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Abstract

We analyze proton bulk parameters derived from Ulysses observations and investigate the polytropic behavior of
solar wind protons over a wide range of heliocentric distances and latitudes. The large-scale variations of the
proton density and temperature over heliocentric distance indicate that plasma protons are governed by
subadiabatic processes (polytropic index γ< 5/3), if we assume protons with three effective kinetic degrees of
freedom. From the correlation between the small-scale variations of the plasma density and temperature in selected
subintervals, we derive a polytropic index γ∼ 1.4 on average. Further examination shows that the polytropic index
does not have an apparent dependence on the solar wind speed. This agrees with the results of previous analyses of
solar wind protons at ∼1 au. We find that the polytropic index varies slightly over the range of the heliocentric
distances and heliographic latitudes explored by Ulysses. We also show that the homogeneity of the plasma and the
accuracy of the polytropic model applied to the data points vary over Ulyssesʼ orbit. We compare our results with
the results of previous studies that derive the polytropic index of solar wind ions within the heliosphere using
observations from various spacecraft. We finally discuss the implications of our findings in terms of heating
mechanisms and the effective degrees of freedom of the plasma protons.

Unified Astronomy Thesaurus concepts: Heliosphere (711); Plasma physics (2089); Polytropes (1281); Space
plasmas (1544)

1. Introduction

The polytropic equation (e.g., Chandrasekhar 1967)
describes the correlation between the density n and the
temperature T (or pressure P∝ nT) of a fluid, through the
polytropic index γ

T n . 11 ( )µ g-


The polytropic equation becomes vital in space plasma studies,
as it brings closure to the hierarchy of the plasma moments
(e.g., Kuhn et al. 2010). Additionally, the use of the polytropic
relationship can simplify the studies of complicated mechan-
isms, including energy transfer between particles and fields
(e.g., Kartalev et al. 2006). More specifically, the value of γ is
indicative for the energy transfer involved in the observed
process and the effective degrees of freedom f of the plasma
particles. For example, during an adiabatic process, there is no
heat transfer during the plasma compression or expansion. In
this case, the polytropic index is equal to the ratio of the
specific heats

c

c
p

v
, and is related to the kinetic degrees of freedom

of the plasma particles f, such as 1
f

2g = + . For instance,

γ= 5/3 corresponds to adiabatic plasma particles with three
kinetic degrees of freedom ( f= 3). In another special case, an
isothermal process (constant T) is characterized by γ= 1.
During this process, the energy supplied to the system as heat
balances the energy supplied to the system as work.

Additionally, γ= 0 corresponds to isobaric plasmas (constant
P) and γ=∞ to isochoric plasmas, in which n is constant (for
more see Livadiotis 2016, 2019; Nicolaou et al. 2020).
Therefore, γ is a useful tool we can use to understand the
nature of physical plasma mechanisms without solving
complicated energy equations (e.g., Bavassano et al. 1996).
Interestingly, although space plasmas are generally only very
weakly collisional, we can describe some of their aspects using
the fluid description and the polytropic equation, over a wide
range of timescales (Verscharen et al. 2019; Wu et al. 2019;
Coburn et al. 2022).
Several studies apply the polytropic model to particle

observations in planetary magnetospheres. For example,
Arridge et al. (2009) fit a polytropic model to electron
observations obtained by Cassini in Saturn’s magnetotail
plasma sheet. Their analysis shows that the electrons in the
specific region exhibit an isothermal behavior. Dialynas et al.
(2018) use Cassini observations to derive the energetic ion
moments in Saturn’s magnetosphere. The authors then apply a
polytropic model to the derived density and temperature,
revealing different behaviors for the observed species within
the explored region. Nicolaou et al. (2014a, 2015) derive the
bulk parameters of plasma protons in the deep Jovian
magnetotail using observations by New Horizons and identify
intervals with anticorrelated n and T. Linear log10(T) versus
log10(n) fits to these intervals determine an isobaric relation-
ship, indicating that the spacecraft crossed streamlines that
were in pressure balance, or streamlines with plasma with
isobaric behavior (γ= 0). In another study, Park et al. (2019)
use observations by the Time History of Events and
Macroscale Interactions during Substorms (THEMIS) mission
to identify intervals where the plasma n and T are correlated.
The analysis of these intervals makes it possible to calculate the
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polytropic index of ions in the magnetosheath of Earth and
finds that γ varies with the bow-shock geometry.

Numerous other studies investigate the polytropic behavior
of solar wind plasma in the inner heliosphere including at
∼1 au. For instance, Totten et al. (1995) use Helios observa-
tions to derive empirical relationships describing the proton
density and temperature as functions of the heliocentric
distance. These relationships determine a subadiabatic behavior
(γ∼ 1.46) on average. In another study, Newbury et al. (1997)
use Pioneer Venus Orbiter (PVO) measurements in the vicinity
of stream interaction regions. They show a strong correlation
between the proton n and T, which determines an adiabatic
polytropic index γ∼ 5/3, and occasionally γ∼ 2, suggesting
that the degrees of freedom may be restricted. Kartalev et al.
(2006) evaluate the Bernoulli integral fluctuations in the solar
wind in order to select suitable time intervals for further
analysis to estimate γ of solar wind protons and electrons at
∼1 au. The study by Nicolaou et al. (2014b) uses a similar
method to analyze proton observations obtained from multiple
spacecraft at ∼1 au, between 1995 January 1 and 2012 June 30.
Their analysis derives an average γ∼ 1.8. The authors discuss
the variations of γ as a function of the solar activity, as well as
possible biases due to the instrument providing the observa-
tions. Several analyses of Wind spacecraft observations employ
a very similar method to characterize the polytropic behavior of
solar wind protons at ∼1 au (e.g., Livadiotis & Desai 2016;
Livadiotis 2018a; Nicolaou & Livadiotis 2019; Nicolaou et al.
2021a, 2021b; Livadiotis & Nicolaou 2021). These analyses
calculate a nearly adiabatic plasma with γ∼ 5/3 on average.
Moreover, the results show that γ does not depend on the
plasma speed or the solar activity. Recently, Nicolaou et al.
(2020) analyzed high-time-resolution observations of Solar
Wind protons by Parker Solar Probe (PSP), revealing large-
scale variations characterized by γ∼ 5/3 and short-timescale
fluctuations with γ∼ 2.7. The authors discuss possible
mechanisms that restrict the effective degrees of freedom or
involve energy transfer from/to the plasma.

The analyses of measurements in the outer heliosphere offer
unique opportunities to study the evolution of the solar wind
behavior as it propagates away from the Sun. For example,
Elliott et al. (2019) analyze solar wind proton observations by
New Horizons, obtained in the heliocentric distance range
spanning from 21 to 43 au. A linear fitting to log10(T) and
log10(n) in selected time subintervals calculates the variation of
γ over heliocentric distance. Those authors found that γ
approaches ∼0 (isobaric process) in the outer heliosphere.
Interestingly, analyses of Interstellar Boundary Explorer
(IBEX) observations determine γ∼ 0 for the ion plasma in
the inner heliosheath (e.g., Livadiotis et al. 2011; Livadiotis &
McComas 2013; Livadiotis et al. 2013, 2022).

A complete understanding of the solar wind polytropic
behavior within the entire heliosphere requires the analysis of
measurements obtained across multiple locations throughout
the system. In this study, we analyze Ulysses observations that
are obtained over a range of heliocentric distances—and
importantly, almost all heliographic latitudes. We explore
whether the plasma is described with a polytropic relationship
and if this relationship depends on the plasma speed,
heliocentric distance, and/or heliographic latitude. In
Section 2, we describe the proton parameters we use for our
analyses. In Section 3, we describe our methodology. In

Section 4, we show our results, which we discuss extensively in
Section 5.

2. Data

Figure 1 shows the spacecraft attitude information and
plasma parameters we analyze in this study. Among the
spacecraft heliocentric distance R and heliographic latitude Θ,
we use the 4 min resolution proton bulk parameters, which are
derived by fitting Solar Wind Observations Over the Poles of
the Sun (SWOOPS) observations (Bame et al. 1992) to bi-
Maxwellian core-beam distributions. Although the fitting is
applied to the entire proton distribution observed within the
instrument’s energy range, here we use only the slow
population parameters, which normally correspond to the
proton core. In the Appendix, we verify the results by applying
an additional data filter based on the density ratio of the two
populations. The details for the fit parameters are found at
spase://NASA/NumericalData/Ulysses/SWOOPS/Proton/
FitParameters/PT4M. For our analysis, we specifically use the
proton core density n, scalar temperature T, flow speed V, and
Alfvén speedV B

A
0

=
m r

, where B is the magnetic field, ρ is the

mass density, and μ0 is the permeability constant. The scalar
temperature T is calculated from the thermal speeds parallel
and perpendicular to the magnetic field Vth,∥ and Vth,⊥,
respectively, such as ⎡⎣ ⎤⎦T m V m V1

3

1

2 p th,
2

p th,
2= + ^ , where mp

is the mass of the proton. We analyze the time period spanning
from 1992 January 1 to 1998 December 31, which is a period
of minimum solar activity, during which the solar wind is well
structured as a function of the heliographic latitude (see
McComas et al. 1998, 2008). As shown in Figure 1, during the
analyzed time period, most of the fast solar wind
(V> 600 km s−1) is observed at high absolute heliographic
latitudes (∣ ∣Q > 40°).

3. Methodology

3.1. Histograms of Large-scale Variations

Similarly to Nicolaou et al. (2020), we first examine the
large-scale variations of the plasma density and temperature
as functions of the heliocentric distance by constructing the
2D histograms of log10(n) versus Rlog10( ) and log10(T) versus

Rlog10( ), respectively. The resolutions we use for these
histograms are nlog cm10

3( )D - × Rlog au10( )D = 0.075× 0.01
and Tlog eV10( )D × Rlog au10( )D = 0.05× 0.01, respectively.
Further, we normalize each column of these histograms to the
maximum occurrence recorded within the specific Rlog10( )
bin. As explained in Livadiotis & Desai (2016), and later on
in Livadiotis (2018b) and Nicolaou et al. (2020), when there
are not extreme values in the sampled data set, this
normalization brings all the columns to the same level of
occurrence and the correlation between the examined
parameters becomes clearer. We then examine the correlation
between the large-scale variations of the plasma density
and temperature by constructing the 2D histogram of
log10(T) versus log10(n) with resolution Tlog eV10( )D ×

nlog cm10
3( )D - = 0.05× 0.075. Again, because there are no

extreme values in our samples, in order to reveal the
correlation between the two parameters, we normalize the
occurrence values in each log10(T) bin (each column) to the
maximum occurrence recorded within the bin.

2
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3.2. Linear Fits to Short-scale Variations

To investigate the short-timescale variations of n and T and
identify their correlation, we divide the entire data set spanning
from 1992 January 1 to 1998 December 31, in subintervals of
eight consecutive data points. This method groups the data into
∼360,000 subintervals, with the first subinterval containing the
1st–8th data points of the original time series, the second
interval containing the 2nd–9th data points, and so on. Due to
nonuniform gaps in the data, the duration of the subintervals
varies. In Figure 2, we show the histogram of the duration of
the subintervals we analyze in this study. The longest
subinterval we analyze does not exceed 200 minutes.

Following a methodology similar to those of other studies
deriving the polytropic index from single-spacecraft observations,
we perform a linear regression to log10(T) versus log10(n) within
each subinterval (e.g., Newbury et al. 1997; Arridge et al. 2009;
Livadiotis 2018a, 2018b; Nicolaou et al. 2021a, 2021b, 2021c).
The slope of the fitted lines determines γ because, according to
Equation (1):

T nlog 1 log const. 210 10( ) ( ) ( ) ( )g= - +

For each subinterval, we calculate the Pearson correlation
coefficient of log10(T) versus log10(n) and the residuals
between the data points and the fitted line. We use these
parameters to evaluate the applicability of the polytropic model
to the observations. We also calculate the standard deviation

and the mean value of the Bernoulli integral in each
subinterval. We use the Bernoulli integral (BI) for an adiabatic
plasma (γ= 5/3):

V
k T

m
VBI

1

2

5

2

1

2
, 3B

A
2 2 ( )= + +

which is a reasonable simplification in our case, as we discuss
in the Appendix. The ratio of the standard deviation of the

Figure 1. Time series of parameters we use in our analysis. From top to bottom, we show the heliocentric distance of the spacecraft R, its heliographic latitude Θ, the
plasma core density n, temperature T, bulk flow speed V, and Alfvén speed VA.

Figure 2. Histogram of the analyzed subinterval length.

3
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Bernoulli integral over its mean value std BI

mean BI

( )
( )

within each

analyzed subinterval is proportional to the homogeneity of the
analyzed plasma and indicates whether the data points we
analyze correspond to the same streamline or not (e.g., Kartalev
et al. 2006; Nicolaou et al. 2014b; Pang et al. 2015;
Livadiotis 2018a, 2018b; Nicolaou et al. 2021a, 2021b). In
Figure 3, we show three examples of such subintervals; one
with γ∼ 5/3, another with γ ∼2, and another with γ∼ 1.2. All
subintervals shown in Figure 3 exhibit a strong linear
correlation (Pearson coefficient> 0.9) between log10(T) and
log10(n), and they have a std BI

mean BI

( )
( )

ratio <3%.

4. Results

4.1. Large-timescale Variations

In the top left panel of Figure 4, we show the 2D histogram
of log10(n) versus Rlog10( ). The magenta lines on the same
panel show the relationship n∝ R−2, which describes the
spherical expansion of steady-speed plasma. Our result does
not show any apparent deviation from the spherical expansion
model for 1.38 au < R < 4 au ( R0.14 log au 0.610( )< < ). For
R< 1.38 au and R> 4 au, the density is larger than the overall
trend. This is expected because, at these heliocentric distances,
Ulysses observes low-latitude regions (∣ ∣Q < 40°; see Figure 1),
which are sources of denser plasmas, as shown in McComas
et al. (2000).

The bottom left panel of Figure 4 shows the corresponding
2D histogram of log10(T) versus Rlog10( ). According to the
polytropic relationship in Equation (1) and for n∝ R−2, the
radial profile of the plasma temperature is T R 2 1( )µ g- - . The
magenta lines on the same panel show the relationship
T∝ R−4/3, which is the expected temperature profile for
adiabatic plasma with three degrees of freedom (γ= 5/3).
For most of the R range we examine here, the profile of the
solar wind proton temperature is less steep than the magenta
lines. More specifically, our observation is consistent with the
expansion of a subadiabatic plasma (1 5

3
g< < ). During an

adiabatic expansion, the work done by the expanding gas

(dw≡ PdV ) is balanced by the reduction of the internal energy
(dU≡ cvdT), so that dq≡ dU+ dw= 0. The observed temper-
ature profile, however, indicates that the internal energy
reduction is not sufficient to balance the work done by the
gas, which expands with n∝ R−2. As we discuss further in
Section 5, this observation implies that new energy is possibly
supplied by external mechanism(s) to solar wind protons. This
agrees with Richardson & Smith (2003), who construct the
radial temperature profile of the protons, using Voyager
observations within 1 au < R< 70 au. In Section 5, we discuss
possible heating mechanisms that can result in the observed
proton core temperature profile. Finally, for R< 1.38 au and
R> 4 au, the temperature is lower than the overall trend. As
mentioned above, at these radial distances, Ulysses observed
plasmas originating from low-latitude regions. As shown in
McComas et al. (2000), low-latitude regions are sources of
colder (and denser) plasmas. Therefore, the deviation of the
overall temperature profile in this R range is not related to the
polytropic behavior.
The right panel of Figure 4 shows a 2D histogram of log10(T)

versus log10(n). The correlation of the two parameters confirms
that, in general, the proton plasma is subadiabatic. With the
magenta lines, we show the relationship T∝ n γ−1 for γ = 5/3.
Clearly, the slope revealed from the observations is smaller,
corresponding to γ< 5/3, exactly as inferred from the
temperature radial profile. Additionally, the plot suggests that
the slope characterizing the density range spanning from
0.1 cm−3< n< 1 cm−3 is smaller than the slope characterizing
the data in the n< 0.1 cm−3 range. Finally, there is a sudden
decrease in temperature for n> 1 cm−3, which corresponds to
the equatorial flows of slower, denser, and colder solar wind as
we discuss above (see also McComas et al. 2000). In the next
subsection, we show the calculated behavior of the short-
timescale variations.

4.2. Short-timescale Variations

4.2.1. Polytropic Index over Solar Wind Speed

We first examine histograms of the polytropic index we
derive from the analysis of short-timescale subintervals (eight
consecutive data points) and its correlation with the proton
flow speed averaged over each subinterval. The bottom left
panel of Figure 5 shows the 2D histogram of γ and V, while
the top left panel shows the 1D histogram of V and the right
panel shows the 1D histogram of γ. We can identify two
peaks in the histogram of V. The first peak, centered at
V∼ 430 km s−1, corresponds to the slow solar wind observed
at low latitudes (∣ ∣Q < 40°) and the second peak, centered at
V∼ 770 km s−1, corresponds to the fast solar wind that is
observed at high latitudes ( 40∣ ∣Q > ). However, it should be
noted that this structure is very different around solar
maximum, when the latitudinal structure of the solar wind
breaks down (for more details, see McComas et al.
1998, 2008). The histogram of γ values has only one peak
at γ∼ 1.4. In Figure 6, we show the 2D histogram of γ and V
with each column normalized to the maximum occurrence
observed in the corresponding V bin. As explained in
Section 3.1, after this normalization, a possible correlation
between the two parameters is directly revealed, given that
there are not extreme values in the data set. In the same panel,
we show the mean value of γ (white data points) in each V
bin. According to this histogram, there is not any apparent

Figure 3. Three subintervals of log10(T) vs. log10(n). Each set of colorful
circles are data points within subintervals exhibiting a strong correlation
between log10(T) vs. log10(n) (Pearson coefficient > 0.9), while the gray
dashed lines are fitted linear models to the data. Black data points correspond to
an interval that is described with γ ∼5/3, while red data points are fitted with
γ ∼ 2, and blue data points with γ ∼ 1.2.
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correlation between γ and V. This result agrees with studies
of proton plasmas at ∼1 au (e.g., Livadiotis 2018a, 2018b;
Nicolaou & Livadiotis 2019) and in the inner heliosphere
(e.g., Totten et al. 1995; Nicolaou et al. 2020).

4.2.2. Polytropic Index over Heliocentric Distance and Heliographic
Latitude

In Figure 7, we show 2D histograms of γ and V, for
specific R bandwidths with ΔR= 0.5 au. We use the same
format as in Figure 6, in terms of normalizing the occurrence
and calculating the average value of γ (white data points) and
its standard error (error bars), for each V bin. The range of the

observed V is different for different R (for a different panel in
Figure 7), because the solar wind speed is organized by the
latitude, and the latitude observed by the spacecraft orbit is a
function of the heliocentric distance. For example, the fast
flows in the polar regions are observed only over heliocentric
distances between ∼1.75 and ∼4.25 au (see also Figure 1). In
general, the plots in Figure 7 confirm that there is not any
apparent systematic correlation between γ and V. In Figure 8,
we show the mean value of γ and its standard error (error
bars), calculated for each R bin (for each panel) shown in
Figure 7. According to our result, the polytropic index
fluctuates between 1.38 and 1.47 at R< 4.5 au and drops by

Figure 5. Histograms of γ and V. (Bottom left) Two-dimensional histogram of the polytropic index and the solar wind proton flow speed, (top left) 1D histogram of
the proton flow speed, and (right) 1D histogram of the derived polytropic index.

Figure 4. Large-scale variations of plasma density and temperature. (Top left) Two-dimensional histogram of log10(n) vs. Rlog10( ). The magenta lines show the
n ∝ R−2 relationship. (Bottom left) Two-dimensional histogram of log10(T) vs. Rlog10( ). The magenta lines on the same panel show the relationship T ∝ R−4/3.
(Right) Two-dimensional histograms of log10(T) vs. log10(n), while the magenta lines in the same panel show the relationship T ∝ n2/3. The white lines in each panel
correspond to the maximum occurrence in each column of the corresponding histogram.

5
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Figure 6. Two-dimensional histogram of γ and V, with each column normalized to the maximum occurrence observed in the corresponding V bin. The white data
points show the mean value of γ in each V bin. The standard error of the mean values of γ are too small, and therefore are not shown here.

Figure 7. Two-dimensional histograms of γ vs. V at different heliocentric distances. The occurrence in each V bandwidth is normalized to the maximum occurrence
value within the V bin. At the top of each panel, we show the heliocentric distance bandwidth that corresponds to the plot.
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δγ∼ 0.1 for R> 4.5 au. We further discuss this result in the
next section.

In order to examine a possible dependence of γ on Θ, we plot
2D histograms of γ and V for different Θ bins (Figure 9). Again,
there is no evidence for a systematic correlation between γ and V.
We then calculate the mean value of γ and its standard error for
each Θ bin, which we show in Figure 10. The result indicates that
γ increases slightly toward the Sun’s poles. The mean value of the
polytropic index is γ± δγ= 1.45± 0.02 at 70° <Θ< 90°, and
γ± δγ= 1.42± 0.02 at −90° < Θ < –70°. However, γ drops to
γ± δγ= 1.29± 0.01 at −10° < Θ < 10°.

For completeness, in Figure 11, we show 2D plots of the
mean γ and its standard error δγ as functions of R and Θ in a
polar coordinate system. For these 2D histograms, we use a
resolution δ R× δΘ= 0.25 au× 5°. We can clearly see that the
estimated polytropic index decreases slightly with increasing R
and for Θ→ 0°. Additionally, the plot confirms that γ is
slightly higher in the south pole than it is in the north pole. The
standard error of γ seems to be higher in the equatorial regions
close to the Sun, where the spacecraft was moving fastest and
spent the least time, and in mid, positive latitudes away from
the Sun.

4.2.3. Homogeneity and Polytropicity

The polytropic relationship should be determined in analyses
of observations of homogeneous plasmas (e.g., Newbury et al.
1997). In other words, the polytropic relationship is applicable
in plasmas within the same streamline (e.g., Totten et al. 1995;
Kartalev et al. 2006; Nicolaou et al. 2014b; Nicolaou &
Livadiotis 2017). As we explain in Section 3.2, we use a
simplified method to quantify the homogeneity of the analyzed
subintervals through the Bernoulli integral variation, which is
based on the method proposed by Kartalev et al. (2006). In the
left panel of Figure 12, we show the 2D plot of std BI

mean BI

( )
( )

,
averaged over the R and Θ bins (in the same format as in
Figure 11). According to this plot, the mean std BI

mean BI

( )
( )

is at its
maximum (∼4%) at 1 au <R <2 au and decreases with
increasing radial distance. The middle and the right panels of
Figure 12 show 2D plots of the Pearson correlation coefficient
between Tlog10( ) and nlog10( ) and the residuals of the linear
fitting we apply to the data within the analyzed subintervals,
respectively, in the same format as in Figure 11. Both
magnitudes are relevant to the “goodness” of the linear fit of
Equation (2) to the data points within each subinterval. Both
plots support that the polytropic model describes better the

observations obtained closer to the Sun. In Section 5, we
discuss these results in much more detail.

4.2.4. Resolution of Bias Caused by Density Errors

Nicolaou et al. (2019) showed that typical linear fits of
Equation (2) to spacecraft observations with statistical
uncertainties lead to systematic errors in the calculation of γ.
More specifically, statistical uncertainties in the plasma density
result in calculations of γ that are artificially closer to the
isothermal value (γ= 1). On the other hand, the determination
of the special polytropic index, 1

1
n º

g-
, by fitting nlog10( )

versus Tlog10( ) with

n T

T

log
1

1
log const

log const 4

10 10

10

( ) ( )

( ) ( )
g
n

=
-

+

= +


suffers systematic errors (ν shifting toward 0), depending on
the statistical uncertainties of the plasma temperature. The
authors propose a method that excludes biased derivations by
selecting only the intervals for which the determined γ and ν

satisfy

a
1

1 , 5( )g
n

- - <


where a is the desired accuracy threshold.
In this section, we would like to verify the discovered trends

of γ, using only the intervals that satisfy the criterion in
Equation (5). We adopt the suggested data filtering, using a
threshold a= 0.25, which selects an appropriate amount of data
points to construct reasonable profiles of the mean γ values.
Figure 13 shows the determined ν as a function of the
determined γ. The dashed line shows 1

1
n º

g-
. The blue data

points correspond to the derivations that pass the applied filter,
while the red data points correspond to derivations that do not.
In Figure 14(a), we show the 2D histogram of γ and V using

the filtered γ values and using the same format as in the bottom
left panel of Figure 5. The filter removes a significant number
of isothermal values, resulting in a significant decrease of the
occurrence at γ= 1. Nevertheless, there is nothing different
regarding the most frequent value of γ and its apparent
independence of V. In Figures 14(b) and (c), we show the mean
γ as a function of R and Θ, respectively. We use the same
method as explained in Section 3, but we use only the values
that satisfy the applied filter. The profiles of γ verify the
behavior of γ shown in Figures 8 and 10. The mean values in
Figure 14, however, are slightly larger due to the removal of
the isothermal values.

5. Discussion and Conclusions

Observations of solar wind protons, obtained by Ulysses
during solar minimum and within the heliocentric distance
range from ∼1.5 to ∼5.5 au, support the conclusion that the
thermal proton plasma is subadiabatic. The polytropic behavior
is evident in both large-scale and small-scale variations of the
proton density and temperature. In general, the large-scale
variations agree with previous studies in the inner and outer
heliosphere. Totten et al. (1995), determined γ∼ 1.46 for solar

Figure 8. Mean value of γ as a function of the heliocentric distance. The error
bars correspond to the standard error of the mean value.
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wind protons, by characterizing the radial profiles of proton
density and temperature observed by Helios between 0.3 and
1 au. Huang et al. (2020) and Nicolaou et al. (2020) used

observations by the Parker Solar Probe between 0.27 and 1 au
and showed that a subadiabatic model describes the temper-
ature profile reasonably well. Moreover, studies of the thermal

Figure 10. Mean value of γ as a function of the heliographic latitude.

Figure 9. Two-dimensional histograms of γ vs. V at heliographic latitudes. The occurrence in each V band is normalized to the maximum occurrence value within the
V bin. At the top of each panel, we show the heliographic latitude band that corresponds to the plot.
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Figure 11. Two-dimensional plots of (left) mean γ and (right) its standard error, as functions of the heliocentric distance and heliographic latitude.

Figure 12. (Left) The relative deviation of the Bernoulli integral within the subintervals we analyze to derive the polytropic index, as a function of the heliocentric
distance and the heliographic latitude. (Middle) Pearson correlation coefficient between Tlog10( ) and nlog10( ), and (right) fitting residuals between the polytropic
model and the data within the analyzed subintervals, both as functions of the heliocentric distance and the heliographic latitude.
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(core) proton temperature in the outer heliosphere using
observations by Voyager 2 and New Horizons (e.g., Richardson
& Smith 2003; Zank et al. 2018) show additional evidence that
thermal protons absorb energy as they propagate outward.
Richardson & Smith (2003) suggest that thermal protons in
the inner heliosphere gain energy (are heated) from stream
interaction and/or shocks. In the outer heliosphere, the heating is

supplied by pick-up ions. Zank et al. (2018) extends the classical
models by Holzer (1972) and Isenberg (1986) to develop a
general theoretical model that describes the heating of solar wind
thermal protons by low-frequency turbulence, excited by pick-up
ions. The radial profiles of the solar wind proton parameters
produced by the model are in excellent agreement with the
observations.

Figure 13. The special polytropic index ν as a function of the polytropic index γ, determined from linear fits to nlog10( ) vs. Tlog10( ) and fitting Tlog10( ) vs. nlog10( )
observations, respectively. The dashed line shows 1

1
n º

g-
. We apply the filter suggested by Nicolaou et al. (2019), by selecting only data points for which γ is within

0.25 of the definition (blue data points). The red data points are excluded for this test.

Figure 14. The main results of this study, using only the calculations from the filtered intervals. (a) Two-dimensional histogram of the polytropic index and proton
bulk speed. (b) The mean polytropic index as a function of the radial distance and (c) as a function of heliolatidute (see text for details).
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We attempt to derive γ for individual plasma streamlines by
investigating the small-scale fluctuations of n and T. Our small-
scale fluctuation analysis determines an average polytropic
index γ∼ 1.4. This is a smaller γ than the one calculated from
observations at ∼1 au in previous studies. For instance,
Nicolaou et al. (2014b) use observations from multiple
spacecraft at ∼1 au and calculate an average proton plasma
polytropic index γ∼ 1.8. Several other studies calculate a
nearly adiabatic proton plasma at ∼1 au (e.g.,
Livadiotis 2018a, 2018b, 2019; Nicolaou & Livadiotis 2019).
The more recent study by Nicolaou et al. (2020) uses
observations by the Faraday Cup on board Parker Solar Probe
and shows that, although the large-scale variations of the
plasma density and temperature reveal a nearly subadiabatic
plasma, the short-scale variations are characterized with an
average γ∼ 2.7. On the other hand, Elliott et al. (2019) analyze
New Horizons observations in the outer heliosphere and show
that the proton plasma parameters follow a polytropic behavior
with γ∼ 1.3 at ∼20 au, and γ decreases with radial distance
such that γ< 1 for R> 30 au. Livadiotis (2019) combines these
results with the results of different studies in the inner and the
outer heliosphere to support that the polytropic index decreases
gradually from γ ∼ 5/3 at R ∼ 1 au to γ ∼ 0 in the inner
heliosheath (e.g., Livadiotis & McComas 2013; Livadiotis et al.
2013).

The results of this study add to our knowledge of the
polytropic index value and its variations in the R range from
∼1 to 6 au, as well as over the heliographic latitude. According
to our Figure 8, γ decreases by δγ∼ 0.1 as the heliocentric
distance increases from 4.5 to 5.5 au. In order to increase the
statistical accuracy of the data points, in Figure 8, we had to use
relatively large R bins (ΔR= 0.5 au). However, the same
dependence of γ on R is supported by Figure 11, in which we
use smaller R bins (ΔR= 0.25 au), and thus we have more
samples of γ over R. Because we do not see a drastic change of
γ over the range of R we examine here, we cannot provide
accurate estimations of the radial profile of γ. However, if the
polytropic index decrement with R is real, then the plasma
particle effective degrees of freedom need to increase as the
plasma flows outward, or else heat needs to be more effectively
provided to the plasma by some mechanism(s) over larger
radial distances. This can be realized by considering the
relationship between γ, f, the work done by the expanding gas
dw, and the heat supplied to the system dq. This relationship
(see also Livadiotis 2019) is

dq

dw

f

2
1 1. 6( ) ( )g= - +


If we assume adiabatic protons (dq= 0) for the R range we
observe with Ulysses, then 1

f

2g = + , and the observed trend

of γ could be due to f increasing from ∼3 at ∼1 au to ∼7 at
∼6 au. Alternatively, if we consider f= 3 for the distance range
we examine, then dq

dw

5 3

2
= g- . In this case, there is no

significant heat transfer at ∼1 au, but at ∼6 au, dq

dw
increases

to ∼55%. Our result, combined with the studies by Livadiotis
et al. (2013), Elliott et al. (2019), and Livadiotis & McComas
(2013), supports that plasma protons are not isentropic beyond
∼1 au, through the entire heliosphere. Therefore, there should
be a mechanism (e.g., turbulence; see Marino et al. 2008;

Livadiotis 2019) that heats protons more efficiently at larger R.
We should also consider that the ionization cavity of hydrogen
is estimated to be within ∼4 to ∼5 au (McComas et al. 1999),
and taking into account the radial profile of the large-scale solar
wind temperature, it is possible that ions beyond 4–5 au are
heated more effectively by low-frequency turbulence that is
triggered by pick-up ions.
Our study indicates that the proton polytropic index is

varying with the heliographic latitude as well. More
specifically, the mean value of γ decreases from ∼1.45 to
∼1.3 as Θ changes from −90° to 0°. Then, the mean γ
increases from ∼1.3 to ∼1.4 as Θ increases from 0° to 90°,
creating a slight asymmetry in the γ versus Θ profile. It is
possible that the observed change in the polytropic index
over Θ reflects the different thermodynamic properties of
solar wind plasma originating in different solar regions. More
specifically, this result could be an indication that the
“coronal holes” plasma is more adiabatic than the plasma
in the equatorial region. This would mean that, considering
spherical expansion, the temperature of the plasma in the
equatorial region drops less effectively than the temperature
of the plasma in the polar regions. If we adopt the hypothesis
of protons being heated by the dissipation of low-frequency
waves generated by pick-up ions, then the heating is not
uniformly supplied, at least within the examined R range. A
nonuniform shape of the ionization cavity could be the reason
for this. It is important to remind the reader that, due to the
spacecraftʼs orbital parameters (Figure 1), we cannot infer
with certainty whether the observed variability of γ over the
orbit is a natural change of γ over R, or Θ, or both. Also,
during the solar minimum period we examine here, the solar
wind speed has a characteristic profile over Θ. However, the
2D histogram of γ versus V in Figure 6 does not resolve a
clear correlation, possibly because the resolution of the
histogram is comparable to the overall change of γ. Never-
theless, the fact that several analyses of observations by
different spacecraft found that γ does not vary with V is an
indication that the observed variability of γ over Ulyssesʼ
orbit is mostly due to γ varying over R and not over Θ.
We have also calculated the Bernoulli integral of the plasma

protons, assuming a nearly adiabatic plasma. According to
Nicolaou et al. (2021a), this is a valid assumption of the solar
wind at ∼1 au. The same assumption holds in our case, because
the average γ is 1.4, and the solar wind flow speed is almost
always ten times (or more) larger than the thermal speed (see
Appendix A). The relative variation of the Bernoulli integral
over the examined intervals is a measure of the plasma
homogeneity. According to Figure 12, the homogeneity of the
plasma protons increases with increasing R and Θ. This could
mean that the plasma originating in the polar region (fast solar
wind from the polar coronal holes) is less turbulent than the
plasma originating in the equatorial latitudes (slow solar wind),
and that the plasma becomes more homogeneous as it
propagates outward.
In the middle panel of Figure 12, we show the linear

correlation between Tlog10( ) and nlog10( ), while the right
panel of the same figure shows the residuals between the data
points and the polytropic model we fit to them, as functions
of R and Θ. Our analysis supports the notion that the linear
model fits best the observations obtained closer to the Sun,
even though the Bernoulli integral has larger relative
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fluctuations there. Thus, this result could be due to larger
statistical fluctuations of n and T in larger R.

Finally, we repeat the core analysis using the data filtering
suggested by Nicolaou et al. (2019) and show that, even after
this strict data filtering, we determine the same trends for γ

versus R and γ versus Θ. By doing this, we eliminate the
possibility that our results suffer the systematic biases caused
by statistical errors in density measurements, as predicted by
Nicolaou et al. (2019).

G.L. and D.J.M were supported in part by the IBEX
(80NSSC20K0719) and IMAP (80GSFC19C0027) NASA
missions.

Appendix A
Bernoulli Integral

In Figure A1, we show the Bernoulli integral and its three
terms (dynamic, thermal, and magnetic) for the time period we
examine in this paper, and assuming γ= 5/3 (Equation (3)).
The thermal and the magnetic terms are considerably (i.e., at
least ten times) smaller than the dynamic term of the integral
for most of the time we examine here. Similar to the Bernoulli
integral of protons at ∼1 au examined by Nicolaou et al.
(2021a), the thermal term does not become dominant for the
range of γ we estimate in our study. Therefore, the estimations
of the Bernoulli integral do not suffer significant errors by
assuming an adiabatic plasma in our case. In a more simplified

Figure A1. The Bernoulli integral and its terms for the time interval we analyze in this study. The value of the integral (dashed black) is almost identical with the
dynamic term (gray), which is the dominant term. The thermal term (red), which assumes adiabatic plasma (γ = 5/3), and the magnetic term (blue) are more than an
order of magnitude smaller than the dominant term for the most time.
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approach, the integral could be estimated by the calculation of
the dynamic term only (for more details, see Nicolaou et al.
2021a).

Appendix B
Data Filtering Based on Density Ratios

Within the present paper, we analyze the slow proton
population parameters, which normally correspond to the core
proton distribution. There are occasions, however, when the
magnetic field folds back on itself. On these occasions, the
slow population would be the proton beam. In this appendix,
we reanalyze the entire time interval, after we exclude all
measurements where the density of the slow population is
smaller than the density of the fast population. Although this
filter enhances the chance that our analysis excludes proton

beams, it possibly also excludes intervals where the slow
population is the core but for various reasons the beam-to-core
density ratio is overestimated. However, this is a novel data
filter and suitable for the simple sanity check we want to
perform here. Figure B1(a) shows the 2D histogram of Tlog10( )
versus nlog10( ) for the filtered data, in the exact same format as
in the right panel of Figure 4. The histogram supports the
evidence for subadiabatic behavior of the large-timescale
variations of the proton plasma. Panels (b) and (c) of
Figure B1 show the polytropic index derived from the analysis
of the short-timescale variations as a function of the radial
distance and the heliographic latitude, respectively. Although
the analysis of the filtered data calculates a slightly higher γ
than the one derived from the unfiltered data, it still supports
the evidence of the subadiabatic behavior with the character-
istic trends over Ulyssesʼ orbit.

Figure B1. Results of the filtered data analysis. (a) 2D histogram of Tlog10( ) vs. nlog10( ) for the entire, filtered data set, in the exact same format as in the right panel of
Figure 4. (b) The mean polytropic index determined from the analysis of the short-timescale variations as a function of the radial distance and (c) as a function of
heliolatidute.
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