF-κB pathway
mutations (BIRC2, BIRC3, BCL10, CYLD, IRF4, MAP3K14,
TRAF2, or TRAF3; 5% vs. 16%, χ2= 5.7, p= 0.02) and a trend
suggesting fewer DNA repair pathway mutated patients (TP53,
ATM, ATR, ATRX, BRCA1, or BRCA2; 7% vs. 17%, χ2= 3.8, p=
0.0504).

In terms of mutational signatures, we show that the
contribution of APOBEC is significantly lower in SMM than in
MM (11% (0–43%) versus 17% (0–48%), χ2= 5.2, p= 0.02)
consistent with it having a role later in disease progression,
Fig. 3a. Furthermore, in SMM patients with either a MAF or
MAFB translocation (termed maf), the median APOBEC
contribution is 18% (0–54%, n= 4), compared to 11% (0–43%,
χ2= 0.5, p= 0.4, n= 78) in non-maf samples. Therefore, unlike
observations in MM, we do not identify any significant difference
between the two subgroups in SMM. Finally, the APOBEC
contribution also seems lower in maf-SMM than it does in maf-
MM (16% (0–44%, n= 4) vs. 41% (0–100%, n= 15)). Despite the
small sample size, these data suggest that APOBEC is associated
with disease progression (Fig. 3a and Supplemental Fig. 3A).

Biallelic inactivation of tumor suppressor genes is less frequent
in SMM. Tumor suppressor gene inactivation is an important

mechanism of relapse in NDMM with biallelic events having the
most penetrant effects20. To determine the role of this mechanism
in SMM, we defined a list of 20 previously identified tumor
suppressor gene loci of relevance to MM at relapse and investi-
gated them for biallelic inactivation using combined mutation
and CNA analysis. In total there were 103 biallelic events iden-
tified in MM (103 in 64/223 patients) versus only eight in SMM
(8 in 8/82 patients) (χ2= 10.9, p= 0.001) suggesting second hits
at the same locus are a hallmark mechanism of the transition to
MM (Fig. 2c). One double-hit patient, defined by a biallelic TP53
inactivation was identified in this series of SMM patients com-
pared to 18 in MM. Other key biallelic events included DIS3, RB1,
FAM46C, and TRAF3. Interestingly, biallelic DIS3, which has
been associated with an adverse outcome in MM18, was present in
5% of MM cases vs. only 2% of SMM cases, again consistent with
it being associated with a more aggressive disease phenotype.
These results are consistent with data previously generated at
relapse after treatment and indicate that biallelic inactivation of
tumor suppressor genes is an important mechanism of progres-
sion at all disease stages.

Mutations in KRAS are associated with a shorter time to
progression. In order to determine the molecular factors asso-
ciated with time to progression to MM, we assessed outcome in
77 patients evaluable for progression. Thirteen percent of patients
were identified as high-risk according to the GEP4 risk-score15,
23% were high-risk and 35% intermediate risk according to
IMWG criteria. With a median follow-up of 5.18 years, we

Fig. 2 Mutational events in smoldering myeloma in comparison to myeloma. a The most frequently mutated genes and their distribution across the most
common molecular subgroups. b The distribution of somatic abnormalities per sample and risk group. c Frequency of biallelic and monoallelic events per
driver locus in SMM and MM showing fewer biallelic drivers in SMM. *Significantly different at p < 0.05 level, two-sided Fisher’s test.
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identified a 5-year progression rate of 30.1%, with no plateau
consistent with an ongoing risk of progression (Fig. 4a).

To determine the associations with high-risk SMM, we
analyzed the distribution of mutations across the IMWG and
GEP4 risk groups (Fig. 2b and Supplemental Fig. 4). Although the
numbers were low, we note that TP53 (n= 3/3) mutations and
del(17p) (n= 3/4) were enriched in the high-risk GEP4 patients.
Mutations in DIS3 (n= 3), CCND1 (n= 2), and ATM (n= 1), as
well as the t(4;14) were associated with the IMWG definition of
high-risk.

In a univariate analysis of time to progression to MM including
all abnormalities present in at least seven samples (Fig. 4b), we
show that high-risk IMWG status and the GEP4 risk were
associated with an adverse outcome (Supplemental Fig. 5B, C).
Importantly, the presence of a KRAS mutation (n= 11) was
associated with a short time to progression (HR 3.5 (1.5–8.1) p=
0.002) (Fig. 4c). Del(6q) (n= 9) was also associated with a short
time to progression (HR 4.5 (1.9–11), p= 0.0005) (Supplemental
Fig. 5A). Of note, four of these patients had high-risk status
according to GEP4, and two of them carried a del(17p). Biallelic
events of driver genes were not associated with outcome (data not
shown). A combined analysis of the impact of BRAF, KRAS, and
NRAS on time to progression was not associated with a significant
impact (Supplemental Fig. 5D). The presence of a MYC
translocation has previously been identified as an adverse
prognostic factor in SMM11,21. Here, in a set of patients defined

by the current IMWG criteria, we did not find that MYC
translocations were associated with adverse outcome8. Finally,
there was a trend suggesting that patients with a small
contribution of APOBEC signatures (<5%) had a better outcome
than the others (Supplemental Fig. 3B).

Multivariate analysis of molecular markers involved in time to
progression. In order to identify independent prognostic markers
a multivariate analysis using previously published risk scores
(GEP4 and IMWG) alongside factors occurring at a frequency of
n ≥ 10 and at least a borderline impact on univariate time to
progression (KRAS mutations and del(13q)) was performed. The
presence of a KRAS mutation, a high-risk GEP4, or high-risk
IMWG retained their impact on outcome (Fig. 4d). Indeed, the
presence of a KRAS mutation, a high-risk GEP4, and high-risk
IMWG was associated with a hazard ratio for progression of 3.2
(CI 1.3–8.1, p= 0.011), 5.3 (CI 1.6–18.2, p= 0.008), and 3.1 (CI
1.4–7.2, p= 0.007), respectively, consistent with their indepen-
dent contribution to risk at this disease stage. Thus, we show in a
significant number of cases the important prognostic contribu-
tion of mutations in KRAS at the SMM disease stage. This
observation contrasts significantly with the lack of association
with a prognosis that RAS mutations have in NDMM and
highlights their important role in the transition from asympto-
matic to symptomatic stages of the disease. We also performed

Fig. 3 Contribution of APOBEC signatures to the mutational landscape of SMM and MM. a Contribution of the APOBEC signature in SMM and MM by
cytogenetic subgroup (yellow lines=median). b Contribution of the APOBEC signature in SMM and MM in maf and non-maf samples. Boxplots
representing second quartile, median, third quartile, whiskers representing first, and fourth quartile. All data points including outliers are represented. X2=
chi-squared, two-sided p-value derived from Kruskal–Wallis test, n= number of patients.
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the analysis with variants present at a number of n ≥ 7 and found
similar results (Supplemental Fig. 5E).

To determine whether KRAS mutations have the potential to
contribute to novel risk scores, we compared the KRAS mutated
cases with the two previously used risk models and show that
only 13% of patients overlapped between one of the three risk
models, with five patients having only a KRAS mutation (Fig. 4e).
No patient fell into the intersection of all three risk factors
suggesting that enumerating these in clinical cases may contribute
useful additional prognostic information.

We have shown previously that an accumulation of risk factors
leads to higher risk status in MM22, and the results of a similar
analysis confirm that the same is true in SMM. When more than
one molecular lesion was present, an HR of 11.2 (4–31) for
progression was seen with an associated median time to
progression of 1.16 years (Fig. 4f), compared to an HR of 3.7
(1.4–9.5) and 5-year PFS of 57% (35–94%) when only one risk
factor is present and an 88% (78–99%) 5-year PFS when none are
present. This was clearer when considering the patients whose
samples were taken within the first 90 days of diagnosis
(Supplemental Fig. 6).

Pathway deregulation associated with progression. Mutations
of the NF-κB pathway are among the most frequent in plasma cell
disorders making an understanding of their impact in SMM
critical. Mutations affecting NF-κB were seen in 5% of SMM
patients, which is lower than the 16% seen in MM patients (χ2=
5.7, p= 0.02). Mutations in the NF-κB pathway did not associate
with outcome in this data set (data not shown). Based on

previously published work23, we generated gene signatures, from
gene expression array data, that correlated with NF-κB p65
activity that can be used as a surrogate for changes in NF-κB
pathway activity. These results show that the score is not statis-
tically different in SMM compared to MM [SMM-10.7 (IQR:
9.6–11.9) versus MM-10.57 (IQR (8.68–12.6) p= 0.8)]. However,
it was lower in normal CD138+ cells (11.4 (11–11.7), p < 0.0001).
These data suggest that NF-κB dependency is similar in SMM and
MM, consistent with dysregulations in this pathway being early
events associated with the development of MGUS and not with
the transition of SMM to MM (Supplementary Fig. 7).

Sequential molecular changes identified within individual cases
over time. In order to investigate the temporal relationship of
genetic changes associated with progression, we studied
53 sequential samples obtained from nine patients with a median
follow-up of 7.26 years (5.17–∞). Six of the patients progressed
during the time of follow up, with progression samples being
available for 5/6 patients. Two patients with SMM had not pro-
gressed at the time of the analysis. Additionally, one of the 9
patients, patient G, who had features of early myeloma, pro-
gressed to MM within the first 6 months (Fig. 5a). We performed
WES to a depth of 93× to study changes in the molecular
architecture of the clone over time.

Structural abnormalities. We identified four patients with a
t(11;14) (patients C, D, E, F) and one with a t(4;14) (patient I).
These molecular events were detected as being clonal in each of
the sequential samples. Five patients had hyperdiploidy (HRD)

Fig. 4 Prognostic impact of molecular and clinical features in SMM. a Progression-free survival with a 30% progression rate at 5 years with no plateau,
suggesting an ongoing risk. b Univariate analysis of molecular features in SMM. c Impact of KRAS mutations on the outcome. d Multivariate analysis
suggests GEP4, high-risk IMWG, and KRAS mutations are independent prognostic factors. e Venn diagram showing the overlap between high-risk GEP4,
high-risk IMWG, and KRASmutations. f Progression-free survival for patients with either none, one, or two adverse factors defined as high-risk GEP4, high-
risk IMWG, and KRAS mutations suggesting these factors are additive. IMWG International Myeloma Working Group, HiR high-risk, IR intermediate risk,
HRD hyperdiploid, CNA copy-number abnormality, tx translocation, GEP4 4 gene expression profile, n number of patients with event, N total number of
patients evaluable, error bars = 95% CI.
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(patients B, E, F, G, I). Neither an etiological translocation nor
hyperdiploidy could be detected in patient A but there was evi-
dence of segmental copy-number (CN) changes. We have pre-
viously defined a catalog of segmental CNA in NDMM that
contribute significantly to prognosis. In this series of sequential
samples, we show that hyperdiploidy is an early event and is
stable over time and does not constitute a significant mediator of
progression. In contrast, we identified a number of regions of
segmental CN change that may contribute to disease progression.

While only limited numbers of segmental CN change were
identified, some provide informative examples. One patient for
example acquired a DIS3 and RB1 deletion through the loss of
chromosome 13, which gradually become more clonal over time,
as well as a gain(1q) and a del(11q) at progression (Fig. 5b). The
sequential data provided additional insights into the role played
by CN change allowing the assessment of changes over time. In
this fashion, we were able to identify fluctuations in the levels of
individual clones defined by CN at specific sites that are not seen
at the transition to MM. These include a loss of chromosome 5 in
patient C that was not sustained at progression (Fig. 5b) and a
loss of 16q that was only seen in patient B’s initial sample
(Supplemental Fig. 8).

Importantly, we identified a case where a t(8;14) appeared
during follow-up allowing us to determine in an individual case
its impact on sub-clonal size. The translocation involved a
rearrangement between MYC and the IGHA2 switch region
developing at a relatively early stage of disease; post-initial
immortalization but before clinical myeloma. Using ddPCR, we
quantified the rearranged Ig-MYC allele and the productive
IGHG3 allele. This analysis confirmed that the translocation was
not present at diagnosis, appeared in a small fraction (1%) 3.0
years after initial diagnosis, and steadily increased over time,
reaching 45% of cells on the last sample, 8.2 years from the initial
diagnosis. This increase was matched by an increase in bone
marrow plasma cells and M-spike (Fig. 5c). These findings are
consistent with it having contributed to clonal expansion
potentially via an increased proliferation rate.

Mutational load in SMM patients increases over time. The
mutational load has the potential to both contribute to progres-
sion and to be a marker of changes in mutational mechanisms. To
investigate changes in mutational load in this set of serial samples
and to account for variation in depth of coverage, we normalized
the number of mutations per sample according to the depth of
coverage and analyzed trends in mutational load over time. At the
SMM stage, the mutational load increased with time (Fig. 6a).
Samples with hyperdiploidy (HRD) seemed to have a higher
mutational rate than other subgroups (nHRD) but the follow-up
was longer in this group of patients (Supplemental Fig. 9A). The
mutational rate of patients that eventually progressed was not
statistically different from the mutation rate of those that have
not progressed (Supplemental Fig. 9B), but there was a trend
suggesting the mutation rate increased around progression in
SMM (Fig. 6b).

Focussing on previously described19 mutational drivers, we
identified a median of 1.5 (range 0–4) drivers per SMM sample
with 21 genes being mutated in 31/53 of samples. We identified a
correlation between the number of drivers present and time from
the clinical presentation but this was driven by one sample only
(A) (Fig. 6c). The Cancer Clonal fraction (CCF) of the driver
mutations increased over time (Fig. 6d), consistent with them
being actively selected. These findings are consistent with prior
data derived from paired SMM/MM studies where only limited
numbers of new mutational drivers at progression were seen.

Mutational processes are stable at the SMM/MM interface.
Signatures of mutational processes have emerged as an important
tool to determine both intrinsic and extrinsic mechanistic factors
mediating cancer etiology and progression. Here, we examined
the role played by mutational signatures at the SMM disease
phase in serial samples. The background signatures (SBS1 and
SBS5)24 are the major contributors to the mutational patterns
seen in SMM. A single patient had a non-canonical AID signature
(SBS9) seen in more than one sample, on an HRD background

Fig. 5 Acquisition of drivers in SMM patients over time. a Swimmer plot
of the group of patients (A–G) followed over time. The color bars represent
progression-free survival. b Plot showing changes in copy number over time
with a focus on the loss of del(5) and the acquisition of gain(1q), del(11q),
and del(13). Arrows highlight changes in CNA. c The acquisition of a t(8;14)
within a myeloma propagating cell leads to outgrowth of the clone until it
dominates the tumor population. EM early myeloma, FU follow-up, NDMM
newly diagnosed myeloma, NGS next-generation sequencing, MS M-spike.
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(data not shown). To determine whether changes in mutational
processes correspond with the transition to NDMM, we analyzed
the contribution of each signature in relation to the time of
progression to MM. Samples taken more than 2 years prior to
progression had the same signatures as both those taken within 2
years of progression and those cases that did not progress
(Fig. 7a). This observation supports the idea that mutational
processes are stable over time and do not define the transition to
MM.

In order to further dissect out the contribution of mutational
signatures, we clustered mutations into five groups based on their
respective CCF. Overall, the contribution of mutational signatures
did not vary substantially according to clonality (Fig. 7b). We
identified mutations in genes with a CCF that increased from
intermediate (CCF 0.4–0.8) to clonal (0.8–1) such as KRAS,
CHD2, ABCC2, TNIP1, TRPS1, RCCD1, MTRR, ERCC6, and
from low CCF (0–0.4) to medium (0.4–0.8) such as RMI1,
PSMA8 CAMK1D, GALNT2, PON3, SALL4, that could be
potential drivers (Fig. 7c).

Changes in sub-clonal architecture precede progression. The
clinical management of SMM is different from NDMM in that it
is possible to monitor progression over time and to reassess the
disease on a number of occasions without impairing clinical
outcomes. Therefore, we determined whether it may be clinically
relevant to monitor sub-clonal structure as a means of predicting
progression. We reconstructed sub-clonal structure and followed
the size of each clone over time using Pyclone in eight patients. A
median of eight clones per patient was identified, most related via
branching patterns (7/8) with only one case being associated with

a linear pattern. Five clones made up 90% of the tumor in 84% of
cases, and six clones in 16% of cases. In the year prior to bio-
chemical progression, significant changes in sub-clonal structures
were seen in all evaluable patients (Fig. 8 and Supplemental
Figs. 10–14). One patient that progressed was not evaluable as the
pre-progression sample was 5 years earlier (Supplemental
Fig. 15). These data suggest that monitoring sub-clonal structure
as a means of disease assessment is possible and could direct
clinical intervention at a time long before end-organ damage or
clinical symptoms develop, highlighting the importance of bone
marrow monitoring of SMM patients.

Clonal diversity is a marker of time to progression. These early
disease stages can be considered as forming a distinct ecosystem
and as such can be studied using ecological tools. The Shannon
Diversity index25 is one such tool that has been extensively used
and we applied this approach to each of the sequential SMM
samples. This analysis showed that samples from patients that
progressed had a higher index than those that did not (χ2= 11,
p= 0.0006). There was no difference between patients with KRAS
mutations or high-risk features (t(4;14) and gain(1q)). However,
we went on to show that there was a trend for patients that
progressed to have a stable index while those that did not pro-
gress had evidence of ongoing change. These observations are
consistent with a high diversity index that is stable being asso-
ciated with already transformed disease (Supplemental Fig. 16).
In contrast, in cases of SMM, an increase in diversity was seen
over time. These observations suggest that applying the H-indices
to serial samples may be able to identify cases at higher risk of
progression but need confirmation in larger datasets.

Fig. 6 Mutational changes over time. a The mutation rate of patients increased over time. b Progression rate among progressors suggesting that the
mutation rate is high at the SMM stage around progression. c Evolution of the number of mutational drivers per sample over time suggesting fluctuation
but no steady increase. d Evolution of the CCF of each driver mutations over time. Error bands = 95% CI.
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Discussion
Managing SMM is a major clinical goal and the key to doing this
effectively is to define the optimum time for an intervention.
Using genetic variants to identify cases of SMM at substantial risk
of transformation before the development of end-organ damage is
a key aim. Further, adding genetic factors into personalized risk-
assessment tools may improve treatment initiation decisions.

Utilizing a priori information on drivers of MM and analyzing
their impact in SMM, we suggest that a subset of these molecular
events, including KRAS, NRAS, and FAM46C26, are MM defining
events, which when present identify cases in the process of
transformation. This conclusion is supported by the analysis of
the interaction of the variants with a sub-clonal structure based
on a unique series of sequential samples from SMM where there
is ongoing sub-clonal expansion ultimately leading to a change in
clinical behavior. An alternative interpretation may be that high-
risk MM evolves more rapidly through a shorter smoldering
phase thus explaining why it is under-represented in SMM. In
contrast to the genetic hits outlined above, NF-κB dependency at
this disease stage does not have an impact on PFS or sub-clonal
expansion. Thus, while these events occur at early molecular
timepoints and contribute to the genetic complexity of MGUS,
they are not associated with symptomatic behavior.

Further, from a clinical perspective, we identify an important
role for KRAS mutations as a prognostic factor that can sig-
nificantly contribute to risk assignment in SMM27. With a hazard
ratio for progression of 3.8, KRAS mutations are a critically
important molecular prognostic factor. A recent study21, identi-
fied a similar impact confirming the prognostic relevance of these
molecular variants. It is important to consider why such a
prognostic effect is seen in SMM but not in MM and this may
reflect the impact on cell-cycle progression promoting a clonal
sweep and transition to MM. Thus, cases with KRAS mutations
may be better defined as MM in the process of transition that are
better grouped with MM rather than MGUS. Consistent with this
hypothesis, prior studies using the plasma cell labeling index have
found significant differences between precursor phases and
NDMM28.

Further evidence for the role of a proliferation advantage in
symptomatic behavior and with time to progression in SMM
comes from our identification of a case of SMM, which acquired a
translocation at the MYC locus. The CCF of the subclone, defined
by this abnormality, sequentially increased over time. We were,
however, unable to identify a prognostic impact of MYC rear-
rangements, as has been suggested previously11,21. We speculate
that this difference is a reflection of the exclusion of many such
events in this study by the application of the stringent new
diagnostic definitions of SMM. Consistent with this idea, the
current study had a lower incidence of MYC translocated cases
than was seen in other previous series29.

Knowledge of the role of structural events in the precursor
stages of the disease has been limited. Here, we show that one of
the major initiating events of MM, HRD, is stable and does not
constitute a significant mechanism impacting time to progression.
In contrast, segmental CN gains and losses together are seen to
fluctuate over time consistent “clonal tiding” of sub-clones
defined by these abnormalities. In this data set, the sites of
these events seem to be restricted to the sites of known tumor
suppressor genes identified in MM such as on chromosome 16q,
which is one of the most common features in MM at 30% but
only in 18% of SMM. We identified significant differences in the
frequency of CN changes between SMM and MM providing
further support with their role as drivers. However, these differ-
ences may be explained by the different composition of molecular
subgroups in the asymptomatic disease stages. For example, there
are fewer t(4;14) patients in the SMM data set compared to MM,
and therefore the frequency of CN changes associated with this
translocation, such as del(16q), may be impacted by this.

Knowledge of the molecular events underlying the genetic
complexity of the early truncal stages of MM has largely been
extrapolated from the study of NDMM. Here, we have used
sequential samples from the early disease stage of SMM to
improve the resolution of the definitions of sub-clonal structure.

Fig. 7 Mutational signatures. Mutational signatures. a The mutational
signature composition does not differ between patients that progress more
or less than 2 years after the sample was taken and those who do not
progress. Boxplots representing second quartile, median, third quartile,
whiskers representing first, and fourth quartile. All data points including
outliers are represented. b The contribution of mutational signatures did
not vary substantially according to clonality. c The CCF of genes increased
overtime suggesting they may be drivers. HRD hyperdiploid, nHRD non-
hyperdiploid, SBS single base substitution, CCF cancer clonal fraction. Error
bands = 95% CI.
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In order to understand the mechanistic basis driving mutational
abnormalities at these early truncal stages of the disease, we used
the mutation data to identify signatures and studied their rela-
tionship over time. We identified the background signature SBS1
and 5 and show that these are stable over time and were not
influenced by their relationship to the time of transformation.

In 2015, we first reported a significant contribution of APO-
BEC hypermutation signatures in the MAF and MAFB translo-
cated newly diagnosed subgroups, where they made-up a median
of 58% and 44% of the total mutation in the t(14;16) and t(14;20),
respectively. We show that the proportion of APOBEC mutations
is higher in MM than in SMM with a trend toward lower levels in
SMM mafs than MM mafs. These observations are consistent
with there being two distinct levels of APOBEC signatures in
MM. These data suggest that an APOBEC mutational signature
may be associated with progression from SMM to MM, in
keeping with this, we observe a trend towards more rapid pro-
gression to MM in cases with an APOBEC signature over the
level of 5%.

The evolutionary relationship of sub-clones in precursor stages
is critical to disease development and its clinical behavior. While
prior reports have studied paired pre- and post-progression
samples none have had access to multiple sequential samples. In
contrast, in cases of SMM increasing diversity did occur over time
reflecting the ongoing acquisition of a more complex clonal
structure with time in this group. Overall, these observations are
consistent with the idea that applying the Shannon diversity index
to serial samples may be able to identify cases at higher risk of
progression but will need confirmation in a larger data set

(Fig. 8). We show that changes in clonal substructure can be used
to monitor SMM before end-organ damage develops17. Our
findings are consistent with those presented by Bustoros et al
where they also note pre-existing sub-clonal heterogeneity. They
recognize changes in sub-clonal CNA that were associated with
clonal expansion between timepoints. However, the caveat is that
they had only two timepoints and thus were unable to identify
clonal tiding. The current analysis has a greater ability to detect
changes in sub-clonal structure and indicates that branching
evolution is the predominant pattern of progression.

The results of our sequential analysis clearly show that an
increase in a sub-clonal fraction occurs before biochemical pro-
gression and the development of end-organ damage. This
observation is a critical advance because with such changes pre-
ceding clinically relevant events by more than 1 or 2 years a safe
therapeutic window can be defined. Such an approach could
prevent the potential adverse impact of therapeutic intervention
and would restrict intervention to a time point associated with the
maximal risk-benefit ratio for the patient without significantly
impair quality of life in an ongoing fashion.

Knowledge of the genetic basis of SMM can allow us to better
define and monitor early disease stages. The results of this study
suggest that the presence of only a limited number of drivers
typical of MM can identify SMM that are destined to rapidly
develop MM (Fig. 9). Going forward with improved definitions of
SMM it may be possible to identify a group of SMM where
treatment is indicated based on the presence of KRAS mutations,
APOBEC signatures, and monitoring sub-clonal structure over
time.

Fig. 8 Genomic evolution of samples from Patient A and I. a CCF plot of patient A showing the emergence of a SOX2 cluster before progression. Patient
and sample number indicated on axis. The dotted lines represent the % of the difference in CCF from the angle bisector line, which represents perfect
identity between the samples Each color represents one cluster of mutations. b Fish-plot summarizing the clonal evolution in parallel to the paraprotein
evolution in patient A. c Phylogeny tree showing branching evolution of patient A. Colors correspond to Fish-plot. Numbers represent the number of
additional mutations in each clone CCF = cancer clonal fraction. d CCF plot showing the emergence of a CDKN3 cluster before progression in patient I.
Patient and sample number indicated on axis. e Fish-plot summarizing the clonal evolution in parallel to the paraprotein evolution in patient I. f Phylogeny
tree showing linear evolution in patient I. Colors correspond to Fish-plot. Numbers represent the number of additional mutations in each clone CCF =
cancer clonal fraction.
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Methods
Patients and samples. Eighty-two previously untreated SMM patients according
to IMWG 2014 criteria8 were included in the study from the University of
Arkansas for Medical Science after written informed consent. The median follow-
up was 5.18 years (95% CI 3.53–6.59) from diagnosis. An additional 223 previously
published30 newly diagnosed MM patients were used for comparison. Clinical data
were collected and checked for consistency. A summary of patients’ characteristics
in each cohort may be found in Table 1. Ten early MM (EM) patients with new
early myeloma criteria only (bone marrow plasma cell ≥60%, SFLC ratio ≥100, or
more than one Focal lesion on MRI), and 17 MGUS were used for additional
comparison.

CD138+ plasma cells were isolated from bone marrow aspirates by magnetic-
activated cell sorting using the AutoMACS Pro (Miltenyi Biotec GmbH, Bergisch
Gladbach, Germany) or RoboSep (STEMCELL Technologies, Vancouver, Canada).
Plasma cell purity was determined by flow cytometry and only samples with >85%
purity were used in this study. DNA from peripheral blood or stem cell harvest was
used as a matched non-tumor control sample for each patient to exclude germline
variants. Nucleic acids were isolated using the AllPrep DNA/RNA or Puregene kits
(Qiagen, Hilden, Germany).

Data processing, variants calling, filtering, and annotation
Targeted panel. Samples were processed as previously published30. In brief, we
performed targeted sequencing on 125 genes and chromosomal regions that had
previously been shown to be relevant to the biology, prognosis, and treatment of
MM. This included the tiling of the Ig regions and MYC to identify Ig transloca-
tions, the V, D, and J rearrangements27,31,32, and MYC abnormalities.

The panel was divided into a translocation panel and a mutation/copy-number
panel to provide high depth coverage for mutation analysis (0.6 Mb) while
providing lower depth sequencing of translocation regions (4.2 Mb). Each patient
had their tumor and control DNA sequenced, to identify somatic mutations, CN
changes, and translocations. The median mean coverage of each panel may be seen
in Supplemental Table 3. Sequencing data were analyzed as previously described30.
The pipeline is available on Github32.

Whole-exome sequencing. 62 samples (9 controls and 53 samples) underwent
custom-enriched exome sequencing. 200 ng of DNA was used to prepare libraries
using the HyperPlus kit (Kapa Biosystems) and hybridized to a modified SeqCap
EZ MedExome (Roche Nimblegen), which included Ig and MYC regions for
translocation detection. Cross sample contamination was assessed by SNP mis-
match analysis. The median coverage was 93× (IQR 68-128) and 100× (IQR 95-
103) for tumors and controls, respectively.

The files were demultiplexed using bcl2fastq and aligned to the Ensembl hg38
reference genome using BWA mem (v. 0.7.12) (variants were called using Strelka
(v.1.0.14) and single nucleotide variants (SNVs)) were filtered using fpfilter
(https://github.com/ckandoth/variant-filter). A 10% cut-off was used to filter
Indels. Annotation was performed using Variant Effect Predictor (v.85). Sequenza
v3.0.033 was used to detect somatic copy-number aberration and estimate tumor
purity and ploidy. Finally, intra- and inter-chromosomal rearrangements were
called using Manta (v0.29.6) using the default settings and the exome flag specified.

We attempted to reconstruct the clonal population structure of WES samples
that had adequate CNA (n= 44) using Pyclone34. PyClone is a Bayesian clustering
method for grouping sets of deeply sequenced somatic mutations into putative
clonal clusters while estimating their cellular prevalences and accounting for allelic
imbalances introduced by segmental copy-number changes and normal-cell
contamination. All samples with appropriate CNA were used. Data were visualized
using the Fish-plot package35.

Ultra low-pass whole-genome sequencing. Sixty-nine SMM and 116 MM samples
underwent ultra low-pass WGS. Libraries for tumor DNA and control DNA were
prepared as described above using the HyperPlus kit (Kapa Biosystems). Before
hybridization to the panels, library DNA was removed and sequenced directly
using paired tumor and control libraries, which were pooled for sequencing on the
NextSeq500 using 75-bp single-end reads. The average coverage was 0.29 (IQR
0.16–0.51) and 0.21 (IQR 0.18–0.3) for SMM and MM, respectively.

Sequence reads were aligned to Ensembl GRCh37/hg19 and the copy number
was determined using Control-FREEC (v3.0.0).

Gene expression scores. Total RNA from plasma cells was used for gene
expression profiling (GEP) using U133 Plus 2.0 microarrays (Affymetrix). CEL files
were normalized using GCRMA36 for the application of the updated TC algorithm.
MAS5 normalization was also performed when necessary, e.g., for calculation of
GEP4 and NF-κB scores. All expression data were normalized using R Bio-
conductor and transformed to the UAMS TT2 and TT3 NDMM standard
according to a variant of M-ComBat37

Droplet Digital PCR (ddPCR)
Primers. Primers were used to amplify the IGHG3-MYC translocation and the non-
translocated IGH locus. Primers and probes may be found in Supplemental Table 5.

ddPCR reactions. 25 µL reaction mixtures were prepared containing primers (40×,
ThermoFisher Scientific), 10 ng template, and ddPCR™ Supermix (2×, Bio-Rad).
Droplet generation and transfer of emulsified samples to PCR plates were per-
formed according to the manufacturer’s instructions (Instruction Manual, QX200™
Droplet Generator—Bio-Rad). The cycling protocol started with a 95 °C enzyme
activation step for 10 min followed by 40 cycles of a two-step cycling protocol
(94 °C for 30 s and 60 °C for 1 min). The ramp rate between these steps was slowed
to 2 °C/s. The sample was read using a QX200 droplet reader (Bio-Rad). The
absolute number of positive droplets was calculated using QuantaSoft (v.1.7.4).

Quantification and statistical analysis
Time-to-event analysis. Time-to-event analysis was performed in R with all genetic
events with n > 8. The Kaplan–Meier estimator was used to calculate time-to-event
distributions. To determine a cut-off value for the APOBEC contribution, we
performed an independence response test using maximally selected rank statistics
(Maxtest)38. Stepwise Cox regression39 using previously published risk factors
(GEP4, and IMWG 2018 criteria40), and potential novel factors (del(6q), del(13q),
and KRAS mutation) was performed. Only the final model was plotted.

Fig. 9 The distinct molecular effectors at play in the progression from SMM to MM. SMM progresses to MM after acquiring a series of secondary events
such as key mutations, structural events, biallelic events, or APOBEC signatures that drive progression.
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Comparison testing. Kruskal–Wallis or Fisher’s exact tests were used to compare
the median of a continuous variable or the distribution of discrete variables across
groups, when appropriate. Young’s correction was used when appropriate. All p-
values are two-sided, if not specified otherwise.

Signature analysis. Mutational signatures were called using the non-negative matrix
factorization approach (NMF), which determined for each sample, the counts for
the SNV types (6 possibilities) and the 3-base sequence contexts (16 possibilities).
The R package “NMF” was used for all calculations. To determine the number of
signatures, we ran 50 iterations of the algorithm for 2–7 signatures and chose the
number that maximized both the dispersion values and cophenetic distance. The
analysis was then repeated using 1000 iterations for the number of signatures
previously determined, Finally, we used the cosine similarity to determine which
previously published Sanger signatures best fitted the extracted signatures.

The fitting algorithm mmSig41, which fits the mutations identified in each
patient with the mutational signatures that have previously been reported in MM
was used to determine the signature admixture in each sample and among samples
more than 2 years away from progression, samples that were within 2 years of
progression, and samples of patients that had not progressed. Based on the cosine
similarity between the original mutation profiles generated without that signature,
we deduced the corrected contribution of each signature to the mutational profile
of each patient or group.

Diversity analysis. The Shannon diversity index (H) is an index that is commonly
used to characterize species diversity in a community. Shannon’s index accounts
for both abundance and evenness of the species present. The proportion of species i
relative to the total number of species (pi) is calculated, and then multiplied by the
natural logarithm of this proportion (ln(pi)). The resulting product is summed
across species, and multiplied by −1.

H ¼ �
XR

i¼1

pilnðpiÞ:

Ethics. This study was approved by the Institutional Review Boards (IRB) of the
University of Arkansas for Medical Science (#261281). All research was conducted
in accordance with the Declaration of Helsinki.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The targeted panel data are deposited in the EGA database under accession code
EGAD00001005056. The whole-exome sequencing are deposited in the EGA database
under accession code EGAD00001005285. These data are available under restricted
access, access can be obtained by contacting Gareth Morgan. The remaining data are
available within the Article, Supplementary Information, or available from the authors
upon request.
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