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Abstract

Introduction: Increasing evidence implicates proteostatic dysfunction as an early

event in the development of frontotemporal dementia (FTD). This study aimed to

explore potential cerebrospinal fluid (CSF) biomarkers associated with the proteolytic

systems in genetic FTD caused by CHMP2Bmutation.

Methods: Combining solid-phase extraction and parallel reaction monitoring mass

spectrometry, a panel of 47 peptides derived from 20 proteins was analyzed in CSF

from 31members of the Danish CHMP2B-FTD family.

Results:Comparedwith family controls, mutation carriers had significantly higher lev-

els of complement C9, lysozyme and transcobalamin II, and lower levels of ubiquitin,

cathepsin B, and amyloid precursor protein.

Discussion: Lower CSF ubiquitin concentrations in CHMP2B mutation carriers indi-

cate that ubiquitin levels relate to the specific disease pathology, rather than all-cause

neurodegeneration. Increased lysozyme and complement proteinsmay indicate innate

immune activation. Altered levels of amyloid precursor protein and cathepsins have

previously been associated with impaired lysosomal proteolysis in FTD.
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Highlights

∙ CSF markers of proteostasis were explored in CHMP2B-mediated frontotemporal

dementia (FTD).

∙ 31members of the Danish CHMP2B-FTD family were included.

∙ Weused solid-phase extraction andparallel reactionmonitoringmass spectrometry.

∙ Six protein levels were significantly altered in CHMP2B-FTD compared with con-

trols.

∙ Lower CSF ubiquitin levels in patients suggest associationwith diseasemechanisms.

1 INTRODUCTION

Frontotemporal dementia (FTD) comprises a group of early-onset

dementia syndromes characterized by high heritability. Pathogenic

variants in a dozen genes have been demonstrated, of which the

C9orf72, GRN, and MAPT genes are implicated in more than half of

familial cases. A point mutation in the CHMP2B gene (c.532-1G > C)

has been identified as a cause of autosomal dominant dementia in

a Danish family with behavioral variant FTD.1 The CHMP2B protein

is a core component of the heteromeric ‘endosomal sorting com-

plex required for transport III’ (ESCRT-III). This protein complex is

involved in biogenesis of endocytic multivesicular bodies (MVBs),

membrane repair, and regulation of autophagy.2,3 Most well-described

is the role of ESCRT-III in the endo-lysosomal sorting of ubiquiti-

nated cargo: The protein complex binds transiently to endosomal

surfaces and is responsible for the scission of membranes budding

into the MVB compartment during the formation of intraluminal

vesicles. The mutation renders CHMP2B and thereby the ESCRT-

III unable to dissociate from its binding partners and disassemble

from endosomal membranes, where the protein accumulates.4,5 The

result is defective trafficking of endosomes and impaired fusion

of endosomes and autophagosomes with lysosomes.3,6 Correspond-

ingly, enlarged endosomes have been observed in CHMP2B-FTD

patient brain tissue and fibroblasts, as well as animal and cell mod-

els expressing the CHMP2B mutation.3,4,6–9 It has not been fully

established whether the organelle malformation itself or mecha-

nisms downstream of it are driving neurodegeneration.7,8 How-

ever, the mutations that cause FTD converge on defects in the

autophagy-lysosomal and ubiquitin-proteasomal systems.10 Disturbed

proteostasis particularly affects neurons, presumably owing to their

specialized morphology and post-mitotic longevity. A distinct neu-

ronal histopathology has been described in post-mortem tissue

from CHMP2B-FTD patients, namely the presence of cytoplasmic

ubiquitin and p62 inclusions (FTLD-UPS), in the absence of tau,

TDP-43 or FUS deposits.11,12 This hallmark has been recapitu-

lated in three independent, transgenic mouse models expressing

mutant CHMP2B.13–16 Interestingly, reactive gliosis was present in all

CHMP2B-mice, and one study showed that the endo-lysosomal defects

are present in both microglia and neurons,14,17 indicating involve-

ment of the innate immune system – another common feature of FTD

subtypes.

At present, there are no disease-modifying treatment options and

nodisease-specific biomarkers for FTD that can inform clinicians about

expected disease onset, rate of progression, timing of potential treat-

ment, or monitoring of the response to pharmacological intervention.

Collection of cerebrospinal fluid (CSF) is essential for establishing

such biomarkers. Peptides that reflect brain pathology can reach the

CSF as a consequence of neurodegeneration, through secretion of

soluble proteins or secretory vesicles, or from the blood across the

blood-brain barrier (BBB).18 We have recently shown that a marker

of axonal degeneration, neurofilament light (NfL), starts to increase

in CSF and serum several years before debut of clinical CHMP2B-

FTD.19,20 Genetic disorders provide ideal settings for investigating this

preclinical stage, and the Danish CHMP2B-FTD family offers a geneti-

cally homogeneous cohort for investigating the underlying pathology

in a familial FTD subtype. The CHMP2B animal and cell models have

shown that endo-lysosomal components such as certain cathepsins,

LAMPs and Rab proteins are affected by CHMP2B mutation,4,7,8,14,21

but the mediators of proteostasis have not yet been assessed in CSF

from CHMP2B-FTD patients. To this end, we quantified a panel of

CSF peptides in patients and controls. The targeted mass spectrome-

try panel was identified in an explorative proteomics study as tryptic

peptides of proteins associated with endocytosis, lysosomal function,

and the ubiquitin-proteasome system, that could be reliably quanti-

fied using solid-phase extraction and parallel reactionmonitoringmass

spectrometry.23
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2 METHODS

2.1 Participants

This cross-sectional study included 31 members of the Danish

CHMP2B-FTD family: 11 symptomatic and 7 presymptomaticCHMP2B

mutation carriers and13non-carrier controls. Patientswerediagnosed

at the Danish Dementia Research Centre, Rigshospitalet, Denmark,

using international consensus criteria for behavioral variant FTD.24

Members of the CHMP2B-FTD family are continuously offered pre-

clinical genetic testing and genetic counseling. If consented to, serum

and CSF are obtained from each family member for research purposes,

without disclosing the genetic status, if so desired by the individual.

Family members who do not carry the CHMP2Bmutation and have no

neurological or cognitive deficits on examination serve as the control

group. Addenbrooke’s Cognitive Examination (ACE)was employed as a

measure of cognitive disease burden. The study was approved by the

Ethics Committee of the Capital Region of Denmark (H-1-2012-041).

2.2 CSF acquisition

Lumbar punctures were performed according to standard protocol.

CSF samples were analyzed in clinical routine at the Department

of Clinical Biochemistry, Rigshospitalet. Samples intended for PRM-

MS were centrifuged at 2000 g for 10 min, and aliquots of 250 μL
were immediately stored at –80◦C in the Danish Dementia Biobank,

pending biochemical assay at the Department of Psychiatry and Neu-

rochemistry, InstituteofNeuroscience andPhysiology, theSahlgrenska

Academy, University of Gothenburg.

2.3 Pre-analysis sample preparation

The methods have previously been described in detail, see Brinkmalm

et al.,22 Sjödin et al.,23 and Fernström et al.25 In short, 100 μL
CSF was mixed with 25 μL internal standard (IS) containing heavy

isotope-labeled peptides (C-term 13C/15N-labeled K and L, and cys-

teine carbamidomethylation) corresponding to all peptides included

in the analysis (JPT Peptide Technologies and Thermo Fisher Scien-

tific) as well as uniformly 13C-labeled ubiquitin (Silantes). The samples

were reduced and alkylated by the addition of 25 μL 30 mM 1,4-

dithiothreitol (in 50 mM NH4 HCO3; shaking incubation at +60◦C

for 30 min and then 30 min at room temperature) and 25 μL 70 mM

iodoacetamide (in 50 mMNH4HCO3; shaking at room temperature in

the dark for 30 min), respectively. Digestion was performed by adding

25 μL 0.08 μg/μL sequencing grade modified trypsin (Promega Co.)

diluted in 50 mM NH4HCO3 followed by shaking incubation for 18

h at +37◦C which was ended by the addition of 25 μL 10% trifluo-

roacetic acid. SPE was performed using standard procedure and Oasis

HLB 96-well μElution Plates (2 mg sorbent and 30 μm particle size;

Waters Co.). The plate was conditioned (2 × 300 μL methanol) and

equilibrated (2 × 300 μL H2O). The samples were loaded followed by

RESEARCH INCONTEXT

1. Systematic review: PubMed searches were conducted

to compare data from biomarker, animal, and cell model

studies on impaired proteostasis in neurodegenerative

diseases, with focus on frontotemporal dementia (FTD).

Knowledge is lacking regarding which components of the

endo-lysosomal and ubiquitin-proteasomal systems are

affected, and whether such proteins might be utilized as

biomarkers.

2. Interpretation: This is the first study to assess CSF lev-

els of proteostatic markers in a genetically homogenous

FTD cohort. From mass spectrometry data, we identified

six significantly different protein levels when comparing

CHMP2B mutation carriers with family controls. Particu-

larly interesting was the finding of lower CSF ubiquitin in

CHMP2B-FTD patients, challenging the view that ubiqui-

tin levels solely reflect neurodegeneration.

3. Future directions: The proposed markers should be

included in upcoming studies on fluid biomarkers in famil-

ial FTD to confirm the alterations. For certain peptides,

for example, ubiquitin, quantification of full-length pro-

tein in CSF from CHMP2B-FTD patients is relevant.

a wash (2× 300 μLH2O) andwere finally eluted (2× 100 μLmethanol).

The samples were dried by vacuum centrifugation and frozen at –80◦C

pending analysis.

2.4 PRM-MS

The target panel of interest included 47 peptides derived from 20 pro-

teins. Table S1 shows all peptide measurements and protein estimates.

Frozen and dried samples were dissolved, and injected and separated

using a Dionex UltiMate 3000 standard-LC system (Thermo Fisher

Scientific) in reversed phase on a Hypersil GOLD HPLC C18 column

(length 200 mm; inner diameter 2.1 mm; particle size 1.9 μm; Thermo

Fisher Scientific). Analysis was performed on a hybrid Q Exactive mass

spectrometer (Thermo Fisher Scientific) using electrospray ionization

and a HESI-II ionization probe (Thermo Fisher Scientific). The instru-

ment operated in positive ionization mode and data acquisition was

performed using a scheduled PRMmethod with a retention time isola-

tionwindow of 2min, an isolation window ofm/z 3, a resolution setting

of 70k, an automatic gain control target of 1 × 106 and a maximum

injection time of 300ms.

Peak detection and area integration were performed using Skyline

v3.6,26 targeting [M+H]1+ y-ions fromadata-independent acquisition

method with a fixed isolation window of m/z 3 and an orbitrap ana-

lyzer resolution setting of 70k at m/z 200. The ratio of the sum of the

product ion areas of tryptic to isotope-labeled peptide was used for

quantification.
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TABLE 1 Patient characteristics.

Presymptomatic CHMP2B
mutation carriers

Symptomatic CHMP2B
mutation carriers

Healthy family

members p-value

No. of participants 7 11 13 0.405

Sex, females/males 4/3 3/8 5/8 0.511

Mean age, years (range) 52.0 (32.7–68.1) 62.9 (53.6–73.3) 60.5 (38.1–71.1) 0.060

Mean ACE score (range) 92 (88–95) 74.9 (60–89) 93.3 (87–100) <0.001

2.5 Immunoprecipitation and PRM-MS

SNAP-25/synaptotagmin-1 were quantified with an in-house assay

consisting of enrichment with immunoprecipitation (mouse mono-

clonal antibodies clone 41.1 (Synaptic Systems) and SMI81 (Biosite))

followed by quantitation with liquid chromatography/tandem mass

spectrometry (LC-MS/MS, see section above). The instrument was set

to acquire scheduled pairs or triplets of fragmentation scans (PRM

scans) in profile mode, allowing simultaneous detection of the CSF

peptide and the corresponding IS. LC-MS/MS raw files acquired with

Xcalibur software version 2.2 SP1.48 (Thermo Fisher Scientific) were

imported into Pinpoint software version 1.3.0 (Thermo Fischer Scien-

tific), and peak areas of the CSF and IS peptides were generated. CSF

levels of SNAP-25tot, and synaptotagmin-1 were calculated by multi-

plying the ratio of the LC-MS peak areas with the concentration of the

corresponding IS.

2.6 Statistics

Statistical analyses were carried out using R statistical software, ver-

sion 1.2.1335. Normal distribution of peptide values was checked with

QQ-plots, histograms, and Shapiro-Wilk normality tests. Non-normally

distributed data were logarithmically transformed. Comparisons of

mean protein or peptide levels in the clinical groups were calcu-

lated with ANOVA and post-hoc comparisons were conducted using

Tukey testwith single-step adjustment as implemented in themultcomp

toolbox.27 Since there was a tendency towards significantly different

ages in the clinical groups, agewas included as a covariate in these com-

parisons. Correlations between continuous variables were assessed

using the Spearman’s Rank correlation coefficient. Descriptive statis-

tics were carried out with Fisher’s exact test or one-way ANOVA with

post-hoc Tukey test. p-values below 0.05were considered significant.

3 RESULTS

3.1 Patient characteristics

Participants’ demographics and ACE scores are presented in Table 1.

Female-to-male ratios did not significantly differ between groups.

Meanagedifferedbetween symptomatic andpresymptomatic patients

by 10.8 years (p = 0.055, Tukey test). As expected, ACE scores were

significantly lower in symptomatic participants compared with both

presymptomatic and healthy participants.

3.2 CSF protein concentrations

Comparing CHMP2B mutation carriers with controls revealed sig-

nificantly increased protein levels of complement C9, lysozyme C

(lysozyme), and transcobalamin II (TCN2) inmutations carriers, and sig-

nificantly lower levels of ubiquitin, amyloid precursor protein (APP)

and cathepsin B (CTSB). No significant differences were detected

for AP2B1, CTSD, CTSF, CTSL, CTSZ, DPP7, GM2A, HEXB, LAMP1,

LAMP2, FUCA1, TPP1, SYT1, or SNAP25 (Table S2). The six pro-

tein estimates significantly associated with CHMP2B mutation were

based on the levels of 14 peptides in total. Peptide pairs and triplets

originating from the same protein were highly correlated, except the

combination of the pro-peptide CTSB58-71 and the light chain peptide

CTSB80-87 (Rs = 0.38, p = 0.062), which were both highly corre-

lated with the heavy chain peptide, CTSB210-220 (Rs = 0.73–0.77,

p < 0.0001). When dividing the CHMP2Bmutation carriers into symp-

tomatic and presymptomatic participants, the levels of 10 of the 14

peptides were significantly different among the three clinical groups

(Figure 1, Table S2).

We have recently found an increased level of NfL in CSF from both

symptomatic and presymptomatic CHMP2B mutation carriers, as well

as an increased CSF/serum albumin ratio in symptomatic CHMP2B-

FTD patients19,20 – the former being a well-established marker of

axonal degeneration, the latter reflecting potential compromise of

BBB integrity. In the current study, none of the 10 peptides were

significantly correlated with CSF NfL levels in CHMP2B mutation car-

riers (Table S2). The complement C9, lysozyme, and TCN2 peptides

correlated significantly with the CSF/serum albumin ratios, as shown

in Figure 2. The complement C9 peptides and one of two lysozyme

peptides were significantly correlated with age (Table S2). Notably,

CSF/serum albumin ratios did not correlate with age in the mutation

carrier group (Rs = 0.11, p = 0.670). No correlations between peptide

levels and ACE-scores were observed inmutation carriers (Table S2).

4 DISCUSSION

Increasing evidence implicates proteostatic dysfunction as an early

event in the development of neurodegenerative diseases, including
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F IGURE 1 Significantly different CSF peptide levels between the three clinical groups: Symptomatic CHMP2Bmutation carriers,
presymptomatic carriers, and healthy family controls. Y-axis values represent a ratio between tryptic peptide and added internal standard.
Calculations were performed using ANOVAwith post-hoc Tukeymultiple comparisons of means test.

F IGURE 2 Correlations between CSF/serum albumin ratios and complement C9 (peptide 186–194), lysozyme (peptide 52–59), and
transcobalamin II (peptide 300–313) in CHMP2Bmutation carriers. Y-axis values represent a ratio between tryptic peptide and added internal
standard. Calculations were performed using Spearman’s correlation. Rs, Spearman’s rank correlation coefficient.

FTD and CHMP2B-FTD specifically. To explore potential mediators of

impairedproteostasis inCHMP2B-FTD, this study investigatedCSF lev-

els of a panel of peptides functionally involved in endo-lysosomal or

ubiquitin-proteasome function. A total of 47 peptides originating from

20 proteins were analyzed and their concentrations compared among

31 members of the Danish CHMP2B-FTD family. PRM-MS revealed

significantly higher levels of complement C9, lysozyme, and TCN2 in

CHMP2B mutation carriers compared with controls, and significantly

lower levels of ubiquitin, APP and CTSB (Figure 1).

Neuronal inclusions containing ubiquitin and the ubiquitin-binding

autophagy receptor p62 remain the only immunohistochemical hall-

marks of CHMP2B-FTD postmortem brain tissue.11,12 How the cere-

bral deposition of ubiquitin is reflected in CSF, has not been investi-

gated. Here, both presymptomatic carriers and symptomaticCHMP2B-

FTD patients had significantly lower ubiquitin levels than controls.

Two studies have previously included measurements of CSF ubiqui-

tin in FTD patients.28,29 Both found the concentration of ubiquitin

to be at the same level as healthy controls. Patients with AD and

Creutzfeldt–Jakob disease (CJD) showed significantly increased levels

of CSF ubiquitin, demonstrated across several studies.29–34 Elevated

CSF ubiquitin in AD and particularly in CJD has been linked to the

extent of neuroaxonal damage.28–31 This is supported by correlations

between CSF ubiquitin and established markers of neurodegener-

ation, that is, NfL and total-tau,28,29,35 as well as observed rise in

CSF ubiquitin following traumatic brain injury.36 However, seemingly

unaltered CSF levels in other neurodegenerative disorders such as

PD indicate that ubiquitin is not exclusively a biomarker of nonspe-

cific neurodegeneration,29,33,35,37 but instead suggests some degree
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of association with disease mechanisms or affected brain region. Of

note, the studies that have analyzed CSF ubiquitin levels in behav-

ioral type FTD did not distinguish between genetic subtypes, which

may differ in terms of ubiquitin dynamics, as it might be the case

with NfL.20

A possible explanation for the lowerCSF ubiquitin levels inCHMP2B

mutation carriers lies in the impairment of the ESCRT machinery,

responsible for internalizing ubiquitinated proteins into MVBs, where

they are sorted for either lysosomal degradation with accompanying

release of ubiquitin or trafficking back to the plasma membrane. We

speculate that the accumulated MVBs observed in CHMP2B models

are maintaining an intracellular reservoir of ubiquitin, not reaching the

CSF. One might expect that such neuronal ubiquitin deposits would

increase CSF levels as neurodegeneration progresses, similar to levels

of NfL in CHMP2B-FTD.19 In this regard, an apparent spatial mis-

match between the frontotemporal cortical neurodegeneration and

the neuronal ubiquitin inclusions – which are predominantly found in

the hippocampus11 – might partly explain the seemingly non-parallel

courses of CSF ubiquitin and NfL in CHMP2B-FTD. Another con-

tributing possibility is compromised ESCRT-dependent formation of

exosomes, potentially leading to fewer ubiquitinated proteins being

transported to the extracellular space. However, silencing one of

the direct binding partners of CHMP2B, VPS4B, in HeLa cells has

previously been shown to increase overall exosome secretion, not

reduce it.38 If validated, decreasedCSFubiquitin levelsmay distinguish

CHMP2B-FTD or FTD collectively from other neurodegenerative dis-

ease entities, as it has only been found significantly reduced in one

other neurodegenerative disease cohort.23

CSF levels of complement C9 and lysozyme were increased in

CHMP2B-FTD patients compared with controls. The complement pro-

teins constitute part of the innate immune system and are produced,

in the CNS, by neurons and glial cells.39 They mediate proinflamma-

tory stimulation and chemoattraction between these cell types, as

well as clearance of pathogens and damaged cells via the membrane

attack complex (MAC), and tagging of synapses for phagocytosis by

microglia.39 Lui et al. have demonstrated that lysosomal defects and

complement activation in microglia can lead to neurodegeneration

through excessive synaptic pruning in a mouse model of FTD caused

by GRN mutation.40 Astrocytes generated from induced pluripotent

stem cells from CHMP2B-FTD patients have been shown to be more

reactive and display increased production of complement C3, which

was confirmed in the brains of mice expressing mutant CHMP2B.41

Complement C9, the terminal constituent of the complement cascade

and major part of the cytolytic MAC, has not previously been inves-

tigated in CSF or in vitro models in FTD, but its elevation in CSF

indicates involvement of innate immune function. This is supported by

increased levels of CSF lysozyme – a glycan cleaving polypeptide pro-

duced by microglia.42 Findings of higher CSF lysozyme in AD patients

than controls have been inconsistent,22,23,43,44 although a protective

effect of the protein has been proposed based on rescue experiments

in Drosophila models.43,44 To our knowledge, the role or quantities of

lysozyme in FTD have not previously been studied. Importantly, both

complement C9 and lysozyme were associated with the CSF/serum

albumin ratio (Figure 2).20 Correlations between soluble MAC com-

ponents and BBB dysfunction is known from patients with traumatic

brain injury,45 and the positive correlation between complement C9

and age has previously been observed in AD.46 Earlier studies have

reported increased levels of CSF lysozyme as part of an inflammatory

reaction to a variety of CNS pathologies.47 Passage of lysozyme from

blood through an impaired BBB aswell as local production bymicroglia

within the CNS, have been suggested as the underlying mechanisms.

Thus, it is plausible that complement C9 and lysozyme emanate from

serum and contribute to the measured CSF amounts in CHMP2B-FTD

patients. In relation to this, we have previously observed a systemic

immune response in CHMP2B-FTD patients.48 Innate immune activa-

tion is also supported by results from transgenic CHMP2B Drosophila

models49–51 and CHMP2B mouse models, which have all exhibited

reactive gliosis.13–16 One such mouse model revealed that accumula-

tion of endo-lysosomal byproducts was present in microglia as well as

neurons.14 A follow-up study showed an early microglial activation in

the transgenic mice, progressing into overt microgliosis with a proin-

flammatory phenotype, neuronal loss, and behavioral changes.17 In

addition, the authors detected increased levels of lysosomal cathepsin

D and LAMP-1,14 which has also been reported in Grn knockout mice

and patients withGRN-FTD.52

In the present study, CSF concentrations of these lysosomal pro-

teins were unchanged, whereas CTSB was significantly reduced in

CHMP2B-FTD patients. Several studies have demonstrated increased

CSF levels of CTSB in AD, traumatic brain injury, inflammatory neu-

rological diseases, and aging.23,53,54 Lysosomal leakage of CTSB with

ensuing unchecked proteolytic activity in the cytosol has been sug-

gested as the deleterious mechanism.53,54 Since ESCRT-III is involved

in endo-lysosomal membrane repair, one might expect CHMP2Bmuta-

tion to increase the concentration of CTSB in CSF, rather than reduce

it inCHMP2B-FTD patients, whichwe observe. The potential reduction

in CTSB requires further exploration.

In this study, the quantity of APPwas significantly lower inCSF from

CHMP2B-FTD patients compared with controls. The transmembrane

APP protein functions as a cell surface receptor on neurons, involved

in neurite growth and synaptogenesis.55 It is cleaved by secretases into

smaller fragments relating to the amyloidogenic or non-amyloidogenic

pathways.55 In AD, the CSF concentrations of soluble APP did not dif-

fer between patients and controls in a recent meta-analysis,56 neither

did the levels of the major isoforms of APP in studies using targeted

proteomics.22,23 In FTD, albeit less well studied, findings point to lower

levels of soluble APP in patients with different types of FTLD.57–60

Inside neurons, APP is ubiquitinated and targeted to the intraluminal

vesicles ofMVBs through interactionwith theESCRTmachinery.61 The

internalization of APP and delivery to lysosomes has been shown to

parallel that of the epidermal growth factor receptor (EGFR),61 the

degradation of which is delayed in CHMP2B mutation models3,62 –

supposedly due to entrapment of EGFR in mutant CHMP2B positive

compartments.3 Thus, as described for ubiquitin, APPmay be retained

in theMVB compartment, reducing the proportion of APP available for

cleavage into soluble forms at the plasmamembrane, lowering the CSF

concentration in CHMP2B-FTD patients.
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Lastly, TCN2 was significantly elevated in the patient group. It is

responsible for transporting vitamin B12 into tissues via its receptor

(CD320), where it is degraded in lysosomes, while dissociated B12 is

exported into the cytosol.63 It is unknown whether the ESCRT sys-

tem is involved in this process, but ubiquitination of CD320 does not

appear to occur.63 A strong correlation between TCN2 levels in plasma

and CSF has been demonstrated elsewhere,64 and it is likely that the

bulk of TCN2 in CSF originates from serum. In line with this, TCN2was

significantly associated with the CSF/albumin ratio in our study.

Research into mediators of disrupted proteostasis has been limited

in FTD, particularly for genetic subtypes. This study has screened a

panel of potential biomarkers associatedwith endo-lysosomal function

inCHMP2B-FTD.Of note, the proteins investigated aremultifunctional

and hence significantly different CSF levels do not necessarily equate

to significant differences in cellular proteostasis. Although the number

of statistical comparisons has been attempted to be kept at aminimum,

the rarity of the disorder means that the size of our cohort is modest

in relation to the number of analytes tested, increasing the risk of false

positives. However, the cohort is pathogenetically homogenous, which

is necessary for disease entitieswith such diverse genetic backgrounds

as FTD. The findings require validation in an independent cohort and

for certain peptides, for example, ubiquitin, further quantification of

the full-length protein in CSF from CHMP2B-FTD patients will be rel-

evant. The ubiquitin peptides generated by our enzymatic digestion

approach can be derived from both free and conjugated forms of the

protein – thus, we cannot assess if intact, free ubiquitin is decreased in

CHMP2B-FTD. In AD, however, previous studies have shown that both

free and conjugated ubiquitin levels are increased.65 Furthermore, a

recent study employing the same technique as herein could confirm

that the levels of these particular ubiquitin peptides are increased in

CSF from AD patients.23 Taken together, the data support different

concentrations of CSF ubiquitin in AD, FTD, and healthy controls. The

lack of correlation between the studied peptides and CSFNfL suggests

that the altered protein levels inmutation carriers are not secondary to

axonal neurodegeneration, as expressedbyCSFNfL levels, but perhaps

represent another part of the diseasemechanism.
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