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2Escuela Técnica Superior de Ingenierı́a Agronómica, Alimentaria y de Biosistemas (ETSIAAB),
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Crop protection is a key activity for the sustainability and feasibility of agriculture

in a current context of climate change, which is causing the destabilization of

agricultural practices and an increase in the incidence of current or invasive

pests, and a growing world population that requires guaranteeing the food

supply chain and ensuring food security. In view of these events, this article

provides a contextual review in six sections on the role of artificial intelligence

(AI), machine learning (ML) and other emerging technologies to solve current and

future challenges of crop protection. Over time, crop protection has progressed

from a primitive agriculture 1.0 (Ag1.0) through various technological

developments to reach a level of maturity closelyin line with Ag5.0 (section 1),

which is characterized by successfully leveraging ML capacity and modern

agricultural devices and machines that perceive, analyze and actuate following

the main stages of precision crop protection (section 2). Section 3 presents a

taxonomy of ML algorithms that support the development and implementation

of precision crop protection, while section 4 analyses the scientific impact of ML

on the basis of an extensive bibliometric study of >120 algorithms, outlining the

most widely used ML and deep learning (DL) techniques currently applied in

relevant case studies on the detection and control of crop diseases, weeds and

plagues. Section 5 describes 39 emerging technologies in the fields of smart

sensors and other advanced hardware devices, telecommunications, proximal

and remote sensing, and AI-based robotics that will foreseeably lead the next

generation of perception-based, decision-making and actuation systems for

digitized, smart and real-time crop protection in a realistic Ag5.0. Finally, section

6 highlights the main conclusions and final remarks.

KEYWORDS

precision agriculture (PA), artificial intelligence (AI), deep learning, unmanned aerial
vehicles (UAV), decision support system (DDS), robotics
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1 Linking crop protection to the
technological evolution of agriculture

Crop protection involves a large number of critical farming

activities with a decisive impact on the viability and sustainability of

agriculture. Throughout history, humans have developed new

methods and practices to protect their crops. From ancient times

to about 1950, agriculture 1.0 employed a large workforce to

manually control crop pests (i.e., plant diseases, weeds and other

plagues, both vertebrate and invertebrate), which produced low

yields but in sufficient quantity to feed the population. In the late

1950s, agriculture 2.0 began with the use of synthetic pesticides and

specialized machines to control the common crop pests. At that

stage, agriculture evolved towards the economic edge, aiming to

produce more food at a cheaper price, i.e., towards a more

industrialized agriculture. At the end of the 20th century,

agriculture 3.0 emerged with the idea of using new technologies

and data-driven modeling as essential tools to take decisions and

manage cropping systems. This disruptive concept led to the origin

of precision agriculture, in which telematics, global navigation

satellite systems (GNSS), machinery guidance, and sensing

devices aimed to optimize the crop protection tasks, to reduce

costs and environmental impacts of pesticides, and to improve food

quality. What followed was a further step in the integration of geo-

spatial technologies, computer sciences and digitization into the

agricultural process, where sensors, mobile telephony, embedded

systems, cloud computing, internet of things (IoT) and big data

were incorporated on board of autonomous machinery, smart

sprayers and actuators to facilitate the application of the precision

crop protection paradigm within the concept of agriculture 4.0

(Zhai et al., 2020). Continuing this evolution, Agriculture 5.0

(Ag5.0) will promote a new era of intelligent crop management

with automatized decision making processes, unmanned operations

and progressively less human intervention supported by the latest

Artificial Intelligence (AI) systems, advanced robotics, and powerful

Machine Learning (ML) algorithms (Saiz-Rubio and Rovira-

Más, 2020).

Modern agriculture will face in the next decades two immense

challenges never seen in previous generations. The first one is the

impact of climate change in agricultural systems (Hoegh-Guldberg

et al., 2019), which causes destabilization of farming practices

(Mulla et al., 2020) and irregular crop seasons due to excessive

heat and water scarcity in large productive areas (Piao et al., 2019);
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(Falkland and White, 2020), which inevitably leads to the

emergence of new invasive pests or the increased severity of

existing ones. The second one is to produce food for a growing

human and animal population, while ensuring food security by

using fewer agrochemicals and imposing strict controls at all stages

of the agricultural supply chain (van Dijk et al., 2020). In view on

this imminent future, Ag5.0 must offer creative solutions based on

AI, ML algorithms and other technological innovations that

continuously interact with the crop and its environment, which

will require undoubtedly transdisciplinary studies and

interdisciplinary collaborations, where precision crop protection

becomes a key discipline in the Ag5.0 revolution by implementing

new procedures and strategies to drastically reduce the use of

agrochemicals in the control of diseases, weeds and plagues.
2 The stages of precision crop
protection: Perception, analysis
and actuation

The use of new technologies in crop protection aims at detecting

and identifying the symptoms or problems caused by crop pests

(Behmann et al., 2015), followed by a site-specific application of a

chemical or mechanical control action. This process comprisesthe

three main stages for pursuing a precision crop protection strategy,

as follows (Figure 1): 1) perception, 2) analysis and, optionally (but

recommendable) decision-making, and 3) actuation. The

perception stage involves field inspection andacquisition of plant

information (e.g., crop and/or weed imaging) through a sensor or

camera mounted on an on-ground or a remotely-sensed platform,

while the actuation stage consists on the application of a prescribed

site-specific treatment with a smartequipment usually assisted by a

GNSS receiver. The necessary link between perception and

actuation is the analysis stage, which consists of in-depth

evaluation of digital crop data by using diverse data-driven

techniques and identifying targeting areas of crops with problems

associated to diseases, weeds and plagues. The analysis stage also

often includes the generation of management zones and treatment/

prescription maps following a decision-making process, e.g. based

on the outcomes of a decision support system (DSS).

Recent bibliographic reviews point out to Unmanned Aerial

Vehicles (UAVs), innovative ML algorithms, and various robots

and autonomous equipment as the most disruptive technology for
FIGURE 1

The main stages of precision crop protection.
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each stage, respectively (Filho et al., 2020; Lima et al., 2020; Dainelli

et al., 2021). UAVs are playing an important role in the perception

stage due to their capability to capture crop data from large areas in

a short time and with diverse types of cameras and sensors (e.g.,

RGB cameras, multi- and hyper- spectral sensors, thermal cameras,

active sensors such as LiDAR, radar or sonar), which have led to

significant progress in pest monitoring with the help of powerful

analysis procedures, either by direct observation of the pest (e.g.,

weed patches), by diagnosis of the main symptoms of the disease

(e.g., leave decay or thermal stress), or by detection of damages

caused in the crop leaves and canopy (e.g., foliar losses due to a

plague attack).

The analysis stage is the major challenge for many crops,

probably being the bottleneck for the progress of precision crop

protection. The ultimate objective of this stage is the accurate and

timely detection of each crop-specific disease, weed or plague,whose

complexity lies in the vast number of possible crop-pest scenarios

with a diverse typology of associated symptoms, in addition to other

environmental and cultural factors such as different weather

conditions, soil properties, and farmers’ decisions on crop field

management, which impact the type and degree of severity of pest

occurrences (Oerke et al., 2012; Pätzold et al., 2020). This diversity

of variables and factors can be addressed by ML methods with the

ability to learn from experience (i.e., data) and integrate

information from multiple sources. ML enables the analysis of

massive amounts of crop and pest data over time by taking

advantage of the continuous evolution of the hardware with

increasingly powerful central (CPU), graphics (GPU) and tensor

(TPU) processing units (Wang et al., 2019). As a result, ML can

study the behavior of natural crop-pest systems by capturing and

exploiting the underlying patterns in the data and build predictive/

generative models accordingly for critical analytical tasks such as

image classification, object detection, pattern recognition, geo-

location, etc., aimed to propose solutions for complex crop

protection challenges.

Finally, actuation is the task that leveraged large-scale viability

of precision crop protection strategies, leading to great scientific and

technological effort in the last decade to develop autonomous

machinery, smart sprayers and agricultural robots that effectively

implement site-specific crop management (Shafi et al., 2019;

Lowenberg-DeBoer et al., 2021), either by direct treatment in

real-time (Pérez-Ruiz et al., 2015) or, eventually, assisted by a

prescription map (Fernández-Quintanilla et al., 2018) according

to the principles established by the International Society of

Precision Agriculture (ISPA, 2021).
3 ML taxonomy based on the tasks to
be solved

The ML algorithms have been conventionally classified

according to different criteria, based on: i) the nature of the

model (full or partial probabilistic/generative model vs.

discriminant model), ii) the type of reasoning applied (inductive

or transductive, depending on whether the model performs a

reasoning from observed training cases to general rules or the
Frontiers in Plant Science 03
other way around, respectively), or iii) the data availability and

the supervision process (unsupervised, supervised, semi-supervised

and reinforcement learning). However, the extent of ML within the

scope of precision crop protection is best described by an alternative

criterion based on the task to be solved, which leads to an expanded

taxonomy of six categories, as follows: classification, regression,

clustering, anomaly detection, dimensionality reduction, and

association rule learning. These six tasks can be addressed with

traditional ML algorithms or, for some specific tasks mainly

classification and regression, with the more advanced artificial

neural network (ANN) models, which in turn also include Deep

Learning (DL) algorithms (Figure 2).
3.1 Traditional ML algorithms

Traditional ML algorithms usually approach learning tasks by

analyzing and interpreting input data with well-established

architectures optimized for common computing resources, thus

often achieving satisfactory results but with less accuracy and

versatility than sophisticated ANN algorithms. Of the tasks listed

above, classification is the most common in many disciplines, with

well-known algorithms such as support vector machine (SVM),

decision trees (DT), random forest (RF), K-Nearest Neighbor (k-

NN), etc. Classification algorithms are part of the supervised learning

type, aiming to categorize a certain set of structured or unstructured

data in classes, being a binary classification when the objective is to

predict the state of true or false, and a multi-category classification

when there are more than two objective classes (Sen et al., 2020; Djafri

andGafour, 2022). These algorithms are used for predictive tasks in the

fields of image analysis, video, object recognition, data mining, etc.
FIGURE 2

Taxonomy of machine learning according to the type of task to
be solved.
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(Kowsari et al., 2019), all of which are relevant to deal with the

challenge of automatic identification, detection or classification of

plant diseases, weeds and plagues. This objective also usually requires

previous phases such as image/video preprocessing, segmentation and

feature extraction that imply the use of other algorithms of the

regression, clustering and dimensionality reduction typology.

The regression algorithms are also part of the supervised

learning type and consist in relating continuous input and output

variables through a function, which can be set by parametric or

non-parametric approaches. In the former case, the output values

are predicted by an explicit analytical formula that adjusts the

known points by establishing and minimizing a cost function (e.g.

linear regression) that link the input and output variables (Wei

et al., 2015; Gaitán, 2020). In the latter case, a kernel function is

defined to determine the prediction for the output based on similar

experiences of the inputs, hence it depends on the correlation

between the output and the known points surrounding the input

(Čıž́ek and Sadikoğlu, 2020). A form of regression that allows

correction of overfitting is the regularization algorithms, which

avoid generating low error (i.e., high accuracy) in the training but

high error during the testing (Zou and Hastie, 2005). Common

algorithms in this group are LASSO Regularization, Ridge

Regularization and Elastic Net Regularization.

Within the two previous categories, the ensemble algorithms are

the combination of predictions from various ML techniques applied

to a single model improving predictive performance (Sagi and

Rokach, 2018). In classification, an ensemble of classifiers is

generally more accurate than the individual classifiers that

compose it. Individual decisions are combined by weighted or

unweighted votes in the classification of new examples (Hooftman

et al., 2022), which allows a good balance between performance and

computational cost (Telikani et al., 2022). The ensemble algorithms

in regression improve accuracy while reduce bias and variance errors,

avoiding over-adjustment when results deserve extra training (Ren

et al., 2016). Some outstanding algorithms in this group are adaBoost,

bootstrap aggregation (Bagging), category boosting (CatBoost),

extremely randomized trees, gradient boosting machines (GBM),

RF, stacked generalization (Stacking).

The clustering algorithms are part of the unsupervised and

semi-supervised learning methods, which allow grouping the data

into sets of similar objects to maximize the intra-cluster similarity

and minimize inter-cluster similarity (Ezugwu et al., 2022). The

partitional clustering applies techniques to obtain a single partition

by an objective function of the input data, in a fixed number of

clusters, using iterative relocation clusters and resulting in the best

configuration of the total number of executions (Nanda and Panda,

2014). The hierarchical clustering performs the division of data

(root node) by a sequence of nested partitions, known as tree type

structures (dendrograms). This approach follows a type of pattern

agglomerated (from bottom to top) or by divisive clustering (from

top to bottom), with no need to define the number of clusters in

advance (Murtagh and Contreras, 2012).

The dimensionality reduction algorithms transform a high-

dimensional data set into a representative lower-dimensional subset,

as not all data featuresmay be equally relevant for the problem at hand,

greatly reducing computational complexity (Xu et al., 2019). This
Frontiers in Plant Science 04
technique is widely used for data preprocessing, by two different ways:

i) feature selection, in which the input features are combined to obtain

a new dataset with a smaller number of new variables that retain the

original information based on the input components and projection,

and ii) feature extraction, in which the most relevant features of the

original dataset are kept by removing those features that contribute

little or nothing to the output features (Chhikara et al., 2020).

The anomaly detection algorithms try to find patterns, outliers

or some kind of exception in the data that do not conform to the

expected behavior (Chandola et al., 2009), by mean of a function

that decide about the detection of an unknown or heterogeneous

novelty present in the datasets with a class imbalance (Guansong

et al., 2022). Isolation Forest, One-Class SVM, and PCA-Based

Anomaly Detection are the most common algorithms to detect

anomalies with application in crop protection.

The association rule learning algorithms serve to find

regularities present in parts of the dataset (descriptive rules) and

generalize the dataset to enable predictions on new data (predictive

rules) (Fürnkranz and Kliegr, 2015). These algorithms can identify

an association rule in the form A!B, based on the indicators

support, confidence and lift. Support from A!B is the percentage

of all items in A and B. Confidence is the percentage of A and B by

the percentage of A. Lift indicates the probability of B occurring

since A has occurred (Hashimoto et al., 2018). Within this category,

the algorithms Apriori and Eclat are the most popular.
3.2 Artificial neural networks and deep
learning models

The ANN algorithms are highly customizable and flexible

computing models roughly inspired by biological neural networks,

based on creating connected networks of simple processing units

(neurons) that together can learn complex patterns and solve

undefined problems. The ANNs works as universal approximators

for any mathematical function, whose learning process is based on

training from large datasets through sequential computations until

accurate patterns are obtained. Then, when newpatterns are presented,

ANNs are able to predict them. These algorithms aremainly applied in

tasks of classification and regression, e.g. in approximation functions

(i.e. mapping multiple inputs to a single output), pattern classification

(i.e. identification of new patterns through association and pattern

recognition), associative memories (i.e. pattern recognition from

limited information in the subset of data), and generation of new

significant patterns, which can help in the reconstruction of patterns

with greater characteristics (Schmidhuber, 2015).

Neural networks with two or more layers are the conceptual

basis to generate DL models, whose progress has been spectacular in

recent years in all disciplines, even in precision crop protection

(Ferentinos, 2018; Kamilaris and Prenafeta-Boldú, 2018; Xia et al.,

2018; Farooq et al., 2019; Hasan et al., 2021; Rakhmatulin et al.,

2021; Allmendinger et al., 2022; Tugrul et al., 2022; Rai et al., 2023).

DL algorithms transform data to construct complex concepts in a

hierarchical structure with several levels of abstraction, so that the

higher levels are composed of the characteristics of the lower levels

(LeCun et al., 2015). The great potential of DL in many fields
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employing image analysis is allowing small data sets to be fitted to

pre-trained models with different data, reducing training time and

optimizing hardware resources (Kamilaris and Prenafeta-Boldú,

2018). DL covers different approaches suited to specific problems,

for example, convolutional neural networks (CNNs) are used in

computer vision and image classification, recurrent neural networks

(RNNs) are used for prediction and language modelling,

autoencoder is used in dimensionality reduction, and generative

adversarial networks (GANs) are used in the generation of new

images (Sarker, 2021).

CNN architectures for image classification is the most common

application of DL in precision crop protection. The CNN

algorithms find the features of objects of interest by self-learning

from the image data, in contrast to traditional ML algorithms that

require the user to establish such features (Hong et al., 2020).

Performance of CNNs varies depending of number of parameters

and convolutional layers (network depth), which in turn is directly

constrained by the power of the available computing resources

(Table 1). A broader application of CNN-based classifiers is object

detection, which overcomes the issue of visual recognition in multi-

class domains and object labelling in computer vision. Examples of

CNN architectures for object detection and classification

implemented in crop protection include Region-based

Convolutional Neural Network (R-CNN) (Girshick et al., 2014),

Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2015), You

Only Look Once (YOLO) (Redmon et al., 2016), Single Shot

Detector (SSD) (Liu et al., 2016), Feature Pyramid Networks

(FPN) (Lin et al., 2017a), RetinaNet (Lin et al., 2017b) and Mask

R-CNN (He et al., 2017).
4 Scientific impact and relevant
contributions of ML in precision
crop protection

An extensive bibliometric study of the Scopus database

(www.scopus.com) revealed 107 traditional ML algorithms and 18

ANN models applied in all disciplines between 2010 and 2022, of

which 105 and 17 algorithms, respectively, have been implemented
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in precision crop protection objectives with diverse degree of

contribution in the domains of crop diseases, weeds and plagues

(Table 2). SVM topped the list of traditional algorithms applied in

precision crop protection objectives with >1,700 publications,

followed by linear regression (LR) and Stacking with >1,500

publications each one. Principal Component Analysis (PCA), RF

and DT are other algorithms with high impact reaching more than

1,100 publications each. A four group of relevant algorithmsis

formed by Bagging, logistic regression (LoR), k-NN and k-means

clustering, which appear in more than 500 publications of precision

crop protection. Some algorithms rank relatively high in terms of

their use in precision crop protection in comparison to all

disciplines (PCP/All), such as k-NN, simple linear iterative

clustering (SLIC), stacking and stepwise discriminant analysis

(SDA) (>10% PCP/All), or in comparison to precision agriculture

(PCP/PA), such as Gaussian Mixture Regression (GMR) (>70%

PCP/PA). Among the ANN models, convolutional neural networks

(CNNs) are by far the most widely used in precision crop protection

with >1,200 publications, mainly focused on detecting and

classifying crop diseases, weeds or plagues with image-based

technology, with ResNet, GoogLeNet and VGGNet being the

most applied models, and to a lesser extent LeNet and Xception

models (Figure 3).

A temporal analysis on ML-based publications shows that the

adoption of ML algorithms has increased steadily year on year

across all disciplines over the last decade (Figure 4A), which in turn

is boosting the development of precision crop protection strategies

(Figure 4B). Comparing the trends in both figures, peak values were

reached in the last year in all cases, with classification and regression

tasks being the most common by far in the group of traditional ML

algorithms (55% and 29% across all cases and 47% and 41% in

precision crop protection, respectively), followed by clustering,

anomaly detection and dimensionality reduction tasks in the case

of all disciplines, with considerably less impact (11%, 3% and 2%,

respectively), and a negligible value for association rule learning.

However, the dimensionality reduction algorithms were much more

widely used in precision crop protection (11%) than the other three

categories. In the case of ANN algorithms, their use has increased

significantly in the last five years, counting 29,956 (Figure 4A) and

759 new publications (Figure 4B) in 2022 across all disciplines and
TABLE 1 Characteristics of the deep learning architectures most commonly used in crop protection.

CNN Architecture Depth (layers) Million parameters Top-5 Accuracy % *

LeNet-5 (LeCun et al., 1998) 5 0,06 –

AlexNet (Krizhevsky et al., 2012) 8 60 84.6

VGG-Net (Simonyan and Zisserman, 2014) 16 138.4 90.1

GoogLeNet (Szegedy et al., 2015) 22 4 92.2

ResNet (He et al., 2016) 152 60.4 93.1

Xception (Chollet, 2016) 126 22.8 94.5

DenseNet (Huang et al., 2016) 402 20.2 93.6

MobileNet (Howard et al., 2017) 55 4.3 89.5
*ImageNet validation dataset.
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TABLE 2 Numbers publications of machine learning algorithms according to the proposal taxonomy (source Scopus).

Number of ML Publications

Algorithm Task to be solved (†)
In Precision Crop Protection

(PCP) PCP/PA
(‡)

Clas Regr Clus Anom Dim Asso Diseases Weeds Plagues In PA

Traditional:

Support Vector Machine (SVM) ✓ ✓ 612 560 540 >1,000 ***

Linear Regression (LR) ✓ 287 699 693 >10,000 ***

Stacked Generalization (Stacking) ✓ ✓ 292 393 812 >1,000 ***

Principal Component Analysis (PCA) ✓ ✓ 383 458 518 >10,000 ***

Random Forest (RF) ✓ ✓ 374 437 395 >1000 ***

Decision Trees (DT) ✓ 311 380 414 >1000 ***

Bootstrap Aggregation (Bagging) ✓ ✓ 195 356 414 >1000 ***

Logistic Regression (LoR) ✓ 129 171 451 >1000 ***

k-Nearest Neighbors (k-NN) ✓ 276 195 247 >1000 ***

K-Means Clustering ✓ 210 185 152 >1000 ***

Hierarchical Clustering ✓ 114 143 182 >1000 ***

Linear Discriminant Analysis (LDA) ✓ 158 125 129 >1000 ***

Naïve Bayes ✓ 146 95 169 >1000 ****

Regression Trees ✓ 94 134 124 >1000 ***

Factor Analysis ✓ 37 80 208 >1000 ***

Stochastic Gradient Descent ✓ 117 84 74 >100 ****

Partial Least Squares Regression (PLSR) ✓ 101 127 40 >1000 ***

Support Vector Regression (SVR) ✓ 75 75 84 >1000 ***

Expectation Maximization ✓ 45 40 131 >1000 ***

Singular Value Decomposition (SVD) ✓ 24 37 151 >1000 ***

LASSO ✓ 39 44 118 >100 ***

AutoEncoder ✓ 53 46 102 >100 ****

Multi Dimensional Scaling (MDS) ✓ 58 68 70 >1000 ***

Self-Organizing Maps ✓ 57 63 71 >1000 ***

Extreme Learning Machine (ELM) ✓ 59 64 64 >1000 ***

Gaussian Mixture Model (GMM) ✓ 49 46 91 >100 ****

AdaBoost ✓ ✓ 58 46 74 >100 ***

Fuzzy c-Means (FCM) ✓ 61 59 46 >100 ***

Partial Least Squares Discriminant
Analysis

✓ 63 53 19 >1000 **

Fuzzy Clustering ✓ 33 56 43 >100 ***

Independent Component Analysis (ICA) ✓ 22 22 85 >100 ****

Ridge Regression (RR) ✓ 15 25 77 >100 ***

Extreme Gradient Boosting (xGBoost) ✓ ✓ 24 25 64 >1000 ***

Stepwise Regression ✓ 24 40 39 >1000 **

(Continued)
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TABLE 2 Continued

Number of ML Publications

Algorithm
Task to be solved (†)

In Precision Crop Protection
(PCP) PCP/PA

(‡)
Clas Regr Clus Anom Dim Asso Diseases Weeds Plagues In PA

Quadratic discriminant analysis ✓ 51 26 25 >100 ****

Gaussian Process Regression (GPR) ✓ 31 19 40 >100 ***

Polynomial Regression ✓ 15 33 41 >100 ***

Principal Component Regression (PCR) ✓ 33 31 22 >100 ***

Boosted Trees (BoT) ✓ ✓ 22 20 25 >100 ***

Simple Linear Iterative Clustering (SLIC) ✓ 31 30 4 >100 ****

Apriori ✓ 8 14 42 >100 ***

Subset Selection ✓ 18 21 23 >100 ***

Quantile Regression ✓ 6 15 39 >100 ***

Ordinary Least Squares (OLS) Regression ✓ 6 13 41 >100 ***

DBSCAN ✓ 16 22 17 >100 ***

Model Trees ✓ 13 19 21 >100 **

Spectral Clustering ✓ 5 12 35 >100 ***

Gradient Boosting Machines (GBM) ✓ ✓ 10 9 28 >100 ***

Poisson Regression ✓ 2 14 30 >100 ***

Multivariate Adaptive Regression Splines
(MARS)

✓ 10 16 20 >100 **

Minimum Spanning Trees ✓ 3 11 27 >100 ***

t-Distributed Stochastic Neighbor
Embedding (t-SNE)

✓ 13 6 21 >100 ***

Stepwise Multiple Linear Regression
(SMLR)

✓ 17 16 5 >100 ***

Stepwise Discriminant Analysis (SDA) 20 13 4 >1,000 ****

Generalized Regression Neural Network
(GRNN)

✓ 12 12 12 >100 ***

Maximum likelihood classifier (MLC) ✓ 7 24 3 >100 **

One Rule ✓ 6 6 21 >100 ***

Kernel Principal Component Analysis (k-
PCA)

✓ 10 6 13 >10 ****

One Class SVM ✓ 8 5 16 >10 ****

Gradient Boosted Regression Trees ✓ ✓ 11 11 4 >100 ***

Quality Threshold ✓ 6 7 12 >100 ***

Gaussian Naive Bayes ✓ 10 7 7 >10 ****

Fisher’s linear discriminant analysis ✓ 10 4 9 >10 ****

Fuzzy K-Means ✓ 4 14 5 >100 ***

Bagging Trees (BaT) ✓ ✓ 10 6 7 >100 ***

Multiple-Kernel Learning (MKL) ✓ 2 6 14 >10 ****

Isomap ✓ 5 1 15 >100 ***
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TABLE 2 Continued

Number of ML Publications

Algorithm
Task to be solved (†)

In Precision Crop Protection
(PCP) PCP/PA

(‡)
Clas Regr Clus Anom Dim Asso Diseases Weeds Plagues In PA

Kernel Ridge Regression (KRR) ✓ 3 5 13 >10 ***

Extremely Randomized Trees ✓ ✓ 6 7 7 >10 ***

Rotation Forest ✓ ✓ 7 7 3 >100 ***

Isolation Forest ✓ 5 2 10 >10 ****

Multinomial Naive Bayes ✓ 2 2 13 >10 ****

Laplacian Eigenmaps ✓ 2 1 13 >10 ***

Elastic Net Regression ✓ 2 3 10 >10 ***

LASSO Regularization ✓ 1 3 11 >10 ****

K-Medoids Clustering ✓ 1 3 9 >10 ***

Least-Angle Regression (LAR) ✓ 2 3 7 >10 ***

Mean Shift Clustering ✓ 1 7 4 >10 ****

Locally Weighted Regression (LWR) ✓ 1 2 9 >100 **

FP-growth ✓ 2 3 6 >10 ****

Elastic Net Regularization ✓ 1 2 8 >10 ***

Zero-Shot Learning 3 2 6 >10 ****

Locality Preserving Projections ✓ 3 1 6 >10 ***

Bayesian Network Classifier ✓ 2 4 4 >10 ****

Forward Feature Selection ✓ 4 3 2 >10 ***

Voting Classifier ✓ ✓ 2 3 3 >10 ****

Decision Stump ✓ 1 4 3 >10 ***

Local Linear Embedding (LLE) ✓ 5 1 2 >10 ***

Ordinal Regression ✓ – 1 6 >10 **

Local Outlier Factor (LOF) ✓ – – 6 >10 ***

Gaussian Mixture Regression (GMR) ✓ – – 6 >1 *****

Random Subspace Methods ✓ ✓ 1 2 2 >10 ***

Category Boosting (CatBoost) ✓ ✓ – – 5 >10 **

Clustering Large Applications (CLARA) ✓ 2 1 2 >10 ***

DENCLUE ✓ 2 1 2 >10 ****

Ridge Regularization ✓ – 2 2 >10 ***

Bayesian Linear Regression ✓ 1 1 2 >10 **

Sammon Mapping ✓ 1 1 2 >10 ***

Eclat ✓ 1 1 1 >10 ***

Relevance Vector Regression ✓ – – 2 >10 ***

Bernoulli Naive Bayes ✓ – – 2 >10 ***

K-Modes Clustering ✓ – – 2 >1 ****
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in precision crop protection, respectively. Compared to the

traditional ML algorithms, ANN algorithms remain at the highest

rates since 2018 across all disciplines, but still do not exceed

traditional classification algorithms in precision crop protection,

although they did overcome dimensionality reduction algorithms in

2019 and regression algorithms in 2022.

These positive indicators on the growing impact of ML in

precision crop protection are supported by numerous applications

and case studies outlined in detail in quite a few recent scientific

reviews (Behmann et al., 2015; Liakos et al., 2018; Muppala and

Guruviah, 2020; Chadha et al., 2021; Saleem et al., 2021). An in-

depth analysis of some relevant publications reveals key challenges

addressed by diverse image-based or sensor technology together
Frontiers in Plant Science 09
with ML algorithms in the specific domains of crop diseases

(Table 3), weeds (Table 4) and plagues (Table 5), as

discussed hereunder.

In recent literature, one major goal is to study slight alterations

in crop spectral information or other sensory components (e.g.,

odors or flavors) associated with pathogen infestations or with

damages caused by a plague attack (Tables 3, 5). This is generally

done with on-ground measurements of plant leaves or canopies

collected by hyperspectral cameras, field spectroradiometers or

other portable sensors (e.g., e-nose sensor), and analyzing the

spectral signatures or sensor data with ML classification and/or

regression algorithms, aiming to discriminate between healthy and

infested plants at the earliest possible stages or to model/predict the
TABLE 2 Continued

Number of ML Publications

Algorithm
Task to be solved (†)

In Precision Crop Protection
(PCP) PCP/PA

(‡)
Clas Regr Clus Anom Dim Asso Diseases Weeds Plagues In PA

Regularized Linear Discriminant Analysis
(RLDA)

✓ – 2 – >10 ***

Zero Rule ✓ – – 1 >1 ***

Gradient Descent Regression ✓ – – 1 >1 ****

Fast-MCD ✓ – – – >1 –

PCA-Based Anomaly Detection ✓ – – – >1 –

Artificial Neural Networks:

Convolutional Neural Network (CNN) ✓ ✓ 528 395 339 >1,000 ****

Back Propagation ✓ ✓ 190 176 189 >1,000 ***

Radial Basis Function (RBF) ✓ 149 135 167 >1,000 ***

Recurrent Neural Network (RNN) ✓ ✓ 92 80 159 >1,000 ***

Multi-Layer Perceptron (MLP) ✓ ✓ 65 66 83 >1,000 ***

Generative Adversarial Network (GAN) ✓ 86 43 85 >100 ****

Deep Belief Network (DBN) ✓ ✓ 46 35 45 >100 ****

Probabilistic Neural Network (PNN) ✓ 52 22 21 >100 ****

Boltzmann Machine ✓ 24 15 36 >100 ****

Restricted Boltzmann Machine (RBM) ✓ 18 9 29 >100 ****

Stacked Autoencoder ✓ ✓ 8 12 13 >100 ****

Learning Vector Quantization (LVQ) ✓ 14 8 3 >100 ***

Kohonen’s Self-Organizing Map (SOM) ✓ 4 4 5 >10 ***

Single-Layer Perceptron (SLP) ✓ ✓ 4 4 6 >10 ***

Hopfield Networks ✓ 3 2 8 >10 ****

Bayesian Regularized Neural Networks ✓ – – 4 >10 **

Supervised Kohonen Network (SKN) ✓ 6 9 – >10 *****

Counter-Propagation ANNs (CP-ANNs) ✓ – – – >1 –
fro
(†) Clas, Classification; Regr, Regression; Clus, Clustering; Anom, Anomaly Detection; Dim, Dimensionality Reduction; Asso, Association Rule Learning.
(‡) ***** >50%; **** >25%; *** >10%; ** >5%; –No cases.
✓ Indicates that this algorithm was used in the task to be solved.
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spectral response of infested plants. Dimensionality reduction

algorithms (e.g., PCA, PLS-DA) is also often applied to transform

large datasets into a lower dimensional space to facilitate further

analysis. This approach was used at the disease domain, e.g., for

early stage classification of anthracnose crown rot disease (by

Colletotrichum fungus) in strawberry crop with SDA, FLDA and

k-NN algorithms (Lu et al., 2017), classifying pre- and post-

symptomatic fungal infestations of late blight (Phytophthora

infestans) in potato leaves with PLS-DA and RF algorithms (Gold

et al., 2020), monitoring the rate of fungal powdery mildew

(Erysiphe graminis) disease in wheat with PLSR, SVR and RFR

algorithms (Feng et al., 2022), and pre-symptomatic detection of

tobacco mosaic virus in tobacco leaves with PLS-DA, RF, SVM,

BPNN, ELM and LS-SVM (Zhu et al., 2017); while at the plague

domain was used, e.g., for predicting and classifying oat aphids

(Rhophalosiphum padi) number in wheat cultivation with ANNs

models applied to NIR and e-nose data (Fuentes et al., 2021), and

spectralmodelling of cotton plants against fall armyworm

(Spodoptera frugiperda) attacks with RF, XGBoost, Naïve Bayes,

LoR, SVM, MLP and k-NN algorithms (Ramos et al., 2022). These

tools have also shown effective in other more complex scenarios

dealing with hyperspectral discrimination of various diseases or

other stresses/deficiencies that may cause similar symptomatology,

such as fungal Rhizoctonia root and crown rot (Rhizoctonia solani)

diseases in sugar beet leaves with PLS, RF, k-NN, and SVM (Barreto

et al., 2020), bacterial spots (Xanthomonas vesicatoria) disease

among other fungal diseases (late blight and target) in tomato

leaves with PCA and k-NN algorithms (Lu et al., 2018), fungal laurel

wilt (Raffaelea lauricola) and Phytophthora root rot diseases in

avocado trees with ANN-based MLP and RBF models (De Castro

et al., 2015), and laurel wilt disease against N and Fe nutrient

deficiencies in avocado leaves with DT and MLP (Abdulridha

et al., 2018).
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At the domain of weed science (Table 4), field hyperspectral

technology have been routinely tested to find the best spectral

regions or vegetation indices to discriminate between weeds and

crops at different phenological stages (Peña-Barragán et al., 2006;

Basinger et al., 2020), generally with the aim of extrapolating results

for remote sensing applications (Gómez-Casero et al., 2010; de

Castro et al., 2012) in the context of site-specific weed management.

Moreover, ML algorithms have recently dealt with challenging

issues such as: 1) discrimination of multiple weed species with

similar spectral response, such as Barnyard grass (Echinochloa

crusgalli) and weedy rice (Oryza sativa) in rice crops with RF,

SVM and SPA (Zhang et al., 2019b), Convolvulus arvensis, Rumex,

and Cirsium arvense in maize crops with PCA, k-NN and RF (Gao

et al., 2018), six Amaranthus species with SVM, DT and Naïve

Bayes (Sohn et al., 2021) and Cyperus esculentus clones and

morphologically similar weeds with RF, regularized LoR and PLS-

DA (Lauwers et al., 2020), or 2) differentiation of herbicide-

resistant and susceptible Palmer amaranth (Amaranthus palmeri)

plants, Kochia (Kochia scoparia) plants or Johsongrass (Sorghum

halepense) plants with MLC and FLDA (Reddy et al., 2014), SVM

with RBF kernel (Nugent et al., 2018), and k-NN, RF and SVM with

FLDA (Huang et al., 2022), respectively.

Disease, weed and plague detection and mapping with remote

sensing have been particularly benefited from the adoption of ML

algorithms (de CastroMegıás et al., 2021; Lassalle, 2021; Roslim et al.,

2021). In this context, proper selection of spectral and spatial image

resolutions, as well as the optimal timing, is crucial to achieve

satisfactory results (Peña et al., 2015; Khanal et al., 2017), which

promotes the use of UAVs or manned aircrafts to the detriment of

satellites in precision crop protection. Nonetheless, ML and satellite

imagery can be useful in broad-scale applications, e.g., for evaluating

integrated bacterial blight disease management in coffee plantations

with several ecological variables (Landsat-8 surface reflectance values

and VIs, relief morphometry and hydrological attributes) by using

RF, SVM and Naïve Bayes (de Carvalho Alves et al., 2022), or for

mapping cruciferous weed patches in multiple winter wheat fields

with QuickBird satellite imagery by using MLC (de Castro et al.,

2013). Thermal and hyper-spectral aerial images with capability to

capture slight variations in crop temperature and in narrow spectral

bands associated to certain physiological indicators, respectively are

commonly used in early detection of crop diseases, such as for

identifying bacterial Huanglongbing (HLB) disease in citrus trees

with stepwise regression, SVM, LDA and QDA (Garcia-Ruiz et al.,

2013), fungal Verticillium wilt (Verticillium dahlia) disease in olive

trees with LDA and SVM (Calderón et al., 2015), bacterial Xylella

fastidiosa infections in olive trees (Zarco-Tejada et al., 2018), and

fungal yellow rust (Puccinia striiformis) across crop cycle in wheat

with RF and CNN-based Inception-ResNet blocks (Zhang et al.,

2019a). SVM with a Gaussian kernel and RF algorithms also helped

to diminish the uncertainty of distinguishing trees affected by diverse

biotic (i.e., infections by Xylella fastidiosa and Verticillium dahlia

pathogens) and abiotic (i.e., water status) stressors that produce

analogous symptoms on spectral traits in olive and almond orchards

(Zarco-Tejada et al., 2021).

Most recent research in precision crop protection relies on

analyzing UAV images collected with low-cost RGB cameras or
FIGURE 3

Number of publications of CNN architectures commonly used in the
three domains of precision crop protection (crop diseases, weeds and
crop plagues) from 2010 to 2022 (source: Scopus). Figure compiled
with the conjunction of “CNN architecture” and each of the three
crop protection domains (crop diseases, weeds and crop plagues) as
search criteria within the article title, abstract and keywords.
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A B

FIGURE 4

Publications trends (2010 – 2022) of traditional ML algorithms (colored solid areas) and ANNs (dashed red line) in all disciplines (A), and for precision
crop protection applications (B), according to the proposed taxonomy (source: Scopus).
TABLE 3 Relevant investigations on ML algorithms in the domain of crop diseases.

Image/sensor
technology

Crop/
Pathogen

type

Main objective Task to be solved ML
Algorithm

Reference

Field spectroradiometer Wheat/fungal Detection and monitoring of powdery mildew (Erysiphe
graminis)

Regression, ensemble PLSR, SVM, RF (Feng et al.,
2022)

Potato/fungal Pre- and post-symptomatic detection of late blight
(Phytophthora infestans) in leaves

Classification, ensemble RF, PLS-DA (Gold et al.,
2020)

Avocado/fungal,
nutrient
deficiency

Early and late detection of laurel wilt (Raffaelea
lauricola), N deficiency and Fe deficiency in leaves

Classification DT, MLP (Abdulridha
et al., 2018)

Tomato/
bacterial, fungal

Discrimination of bacterial spots (Xanthomonas
vesicatoria) among others fungal diseases (e.g. Late blight

and target) with similar symptoms

Dimensionality
reduction, classification

PCA,k-NN (Lu et al.,
2018)

Strawberry/
fungal

Asymptomatic and symptomatic detection of
anthracnose crown rot (Colletotrichum)

Classification,
regression

FDA, SDA, k-
NN

(Lu et al.,
2017)

Avocado/fungal Early and late detection of laurel wilt (Raffaelea
lauricola) & phytophthora root rot

Classification MLP, RBF (De Castro
et al., 2015)

On-ground
hyperspectral camera

X Sugar beet/
fungal

Early detection of rhizoctonia root and crown rot
(Rhizoctonia solani) in leaves

Classification,
regression, ensemble

PLS, RF, k-NN,
Linear SVM,
Radial SVM

(Barreto
et al., 2020)

Seed potatoes/
viral

Real-time detection of potato virus y (pvy, genus
potyvirus, family potyviridae) in tractor-mounted

imagery

Classification Fully CNN (Polder
et al., 2019)

Wheat/fungal Early detection of head blight (Fusarium) Classification VGG, RNN (Jin et al.,
2018)

Tobacco/viral Early (pre-symptomatic) detection of tobacco mosaic
virus (tmv) in tobacco leaves

Classification,
regression, ensemble

PLS-DA, RF,
SVM, BPNN,
ELM, LS-SVM

(Zhu et al.,
2017)

Satellite multi-spectral
and thermal images

Coffee/bacterial Detection and progress of bacterial blight (Pseudomonas
syringae pv. Garcae)

Classification, ensemble RF, SVM, Naïve
Bayes

(de Carvalho
Alves et al.,

2022)

Airborne hyperspectral
and thermal images

Olive and
almond trees/
bacterial, fungal

Detection of Xylella fastidiosa (bacteria) and Verticillium
dahlia (fungus) symptoms across species and pathogens

Classification,
clustering

SVM, RF (Zarco-
Tejada et al.,

2021)
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multispectral imaging systems, which compromise image spectral

resolution in favor of much higher spatial resolution. This ultra-

high spatial resolution is particularly relevant to detect very small

weed seedlings in their earliest stages, which is generally the optimal

time for implementing SSWM strategies. In these scenarios, ML

algorithms tackled previously unsolved challenging tasks such as: 1)

distinguishing weeds outside and inside crop rows with k-NN, SVM

or k-means clustering in sunflower (Pérez-Ortiz et al., 2015) and in

maize (Pérez-Ortiz et al., 2016), or with an ensemble of RF trees in

sunflower and cotton (De Castro et al., 2018); 2) discriminating

between broad-leaved and grass weeds in sunflower and cotton by

using ANN-based MLP (Torres-Sánchez et al., 2021); 3) mapping

bermudagrass patches in vineyards with cover crops by using DT

(de Castro et al., 2020); and 4) spectral analysis and mapping of

blackgrass weed in wheat parcels by using feature selection and RF

with Bayesian optimization, respectively (Su et al., 2022). In the

domains of crop diseases and plagues, relevant studies with UAV

multispectral imagery are mainly focused on classifying crop/tree

area damaged by a disease infestation or a plague attack, e.g.,

detecting bacterial fire blight (Erwinia amylovora) disease in apple

or in pear trees with a combination of dimensionality reduction

(mRMR), anomaly detection (isolation forest) and classification
Frontiers in Plant Science 12
(DT, RF, SVM) algorithms (Xiao et al., 2022), or by using SVM

classifier with RBF (Bagheri, 2020), respectively, discriminating

bacterial (banana xanthomonas wilt - BXW) and viral (banana

bunchy top virus - BBTV) diseases in banana plantations with the

RetinaNet model based on the ResNet50 architecture as detector

and the VGG16 architecture pre-trained with the ImageNet dataset

as classifier (Selvaraj et al., 2020), and classifying cotton pixels

affected by two-spotted spider mite attacks with the CNN-based

AlexNet algorithm (Huang et al., 2018).

Advances in CNN algorithms have greatly promoted the use of

field imaging systems and proximal sensing for precision crop

protection applications in the last years, as a tool to improve

classification accuracy in complex crop/pest scenarios (Barbedo,

2020) and to implement real-time applications (Rakhmatulin et al.,

2021). In fact, recent innovations in agricultural robotics and

weeding systems are based on CNN classifiers for pest detection

and classification (Oberti and Schmilovitch, 2021; Allmendinger

et al., 2022; Gerhards et al., 2022; Li et al., 2022). Some recent

studies in the weed domain are the classification of Chenopodium

album in potato fields by comparing CNN-based GoogLeNet,

VGG-16 and EfficientNet (Hussain et al., 2021) and of five

different weed species in tomato fields with CNN-based
TABLE 3 Continued

Image/sensor
technology

Crop/
Pathogen

type

Main objective Task to be solved ML
Algorithm

Reference

Olive trees/
bacterial

Previsual symptoms detection of Xylella fastidiosa
infection

Classification, ensemble LDA, SVM, RBF,
neural network

ensemble

(Zarco-
Tejada et al.,

2018)

Olive trees/
fungal

Early detection and quantification of Verticillium wilt
(Verticillium dahlia)

Classification LDA, SVM (Calderón
et al., 2015)

Airborne hyperspectral
& UAV-based

multispectral images

Citrus trees/
bacterial

Identification of Huanglongbing (HLB) with two aerial
imaging systems

Regression,
Classification

Stepwise
regression, SVM,

LDA, QDA

(Garcia-Ruiz
et al., 2013)

UAV-based
hyperspectral images

Wheat/fungal Detection of yellow rust (Puccinia striiformis f. Sp. Tritici
(pst)) across crop cycle

Classification,
regression

ResNet, RF (Zhang
et al., 2019a)

UAV-based
multispectral images

Apple trees/
bacterial

Detection of apple fire blight (Erwinia amylovora) Dimensionality
reduction, anomaly

detection, classification

mRMR, Isolation
forest, DT, RF,

SVM

(Xiao et al.,
2022)

Banana/
bacterial, viral

Discrimination between Banana Xanthomonas wilt
(BXW) and Bunchy top virus (BBTV) diseases

Classification,
dimensionality

reduction

VGG16,
ResNet50

(Selvaraj
et al., 2020)

Pear trees/
bacterial

Detection of fire blight (Erwinia amylovora) Classification SVM, RBF (Bagheri,
2020)

Repository of RGB
images of leaves

Grapes/fungal Diagnosing black rot, black measles (esca) and leaf blight
diseases in leaves for potential use in mobile devices

Classification AlexNet,
MobileNet,
ShuffleNet

(Tang et al.,
2020)

Corn/fungal Real-time detection of common rust and northern leaf
blight damages in leaves

Classification CNN (Mishra
et al., 2020)

Tomato/
bacterial,

fungal, viral

Real-time detection of tomato mosaic virus in leaves Classification AlexNet,
SqueezeNet

(Durmus ̧
et al., 2017)

On-ground RGNIr for
leaves

Pear trees/
bacterial

Detection of fire blight (Erwinia amylovora) Classification SVM, RBF (Bagheri,
2020)
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RetinaNet, Faster RCNN and YOLOv7 (López-Correa et al., 2022),

in the disease domain are the early detection of fungal head blight

(Fusarium) disease in wheat by applying CNN-based VGG and

RNN classifiers to on-ground hyperspectral images (Jin et al., 2018)

and diagnosing of fungal black rot, black measles (esca) and leaf
Frontiers in Plant Science 13
blight diseases by applying CNN-based AlexNet, MobileNets and

ShuffleNet to a repository of RGB images of grape leaves for

potential use in mobile devices (Tang et al., 2020), while in the

plague domain are the detection and classification of multi-class

plague species in trap images by using CNN-based ZF, VGG16,
TABLE 4 Relevant investigations on ML algorithms in the domain of crop weeds.

Image/sensor
technology

Crop/Weed
species

Main objective Task to be
solved

ML Algorithm Reference

Field
spectroradiometer

No crop/Sorghum
halepense

Differentiating glyphosate- resistant and
susceptible Johnsongrass plants

Classification,
regression, ensemble

k-NN, RF, SVM with FLDA (Huang
et al., 2022)

No crop/Amaranthus
species

Spectral discrimination of six Amaranthus
species

Classification SVM, Generalized Linear
Model, DT, Naïve Bayes

(Sohn et al.,
2021)

No crop/Cyperaceae
weeds

Spectral discrimination of Cyperus
esculentus clones and morphologically

similar weeds

Classification,
dimensionality

reduction

RF, regularized LoR, PLS-DA (Lauwers
et al., 2020)

Wheat, broad bean/
Cruciferous weeds

Selecting optimal spectral bands for image-
based weed detection

Classification MLP, RBF (de Castro
et al., 2012)

Wheat/Avena sterilis,
Phalaris spp.

Selecting suitable timeframe and spectral
regions for discriminating wheat and two

grass weeds

Classification,
Dimensionality

reduction

Stepwise discriminant
analysis

(Gómez-
Casero et al.,

2010)

On-ground
hyperspectral

camera

Spring wheat, barley/
Kochia scoparia

Differentiating glyphosate- and dicamba-
resistant and susceptible Kochia plants

Classification SVM with RBF kernel (Nugent
et al., 2018)

No crop/Amaranthus
palmeri

Differentiating glyphosate- resistant and
susceptible Palmer amaranth plants

Classification,
dimensionality

reduction

MLC, FLDA (Reddy et al.,
2014)

Rice/Echinochloa
crusgalli, Oryza sativa

Discrimination of two weed species
(Barnyard grass and weedy rice) with

similar spectral signatures

Classification,
regression, ensemble

RF, SVM, feature selection:
successive projection
algorithm (SPA).

(Zhang
et al., 2019b)

Maize/Convolvulus
arvensis, Rumex,
Cirsium arvense

Discrimination of three weed species Classification,
dimensionality

reduction, ensemble

k-NN, RF, PCA (Gao et al.,
2018)

Satellite multi-
spectral images

Winter wheat/
Cruciferous weeds

Mapping cruciferous weed patches in
multiple fields at broad scale

Classification MLC (de Castro
et al., 2013)

UAV-based multi-
spectral and/or RGB

images

Wheat/blackgrass
weed

Spectral analysis and mapping of blackgrass
weed

Classification,
dimensionality

reduction

Feature selection, RF with
Bayesian optimization

(Su et al.,
2022)

Sunflower, cotton/
broad-leaved & grass

weeds

Discrimination between broad-leaved and
grass weeds

Classification ANN-based MLP (Torres-
Sánchez

et al., 2021)

Vineyard/Cynodon
dactylon

Detection of bermudagrass in complex
scenarios with cover crop, bare soil and

vines

Classification DT (de Castro
et al., 2020)

Sunflower, cotton/
Several weeds

Early-season weed mapping between and
within crop rows

Classification,
ensemble

RF (De Castro
et al., 2018)

Sunflower, maize/
Several weeds

Selecting patterns and features for between
and within crop-row weed mapping

Classification,
clustering

K-means clustering, SVM (Pérez-Ortiz
et al., 2016)

Sunflower/Several
weeds

Comparing several ML paradigms to
distinguish both weeds outside and within

crop rows

Classification,
clustering

k-means clustering, Linear
SVM-based approximation,

k-NN, SVM

(Pérez-Ortiz
et al., 2015)

On-ground RGB
imagery

Tomato/Several weeds Object detection and classification of five
weed species

Classification RetinaNet, Faster RCNN,
YOLOv7

López-
Correa et al.,

2022)

Potato/Chenopodium
album

Comparing CNN-based method to detect
Chenopodium album in the crop field

Classification GoogLeNet, VGG-16,
EfficientNet

(Hussain
et al., 2021)
f
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ResNet50 and ResNet101 (Liu et al., 2019) and the detection of

Helicoverpa assulta, Spodoptera litura and Spodoptera exiguamoths

in pheromone trap images by comparing Faster RCNN, R-FCN

ResNet, Retinanet and SSD Inception classifiers (Hong et al., 2020),

among many other ca se s tud i e s in the three c rop

protection domains.
5 Emerging technologies of precision
crop protection in line with AG5.0

Crop protection has used technology to reinvent itself over

time, with AI tools and ML algorithms being the main drivers in the

last decade towards the implementation of automated, smart and

precise tasks following the precision agriculture and digital Ag4.0

paradigms. While AI involves the scientific and technological

research of machines that are able to perceive, reason, learn,

adapt, make decisions and act rationally to meet objectives in a

given environment, the advances in ML are behind the recent rise of

AI in primary, industrial and service sectors. As discussed above,

many of the ML algorithms have already been successfully applied

in agriculture and other disciplines (Table 2), while others

unprecedented in agriculture are now reaching the level of

maturity needed to address new precision crop protection goals

in line with emerging Ag5.0.

These goals will primarily focus on developing and exploiting

two issues: 1) early detection of crop pests, and 2) autonomous real-

time multitasking systems. On the one side, the former will enable

the application of more effective control measurements at the

optimal time before the damage provoked by a disease, weed or

plague becomes too severe. The development of data-driven early

detectors is particularly urgent considering the adverse effects that

current climate change scenario are causing on cropping systems

due to the spread of newly emerging or invasive pests (Juroszek

et al., 2020; IPPC Secretariat, 2021). To this end, the

implementation of Ag5.0 technologies will facilitate data fusion

from various sources and tools (e.g. climate data, proximal and

remote sensing, crop and soil sensors, farm management

information systems, etc.) and assess the spatio-temporal

occurrence and severity of the pests (Shankar et al., 2020), which

will lead to improve early detectors and diagnostic algorithms

(Picon et al., 2019; Ramcharan et al., 2019). On the other side,

the latter aims the design of powerful autonomous systems capable

of simultaneously doing the three main stages of precision crop

protection in real time (see section 2), i.e. identifying occurrences of

crop diseases, weeds or plagues at different spatial and temporal

scales, analyzing crop and pest information, and make the decision

of applying a customized site-specific management adjusted to each

crop-pest scenario (Pretto et al., 2019; Birrell et al., 2020; Lottes

et al., 2020).

Ag5.0 technology will tackle these and other future challenges

with a multidisciplinary domain that relies on powerful ML

algorithms (Liakos et al., 2018; Coulibaly et al., 2022), along with

the latest technological solutions on hardware (Bustio-Martıńez

et al., 2022), telecommunications (Chopra et al., 2017; Ejaz et al.,

2020), and robotics (Ren et al., 2020; Albiero et al., 2022), which
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may contribute now or in the short, medium or long term given

their different degrees of maturity and use (Figure 5), as

discussed below.
5.1 Hardware solutions for precision
crop protection

Hardware tools are moving agriculture disciplines into

digitization with innovative smart sensors, IoT ecosystems,

architectures for specialized graphics processing, multicore

embedded systems, and a number of new electronic devices,

focused on the acquisition and use of crop data (Muhammad

et al., 2019). The convergence of technologies is enabling to turn

traditional agricultural sensors into smart sensors with built-in AI

processing, that is, AI-Sensors with a dedicated chip embedded in

the same sensor that can process ML tasks and, for example, may

simultaneously perform object perception and analysis. Sony

IMX500 and IMX501 (Sony Group Corporation, Tokyo, Japan)

are two commercial image-based AI-sensors (Sony, 2020), in which

the acquired signals are executed with a digital image signal

processor at high-speed by the logic chip (i.e., 3.1 millisecond

processing by the MobileNet V1). This processing speed is

feasible as the sensor generates semantic information belonging to

the image metadata instead of the image information, reducing data

volume. In crop protection, these AI-sensors would facilitate the

detection, recognition and control of targeting areas of crops with

specific pest problems in real-time (e.g., weed species identification)

and following optimized DSS prescriptions.

Advances in architectures for specialized graphics processing,

such as GPU, TPU, radeon DNA (RDNA), in dynamic random-

access memories (DRAM) and in communication and storage

access protocols (e.g., non-volatile memory express, NVMe) are

enabling greater programmability, opening up a wide range of

Ag5.0 applications based on virtual modeling, the creation of

digital twins and the use of supercomputers. A digital twin is a

multi-physics, multi-scale, probabilistic simulation of a complex

system that uses the best available physical models and sensor

updates to reflect the life of its corresponding twin (Glaessgen and

Stargel, 2012). While simulation-based analysis within a digital twin

will lead to the development of innovative and more powerful DSS

tools for precise pest management, the use of supercomputers will

enable the study of crop-pest models in less time and drastically

improve the performance of ML detectors and classifiers of crop

diseases, weeds or plagues. Currently, the bottleneck to implement

CNN-based architectures with high capacity for knowledge

generalization is the training stage with large training datasets,

but supercomputers will assist in overcoming this weakness by

increasing the input data (data augmentation) and decreasing the

computational time for model creation.

Performance of CNN-based architectures can be also improved

with the use of Field Programmable Gate Array (FPGA), which

enables the implementation of logic functions and is the basis for

the creation of multicore embedded systems (Qiu et al., 2016;

Shawahna et al., 2019). This technology will benefit precision

crop protection with the development of new software
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applications running in operating systems used in agriculture IoT

(Ag-IoT) solutions (Zhang et al., 2020) and the adaptation of

customized pest detectors to mobile devices.

The devices connected to IoT systems are potentially risky in

the absence of security elements or algorithms (Ibrahim and Gebali,

2022), reason why the devices performing edge gateway functions

have improved designs with the use of application-specific

integrated circuits (ASICs), just as security chips are essential in

the implementation of Industrial IoT (IIoT) (Oñate and Sanz, 2023)

and Ag-IoT systems. Wide evolution and adaptability of ML

algorithms lead to their employ in optimizing gateway equipment

tasks (ML-Optimized Gateways), making the performance of these

tasks efficient even with resource limitations. The use of ML-

Optimized Gateways in Ag5.0 will allow optimizing edge

computing devices, reduce latency and increase privacy, which

will result to create more efficient and safe models.

The future of both hardware and software solutions may reach a

turning point in the medium term with the application of the

computing principles derived from the memristors (Strukov et al.,

2008). These devices are composed of two terminals with three

layers, i.e. two electrodes for the communication of electrical signals

and one storage layer that can be dynamically reconfigured when

the inputs are stimulated, enabling data storage and direct

processing (Zidan et al., 2018). The functioning of memristive

elements is similar to that of neuronal synapses, becoming the

technological basis of neuromorphic computing (Xia and Yang,

2019) and Spiking Neural Networks (SNNs) research (Jeong and

Shi, 2019), which relies on a new neuron that is characterized by
ABLE 5 Relevant investigations on ML algorithms in the domain of crop plagues.

Image/sensor
technology

Crop/
Plague
type

Main objective Task to be
solved

ML Algorithm Reference

VNIR-SWIR
spectroradiometer

Cotton/
Worm

Modeling the spectral response of cotton
plants under the Fall armyworm attacks

Classification RF, DT, MLP, XGBoost, SVM, Naïve Bayes, LoR,
k-NN

(Ramos
et al., 2022)

Portable NIR
spectroscopy & e-

nose sensors

Wheat/
Aphid

Detecting level of Oat aphids infestation
and predicting insect number

Classification,
regression

ANN-based regression models, Bayesian
Regularization, SVM

(Fuentes
et al., 2021)

UAV-based
multispectral

imagery

Cotton/
Spider mite

Detection of two-spotted spider mite in
crop fields

Classification SVM, AlexNet (Huang
et al., 2018)

RGB imagery from
traps

No crop/
Pest moth

Detecting Helicoverpa assulta, Spodoptera
litura and Spodoptera exigua in

pheromone trap images

Classification Faster-RCNN ResNet, Faster RCNN Inception, R-
FCN ResNet, RetinaNet ResNet, RetinaNet

Mobile, SSD Inception

(Hong et al.,
2020)

No crop/
Multi-class
plagues

Detection and classification of multi-class
plague species in trap images

Classification VGG16, ZF, ResNet50, ResNet101 (Liu et al.,
2019)

Repository of
insect images

No crop/
Multi-class
plagues

Detection and classification of multi-class
plague species in insect images

Classification VGG19, SSD, Fast RCNN (Xia et al.,
2018)

On-ground RGB
imagery

Tomato
and pepper/

Pest

Vision-based automated detection and
identification of Bemisia tabaci &

Trialeurodes vaporariorum

Classification k-NN, MLP, SSD, Faster-RCNN (Gutierrez
et al., 2019)

Strawberry/
Thrips

Real-time detection of thrips
(Thysanoptera) in flower images

Classification SVM (Ebrahimi
et al., 2017)
f

FIGURE 5

Multidisciplinary technological domain of Ag5.0 with a different
degree of maturity and use ranging from mature technologies in the
core circle to future technologies in the peripheral circle. CPU,
central processing unit; GPU, graphics processing unit; TPU, tensor
processing unit; DRAM, dynamic random-access memory; RDNA,
radeon DNA; NVMe, non-volatile memory express; ASIC, application
specific integrated circuit; FPGA, field programable gate array;
LPWAN, low power wide area network; WLAN, wireless local area
network; WPAN, wireless personal area network; WSN, wireless
sensor network; IoT, internet of things; IIoT, industrial IoT; Ag-IoT,
agricultural IoT; LiFi, light fidelity; WiMAX, worldwide interoperability
for microwave access; TSN, time-sensitive networking; xG, cellular
network generation.
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having a time-varying internal state, known as spiking neuron

(Brette et al., 2007; Ghosh-Dastidar and Adeli, 2009). SNNs are

the artificial representation that most closely emulate the brain,

differing from ANNs in the incorporation of time as an explicit

dependency in computations (Davies et al., 2018). Comparing to

ANNs, SNNs achieve lower latency classifications, shorter

computation times in the training phase, high accuracies and low

energy consumption (Diehl et al., 2015; Esser et al., 2016), which

can foresee that neuromorphic computing and SNNs will be the

future tools to develop computational systems and create new

electronic devices with a high impact on Ag5.0 technology.
5.2 Telecommunications for precision
crop protection

Precision crop protection is increasingly heading towards a

system-of-systems approach with multiple connected practices to

achieve an integrated crop management strategy, in which on-

ground, proximal and remote sensing are key technologies to assess

and monitor all the biotic and abiotic factors that might affect crop

health. In this framework, telecommunications are essential to

connect devices (i.e., platforms, processors, actuators) and

transfer data acquired by sensors, creating a networking

environment that adds value in the tasks of data processing, pest

prediction, decision-making, and crop management.

Wireless Sensor Networks (WSN) are leading communication

systems in agriculture with various technologies that differ from

each other mainly in their operating mode and specifications in

terms of frequency range, transfer rate and power consumption

(Thakur et al., 2019). Bluetooth and Zigbee (developed under IEEE

802.15.1 and 802.15.4 standards, respectively) are characterized by

open specification, short range operation, high level data

transmission with low latencies and low power consumption

(Khanji et al., 2019; Zeadally et al., 2019). Zigbee covers larger

distance (<100 m) than Bluetooth (<10 m), although data transfer is

faster in Bluetooth (1-24 Mbps) than in Zigbee (40-240 Kbps). The

alternatives to increase the range of operation and data transfer are

the wireless fidelity (Wi-Fi) system, generally used for local area

networks with a range of 50-100 m or even several hundred meters,

and the worldwide inter-operability for microwave access

(WiMAX) system used as a long-distance communication

solution (up to 50 km). The development of IoT and the advance

of low power wide area networks (LPWAN) are promoting the

Long Range (LoRa) radio communication system and the

LoRaWAN protocol as the most promising technology in

agricultural disciplines (Castro et al., 2023), because of its long-

range data transmission (dozens of kilometers, very useful in rural

areas), low power consumption and secure connectivity (Gu et al.,

2020). LoRaWAN uses a modified frequency modulation, operates

in the Industrial, Scientific and Medical frequency band defined

according to the geographical area (Asia 433 MHz, Europe 868

MHz and America 915 MHz), hence the sensors can operate in the

license-free bandwidth (Lavric, 2019).

High-speed and efficient telecommunications are essential to

implement real-time operations in actuator platforms (i.e., tractors,
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self-propelled sprayers, unmanned ground vehicles (UGVs), UAVs,

etc.) that are focused to simultaneously percept, analysis and treat

pest occurrences. In engineering and computer science, the concept

of real-time is given to those processes whose execution, measured

as the ratio between the input and output of a variable, occurs at

very low time values (<milliseconds), therebeing a difference

between real-time system and real-time computer system

(Poniszewska-Maranda et al., 2020). Cloud computing, edge

computing and edge AI are the three technologies to implement

real-time actions on actuator platforms for precision crop

protection in line with Ag5.0

Cloud computing is the convergence of information technology

and business activity to provide services over the Internet.

Companies such as Amazon, Google and Microsoft compete in

the continuous improvement of infrastructures, hardware,

computer security and high information processing (Mahmoud

and Xia, 2019). To perform precision crop protection operations in

real-time using cloud computing, the information collected with a

sensorized platform must first be transmitted to the Internet, then

processed and analyzed on any ML-based cloud service, and finally

the prescription returned to the same platform to implement the

actuation. These interactive operations need access times as short as

possible, very close to real-time, to meet users’ demands, for which

network architectures for wireless connections enabling Internet

access such as 5G are already underway, with a view to the

upcoming development of 6G. For example, the integration of 5G

and future 6G with UAVs has enormous potential to apply precise

aerial treatments of weed patches and eventually other pest

occurrences following real-time detection (Ullah et al., 2020).

Technical aspects aside, security and privacy issues are of

particular concern in cloud computing systems, as infrastructures

and applications may be subject to malicious attacks, as reported by

Maniah et al. (2019) and Sun (2020). Indeed, privacy-sensitive

reasons together with the progressive increase in data volume due to

the connection of more devices has led to the introduction of fog

computing, which allows decentralized processing, low latency and

high bandwidth (Bonomi et al., 2012).

As mentioned before, current research is focused to platforms

that detect, process and treat at the same time, which require a high

computational cost in the limiting conditions of an equipment

located on the farm, using the encoding method for signal

transmission and taking into account the latency time of the

radio transmission equipment. In this scenario, edge computing

systems is a viable option as they allow the computing process to be

performed close to the data source without the need for an Internet

connection, thus avoiding data transmission problems and

providing superior privacy and security, as well as reducing

communication costs and energy consumption given the huge

number of computations performed in ML modeling (Garcıá-

Valls et al., 2018). A further step in the development of this

computational architecture is offered by the devices for AI on the

edge (Edge AI), which are embedded systems equipped with ML

algorithms. Edge Intelligence is still at an early stage of research

(Zhou et al., 2019), but is attracting great interest across all

technological disciplines, with enormous potential in the

development of agricultural robotics and autonomous crop
frontiersin.org

https://doi.org/10.3389/fpls.2023.1143326
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mesı́as-Ruiz et al. 10.3389/fpls.2023.1143326
protection treatments, since AI chips have achieved a high

calculation capacity in the implementation of CNNs (Gao and

Zhou, 2019).
5.3 Robotics for precision crop protection

Autonomous mobile robots (AMRs) allows the industry to

increase productivity by doing more with fewer people, having

great potential for boosting precision crop protection strategies in

line with Ag5.0. AMRs have the ability to navigate with little or no

human intervention under their control, in partially unknown

environments (Alatise and Hancke, 2020). Therefore, their

locomotion, perception, cognition and navigation systems must

be able to address dynamic crops in position and time; in addition

to: i) providing solutions to labor shortages, and ii) acquire real-

time data for data-driven decision making, with the aim of

significantly increasing yields within sustainable production

(Shamshiri et al., 2018).

Several research projects have been developed to link robotic

platforms to agricultural activities (Wolfert et al., 2017). In order to

have completely robotized agricultural fields, robots must be able to

adapt to the external environment and to the different types of land

surface. Due to the great technological advances implemented in

recent years, some robotic agricultural activities are already

becoming commercially available (Lowenberg-DeBoer et al., 2020;

Saiz-Rubio and Rovira-Más, 2020; Santos Valle and Kienzle, 2020;

Sparrow and Howard, 2021; Botta et al., 2022), being the use of

UGVs and UAVs that detect weeds and act in real-time with high

precision the most popular robotic system to implement a precision

crop protection activity (Oberti and Schmilovitch, 2021; Li et al.,

2022). Some AMRs with great potential are: 1) RIPPA (Australian

Centre for Field Robotics, The University of Sydney, Austria), based

on the design of their previous robot LADYBIRD, uses an

intelligent perception system and is equipped with a variable

injection precision applicator, with an operating autonomy of

twenty one continuous hours (Bogue, 2016); 2) AgBot-II

(Queensland University of Technology, Brisbane, Australia) with

a vision system not only detecting but also classifying weed species

in real time, then using the Inception-v3 architecture as its DDS,

which allows to decide the weed management method to apply,

either mechanical, chemical or a combination of both, weeds on

accuracies over 90% (McCool et al., 2018); 3) Robotti (Agrointelli,

Aarhus, Denmark), whose module-based construction allows it to

operate in various soil environments, adapting to different types of

crops (Grimstad and From, 2017); 4) AVO (Ecorobotix, Yverdon,

Switzerland) that uses CNNs algorithms for the detection and

selective control of weeds by herbicide spraying in real time,

obtaining a detection rate of 85% (https://ecorobotix.com/en/avo/

); 5) BONIROB (AMAZONE Technology Leeden GmbH& Co. KG,

Germany) (https://info.amazone.de/DisplayInfo.aspx?id=29417)

with an integrated system using camera-based machine vision,

image processing to detect the plants and a sprayer with

individually controlled valves, allows selective and precise control
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of weeds, thus achieving both ecological and economic advantages;

6) Kilter AX1 (Kilter AS, Norway) (https://www.kiltersystems.com/

ax1) uses machine vision combined with AI and a novel nozzle

technology that applies a micro-drop (6×6mm resolution), which

allows to reduce the amount of herbicides up to 95%; 7) DINO

(Naïo Technologies, France) (https://www.naio-technologies.com/

en/dino/), a weeding robot with an accuracy of 2 cm achieved by the

RTK GPS system that has a vision system to detect the crop rows

and adjust the position of the mechanical weeding tools in row,

allowing high precision weeding and hoeing; 8) Odd.bot (Odd.Bot

B.V., The Netherlands) (https://www.odd.bot/), a mechanical in-

row weeding robot that relies on machine vision and AI-based

seedling recognition; 9) Titan FT35 (FarmWise Labs Inc., USA)

(https://farmwise.io/) uses machine vision and ML algorithms

trained to learn the characteristics of crops such as broccoli,

lettuce, cauliflower and tomatoes to differentiate between the crop

and weeds; it has six internal weeders with blades that eliminate

weeds with centimeter accuracy; and 10) FARMING GT (Farming

revolution GmbH, Germany) (https://farming-revolution.com/)

distinguishes weed seedlings with 99% reliability in different crops

(e.g., cabbage, lettuce varieties, onions, corn, sugar beet, pumpkin,

field bean, potato, canola, soybean, wheat), then carrying out in-row

and inter-row mechanical weeding.

Collaborative or cooperative robots will support the future

development of Ag5.0 (Lytridis et al., 2021). These robots are

designed to complement the routine activities by improving their

ergonomics (Pauline et al., 2019) and also sharing the workspace.

An advanced application of collaborative robots is in organic food

production, particularly in pest control with nonchemical methods

by using robotic mechanical control (Machleb et al., 2020) and

viable handling systems for harvesting (De-An et al., 2011; Zhang

et al., 2021), which has been shown as a solution to increase the

benefits of organic crop management (Pérez-Ruıź et al., 2014;

Giampieri et al., 2022). The development of Ag5.0 will allow the

convergence of UGV and UAV systems, for their collaborative and

cooperative operation under a unified control, giving rise to Multi-

robot Fleet Systems (MFS). Workload performed by several small

robots composing a MFS is equivalent to that developed by a larger

machine, highlighting that the MFS have a more precise positioning

(de Santos et al., 2017).

Current technology has allowed the development and

maturation of sensory-motor autonomy, reactive autonomy and

cognitive autonomy in UAVs (Floreano and Wood, 2015), making

them a great tool that together with RGB, multispectral, and

hyperspectral sensors facilitate the acquisition of information on

plant diseases, weeds, and plagues. That is why in Ag5. 0, detection

and actuation systems based on ML algorithms and implemented in

embedded systems will be part of the UAVs. ML techniques within

Ag5.0 will allow the integral management of fleets of autonomous

vehicles (UAV and UGV) decentralized in real time, besides being

the basis for the implementation of robust navigation systems, such

as the redundant system developed by (Belhajem et al., 2016) where

they used ANNs in conjunction with genetic algorithms and the

Extended Kalman Filter to reliably estimate the position of a vehicle
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in real time in the absence of GPS signal. The objective of having

fleets of autonomous vehicles is the application of specific

treatments for the detection and action on weeds and others pests

(Emmi et al., 2014), which will finally reduce production costs and

reduce the environmental impact of the use of herbicides

and pesticides.
6 Conclusions

This article provides a framework on the future direction of

precision crop protection, with a focus to scientific, agronomic and

industrial applications of traditional ML algorithms and recent

advances in the ANNs models. In the period 2010-2022, 125

algorithms applied in all disciplines were identified, of which 122

were used in the domains of crop diseases, weeds and plagues, with

the aims of solving tasks on classification, regression, clustering,

anomaly detection, dimensionality reduction, and association rule

learning, and moving precision crop protection closer to the

emerging concept of Ag5.0. This process should be accompanied

by innovations and dedicated solutions in the areas of hardware,

telecommunications and robotics, some of which are already being

implemented in agriculture and others are still unprecedented, as

this article outlines by introducing 39 emerging technologies and

citing some 80 scientific and technical references. The transition

from current Ag4.0 to future Ag5.0 strategies in the field of

precision crop protection will be driven mainly by their focus and

level of automation. Ag5.0 will promote a new era of intelligent crop

management with a greater emphasis on solving complex crop

protection objectives (e.g. early detection of crop pests) and

enhancing management practices (e.g. autonomous real-time

multitasking) as a whole, with a main focus to automatized

decision-making processes, unmanned operations and

progressively less human intervention supported by the latest AI

systems, advanced robotics, and powerful ML algorithms.
Frontiers in Plant Science 18
Author contributions

MP-O, JD, and JP conceived and designed the review; GM-R

conducted the bibliographic search with support of JD, AC, and JP;

GM-R, and MP-O analyzed the data and defined the ML taxonomy;

JD, AC, and JP selected the case studies cited; GM-R and JP

identified the emerging technologies; GM-R, JD, and JP wrote the

first draft. All authors contributed to the article and approved the

submitted version.
Funding

This work was supported by the Spanish Research State Agency

(AEI) through the Projects PDC2021-121537-C22/AEI/10.13039/

501100011033 and PID2020-113229RB-C41. The lead author GM-

R has been a beneficiary of a FPI fellowship by the Spanish Ministry

of Education and Professional Training (PRE2018-083227).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Abdulridha, J., Ampatzidis, Y., Ehsani, R., and de Castro, A. I. (2018). Evaluating the
performance of spectral features and multivariate analysis tools to detect laurel wilt
disease and nutritional deficiency in avocado. Comput. Electron. Agric. 155, 203–211.
doi: 10.1016/j.compag.2018.10.016

Alatise, M. B., and Hancke, G. P. (2020). A review on challenges of autonomous
mobile robot and sensor fusion methods. IEEE Access 8, 39830–39846. doi: 10.1109/
ACCESS.2020.2975643

Albiero, D., Garcia, A. P., Umezu, C. K., and de Paulo, R. L. (2022). Swarm robots in
mechanized agricultural operations: A review about challenges for research. Comput.
Electron. Agric. 193, 106608. doi: 10.1016/j.compag.2021.106608

Allmendinger, A., Spaeth, M., Saile, M., Peteinatos, G. G., and Gerhards, R. (2022).
Precision chemical weed management strategies: A review and a design of a new CNN-
based modular spot sprayer. Agronomy 12, 1620. doi: 10.3390/agronomy12071620

Bagheri, N. (2020). Application of aerial remote sensing technology for detection of
fire blight infected pear trees. Comput. Electron. Agric. 168, 105147. doi: 10.1016/
j.compag.2019.105147

Barbedo, J. G. A. (2020). Detecting and classifying pests in crops using proximal
images and machine learning: A review. AI 1, 312–328. doi: 10.3390/ai1020021

Barreto, A., Paulus, S., Varrelmann, M., and Mahlein, A.-K. (2020). Hyperspectral
imaging of symptoms induced by Rhizoctonia solani in sugar beet: comparison of input
data and different machine learning algorithms. J. Plant Dis. Prot. 127, 441–451.
doi: 10.1007/s41348-020-00344-8

Basinger, N. T., Jennings, K. M., Hestir, E. L., Monks, D. W., Jordan, D. L., and
Everman, W. J. (2020). Phenology affects differentiation of crop and weed species using
hyperspectral remote sensing. Weed Technol. 34, 897–908. doi: 10.1017/wet.2020.92

Behmann, J., Mahlein, A.-K., Rumpf, T., Römer, C., and Plümer, L. (2015). A review
of advanced machine learning methods for the detection of biotic stress in precision
crop protection. Precis. Agric. 16, 239–260. doi: 10.1007/s11119-014-9372-7

Belhajem, I., Maissa, Y. B., and Tamtaoui, A. (2016). “A robust low cost approach for
real time car positioning in a smart city using extended kalman filter and evolutionary
machine learning,” in 4th IEEE International Colloquium on Information Science and
Technology (CiSt). (Tangier-Assilah, Morocco: IEEE), 806–811.

Birrell, S., Hughes, J., Cai, J. Y., and Iida, F. (2020). A field-tested robotic harvesting
system for iceberg lettuce. J. Field Robot. 37, 225–245. doi: 10.1002/rob.21888

Bogue, R. (2016). Robots poised to revolutionise agriculture. Ind. Robot: Int. J. 43,
450–456. doi: 10.1108/IR-05-2016-0142

Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). “Fog computing and its role
in the internet of things,” in Proceedings of the first edition of the MCC workshop on
Mobile cloud computing. (Helsinki, Finland: Association for Computing Machinery)
13–16.
frontiersin.org

https://doi.org/10.1016/j.compag.2018.10.016
https://doi.org/10.1109/ACCESS.2020.2975643
https://doi.org/10.1109/ACCESS.2020.2975643
https://doi.org/10.1016/j.compag.2021.106608
https://doi.org/10.3390/agronomy12071620
https://doi.org/10.1016/j.compag.2019.105147
https://doi.org/10.1016/j.compag.2019.105147
https://doi.org/10.3390/ai1020021
https://doi.org/10.1007/s41348-020-00344-8
https://doi.org/10.1017/wet.2020.92
https://doi.org/10.1007/s11119-014-9372-7
https://doi.org/10.1002/rob.21888
https://doi.org/10.1108/IR-05-2016-0142
https://doi.org/10.3389/fpls.2023.1143326
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mesı́as-Ruiz et al. 10.3389/fpls.2023.1143326
Botta, A., Cavallone, P., Baglieri, L., Colucci, G., Tagliavini, L., and Quaglia, G.
(2022). A review of robots, perception, and tasks in precision agriculture. Appl. Mech. 3,
830–854. doi: 10.3390/applmech3030049

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al.
(2007). Simulation of networks of spiking neurons: A review of tools and strategies. J.
Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6
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