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Abstract. We present a semantic game for Gödel logic and its extensions, where the

players’ interaction stepwise reduces arbitrary claims about the relative order of truth

degrees of complex formulas to atomic ones. The paper builds on a previously developed

game for Gödel logic with projection operator in Fermüller et al. (in: M.-J. Lesot, S.

Vieira, M.Z. Reformat, J.P. Carvalho, A. Wilbik, B. Bouchon-Meunier, and R.R. Yager,

(eds.), Information processing and management of uncertainty in knowledge-based systems,

Springer, Cham, 2020, pp. 257–270). This game is extended to cover Gödel logic with

involutive negations and constants, and then lifted to a provability game using the concept

of disjunctive strategies. Winning strategies in the provability game, with and without

constants and involutive negations, turn out to correspond to analytic proofs in a version

of SeqGZL (A. Ciabattoni, and T. Vetterlein, Fuzzy Sets and Systems 161(14):1941–1958,

2010) and in a sequent-of-relations calculus (M. Baaz, and Ch.G. Fermüller, in: N.V.

Murray, (ed.), Automated reasoning with analytic tableaux and related methods, Springer,

Berlin, 1999, pp. 36–51) respectively.
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1. Introduction

The use of games in logic has a long and varied tradition, wherein the types
of games considered have been as manifold as the logics to which they have
been applied. This paper focuses on two major games types, semantic games
and provability games, and the relation between them. Semantic games are
defined with respect to concrete interpretations of the language in question
and seek to determine whether a formula is true under this interpretation.
Provability games on the other hand refer to a higher level of abstraction in
that they aim for a characterization of validity, i.e. truth of a formula under
all possible interpretations. In both cases, game-semantic truth or validity is
witnessed by the existence of a winning strategy in a carefully designed game.

The main idea of the paper is to start with a semantic game and sub-
sequently lift it to a provability game using disjunctive strategies. So what
is a disjunctive strategy? When we talk about an ordinary strategy for a
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player P, it comprises all possible moves by her rival O but only one choice
of P at each choice point for P. When playing with disjunctive strategies,
we keep all possible choices of P open. Intuitively, P then plays not on a
single state but on a set of ‘disjunctive states’, each of which represents a
possibility of how the game might have developed so far. This makes it pos-
sible for P to win games without knowing then interpretation of the atomic
formulas beforehand. The crucial feature of disjunctive strategies is that
they have a finite representation, even though they handle infinitely many
interpretations at once. As it turns out, disjunctive winning strategies can
be seen as proofs in an analytic calculus.

We apply the above method to Gödel logic, one of the most prominent
fuzzy logics. The name ‘fuzzy logic’ encompasses a large family of logics de-
veloped for the task of reasoning under vague information. Fuzzy logics usu-
ally presuppose reasoning about the ‘degrees of truth’ rather than binary dis-
tinction between ‘true’ and ‘false’, and correspondingly their truth functions
are often interpreted as functions over the unit interval [0, 1] (where 0 stands
for absolute falsity and 1 for absolute truth). As an example, in �Lukasiewicz
logic conjunction is modelled by the function x ∗�L y = max(0, x + y − 1),
whereas in Gödel logic it is x ∗G y = min(x, y). It is a distinguishing feature
of Gödel logic that every formula evaluates to either 0, 1, or to the value of
one of the propositional variables occurring in it. Moreover, it is the only
t-norm based fuzzy logic where the truth of a formula (i.e., whether it eval-
uates to 1) does not depend on the particular values in [0, 1] that interpret
the propositional variables, but only on their relative ordering. For these
reasons, Gödel logic can rightfully be called a logic of order.

The present paper builds on the previously published [13], and also has
a precursor in [15]. A similar result for �Lukasiewicz logic has already been
shown in [14]. Apart from many improvements in the definitions and proofs,
this paper extends [13,15] by the treatment of constants and involutive
negations.

We structure our results as follows. There are two major sections consist-
ing of further subsections.

In Section 2, we introduce Gödel logic G� (G extended with the
�-operator) together with a truth degree comparison game for it, where
a player P seeks to uphold, against attacks by opponent O, a claim of the
form F < G or F ≤ G, expressing that the truth value of F is smaller (or
equal) to that of G under a given interpretation. The interaction of P and
O stepwise reduces the initial truth comparison claim to an atomic claim
that can be immediately checked. Then we lift the game from truth de-
gree comparison claims for concrete interpretations to the level of validity,
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i.e., to comparison claims that hold under every interpretation. Following
the general clue given above, the key ingredient is the notion of disjunc-
tive states, triggering disjunctive strategies. It turns out that disjunctive
winning strategies for P correspond to proofs in an analytic proof system,
called sequents-of-relations calculus, introduced in [6].

In Section 3, we extend G� with an involutive negation and constants.
We discuss the general properties of involutions pertinent to our game ap-
proach and add corresponding rules to the game. Lifting the game rules to
disjunctive ones, we obtain a provability game for G�

∗ (S). In Section 3.3, a
purely syntactic criterion for winning states is introduced and relations be-
tween Gödel logics with different involutive negations and sets of constants
are discussed. These results are later used in Section 3.4 to prove polynomial
checkability of final disjunctive states of a game. Thus, the provability game
with disjunctive rules can be interpreted as an analytic calculus, which turns
out to be quite close to an existing calculus for Gödel logic with involutive
negation and constants proposed in [10].

We conclude with a brief summary of our results, followed by suggestions
for future research in this area.

2. A Truth Degree Comparison Game for Gödel Logic

2.1. Gödel Logic with Δ as a Logic of Order

Propositional Gödel logic can be presented in two ways:

1. As the extension of propositional intuitionistic logic by the linearity
axiom (A → B) ∨ (B → A), and correspondingly as the logic of linearly
ordered Kripke frames;

2. As one of the basic t-norm fuzzy logics with truth values in the interval
[0, 1].

Because of this dual perspective, Gödel logic is also called Intuitionistic
Fuzzy Logic in the literature (e.g., [8]). Intuitionistic Fuzzy Logic, however,
was developed by Gaisi Takeuti together with Satoko Titani in [20] com-
pletely independently of the literature on Gödel logic. Gödel logic appeared
for the first time implicitly in an article by Kurt Gödel [16] where he proved
that intuitionistic logic is not a finite-valued logic. It was axiomatized and
further investigated by Michael Dummett [11]. As a t-norm based fuzzy
logic, it is characterised by taking the minimum

‖A ∧ B‖J = min(‖A‖J , ‖B‖J )
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as t-norm modelling conjunction ∧. The truth functions for disjunction ∨
and → (which is the residuum of min) are:

‖A ∨ B‖J = max(‖A‖J , ‖B‖J )

‖A → B‖J =

{
1 if ‖A‖J ≤ ‖B‖J
‖B‖J otherwise.

These truth functions extend any interpretation, i.e., any assignment J
of truth values in [0, 1] to propositional variables, to compound formulas. We
include the propositional constants ⊥ and 
 in G, interpreted by ‖⊥‖J = 0
and ‖
‖J = 1. Negation in G is a defined connective, given by ¬A = A → ⊥.
We moreover extend G to G� by including the following projection operator
[2]:

‖�A‖J =

{
1 if ‖A‖J = 1
0 otherwise.

The atomic formulas of G� are the propositional variables and the propo-
sitional constants. The set of all [0, 1]-valued interpretations is denoted
Int[0,1]. An interpretation J ∈ Int[0,1] satisfies a formula F (written J |=
F ) if ‖F‖J = 1. F is valid if all interpretations satisfy F .

To a formula A of G� in n variables we can associate its truth function
fA : [0, 1]n → [0, 1], which takes as input a tuple (a1, . . . , an) and outputs
‖A‖J where J is any interpretation mapping the i-th variable in A to ai.
The following two features are characteristic of the truth functions of Gödel
logic:

1. fA(a1, . . . , an) ∈ {0, 1, a1, . . . , an};

2. Whether fA(a1, . . . , an) = b holds for some b ∈ {0, 1, a1, . . . , an} depends
only on the ordering of 0, 1, a1, . . . , an, but not on their exact values.

Call order-projective any function f : [0, 1]n → [0, 1] satisfying (1) and (2)
above. Then one can prove the following:

Theorem 1. (functional completeness of G�) A function f : [0, 1]n → [0, 1]
is order-projective iff it is the truth function of some G�-formula.

Proof. See [7].

We want to develop a game-theoretic characterization telling us when a
formula F is satisfied by an interpretation J , i.e. when it takes value 1.
For this it will be useful to look at the more general problem of comparing
the truth value of two formulas. Below we focus on truth degree comparison



From Semantic Games to Provability: The Case of Gödel Logic 433

claims, or just claims, of the form F ≤ G or F < G, where F and G are
G�-formulas. Such a claim is called atomic if both F and G are atomic
G�-formulas. An interpretation J satisfies a claim if ‖F‖J ≤ ‖G‖J or
‖F‖J < ‖G‖J , respectively. In particular, J satisfies a formula F iff J
satisfies the claim 
 ≤ F .

We introduce a semantic game for the stepwise reduction of arbitrary
truth degree comparison claims to atomic ones. Game states consist of truth
degree comparison claims F �G, where � is either ≤ or <. Furthermore each
non-atomic claim carries a marking which points to a non-atomic formula
in the claim (either F or G). Given an interpretation J , at any state F �G
player P seeks to defend and O to refute the claim that J satisfies F � G.

At each non-atomic state of the game, P and O make moves according to
the rules below resulting in a successor claim where the marked formula has
been decomposed. If the successor claim is not atomic, then in an implicit
step, a regulation function ρ marks one of the non-atomic formulas in the
successor claim. The resulting claim is the successor state of the game.

The precise definition of a regulation function will turn out to be inessen-
tial for the theory we are interested in, but for the sake of definedness, we
can think of it as a function ρ from the set of all claims to a 2-element set
{l, r}, where the value ρ(F � G) indicates whether the left or r ight formula
of the claim is to be marked.

The game now goes on until an atomic state F � G is reached, where P
wins (and O loses) if ‖F‖J � ‖G‖J .

To motivate the choice of the game rules, consider the example claim
A → B ≤ C. For any interpretation J , an easy calculation shows us the
following equivalence:

J |= A → B ≤ C iff J |= 
 ≤ C or (J |= A ≤ B and J |= C < 
)

This can be read as a reduction of a claim to simpler (the outermost →
disappears) subclaims, which are connected with ‘and’ and ‘or’. Interpreting
the ‘or’ as a choice of P and the ‘and’ as a choice of O, we arrive at the
following game rule:

P chooses between:

(1): the game continues with 
 ≤ C;

(2): O chooses whether the game continues with B < A or with B ≤ C.

Figure 1 presents similar game rules for all other game states. Their
soundness will be proved in Proposition 3. For each connective there are four
rules, depending on whether the connective appears in a marked formula on
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A ∧ B C: P chooses whether the game continues withA C or with B C.

C A ∧ B: O chooses whether the game continues with C A or with C B.

A ∨ B C: O chooses whether the game continues withA C or with B C.

C A ∨ B: P chooses whether the game continues with C A or with C B.

A → B ≤ C: P chooses between:
(1): the game continues with C;
(2): O chooses whether the game continues with B < A or with B ≤ C.

C ≤ A → B: P chooses whether the game continues
with A ≤ B or with C ≤ B.

A → B < C: O chooses whether the game continues
with B < A or with B < C.

C < A → B: P chooses between
(1): the game continues with C < B;
(2): O chooses whether the game continues with A ≤ B or with C < .

A ≤ C: P chooses whether to continue with A < or with C.

C A: P chooses whether to continue with A or with C ≤ ⊥.

A < C: O chooses whether to continue with A < or with ⊥ < C.

C < A: O chooses whether to continue with A or with C < .

Figure 1. Game rules for the truth degree comparison game

the left or on the right, and whether the truth degree comparison is strict
or non-strict, i.e., of the form F < G or F ≤ G. Some of the rules can
be represented in a uniform manner using � to stand for either < or ≤
(consistently within the rule). In the following, the exhibited compound
formula is the marked formula of the state.1

We denote by τJ
ρ [F � G] the game which is based on the interpretation

J and regulation function ρ, and which starts with the claim F � G.
Inspecting the game rules in Figure 1, we observe that the successor

claims always decrease in logical complexity (i.e., number of logical symbols).
From this we immediately see that:

Lemma 2. (Termination) The game τJ
ρ [F � G] always terminates at an

atomic state.

Two alternative presentations of a game rule will be utilized below.

1This convention will be followed often throughout the article.
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A → B ≤ C

C

B < A B ≤ C

{ C}, {B < A,B ≤ C}}
P P

O O

Figure 2. Decision tree and power set of a game rule

First, we can picture a game rule as a decision tree. E.g, the rule for the
game state A → B ≤ C corresponds to the tree in Figure 2. The leaves of
this tree, i.e., 
 ≤ C,B < A and B ≤ C, are the possible successor claims
of A → B ≤ C.

Second, every game rule can be represented as a set of P-powers.2 A set
X of claims is called a P-power of the non-atomic game state F � G if it is
a subset-minimal set of claims such that in the game starting with F � G,
P can enforce that the successor claim is among the claims in X. We denote
by Pow(F �G) the collection of all such powers. For example, the state A →
B ≤ C has the P-powers {
 ≤ C} and {B < A,B ≤ C}. Similarly we have
Pow(A∧B�C) = {{A�C}, {B�C}} and Pow(C�A∧B) = {{C�A,C�B}}.
For an atomic state F � G, we formally set Pow(F � G) = {{F � G}}.

The next Proposition is formulated in terms of P-powers. It provides the
justification for the previously presented game rules of Figure 1. Put another
way, the game rules are designed so that the following Proposition becomes
true:

Proposition 3. (Soundness of game rules) For any game state F �G and
any J ∈ Int[0,1], J |= F � G iff for some X ∈ Pow(F � G), J satisfies all
claims in X.

Proof. For an atomic state F �G, this holds by definition. For non-atomic
F �G, this is proved for all 12 types of game states separately. Consider for
example the state A → B ≤ C and its P-power

{{
 ≤ C}, {B < A,B ≤ C}}.

Let J ∈ Int[0,1]. Then either ‖A‖J ≤ ‖B‖J , in which case ‖A → B‖J = 1
and so J satisfies the claim A → B ≤ C iff J satisfies 
 ≤ C. Or ‖A‖J >
‖B‖J : Then ‖A → B‖J = ‖B‖J and so J satisfies the claim A → B ≤ C
iff J satisfies B ≤ C.

2This notion is similar to the general definition of a power in game theory, cf. [22].
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We prove the equivalence for the other two examples given above. For
the game state A ∧ B � C with Pow(A ∧ B � C) = {{A � C}, {B � C}} we
observe that an interpretation J satisfies A ∧ B � C if and only if either
‖A‖J < ‖B‖J and J satisfies A � C, or ‖A‖J ≥ ‖B‖J and J satisfies
B � C.

For the game state C � A ∧ B with Pow(C � A ∧ B) = {{C � A,C � B}}
we observe that an interpretation J satisfies C � A ∧ B if and only if J
satisfies both C � A and C � B.

The remaining 9 cases can be shown similarly.

We now need the notion of a winning strategy (henceforth often abbre-
viated ‘ws’) for P. This is exactly what one expects: A strategy telling P
which moves to make (given the history of all previous moves) and always
leading to a winning state. To have a formal notion, consider again the de-
cision tree for a game state F � G. Given the regulation ρ, we can further
expand every non-atomic successor claim into a decision tree according to
the game rules. Repeating this process, we eventually arrive (by Lemma 2)
at a fully expanded tree which is called the game tree of τJ

ρ [F � G]; Its
branches are the possible runs of the game. So the notation indicates that
the initial claim is F �G, and the regulation function and interpretation un-
derlying the game are ρ and J respectively. Note that the choice of J does
not change the game rules, but only the winning condition in the atomic
game states. A winning strategy for P may then be represented as a subtree
of the game tree, where every node has at most one outgoing edge labelled
P, and all the leaves are winning states.

Proposition 4. For any interpretation J and regulation ρ, if P has a win-
ning strategy in τJ

ρ [F � G] then J satisfies F � G.

Proof. Assume that P has a winning strategy in τJ
ρ [F � G]. If F � G is

atomic, there are no further moves in the game. Consequently it must be
the case that F � G is a winning state in τJ

ρ [F � G], and by definition this
means that J satisfies F � G.

Assume now that F � G is not atomic, and let X be the set of successor
claims of F �G in τJ

ρ [F �G] which can possibly occur if P plays according to
her winning strategy. Note that X ∈ Pow(F �G). In each S ∈ X player P has
a winning strategy, namely the restriction of her original winning strategy
to the subgame starting with S. These ‘substrategies’, written in tree form,
have lower depth than the original winning strategy. So we may assume by
induction that J satisfies each S ∈ X. We conclude by Proposition 3 that
J satisfies F � G.
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Proposition 5. If an interpretation J satisfies F�G then P has a winning
strategy in τJ

ρ [F � G] for any regulation ρ.

Proof. If J satisfies F � G, then by Proposition 3 there is a power X ∈
Pow(F � G) (where the marking in F �G is set according to ρ) such that J
satisfies all claims in X. So P can enforce that the successor state of F � G
in the game τJ

ρ [F � G] is contained in X.
Repeating the same kind of reasoning, we see that P can always move

ensuring that the resulting game state is satisfied by J . By Lemma 2, even-
tually an atomic state ν will be reached using this strategy. Then ν must be
a winning state in τJ

ρ [F � G] for P.

Combining Propositions 5 and 4, we obtain:

Theorem 6. An interpretation J satisfies F � G iff for some (or equiva-
lently, any) regulation ρ, P has a winning strategy in τJ

ρ [F � G].

From this formulation it also becomes apparent that the regulation func-
tions play only a minor role: Having a winning strategy for any regulation
implies having one for all regulations.

Remark 7. The validity of a formula F corresponds to the non-strict truth
degree comparison claim 1 ≤ F , and the strict comparison < comes into play
only when such validity claims are decomposed. In fact, the only non-strict
claim in the base language of Gödel logic which has strict successor claims
in our game rules is A → B ≤ C. This begs the question if the appearance
of < is necessary, or if it could be avoided altogether by choosing a different
game rule for A → B ≤ C.

As it turns out, the use of < is necessary in the following sense: There
is no game rule for A → B ≤ C which has only non-strict successor claims
such that the corresponding version of Proposition 3 holds. Indeed, consider
the game state x → y ≤ z where x, y, z are pairwise different variables, and
let P be an arbitrary set of sets of non-strict atomic claims including x, y, z
and the constants 0 and 1. We think of P as a candidate for the P-power
of an alternative game rule for x → y ≤ z. Note that P is necessarily finite.
If the game rule encoded by the set P was as desired we would have the
following for any interpretation J : J |= (x → y ≤ z) iff for some X ∈ P, J
satisfies all claims in X. However, the following argument shows that this
cannot be the case.

Picture interpretations J as points in a three-dimensional cube [0, 1]3,
where the coordinates are given as (J (x),J (y),J (z)). The set Π of inter-
pretations which make the claim x → y ≤ z true is not topologically closed:
We have that (0.5, 0.5, 0.5) /∈ Π, but for every ε > 0, (0.5 + ε, 0.5, 0.5) ∈ Π.
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On the other hand, every non-strict claim between x, y, z, 1 and 0 is sat-
isfied on a closed set in [0, 1]3. Therefore, the set Σ of interpretations which
make all claims in X true for some X ∈ P is a finite union of intersections
of closed sets, and therefore closed itself. In particular Σ 
= Π.

2.2. Disjunctive Winning Strategies

In the previous section we established a game-theoretic characterization of
truth of a claim under an interpretation J . We now want to obtain a similar
characterization for the validity of a claim, that is, truth of a claim under
all interpretations. From Theorem 6, we know that a claim F � G is valid if
for every interpretation J and every regulation τ , P has a winning strategy
in τJ

ρ [F �G]. This description of validity can hardly be called constructive,
as there are infinitely many different interpretations J . But the crucial ob-
servation is that notwithstanding the infinitude of interpretations, the space
of winning strategies is a finite one.

In this section, we will define disjunctive winning strategies, which can be
seen as combinations of finitely many winning strategies in the truth degree
comparison game. We then show that a single disjunctive winning strategy
witnesses the validity of a claim.

Disjunctive strategies can be approached informally in a game-theoretic
way as follows. We imagine that the game τJ

ρ [F � G] is played, but the
interpretation J is unknown to player P and will be revealed to her only
in the very last move. In return, P is granted the option to keep all her
options open whenever she is to make a decision in the game. This leads to
P playing a number of games in parallel, defending the claim that she will
win at least one of the games. A disjunctive winning strategy is then nothing
but a winning strategy in this generalized game. Led by this intuition, we
will introduce disjunctive strategies syntactically in the following.

First, define a disjunctive state D to be a finite nonempty multiset of
claims written D = S1

∨
. . .

∨
Sn. A disjunctive state is called atomic if all

of its disjuncts are atomic claims. We say that an interpretation J satisfies
a disjunctive state D, and write J |= D, if J satisfies at least one of the
disjuncts of D. A disjunctive state D is called winning if it is an atomic
state satisfied by every interpretation.

For a set P = {X1, . . . , Xn} where each Xi is a set of claims, we define∨ P as the set of all disjunctive states

S1 ∨ . . . ∨ Sn

where for each i ≤ n, Si ∈ Xi.
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D C A D C B
( ∧)

D C A ∧ B

D A C B C
(∧ )

D A ∧ B C

D A C D B C
(∨ )

D A ∨ B C

D C A C B
( ∨)

D C A ∨ B

D ≤ C B < A D C B ≤ C
(→≤)

D C ≤ A → B

D B < A D B < C
(→<)

D A → B < C

D C < B A ≤ B D C < B C <
(<→)

D C < A → B

D A ≤ B C ≤ B
(≤→)

D C ≤ A → B

D A < D ⊥ < C
( <)

D A < C

D A C ≤ ⊥
( ≤)

D C A

D A C ≤ ⊥
(≤ )

D C A

D A D C <
(< )

D C < A

Figure 3. Disjunctive rules

Definition 8. (Disjunctive rule) Let S be a non-atomic claim and D a
disjunctive state. A disjunctive rule is a rule of the form

D
∨

D1 . . . D
∨

Dk

D
∨

S

where for a game state S′ obtained from marking a formula in S, the se-
quence D1, . . . , Dk is an enumeration of

∨
Pow(S′).

As an example, let S be the claim A → B ≤ C and S′ the corresponding
game state where A → B is marked. Recall that

Pow(A → B ≤ C) = {{
 ≤ C}, {B < A,B ≤ C}}
and so∨

Pow(A → B ≤ C) = {(
 ≤ C ∨ B < A), (
 ≤ C ∨ B ≤ C)}.

The corresponding disjunctive rule is thus:

D
∨

(
 ≤ C)
∨

(B < A) D
∨

(
 ≤ C)
∨

(B ≤ C)
D

∨
(A → B ≤ C)

Figure 3 contains the disjunctive rules corresponding to all 12 types of game
states.

Definition 9. (Disjunctive strategy) Let D be a disjunctive state. A dis-
junctive strategy for Pin D is a tree of disjunctive states built using
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disjunctive rules, and with root D. A disjunctive strategy is called winning
strategy if all its leaves are disjunctive winning states.

We immediately remark the following analogue to Lemma 2:
Lemma 10. (Finiteness) Every disjunctive strategy is finite.
Proof. Consider a disjunctive rule instance as given in Definition 8. Let d
be the logical complexity (i.e. number of logical connectives) of S, and let
D

∨
Di be one of the premises. We can observe the following: Moving from

D
∨

S to D
∨

Di,

• the number of claims with complexity d strictly decreases; and

• the number of claims with complexity > d is constant.

From this it follows that any sequence of disjunctive rule applications even-
tually leads to an atomic state.

Proposition 11. (Soundness of disjunctive rules) Let J ∈ Int[0,1]. Then
J satisfies the conclusion of a disjunctive rule iff J satisfies all of its
premises.
Proof. Let the disjunctive rule be presented as in Definition 8. Assume
first that J � D

∨
S. If J � D, then clearly J satisfies all premises of the

disjunctive rule as well. On the other hand, if J � S, then by Proposition 3
there exists a power X ∈ Pow(S) such that all claims in X are satisfied by
J . It follows that J � Di for every i ≤ n because Di contains a disjunct
from X.

For the other direction, assume that J � D
∨

S. Then J � D and J � S.
The latter implies, again by Proposition 3, that every power X ∈ Pow(S)
contains a state not satisfied by J . The disjunctive combination of all these
failing states is one of the Di’s, and so J does not satisfy the premise D

∨
Di.

Theorem 12. F � G is valid in G� iff there is a disjunctive ws for P in
F � G.
Proof. Given the claim F �G (seen as a disjunctive state with one compo-
nent), start by exhaustively applying disjunctive rules to it in any order. By
Lemma 10 we eventually obtain a disjunctive strategy with atomic leaves.
By Proposition 11 (and a simple induction on the height of the tree), all
leaves of this tree will be disjunctive winning states because F � G is valid
by assumption. Conversely, if there is a disjunctive ws for P in F � G, then
by definition all of its leaves are winning states. Again by Proposition 11 and
a simple induction on the tree height, it follows that all disjunctive states
in the ws are valid. Hence in particular, the claim F � G is valid.
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2.3. Proof-Theoretical Content of Disjunctive Strategies

Theorem 12 suggests that the disjunctive winning strategies can serve as a
proof system for the logic G�: Its tree-shaped proofs are constructed from
the disjunctive winning states (taken as axioms) by applying disjunctive
rules. However this view of disjunctive winning strategies as syntactic proofs
has a flaw, as the criterion for deciding whether an atomic disjunctive state
is winning (i.e., an axiom) is a semantic instead of a syntactic one. We
will fix this issue in Section 3.3, where we show that it is indeed possible
to efficiently decide axioms in a purely syntactic way, thereby extending a
result in [3].

Meanwhile, let us give the name DWS(G�) to the proof system of dis-
junctive winning strategies. Then DWS(G�) is quite close to the sequents-of-
relations calculus RG∞, and its extension RG�

∞ capturing the �-projection
operator, as developed in [3,5,6]. The approach there is algebraic rather
then game-theoretic.

On a purely notational level, the sequents-of-relations calculus differs
from the disjunctive ws by the use of the symbol | (borrowed from the
hypersequent calculus [4]) instead of

∨
.

The other differences are: RG�
∞ includes the structural rules

D
D | S

ew
and

D | S | S

D | S
ec

of external weakening and external contraction, and it features the logical
rules

D | (
≤C) | (B<A) D | (B≤C)
D | (A → B≤C)

→≤∗ D | (C < B) | (A≤B) D | (C < 
)
D | (C < A → B) <→∗

instead of our rules →≤ and <→ (cf. Figure 3). All other rules are the same.
To show the equivalence of both calculi, we can proceed as follows. First,

for the rule variants →≤∗ and <→∗ the analogue of Proposition 11 can be
shown:

Lemma 13. Let J ∈ Int[0,1]. Then J satisfies the conclusion of the rule
→≤∗ (resp. <→∗) iff J satisfies all of the premises of →≤∗ (resp. <→∗).

Proof. Assume J � D (otherwise the statement is obvious).
If ‖A‖J ≤ ‖B‖J , then J satisfies the conclusion of →≤∗ iff ‖C‖J = 1,

and this is equivalent to the statement that J satisfies the premises of
→≤∗, since J � D and J � (B < A). If on the other hand ‖A‖J > ‖B‖J ,
then J satisfies the conclusion of →≤∗ iff ‖B‖J ≤ ‖C‖J . This in turn is
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equivalent to saying that J satisfies the premises of →≤∗ since it satisfies
the left premise by assumption, and the right premise reduces to B ≤ C
since J � D.

The argument for the rule <→∗ is similar.

It follows that the proof of Theorem 12 goes through if we use →≤∗ and
→≤∗ as disjunctive rules instead of their non-starred versions.

The additional structural rules ew and ec are in fact redundant, since
already the system without them is complete for G�. Note however that the
inclusion of redundant rules might lead to shorter proofs. More such rules
for the sequents-of-relations calculus are discussed in [6]. It is worthwile to
consider the game-theoretic interpretation of the structural rules ew and
ec. Recall that in the reading of sequents-of-relations as disjunctive states,
S1 | S2 corresponds to a parallel play of truth comparison games S1 and S2,
at least one of which must be won by P. The rule

S1

S1 | S2
ew

then denotes a situation where P discards the subgame S2. This is a reson-
able move if P already knows that she can win S1, as in the case

A ≤ A ∨ B

A ≤ A ∨ B | S2
ew

.

However, in our definition of disjunctive strategies, all games must be played
to the very end.

The rule
S | S

S
ec

on the other hand corresponds to P creating a new copy of the game. This
move is only necessary if P plans to make different moves in both copies
of the games. And indeed, our disjunctive rules incorporate the creation of
copies only where it matters, namely in rule applications where P has to
make a choice. Compare, e.g.,

A < B
∨

A < C

A < B ∨ C
< ∨ with

A < B | A < C

A < B | A < B ∨ C
< ∨

A < B ∨ C | A < B ∨ C
< ∨

A < B ∨ C
ec

.
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3. Extensions of Gödel Logic

3.1. Involutive Negations and Constants

An involutive negation [12] is a function (.)∗ : [0, 1] → [0, 1] that maps 0 to 1,
is decreasing (x ≤ y implies y∗ ≤ x∗) and involutive (x∗∗ = x). Every such
function is bijective, continuous, maps 1 to 0 and has a unique fixed-point
[9]. We will denote the fixed-point of (.)∗ by τ∗.

Example 14. The archetype of an involutive negation is ∼�L x = 1 − x,
called �Lukasiewicz-negation, with fixed point τ∼�L

= 1/2. To have another,
non-linear example, set

∼s x =

{
1 − x2 for x ≤

√
5−1
2 ,√

1 − x for x >
√

5−1
2 .

One can readily verify the required properties and check that τ∼s = (
√

5 −
1)/2. The corresponding graph is depicted below.

x

∼s x

Example 15. We call an automorphism a continuous and strictly increasing
function f : [0, 1] → [0, 1] such that f(0) = 0 and f(1) = 1 [19]. Given
an automorphism f : [0, 1] → [0, 1], the function x �→ f−1(1 − f(x)) is
an involutive negation with fixed point f−1(1

2). Trillas [21] proved that all
involutive negations arise in this way. Moreover, for every two involutions
n1, n2 of the interval [0, 1], there exists an automorphism f , s.t. n1(x) =
f−1(n2(f(x))).

For the rest of the paper, we fix an involutive negation ∗ and extend our
logic G� to G�

∗ by setting

‖∼ A‖J = (‖A‖J )∗.

Another extension we wish to consider is by adding truth constants to our
logic: Let S ⊆ [0, 1]. We denote by G�

∗ (S) the logic augmented by truth
constants s̄ for all s ∈ S, where

‖s̄‖J = s.
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Note that the symbols ⊥ and 
 correspond to the truth constants 0 and
1 respectively and have already been included in our logic. Hence, we will
always require S ⊇ {0, 1}. We will tacitly identify S with its set {s̄ | s ∈ S}
of associated constants.

Remark 16. One can readily observe that every G�
∗ (S)-formula evaluates

to either a constant in S, the value of one of its variables, or the involutive
negation of the value of one of its variables. In contrast to G�, it is not
true that truth functions in G�

∗ (S) depend solely on the ordering of the
input values, due to the fact that an ordering of {a1, ..., an, 0, 1} does not
completely determine the ordering of {a1, ..., an, a∗

1, ..., a
∗
n, 0, 1} ∪ S.

For example, consider the formula �(y → ∼ x) in the logic G�
∼�L

. The cor-
responding truth function takes the following different values, even though
the ordering of J (x) and J (y) does not change:

J (x) J (y) J (∼ x) J (�(y → ∼ x))

0.2 0.7 0.8 1

0.4 0.7 0.6 0

Hence truth functions of G�
∗ (S) do not correspond to order-projective

functions anymore, but rather to functions depending on the ordering of the
whole set {a1, ..., an, a∗

1, ..., a
∗
n, 0, 1} ∪ S, for inputs a1, ..., an.

The implication-free fragment of G�
∼�L

([0, 1]) has been considered in [10]
in order to investigate the fuzzy logical content of CADIAG-2 — an expert
system with the purpose of assisting physicians in medical decision making.
In the course of this investigation, a sequent-of-relations calculus SeqGZL
was given. We will see in Section 3.4 that this calculus is closely related to
our game-theoretic approach.

3.2. Adding New Game Rules

Like in the truth comparison game for logic G�, we will focus on truth
degree- comparison claims F ≤ G or F < G. However, now F and G are
G�

∗ (S)- formulas. We add three additional rules to deal with involutive nega-
tion.

A � ∼ B: the game continues with B � ∼ A.

∼ A � B: the game continues with ∼ B � A.

∼ A � ∼ B: the game continues with B � A.
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Two minor differences to the game G� arise.
First, to account for the rule for ∼ A�∼ B the notion of a marking should

be adapted so that it can point at both formulas in a claim if they are both
negated, indicating the subsequent choice of the third negation rule above.

Second, the above rules do not suffice to reduce arbitrary claims to atomic
ones. But we can get quite close, namely to states F � G where either F is
atomic and G is the negation of an atomic formula, or G is atomic and F
is the negation of an atomic formula. We will call such states quasi-atomic.
Note that quasi-atomic states may contain constants from S.

Now if F � G is quasi-atomic, the game is in a quasi-atomic state, where
P wins (and O loses) if ‖F‖J � ‖G‖J .3

That being said, we can prove the analogue of Proposition 3.
Proposition 17. (Soundness of game rules with involutive negation) Let
F and G be formulas of G�

∗ (S). For any game state F � G and any J ∈
Int[0,1], J |= F � G iff for some X ∈ Pow(F � G), J satisfies all formulas
in X.
Proof. We have proved this (cf. Proposition 3) for the rules without invo-
lutive negation in Section 2. Thus, we need to prove it only for the 3 new
rules for involutive negation. For example, given the game state ∼ A � B
and its P-power {{∼ B � A}} we calculate

J |= ∼ A � B ⇐⇒ J |= ∼ B � ∼ ∼ A ⇐⇒ J |= ∼ B � A

using the decreasing (first step) and involutive (second step) property of
involutive negations. The other two rules are proved sound in a similar way.

Unlike in the game for G�, careless application of the negation rules can
lead to non-terminating runs of the game. We may avoid this by considering
only regulations which are defined on states which are not quasi-atomic,
and which never mark single negated formulas in a claim unless the other
formula of the claim is atomic. This prevents loops such as

F � ∼ G, ∼ F � G, F � ∼ G, . . .

Calling these regulations termination-friendly, one can show the follow-
ing:
Lemma 18. Let ρ be a termination-friendly regulation. Then the game
τJ
ρ [F � G] always terminates at a quasi-atomic state.

3This definition of quasi-atomic state differs from that of the basic sequent-of-relations
in [10] where there is no restriction on the number of involutively negated atomic formulas.
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Theorem 19. An interpretation J satisfies F � G iff for some (or equiv-
alently, any) termination-friendly regulation ρ, P has a winning strategy in
τJ
ρ [F � G].

Proof. Similar to the proof of Theorem 6.

Following definitions in Section 2, we extend the notions of disjunctive
winning strategy and provability game to include the following three dis-
junctive rules for negation:

D
∨

(B � ∼ A)
D

∨
(A � ∼ B)

D
∨

(∼ B � A)
D

∨
(∼ A � B)

D
∨

(B � A)
D

∨
(∼ A � ∼ B)

One should slightly modify the notion of a winning disjunctive state. A
disjunctive state D is called winning if it is a quasi-atomic state satisfied by
every interpretation. A disjunctive state is called quasi-atomic if all of its
disjuncts are quasi-atomic claims.

Theorem 20. F � G is valid in G�
∗ (S) iff there is a disjunctive ws for P

in F � G.

Proof. Similar to Theorem 12.

3.3. A Purely Syntactic Criterion for Winning States

So far, our definition of a winning state is a semantic: It is a quasi-atomic
disjunctive state satisfied by every interpretation. In the present section,
we develop a syntactic criterion which can be employed to efficiently check
whether a state is a winning state.

Given a quasi-atomic disjunctive state D = A1 �1 B1

∨
...

∨
Ak �k Bk,

we consider the set Γ = {A1 �1 B1, ..., Ak �k Bk}, where � is > and ≮ is
≥. We call any set Γ arising in this way a quasi-atomic set of inequalities.
Note that D is a winning state in G�

∗ (S) (i.e. valid) iff Γ is not satisfiable
in G�

∗ (S).
Consider first the case that ∗ = ∼�L. Then Γ is a system of linear inequal-

ities, whose satisfiability can be checked in polynomial time using methods
from linear programming (assuming that the constants are presented in a
computable way). To deal with other involutive negations, we now develop
a purely syntactic criterion which will equip us with an effective tool to tell
whether a quasi-atomic disjunctive state is winning (c.f. Section 3.4). It also
allows for easy equivalence proofs for different involutive negations.

Given a literal A, let A∼ denote the syntactic negation of the literal A,
i.e. A∼ = ∼ A if A is unnegated and A∼ = B if A = ∼ B.
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Definition 21. (Constraint Graph) Let Γ be a quasi-atomic set of inequal-
ities. A Γ-literal is a literal built from a variable or constant appearing in
Γ. Define the constraint graph G∗(Γ) as follows. The nodes of G∗(Γ) are the
Γ-literals. The edges of G∗(Γ) are defined by the clauses below. Every edge
can either be marked or unmarked.

1. (A,B) is an edge if A � B or B∼ � A∼ appears in Γ, and it is marked if
� =<.

2. (s, t) is and edge if s and t are constant literals (i.e., constants or negated
constants) and s � t is true when ∼ is replaced by ∗, and it is marked if
� =<.

3. (0, 1) is a marked edge.

4. (0, A) and (A, 1) are edges for every node A.

Furthermore, write � for the reachability relation on G∗(Γ) and define A ≺
B if there is a path in G∗(Γ) from A to B which traverses a marked edge.
Finally, call Γ ∗-consistent if the relation ≺ on G∗(Γ) is irreflexive. Call Γ
complete if for every pair A,B of literals using only variables from Γ and
constants from S, Γ contains A < B or B ≤ A.

Theorem 22. Let Γ be a quasi-atomic set of inequalities with constants
from S. Then Γ is satisfiable in G�

∗ (S) iff Γ is ∗-consistent.

Proof. This proof is an extension of [3]. The new part is the treatment of
constants and involutive negation.

First, if J is a satisfying assignment for Γ, then it is straightforward to
check that J (A) < J (B) whenever A ≺ B in G∗(Γ). It follows that there
cannot be a node A such that A ≺ A, and hence Γ must be ∗-consistent.

For the other direction, let A and B be two Γ-literals. We first show the
following:

Claim: If Γ is ∗-consistent, then at least one of Γ∪{A < B} and Γ∪{B ≤
A} is ∗-consistent as well.

Proof. We write �Γ and ≺Γ for the corresponding relations on G∗,S(Γ) to
distinguish from relations on extensions of this graph. If in G∗,S(Γ ∪ {A <
B}) we have C ≺ C for some literal C appearing in Γ, then we already have
had C �Γ A and B �Γ C before the extension. Hence, B �Γ A, which shows
that Γ∪{B ≤ A} is ∗-consistent. On the other hand, if in G∗(Γ∪{B ≤ A})
we have C ≺ C, then we already have had C ≺Γ A and B �Γ C or C �Γ A
and B ≺Γ C. In both cases, A ≺Γ B, which shows that Γ ∪ {A < B} is
∗-consistent.
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From the claim we can conclude that every ∗-consistent set Γ can be
extended to a complete ∗-consistent set Γ̄. Hence it suffices to show that
such Γ̄ is satisfiable.

Consider the relation �Γ̄ and ≺Γ̄. Since Γ̄ is ∗-consistent and complete,
�Γ̄ is a complete preorder on the set of Γ-literals, and ≺Γ̄ is its strict part.
Let A ≈Γ̄ B if A �Γ̄ B and B �Γ̄ A. Call a Γ-literal A ‘left-of-τ ’ if A ≺Γ̄ A∼ ,
and call it ‘equal-to-τ ’ if A ≈Γ̄ A∼ . Note that it can never be the case that
both a literal A and its negation A∼ are ‘left-of-τ ’.

Now let τ denote the fixed-point of ∗. In a first step, we embed the
‘left-of-τ ’ literals (with their ordering �Γ̄) in the interval [0, τ) such that
every constant literal is mapped to its value in [0, 1]. There are two things
to check. First, that �Γ̄ agrees with the correct ordering of the evaluated
literal constants. This is true because of clause (2) in the definition of G∗(Γ).
Second, the value of a ‘left-of-τ ’ constant literal must indeed be < τ . To see
this, let s ∈ [0, 1] and assume towards a contradiction that τ ≤ s < s∗. Then
by monotonicity τ∗ ≥ s∗ > s∗∗, i.e. τ ≥ s∗ > s by idempotency and the fact
that τ∗ = τ . But now we have s < s, a contradiction.

Next, we assign to all ‘equal-to-τ ’ literals the value τ . Finally, for any
literal A not assigned yet, A∼ is a ‘left-of-τ ’ literal and has been given some
value x. We therefore assign to A the value x∗. This finishes the construction
of the satisfying assignment.

Corollary 23. The logics G�
∗ and G�

� coincide for every pair ∗, � of in-
volutive negations.

Proof. The validity of a formula in G�
∗ is equivalent to the validity of a

set of quasi-atomic disjunctive states, and the validity of a quasi-atomic
disjunctive state is equivalent to the unsatisfiability of its associated set of
quasi-atomic inequalities. The same holds for G�

� .
Therefore is suffices to show that a quasi-atomic set G of inequalities is

satisfiable over G�
∗ iff it is satisfiable over G�

� . Indeed, since there are no
constants but 0 and 1, the constraint graphs G∗(Γ) and G�(Γ) are identical,
and so by Theorem 22, Γ is satisfiable over G�

∗ if and only if it is satisfiable
over G�

� .

In other words, G�
∗ can also be seen as the extension of G� by arbitrary

involutive negations, i.e.

G�
∗ =

⋂
�
G�

�

where � ranges over all involutive negations on [0, 1].
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This equivalence ceases to hold in the presence of constants. For example,
∼ 0.6 → 0.6 is valid in G�

∼�L
({0.6}), but not in G�

∼s
({0.6}) (where ∼s is the

nonlinear involutive negation of Example 14). The underlying reason for
this is that 0.6 is bigger than the fixed-point of ∼�L, but smaller than the
fixed-point of ∼s. On the other hand, the logics G�

∼�L
({0.6}) and G�

∼s
({0.7})

are essentially the same, up to a renaming of the constant 0.6 to 0.7.
To see which logics with constants are equivalent, maybe up to a renaming

of constants, we introduce some notation. Let S, T ⊆ [0, 1] be two sets of
constants, and let ∼S and ∼T be two involutive negations. Every function
f from S to T induces a translation from G�

∼S
(S)-formulas ϕ to G�

∼T
(T )-

formulas ϕf by replacing constants s̄ with f(s).
Call a function f : S → T an (∼S,∼T)-isomorphism if f is an isomor-

phism of the structures (S ∪ {∼S s | s ∈ S},≤,∼S) and (T ∪ {∼T t | t ∈
T},≤,∼T).

Proposition 24. Let S, T ⊆ [0, 1] be two sets of constants, ∼S and ∼T two
involutive negations, and let f : S → T be an (∼S,∼T)-isomorphism. Then
for every G�

∼S
(S)-formula ϕ,

ϕ ∈ G�
∼S

(S) ⇔ ϕf ∈ G�
∼T

(T ).

Proof. As in Corollary 23, it suffices to show a corresponding statement
for sets of quasi-atomic inequalities. Let Γ be a finite set of quasi-atomic
inequalities with truth constants in S, and let Γf be obtained by replac-
ing each truth constant s̄ by f(s). Consider the function Ω from G∗(Γ) to
G∗(Γf ) which maps a constant literal A to f(A) and leaves all other literals
unchanged. From the fact that f is an (∼S,∼T)-isomorphism, it follows im-
mediately that Ω is a graph isomorphism which also preserves markings (cf.
clause (2) in the definition of the constraint graph). Hence Γ is ∼S-consistent
iff Γf is ∼T-consistent, and by Theorem 22 this implies that Γ is satisfiable
over G�

∼S
(S) iff Γf is satisfiable over G�

∼T
(T ).

Example 25. To illustrate this result, let ∼s be the involutive negations
considered in Example 14, and let S contain 0, 1, the fixed point τ∼s =
0.618... and some point to the right of τ∼s , say 0.7. Then a (∼s,∼�L)-isomorphim
f can easily be constructed by mapping 0 and 1 onto themselves, τ∼s to
τ∼�L

= 1/2 and 0.7 to some point to the right of τ∼�L
, like 0.9. By the propo-

sition, φ ∈ G�
∼s

({0, τ∼s , 0.7, 1}) ⇔ φf ∈ G�
∼�L

({0, 0.5, 0.9, 1}).

Example 26. Using Proposition 24, we can conclude that there are – up to
renaming of constants – only three different logics G�

∗ ({0, s, 1}) using three
constants: The logic where s < τ∗, the logic where s = τ∗, and the logic
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∼

D C A B C D C B
( ∧)

D C A ∧ B

D A C B C
( ∧)

D A ∧ B C

D A C D B C
(∨ )

D A ∨ B C

D C A C B
( ∨)

D C A ∨ B

D ≤ C B < A D C B ≤ C
(→≤)

D C ≤ A → B

D B < A D B < C
(→<)

D A → B < C

D C < B A ≤ B D C < B C <
(<→)

D C < A → B

D A ≤ B C ≤ B
(≤→)

D C ≤ A → B

D A < D ⊥ < C
( <)

D A < C

D A C ≤ ⊥
( ≤)

D C A

D A C ≤ ⊥
(≤ )

D C A

D A D C <
(< )

D C < A

D B A
( ∼)

D A ∼ B

D ∼ B A
(∼ )

D ∼ A B

D B A
(∼ ∼)

D ∼ A ∼ B

Figure 4. The calculus DWS(G�
∗ ) of disjunctive winning strategies

where s > τ∗. In general, there are as many logics in n constants as there
are orderings of the set {s1, . . . , sn−2,∼ s1, . . . ,∼ sn−2} satisfying si 
= sj

for i 
= j and which can be realized by an involutive negation on [0, 1].

3.4. A Proof-System for Involutive Negations

Similarly to Section 2, we can think of the disjunctive winning strategies as a
calculus that fits into the framework of sequent-of-relations if we use | instead
of

∨
. We will call this generalized calculus DWS(G�

∗ (S)). By Theorem 20,
the calculus is sound and complete for G�

∗ (S). DWS(G�
∗ (S)) differs from

DWS(G�) by having the three new disjunctive rules for negation, and by
allowing all valid quasi-atomic states (which now contains constants from S
and involutive negation) as axioms. The full calculus is pictured in Figure 4.

We have remarked earlier that in order to accept the disjunctive winning
strategies as proof system in the usual sense, it is pertinent to establish
that we can efficiently check whether the leaves of a strategy for P (or the
leaves of a disjunctive strategy in a semantic game) are indeed winning. As
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a lower limit, checking axioms must be simpler than checking validity of
claims. Now G is known to be coNP-complete, and hence any conservative
extension of it, such as G�

∗ (S), is at least coNP-hard. Checking axioms, on
the other hand, turns out to be decidable in polynomial time:

Corollary 27. It can be checked in polynomial time whether a quasi-
atomic disjunctive state is winning in G�

∗ (S).

Proof. Let D be a quasi-atomic disjunctive state and Γ its associated set
of inequalities. By Theorem 22, it suffices to check whether Γ is ∗-consistent.
This can be done in polynomial time using an algorithm for the reachability
problem as a subroutine.

Remark 28. Another method of efficiently deciding quasi-atomic winning
states in G�

∗ (S) is offered by Proposition 24. The idea is to fix an (∗,∼�L)-
isomorphism from S to some suitably chosen sets of constants S′ (such an
isomorphism can always be found following the construction in the second
half of the proof of Theorem 22 or in Example 25). By Proposition 24,
the problem of verifying quasi-atomic winning states in G�

∗ (S) can then be
reduced to G�

∼�L
(S′), where linear programming methods are available.

Remark 29. Yet another proof of this corollary can be given by interpreting
the satisfiability problem of a finite set of inequalities Γ as a constraint
satisfaction problem (CSP) over a finite domain D. Call ⊗ : D3 → D a
majority operation if ⊗(a, a, b) = ⊗(a, b, a) = ⊗(b, a, a) for all a, b ∈ D. It
has been shown in [17] that a CSP Γ over a finite domain D is solvable
in polynomial time if it is closed under some majority operation. It can
be shown that the median is such a majority operation fitting our setting.
However, some work is required to explicitly reduce the original domain [0, 1]
of possible truth values of an interpretation to a finite set D.

Having formulated our game-theoretic approach as a sequent-of-relations
calculus, the connections to SeqGZL in [10] now become evident. In fact,
SeqGZL has exactly the same logical rules as DWS(G�

∼�L
([0, 1])), except for

implication. The apparent difference of SeqGZL is that it includes structural
rules, rules for constants and ‘trivial’ axioms (A1) and (A2) instead of having
all valid basic sequent-of-relations (analogous to the quasi-atomic states) as
axioms:
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Axioms
(A1)

A ≤ A
(A2), where s t

s̄ t̄

Rules for constants

D | A 0.5
( 1

2)
D | A ∼ A

D | 0.5 A
(12 )

D | ∼ A A

D | A 0̄
( 0)

D | A B

D | 1̄ A
(1 )

D | B A

D | ∼L t A
(∼ c )

D | ∼ t A

D | A ∼L t
( ∼ c)

D | A ∼ t

Structural rules

D | A B | A B
(EC)

D | A B

D | A ≤ B D | C 1 D
(com)

D | C 1 B | A 2 D

D (EW)
D | A B

D | A < B D | B ≤ A
(cut)

D

Given this similarity, one might wonder whether the additional rules of
SeqGZL are needed precisely to derive the valid quasi-atomic states. Indeed,
this follows from the invertibility of the logical rules – which are precisely
our disjunctive rules – together with the following lemma:

Lemma 30. All valid quasi-atomic states are derivable in SeqGZL.

Proof. See Theorem 6.6 in [10].

Unlike in the case of (ec) and (ew), due to their non-invertibility there is
no obvious interpretation of the rules (�0), (1�) and (com) in the setting of
disjunctive winning strategies. But clearly, since DWS(G�

∗ (S)) is complete
already without these rules, their inclusion would not increase the strategic
power of P.

4. Summary and Conclusion

We have investigated Gödel logic, one of the fundamental fuzzy logics, and
some of its extensions from a game semantic perspective.

We presented a game for reducing truth degree comparison claims F < G
or F ≤ G, i.e., claims about the relative order of arbitrary G�-formulas, to
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atomic comparison claims. In Section 3, we have extended this game to
claims involving G�

∗ (S)-formulas, i.e., those that contain involutive nega-
tion and constants different from 0 and 1. In Section 2.2, we demonstrated
that moving from single states to disjunctions of states yields a character-
ization of validity in G� in terms of ‘disjunctive winning strategies’. This
general scheme shows how semantic games can be systematically lifted to
provability games, where the latter operate on the level of validity rather
than the level of truth in a model. Moreover, disjunctions of states can
be viewed as sequents-of-relations in the sense of [5,6]. Hence, disjunctive
winning strategies provide an interpretation of proofs in this calculus.

The same approach has also been applied to the extended version of a
game for G�

∗ (S) in Section 3.2. We introduced involutive negations and ad-
ditional constants. We observed that the choice of a specific truth function
for involutive negation matters only in the presence of additional constants.
In order to justly call our provability game a calculus, we obtained in Sec-
tion 3.3 a simple syntactic criterion allowing us to tell whether a given
quasi-atomic disjunctive state is winning. Finally, we have compared our
provability game to the calculus SeqGZL for Gödel logic with involutive
negation and constants (but lacking implication) introduced in [10].

A number of topics for further research arise from our game based take
on Gödel logic. First of all, one may ask whether our approach extends to
the first-order level. However, in both directions of a potential lifting, several
technical and conceptual issues arise. For example, the naive game rule for
C �∀x.A(x) can induce an infinite choice of O which results in an infinitely
branching calculus. On the other hand, the disjunctive rule inspired by other
first-order calculi

D
∨

C � A(y)
D

∨
C � ∀x.A(x)

is non-invertible and it is not clear how a convincing game-theoretic inter-
pretation of this rule might look like. In this light, it is interesting to see
whether not only sequents-of-relations and SeqGZL but also the arguably
better known hypersequent calculus HLC of Avron [1] can be systemati-
cally related to a truth degree comparison game for Gödel logic. The latter
allows a straightforward extension to the first-order level, which solving at
least technical aspects of the question. Another direction of research is to
generalize our scheme and apply it to other fuzzy logics. The questions
that arise are always two: Whether semantic games can easily be lifted to
provability games and whether the latter may be seen as efficient analytic
calculi. While it has already been shown in [14] that a similar approach
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relates Giles’s game for �Lukasiewicz logic to a corresponding hypersequent
calculus, it remains open whether and how this method can be extended to
yet further fuzzy logics. Finally, we want to point out that a game based
approach to fuzzy logics may open the route to more sophisticated mod-
els of reasoning under vagueness than cannot be achieved by sticking with
truth functional logics. For example, it is natural to ask what happens if the
players of a game have only imperfect information about their opponent’s
moves. For classical logic this leads to Independence Friendly (IF) logic of
Hintikka and Sandu [18]. Given the fact that vagueness may be seen as a
phenomenon involving a lack of full share of (precise) information between
speaker and hearer of vague statements, it seems attractive to explore the
impact of imperfect information on truth degree comparison games.

Acknowledgements. A. Pavlova were supported by FWF project 793 W1255-
N23. R. Freiman and T. Lang were supported by FWF project P 794 32684.
The authors are grateful to the anonymous referees for comments.

Funding Open access funding provided by TU Wien (TUW).

Open Access. This article is licensed under a Creative Commons Attribution 4.0 Interna-

tional License, which permits use, sharing, adaptation, distribution and reproduction in

any medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons licence, and indicate if changes were

made. The images or other third party material in this article are included in the article’s

Creative Commons licence, unless indicated otherwise in a credit line to the material. If

material is not included in the article’s Creative Commons licence and your intended use

is not permitted by statutory regulation or exceeds the permitted use, you will need to

obtain permission directly from the copyright holder. To view a copy of this licence, visit

http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Avron, A., Hypersequents, logical consequence and intermediate logics for concur-

rency, Annals of Mathematics and Artificial Intelligence 4:225–248, 1991.
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