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Abstract Sensors in building heating, ventilation and air-conditioning systems (HVACs) play 15 

important roles in maintaining indoor environmental quality and energy consumption. Owing to the 16 

repeatedly varied outdoor working environment and indoor users’ demand, sensor faults could be 17 

inevitable in the lifespan. To allow HVACs worked at fault-tolerant way, previous studies developed 18 

the in-situ sensor calibration method via energy conservation equations and Bayesian inference (EC-19 

BI). However, the practical application may encounter challenges like limited-variable information, 20 

low-quality data and increasing risks of calibration uncertainty by indirect information supplement. 21 

These cause increasing in-situ calibration complexity and modeling costs. To address these challenges, 22 

this study proposed a general regression improved Bayesian inference (BI) in-situ sensor calibration 23 

strategy. The multiple linear regression (MLR) was utilized as a typical example of general regression 24 

method to improve the BI method. The proposed MLR-BI method was validated using both simulated 25 

and practical data of two building HVAC systems in two case studies. The principle component 26 

analysis (PCA)-based sensor fault reconstruction method was used for comparison under five fault 27 

conditions covering both single and simultaneous faults. Five variable scenarios were considered to 28 

validate the effectiveness of MLR-BI on HVACs with the limited variable information. Results 29 

indicated that the calibration accuracy of MLR-BI is over 99% under four conditions of the simulated 30 

case 1, which is about 6% and 8% higher than PCA and EC-BI respectively. For all the three variable 31 

scenarios of the simulated case 1, the calibration accuracy of MLR-BI is 99.65% on average. Especially 32 

in the four-variable scenario with limited variable information, MLR-BI shows the average calibration 33 

accuracy of 99.75% while PCA obtains 79.46% and EC-BI fails to work because of variable limitation. 34 

For the fault condition of the limitted-variable practical case 2, MLR-BI still outperforms the other 35 

two and obtains 97.1% calibration accuracy in two practical scenarios. 36 
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Nomenclature 

AHU Air handling unit 

BES Building energy system 

BI Bayesian inference 

CAV Constant-speed air volume 

EC Energy conservation 

EC-BI Calibration method of EC equations and Bayesian inference 

EVIC Extended virtual in-situ sensor calibration 

GMM Gaussian mixture model 

HVACs Heating, ventilation and air-conditioning systems 

MAPE Mean absolute percentage error 

MAT Mixed air inlet temperature sensor 

MCMC Markov chain Monte Carlo 

MFR Air mass flow rate sensor 

MLR Multiple linear regression 

MLR-BI Calibration method of multiple linear regression and Bayesian inference 

PCA Principle component analysis 

PDF Probability density function 

RE Relative error 

VIC Virtual in-situ sensor calibration 

VVIC Virtual sensor-assisted in situ sensor calibration 

SAT Air supply temperature sensor 

𝛼0,𝛽0 Constant term of the MLR model 

𝛼1 − 𝛼𝑝,𝛽1 − 𝛽𝑞 Coefficients of corresponding input variables 

𝐶𝑤 Specific heat capacity of water 

𝑑 Humidity ratio 

𝐷() Distance function 

𝑓 Fault amplitude 

𝑔𝑐() Compensation function 

ℎ Enthalpy 

𝑀 Flow rate 

𝑂 Original measurement of the target sensor 

𝑃(𝑥|𝑌) Posterior distribution 

𝑃(𝑌) Normalization constant 

𝑃(𝑌|𝑥) Likelihood function 
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𝑃𝑙𝑜𝑎𝑑 Part load ratio 

𝑄 Value of 𝑄 statistic 

𝑄𝑟𝑒𝑐 Value of 𝑄 statistic calculated by reconstructed data 

𝑇 Temperature 

𝑢𝑟 Value of unknown variables in the model after compensation 

𝑉1 − 𝑉𝑝 Physical sensors except the target sensor to be calibrated 

𝑉1
′ − 𝑉𝑞

′ Target sensors to be calibrated 

𝑉𝑐𝑎 Calibration value after compensating 

𝑊 The total power input 

𝑥 Compensation value 

𝑥̂ Residual vector 

𝑋𝑚𝑒 Measurement data 

𝑋̂𝑚𝑒 Residual of measured data 

𝑋𝑟𝑒𝑐 Reconstructed data 

𝑋̂𝑟𝑒𝑐 Residual of reconstructed data 

𝑌𝑐 Calibration value of the target sensor 

𝑦̂𝑐𝑎,𝑖 Calibrated value of the target variable 

𝑌𝐵𝑠𝑒 Benchmark of the sensor term 

𝑌𝐵𝑠𝑦 Benchmark of the system term 

𝑦𝑖 True value of the target variable 

𝑦𝑟𝑒𝑙,𝑛 Value of model related variables after compensation 

𝑌𝑆𝑚𝑒 Measured value of the system model 

∆𝐸 Heat exchange 

𝜋(𝑥) Prior distribution of 𝑥 

𝜇⃗ Unit vector 

𝜇̂⃗+ Moore–Penrose pseudo inverse of the unit vector 

𝜎 Standard deviation of the prior distribution 

𝜉𝑐𝑎 Calibration accuracy 

𝜑 Relative humidity 

𝑎 Air side of cooling coil 

𝑐𝑎 Calibrated value 

𝑐𝑜 Condenser 

𝑒𝑣 Evaporator 

𝑟𝑒𝑐 PCA reconstruction 

𝑖 𝑖th sample of testing dataset 
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𝑖𝑛 The inlet of evaporator and condensor 

𝑙 Number of system models 

𝑚𝑖𝑥 The inlet of cooling coil air side 

𝑚 Number of sensors 

𝑛 Total number of testing data sample 

𝑜𝑢𝑡 The outlet of evaporator and condensor 

𝑝 Number of variables in the MI R model 

𝑞 Number of target variables in the MIR model 

𝑟𝑒𝑡 The inlet of cooling coil water side 

𝑠𝑢𝑝 Outlet including cooling coil air side and water side outlet 

𝑤 Water side of cooling coil 

1 Introduction 1 

1.1 Background 2 

 Surveys indicate that the building sector accounts for nearly 40% of the global energy 3 

consumption [1, 2], of which 60% is consumed by the heating, ventilation and air conditioning (HVAC) 4 

system in buildings [3]. HVACs are of importance to maintain not only indoor thermal comfort but 5 

also indoor environmental quality (i.e., indoor air temperature and humidity, CO2 concentration) [4]. 6 

With the development of artificial intelligence and big data technologies, many data-driven techniques 7 

have been developed to achieve building energy-savings and improve building performance, such as 8 

in-situ modeling method [5], energy model calibration [6, 7], demand and load prediction [8, 9], system 9 

fault diagnosis [10, 11], control and operational optimization [12] for building HVAC systems. These 10 

techniques can decipher the information and establish the correlations between interested states from 11 

operational data [13], which can benefit HVAC operational management and performance 12 

optimization. Undoubtedly, the performance of these data-driven techniques depends heavily on the 13 

reliability and accuracy of the data used, which are measured by the sensors in HVACs. 14 

1.2 Summary of sensor calibration studies in building HVAC systems 15 

Owing to the repeatedly changed indoor environmental demands and outdoor weather conditions, 16 
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the building cooling and heating loads estimation could be difficult to achieve very high accuracy but 1 

with high forecast uncertainty. To match the time-varied building demands, the HVAC system may 2 

suffer great risks of abnormal operations, which causes significant energy waste in the long-term 3 

service [14]. Sensors in the system could also experience faults, i.e., error reading, bias, drifting and 4 

even complete failure [15]. These sensor faults could result in improper control strategies and the 5 

consequent system operation deviation from the expected. Additionally, the current data-driven 6 

methods for HVAC performance optimization may not work well if there is error measurements caused 7 

by various sensor faults. As a common type of HVAC system fault [16, 17], sensor fault includes two 8 

main categories: (1) hard fault that causes complete sensor failure due to structural damage and (2) 9 

soft fault that leads to sensor performance degradation due to improper installation and changed 10 

environment [18]. Many sensors are mounted in the HVAC system [19]. The conventional sensor 11 

calibration method [7, 20, 21], which compares the standard with the measured value, may only apply 12 

to the hard fault. As for the soft fault, advanced data-driven or statistical inference based in-situ sensor 13 

calibration methods can reduce time and cost while increase the efficiency [22].  14 

Many researchers have dedicated their efforts for in-situ sensor calibration with soft faults in the 15 

building systems. Yu and Li [22] firstly proposed a virtual in-situ sensor calibration method (VIC), 16 

which developed in-situ benchmark sensors and evaluated the calibration results through statistical or 17 

model-based methods. Bayesian inference (BI), as a common data inference method based on statistics, 18 

has been widely used in various calibration problems of complex building energy systems because of 19 

its convenient calculation and few parameters to be determined. Yoon and Yu [23] developed an BI-20 

based extended VIC method (EVIC) for the LiBr-H2O absorption refrigeration system. It can process 21 

a large amount of variable information in the building system and greatly improve calibration 22 

efficiency. Yoon and Yu [24, 25] carried out quantitative comparison between BI and genetic algorithm 23 

for sensor calibration in the LiBr-H2O absorption refrigeration system. Also, the various hidden factors 24 

and corresponding complementing strategies [26-28] were seriously considered. Furthermore, Wang 25 

et al. [29] proposed a sensitivity coefficient optimization method to promote the development of an 26 

automated reviving calibration strategy. For the air handling unit (AHU), Wang et al. [30] verified the 27 

the VIC method under six normal and four extreme operating conditions. Zhao et al. [31] proposed a 28 
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Gaussian mixture model (GMM) to preprocess historical data and obtain steady-state measurement 1 

values under various operating conditions so that eliminate the impact of dynamic data on the 2 

calibration results of VIC method can be eliminated. Li et al. [19] investigated the influences of 3 

different calibration models on calibration accuracy. The models are constructed under different system 4 

regions. Choi and Yoon [32] proposed a virtual sensor-assisted in situ sensor calibration method 5 

(VVIC), which solved the problem of insufficient variable information when the VIC method was used 6 

to construct the calibration model. For the R-410A unitary air-conditioners, Yoon et al. [33] determined 7 

the balance error of refrigeration capacity between the air side and the refrigerant side caused by the 8 

measurement error with VIC, and improved the system performance by calibrating the measurement 9 

error. 10 

In these studies, energy conservation (EC) is often used as the basis for modeling, which can be 11 

collectively referred as the EC-BI method. For example, the calibration model of the LiBr-H2O 12 

absorption refrigeration system is usually constructed based on the conservation of the state enthalpy 13 

difference [23-29]. For the AHU [19, 30-32] and the R-410A unitary air-conditioners [33], the 14 

calibration model was usually constructed in accordance with the heat transfer balance between the air 15 

side and the water side of the heat exchanges. In addition, BI has been applied to calibrate sensors in 16 

other building energy systems. Mokhtari et al. [34] used Bayesian inference to calibrate the wind speed 17 

sensor in the cooling tower of a thermal power plant. The calibration model was constructed based on 18 

the equipment delivery instructions of the cooling tower. Sun et al. [35] used BI to quantify the flow 19 

uncertainty of a central cooling system with multiple chillers. Moreover, Sun et al. [36] proposed an 20 

online robust sequencing control based on the quantification results of flow uncertainty. The calibration 21 

model was construced based on the EC equations between the chillers and the cooling towers.  22 

1.3 Challenges  23 

Although the EC-BI method has been widely studied in the in-situ calibration of sensors in 24 

building HVAC systems, there are still some challenges for practical applications. First of all, since 25 

the construction of calibration model is usually based on EC equations, the information of key variables 26 

for developing calibration model are often relatively limited in practice due to sensor cost or technical 27 
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constraints. To overcome this problem, the VVIC method was proposed by Choi and Yoon [32]. The 1 

construction of virtual sensors can be regarded as an indirect information supplement method, which 2 

could not directly participate in the development of calibration model. More modeling deviations may 3 

be generated by more calculation steps. Secondly, due to the unfavorable working environment, signal 4 

transmission problem, and the dynamic characteristics of observation phenomena, the original sensor 5 

measured data tend to be noisy and incomplete [37] in practical HVACs. This may cause unreliable 6 

calibration models based on EC equations and further lead to deviation of the calibration result. Lastly, 7 

practical HVACs consist of complex and diverse components, such as chillers, cooling towers, fan 8 

coils, etc. For the sensors in different component, different EC equations should be employed to 9 

develop the BI-based in-situ calibration models. After sensor fault detection and diagnosis, it is time-10 

consuming and laborious to find the suitable EC equations for calibrating the faulty sensors. If some 11 

components with long service life have lost the relevant manufacturing instructions, the EC-BI method 12 

may fail to work owing to the information loss. If only the EC equations can be used to establish the 13 

BI calibration model, the adverse influences of limited variable information or low-quality data can be 14 

significant. The main challenges of applying the in-situ EC-BI based sensor calibration method in 15 

practical HVAC systems can be summarized as follows: 16 

(1) There could be information limitation constructing the in-situ EC-BI based sensor calibration 17 

model, and the propagation of estimation uncertainty of the virtual sensor assisted indirect 18 

information supplement method may enhance the risk of calibration uncertainty. 19 

(2) When the building HVAC system practical operational data are used, sensor inherent mearured 20 

errors and noise may cause unexpected deviations of EC equations [38], which may affect the 21 

model reliability of the in-situ EC-BI based calibration method. 22 

(3) In the practical HVAC system, if there is lack of some critical manufacturing instructions and the 23 

detailed component descriptions for EC equations, the in-situ EC-BI model may be infeasible. 24 

Even if EC equations become realizable, the EC-BI calibration could be time-consuming and 25 

laborious and challenges (1) and (2) still remain to be solved.  26 
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1.4 Research contents and contributions of this study 1 

Therefore, it is necessary to develop a pure data-driven general regression method to overcome 2 

the modeling requirements based on the laws of physics, for coping with the above challenges in 3 

practical HVACs. The method should effectively control the modeling cost and ensure calibration 4 

performance when calibrating key system sensors. As a typical regression method, multiple linear 5 

regression (MLR) is calculation-convenient, reliable and easy-to-realize. MLR has been used to solve 6 

the modeling problem of HVAC systems [39, 40]. It also satisfied the purposes of improving 7 

calibration while reducing calibration costs. Hence, this study introduced MLR as an example to 8 

develop the proposed general regression improved BI calibration method (MLR-BI) and further 9 

addressed the aforementioned challenges in three main aspects as follows: 10 

(1) For both information-poor and information-rich HVACs in practice, MLR-BI can construct an in-11 

situ sensor calibration model with high accuracy using only the built-in physical sensors 12 

measurement data of the practical HVACs. For variable-limitation scenarios, the increasing 13 

uncertainty risk by indirect information supplement can be alleviated since the calibration models 14 

are constructed no longer requiring the supplemental calculation processes.  15 

(2) The MLR-BI method can obtain reliable calibration model as long as the general regression model 16 

(MLR in this study) achieves relatively high fitness and low-level regression residuals since the 17 

pure data-driven calibration model is constructed using the practical data of the HVAC systems.  18 

(3) As the physical law of EC equations are no long the hard modeling requirement, the MLR-BI in-19 

situ sensor calibration method can be constructed with sufficient operational data which greatly 20 

broaden the practical application by reducing the model complexity and cost. 21 

To evaluate the effectiveness of the general regression improved Bayesian inference calibration 22 

method, this study validated the proposed MLR-BI methods in two case studies, i.e.,the simulated 23 

chiller-AHU and the practical chiller system. Both the single and simultaneous fault conditions were 24 

investigated. The other two commonly used calibration methods (PCA-based reconstruction [41] and 25 

EC-BI based calibration[32]) were selected for performance comparison. Besides, five variable 26 

scenarios were considered to simuate the information-rich simulated scenario, information-poor 27 

practical scenario and the extremely limited variable scenario of practical HVAC systems, to validate 28 
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that MLR-BI can still guarantee relatively good calibration performance with limited variable 1 

information. 2 

2 Background knowledge 3 

2.1 Principle of PCA-based reconstruction 4 

PCA has been widely applied for sensor fault detection, diagnosis and reconstruction [42]. The 𝑄 5 

statistic is usually used as the judgment standard for sensor fault detection and reconstruction. 𝑄 6 

statistic represents the square of residual vector 𝑥̂ projected on each dimension in the residual space, 7 

as shown in Eq. (1). According to the minimization of 𝑄 statistic principle [43], the faulty sensors 8 

measurement data can be reconstructed. The reconstructed data equal to the measured data minus the 9 

calculated fault amplitude, as shown in Eq. (2). To obtain the optimal reconstructed data, 𝑄𝑟𝑒𝑐 (𝑄 ≥ 0) 10 

= 0 should be adopted as the optimal solution condition to solve the optimal fault amplitude, as shown 11 

in Eqs. (3) - (4). The optimal solution of the reconstructed data can be obtained by substituting Eq. (4) 12 

into Eq. (2), as shown in Eq. (5).  13 

 𝑄 = ∑ 𝑥̂2𝑛
𝑖=1  (1) 14 

 𝑋𝑟𝑒𝑐 = 𝑋𝑚𝑒 − 𝜇⃗𝑓 (2) 15 

 𝑄𝑟𝑒𝑐 = ∑ 𝑋̂𝑟𝑒𝑐
2𝑛

𝑖 = ∑ (𝑋̂𝑚𝑒 − 𝜇̂⃗𝑓)
2𝑛

𝑖 = 0 (3) 16 

 𝑓 = 𝜇̂⃗+𝑋𝑚𝑒 (4) 17 

 𝑋𝑟𝑒𝑐 = (𝐼 − 𝜇⃗𝜇̂⃗
+) 𝑋𝑚𝑒 (5) 18 

where, 𝑄  represents 𝑄  statistic, 𝑥̂  is the residual vector. 𝑛  is the total number of samples, 𝑖  is the 19 

number of data within the statistical range of samples. 𝑋𝑟𝑒𝑐  is the reconstructed data, 𝑋𝑚𝑒  is the 20 

measurement data (usually the faulty data). 𝜇⃗  is the unit vector, 𝑓  is the fault amplitude. 𝑄𝑟𝑒𝑐 21 

represents 𝑄 statistic calculated by reconstructed data, 𝑋̂𝑟𝑒𝑐 is the residual of reconstructed data, 𝑋̂𝑚𝑒 22 

is the residual of measured data. 𝜇̂⃗+ is the Moore–Penrose pseudo inverse of the unit vector. 𝐼 is the 23 

identity matrix [43]. 24 
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2.2 Principle of the calibration method based on Bayesian inference and energy 1 

conservation (EC-BI) 2 

2.2.1 Principle of Bayesian inference (BI) 3 

Bayesian inference has been successfully applied for sensor in-situ calibration [23]. Its basic 4 

mathematical descriptions are shown in Eqs. (6) - (8). BI updatas the prior probability with new 5 

information. Then prior is converted into posterior. The calibration problem is transformed into the 6 

optimization problem of minimizing the distance function, as shown in Eq. (8).  7 

 𝑃(𝑥|𝑌) =
𝑃(𝑌|𝑥)×𝜋(𝑥)

𝑃(𝑌)
 (6) 8 

 𝑃(𝑌) = ∫𝑃(𝑌|𝑥)𝜋(𝑥)𝑑𝑥 (7) 9 

 𝑃(𝑌|𝑥) =
1

𝜎√2𝜋
𝑒𝑥𝑝 [−

1

2𝜎2
𝐷(𝑥)] (8) 10 

where, 𝑥 is the compensation value that is eventually converted into the mean of posterior distribution. 11 

It is equivalent to the calibration result. 𝜋(𝑥)  is the prior distribution of 𝑥 . 𝑃(𝑥|𝑌)  is the posterior 12 

distribution. 𝑃(𝑌|𝑥) is the likelihood function. 𝑃(𝑌) is the normalization constant. 𝜎 is the standard 13 

deviation of the prior distribution.  14 

It is very difficult to obtain the integral formula for 𝑃(𝑌) directly. Often, the prior distribution is 15 

defined as normal distribution according to the central limit theorem [44], and the Markov chain Monte 16 

Carlo (MCMC) method is used to calculate the 𝑃(𝑌) [45]. The Metropolitan Hastings algorithm is a 17 

widely used MCMC sampling method [46, 47], which can be used to obtain posterior distribution 18 

samples of 𝑥 in the BI calibration model. The statistical characteristics of posterior distribution (mean, 19 

standard deviation, etc.) can further be obtained by samples. 20 

2.2.2 Construction of EC-BI calibration model 21 

From Section 2.2.1, it can found that the distance function plays an important role in the BI-based 22 

in-situ sensor calibration method. Previous studies [23, 32] employed the EC equations as bases to 23 

establish the distance function for calibration, which is the so-called EC-BI calibration method. The 24 

specific mathematical descriptions of EC-BI are shown in Eqs. (9) - (12). As shown in Eq. (9), the 25 
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calibration model includes two terms, the system term and the sensor term. The system term represents 1 

the difference between the measurements of the practical system where the target sensor is located and 2 

the benchmarks of the reliable system. Generally, the reliable system, which does not contain target 3 

sensor, is selected based on the EC equations. For example, the heat transfer between the air side and 4 

the water side of the heat exchanges. Given the target supply air temperature sensor on the air side 5 

cooling coils, the heat exchanges of water side is used as the benchmark of the reliable system. The 6 

sensor term represents the difference between the benchmark calculated by the single sensor model 7 

and the calibrated value calculated by the compensation function as shown in Eq. (12). The benchmark 8 

of the system model and the benchmark of the sensor model are shown in Eqs. (10) and (11), 9 

respectively. The related variable 𝑦𝑟𝑒𝑙,𝑛  and the unknown variable 𝑢𝑟  in 𝐻1  and 𝐻2  need to be 10 

compensated through the compensation function 𝑔𝑐(𝑥). 11 

 𝐷𝐸𝐶(𝑥) = ∑ (𝑌𝐵𝑠𝑦,𝑙 − 𝑌𝑆𝑚𝑒,𝑙)
2𝐿

𝑙⏟            
system term

+ ∑ (𝑌𝐵𝑠𝑒,𝑚 − 𝑌𝑐,𝑚)
2𝑀

𝑚⏟            
sensor term

 (9) 12 

 𝑌𝐵𝑠𝑦 = 𝐻1(𝑦𝑟𝑒𝑙,1, 𝑦𝑟𝑒𝑙,1, … , 𝑦𝑟𝑒𝑙,𝑛, 𝑢1, 𝑢2, … , 𝑢𝑟) (10) 13 

 𝑌𝐵𝑠𝑒 = 𝐻2(𝑦𝑟𝑒𝑙,1, 𝑦𝑟𝑒𝑙,1, … , 𝑦𝑟𝑒𝑙,𝑛, 𝑢1, 𝑢2, … , 𝑢𝑟) (11) 14 

 𝑌𝑐 = 𝑔𝑐(𝑂, 𝑥) (12) 15 

where, 𝐷𝐸𝐶(𝑥) is the distance function constructed based on EC equations. 𝑌𝐵𝑠𝑦 is the benchmark of 16 

the system term, 𝑌𝐵𝑠𝑒 is the benchmark of the sensor term. 𝑙 is the number of system terms, 𝑚 is the 17 

number of sensors. 𝑌𝑆𝑚𝑒 is the measured value of the system term. 𝑦𝑟𝑒𝑙,𝑛 is the value of model related 18 

variables after compensation. 𝑢𝑟 is the value of unknown variables in the model after compensation. 19 

𝑌𝑐 is the calibration value of the target sensor, and 𝑂 is the original measurement of the target sensor.  20 

3 Proposed general regression improved Bayesian inference method for 21 

HVAC in-situ sensor calibration 22 

Regression method is often used to solve building HVAC modeling problems including energy 23 

consumption prediction[39], virtual sensors based fault diagnosis[40]. The MLR-BI method can obtain 24 

reliable calibration model as long as the general regression model achieves relatively high fitness and 25 

low-level regression residuals. As described in the Section 1.3 challenges, EC equations may fail to 26 
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work for practical limited variable senarios for real-world HVAC systems. Owing to its high-precision 1 

data fitting capacity, regression methods can be utilized to replace the EC equations to establish the 2 

distance function. To address the challenges, this study proposed the general regression improved 3 

Bayesian inference method for HVAC in-situ sensor calibration. This section chooses the typical 4 

multiple linear regression (MLR) for validation. Figure 1 shows the flowchart of the MLR-BI method 5 

as described in Eq. (13). MLR is used to construct the system term, as shown in Eqs. (14) and (15). 6 

𝑓(𝑉𝑞
′) represents the regression function that includes the target sensor to be calibrated, which is taken 7 

as the measurements of the practical HVAC system. 𝑓(𝑉𝑝) represents all variable information in the 8 

system except the target sensor to be calibrated, which is taken as the benchmark of the reliable system. 9 

The compensation function of the target sensor is shown in Eq. (16).  10 

 𝐷𝑀𝐿𝑅(𝑥) = ∑ ∑ (𝑓(𝑉𝑝) − 𝑓(𝑉𝑞
′))

2𝑄
𝑞

𝑃
𝑝⏟              

𝑠𝑦𝑠𝑡𝑒𝑚 𝑡𝑒𝑟𝑚

+ ∑ (𝑉𝐵,𝑞 − 𝑉𝑐𝑎)
2𝑄

𝑞⏟          
𝑠𝑒𝑛𝑠𝑜𝑟 𝑡𝑒𝑟𝑚

 (13) 11 

 𝑓(𝑉𝑝) = 𝛼1𝑉1 + 𝛼2𝑉2 +⋯+ 𝛼𝑝𝑉𝑝 + 𝛼0 (14) 12 

 𝑓(𝑉𝑞
′) = 𝛽1𝑉1

′ + 𝛽2𝑉2
′ +⋯+ 𝛽𝑞𝑉𝑞

′ + 𝛽0 (15) 13 

 𝑉𝑐𝑎 = 𝑉𝑞
′ + 𝑥 (16) 14 

where 𝑉1
′ − 𝑉𝑞

′ are the target sensors to be calibrated, 𝑉1 − 𝑉𝑝 are the physical sensors except the target 15 

sensor to be calibrated, 𝛼0, 𝛽0 are the constant terms of the MLR models, 𝛼1 − 𝛼𝑝 and 𝛽1 − 𝛽𝑞 are the 16 

coefficients of corresponding MLR models. 𝑉𝑐𝑎 is the calibrated value after compensating. 17 

 18 

Figure 1 Flowchart of MLR-BI in-situ sensor calibration for target sensor in building HVAC systems. 19 
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4 Research framework 1 

Figure 2 shows the research framework, which consists of three main aspects including research 2 

content, research purposes and evaluation indexes. 3 

⚫ Research content 4 

(1) The calibration performance was evaluted using both simulated and practical data of two building 5 

HVAC systems in two case studies. The effectiveness of in-situ sensor calibration methods was 6 

validated via five fault conditions covering both single and simultaneous faults. 7 

(2)  The proposed method uses the MLR to improve the BI method to simplify the calibration 8 

modeling process by reducing the hard requirements of indirect information supplement via 9 

additional virtual sensors, redundant sensors and the EC equations. EC-BI and PCA were used 10 

for comparison.  11 

(3) Five variable scenarios were considered to simuate the information-rich simulated scenario, 12 

information-poor practical scenario and the extremely limited variable scenario of practical 13 

HVAC systems. Since the EC-BI fails to work in a limited variable information scenario, only 14 

the PCA was employed for comparison. 15 

⚫ Research purposes 16 

(1) To validate the applicability of MLR-BI under both single or simultaneous fault conditions.  17 

(2) To evaluate the calibration performance of MLR-BI by comparison with PCA and EC-BI. 18 

(3)  To validate that MLR-BI can still guarantee relatively good calibration performance with limited 19 

variable information. 20 

⚫ Evaluation indexes 21 

This study evaluated the calibration performance using indexes including mean absolute 22 

percentage error (MAPE) [39], the calibration accuracy 𝜉𝑐𝑎 in Eq. (17), and relative error (RE) in Eq. 23 

(18). 24 

 𝜉𝑐𝑎 = (1 −𝑀𝐴𝑃𝐸) × 100% = (1 −
∑ |

𝑦𝑖−𝑦̂𝑐𝑎,𝑖
𝑦𝑖

|𝑛
𝑖=1

𝑛
) × 100% (17) 25 

 𝑅𝐸 = |
𝑦𝑖−𝑦̂𝑐𝑎,𝑖

𝑦𝑖
| × 100% (18) 26 
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where, 𝑦𝑖  and 𝑦̂𝑐𝑎,𝑖  represent the true value and calibrated value of the target sensor variable 1 

respectively. 𝑛 represents the total number of testing data sample and 𝑖 represents the 𝑖th sample of the 2 

testing dataset. 3 

 4 

Figure 2 Research framework of this study. 5 

5 Case studies 6 

This study validated the proposed in-situ sensor calibration method using both simulated and 7 

practical data of two building HVAC systems in two case studies. 8 
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5.1 Case 1: The simulated chiller-AHU model 1 

The first target HVAC system is a simulated chiller-AHU system using the EnergyPlus software 2 

with a 10-min data collection interval as shown in Figure 3. It is a constant-speed air volume system. 3 

In cooling season, the indoor temperature and the air supply temperature are set as 26 oC and 14 oC, 4 

respectively. As described in Table 1, the data collected in July 1st to 31st were used to train the 5 

calibration model while the data collected in August 1st to 29th are adopted for validation. Prior to 6 

model training and validation, the original data should be pre-processed in two steps, outlier removal 7 

and data screening. The obvious outliers like system power-off data at weekends should be removed 8 

to enhance the model performance. Moreover, the steady-state between 10:30 a.m. and 5:30 p.m. 9 

should be selected for modeling every day. 10 

 11 

Figure 3 The simulated chiller-AHU system with sensor fault locations and variable scenarios in case 1. 12 

Table 1 Description of the training and test datasets in case 1. 13 

Time period Training and test datasets 

July 1st – July 31st  10:30 - 17:30 

every day 

Calibration model construction training set (966 samples in total) 

August 1st – August 29th Calibration test set (966 samples for each fault condition) 

5.1.1 Setup of target sensor bias faults 14 

The case 1 considered three target sensors including the coil mixed air inlet temperature sensor 15 
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(MAT), the coil air supply temperature sensor (SAT), and the coil air flow sensor (MFR), as shown in 1 

Figure 3. Table 2 shows the four fault conditions including three single bias fault conditions and a 2 

simultaneous fault condition. The sensor faults were introduced at the time period of August 1st and 3 

August 29th for each sensor. 4 

Table 2 Paramters setting for the four fault conditions in simulated case 1. 5 

Fault condition MAT (oC) SAT (oC) MFR (kg/s)  Fault type  

1 +2 0 0  

Single fault 2 0 -2 0 

3 0 0 +0.08 

4 +2 -2 +0.08 Simultaneous fault 

5.1.2 Setup of variable scenarios 6 

In this section, the number of input variables of the calibration model is changed to simulate 7 

different variable scenarios in practical application. The details about the three variable scenarios are 8 

as follows.  9 

(1) Variable scenario A uses the simulated model of a building HVAC system. All the simulated output 10 

variables are available for modeling. 10 variables are selected to construct the calibration model 11 

based on the principle of EC [32].  12 

(2) Variable scenario B simulates a practical building HVAC system with relatively comprehensive 13 

data information. Only the measurable variables are available for modeling. The number of input 14 

variables is 8. Compared with scenario A, the humidity ratio 𝑑 , which is a key variable for 15 

calculating the enthalpy value, is removed as it cannot be directly measured by physical sensors.  16 

(3) Variable scenario C simulates a building HVAC system in practice with limited variable 17 

information. The number of input variables is 6. Only the temperature and flowrate variables are 18 

used in scenario C to simulate the limited information condition.  19 

Table 3 presents the combinations of input variables used in each scenario. The variables include 20 

the supply air temperature, relative humidity and humidity ratio (𝑇𝑎,𝑠𝑢𝑝, 𝜑𝑎,𝑠𝑢𝑝, 𝑑𝑎,𝑠𝑢𝑝), the mixed air 21 

temperature, relative humidity and humidity ratio (𝑇𝑎,𝑚𝑖𝑥 , 𝜑𝑎,𝑚𝑖𝑥 , 𝑑𝑎,𝑚𝑖𝑥 ), the supply air flow rate 22 

(𝑀𝑎), the chilled water inlet temperature (𝑇𝑤,𝑟𝑒𝑡), outlet temperature (𝑇𝑤,𝑠𝑢𝑝), and flow rate (𝑀𝑤) of 23 

the cooling coil.  24 
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Table 3 Combinations of input variables for different variable scenarios in simulated case 1 of this study. 1 

variable scenarios Input variables 

Variable scenario A  𝑇𝑎,𝑚𝑖𝑥、𝑇𝑎,𝑠𝑢𝑝、𝑀𝑎、𝑇𝑤,𝑟𝑒𝑡、𝑇𝑤,𝑠𝑢𝑝、𝑀𝑤、𝜑𝑎,𝑚𝑖𝑥、𝜑𝑎,𝑠𝑢𝑝、𝑑𝑎,𝑚𝑖𝑥、𝑑𝑎,𝑠𝑢𝑝 

Variable scenario B 𝑇𝑎,𝑚𝑖𝑥、𝑇𝑎,𝑠𝑢𝑝、𝑀𝑎、𝑇𝑤,𝑟𝑒𝑡、𝑇𝑤,𝑠𝑢𝑝、𝑀𝑤、𝜑𝑎,𝑚𝑖𝑥、𝜑𝑎,𝑠𝑢𝑝 

Variable scenario C 𝑇𝑎,𝑚𝑖𝑥、𝑇𝑎,𝑠𝑢𝑝、𝑀𝑎、𝑇𝑤,𝑟𝑒𝑡、𝑇𝑤,𝑠𝑢𝑝、𝑀𝑤 

5.2 Case 2: A practical chiller plant 2 

In Figure 4, another target HVAC system is a practical chiller in an electronic factory building 3 

with a 1-hour data collection interval. For the cooling season, the evaporator water outlet temperature 4 

is set around 7 oC. The summer operation data ranged from 2021/8/1 0:00 to 2021/9/31 11:00 were 5 

prepared. In this study, six sensor measured variables were selected since they have no missing values. 6 

The 6 variables are evaporator water inlet and outlet temperature (𝑇𝑒𝑣,𝑖𝑛, 𝑇𝑒𝑣,𝑜𝑢𝑡), condenser water inlet 7 

and outlet temperature (𝑇𝑐𝑜,𝑖𝑛, 𝑇𝑐𝑜,𝑜𝑢𝑡), part load ratio (𝑃𝑙𝑜𝑎𝑑), and the total power input (𝑊).  8 

 9 

Figure 4 Illustration of the practical water-cooled chiller system with six measured variables in case 2. 10 

5.2.1 Setup of target evaporator inlet temperature sensor with bias faults 11 

In case 2, in order to validate the practical in-situ sensor calibration performance of MLR-BI, the 12 

+1 oC bias fault was added to the evaporator inlet temperature (EIT) sensor from 2021/9/12 9:00 to 13 

2021/9/31 11:00 in the practical fault-free chiller system. As shown in Table 4, the fault condtion 5 is 14 

a type of single bias fault on the EIT sensor. Prior to the model training and validation, the original 15 

data set was divided into the training set (600 samples) and the test set (400 samples).  16 

Table 4 Paramters setting for the fault conditions in practical case 2. 17 
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Fault condition EIT (oC) Fault type  

5 +1 Single fault 

5.2.2 Setup of variable scenarios 1 

Also, two variables scenarios D and F are considered in practical case 2 as shown in Table 5. The 2 

training set is used to develop regression models for variable scenarios D and F, respectively. 3 

(1) Variable scenario D is the practical scenario with relatively comprehensive variable information. 4 

Nearly all the six measured variables are available for modeling. The number of input variables is 5 

6.  6 

(2) Variables scenario F is the practical scenario with limited variable information. The number of 7 

input variables is 4. Only the four temperature sensor measurements are remained for modeling. 8 

Table 5 Combinations of input variables for different variables scenarios in practical case 2 of this study. 9 

Variable scenarios Input variables 

Variable scenario D 𝑇𝑒𝑣,𝑖𝑛, 𝑇𝑒𝑣,𝑜𝑢𝑡, 𝑇𝑐𝑜,𝑖𝑛, 𝑇𝑐𝑜,𝑜𝑢𝑡, 𝑃𝑙𝑜𝑎𝑑, 𝑊 

Variable scenario F 𝑇𝑒𝑣,𝑖𝑛, 𝑇𝑒𝑣,𝑜𝑢𝑡, 𝑇𝑐𝑜,𝑖𝑛, 𝑇𝑐𝑜,𝑜𝑢𝑡 

5.3 Calibration of the target sensors using the three calibration methods 10 

This section presents the calibration processes of four target sensors (three in the simulated case 11 

1 and one from the practical case 2) using the three calibration methods, PCA, EC-BI and MLR-BI. 12 

For the five variable scenarios in this study, two of them are adopted for describing the calibration 13 

model construction processes in detail. The two scenarios are 10 variables from variable scenario A in 14 

simulated case 1 and 6 variables from variable scenario D in practical case 2. Especially for practical 15 

chiller system in case 2, the EC equations cannot be achieved owing to the lack of water flow variables. 16 

Hence, for practical case 2, only the two models PCA and MLR-BI without EC equations can be 17 

established for the two variable scenarios D and F. 18 

5.3.1 Sensor calibration using PCA-based reconstruction 19 

5.3.1.1 Calibration process of case 1 20 

According to Section 2.1, Figure 5 shows the process of faulty sensor calibration using PCA-21 
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based reconstruction. For simulated case 1, the PCA model is trained by the training dataset (input 1 

variables are: 𝑇𝑎,𝑠𝑢𝑝, 𝜑𝑎,𝑠𝑢𝑝, 𝑑𝑎,𝑠𝑢𝑝, 𝑇𝑎,𝑚𝑖𝑥, 𝜑𝑎,𝑚𝑖𝑥, 𝑑𝑎,𝑚𝑖𝑥, 𝑀𝑎, 𝑇𝑤,𝑟𝑒𝑡, 𝑇𝑤,𝑠𝑢𝑝, 𝑀𝑤). The test dataset is 2 

used for reconstruction calculation based on the optimal 𝑄 statistic. 3 

5.3.1.2 Calibration process of case 2 4 

For practical case 2, the PCA model is trained by the training dataset (input variables are: 𝑇𝑒𝑣,𝑖𝑛, 5 

𝑇𝑒𝑣,𝑜𝑢𝑡, 𝑇𝑐𝑜,𝑖𝑛, 𝑇𝑐𝑜,𝑜𝑢𝑡, 𝑃𝑙𝑜𝑎𝑑, 𝑊).The test dataset is used for reconstruction calculation based on the 6 

optimal 𝑄 statistic. 7 

  8 
Figure 5 Sensor calibration using PCA-based reconstruction (Refering to Eq. (5)). 9 

Note: The subscripts ‘𝑟𝑒𝑐1-5’ represent the variable reconstruction results under the fault conditions 1-5. The 10 

subscripts ‘𝑡𝑒𝑠𝑡 1-5’ represent the four test datasets corresponding to the fault conditions 1-5. 11 

5.3.2 Sensor calibration using EC-BI 12 

The modeling process of EC-BI method is shown in Eqs. (19) - (25). The heat exchanges between 13 

the air side and the water side of cooling coil can be calculated using Eqs. (19) - (20), respectively. 14 

The calculation of the air side heat exchange involves the three target sensors, which is the practical 15 

measurements. The water side heat exchange is acted as the benchmark of the reliable system. Hence, 16 

the system term of the calibration model can be constructed using Eqs. (19) - (20). Since the enthalpy 17 

value cannot be obtained directly, a physical model is used to calculate it, as shown in Eq. (21). The 18 

compensation functions of the three target sensors are shown in Eqs. (22) - (24), which are used to 19 
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construct the sensor term of the calibration model. The calibration model is constructed as shown in 1 

Eq. (25). Figure 6 shows the sensor calibration flowchart using the EC-BI method considering the 2 

construction process of system terms only. This is because the construction process of sensor terms 3 

are much simpler. 4 

 ∆𝐸𝑎 = (ℎ𝑎,𝑠𝑢𝑝 − ℎ𝑎,𝑚𝑖𝑥) × 𝑀𝑎 (19) 5 

 ∆𝐸𝑤 = (𝑇𝑤,𝑟𝑒𝑡 − 𝑇𝑤,𝑠𝑢𝑝) × 𝑀𝑤 × 𝐶𝑤 (20) 6 

 ℎ = 1.01 × 𝑇 + 𝑑 × (2501 + 1.85 × 𝑇) (21) 7 

 𝑇𝑎,𝑠𝑢𝑝,𝑐𝑎 = 𝑇𝑎,𝑠𝑢𝑝 + 𝑥𝑎,𝑠𝑢𝑝,𝐸𝐶 (22) 8 

 𝑇𝑎,𝑚𝑖𝑥,𝑐𝑎 = 𝑇𝑎,𝑚𝑖𝑥 + 𝑥𝑎,𝑚𝑖𝑥,𝐸𝐶 (23) 9 

 𝑀𝑎,𝑐𝑎 = 𝑀𝑎 + 𝑥𝑀𝑎,𝐸𝐶 (24) 10 

 𝐷(𝑥𝐸𝐶) =  (∆𝐸𝑎 − ∆𝐸𝑤)
2⏟        

𝑠𝑦𝑠𝑡𝑒𝑚 𝑡𝑒𝑟𝑚

+ ∑(𝑉𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑉𝑐𝑎)
2

⏟          
𝑠𝑒𝑛𝑠𝑜𝑟 𝑡𝑒𝑟𝑚

 (25) 11 

where, ∆𝐸𝑎 represents the air side heat exchange, ∆𝐸𝑤 represents the water side heat exchange. ℎ𝑎,𝑠𝑢𝑝 12 

and ℎ𝑎,𝑚𝑖𝑥  represent the enthalpies of supply air and mixed air, respectively. 𝑇𝑎,𝑠𝑢𝑝 , 𝑇𝑎,𝑚𝑖𝑥  and 𝑀𝑎 13 

should be treated as 𝑉𝑡𝑎𝑟𝑔𝑒𝑡. 𝐶𝑤 represents the specific heat capacity of water, i.e., 4.186J/(Kg.oC). 14 

𝑇𝑎,𝑠𝑢𝑝,𝑐𝑎, 𝑇𝑎,𝑚𝑖𝑥,𝑐𝑎, 𝑀𝑎,𝑐𝑎, represent the supply air temperature, mixed air temperature and supply air 15 

flowrate after correction by the compensation function, respectively. They should be employed as 𝑉𝑐𝑎. 16 

𝑥𝑎,𝑠𝑢𝑝,𝐸𝐶, 𝑥𝑎,𝑚𝑖𝑥,𝐸𝐶 and 𝑥𝑀𝑎,𝐸𝐶 represent the supply air temperature, and the compensation values of 17 

mixed air temperature and supply air flowrate, respectively. They should be considered as 𝑥𝐸𝐶 . (Finally, 18 

𝑥𝐸𝐶  is equal to the mean of the posterior distribution as described in the principle of BI in Section 2.1). 19 
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 1 
Figure 6 Sensor calibration using the EC-BI method (Referring to system term in Eq. (9) and Eqs. (19) - (20)). 2 

5.3.3 Sensor calibration using MLR-BI method 3 

5.3.3.1 Calibration process of case 1 4 

For MLR-BI calibration process of the simulated case 1, Figure 7 shows the system terms under 5 

the four fault conditions. When developing MLR models, one variable is selected as the dependent 6 

variable while the other variables are taken as the independent variables. The regression functions are 7 

shown in Eqs. (26) - (27), theoretically 𝑓(𝑉1) = 𝑓(𝑉1
′) (Fault condition 1 is taken as an example). 8 

Compensation function is also required for target sensors under other fault conditions, as shown in Eqs. 9 

(28) - (30). 10 

 𝑓(𝑉1) = 𝛼1𝑇𝑎,𝑚𝑖𝑥 + 𝛼2𝑀𝑎 +⋯+ 𝛼9𝜑𝑎,𝑚𝑖𝑥⏟                      
𝑜𝑡ℎ𝑒𝑟 9 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑠𝑒𝑛𝑠𝑜𝑟 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

+ 𝛼0 (26) 11 

 𝑓(𝑉1
′) = 𝑇𝑎,𝑠𝑢𝑝 (27) 12 

 𝑇𝑎,𝑠𝑢𝑝,𝑐𝑎 = 𝑇𝑎,𝑠𝑢𝑝 + 𝑥𝑎,𝑠𝑢𝑝,𝑀𝐿𝑅 (28) 13 

 𝑇𝑎,𝑚𝑖𝑥,𝑐𝑎 = 𝑇𝑎,𝑚𝑖𝑥 + 𝑥𝑎,𝑚𝑖𝑥,𝑀𝐿𝑅 (29) 14 

 𝑀𝑎,𝑐𝑎 = 𝑀𝑎 + 𝑥𝑀𝑎,𝑀𝐿𝑅 (30) 15 

where, 𝛼0 is the constant term of the MLR model, 𝛼1 − 𝛼9 are the coefficients corresponding to the 16 

input variables. 𝑥𝑎,𝑠𝑢𝑝,𝑀𝐿𝑅, 𝑥𝑎,𝑚𝑖𝑥,𝑀𝐿𝑅, and 𝑥𝑀𝑎,𝑀𝐿𝑅 represent the compensation values of the supply 17 
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air temperature, the mixed air temperature, and the supply air flowrate, respectively. 1 

5.3.3.1 Calibration process of case 2 2 

For MLR-BI calibration process of the practical case 2, the regression functions are shown in Eqs. 3 

(31) - (32). Compensation function is shown in Eq. (33). The calibration model of case 2 is shown in 4 

Eq. (34).  5 

 𝑓(𝑉2) = 𝛽1𝑇𝑒𝑣,𝑜𝑢𝑡 + 𝛽2𝑇𝑐𝑜,𝑖𝑛 +⋯+ 𝛽5𝑇𝑐𝑜,𝑜𝑢𝑡⏟                      
𝑜𝑡ℎ𝑒𝑟 5 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑠𝑒𝑛𝑠𝑜𝑟 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

+ 𝛽0 (31) 6 

 𝑓(𝑉2
′) = 𝑇𝑒𝑣,𝑖𝑛 (32) 7 

 𝑇𝑒𝑣,𝑖𝑛,𝑐𝑎 = 𝑇𝑒𝑣,𝑖𝑛 + 𝑥𝑒𝑣,𝑖𝑛,𝑀𝐿𝑅 (33) 8 

 𝐷(𝑥𝑀𝐿𝑅) =  (𝑓(𝑉𝑝) − 𝑓(𝑉𝑞
′))

2

⏟            
𝑠𝑦𝑠𝑡𝑒𝑚 𝑡𝑒𝑟𝑚

+ ∑(𝑉𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑉𝑐𝑎)
2

⏟          
𝑠𝑒𝑛𝑠𝑜𝑟 𝑡𝑒𝑟𝑚

 (34) 9 

where, 𝛽0 is the constant term of the MLR model, 𝛽1 − 𝛽9 are the coefficients corresponding to the 10 

input variables. 𝑥𝑒𝑣,𝑖𝑛,𝑀𝐿𝑅 represent the compensation values of the evaporator water inlet temperature. 11 

𝑥𝑎,𝑠𝑢𝑝,𝑀𝐿𝑅 , 𝑥𝑎,𝑚𝑖𝑥,𝑀𝐿𝑅 , 𝑥𝑀𝑎,𝑀𝐿𝑅  and 𝑥𝑒𝑣,𝑖𝑛,𝑀𝐿𝑅  are referred to as 𝑥𝑀𝐿𝑅 , collectively. Finally, 𝑥𝑀𝐿𝑅  is 12 

equal to the mean of the posterior distribution as described in the principle of BI in Section 2.1. 13 

 14 

Figure 7 Sensor calibration using MLR-BI method (Referring to system term in Eq. (13), Eqs. (26) - (27) and Eqs. 15 

(31) - (32)). 16 
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6 Results and discussion 1 

6.1 Calibration results under four fault conditions for the simulated case 1 2 

Figure 8 shows the calibration accuracy of the three methods in calibrating single sensor faults. 3 

The MLR-BI method shows good performance with calibration accuracies of 99.9%, 99.9% and 98.0% 4 

for fault conditions 1-3, respectively. The calibration accuracy under fault conditions 1-3 using the 5 

PCA-based reconstruction method are 96.9%, 95.9% and 89.8%, respectively. Figure 9 shows the 6 

calibration accuracies of the three methods in calibrating simultaneous sensor faults. MLR-BI shows 7 

good calibration performance on the simultaneous sensor faults with an average calibration accuracy 8 

of 99.45%. For the MAT simultaneous sensor fault condition, all the three methods obtain accuracies 9 

over 98%. The calibration accuracy even reaches 99.99% when using MLR-BI. For SAT simultaneous 10 

sensor calibration, PCA shows calibration accuracy of 91.57% less than the other two methods. EC-11 

BI obtains similar calibration accuracy as MLR-BI. For the MFR simultaneous sensor calibration, EC-12 

BI shows lower calibration accuracy of only 62.85% while MLR-BI achieves calibration accuracy of 13 

98.49%. 14 

 15 

Figure 8 Sensor calibration accuracy under fault conditions 1-3 (single fault) for simulated case 1. 16 

Note: All the calibration accuracy 𝜉𝑐𝑎 in section 6 can be calculated based on Eq. (17). 17 
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 1 

Figure 9 Sensor calibration accuracy under fault condition 4 (simultaneous fault) for simulated case 1. 2 

Figures 10-15 show in-situ sensors calibration results using the three calibration methods under 3 

the four fault conditions. Calibration results of sensor fault conditions 1-3 are described Figures 10-12 4 

while the sensor fault condition 4 calibration results are shown in Figures 13-15. Figures 10 and 13, 5 

show the calibration results of PCA for the three target sensors under single fault and simultaneous 6 

fault conditions, respectively. Unlike the two BI methods, PCA is capable of reconstructing the faulty 7 

data to the final calibrated data via Eqs. (1) - (5) without the statistical deduction on the posterior 8 

distribution results. From Section 2.1, PCA actually has no resampling step which means it may not 9 

need the posterior distribution result. But for EC-BI and MLR-BI calibration results in Figures 11, 12, 10 

14 and 15, the posterior distributions of the sensor faults are also presented. In terms of probability 11 

density function (PDF) curves. For example, Figure 11 (a2) illustrates the probability density function 12 

of the posterior distribution for the MAT sensor. Savitzky Golay (SG) [48] is used to smooth the line 13 

curves, and the number of window points is 150. MLR-BI shows better performance on sensor 14 

calibration than the other two methods. EC-BI performs well in calibrating SAT and MAT sensors.  15 

Especially, MLR-BI shows better calibration results than EC-BI for the MFR sensor when dealing 16 

with simultaneous sensor faults. This is mainly because the data of other fault sensors have a certain 17 

impact on the calibration model based on EC equations. In addition, for the simulated constant-speed 18 

air volume system, the MFR sensor measurement data are fixed with less fluctuations, which may 19 
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further amplify the sensor fault impact compared with other fluctuated data. After performance 1 

comparison, it can be found that MLR-BI shows good calibration performance for both single and 2 

simultaneous faults for the three target sensors. 3 

 4 

Figure 10 Sensor calibration results using the PCA-based reconstruction method for three single fault conditions 1-5 

3: (a) MAT, (b) SAT and (c) MFR. 6 

Note:  7 

“Normal” represents the system normal operational data which means that the building HVAC system works at fault-8 

free condition. The Normal data are directly outputted by the EnergyPlus simulated model.  9 

“Faulty” represents the system sensor fault data which means that the building HVAC system works at sensor fault 10 

condition. The Faulty data are outputted by the EnergyPlus simulated model after introducing the sensor bias fault 11 

but before the senor fault in-situ calibration process.  12 

“Calibrated” represents the calibrated system sensor fault data which means that the building HVAC system works 13 

at sensor fault condition but the sensor error readings are calibrated. At this time, the building HVAC system works 14 

at the sensor fault-tolerant condition. The Calibrated data are obtained via Eqs. (1) - (5) using the Python PCA-based 15 

reconstruction model and used to replace the sensor fault data for fault-tolerant operation. 16 

The left axes show the real-time values of the three target sensors (MAT, SAT and MFR) in the building HVAC 17 

system. Each curve represents the real-time developing trend of the given target sensor.  18 

The right axes show the values of RE between Normal and Calibrated for the testing set. “RE between Normal and 19 

Calibrated” represents the relative error change before and after calibration. The RE can be obtained using Eq. (18) 20 

in Section 4. 21 
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 1 

Figure 11 Sensor calibration results using the EC-BI method for three single fault conditions 1-3: (a1) MAT, (b1) 2 

SAT, (c1) MFR; The Posterior distribution of (a2) MAT, (b2) SAT and (c2) MFR. 3 

Note:  4 

“Calibrated”: The Calibrated data are obtained via Eqs. (6) - (12) using the EC-BI model and used to replace the 5 

sensor fault data for fault-tolerant operation. 6 

 7 

Figure 12 Sensor calibration results using the MLR-BI method for three single fault conditions 1-3: (a1) MAT, (b1) 8 

SAT, (c1) MFR; The Posterior distribution of (a2) MAT, (b2) SAT and (c2) MFR. 9 

Note:  10 

“Calibrated”: The Calibrated data are obtained via Eqs. (6) - (8) and Eqs. (13) - (16) using the MLR-BI model and 11 

used to replace the sensor fault data for fault-tolerant operation. 12 
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 1 

Figure 13 Sensor calibration results using the PCA-based reconstruction method for simultaneous fault conditions4: 2 

(a) MAT, (b) SAT and (c) MFR. 3 

 4 

Figure 14 Sensor calibration results using the EC-BI method for simultaneous fault conditions 4: (a1) MAT, (b1) 5 

SAT, (c1) MFR; The Posterior distribution of (a2) MAT, (b2) SAT and (c2) MFR. 6 

 7 

Figure 15 Sensor calibration results using the MLR-BI method for simultaneous fault conditions 4: (a1) MAT, (b1) 8 
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SAT, (c1) MFR; The Posterior distribution of (a2) MAT, (b2) SAT and (c2) MFR.  1 

6.2 Calibration results of the three variable scenarios for the simulated case 1 2 

Figure 16 depicts the residual distributions of the regression models developed based on the 3 

variables in the three variable scenarios A, B and C, respectively. The regression residual sums of 4 

squares are 0.0064, 0.0064 and 0.0073, respectively. This means the MLR models show very high 5 

regression precision for the three variable scenarios in this study. 6 

 7 

Figure 16 Residual distributions of the developed MLR models in the three variable scenarios A, B and C for 8 

simulated case 1. 9 

Figure 17 compares the in-situ sensor calibration performance of MLR-BI and PCA under four 10 

fault conditions in three different scenarios. Figure 17 (a) shows the results under fault conditions 1-3. 11 

MLR-BI obtains very high calibration accuracy of 99.3% on average for single sensor faults for all the 12 

three variable scenarios. By contrast, PCA shows relatively lower calibration accuracies than MLR-BI 13 

in all the three variable scenarios. The average calibration accuracy is about 82.87% since the average 14 

calibration accuracy of MAT sensor is only 63.27%. For the simultaneous sensor faults calibration 15 

results in Figure 17 (b), MLR-BI shows high calibration accuracy of 99.5% on average for all the three 16 

variable scenarios. When the PCA is used, the calibration accuracy of SAT sensor is as high as 98.8% 17 

on average, but MFR sensor is slightly lower 87.71%, and the MAT sensor is extremely low 0.91% 18 
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which means PCA can hardly calibrate the MAT sensor in variable scenario B. Such significant 1 

calibration accuracy drop of the MAT sensor could be caused by the removal of two variables relative 2 

humidity and humidity ratio. The two humidity variables could have certain impact on the PCA-based 3 

sensor reconstruction process for the MAT sensor. But MLR-BI can quickly establish the in-situ sensor 4 

calibration model based on the available built-in sensors. Compared with PCA, it is obvious that MLR-5 

BI obtains much more stable calibration results. 6 

 7 

Figure 17 Calibration accuracies of the three in-situ sensor calibration methods under different variable scenarios 8 

(a) single fault conditions 1-3 and(b) simultaneous fault condition 4. 9 

6.3 Calibration results of the two variable scenarios for the practical case 2 10 

For the practical chiller system in case 2, only MLR-BI and PCA still work for the two variable 11 

scenarios D and F. For the MLR-BI method, the residual sums of squares of MLR models are no more 12 

than 0.1, which means the MLR models are reliable with high-precision to replace the EC equations 13 

and establish the distance function for improving the BI-based in-situ sensor calibration performance. 14 

Figure 18 shows the sensor calibration accuracies of two methods. MLR-BI obtains the calibration 15 

accuracies of 97.1% in both variables scenario D and F. By contrast, the sensor calibration accuracies 16 

of PCA are 92.9% and 95.6% for variables scenario D and F, which are much lower than MLR-BI. In 17 

general, the preliminary application validation results show that the proposed MLR-BI method 18 
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performs well using operational data in the practical building HVAC system. 1 

 2 

Figure 18 Calibration accuracies of evaporator water inlet temperature sensor for the two variable scenarios D 3 

and F in the practical case 2. 4 

7 Conclusions 5 

This paper proposed and validated a general regression improved Bayesian inference in-situ 6 

sensor calibration method for building HVAC systems with the consideration of limited variable 7 

information senarios in practice. Especially, this study developed the MLR-BI method to improve the 8 

BI method via multiple linear regression. MLR-BI can simplify the calibration modeling process by 9 

reducing the hard requirements of indirect information supplement via additional virtual sensors, 10 

redundant sensors and the EC equations. Two case studies of two building HVAC systems was adopted 11 

to evaluate the calibration performance considering both simulated and practical data. The 12 

effectiveness of MLR-BI was validated via five fault conditions covering both single and simultaneous 13 

faults and five variable scenarios taking account for the limited variable information. Results indicated 14 

that MLR-BI obtains high-level in-situ sensor calibration accuracy for the two HVAC systems. Main 15 

conclusions are as follows: 16 

(1) For the simulated case 1 HVAC system, compared with PCA and EC-BI, MLR-BI increases the 17 

average calibration accuracy by 6.01% and 8.44% under four fault conditions at the variable 18 
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information-rich senario, respectively. For the three studied variable scenarios of the simulated 1 

case 1, the calibration accuracy of MLR-BI is 99.65% on average. Especially in the four-variable 2 

scenario with limited variable information, MLR-BI shows the average calibration accuracy of 3 

99.75% while PCA obtains 79.46% and EC-BI fails to work because of variable limitation. 4 

(2) For the fault condition of the limitted-variable practical case 2, MLR-BI still outperforms the other 5 

two and obtains 97.1% calibration accuracy in two practical scenarios. Compared with PCA, 6 

MLR-BI improves the calibration accuracy by 2.8% on average.  7 

Although the general regression improved Bayesian inference in-situ sensor calibration method 8 

has been successfully applied in two building HVAC systems and obtains good calibration 9 

performance for five fault conditions and five variable scenarios. There is still a lack of validation 10 

study on more HVAC systems, sensor type and practical application scenarios with considerations of 11 

more real-world complex fault conditions including bias, drift, precision degradation, etc. Meanwhile, 12 

calibration models can be further extended, such as nonlinear regression model, high-precision 13 

regression model, etc. Apart from the sensor calibration process, future work should further focus on 14 

the whole sensor fault-tolerant control strategy for the practical building HVAC system. 15 
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