
Practical Quantum Chemistry on
Near Term Quantum Computers

Alexis Philip Ralli

Thesis submitted for the degree of

Doctor of Philosophy

Primary Supervisor: Prof. Peter Coveney

Secondary Supervisors: Prof. Peter Love,

Prof. Dan Browne

Department of Chemistry
University College London

United Kingdom

April 25, 2023



Declaration

I Alexis Ralli confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated

in the thesis.

1



Abstract

Solutions to the time-independent Schrödinger equation for molecular systems allow

chemical properties to be studied without the direct need for the material. However,

the dimension of this problem grows exponentially with the size of the quantum system

under consideration making conventional treatment intractable. Quantum comput-

ers can efficiently represent and evolve quantum states. Their use offers a possible

way to perform simulations on molecules previously impossible to model. However,

given the constraints of current quantum computers even studying small systems is

limited by the number of qubits, circuit depth and runtime of a chosen quantum

algorithm. The work in this thesis is to explore and provide new tools to make chem-

ical simulation more practical on near-term devices. First, the unitary partitioning

measurement reduction strategy is explored. This reduces the runtime of the varia-

tional quantum eigensolver algorithm (VQE). We then apply this reduction technique

to the contextual subspace method, which approximates a problem by introducing

artificial symmetries based on the solution of noncontextual version of the problem

that reduces the number of qubits required for simulation. We provide a modification

to the original algorithm that makes an exponentially scaling part of the technique

quadratic. Finally, we develop the projection-based embedding (PBE) technique to

allow chemical systems to be studied using state-of-the-art classical methods in con-

juncture with quantum computing protocols in a multiscale hierarchy. This allows

molecular problems much larger than conventionally studied on quantum hardware

to be approached.
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Impact Statement

In this thesis, we describe different methods that decrease the resources required to

simulate a molecular system on a quantum device. The first technique reduces the

overall runtime of the variational quantum eigensolver algorithm, by decreasing the

number of measurements required. The second looks at how splitting a problem up

into a classical and quantum part can significantly reduce the number of quantum

bits (“qubits”) required to study a given problem. Finally, we introduce a chemically

intuitive approach that permits a subdomain of a molecule’s electronic structure to be

calculated accurately on a quantum device, while the rest of the molecule is described

at a cheaper level using density functional theory (DFT) running on a conventional

(classical) computer. We demonstrate that our method produces results closer to

the current gold standard wavefunction method compared to DFT, for molecules

that cannot be simulated fully on current quantum computers. Our algorithm is

tunable, so that the size of the quantum simulation can be adjusted to run on available

quantum resources, and makes no restriction on the quantum algorithm used to solve

the output Hamiltonian. Therefore, our method will continue to enable increasingly

large systems to be studied more accurately beyond the noisy intermediate-scale era of

quantum computing. We further show that this method is particularly effective when

the quantum processor is targeted at a strongly correlated region of the molecule.

These three tools should enable quantum computing to achieve useful results sooner

than would be possible by full-system quantum simulation. This will facilitate the

study of molecules of general chemical and biochemical interest including and not

limited to: binding affinities, excited states and chemical reaction rates. Overall,

these tools are of societal and economic significance, as they will help facilitate the

discovery and our understanding of materials.
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Chapter 1

Introduction

In the early twentieth century, physics was undergoing a series of problems. Old theo-

ries were predicting unrealistic results. The “ultraviolet catastrophe” is an archetype

of this [1], where the radiation rate of a black body (idealized object which absorbs

and emits all frequencies) would go to infinity as the electromagnetic wavelength went

to zero. Planck solved the problem by postulating that electromagnetic energy was

emitted in quanta. These problems in so-called classical physics were explained with

a new theory known as quantum mechanics. An extremely important tool, which has

had huge success explaining the world around us - from the fundamental particles of

nature to reactions occurring in our sun. We recommend an interesting review by

Gearhart that gives a historical context of Planck’s achievement [2].

Quantum mechanics at its core is a mathematical framework that allows physi-

cal theories to be constructed. Unlike special relativity, which can be derived from

physically motivated assumptions that the laws of physics should be consistent in

all inertial frames and the speed of light is constant, Quantum mechanics cannot be

derived in the same way. Instead, quantum mechanics is derived from a set of math-

ematical postulates. These postulates are motivated by experimental observations

over the last century, rather than from any physical assumptions. It is currently an

open question whether a simple set of physical principles would allow the theory to

be derived.

However, utilizing this mathematical framework has allowed huge leaps forward

in science. For example in the physical theory of quantum electrodynamics (QED),

which describes the interaction of atoms and light, has proved to be one of the most

accurate theories of our world. For instance, QED predicts the electron magnetic

dipole moment ge that matches closely with experiment, with an accuracy of 7.6 ×
10−13 [3–5].

In this thesis, we are interested in the application of quantum mechanics to chem-

istry - commonly known as quantum chemistry. In 1929 Paul Dirac famously stated

[6]:

“The underlying physical laws necessary for the mathematical theory of a large part

of physics and the whole of chemistry are thus completely known, and the difficulty is

11



1.1. MOTIVATION

only that the exact application of these laws leads to equations much too complicated

to be soluble.”

He is describing how the whole of chemistry can be explained using quantum mechan-

ics (QM), but the mathematical equations encountered end up being too complex to

solve. The details for why will be explained in Chapter 2. However, it is worth noting

that the details of all chemical systems can in theory be determined from first princi-

ples and so solved given a sufficiently powerful computer. The class of first principle

methods which aim to solve such problems are referred to as ab initio methods.

1.1 Motivation

The focus of this thesis is ab initio or ‘from the beginning’ computational methods

that attempt to solve the Schrödinger equation. At the core of all conventional ab

initio techniques is the fundamental problem of the exponential computational cost

of simulating quantum systems exactly. In 1982 Richard Feynman addressed this

issue by proposing that the best way to simulate quantum systems is by utilizing a

quantum system [7]. A quantum simulator is simply a controllable quantum system

that can be used to replicate other quantum systems [8]. Many experimental devices

are analogue quantum simulators, where the Hamiltonian of the device is engineered

to approximate the problem Hamiltonian [9]. Another paradigm used is the digital

quantum simulator proposed by Lloyd [10]. This uses Trotter decompositions to map

universal unitary evolution to a circuit, which can be made arbitrarily accurate with

error correction. This in effect is a universal quantum computer.

Quantum simulators are inherently quantum themselves and thus able to efficiently

simulate quantum systems. The underlying reason why digital quantum simulators

have an advantage over classical simulators is the difference in the number of bits

required to store the wavefunction of an N -particle quantum system. On a classical

computer, the number of classical bits required grows exponentially and so they cannot

be used to simulate a quantum system efficiently. On the other hand, for a quantum

simulator, the number of quantum bits or “qubits” required to represent an N -particle

quantum system scales linearly [11]. A quantum state can consequently be represented

more efficiently on a quantum computer [12]. However, it is important to note that the

amplitudes of the wavefunction stored on such a device cannot be accessed efficiently.

Overall, the motivation for this work comes from the fact that quantum computers

can represent and evolve quantum states much more efficiently than conventional

computers [13]. This may allow new insights into systems previously not possible to

simulate, facilitating the discovery of new materials [14], drugs [13] and catalysts [15].

However, given the current constraints on quantum devices useful application in these

12



1.2. THESIS OUTLINE

fields remains to be seen [16]. The goal of the work in this thesis was to study and

create tools to bridge this gap.

1.2 Thesis outline

In this thesis, Chapter 2 will give the basic theoretical background required to un-

derstand the underlying quantum chemistry. Chapter 3 then provides an overview

of quantum algorithms related to chemistry - in particular the phase estimation and

variational quantum eigensolver algorithms. The author’s contribution to the field

will be discussed in Chapters 4, 5 and 6. Chapter 7 then summarises the work and

proposes future directions.

13



Chapter 2

Quantum Chemistry Background

2.1 The electronic structure problem

The Schrödinger equation gives the quantum mechanical description of any system.

The time-independent non-relativistic Schrödinger equation is written as H |ψ〉 =

E |ψ〉 and solving it is one of the fundamental goals of quantum chemistry. H is the

Hamiltonian operator and |ψ〉 a set of eigenstates of the Hamiltonian. Each eigenstate

|ψi〉 yields an associated eigenvalue Ei. The physical system being studied defines the

form of the Hamiltonian. Well-known examples are the particle in a box and harmonic

oscillator, where the Schrödinger equation can be solved exactly.

In this thesis, the Hamiltonian of interest is the molecular Hamiltonian, which for

η electrons and M nuclei is defined as [17]:

H = − ~
2me

η−1∑
i=0

∇2
i −

M−1∑
A=0

~2

2MA

∇2
A −

e2

4πε0

∑
i,A

ZA∣∣∣~ri − ~RA

∣∣∣
+

e2

4πε0

∑
i 6=j

1

|~ri − ~rj|
+

e2

4πε0

∑
A 6=B

ZAZB∣∣∣~RA − ~RB

∣∣∣ .
(2.1)

MA and ZA define the position, mass and atomic number of the Ath nucleus. ~ri and
~RA are the spatial coordinates (x, y, z) of the ith electron and Ath nucleon respectively.

In atomic units the Hamiltonian becomes [18]:

H =− 1

2

η−1∑
i=0

∇2
i −

M−1∑
A=0

∇2
A

2MA

−
η−1∑
i=0,

M−1∑
A=0

ZA∣∣∣~ri − ~RA

∣∣∣
+

η−1∑
i=0

η−1∑
j>i

1

|~ri − ~rj|
+

M−1∑
A=0

M−1∑
B>A

ZAZB∣∣∣~RA − ~RB

∣∣∣
. (2.2)

Table 2.1 gives values of different quantities in atomic units. The unit of length

is the Bohr (a0), the unit of mass is the electron mass (me) and the unit of energy

is Hartree (Ha). The Laplacian operators ∇2
i and ∇2

A are second-order differential

operators with respect to the ith electron and Ath nucleon. The first and second

terms in equation 2.2 are operators for the kinetic energy of electrons and nuclei
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2.1. THE ELECTRONIC STRUCTURE PROBLEM

Quantity Atomic Unit SI value Symbol

mass electron mass 9.1091× 10−31 Kg me

charge proton charge 1.6021× 1019 C e
action Planck’s constant /2π 1.0545× 10−34 Js ~

permittivity 4π× vacuum permittivity 1.1127× 10−10 C2 N−1 m−2 4πε0
length radius of 1st Bohr orbit 0.52917× 10−11 m a0

energy 2× Ionisation energy of H 4.3594× 10−18 J Eh or Ha

Table 2.1: Table of atomic units in the international system of units (commonly known
as SI units) [19].

respectively; the third term gives the Coulombic attraction between electrons and

nuclei; the repulsion between electrons and nuclei is given by the final two terms.

In order to reduce the complexity of this problem the Born-Oppenheimer approxi-

mation [20] can be employed, where the motion of electrons and nuclei are decoupled.

The motivation for this is nucleons being over a thousand times heavier than electrons,

hence the nuclei can be treated as stationary while solving for the electronic motion.

What this means is that, to a good approximation, one considers the electrons moving

in a field of fixed nuclei. The consequence of this is the kinetic energy of the nuclei

can be neglected and the repulsion between nuclei is assumed constant. Under these

assumptions equation 2.2 can be written as [18]:

He = −1

2

η−1∑
i=0

∇2
i −

η−1∑
i=0,

M−1∑
A=0

ZA∣∣∣~ri − ~RA

∣∣∣ +

η−1∑
i=0

η−1∑
j>i

1

|~ri − ~rj| . (2.3)

This is known as the Born–Oppenheimer or clamped-nuclei approximation. The re-

sulting Hamiltonian is known as the “electronic” Hamiltonian and is solved for a given

set of nuclear configurations (positions of atoms). To find the total energy for a fixed

system the constant nuclear repulsion energy must be added to the solution of the

electronic Hamiltonian [18]:

Etotal = Eelec +
M−1∑
A=0

M−1∑
B>A

ZAZB∣∣∣~RA − ~RB

∣∣∣ . (2.4)

Equations 2.3 and 2.4 define the electronic structure problem.

Writing out the electronic Schrödinger equation under the Born-Oppenheimer ap-

proximation

−1

2

∑
i

∇2
i −

∑
A,i

ZA∣∣∣~ri − ~RA

∣∣∣ +
∑
A>B

ZAZB∣∣∣~RA − ~RB

∣∣∣ +
∑
i>j

1

|~ri − ~rj|

Ψ(~r; ~R) = EelΨ(~r; ~R),

(2.5)
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2.2. THE PAULI EXCLUSION PRINCIPLE

which we can write in short as

[
T̂e(~r) + V̂eN(~r; ~R) + V̂NN(~R) + V̂ee(~r)

]
Ψ(~r; ~R) = EelΨ(~r; ~R). (2.6)

Here the bold ~r and ~R denote objects containing the positions of all electrons and

nuclei respectively. Note the semicolon in Ψ(~r; ~R) denotes a parametric dependence

on ~R. By finding the energy eigenstates |ψi〉 and corresponding energy eigenvalues

Ei of the electronic Hamiltonian He at different nuclear configurations one solves for

nuclear motion - this provides a potential energy surface.

Potential energy surfaces Eelec(~R) are of fundamental importance in chemistry

as minima correspond to stable chemical structures and first-order saddle points to

transition states. The energy difference between reactant minima and the transition

state gives the energy barrier to reaction, hence reaction pathways can be mapped

out. These surfaces are also used to find vibrational frequencies of molecular struc-

tures at stationary points (minimum or saddle point). To achieve this, the quantum

harmonic/anharmonic oscillator approximation is solved yielding vibrational states

(eigenvectors) and vibronic energy levels (eigenvalues).

The ground state wavefunction Ψ(~r; ~R) also contains a lot of important informa-

tion about molecular properties such as dipole/multipole moments and polarizability.

Unless stated, from here we only consider the electronic Hamiltonian He and

electronic wavefunctions and we drop the subscript e.

2.2 The Pauli exclusion principle

In the standard model elementary particles, such as the electron, carry intrinsic an-

gular momentum known as spin. The electronic Hamiltonian defined in equation 2.3

only depends on the spatial coordinates of electrons in a given molecular system and

has no mention of spin. To completely describe the electrons in such systems each

electron spin must be specified. To do this in the presented nonrelativistic theory it

is sufficient to define two functions α(ω) and β(ω). The first representing spin-up and

the latter spin-down. Each function depends on an unspecified spin variable ω [18].

These spin functions are complete:∫
dωα∗(ω)α(ω) =

∫
dωβ∗(ω)β(ω) = 1, (2.7a)

〈α|α〉 = 〈β|β〉 = 1, (2.7b)
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2.2. THE PAULI EXCLUSION PRINCIPLE

and orthonormal: ∫
dωα∗(ω)β(ω) =

∫
dωβ∗(ω)α(ω) = 0, (2.8a)

〈α|β〉 = 〈β|α〉 = 0. (2.8b)

In this formalism, each electron i is described by 3 spatial coordinates ~ri and one spin

coordinate ωi. These are collectively described as

~xi = {~ri, ωi}. (2.9)

The wavefunction for an η-electron system is written as Ψ(~x0, ~x1, ~x2, ..., ~xη−1) .

Currently, we have labelled each electron in the wavefunction as ~xi to describe

the coordinates of electron i. Electrons are fermions and thus indistinguishable from

one another. Employing the Born interpretation of the wavefunction, the probability

density function (distribution) of the electrons shouldn’t depend on how we label

them. An example of this is

|Ψ(~x0, ~x1, ~x2, ..., ~xη−1)|2 = |Ψ( ~x1, ~x0︸ ︷︷ ︸
interchanged

, ~x2, ..., ~xη−1)|2, (2.10)

where the probability density functions are the same even though the electron ~x0 and

~x1 have been swapped. In fact, any of the N ! permutations of electron coordinates

leave the probability density unchanged. If we let P̂ be a particular permutation,

then

|Ψ|2 = P̂ |Ψ|2. (2.11)

However, the goal is to find the solution to the Schrödinger equation: Ψ, rather

than |Ψ|2 [19]. As it stands, the procedure of including the property of spin in our

model is not satisfactory as the Hamiltonian operator makes no reference to spin.

To properly account for spin, the antisymmetry or Pauli exclusion principle is used

- an independent postulate of quantum mechanics that states if two fermions (such

as electrons) exchange variables then the sign of the wavefunction must change. The

explicit result of this is as follows [18, 19]:

Ψ(. . . , ~xi, . . . , ~xj, . . .) = −Ψ(. . . , ~xj, ..., ~xi . . .) ∀i 6= j. (2.12)

For a general permutation, we find:

PΨ = (−1)pΨ, (2.13)
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2.3. ORBITALS

where p is the parity of the permutation (the number of simple interchanges to which

the permutation can be reduced too) [19]. The exact wavefunction of a molecular

system must also obey this property, as well as satisfying the Schrödinger equation.

This requirement is achieved through the use of Slater determinants of orbitals.

2.3 Orbitals

An orbital is defined as the wavefunction for a single particle [18]. In this thesis we only

consider electron orbitals. A spatial orbital ψi(~r) describes the spatial distribution of

an electron as a function of the position vector ~r, where |ψi(~r)|2d~r is the probability

of finding an electron in the small volume element d~r surrounding ~r. Usually, the

spatial molecular orbitals will form an orthonormal set:∫
d~rψ∗iψj = δij. (2.14)

If the set of spatial molecular orbitals {ψi} were complete then any arbitrary function

f(~r) over space could be expanded as [18]:

f(~r) =
∞∑
k

akψk(~r), (2.15)

where ak are coefficients. In general, this set would need to be infinite to be complete,

in practice this can never be done and only a finite set {ψi|i = 0, 1, . . . , K − 1} of K

orbitals are used. This finite set will only span a certain region of the complete set,

but results can be described as “exact” within the subspace spanned by the finite set.

From each spatial molecular orbital, two spin molecular orbitals can be defined by

multiplying the spatial orbital by a α(ω) or β(ω) spin function (Equation 2.7a). This

is written as:

χ2K+1(~x) = ψ2K+1(~r)α(ω) = ψ2K+1(~r)

χ2K(~x) = ψ2K(~r)β(ω) = ψ2K(~r)

}
i = 0, 1, . . . , K − 1. (2.16)

Therefore, given a finite set of K spatial orbitals {ψi|i = 0, 1, . . . , K−1} one can form

a set of 2K spin orbitals {χi|i = 0, 1, . . . , 2K − 1}.
Now the spin orbitals have been defined, we can define the many-electron wave-

function.

2.4 The many-electron wavefunction

As discussed in Section 2.3 the wavefunction describing a single electron is a spin

orbital χi(~x). Next, we want to consider wavefunctions of many electrons. If we
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2.4. THE MANY-ELECTRON WAVEFUNCTION

simply take a product of spin orbital wavefunctions for all N electrons, then the

N -electron wavefunction would be:

ΨHP (~x0, ~x1, . . . , ~xη−1) = χi(~x0)χj(~x1) . . . χk(~xη−1), (2.17)

and is known as the Hartree product (HP) [18]. Here electron zero is described by

spin orbital χi and the other electrons by the same process. There are two major

problems with this formalism. First this wavefunction distinguishes electrons from

each other. For example, electron one is in spin orbital χj and electron η − 1 is in

spin orbital χk. However, electrons are indistinguishable. The antisymmetry principle

does not distinguish electrons and only requires the electronic wavefunction to change

sign when the space and spin coordinates of any two electrons change. Second, the

current form of the wavefunction (equation 2.17) is uncorrelated. By this, we mean

that the probability of finding electron zero in volume element d~x0, electron one in

volume element d~x1, etc, is just equal to the product of their probabilities. This means

that the motion of electrons are independent [18]:

|ΨHP (~x0, ~x1, . . . , ~xη−1)|2d~x0d~x1 . . . d~xη−1 = |χi(~x0)|2d~x0 · |χj(~x1)|2d~x1 · . . . · |χk(~xη−1)|2d~xη−1.

(2.18)

Thus the probability of finding electron zero in volume element d~x0 is unaffected by

the positions of the other electrons and visa versa for all the other electrons. However,

it is well known that electrons repel each other via the Coulomb interaction and thus

electron zero will “avoid” regions of space occupied by other electrons. This means

the motion of electrons is correlated [18].

To correct these deficiencies the following is done. First to enforce the antisym-

metry principle a Slater determinant of spin orbitals is used [18, 21]:

Φ(~x0, ~x1, . . . , ~xη−1) =
1√
(η!)

∣∣∣∣∣∣∣∣∣∣
χi(~x0) χj(~x0) . . . χk(~x0)

χi(~x1) χj(~x1) . . . χk(~x1)
...

...
. . .

...

χi(~xη−1) χj(~xη−1) . . . χk(~xη−1)

∣∣∣∣∣∣∣∣∣∣
, (2.19)

where (η!)−1/2 is a normalization factor. This Slater determinant has η electrons

occupying spin orbitals (χi, χj, . . . , χk) without specifying which electron is in which

orbital. In the Slater determinant, rows are given by electron labels and columns by

spin orbital labels. Interchanging the coordinates of two electrons:

Φ(. . . , ~xv, . . . , ~xw, . . .) = −Φ(. . . , ~wj, ..., ~xv . . .) (2.20)
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2.5. THE HARTREE-FOCK APPROXIMATION

corresponds to interchanging the two rows (determined by the electron label) of the

Slater determinant, which changes the sign of the determinant. Slater determinants

of spin orbtials thus result in wavefunctions that obey the antisymmetry principle.

Furthermore, if two electrons occupy the same orbital (aka two columns of the Slater

determinant or equal) then the determinant is zero. Thus a unique spin orbital can

only be occupied by one-electron satisfying the Pauli exclusion principle.

A convenient shorthand notation for a normalized Slater determinant is to only

show the diagonal elements of the determinant:

Φ(~x0, ~x1, . . . , ~xη−1) = |χi(~x0) χj(~x1) . . . χk(~xη−1)〉 . (2.21)

By ordering electrons labels in order (~x0, ~x1, . . . , ~xη−1) this can be further shortened

to:

Φ(~x0, ~x1, . . . , ~xη−1) = |χi χj . . . χk〉 . (2.22)

Another useful way of expressing Slater determinants is via the antisymmetrizer

operator A [19]:

Φ(~x0, ~x1, . . . , ~xη−1) =
√
η! A χ0(~x0)χ1(~x1) . . . χη−1(~xη−1), (2.23)

that gives a shorthand way of writing out the whole determinant. Here A = 1
η!∑

P∈Sη(−1)pP , which is a summation of all permutation operators that exist for an

ordered sequence of η objects (here electrons), where odd permutations are negative

(p = 1) and even permutations are positive (p = 0) [19, 22].

To include the effect of correlation, the many-electron wavefunction is approxi-

mated by a linear combination of Slater determinants:

Ψ(~x0, ~x1, . . . , ~xη−1) ≈
Q∑
q=0

DqΦq(~x0, ~x1, . . . , ~xη−1). (2.24)

Note we use a capital phi to denote a Slater determinant and capital psi to denote any

normalized linear combination of Slater determinants. As will be discussed later, the

Hartree-Fock model attempts to find the optimal expansion for Q = 0 - aka a single

determinant. Møller-Plesset, Coupled-Cluster and Configuration Interaction methods

improve upon Hartree-Fock by extending this expansion using virtual orbitals [19].

2.5 The Hartree-Fock approximation

The Hartree-Fock approximation is a very important technique in quantum chemistry

and is equivalent to the molecular orbital approximation. It is the simple picture that
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2.5. THE HARTREE-FOCK APPROXIMATION

all undergraduate chemists are taught. Taking the electronic Hamiltonian (Equation

2.3), we can re-write it as follows:

H = H(~r) = H(~r0, ~r1, . . . , ~rη−1) =

η−1∑
i=0

ĥ(~ri) +

η−1∑
i=0

η−1∑
j>i

g(~ri, ~rj), (2.25)

where

ĥ(~ri) = ĥ(i) = −1

2
∇2
~ri
−

M∑
A

ZA
riA

, (2.26a)

g(~ri, ~rj) = g(i, j) =
1

rij
=

1

|~ri − ~rj|
. (2.26b)

The one-electron operator ĥ(~ri) (sometimes called the one-electron Hamiltonian) con-

tains the (Laplacian) kinetic energy operator and the Coulombic attraction between

all the electrons and nuclei. The 1
rij

term is the Coulomb repulsion between all distinct

pairs (i 6= j) of electrons [19].

The associated Schrödinger equation is [19]:

H(~r0, ~r1, . . . , ~rη−1)Ψ(~x0, ~x1, . . . , ~xη−1) = EΨ(~x0, ~x1, . . . , ~xη−1). (2.27)

Note the many-electron wavefunction depends on both spatial and spin coordinates

({~xi|i = 0, 1, . . . , η−1}), whereas the Hamiltonian only depends on spatial coordinates

({~ri|i = 0, 1, . . . , η − 1}) [19]. The importance of this will be seen in Section 2.5.3,

when certain integrals are calculated.

The Hartree-Fock method, employing the variational principle in quantum me-

chanics, seeks to minimize the electronic energy defined as [18]:

E0 = 〈Ψ0|H |Ψ0〉 , (2.28)

where |Ψ0〉 is constructed from a single determinant of spin molecular orbitals [18]:

|Ψ0〉 = |χ0, χ1, . . . , χη−1〉 . (2.29)

As will be seen in Section 2.5.5, the molecular spin orbitals ({χi}) are varied

to achieve this with the only constraint being that they must remain orthonormal

〈χi|χj〉 = δij [18]. This constraint allows us to define the Hatree-Fock procedure.

2.5.1 The Schrödinger equation and first Slater-Condon rule

Thus far we have defined the Molecular Hamiltonian (equation 2.25) and an approxi-

mate form for an η-electron wavefunction - a single Determinant (equation 2.29). The
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2.5. THE HARTREE-FOCK APPROXIMATION

time-independent Schrödinger equation states:

H |Ψ0〉 = E |Ψ0〉 , (2.30)

where the wavefunction is a Slater determinant and the Hamiltonian is a set of op-

erators acting on the three-dimensional space of each electron. Left multiplying by

〈Ψ0| gives:

〈Ψ0|H |Ψ0〉 = E〈Ψ0 |Ψ0〉 . (2.31)

Assuming the spin orbitals are orthonormal, then the Slater determinant is normalized

(〈Ψ0 |Ψ0〉 = 1) yielding:

〈Ψ0|H |Ψ0〉 = E. (2.32)

The form of this equation hides a lot of complexity. In detail, this is an integro-

differential equation, explicitly:

E =

∫ √
η!Aχ∗0(~x0)χ∗1(~x1) . . . χ∗η−1(~xη−1)

[ η−1∑
i=0

ĥ(~ri) +

η−1∑
i=0

η−1∑
j>i

g(~ri, ~rj)
]

√
η!Aχ0(~x0)χ1(~x1) . . . χη−1(~xη−1)d~x0d~x1 . . . d~xη−1.

(2.33)

Here the antisymmetrizer A produces all linear combinations of products of spin

orbitals. The sums over different electrons can also be expanded and separated into

separate integrals according to the rules:

1.
∫
W + V =

∫
W +

∫
V

2.
∫ ∫

f(~r1) q(~r2)d~r1d~r2 =
∫
f(~r1)d~r1 ·

∫
q(~r2)d~r2

Essentially, the energy expression is a complex linear combination of products of

simple integrals over spin orbitals and operators. These simplify to the following:

E =
∑
i

〈χi(~xi)| ĥ(i) |χi(~xi)〉+∑
i<j

[
〈χi(~xi)χj(~xj)| ĝ(i, j) |χi(~xi)χj(~xj)〉 − 〈χi(~xi)χj(~xj)| ĝ(i, j) |χj(~xj)χi(~xi)〉

]
,

(2.34)

using the Slater-Condon rules [21, 23]. These allow integrals of one and two-body op-

erators over wavefunctions constructed as Slater determinants of orthonormal orbitals

to be determined in terms of the individual Slater determinants. We omit the deriva-

tion of these rules, which can be found in the original work [21] and many quantum
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2.5. THE HARTREE-FOCK APPROXIMATION

chemistry textbooks. We recommend an interested reading to look at Appendix M in

[22]. These rules allow equation 2.34 to be evaluated. The next goal is to show how

to minimize the Hartree-Fock energy with respect to the spin orbitals.

2.5.2 Hartree-Fock integro-differential equation

To determine the best (Hartree-Fock) spin orbitals, the following integro-differential

equation must be solved [18]:

ĥ(~x1)χi(~x1) +
∑
j 6=i

[∫
d~x2|χj(~x2)|2 1

r12

]
χi(~x1)−

∑
j 6=i

[∫
d~x2χ

∗
j(~x2)χi(~x2)

1

r12

]
χj(~x1)

= εiχi(~x1),

(2.35)

where εi gives the energy of spin orbital χi.

In equation 2.35, the first square bracket term is known as the Coulomb term vcoul
i .

In an exact theory, this interaction is represented by the two-electron operator r−1
ij

[18]. In Hartree-Fock theory the one-electron Coulomb potential is given by [18]:

vcoul
i =

∑
j 6=i

[∫
d~x2|χj(~x2)|2 1

r12

]
. (2.36)

To interpret this equation, suppose electron 2 occupies spin orbital χj. The d~x2|χj(~x2)|2

term gives the probability electron 2 occupies the small volume element d~x2 at ~x2.

By integrating over all space and spin coordinates, this equation gives the average in-

teraction r−1
12 of electron 1 and 2. Note this is a one-electron potential. This replaces

the true two-electron potential r−1
12 , which would be the instantaneous repulsion felt

by electron 1 and due to electron 2 at the position of electron 2 (aka no averaging

over all space has been done). Note the sum over all electrons j 6= i gives the total

average potential acting on the electron in spin orbital χi given from all the other

η − 1 electrons in the other spin orbitals. With this interpretation it is standard to

define the Coulomb operator:

Jχj(~x1) =

∫
d~x2|χj(~x2)|2 1

r12

, (2.37)

which is the average local potential at ~x1 due to the electron in χj [18].

The final square bracket term in equation 2.35 is the exchange term. This is

defined by its effect when operating on a particular spin orbital χi:

Kχj(~x1)χi(~x1) =

[∫
d~x2χ

∗
j(~x2)

1

r12

χi(~x2)

]
χj(~x1). (2.38)
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In contrast, the action of Jχj on χi(~x1) is:

Jχj(~x1)χi(~x1) =

[∫
d~x2χ

∗
j(~x2)

1

r12

χj(~x2)

]
χi(~x1). (2.39)

We highlight the different actions of these two operators by underlining certain parts

of the equations. Note how operating with Kχj(~x1) on χi(~x1) involves an “exchange”

of electron 1 and electron 2 to the right of r−1
12 compared with equation 2.39. This is the

reason the Coulomb operator is known as a local operator and the exchange operator

is a non-local operator - since Kχj is not uniquely defined at a local point in space ~x1

[18]. Kχj does not depend just on the function and its infinitesimal neighbourhood

[19]. The non-local nature of Kχj makes it difficult to interpret physically. It can be

shown to arise entirely due to the anti-symmetry requirement of fermions.

In this section, we have seen how restricting our wavefunction to a single Slater

determinant is what causes the averaging of interelectron repulsions, as the Hamilto-

nian being measured is fixed. One needs to be careful of some chemistry texts which

talk about the “average” electron repulsion term in the Fock operator, which can be

misleading as to why it arises. The origin lies in approximating the ground state as a

single Slater determinant and has nothing to do with the Hamiltonian, which remains

unchanged.

Next, we show how the integrals over one and two-body operators are determined

with respect to spin orbitals.

2.5.3 Integrals

A major part of quantum chemistry calculations is determining integrals over spin

χi(~x) and spatial ψi(~r) molecular orbitals. The notation used is as follows [18]:

〈χi|h |χj〉 = 〈i|h |j〉 = [i|h|j] =

∫
d~x1χ

∗
i (~x1) h(~x1) χj(~x1), (2.40a)

〈χiχj|χkχl〉 = 〈ij| kl〉 =

∫
d~x1

∫
d~x2 χ

∗
i (~x1)χ∗j(~x2)︸ ︷︷ ︸
electron 1+2

1

r12

χk(~x1)χl(~x2)︸ ︷︷ ︸
electron 1+2

, (2.40b)

[χiχj|χkχl] = [ij|kl] =

∫
d~x1

∫
d~x2 χ

∗
i (~x1)χj(~x1)︸ ︷︷ ︸

electron 1

1

r12

χ∗k(~x2)χl(~x2)︸ ︷︷ ︸
electron 2

, (2.40c)

〈χiχj| |χkχl〉 = 〈ij| |kl〉 = 〈ij| kl〉 − 〈ij| lk〉, (2.40d)

〈ij| kl〉 = [ik|jl], (2.40e)
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and

hij = (ψi|h|ψj) = (i|h|j) =

∫
d~r1ψ

∗
i (~r1) h(~r1) ψj(~r1), (2.41a)

(ψiψj|ψkψl) = (ij|kl) =

∫
d~r1

∫
d~r2 ψ

∗
i (~r1)ψj(~r1)

1

r12

ψ∗k(~r2)χl(~r2), (2.41b)

Jij = (ψiψi|ψjψj) = (ii|jj), (2.41c)

Kij = (ψiψj|ψjψi) = (ij|ji). (2.41d)

The square brackets denote chemist notation and the standard bra ket notation is

known as physicist notation. The rounded brackets represent integrals over spatial

orbitals {ψ}.
The operators in Hartree-Fock theory (ĥ and 1

r12
- equation 2.26) do not depend

on spin coordinates (α(ω)/β(ω) - note we use σ(ω) as a placeholder for these). This

means integrals over ~x can be factorised into integrals over the spin coordinate involv-

ing no operators and a more complicated integral over spatial coordinates (involving

operators). We find that:

〈i|h |j〉 =

∫
d~x1χ

∗
i (~x1) h(~r1) χj(~x1)

=

∫
d~r1

∫
dω1 ψ

∗
i (~r1)σ∗i (ω1)︸ ︷︷ ︸

expanded χ∗i (~x1)

ĥ(~r1) ψj(~r1)σj(ω1)︸ ︷︷ ︸
expanded χj(~x1)

=

[ ∫
dω1σ

∗
i (ω1))σj(ω1)

] ∫
d~r1ψ

∗
i (~r1) ĥ(~r1) ψj(~r1)

=

[ ∫
dω1σ

∗
i (ω1))σj(ω)

]
× (i|h|j).

(2.42)

Likewise, the spin in the two-electron integrals can also be factored out:

[ij|kl] =

∫
d~x1

∫
d~x2 χ

∗
i (~x1)χj(~x1)

1

r12

χ∗k(~x2)χl(~x2)

=
∫
d~r1

∫
dω1

∫
d~r2

∫
dω2 ψ

∗
i (~r1)σ∗i (ω1)︸ ︷︷ ︸

expanded χ∗i (~x1)

ψx(~r1)σi(ω1)︸ ︷︷ ︸
expanded χj(~x1)

1

r12

ψ∗k(~r2)σ∗k(ω2)︸ ︷︷ ︸
expanded χ∗k(~x2)

ψl(~r2)σl(ω2)︸ ︷︷ ︸
expanded χl(~x2)

=

[ ∫
dω1σ

∗
i (ω1)σj(ω1)

][ ∫
dω2σ

∗
k(ω2)σl(ω2)

] ∫
d~r1

∫
d~r2 ψ

∗
i (~r1)ψj(~r1)

1

r12

ψ∗k(~r2)χl(~r2)

=

[ ∫
dω1σ

∗
i (ω1)σj(ω1)

][ ∫
dω2σ

∗
k(ω2)σl(ω2)

]
× (ij|kl).

(2.43)
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Using the rules of spin integration (Section 2.2):

hij = 〈i|h |j〉 =

[ ∫
dω1σ

∗
i (ω1)σj(ω)

]
× (i|h|j)

=

(i|h|j), if σi = σj

0, if σi 6= σj
,

(2.44)

and

[ij|kl] = 〈ik| jl〉 =

[ ∫
dω1σ

∗
i (ω1)σj(ω1)

][ ∫
dω2σ

∗
k(ω2)σl(ω2)

]
× (ij|kl)

=

(ij|kl), if σi = σj and σk = σl

0, if σi 6= σj or σk 6= σl
.

(2.45)

Equations 2.42 and 2.45 represent the generic one and two-electron integrals.

Using these results, we can write the Hartree-Fock energy (equation 2.34) in terms

of spin orbitals as:

EHF = 〈Ψ0|H |Ψ0〉 =

Nelec∑
i

〈i| ĥ |i〉+

Nelec∑
i

Nelec∑
j
∀j<i

[ii|jj]− [ij|ji]

=

Nelec∑
i

〈i| ĥ |i〉+
1

2

Nelec∑
i

Nelec∑
j

[ii|jj]− [ij|ji].

(2.46)

This can be simplified to equations involving spatial orbitals by integrating over the

spin variables, as outlined in this section. The restricted Hartree-Fock energy for a

closed-shell ground state in terms of spatial orbitals is [18]:

EHF = 〈Ψ0|H |Ψ0〉 = 2

Nelec/2∑
i

(ψi|ĥ|ψi) +

Nelec/2∑
i

Nelec/2∑
j

2(ψiψi|ψjψj)− (ψiψj|ψjψi)

= 2

Nelec/2∑
i

hii +

Nelec/2∑
i

Nelec/2∑
j

2Jij −Kij,

(2.47)

where the spatial orbitals for α and β spins are ‘restricted’ to be the same. Next we

will see how the energy of a single determinant can be minimized.

2.5.4 The Fock operator

Given our Hartree-Fock approximation to the ground state wavefunction being a

single Slater determinant, we can now evaluate EHF [{χi}] = 〈Ψ0|H |Ψ0〉 (equation
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2.5. THE HARTREE-FOCK APPROXIMATION

2.46). The Hartree-Fock energy EHF is a functional (function of a function) of the

spin orbitals {χi}. The goal of Hartree-Fock is to minimize EHF [{χi}], subject to the

constraint that the spin orbitals remain orthonormal [18]:

∫
d~x1χ

∗
i (~x1)χj(~x1) = 〈χi|χj〉 = δij =

1, if i = j

0, if i 6= j
. (2.48)

The Lagrangian undetermined multipliers method can be used to tackle such an opti-

mization problem that is subject to constraints. For brevity, we omit the derivation,

which is provided in many quantum chemistry textbooks [18, 19]. The constrained

optimization results in the Hartree-Fock equation:[
ĥ(~x1) +

∑
j 6=i

Jχj(~x1)−
∑
j 6=i

Kχj(~x1)

]
χi(~x1) = εiχi(~x1). (2.49)

The restriction over j 6= i turns out to be unnecessary as [18]:

[
Jχi(~x1)−Kχi(~x1)

]
χi(~x1) = 0, (2.50)

which is clear from equations 2.38 and 2.39. This cancellation is important, as it

stops the Coulombic attraction between an electron and itself, which is not possible.

If this term didn’t cancel it would lead to self-interaction error, which is a problem

in density functional theory [24]. This issue will be discussed later in Section 2.9.4.

Equation 2.49 can therefore be written without any summation restriction:[
ĥ(~x1) +

∑
j

Jχj(~x1)−
∑
j

Kχj(~x1)

]
χi(~x1) = εiχi(~x1). (2.51)

Equation 2.51 allows for the (Hartree-Fock) energy to be minimized with respect to

the spin orbitals and is commonly known as the Hartree-Fock equations. The quantity

in the square brackets is known as the Fock operator f , which is defined as:

f(~x1) = ĥ(~x1) +
∑
j

Jχj(~x1)−
∑
j

Kχj(~x1). (2.52)

The Hartree-Fock equations can therefore be written concisely as:[
ĥ(~x1) + vHF (~x1)

]
χi(~x1) =

f(~x1)χi(~x1) = εiχi(~x1),

(2.53)

where vHF (~x1) is known as the Hartree-Fock potential [18]. This is an eigenvalue

problem, where the spin orbitals are the eigenfunctions and spin orbital energies are
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2.5. THE HARTREE-FOCK APPROXIMATION

the eigenvalues. The exact solutions to these integro-differential equations are the

“exact” Hartree-Fock spin orbitals. However, this is a pseudo-eigenvalue problem, as

the Fock operator depends on the solutions {χi} through the Coulomb and exchange

operators. This means these equations are nonlinear and need to be solved iteratively.

2.5.5 Roothan equations and basis sets

In the previous section, we wrote the Hartree-Fock equations (equation 2.53) now

they need to be solved. However, as before we need to remove the spin dependency so

it becomes a spatial problem. The Hartree-Fock equation ( 2.51) as it stands depends

on spin orbitals and so alpha and beta spin functions. E.g. for an alpha function:

f(~x1)ψk(~r1)α(ω1) = εkψk(~r1)α(ω1), (2.54)

where εkis the energy of the spatial orbital ψk. We can integrate out the spin compo-

nent by first multiplying on the left by α∗(ω1):[ ∫
dω1α

∗(ω1)f(~x1)α(ω1)

]
ψk(~r1) = εkψk(~r1)α(ω1). (2.55)

We omit the details of the full derivation, which involves integration over alpha and

beta components respectively, which can be found in many textbooks such as [18,

19]. While this step is similar for restricted and unrestricted formalisms, care must

be taken in unrestricted calculations due to the spin-up-and-down orbitals having

different spatial parts [18]. Overall, the result is that the Hartree-Fock equations can

be reduced to a problem dependent on space only. The following spatial integro-

differential equation must then be solved:

f(~r1)ψi(~r1) = εiψi(~r1). (2.56)

This can be done numerically; however, it is often far too hard except for the simplest

systems. From here we consider the problem for restricted calculations (the approach

for unrestricted calculations is similar, but requires careful treatment of the alpha and

beta parts of the problem - see the Pople-Nesbet equations in [18, 19]). Roothan and

Hall independently solved this issue [25, 26] where they showed that by introducing

a set of known spatial basis functions the differential could then be converted to a

system of linear equations and then solved via standard matrix techniques.

In effect what is done is one introduces a set of K known spatial basis functions

{φi|i = 0, 1, . . . , K−1}. Each unknown spatial molecular orbital ψi(~r), each a function

of standard three-dimensional space, is expanded as a linear combination of these
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2.5. THE HARTREE-FOCK APPROXIMATION

known spatial basis functions [18, 19]:

ψi(~r) =
K−1∑
µ=0

Cµiφµ(~r). (2.57)

For a given calculation the set of K known basis functions is fixed. Here C is a K×K
matrix, where each column i defines the expansion coefficients for molecular orbital

i. A technical note on the basis functions φj is they are normalized, but in general

not orthogonal to each other [18]. If the set of basis functions used is complete then

each ψi(~r) could be exactly expanded. However, in general this requires infinite spatial

basis functions and so for practical reasons a finite number are used in real calculations

i.e. within a Galerkin approximation rendering the problem finite dimensional [27,

28].

We can substitute equation 2.57 into equation 2.56 to obtain the Hartree-Fock

equation:

f(~r1)
(K−1∑
µ=0

Cµiφµ(~r1)
)

= εi

(K−1∑
µ=0

Cµiφµ(~r1)
)
. (2.58)

Then left multiplying by φ∗ν and integrating [18]:

K−1∑
µ=0

Cµi

(∫
d~r1φ

∗
µ(~r1)f(~r1)φµ(~r1)

)
= εi

K−1∑
µ=0

Cµiφ
∗
µ(~r1)φµ(~r1), i = 0, 1, . . . , (K − 1).

(2.59)

This integrated Hartree-Fock equation can be written as [18]:

K−1∑
µ=0

FµiCµi = εi

K−1∑
µ=0

SµiCµi, (2.60)

where S is the overlap matrix [18]:

Sµν =

∫
d~r1φ

∗
µ(~r1)φν(~r1) = 〈φµ|φν〉, (2.61)

and F is the Fock matrix [18]:

Fµν =

∫
d~r1φ

∗
µ(~r1)f(~r1)φν(~r1) = 〈φµ| f |φν〉 . (2.62)

This is a representation of the Fock operator with the set of basis functions {φi}.
The set of equations defined by each i (see equation 2.60) are known as the Roothan-

Hall equations (sometimes just Roothan equations), which can be written as a single
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matrix equation [18]:

FC = SCε. (2.63)

Here C is the K ×K matrix of expansion coefficients Cµi and ε is a K ×K diagonal

matrix of orbital energies εi. The columns of C define the Hartree-Fock molecular

orbitals ψi (equation 2.57) and are determined by solving equation 2.63. Importantly,

as the Fock matrix F depends on the expansion coefficients C, the Roothan equa-

tions are nonlinear. They are therefore solved in an iterative diagonalization process

until the matrix of expansion coefficients C converges [18]. A full breakdown of the

algorithm is given in many textbooks such as [18, 19, 29, 30].

2.6 Atomic to molecular orbitals

From a Hartree-Fock calculation, we obtain results in terms of integrals and matrices

over the basis set {φi} rather than over the set of molecular orbitals (solutions) {ψi}.
For subsequent treatment of correlation effects, it is very useful to represent the

basic integrals in terms of the basis functions to integrals in terms of the molecular

orbitals. This transformation is commonly known as the atomic-to-molecular orbital

transformation. The one-electron integrals are transformed as:

hij = (ψi|h|ψj) =
∑
µ

∑
ν

C∗µiCνjH
core
µν , (2.64)

where:

Hcore
µν = Tµν + Vµν , (2.65a)

Tµν = −1

2
〈φµ| ∇2

~r1
|φν〉 =

∫
d~r1 φ

∗
µ(~r1)∇2

~r1
φν(~r1), (2.65b)

Vµν =
M−1∑
A=0

〈φµ|
ZA∣∣∣~r1 − ~RA

∣∣∣ |φν〉 =

∫
d~r1 φ

∗
µ(~r1)

ZA∣∣∣~r1 − ~RA

∣∣∣ φν(~r1). (2.65c)

The two-electron integrals are transformed as:

(ψiψj|ψkψl) =
∑
µ

∑
ν

∑
λ

∑
σ

C∗µiCνjC
∗
λkCσl(φµφν |φλφσ), (2.66)

where the two-electron integrals over basis functions are given by:

(φµφν |φλφσ) =

∫
d~r1

∫
d~r2 φ

∗
µ(~r1)φν(~r1)

1

r12

φ∗λ(~r2)φσ(~r2). (2.67)
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Importantly the transformation in equation 2.66 scales as O(K5) [31]. Once trans-

formed, the molecular Hamiltonian can be written in this new basis and is known as

the second quantized molecular Hamiltonian.

2.7 Second quantization

The antisymmetry principle is not present in the Schrödinger equation. It must

therefore be imposed by alternate means. In the first quantisation of the electronic

Hamiltonian, it is enforced by the properties of Slater determinants [17, 18, 32, 33].

These are matrix determinants of spin orbitals.

An alternate method to include this property of fermions is to have certain al-

gebraic properties obeyed by operators [18]. This is second quantization and impor-

tantly no new physics is present. First, we associate to every spin orbital χi a creation

operator a†i and an annihilation operator ai. In order for these operators to main-

tain the antisymmetry principle these operators must obey the following fermionic

anti-commutation relations [34, 35]:

{
ai, aj

}
=
{
a†i , a

†
j

}
= 0, (2.68a){

ai, a
†
j

}
= δijIi, (2.68b)

where anti-commutator is defined as {A,B} ≡ AB+BA. The action of these fermionic

operators on the determinant of M orbitals |f0, f1, ..., fM−1〉 = |f〉 is given as:

α†j |f0, ..., fj−1, 0, fj+1, ...fM−1〉 = (−1)
∑j−1
s=0 fs |f0, ..., fj−1, 1, fj+1, ...fM−1〉

αj |f0, ..., fj−1, 1, fj+1, ...fM−1〉 = (−1)
∑j−1
s=0 fs |f0, ..., fj−1, 0, fj+1, ...fM−1〉

α†j |f0, ..., fj−1, 1, fj+1, ...fM−1〉 = 0

αj |f0, ..., fj−1, 0, fj+1, ...fM−1〉 = 0

. (2.69)

An example of their use is instructive, consider a system of four orbitals (M = 4):

α†0 |vac〉 = α†0 |0000〉 = |1000〉 , (2.70a)

α†1 |vac〉 = α†1 |0000〉 = |0100〉 , (2.70b)

α†2 |vac〉 = α†2 |0000〉 = |0010〉 , (2.70c)

α†3 |vac〉 = α†3 |0000〉 = |0001〉 . (2.70d)

Note that due to eq. 2.68, the occupation number of fermions cannot be greater than
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one or less than zero, i.e:

α†0 |1000〉 = α†0α
†
0 |vac〉 = 0, α0α0 |1000〉 = α0 |vac〉 = 0. (2.71)

The fermion antisymmetry can also be seen to be built into these operators:

|1100〉 = α†0 |0100〉 = α†0α
†
1 |vac〉

exchange
electron
labels←−−−→ α†1α

†
0 |vac〉 = α†1 |1000〉 = −(1)1 |1100〉 = − |1100〉.

(2.72)

The molecular Hamiltonian can be written in this formalism. Under the Born-

Oppenheimer approximation and a basis φ of K orthonormal molecular orbitals, con-

structed as a linear combination of atomic orbitals (LCAO) often computed from

mean field calculations such as Hartree Fock [36], the second quantised form of the

electronic Hamiltonian is defined as [35]:

H =
K−1∑
p=0

K−1∑
q=0

hpqa
†
paq +

1

2

K−1∑
p=0

K−1∑
q=0

K−1∑
r=0

K−1∑
s=0

hpqrsa
†
pa
†
qaras, (2.73)

where:

hpq = 〈χp|h |χq〉 =

∫
d~xiφ

∗
p(~xi)

(
−
∇2
~ri

2
−
∑
I

ZI

|~ri − ~RI |

)
φq(~xi), (2.74)

hpqrs = 〈χpχq|χrχs〉 =

∫
d~xid~xj

φ∗p(~xi)φ
∗
q(~xj)φr(~xi)φs(~xj)

|~ri − ~rj|
. (2.75)

Note the integrals over spatial and spin coordinates can be simplified to integrals over

spatial coordinates by integrating over spin - see Section 2.5.3 (specifically equations

2.44 and equation 2.45).

The electronic Hamiltonian H in equation 2.73 is known as the second quantized

molecular Hamiltonian. The hpq term represents the kinetic energy of each elec-

tron and its Coulombic interaction with the nuclei. The second integral gives the

electron-electron Coulomb repulsion contribution. The four-fold sum describing this

interaction means the number of terms in H scales as O(K4), where K is the number

of basis functions [17].

2.8 Post-Hartree-Fock methods

The Hartree-Fock technique is the standard starting point for most wavefunction-

based quantum chemistry algorithms. The so-called post-Hartree-Fock methods then
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seek to obtain further correlation effects by relaxing the condition on the ground state

wavefunction being a single Slater determinant. In the literature what is commonly

discussed is the “correlation energy”: Ecorr. This is given by the difference between

the non-relativistic ground state energy of the system E0 and the Hartree-Fock energy

EHF - in full: Ecorr = E0−EHF [18]. As the Hartree-Fock energy is an upper bound on

the ground state energy, due to the variational principle, Ecorr must be negative. Post-

Hartree-Fock methods seek ways of finding Ecorr. Commonly used routines include

Møller-Plesset (MP) [37, 38], Configuration Interaction (CI) [39], and Coupled-cluster

(CC) [40]. In each technique, the number of allowed Slater determinants is increased

allowing more correlation effects to be captured and when all Slater determinants are

considered then all correlation effects are included. In that scenario, the full Hilbert

space is described and the true ground state energy (full configuration interaction)

energy can be obtained. However, this problem scales exponentially due to the number

of Slater determinants required scaling as:

Ndet =

(
K

η

)
=

K!

η!(K − η)!
, (2.76)

for K spin orbitals and η electrons. As
∑K

η=0

(
K
η

)
= 2K , equation 2.76 scales at worst

as O(2K). This means for large basis sets FCI is not possible, due to the combinatorial

overhead. Note, the space of all possible Slater determinants of η particles in K spin

orbitals is known as the η-particle Hilbert space.

To solve systems in large basis sets, methods that approximately expand the wave-

function using fewer Slater determinants are used - a polynomial number rather than

an exponential. Examples include Møller-Plesset second (MP2), third (MP3), fourth

(MP4), etc order, configuration interaction singles (CIS), doubles (CID) and single

doubles (CISD) etc, and coupled-cluster singles (CCS), doubles, (CCD) single dou-

bles(CCSD) etc. Details on these are outside the scope of this thesis. The advantage

of studying these types of problems on a quantum device is a K orbital space can be

described on K-qubits (in the second quantization). The memory overhead of classical

methods required to track the coefficient of each Slater determinant has an exponen-

tial cost in K rather than a linear qubit cost. This memory advantage of quantum

devices is why many believe quantum computers offer a route to quantum advantage

via quantum chemistry. However, it is important to note a few caveats. First, it is not

possible to know the amplitudes of an exponentially large quantum state as this would

require storing an exponential number of wavefunction amplitudes (and would require

an exponential amount of time to determine). Secondly, the ground state problem is

Quantum Merlin Arthur (QMA) complete [41, 42]. QMA is a complexity class that

contains decision problems that are easy to verify on a quantum computer, but not

necessarily easy to solve [42]. Often this is said to be the quantum counterpart of NP
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problems (here an NP-complete problem).

Next, we introduce an alternate strategy to solve the time-independent Schrödinger

equation known as density functional theory (DFT).

2.9 Density functional theory

Density functional theory (DFT) is a method that solves the electronic Schrödinger

equation. However, rather than using the many-electron wavefunction in calculations

the electron density ρ(~r) of a system is used. For a normalized η-electron wavefunction:∫
d~x0 . . . d~xη−1|Ψ(~x0, . . . , ~xη−1)|2 = 1, (2.77)

where the integral is taken over all space and sum over both spins. The electron

density is defined as:

ρ(~r) = η
∑
σ

∫
d~r1 . . .

∫
d~rη−1|Ψ(~r, σ, ~x1, . . . , ~xη−1)|2, (2.78)

where ρ(~r)d3r has the interpretation of being the probability density for finding any

electron in the volume d3r around ~r. The density is normalized and so integrating

over all space will give the number of electrons:∫
ρ(~r)d3r = η. (2.79)

To see how these objects allow the electronic Schrödinger equation to be solved, we

first need to introduce the Hohenberg-Kohn theorems that underpin the workings of

DFT.

2.9.1 Hohenberg-Kohn theorems

In the 1960s, Walter Kohn and Pierre Hohenberg proved two important mathematical

theorems that DFT hinges on. First, consider the molecular Hamiltonian under the

clamped-nuclei approximation (equation 2.3):

H = −1

2

η−1∑
i=0

∇2
i︸ ︷︷ ︸

T

+

η−1∑
i=0

vne(~ri)︸ ︷︷ ︸
Vne

+

η−1∑
i=0

η−1∑
j>i

1

|~ri − ~rj|︸ ︷︷ ︸
Vee

, (2.80)

where the nuclear-electron interaction has been written as:

vne(~ri) = −
M−1∑
A=0

ZA∣∣∣~ri − ~RA

∣∣∣ . (2.81)
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The Hamiltonian can be written as H = T + Vee + Vne. Let us consider the electronic

structure obtained by replacing the potential vne(~r) by an arbitrary potential vext(~r),

so that H = T + Vee + Vext. The ground state wavefunction obtained by solving the

Schrödinger equation allows for a ground state density to be defined (equation 2.78).

This means there is a mapping from the external potential to the ground state density

vext(~r) 7→ ρ(~r). Hohenberg and Kohn showed that this mapping can be inverted up to

a constant [43], i.e. ρ(~r) 7→ vext(~r)+const. This is the first Hohenberg-Kohn theorem,

which proved that the external potential vext(~r) is uniquely determined by the cor-

responding ground-state electronic density, to within an additive constant. Quoting

the original paper:

“the vext(~r) is (to within a constant) a unique functional of ρ(~r) since, in turn, vext(~r)

fixes H we see that the full many-particle ground state is a unique functional of ρ(~r)”

[43].

The two-step proof of this is obtained via a contradiction. Suppose there are two local

potentials differing by more than a constant vext,1(~r) 6= vext,2(~r) + const. Let these

external potentials define two Hamiltonians H1 = T +Vee+V1 and H2 = T +Vee+V2.

Now assuming the ground state wavefunction of these Hamiltonians |Ψ〉 is the same

- i.e. H1 |Ψ〉 = E1 |Ψ〉 and H2 |Ψ〉 = E2 |Ψ〉 . Subtracting H1 −H2 = V1 − V2 gives:

(
H1 −H2

)
|Ψ〉 =

(
V1 − V2

)
|Ψ〉 =

(
E1 − E2

)
|Ψ〉 (2.82)

in the position representation:

η∑
i

(
vext,1(~ri)− vext,2(~ri)

)
Ψ(~x0, ~x1, . . . , ~xη−1) =

(
E1 − E2

)
Ψ(~x0, ~x1, . . . , ~xη−1).

(2.83)

If we re-arrange these equations, we obtain:(
∆V︸︷︷︸
V1−V2

− ∆E︸︷︷︸
E1−E2

)
|Ψ〉 = 0. (2.84)

Assuming Ψ(~x0, ~x1, . . . , ~xη−1) = |Ψ〉 6= 0, this implies that ∆V = ∆E and thus

vext,1(~r) − vext,2(~r) = const [44, 45], which contradicts the original assumption [43].

A rigorous mathematical analysis of this is outside the scope of this thesis, for an

interested reader we recommend the work of Pino et al. in [45]. The result of this

is that two local potentials differing by more than an additive constant cannot share

the same ground-state wavefunction.

The second part of the proof then considers two Hamiltonians (H1, and H2) that
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have two potentials differing by more than a constant that necessarily have different

ground state wavefunctions (by the first part of proof) Ψ1 and Ψ2, but the same

ground state density ρ(~r). Assuming H1 and H2 each have non-degenerate ground

states, then by the variational principle:

E1 = 〈Ψ1|H1 |Ψ1〉 < 〈Ψ2|H1 |Ψ2〉 = 〈Ψ2|H2 + V1 − V2︸ ︷︷ ︸
H1

|Ψ2〉

= 〈Ψ2|H2 |Ψ2〉+ 〈Ψ2| (V1 − V2) |Ψ2〉 = E2 +

∫
[vext,1(~r)− vext,2(~r)]ρ(~r) d~r,

(2.85)

where the inequality comes from Ψ2 not being the ground state of H1. The labels of

systems 1 and 2 can be arbitrarily swapped and so equation 2.85 can be written:

E2 = 〈Ψ2|H2 |Ψ2〉 < 〈Ψ1|H1 |Ψ1〉+ 〈Ψ1| (V2 − V1) |Ψ1〉

= 〈Ψ1|H1 |Ψ1〉 − 〈Ψ1| (V1 − V2) |Ψ1〉︸ ︷︷ ︸
note sign and thus order change

= E1 −
∫

[vext,1(~r)− vext,2(~r)]ρ(~r) d~r.

(2.86)

However, adding equation 2.85 and 2.86 results in the following contradiction [43, 46]:

E1 + E2 < E1 + E2. (2.87)

This implies that there cannot be two local potentials differing more than an additive

constant, which share the same ground state density. We note that if a constant is

added to the potential then the wavefunction remains unchanged and thus the density

is unaltered to [47] (as the eigenvectors will remain unchanged and only the eigenvalues

will be shifted by the constant). Overall the ground state density ρ(~r) determines the

potential vext(~r) which determines the Hamiltonian and so the many-body problem.

This means that the potential vext is a unique functional1 (up to an additive constant)

of the ground-state density ρ. This will also determine all the ground-state properties

of the system, since the Hamiltonian and ground-state wavefunction are determined.

Furthermore, as the external potential gives a mapping to the ground state density

this defines the ground state wavefunction via equation 2.78 i.e. vext(~r) 7→ ρ0(~r) 7→ Ψ0.

1The formal definition of a functional usually depends on subfield. Here, it is in the context of
functional analysis, where it is a mapping from a space X into the field of real R or complex C
numbers. Such mappings may or may not be assumed to be linear or to be defined on the whole
space X. In colloquial language, a function maps a number to a number. Here a functional maps a
function to a number.
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Using this, Hohenberg and Kohn define a universal functional F [ρ]:

F [ρ] = T [ρ] + Vee[ρ] = min
Ψ 7→ρ(~r)
ρ∈V

[
〈Ψ|T + Vee |Ψ〉]

]
(2.88)

that is independent of the external potential [43]. Here V is the set of all v-representable

ρ and Ψ 7→ ρ constrains the search to any wavefunction that yields the fixed density

ρ, determined by equation 2.78. Then for a given potential vext(~r), the total electronic

energy of a system is given by the functional [43]:

E[ρ] = F [ρ]︸︷︷︸
system independent

+

∫
vext(~r) ρ(~r) d~r︸ ︷︷ ︸

system dependent

.
(2.89)

Note the Hohenerg-Kohn universal functional (equation 2.88) is only defined over the

set of v-representable densities. A v-representable ρ is associated with an antisymmet-

ric (satisfies the Pauli principle [46]) ground-state wavefunction of some Hamiltonian

H with local external potential vext(~r) [48].

The second Hohenberg and Kohn theorem proved that the density functional E[ρ]

satisfies a variational principle, assuming the constraint of η electrons in a given

external potential vext(~r) [43]. We can show this as follows. Take a trial density

ρ̃(~r), that satisfies the boundary conditions ρ̃(~r) ≥ 0 and
∫
ρ̃(~r)d3~r = η, this defines

a Hamiltonian H̃ with an external potential ṽext(~r) that has its own ground state

wavefunction |Ψ̃〉. This wavefunction can be taken as the trial wavefunction for the

true Hamiltonian, generated by the true external potential vext(~r), and we obtain [47]:

E0 = 〈Ψ0|H |Ψ0〉 ≤ 〈Ψ̃|H |Ψ̃〉 = E[ρ̃] = F [ρ̃] +

∫
vext(~r) ρ̃(~r) d~r. (2.90)

The ground state energy can therefore be found by minimizing the energy functional

with respect to the set of all v-representable densities V . This can be written as:

E0 = min
ρ∈V

[
F [ρ] +

∫
vext(~r) ρ(~r) d~r

]
. (2.91)

Stated in words, equation 2.91 gives the ground state energy if and only if the input

density is the ground state density ρ0(~r). Therefore, for any trial density ρ̃, that

satisfies the boundary conditions ρ̃(~r) ≥ 0 and
∫
ρ̃(~r)d3 = η, evaluating E[ρ̃] through

equation 2.89 represents an upper bound of the true ground state energy [47, 49].

To summarise, the first Hohenberg-Kohn theorem shows there exists a mapping

from a ground state density to a local potential. The second theorem shows there

exists a universal density functional that obeys the variational principle with respect to

v-representable densities. However, in this original formulation equation 2.91 involves
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a minimization over all v-representable densities. A limitation of this approach is F [ρ]

is not defined for ρ that are not v-representable. The difficulty with this assumption

is that the set of v-representable densities is unknown [50, 51].

The issue of v-representability was subsequently solved by Levy and Lieb, who

extended the Hohenberg-Kohn universal functional to consider N -representable den-

sities, which are known [46, 48]. The universal functional now takes the following

form:

F [ρ] = min
Ψ 7→ρ(~r)
ρ∈D

[
〈Ψ|T + Vee |Ψ〉]

]
, (2.92)

where Ψ 7→ ρ constrains the search to any wavefunction that yields the fixed density

ρ, determined by equation 2.78. Here the set D denotes all the N -representable densi-

ties coming from a particular wavefunction. Equation 2.92 is known as the Levy-Lieb

functional and does not require the existence of a local potential associated with the

density. The set of all N -representable densities coming from different wavefunctions

is a larger set than v-representable densities. Cioslowki in [52–54] provided a formal

process to generate, in principle, all antisymmetric wavefunctions that lead to a den-

sity. This establishes the domain of the constrained search. We note this formulation

shows that the ground state density ρ0 determines the ground state wavefunction

|Ψ0〉, which determines H uniquely up to an additive constant. Degeneracies pose no

problems in this approach [48, 55, 56].

The variational theorem decomposes the energy minimization over Ψ in two steps.

The outer step requires defining a set of ρ that define all N -electron densities N .

For each ρ ∈ N , the inner loop performs a minimization over all wavefunctions that

generate that density. The ground state energy is given by the minimum energy from

this search. Overall:

E0 = min
ρ∈N

[
〈Ψ|T + Vee + VNe |Ψ〉

]
= min

ρ∈N

[
min

Ψ7→ρ(~r)
ρ∈D⊂N

(
〈Ψ|T + Vee + VNe |Ψ〉

)]

= min
ρ∈N

[
min

Ψ7→ρ(~r)
ρ∈D⊂N

(
〈Ψ|T + Vee |Ψ〉

)
+

∫
vext(~r) ρ(~r) d~r

]

= min
ρ∈N

[
F [ρ] +

∫
vne(~r) ρ(~r) d~r

]
.

(2.93)

The minimum of this search is obtained for ground-state density ρ0(~r) corresponding

to the potential vne(~r) (equation 2.81). The existence of a universal functional F [n]

that is independent of the external potential is remarkable, as it simplifies a mini-
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mization over the many-electron wavefunction to a minimization that only depends

on three variables (the density). This is a major reduction in complexity, where the

problem now in principle scales linearly with system size. However, a problem with

this formulation is an expression for the universal functional F [ρ] in terms of a density

is not known. Given equations 2.92 and 2.93, the exact ground state wavefunction

is any wavefunction yielding ρ(~r) that minimizes T + Vee. We can decompose the

universal functional F [ρ] = T [ρ] + Vee[ρ] as:

T [ρ] = min
Ψ7→ρ(~r)
ρ∈D

[
〈Ψ|T |Ψ〉

]
, (2.94a)

Vee[ρ] = min
Ψ7→ρ(~r)
ρ∈D

[
〈Ψ|Vee |Ψ〉

]
. (2.94b)

Here T [ρ] and Vee[ρ] are the exact functionals for the kinetic and electron-electron

repulsion terms. Restating our problem, E[ρ] is minimized for a given vext(~r), while

keeping the particle number constant. To enforce this constraint the method of La-

grange multipliers can be used. The following Lagrangian is used: L[ρ] = E[ρ(~r)] −
µ(
∫
ρ(~r)d3~r − η) for integer η. We find [57, 58]:

∂

{
E[ρ]− µ

( ∫
ρ(~r)d3~r − η

)}
∂ρ(~r)

= 0

=⇒
∂E[ρ]

∂ρ(~r)
= µ,

(2.95)

where µ is the Lagrange multiplier and is known as the chemical potential in DFT. We

recommend a recent discussion on the misconceptions of µ in [59], which is outside

the scope of this thesis to discuss. Equation 2.95 is known as the Euler-Lagrange

equation and can be solved for the exact density. Given that:

E[ρ] = F [ρ] +

∫
d3~r vext(~r)ρ(~r) (2.96)

the Euler-Lagrange equation is sometimes expressed as:

µ =
∂F [ρ]

∂ρ(~r)
+ vext(~r), (2.97)

using equation 2.95. Equation 2.97 is the basic working equation of DFT [49]. The

exact density is therefore the functional derivative of F , which is equal to the negative

of the external potential (up to a constant µ). It would be great if equation 2.97 could

be solved directly, as it would be a single integro-differential equation that could be
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solved self-consistently yielding a density that could be normalized and inserted back

into equation 2.89 to recover the ground-state energy. However, as the form of T [ρ]

and Vee[ρ] is unknown with respect to ρ, we need to approximate F [ρ] somehow.

One approach is known as Thomas-Fermi theory, where F [ρ] is approximated by the

non-interacting kinetic energy of a uniform gas plus the Hartree energy. We do not

consider this theory, which is limited by the error caused by approximations of the

kinetic energy. We focus on the Kohn-Sham formulation, which is of primary interest

in this thesis. This is introduced next.

2.9.2 Kohn-Sham DFT

In 1965, Kohn and Sham introduce a way of approximating F [ρ] directly (equation

2.88) [60]. They did this by considering a fictitious system of non-interacting particles,

aka Vee = 0 (equation 2.80). The universal functional for this system can be written

as:

F [ρ] = Ts[ρ] + EHxc[ρ], (2.98)

where subscript s denotes single-electron and is used to denote the system being non-

interacting. EHxc[ρ] = J [ρ] + Exc[ρ] is the Hartree-exchange-correlation functional,

that is made up of a classical J [ρ] and exchange-correlation term Exc[ρ] defined later

in this section. The kinetic energy functional in this problem is written as:

Ts[ρ(~r)] = min
Φ7→ρ

ρ∈S⊂N

[
〈Φ|T |Φ〉

]
, (2.99)

for non-interacting electrons. Here we have assumed the Kohn-Sham wavefunction

is a single Slater determinant (as equation 2.21). We represent the set of all sin-

gle Slater determinants as S. Equation 2.99 represents a constrained search over

all single-determinant wavefunctions of N -representable densities. The restriction to

single-determinant wavefuntions Φ does not introduce any approximation, as any N -

representable density can be obtained from a single-determinant wavefunction [61,

62] 2. Equation 2.98 can therefore be recast into the constrained search formalism

2This is ensured in complete basis sets, but has been shown to not hold in hold in small basis
sets [63].
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(equation 2.93) in terms of a single-Slater determinant, yielding:

E0 = min
ρ∈N

[
F [ρ] +

∫
vext(~r) ρ(~r) d~r

]
= min

ρ∈N

[(
min
Φ7→ρ

ρ∈S⊂N

〈Φ|T |Φ〉
)

+ EHxc[ρ] +

∫
vext(~r) ρ(~r) d~r

]

= min
ρ∈N

[(
min
Φ7→ρ

ρ∈S⊂N

〈Φ|T + Vext |Φ〉+ EHxc[ρ]
)]

= min
Φ7→ρ

ρ∈S⊂N

[
〈Φ|T + Vext |Φ〉+ EHxc[ρ]

]
.

(2.100)

The single Slater determinant |Φ〉 that minimizes equation 2.100 is the Kohn-Sham

wavefunction that yields the exact ground state density ρ0(~r). A major improvement

of this formulation over equation 2.93, is the constrained search is over single Slater

determinant wavefunctions Φ rather than multi-determinant wavefunctions Ψ. The

importance of this work was recognised in 1998 when Walter Kohn shared the Nobel

prize in Chemistry “for his development of the density-functional theory” [64].

It is worth noting that Ts[ρ] (equation 2.99) is not equal to T [ρ] (equation 2.94a).

However, by the clever formulation of Kohn and Sham [60], the correction to Ts[ρ] is

included elsewhere. Explicitly, we rewrite equation 2.98 as [47]:

F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ]. (2.101)

Exc[ρ] is known as the exchange-correlation functional, which contains the difference

between Ts[ρ] and T [ρ] and also the nonclassical part of Vee[ρ]. J [ρ] is the Hartree

potential [65], which gives the classical electrostatic repulsion energy between two

charge distributions ρ(~r1) and ρ(~r2):

J [ρ] =
1

2

∫ ∫
ρ(~r1)ρ(~r2)

|~r1 − ~r2|
d~r1 d~r2. (2.102)

The exchange-correlation functional is exactly defined as [47]:

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ]. (2.103)

The Euler-Lagrange equation (equation 2.97) for this problem is [47]:

µ =
∂F [ρ]

∂ρ(~r)
+ vext(~r)

=
∂Ts[ρ]

∂ρ(~r)
+ veff (~r),

(2.104)
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where:

veff (~r) =
∂J [ρ]

∂ρ(~r)
+
∂Exc[ρ]

∂ρ(~r)
+ vext(~r)

=

∫
ρ(~r)′

|~r − ~r′|
d~r′ + vxc(~r) + vext(~r)

= vH(~r) + vxc(~r) + vext(~r).

(2.105)

Here vxc(~r) = ∂Exc[ρ]
∂ρ(~r)

and vH =
∫ ρ(~r)′

|~r−~r′|d~r
′ are known as the exchange-correlation

potential and Hartree potential respectively [47]. Interestingly, equation 2.104 is the

same as equation 2.97. What this means is that the density of the non-interacting

system with external potential veff (~r) is the same as the density of the interacting

system. Overall, given, veff (~r) and the constraint
∫
ρ(~r)d3~r = η, we obtain a ρ(~r)

that satisfies equation 2.104 by solving η one-electron equations:[
− 1

2
∇2 + veff (~r)

]
ψi(~r) = εiψi(~r), (2.106)

where

ρ(~r) =

η∑
i

∑
σ

|ψ(~r, σ)|2. (2.107)

Equations 2.106, 2.107 and 2.105 are known as the Kohn-Sham equations [47]. These

have a very similar form to the Roothan equations in Section 2.5.5 and we can solve

them with a similar approach.

2.9.3 The Kohn-Sham equations

To practically solve equation 2.106 a Galerkin approximation of atomic orbitals is

often used. Each molecular orbital ψi is formed from a linear combination of K

known atomic orbital (AO) basis functions {φj(~r)|j = 1, 2, . . . , K}. We omit the full

details on the full formulation, which follows similarly to Section 2.5.5 and can be

found in many texts - such as [47]. We write the resulting conclusions here. First,

the Fock matrix of equation 2.106 is written as:

fKS = −1

2
∇2 + vne(~r) + vxc(~r) + vH(~r), (2.108)

such that:

fKSψi(~r) = εiψi(~r). (2.109)

In the same approach as equation 2.59, inserting the definition of ψi(~r) (equation

6.13) and left multiplying by φ∗ν(~r) and integrating over ~r yields:

Fµν =

∫
d~r1φ

∗
µ(~r1)fKSφν(~r1) = 〈φµ| fKS |φν〉 . (2.110)
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Leading to:
K∑
ν

FµνCνi = εi

K∑
ν

SµνCνi, (2.111)

where S and C have the same definition as equations 2.61 and 6.13. In practice, the

Fock matrix is often decomposed as:

Fµν = Hcore
µν + Jxcµν + V xc

µν , (2.112)

where:

Hcore
µν =

∫
d~r1φ

∗
µ(~r1)

(
− 1

2
∇2 + vne(~r)

)
φν(~r1), (2.113a)

Jµν =

∫
d~r1φ

∗
µ(~r1)

(
vH(~r)

)
φν(~r1) =

K∑
a

K∑
b

γab(φµφν |φaφb), (2.113b)

V xc
µν =

∫
d~r1φ

∗
µ(~r1)

(
vxc(~r)

)
φν(~r1). (2.113c)

Here γab is the density matrix defined in the atomic orbital basis. A full defini-

tion is provided later in Chapter 6 - see equation 6.21. The only undefined term is

the exchange-correlation potential vxc(~r) (equation 2.113c), which is approximated in

DFT by what is known in the field as ‘functionals’. There are many options to use.

A discussion on these is outside the scope of this thesis. For an interested reader, we

recommend a recent extensive assessment of 200 density functionals by Mardirossian

and Head-Gordon [66]. We note one technical point when approximating vxc(~r). The

integral in equation 2.113c usually cannot be calculated analytically. Instead, a nu-

merical integration is performed over grids that have been optimized for these types

of calculations [67, 68]. Once evaluated (equation 2.113c), the same self-consistent

field approach as Hartree-Fock can be used to solve the problem. In fact most quan-

tum chemistry codes use the same underlying code for their Hartree-Fock and DFT

solvers. The only difference in each method is how the Fock matrix is constructed in

each SCF optimization loop.

We note DFT has been extended to include spin and is known as spin density

functional theory [69]. This is outside the scope of this thesis. A recent overview can

be found in [70].

2.9.4 Self-interaction and delocalization error in DFT

In Hartree-Fock, we saw in Section 2.5.4 that the spurious self-interaction term due

to the Coulombic attraction of an electron and itself exactly cancels out with the

Exchange term. DFT also contains a Coulombic term (equation 2.94b) split into

J [ρ] (equation 2.102) and Exc[ρ] (equation 2.103), which has the same problem of
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self-interaction. The correction for this term is exactly treated by the true exchange-

correlation functional (equation 2.103). However, in all practical calculations, DFT

approximates the exchange and correlation with an approximate exchange-correlation

functional. The self-interaction error is now not guaranteed to cancel, which may

introduce significant error in some calculations [24, 71]. The definition for this error

was later expanded and is now more generally known as delocalization error [72]. An

analysis of the history and causes of this error is outside the scope of this thesis, a great

review on the topic can be found in [73]. The causes and treatment of delocalization

error is still an active area of research.
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Chapter 3

Quantum Chemistry on

Quantum Computers

Since Feynman’s proposal of using quantum computers to study quantum systems

[7], there have been numerous algorithms proposed. Many of these use the quantum

Fourier transform (QFT) [74, 75] and quantum phase estimation (QPE) [76, 77] as

subroutines. These often require deep circuits implying the need for a fault-tolerant

quantum computer. However, current quantum computing platforms have significant

constraints, such as short coherence times and low qubit numbers. We are currently

in the Noisy Intermediate-Scale Quantum (NISQ) technology era, where computers of

roughly 10− 500 qubits are available [78]. These computers are expected to execute

certain tasks that outperform the current capabilities of current classical computers

[78]. The term “quantum advantage” is used to denote computations involving a

quantum device that cannot be performed classically within reasonable amounts of

time and energy resources [79].

In 2019, researchers at Google performed their ‘quantum supremacy’ experiment

[80]. They showed that pseudorandom quantum circuits are difficult to simulate

classically - and what took 200 seconds on their Sycamore quantum processor would

take approximately 10,000 years on the world’s most powerful supercomputers to date.

The practical use of random quantum circuits is unknown; however, the experiment

was an important milestone in the field as a quantum processor was shown to be so

complex that its behaviour could not be predicted by conventional computers [81].

Since their result was released, there has been fierce debate about whether supremacy

was actually shown. Shortly after Google published their paper, a blog post1 by

IBM’s competing research group stated “an ideal simulation of the same task can be

performed on a classical system in 2.5 days and with far greater fidelity” details of

which they give in [82]. Even more doubt has recently been cast on random circuit

sampling as a scalable approach to prove quantum supremacy, where a polynomial-

time classical algorithm for sampling the distribution of a noisy random quantum

circuit in the regime of anti-concentration to within inverse polynomial total variation

distance was introduced [83].

1https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
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Another quantum advantage experiment was recently performed by Jian-Wei Pan’s

group using a Jiuzhang photonic quantum device performing Gaussian boson sampling

(GBS) with 50 indistinguishable single-mode squeezed states [84]. Advantage was

observed in the time complexity of sampling a Torontonian matrix (determines the

probability distribution of measurement outcomes) that scales exponentially with the

photon click output [79, 84].

The main takeaway of both these supremacy experiments is small quantum pro-

cessors cannot be simulated well by the world’s largest supercomputers. A more

important question is how do we take advantage of these machines to solve useful

problems? This is often coined “practical quantum advantage”. To answer this,

many different groups around the world are trying to understand the capabilities and

limitations of NISQ computers, given small qubit numbers, lack of error-correction

and short coherence times [85]. Algorithms that offload as much of the computation

as possible to a conventional computer are therefore natural to investigate for use on

such devices. These are often known as ‘hybrid quantum-classical algorithms’.

The variational quantum eigensolver (VQE) is one of these and will be introduced

in section 3.2. These hybrid quantum algorithms only need to perform a short se-

quence of operations - rather than long sequences required by algorithms designed for

use with fault-tolerant quantum computers, such as the phase estimation algorithm

(Section 3.1). The importance of hybrid algorithms is they circumvent some of the

shortfalls of current hardware and allow problems to be approached on present-day

devices.

In this chapter, we review the phase estimation and variational quantum eigen-

solver algorithms. We then comment on the possibility of near-term quantum advan-

tage with a focus on application to chemistry problems.

3.1 Phase estimation

Quantum phases are important in many quantum algorithms and we are going to see

how they can be estimated on a quantum device via the phase estimation algorithm.

This algorithm was independently proposed by Kitaev [77] and Abrams and Lloyd

[76].

The quantum phase estimation algorithm is a method for estimating the eigen-

phase of any unitary operator. Given any Hermitian operator H, one tries to find the

eigenvalue Ej such that:

eiH |λj〉 = eiEj |λj〉 , (3.1)

where the Hermitian operator H has been exponentiated to obtain a unitary operator.
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|ψk〉 U

=

(
1 0
0 eiφk

)
=

φk

(a)

|+〉 φk
|0〉+eiφk |1〉√

2

(b)

Figure 3.1: (a) Phase kickback when eigenstate of a unitary U , here denoted |ψk〉, is
inserted into a controlled version of U , (b) Outcome of phase gate applied to the plus
state.

Note that the phase can be rewritten as eiEj = ei2πφ, where φ is the phase to be

determined via phase estimation.

Before we give an analysis of how this algorithm works, we quickly review how

phase kickback works. We can generate a relative phase for a general unitary U

by inserting an eigenstate of U denoted |ψk〉 into a controlled version of U . As

U |ψk〉 = eiφk |ψk〉, the state on the system register is left unaltered. However, if the

state on the control qubit has any |1〉 component a relative phase is generated on

these states. Figure 3.1a illustrates this and shows how the phase is kicked back onto

the control qubit. Figure 3.1b summarises the action of a phase gate on the plus state

|+〉 = |0〉+|1〉√
2

. These ideas underpin the phase estimation algorithm, next we see how

these phases are estimated.

Figure 3.2 illustrates the first part of the phase estimation algorithm. The output

quantum state state of the ancilla register in Figure 3.2 is [86]:

1

2t/2

(
|0〉+ e2πi2t−1φ) |1〉

)(
|0〉+ e2πi2t−2φ) |1〉

)
. . .

(
|0〉+ e2πi20φ) |1〉

)
=

1

2t/2

2t−1∑
k=0

e2πiφk |k〉 .
(3.2)

Suppose the unknown phase φ can be expressed in exactly t-bits as: φ = 0.φ0φ1 . . . φt−1.

Then the output state can be written in product form as:

1

2t/2

(
|0〉+ e2πi(0.φt−1) |1〉

)
⊗
(
|0〉+ e2πi(0.φt−2φt−1) |1〉

)
⊗ . . .⊗

(
|0〉+ e2πi(0.φ0φ1...φt−1) |1〉

)
.

(3.3)
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This looks like the output of a quantum Fourier transform [75, 86]:

QFT: |j〉 7→ 1√
2n

2n−1∑
k=0

ei
2π
2n
jk |k〉 . (3.4)

This is easier to see by re-writing the output of equation 3.4 in product form [86]:

QFT: |j〉 7→ 1√
2n

2n−1∑
k=0

ei2πj
k

2n |k〉

=
1√
2n

1∑
k0=0

. . .
1∑

kn−1=0

ei2πj
(∑n−1

l=0 kl2
−(l+1)

)
|k0, k1, . . . , kn−1〉

=
1√
2n

1∑
k0=0

. . .
1∑

kn−1=0

n−1⊗
l=0

ei2πjkl2
−(l+1) |kl〉

=
1√
2n

n−1⊗
l=0

[
1∑

kl=0

ei2πjkl2
−(l+1) |kl〉

]

=
1√
2n

n−1⊗
l=0

[
|0〉+ ei2πj2

−(l+1) |1〉

]

=

(
|0〉+ e2πi(0.jn−1) |1〉

)
⊗
(
|0〉+ e2πi(0.jn−2jn−1) |1〉

)
⊗ . . .⊗

(
|0〉+ e2πi(0.j0j1...jn−1 |1〉

)
2n/2

,

(3.5)

where we have used the fractional binary notation:

b

2n
= 0.b0b1b2 . . . bn−1 =

n−1∑
k=0

bk2
−(k+1). (3.6)

Here b is a binary integer in the range 0 to 2n − 1. Using this, it should be clear that

the final term in equation 3.5 is the same as the final term of equation 3.3 when n = t.

In order to estimate the phase, the last part of the algorithm requires performing the

inverse quantum Fourier transform on the ancilla register, resulting in:

1

2t/2

2t−1∑
k=0

e2πiφk |k〉a |ψ〉s 7→ |φ〉a |ψ〉s , (3.7)

where |φ〉a is the ancillary quantum state. Measuring the ancillary register in the

computational basis, therefore, gives us the phase φ exactly in binary. However, so

far we have assumed the phase could exactly be written in t-ancillary bits. In practice,
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|0〉a

...

|0〉a

|0〉a

|0〉a

|ψ〉s
n

H

H

H

H

U20
U21

U22

· · ·

· · ·

· · ·

· · ·

· · · U2t−1

|0〉+e2πi(2t−1φ)|1〉√
2

...

|0〉+e2πi(22φ)|1〉√
2

|0〉+e2πi(21φ)|1〉√
2

|0〉+e2πi(20φ)|1〉√
2

|ψ〉

Figure 3.2: First part of the phase estimation algorithm, which is completed with an
inverse Fourier transform (QFT †) applied to the ancillary register. The ancillary and
system qubit registers are denoted with a and s respectively.

this assumption cannot be made and so we write:

1

2t/2

2t−1∑
k=0

e2πiφk |k〉a |ψ〉s 7→ |φ̃〉a |ψ〉s , (3.8)

where |φ̃〉a is a good estimator of |φ〉a when measured in the computational basis. We

omit the proof of why |φ̃〉a is a good estimator, which is derived in [86]. We summarise

the result, which proved the number of ancilla qubits required to obtain the phase to

a precision ε scales as O( 1
log2(ε)

). Intuitively this makes sense, as each ancillary qubit

provides one bit of information. The number of controlled unitaries is doubled for

each ancillary qubit and therefore for precision ε will scale as O(1
ε
) [87].

A component of the phase estimation we have not addressed is how an eigenstate

|ψ〉s is required to be input on the system register. What would happen if some other

general state, such as |Ω〉s, was prepared? We can write this general state in the

eigenbasis of the unitary U as:

|Ω〉s =
2n∑
i

ci |ψi〉s . (3.9)

Applying the phase estimation algorithm to this state results in:

2n∑
i

ci |0̄〉a |ψi〉s 7→
2n∑
i

ci |φ̃i〉a |ψi〉s . (3.10)

This superposition state contains approximated eigenphases of the different eigen-

states |ψi〉. The probability of measuring |φ̃i〉s and thus |ψi〉s on the system register,

will be | 〈ψi|Ω〉|2. Therefore, to approximate an eigenphase of a particular state |ψi〉s
- such as the ground state - with high probability will depend on its overlap with
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the input state |Ω〉. A central assumption for phase estimation is that there is access

to some oracle capable of producing a quantum state with “good overlap” with the

desired state to estimate the phase of. Here good means overlap that is polynomial

in the size of the system [88].

In 2005, Aspuru-Guzik, Dutoi, Love and Head-Gordon proposed applying phase

estimation to quantum chemistry problems [89]. This was the first method introduced

to estimate quantum chemical states on a quantum computer. In their numerical

results, the Hartree-Fock state was used as the input state for phase estimation [89].

This input was used in subsequent works [42, 90], where in all cases the single Slater

determinant reference state had good overlap with the ground state. However, the

systems considered in all these works are very small. The Van Vleck catastrophe

[91] refers to an expected exponential decline in the quality of trial wavefunctions

(measured by overlap with the true wavefunction of a system) as a function of size

[88]. The poly overlap of these classical methods with the true ground state must be

considered in the context of large basis set sizes K. Recently Chan et al. explored

this problem and found that exponential quantum advantage for quantum chemistry

problems using current quantum algorithms may not be possible, instead it seems

like they are more likely to provide polynomial speed-ups [92]. However, no proof

was given just numerical evidence. The problem of generating good trial states is

therefore still an important open question in the field.

Finally, we note it is well-known that the lowest eigenvalue problem is Quantum

Merlin Arthur (QMA) complete [41, 42]. The requirement of an initial state with

good overlap with the true ground state is therefore highly non-trivial and this condi-

tion has major implications for the practical use of the QPE algorithm for quantum

chemistry applications. Ignoring this issue, today’s quantum computers are noisy and

QPE requires complicated quantum circuits. An Implementation of QPE on currently

available NISQ hardware is extremely limited, as seen in the experimental work of

Mohammadbagherpoor et al. [93] and O’Malley et al. [90]. The variational quan-

tum eigensolver algorithm was introduced to mitigate some of these concerns and is

implementable on currently available QPUs [94].

3.2 The variational quantum eigensolver

The variational quantum eigensolver (VQE) algorithm was proposed in an experi-

mental paper by Prezzo et al. [94] and later developed by McClean et al [95]. The

algorithm was developed to find the lowest eigenvalue of a Hamiltonian on near-term

(non-fault tolerant) quantum computers [94]. Since then it has been extended, to

allow excited states (higher eigenvalues) to be determined [96, 97]. The crux of the

algorithm stems from the Rayliegh-Ritz variational principle [98–100]. This basically
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states that for a time-independent Hamiltonian the ground state is bounded by the

minimum eigenvalue:

E0 ≤
〈Ψ(θ)|H |Ψ(θ)〉
〈Ψ(θ)|Ψ(θ)〉

. (3.11)

The algorithm works by first preparing a trial (or ansatz) quantum state, via a

parametrised quantum circuit U(~θ). The energy is then minimized with respect to

the parametrization ~θ:

E0 = argmin
~θ

〈0̄|U †(~θ)HU(~θ) |0̄〉 , (3.12)

where a classical optimizer is used to update ~θ. Upon convergence, the expectation

value is an upper-bound of the ground state. Importantly, this technique can get

trapped in local minima, which is a common problem in electronic structure problems.

In a standard VQE experiment, it is generally not possible to measure H at once.

Instead, operators that can be measured on a quantum computer must be used, which

are tensor products of spin operators. These are the Pauli operators: σ ∈ {I, Z,X, Y },
where:

I =

[
1 0

0 1

]
, (3.13a)

X =

[
0 1

1 0

]
, (3.13b)

Y =

[
0 −i
i 0

]
, (3.13c)

Z =

[
1 0

0 −1

]
. (3.13d)

Importantly, all different possible arrangements of n-fold tensor products of Pauli

operators (4n possibilities) form a basis for a Hilbert space H ∈ C2n×2n and so any

Hermitian operator acting on such a Hilbert space can be written as some linear

combination of Pauli operators:

H =

|H|∑
i

ciPi =

|H|∑
i

ci

( n−1⊗
j=0

σ
(i)
j

)
=

|H|∑
i

ci

(
σ

(i)
0 ⊗ σ

(i)
1 ⊗ . . .⊗ σ

(i)
n−1

)
. (3.14)

For each single qubit Pauli operator σj, each subscript j indexes the qubit the operator

acts on. The notation |H| means the number of Pauli operators P in H.
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Year Reference System Ansatz Max qubits Platform Hardware Vendor

2014 Peruzzo et al. [94] HeH+ UCC 2 Silicon Photonic Bristol
2015 Shen et al. [101] HeH+ UCC 2 Trapped ion
2015 Google Quantum [90] H2 UCC 2 Superconducting Google
2016 Santagati et al. [102] H2, H3, H3

+, H4 Parametrized Hamiltonian 2 Silicon Photonic
2017 Kandala et al. [103] H2, LiH, BeH2, Heisenberg model HEA 6 Superconducting IBM
2017 Colless et al.[15] H2 (excited states) HEA 2 Superconducting UCB, LBNL
2018 Hempel et al. [36] H2, LiH UCC 3 Trapped ion
2018 Kandala et al. [104] H2, LiH (magnetism) HEA 4 Superconducting IBM
2018 Ryabinkin et al. [105] H2, LiH Qubit CC 4 Superconduction
2019 Nam et al. [106] H2O UCC 4 Trapped ion IonQ
2019 McCaskey et al. [107] NaH, RbH, KH UCC and HEA 4 Superconducting IBM, Rigetti
2019 Gao et al. [108] Li superoxide dimer qUCCCD, Ry 2 Superconducting IBM
2019 Smart & Mazziotti [109] H3 custom 3 Superconducting IBM
2020 Google AI Quantum [110] H6, H8, H10, H12, HNNH Hartree-Fock 12 Superconducting Google
2020 Gao et al. [111] phenylsulfonyl-carbazole TADF emitters Ry 2 Superconducting IBM
2021 Kawashima et al. [112] H10 qubit-CC 3 Trapped ion IonQ
2021 Rice et al. [113] LiH (dipole moment) HEA 4 Superconducting IBM
2022 Eddins et al. [114] H2O Entanglement Forging 5 Superconducting IBM
2022 Motta et al. [115] H3S+ Entanglement Forging 6 Superconducting IBM
2022 Yamamoto et al. [116] crystalline iron model uCCSD-PBC 2 Superconducting IBM
2022 Kirsopp et al. [117] Oxazine derivatives YXXX 4 Superconductiong, Trapped Ion IBM, Quantinuum
2022 Khan et al. [118] CH3 · (methyl radical) UCCSD 6 Trapped ion Quantinuum
2022 O’Brien et al. [119] Cyclobutene ring upCCD 10 Superconducting Google
2022 Zhao et al. [120] Li2O oo-upCCD 12 Trapped ion IonQ
2023 Weaving et al. [121] HCl HEA 3 Superconducting IBM

Table 3.1: Summary of different experimental realizations of VQE.

The linearity of expectation values allows the expected value of H to be determined

as:

〈H〉 =
∑
i

ci〈Pi〉. (3.15)

Thus, in a basis of Pauli operators equation 3.12 becomes:

E0 = argmin
~θ

∑
i

[
ci

(
〈0̄|U †(~θ)PiU(~θ) |0̄〉

)]
. (3.16)

An actual implementation of Equation 3.16 has many components that each impact

the design and cost of running a VQE simulation. Table 3.1 summaries many of the

experimental realizations of the algorithm to date. An analysis of each is outside

the scope of this thesis, but we provide an introduction to some of the important

considerations when implementing VQE. For brevity, we only provide a discussion in

the context of applying the algorithm to quantum chemistry. The main considerations

in VQE are:

1. Which fermion to qubit mapping to use?

2. How to prepare a parametrised quantum state.

3. What optimizer to use to minimize the energy with respect to the Ansatz pa-

rameters?

4. How to measure the expectation value of H at each iteration of the algorithm.

We give a brief discussion of points 1-3 in the following subsections and leave the last

point for Chapter 4, as it is of primary interest to this thesis.
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Citation Encoding Qubits Gates

Jordan-Wigner [123] Jordan-Wigner K O(K)
Bravyi-Kitaev et al. [34, 125] Bravyi-Kitaev K O(logK)
Bravyi-Kitaev et al. [124] Z2 symmetries K −O(1) O(K)

Bravyi-Kitaev et al. [124] Parity K − K
η O(K3)

Jiang et al. [126] Ternary Tree K O(logK)

Steudtner-Wehner [127] Segment K − K
2η O(K2)

Babbush et al. [128] Configuration interaction matrix O(η logK) O(K)
Kirby et al. [129] Optimal-Degree O(η2 log4K) O(η2 log5K)

Moll et al. [130] Subspace Projection dlog
(
K
η

)
e O(2KK)

Harrison et al. [131] Clifford permutation K − 1 O(K)

Harrisonet al. [131] Non-Clifford Permutation (T ≤ K)Toffolis dlog
(
K
η

)
e O(4TK)

Harrison et al. [131] General Non-Clifford Permutation dlog
(
K
η

)
e O(4KK)

Table 3.2: Summary of different works that encode a second-quantized fermionic
Hamiltonian in qubits. “Gates” refers to the number of one and two qubit gates
to implement an encoding of a conjugate pair of fermionic creation and annihilation
operators. The Configuration interaction matrix is an exception, where the gate cost
is the cost of the sparse oracle utilized by that particular method. Here K is the
number of spin-orbitals (modes) and η the number of fermions.

3.2.1 Fermion to qubit mapping

To simulate systems described in the second quanitization, a mapping from indis-

tinguishable fermions to distinguishable qubit operators is required. This requires a

mapping from the fermionic Fock space to the Hilbert space of qubits, such that each

fermionic state can be represented by a qubit state. We do not discuss first quantized

approaches as it is outside the scope of this thesis. Further information can be found

in [122].

The most common mapping methods are: Jordan-Wigner [123], parity [124] and

Bravyi-Kitaev [34, 125]. Each mapping results in Pauli operators with certain weights

(maximum number of non-identity single qubit Pauli matrices in the operator). Table

3.2 summarises the different methods.

It is currently unknown which encoding method is the most noise-resilient - i.e.

best for NISQ experiments. Tranter et al. did a numerical study comparing the

Jordan-Wigner and Bravyi-Kitaev mappings and found that the BK transform was

at least as efficient as the JW in finding the ground states of molecular systems and

often more efficient [132].

We note the qubit cost for molecular problems can be reduced by tapering off Z2

symmetries, including those based on the point group of the molecule under consid-

eration [124, 133].
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3.2.2 Ansätze

The choice of Ansatz, to model a given electronic structure wavefunction on a qubit

register, often requires a trade-off between expressibility and experimental feasibility.

Expressibility in this context means the ability of parameterized quantum circuits to

produce quantum states that represent the η-particle Hilbert space well [134]. The

goal is to have parameterized circuits with minimum depth that maximize accuracy.

There are two flavours of Ansätze known as “hardware efficient” and “chemically

inspired”.

Hardware efficient Ansätze (HEA) are composed of repeated blocks of param-

eterized gates that are most suited (easy to implement) to the available quantum

hardware [12]. Such approaches have been used in different VQE experiments to

compute the ground state energies of small molecular systems [103, 104]. However,

these approaches are agnostic to the chemical problem being simulated [135]. This

results in a few drawbacks. First, is the issue of so-called “Barren plateaus” of the

variational parameter landscape, where the derivative of the cost function (in this case

the derivative of the energy with respect to the Ansatz parameters) is close to zero

[136]. Another problem with hardware efficient Ansätze, are physical symmetries,

such as electron number and parity, are not accounted for, which increases the size of

the search space. Several approaches have been proposed to mitigate these problems

[135, 137–139]. We note a recent approach proposed by the Mayhall group, called

ctrl-VQE, which is a very unique way of thinking about hardware efficient Ansätze

[140]. Rather than working with a parametrised quantum circuit, a parametrised

laboratory-frame pulse representation is optimized. They studied the bond dissoci-

ation of H2 and HeH+, on a quantum computer, to within chemical accuracy and

studied LiH at fixed bond length [140].

Chemically inspired Ansätze are physically motivated by the problem at hand.

When Peruzzo et al. first introduced the VQE algorithm, they used a unitary coupled

cluster singles doubles (UCCSD) Ansatz [94]. This Ansatz was inspired by the classical

non-unitary coupled cluster method [40]. The trial wavefunction is prepared from a

reference state, usually the Hartree-Fock state |ΦHF 〉, by applying the exponentiated

excitation operator [141, 142]:

U(~θ) = eT−T
†

(3.17)

where:

|ψ(~θ)〉 = U(~θ) |ΦHF 〉 . (3.18)

The operator T =
∑d

k=1 Tk is the excitation operator, which is usually truncated at
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some excitation level d. The UCCSD is realized at d = 2, and T will be:

TUCCSD = T1 + T2 =
∑
i∈occ
a∈virt

taiα
†
aαi+ =

∑
ijj∈occ
a,b∈virt

tabij α
†
aα
†
bαiαj. (3.19)

Here tai and tabij are the cluster amplitudes (real coefficients), occ and virt denote

orbital indices that are occupied and unoccupied with respect to the Hartree-Fock

state [141, 142]. A Trotter expansion is often used to decompose this operator as:

TUCC =
d∑

k=1

Tk =

(
d∏

k=1

eTk−T
†
k/a

)a

, (3.20)

where a trotter number of a = 1 is usually sufficient for VQE [141]. Note the fermionic

operators here can be converted to qubit operators using any of the transformations

discussed in Section 3.2.1. The number of parameters for UCCSD scales as O(K2η2)

for K spin orbitals and η electrons [142]. The number of gates under the Jordan-

Wigner transform scales as O(K2η2) and Bravyi-Kitaev as O(K3η2) (assuming a

single Trotter step) [142].

Even though the scaling of UCCSD is tractable, the circuit depth is still a challenge

for NISQ devices and optimization may be hard. As many of the excitation terms

can have near-zero contribution to the correlation energy, many variants of the UCC

ansatz have been proposed that improve this scaling by choosing excitation operators

that constitute the Ansatz more efficiently [143]. Examples include: Unitary Pair CC

with Generalized Singles and Doubles (k-UpCCGSD) [144],Orbital Optimized UCC

(OO-UCC) [145], Adaptive Derivative-Assembled Pseudo-Trotter Ansatz Variational

Quantum Eigensolver (ADAPT-VQE) [146], qubit-ADAPT-VQE [147], Qubit Cou-

pled Cluster (QCC) [105]. Other chemically inspired Anstaz impose properties of the

system such as the particle number, spin, and time-reversal symmetries [148, 149]. A

full analysis of each of these is outside the scope of this thesis.

3.2.3 Classical optimization in VQE

For variational quantum algorithms to be successful it is not enough for the Ansatz

to be expressible enough to contain the solution. The cost landscape must also have

large enough cost gradients to allow this solution to be found [150]. Take the Ansatz

for random parameterized quantum circuits:

U(~θ) = U(θ0, θ1, . . . , θL−1) =
L−1∏
j=0

Uj(θj)Wj, (3.21)
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where ~θ gives a particular parametrization. Here Uj(θj) = e−iθjVj , Vj is a Hermitian

operator and Wj is a general unitary operator that does not depend on the Ansatz

parametrization [136]. The component of the gradient corresponding to the param-

eter θj is determined by the partial derivative: ∂jE = ∂E
∂θj

[136, 150]. This can be

determined by the parameter shift rule [151–153]. It was shown in [136] that:

〈∂jE〉 = 0 ∀j. (3.22)

In words, the gradient of the cost function averages out to zero rather than being

biased in a particular direction [150]. An unbiased cost landscape can be trainable,

but this depends on the extent to which the gradient fluctuates away from zero [150].

For a cost (in our case energy) to exhibit a barren plateau, the gradient must van-

ish exponentially with the number of qubits n. This is related to the variance of

the partial derivative vanishing exponentially - V ar[∂jE] ∈ O( 1
2np

) for any integer

p > 0 [150, 154]. To determine the minimization direction requires exponentially

many measurements and makes the optimization problem effectively intractable for

large problem sizes [150, 154]. This issue is also present for gradient-free optimizers

[155] and can be understood by these methods usually relying on sampling the cost

landscape. If the variance across this landscape is too small then it is impossible to

accurately progress through the optimization problem [87]. One approach to avoid

these landscapes, where the gradient becomes vanishingly small, is to use a structured

initial guess [136].

The barren plateau problem has also been linked to the presence of high levels of

entanglement in quantum circuits [156] and hardware noise in a given computation

[157]. The unitary coupled cluster Ansatz for instance shows these noise-induced

barren plateaus [157]. Therefore, physically motivated Ansätze may not be beneficial

over hardware efficient Ansätze . Grimsley et al. have shown that ADAPT-VQE can

mitigate some of the problems described here [158]. The quantum natural-gradient-

based strategy is also considered resilient to barren plateaus [159]. However, much

more work is still required on the problem of barren plateaus.

Ignoring the issue of Barren plateaus, for a given VQE problem what classical

optimizer should be used? Pellow-Jarman et al. recently performed a numerical

study investigating different classical optimizers and found under realistic noise levels

there was no clear winner between gradient-based and gradient-free approaches [160].

In very low noise regimes, they found that gradient-based approaches outperformed

the gradient-free optimizers.
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3.3 VQE and quantum advantage

Theoretically, when studying the second quantized molecular Hamiltonian for dif-

ferent molecular systems using VQE, the problem will scale polynomially with the

number of spin orbitals K (equation 2.73) [94, 95]. However, this hides a lot of extra

complexity contained within the algorithm, which limits the ability to achieve quan-

tum advantage. We note this has been discussed in numerous reviews [16, 79, 87, 161,

162]. We summarise some of the main points here.

First, there is the issue of a large pre-factor caused by circuit sampling [87]. At a

high level, the number of samples in VQE that is required to achieve a precision ε scales

as O(K8/ε2) [163]. The consequence of this is the sheer number of measurements

required to estimate a single energy can take many years. How to handle this problem

will be discussed at length in the next chapter, but the main takeaway here is a naive

measurement strategy in VQE makes any practical advantage redundant. Compared

with phase estimation, VQE trades circuit depth and number of qubits for a higher

number of measurements and circuit repetitions. Wang et al. show that QPE requires

O(1) repetitions with quantum circuits scaling inversely with precision ε as O(1
ε
)

[164]. VQE on the other hand has measurements scaling as O( 1
ε2

), with circuit depth

scaling as O(1) in precision [164]. We note many other factors affect the scaling

of both methods, the metrics presented here just illustrate some of the asymptotic

considerations.

VQE also requires solving a classical optimization problem, which has been shown

to be NP-hard [165]. This means at worst the optimal solution for a problem is

intractable. However, this is expected as all optimization problems can suffer from this

issue [166]. As commented on by Tilly et al., the key open question is whether VQE

can be optimized in a polynomial number of iterations, via a heuristic, and converge

to an approximate but accurate enough solution [87]. However, the presence of barren

plateaus means that even if convergence in VQE was theoretically possible, the number

of measurements required to obtain the gradient or sample the optimization landscape

will scale exponentially under certain Ansätze. Much more work needs to be done on

this problem.

One of the major benefits of VQE is it being a noise-resilient quantum algorithm

[90, 94], as optimization can effectively adapt to noise [95]. This can be seen with

different experimental realizations of VQE on NISQ devices - see Table 3.1. However,

it is unknown how this resilience scales when treating larger problems and the quantum

circuits become much deeper and more complicated. Saib et al. investigated this

issue for hardware efficient Ansätze and found the expressibility of the Ansatz did

not correlate with performance [167]. This indicates expressibility may not be the

best choice for selecting a given Ansatz for VQE applied to chemistry problems. This
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3.3. VQE AND QUANTUM ADVANTAGE

was further shown by Dalton et al. in a study that investigated how noise affects

the Ansatz part of VQE [168]. They conclude that VQE is unlikely to be scalable on

near-term hardware without error correction. Moreover, in their concluding remarks

they state VQE algorithms are unlikely to provide useful quantum advantage for

chemistry applications in the NISQ era of computing. Further research is required

on this topic. Error mitigation strategies may offer a route to improve these issues,

which we numerically found in a three-qubit study of HCl [121]. However, how these

methods scale with problem size can be a problem [169].

Finally, we reiterate a comment made in [16]. This discussion has been presented

for VQE applied to quantum chemistry problems. However, the algorithm can be

used to find the ground state of any Hamiltonian and so can be applied in many

alternate fields. The possibility of quantum advantage may be easier to achieve in

these contexts. This remains an open question.
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Chapter 4

The Measurement Roadblock to Im-

plementation of VQE

In this chapter, we explore the topic of measurement in the variational quantum

eigensolver algorithm, which we will see causes the runtime of the algorithm to become

a major obstacle for practical implementation. We first derive where this issue stems

from and then provide a brief review of methods that seek to reduce the measurement

overhead and thus runtime. We then present our numerical investigation for the

unitary partitioning measurement reduction strategy. This was to study the real

performance of the method, as opposed to relying on theoretical asymptotic scaling

arguments.

4.1 Measurement in quantum mechanics

The third postulate of quantum mechanics states that associated with every observ-

able quantity is a Hermitian operator M [86]. A Hermitian operator is an oper-

ator that is equal to its Hermitian conjugate M † or transpose complex conjugate:

M = M † = (MT )∗ [86]. Two of the most fundamental properties of Hermitian opera-

tors are the eigenvalues are real, and that they are diagonalizable. Taking the spectral

decomposition of a general Hermitian operator:

M =
d−1∑
i=0

λi |φi〉 〈φi| =
d−1∑
i=0

λiMi, (4.1)

where Mi are projection operators onto eigenstates |φi〉 and must obey the complete-

ness equation
∑

iM
†
iMi = I [86]. λi are the (real) eigenvalues of Mi that are possible

measurement outcomes.

For a general quantum state |ψ〉, before measurement the probability of measuring

|φk〉 is pk = 〈ψ|M †
kMk |ψ〉, where Mk = |φk〉 〈φk|. The state of the system after

measurement is [86]:

|ψ′〉 =
Mk |ψ〉√
〈ψ|M †

kMk |ψ〉
(4.2)
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4.1. MEASUREMENT IN QUANTUM MECHANICS

and the eigenvalue λk is also returned upon measurement. The projector Mk deter-

mines the state after measurement |ψ′〉 and the denominator in equation 4.2 is the

renormalization factor.

In quantum mechanics, the expected (or expectation) value of an operator is given

by the weighted average of all possible measurement outcomes. It is not the most

probable value of a measurement. The experimental action of measuring a property

on a normalized state |ψ〉 =
∑

j cj |φj〉 is formally written as:

〈M〉|ψ〉 = 〈ψ|M |ψ〉 = 〈ψ|
( d−1∑
i=0

λi |φi〉 〈φi|
)
|ψ〉

=
( d−1∑
i=0

λi| 〈ψ|φi〉|2
)
.

(4.3)

This is known as the expectation value of A.

In the context of this work, we are interested in the expectation value of an op-

erator made up of a linear combination of Pauli operators. The different possible

arrangements of n-fold tensor products of Pauli operators (4n) form a basis for a

Hilbert space H ∈ C2n×2n and so any Hermitian operator acting on such a Hilbert

space can be written as some linear combination of Pauli operators:

H =
∑
i

ciPi. (4.4)

Often, the expectation value of such a given operator cannot be measured directly.

However, the linearity of expectation values allows the expected value to be deter-

mined as:

〈H〉 =
∑
i

ci〈Pi〉. (4.5)

The expectation value of each Pauli operator 〈Pi〉 is estimated by preparing M inde-

pendent copies of a given state ψ and measuring :

〈Pi〉 = 〈ψ(~θ)|Pi |ψ(~θ)〉

≈
(

1

M

M−1∑
j=0

s
(i)
j

)
= ˜〈Pi〉,

(4.6)

where s
(i)
j ∈ {−1,+1}. The above expression is exact in the limit that the number of

samplesM →∞. For a finite number of samples, we denote the estimated expectation

value as ˜〈Pi〉. The only (special) case the expectation value of an operator can be

evaluated exactly, with a single sample, is when the wavefunction is an eigenstate

of the operator being measured. Note that each s
(i)
j is obtained from separate state

preparations and all values obtained are thus independent and identically distributed
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random variables. In such a scenario it is important to distinguish sample variation

and intrinsic variation of an expectation value. We discuss this in detail next.

4.1.1 Expectation variance of individual operators

A quantum state can be thought of as a mathematical object that provides the proba-

bility distribution for the outcomes of each possible measurement on a system. In the

computational basis, this will be a distribution of different binary states that can be

obtained (measured in an experiment) with a certain probability. As we are talking

about probability distributions we can analyse certain properties using probability

theory.

In quantum mechanics, we are often interested in the expected value of an operator

for a given state. Looking at equation 4.3, this can be thought of as the average of

all possible outcomes weighted by their likelihood (probability) of occurring. We

consider the setting for a quantum state defined on n-qubits, meaning the discrete

probability distribution is defined on a finite number of bitstrings 1. This means there

will always be an inherent population mean and variance, where the variance describes

how spread the distribution is. For a given state (distribution), the variance of the

expectation value of an operator is calculated from the expected value of the squared

deviation from the mean of an operator. For a general operator O this is written as

[170]:

V ar[O] = Cov[O,O]

=
〈

(O − 〈O〉)2
〉

= 〈O2 − 2O〈O〉+ 〈O〉2〉

= 〈O2〉 − 2〈O〉〈O〉+ 〈O〉2

= 〈O2〉 − 2〈O〉2 + 〈O〉2

= 〈O2〉 − 〈O〉2.

(4.7)

Note multiplying by a constant c results in V ar[cO] = c2V ar[O]. Applying this

1In the continuum limit (here a discrete probability distribution over an infinite number of bit-
strings) care must be taken to ensure the mean and variance are defined for a given quantum state.
Consider equation 4.3, in the continuum limit (d =∞). The expectation value will only be defined
if the sum converges. If the sum diverges then the expectation value is undefined. Interestingly,
for problems studied on a quantum computer there is always a finite number of qubits and so this
divergence issue cannot occur.
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relation to a general Pauli operator:

V ar[ciPi] = c2
i

(
〈P 2

i 〉 − 〈Pi〉2
)

= c2
i

(
〈I〉 − 〈Pi〉2

)
= c2

i

(
1− 〈Pi〉2

)
≤ c2

i ,

(4.8)

where the fact that Pauli operators are self-inverse has been utilized.

In real experiments we cannot evaluate the expectation value of an operator O ex-

actly 2, instead, we use statistical sampling to estimate the true value which we denote
˜〈O〉 (equation 4.6). ˜〈O〉 approximates the true expectation value 〈O〉 of the operator

on the full distribution (a parameter of the wavefunction or true distribution). The

Central Limit Theorem means that when the number of samples is large the sample

expectation value will be close to the true value. A useful metric to consider is the

standard error of a statistic (here the estimated expectation value due to sampling),

which is the standard deviation of its sampling distribution. The sampling distribu-

tion is a distribution of {+1,−1} values generated by sampling the true distribution.

This sampled distribution has its own properties (such as the mean and variance).

The variance of a sample expectation value (equation 4.6) is:

V ar[ ˜〈O〉] = V ar
[ 1

M

M−1∑
j=0

sj

]
=

1

M2
V ar

[M−1∑
j=0

sj

]
=

1

M2

M−1∑
j=0

V ar[sj]

=
1

M2

M−1∑
j=0

σ2

=
1

M2
Mσ2 =

Mσ2

M2

=
σ2

M
.

(4.9)

Note we have used the fact that each sj sample is independent and identically dis-

tributed and thus all the sj samples will have the same variance σ2. Equation 4.9

indicates that as more samples are taken, the variance of the sample mean ˜〈O〉 de-

creases. The square root of equation 4.9 is sometimes known as the standard error

on the mean (SEM). Overall, the standard error tells you how accurate any statis-

2Apart from the special case that the state being measured is an eigenstate of that operator
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tic obtained from sampling a given population is likely to be compared to the true

population parameter. Intuitively this makes sense as if you increase the number of

samples M the uncertainty in a statistic determined from sampling should decrease -

aka more data reduces your uncertainty.

4.1.2 Expectation variance of linear combination of operators

For many quantum algorithms, the expectation value of an operator is obtained from

a linear combination of expectation values of other operators (equation 4.5). In prob-

ability theory, the variance of a linear combination of variables is given by Bienaymé’s

identity:

V ar[H] = V ar[
∑
i

ciPi]

=
∑
i

∑
j

Cov[ciPi, cjPj]

=
∑
i

c2
iV ar[Pi] +

∑
i

∑
j
∀j 6=i

cicjCov[Pi, Pj].

(4.10)

This is simply a sum of all the covariances, where for Pauli operators [171]:

Cov[Pi, Pj] = 〈PiPj〉 − 〈Pi〉〈Pj〉. (4.11)

As measurements are taken from independent state preparations (equation 4.6), the

covariance between different estimators must be zero - Cov[Pi, Pj] = 0 ∀i 6= j [95] - the

measurement outcomes are uncorrelated. The overall variance under these conditions

is therefore:

V ar[H] = V ar[
∑
i

ciPi] =
∑
i

c2
iV ar[Pi]. (4.12)

Interestingly, we will see later that covariances are not zero if groups of Pauli operators

are measured at once.

4.1.3 Standard variance in VQE

When performing VQE, one of the goals is to determine the ground state energy of an

operator to a certain precision using the minimum number of samples required. The

variance of the expectation value is therefore important to account for. The following

section considers this problem, where 〈H〉 is measured as a linear combination of Pauli

operators.

As well as the intrinsic variance of the expectation value of an operator on a

given state, there will also be sample variance due to statistical fluctuations that are
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uncorrelated from sample to sample. The total variance of the sample expectation

value 〈H〉 scales as [172]

V ar[H] =

|H|−1∑
i=0

c2
iV ar[Pi]

Mi

=

|H|−1∑
i=0

c2
i

(
1− 〈Pi〉2

)
Mi

, (4.13)

and derives from the results of equations 4.9 and 4.12 The total number of samples

taken is M =
∑|H|−1

i=0 Mi, where Mi is the number of samples used to determine

〈Pi〉. We want to take the minimum number of samples Mi for each term in order

to minimize the overall measurement cost, such that V ar[H] is minimized. This was

discussed in [173] and proven in [172] using Lagrange multipliers. We reproduce their

derivation here. The following Lagrangian is used:

L =

|H|−1∑
i=0

Mi + λ

( |H|−1∑
i=0

c2
iV ar[Pi]

Mi

− ε2
)
, (4.14)

where ε2 denotes the target variance for V ar[H]. The following expression for Mi

must then be solved:

min
Mi

max
λ
L = min

Mi

M. (4.15)

This is done by taking the derivative of L with respect to Mi:

∂L
∂Mi

=
∂

∂Mi

[ |H|−1∑
i=0

Mi + λ
( |H|−1∑

i=0

c2
iV ar[Pi]

Mi

− ε2︸︷︷︸
target V ar[H]

)]

= 1− λ
(c2

iV ar[Pi]

M2
i

)
= 0

=⇒ 1 = λ
c2
iV ar[Pi]

M2
i

.

(4.16)

Rearranging equation 4.16, we see:

M2
i = λc2

iV ar[Pi]

Mi =
√
λ|ci|

√
V ar[Pi].

(4.17)
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Plugging this back into equation 4.13:

ε2︸︷︷︸
V ar[H]

=

|H|−1∑
i=0

c2
iV ar[Pi]√

λ|ci|
√
V ar[Pi]

=
1√
λ

|H|−1∑
i=0

|ci|
√
V ar[Pi]

=⇒

√
λ =

1

ε2

|H|−1∑
i=0

|ci|
√
V ar[Pi].

(4.18)

Using this result in combination with equation 4.17, we find:

M =

|H|−1∑
i=0

Mi =

|H|−1∑
i=0

(√
λ|ci|

√
V ar[Pi]

)
=
√
λ

|H|−1∑
i=0

(
|ci|
√
V ar[Pi]

)
=

(
1

ε2

|H|−1∑
i=0

|ci|
√
V ar[Pi]

)
︸ ︷︷ ︸√

λ

( |H|−1∑
i=0

(
|ci|
√
V ar[Pi]

)

=
1

ε2

( |H|−1∑
i=0

|ci|
√
V ar[Pi]

)2

=
1

ε2

( |H|−1∑
i=0

|ci|
√

1− 〈Pi〉2
)2

≤
(∑|H|−1

i=0 |ci|
)2

ε2
.

(4.19)

The final line in equation 4.19 uses the upper bound for the variance of each Pauli op-

erator, V ar[Pi] ≤ 1, to remove the state-dependence. This gives a state-independent

upper bound on the number of measurements needed to achieve an expectation value

to precision ε.

It is clear from the penultimate line of equation 4.19 that for the special case

that
√
V ar[Pi] ∝ 1

|ci| each Mi is optimal. However, this scenario is highly unlikely.

Instead the measurement budget Mi for estimating each 〈Pi〉 should be set propor-

tional to Mi ∝ |ci|
√
V ar[Pi]. However, V ar[Pi] is state-dependent and not normally

known before and so what is used instead is: Mi ∝ |ci|, where the upper bound of

V ar[Pi] = 1 (equation 4.8) is used. This strategy works well when V ar[Pi] is roughly

the same ∀i. A numerical investigation by Arrasmith et al. found that variations in

|ci| were generally higher than V ar[Pi] for random states and thus choosing Mi ∝ |ci|
outperformed sampling each term uniformly [174]. An alternate approach could use a

small number of experimental runs to estimate each V ar[Pi], this could then be used

to define each Mi ∝ |ci|
√
V ar[Pi].
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Since the number of terms in the second quantized molecular Hamiltonian (equa-

tion 2.73) scales as O(K4), the total number of measurements required (equation 4.19)

will scale asO(K8/ε2). For chemistry problems, the desired precision is ε = 1 kcal/mol

(1.6 mHa) and is colloquially known as chemical accuracy. This is the precision re-

quired to match typical thermochemical experiments. Wecker et al. showed that to

obtain energy estimates for HeH+, BeH2 and H2O requires 108−109 samples to achieve

an error of 1 mHa [173]. This implies that the number of measurements required is an

obstacle for experimental implementations of VQE to the number of qubits currently

available on NISQ devices.

For example, take the experimental implementation of VQE by Hempel et al.,

which took 20ms to perform each VQE repetition on a trapped ion quantum computer

[36]. To obtain the ground state energy of H2, in a minimal basis to within chemical

precision, took ≈ 14000 repetitions and required 4.6 minutes of averaging. Since then

many groups have estimated the runtime of VQE. Gonthier et al. provide different

estimates for a set of molecular systems and found that for ethanol (260 qubit problem)

it would take 71 days to obtain a single energy estimate [163]. Johnson et al. also

recently estimated the runtime of different VQE problems and for CO2 (208 qubits),

and found that roughly three million years would be required to estimate the energy

of the prepared ground state using standard sampling [175]. This is clearly a major

obstacle for VQE being of any actual utility.

Various approaches have been proposed for reducing the total number of samples

required by VQE. We give a brief review of commonly used strategies next.

4.2 Prior work on measurement strategies

We summarise some important work in the field on reducing the measurement cost for

different quantum algorithms that require measurement of Pauli operators. Numerous

reviews on the topic have been done and we refer the reader to [163, 176] for further

details and approaches.

4.2.1 Partial tomography approaches

Quantum state tomography is the experimental procedure to determine an unknown

quantum state ρ, which is a density operator often also called the density matrix [86].

The density matrix is defined as

ρ ≡
∑
i

pi |ψi〉 〈ψi| . (4.20)
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This represents a state with probability pi the system is in state |ψi〉. In this formalism,

expectation values are written as 〈A〉 = 〈φ|A |φ〉 = Tr (ρA), where Tr denotes the

trace operation.

In general a single copy of ρ is not sufficient to determine the state of ρ, due to no

quantum measurements being able to determine non-orthogonal states. For example,

in the one qubit case, no single qubit measurment can distinguish |0〉 and |+〉 = |0〉+|1〉√
2

.

However, we can estimate the state of ρ if multiple copies of the unknown state are

available. An arbitrary density matrix over n qubits can be written as [86]:

ρ =
3∑

i0=0

3∑
i1=0

...

3∑
in−1=0

Tr
(
σi00 ⊗ σi11 ⊗ · · · ⊗ σ

in−1

n−1 ρ
)
σi00 ⊗ σi11 ⊗ · · · ⊗ σ

in−1

n−1

2n
, (4.21)

where

σjl =



I for j = 0

X for j = 1

Z for j = 2

Y for j = 3

, ∀l = 0, 1, ..., (n− 1). (4.22)

Here l denotes the qubit index the Pauli operator acts on and j the type of Pauli

operator.

The total number of operators requiring measurement scales exponentially as 4n−
1. The −1 occurs as we do not need to measure the n-fold identity term - Tr (I⊗nρ)

as it always equals +1 [177], and occurs when {il = 0∀l = 0, 1..., n−1}. This method

forms a set of orthonormal matrices, with respect to the Hilbert space and thus ρ can

be expanded as a linear combination of these [86].

If we consider a two-qubit example, then the full density matrix can be estimated

by measuring 42−1 = 15 expectation values. If we determine each using M measure-

ments, then this has a cost of 15M . However, Cotler and Wilczek realized there are

redundancies when measuring certain operators and recently proposed a method that

can improve upon this implementation. When i0 and i1 are non-zero, they can be used

to find the 1-site expectation values. For example Tr
(
σi0=1

0 ⊗ σi1=2
1 ρ

)
≡ tr (X0 ⊗ Z1ρ)

can be used to determine Tr (I0 ⊗ Z1ρ) and tr (X0 ⊗ I1ρ) [177]. Therefore the terms

(i0 = 0, i1 = 1, 2, 3) and (i1 = 1, 2, 3, i1 = 0) do not need to be measured, as they can

be inferred. Overall only 9M measurements are required. In general, for full state

tomography only 3N terms require measurement, which is equivalent to measuring all

combinations of X,Z, Y on each independent qubit. A natural question that arises

from this is whether we can evaluate k-qubit reduced density matrices, rather than
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the full density matrix, more efficiently? We define a k-qubit reduced density matrix

as:

ρk =
1

2k

3∑
i0=0

3∑
i1=0

...

3∑
ik−1=0

tr
(
σi00 ⊗ σi11 ⊗ · · · ⊗ σ

ik−1

k−1 ρk

)
σi00 ⊗ σi11 ⊗ · · · ⊗ σ

ik−1

k−1 . (4.23)

For a general n qubit state, there will be
(
n
k

)
k-body reduced density operators that

require measuring. However, due to overlapping terms Cotler and Wilczek showed

that all k-body reduced density matrices can be determined in eO(k)log2(n) rounds of

measuring. Therefore, to achieve a precision ε requires the number of measurements

scaling as:

M ≈ eO(k)

(
log2(n)

ε

)2

. (4.24)

Their method is known as quantum overlapping tomography (QOT). At a high level,

the method provides a measurement protocol - using hash functions - that defines

which operators to measure in order to determine all k-qubit reduced density matrices

of an n-qubit state efficiently.

Subsequent work, by Bonet-Monroig et al. published just after, devised a binary

partitioning scheme allowing the fermionic 2-RDM (k = 2 and k = 4) to be estimated

to a constant error using O(n2) measurements. Each measurement requires an addi-

tionalO(n) linear depth quantum circuit. The underlying principle is the same, except

a binary strategy is employed rather than hash functions. In general, their approach

requires O
(
3klogk−1(n)

)
unique measurements. For k = 2, the scheme is identical to

QOT; however, for higher k the scaling of QOT is better by polylogarithmic factors

[177, 178].

4.2.2 Variance reduction method

In [172], Rubin et al. use n-representability constraints on the expectation values

of few-fermion operators to construct estimators for the expectation value of the

Hamiltonian with lower variance. The underlying principle is adding operators to

the Hamiltonian that sum to zero and optimizing their coefficients to reduce the

total variance. By using algebraic equalities from the fermionic n-representability

constraints, they can cast this as an optimization problem, where linear programming

techniques can be used to find the new coefficients. The new Hamiltonian constructed

from the original will have the same expectation value, but lower maximum variance.

In a piece of follow-up work, Gonthier et al. utilized this technique and also imple-

mented it in the qubit picture comparing the two approaches [163]. They numerically

found that performance in the qubit picture resulted in lower variances compared to
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the fermionic approach.

4.2.3 Basis rotation technique

The “Basis Rotation Grouping ” strategy [179] aims to reduce the number of separate

terms requiring measurement by using tensor factorization techniques applied to the

second quantized molecular Hamiltonian [179–182] . This allows the Hamiltonian to

be written as:

He = U0

(K−1∑
p=0

gpa
†
pap

)
U †0 +

L−1∑
l=0

Ul

(K−1∑
p=0

K−1∑
q=0

g(l)
pq a
†
papa

†
qaq

)
U †l . (4.25)

Ul are unitary operators that implement a single particle change of orbital basis, which

yields a diagonal operator in the new basis. The key result is 〈a†pap〉 and 〈a†papa†qaq〉 can

be sampled simultaneously because under the Jordan-Wigner transformation these

are diagonal qubit operators. In an experiment, if measurement in the computational

basis is performed then measurement outcomes for all the diagonal qubit operators

can be achieved in L+ 1 = O(K) distinct measurements [179]. The overall reduction

is O(K4) to O(K), at the cost of implementing Ul (after the Ansatz circuit) prior to

measurement. The additional circuit cost to perform these unitary operations scales

linearly as O(K) [179].

Gonthier et al. in [183] compared this measurement reduction strategy against

qubit-wise commutation (introduced in Section 4.2.5.2) and found significant improve-

ments in the number of measurements required.

4.2.4 Shadow methods

Aaronson noted in [184] that a full classical description of a quantum state is unneces-

sary for certain tasks. Instead, it is often enough to predict properties of the quantum

system - i.e find the expectation values of a set of operators. Shadow tomography is

a technique to predict properties of a system without fully characterizing the state.

He showed that with a polynomial number of states, one could predict an exponential

number of target functions. However, the algorithm requires a quantum memory and

exponentially long quantum circuits making it unnameable for NISQ hardware.

Huang et al. developed the classical shadow technique, based on the ideas of

shadow tomography, to allow application on current hardware [185]. The goal is

to efficiently learn a classical representation of a quantum state from N snapshots

(measurements) of the quantum state. Consider an n-qubit quantum state ρ prepared

in a quantum circuit followed by applying a unitary U , the state has been mapped as

ρ 7→ UρU †. Measuring this state in the computational basis gives a binary bitstring

|b〉 ∈ {0, 1}⊗n. If each U is selected randomly from a fixed ensemble, then it is possible
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to efficiently store the reverse operation U † |b〉 〈b|U in classical memory. Huang and

co-workers note that by taking the expectation value over both the choice of U and the

outcome distribution it acts as a quantum channel mapping ρ to its classical snapshot

U † |b〉 〈b|U :

E
[
U † |b〉 〈b|U

]
=M(ρ). (4.26)

This quantum channel M depends on the fixed ensemble of unitaries U . However,

given M it can be classically inverted M−1 to reconstruct a snapshot of the original

quantum state:

ρ̃ = E
[
M−1U † |b〉 〈b|U

]
. (4.27)

By repeating this N times, there will be a collection of inverted snapshots known as

the classical shadow:

S(ρ,N) =

{
ρ̃0 =M−1

(
U †0 |b0〉 〈b0|U0

)
,

ρ̃1 =M−1
(
U †1 |b1〉 〈b1|U1

)
,

, . . . ,

ρ̃N−1 =M−1
(
U †N−1 |bN−1〉 〈bN−1|UN−1

)}
.

(4.28)

The inverted channel is not completely positive and trace-preserving and thus not

physical, but as it is calculated in a classical post-processing step this is not a problem.

Given such a set of classical shadows, the expectation value of an operator Ôl is given

by the empirical averages of independent shadow predictions:

Tr(Ôlρ) =
1

N

N−1∑
i=0

Tr(Ôl · ρ̃i). (4.29)

Due to the fact that classical shadows are random, this produces a random variable

that yields the correct prediction in expectation. This estimator can be affected by

outliers and can be improved by taking the median of means. This simply requires

separating the shadow S(ρ,N) into K equally sized chunks: S(ρ,N/K). The mean of

each S(ρ,K) is then taken (equation 4.29) and the median value over the set is used

as the estimator:

Tr(Ôlρ) = median
{
〈Ôl〉k=0, 〈Ôl〉k=1, . . . , 〈Ôl〉k=N/K

}
(4.30)

and is more robust to outliers. Huang et al. show that the number of samples required
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to achieve precision ε scales as:

M ≥ O
( logN max

i
|Oi|2shadow
ε2

)
, (4.31)

where |Oi|2shadow is the shadow norm that depends on the unitary enable chosen. Two

important ensembles to consider are:

1. random n-qubit Clifford circuits

2. tensor products of random single qubit Clifford circuits

as the stabilizer formalism can be used to efficiently store the classical shadow S(ρ,N)

for both of these ensembles classically. However, the first ensemble requires n2/ log(n)

entangling gates to sample the n-qubit Clifford unitaries making it less NISQ friendly

[186]. We focus our subsequent analysis on the second case, which is equivalent to

measuring each qubit in random Pauli bases. This measurement approach is standard

in many NISQ algorithms performed on hardware to date. A drawback to using this

ensemble, is the shadow norm becomes dependent on the locality k of the observables

that are to be estimated:

|Oi|2shadow ≤ 4k|Oi|2∞, (4.32)

where the spectral norm is defined as |Oi|2∞ = max
0≤i≤n−1

∑n−1
j=0 |aij|, given the absolute

magnitude sum of each column, |Oi|2∞ is the largest value of these. We illustrate the

implication of this with an example. Consider you want to measure the expectation

value of 〈P 〉 = 〈σ0 ⊗ σ1 ⊗ . . .⊗ σn−1〉, where σ are single qubit Pauli matrices (not

including the identity) on an n qubit state. Then one would need an exponentially

large classical shadow (4n) and thus M ≈ O
(

4n

ε2

)
samples to determine 〈P 〉 to precision

ε. In the current form, classical shadows based on Pauli measurements only offers an

advantage for a large number of observables with modest locality.

Since the classical shadow approach was proposed there have been numerous works

to improve the method. A particular focus has been made in the Pauli basis mea-

surement picture; where if one has knowledge of the operator to be measured can

one do better than randomly measuring? Hadfield et al. provide a classically ef-

ficient algorithm for the scenario where knowledge of the operator to measure and

a classical approximation to the underlying quantum state is known a priori [187].

Their proposal is known as Locally-Biased Classical Shadows. Soon after, Huang

and co-workers proposed an alternate strategy using derandomization, which is also

classically tractable but formulated as a greedy process [188]. Numerically derandom-

ization was observed to outperform Locally-Biased Classical Shadows; however, the

optimality of derandomization is unknown due to it being a greedy heuristic.
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4.2.5 Partitioning approaches

For a qubit Hamiltonian written as some linear combination of Pauli operators, it is

always possible to decompose it into groups (or cliques) of simultaneously measurable

operators. We write this as:

H =
∑
i

ciPi =

NC∑
j

Cj =

NC∑
j

( |Cj |∑
k

c
(j)
k P

(j)
k︸ ︷︷ ︸

Cj

)
, (4.33)

where Cj are cliques given as linear combinations of Pauli operators. There are

different ways to form each clique according to properties within a clique. We review

the following cases:

1. cliques composed of pairwise commuting operators

2. cliques composed of pairwise qubit-wise commuting operators

3. cliques composed of pairwise anticommuting operators

in the subsequent subsections and then discuss how the variance of H is affected by

grouping strategies.

4.2.5.1 Commuting cliques

In quantum mechanics, it is known that a set of mutually commuting operators can be

measured simultaneously as they share a common basis. Such a set forms an Abelian

group. From stabilizer theory [189], it is known that an Abelian group S has a set of

independent generators {t0, t1, . . . , tw} that can be efficiently determined [124, 189].

Each independent generator can be mapped to a single Pauli matrix on a distinct

qubit j:

U ti U
† = σj ∈ {X, Y, Z}. (4.34)

For commuting measurements, it is standard to map each generator to a Pauli oper-

ator comprised of only a single non-trivial single qubit Pauli Z matrix via a Clifford

operator Q. The same mapping is performed on the clique of commuting Pauli op-

erators: Ccomm 7→ C ′comm = Q†CcommQ. The expectation value of C ′comm can then be

inferred by some combination of the expectation values in the generating set. These

are a set of single Pauli Z operators.

For example, consider the commuting clique:

Ccomm = ZXZ + Y Y I +XZI + Y Y Z, (4.35)
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where each Pauli operator pairwise commutes. Ccomm has the following generators:

G ≡ {ZXI,XZI, IIZ}. (4.36)

These can be mapped to the following single qubit Z operators:

G′ ≡ {IZI, ZII, IIZ}, (4.37)

via the following Clifford operators U1 = ei
π
4
ZY I = 1√

2
III + 1√

2
i ZY I and U2 =

ei
π
4
Y ZI = 1√

2
III + 1√

2
i Y ZI:

U2U1

(
ZXI

)
U †1U

†
2 = IZI

U2U1

(
XZI

)
U †1U

†
2 = ZII

U2U1

(
IIZ

)
U †1U

†
2 = IIZ.

(4.38)

In a quantum circuit, U1 is performed followed by U2 and then each qubit is measured

in the computational basis (giving: ZII, IZI and IIZ). The transformed Ccomm will

be:

Ccomm 7→ C ′comm = U2U1CcommU
†
1U
†
2

= IZZ + ZZI + ZII + ZZZ
(4.39)

The expectation value of C ′comm can then be determined from the expectation values

of the operators in the generating set G′. Explicitly:

〈IZZ〉 = 〈IZI〉 × 〈IIZ〉

〈ZZI〉 = 〈IZI〉 × 〈ZII〉

〈ZII〉 = 〈ZII〉

〈ZZZ〉 = 〈IZI〉 × 〈ZII〉 × 〈IIZ〉.

(4.40)

In this example, only a single ZZZ measurement was required rather than four, at the

increased circuit cost of implementing each Clifford rotation prior to measurement.

Gokhale et al. in 2019 looked at this strategy in the context of VQE applied to

quantum chemistry [190]. They showed the Clifford operation could be constructed

using O(n2) CNOT gates. This was further improved by Crawford et al. who showed

that for k commuting n-qubit Pauli operators at most would require kn− k(k+ 1)/2

and O(kn/ log k) two-qubit gates.

In general, for n qubits, the maximum number of Pauli operators is 4n−1 excluding

I⊗n. The optimal commuting cover will have 2n + 1 commuting cliques [191, 192].

This indicates that simultaneous measurement can lead to an exponential reduction

in quantum cost compared to naively measuring each term separately. However, for

quantum chemistry the molecular Hamiltonian (equation 2.73) contains O(K4) terms
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rather than 4n − 1 Pauli operators. The improvement in the number measurements

is therefore more complicated.

The number of Pauli operators in a second quantized molecular Hamiltonian

O(K4) was observed to be decreased to O(K3) terms by grouping commuting Pauli

operators [190, 193, 194]. This improvement was based on extrapolation across a set

of molecular examples. In [195], Gokhale and Chong provide an algorithm that proves

this linear-reduction in the number of spin orbitals K is always possible for Hamil-

tonians encoded under the Jordan-Wigner transformation. They demonstrate that

molecular Hamiltonians can always be partitioned into pairwise-commuting families

where each family contains O(K) terms. Next, we summarise the qubit-wise com-

muting approach, which is in a sense just a more strict commuting clique condition.

4.2.5.2 Qubit-wise commuting cliques

In [196], Verteletskyi et al. formalize how to find different terms in the Hamiltonian

that share a tensor product basis (TPB) They introduce the idea of qubit-wise com-

mutation (QWC), where two operators qubit-wise commute if the individual Pauli

matrices on each qubit in each operator pairwise commute. The QWC commutator

is defined as [196]:

[Pi, Pj]qwc =
[ n−1⊗
k=0

σ
(i)
k ,

n−1⊗
k=0

σ
(j)
k

]
qwc

=

0, if [σ
(i)
k , σ

(j)
k ] = 0 ∀k where 0 ≤ k ≤ n− 1

1, otherwise.

(4.41)

For example [X0Z1, I0Z1]qwc = 0 and [X0Z1, Y0Y1]qwc = 1. Note the important differ-

ence between this and the standard commutator. Any QWC pair of operators must

also commute in the standard sense, but if a pair of Pauli operators commute they

do not necessarily QWC, e.g. [X0Z1, Y0Y1] = 0.

For a Hamiltonian partitioned into qubit-wise commuting cliques, a single set of

O(n) one qubit measurements can be used to determine the expectation value of all

the operators in that clique. The true number is simply any qubit index that is acted

on non-trivially. The advantage of this approach over general commuting cliques, is no

extra circuit operations are required prior to measurement. For chemistry problems

under the Bravyi-Kitaev and Jordan-Wigner transformations, numerical simulations

found that the number of qubit-wise commuting groups scaled as O(K4) [196]. This

is the same scaling as the original Hamiltonian (equation 2.73) and means there is

unlikely to be any major measurement reduction obtained from this approach. While

not directly related to the O(K4) Pauli operators in a chemistry Hamiltonian, Yen et

al. in [194] show that there are exponentially more commuting Pauli operators in the

full set of 4n operators than qubit-wise commuting Pauli operators. While we offer no
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proof, we conjuncture this relates to why the qubit-wise commuting strategy does not

result in a linear measurement reduction but the general commuting scenario does.

Again, we address how the cliques are determined in Section 4.2.5.4. Next, we re-

view the unitary partitioning strategy which partitions a Hamiltonian into normalized

anticommuting cliques.

4.2.5.3 Unitary partitioning (anticommuting cliques)

For a Hamiltonian composed as a linear combination of Pauli operators, the expec-

tation value is usually determined by the linear combination of the expectation value

of each Pauli operator Pi, which are each Hermitian (Pi = P †i ,) unitary (PiP
†
i = I)

operators. The goal of unitary partitioning, a technique independently proposed by

Verteletskyi et al. [197] and Zhao et al. [198], is to group Pauli operators into differ-

ent linear combinations where each group is unitary and represent measurable sets.

Note any real linear combination of Pauli operators will be Hermitian and thus a valid

observable. However, general linear combinations of such operators will not be uni-

tary. Both unitary and Hermitian conditions allow the whole group to be determined

at once. We see this if we take the spectral decomposition of a general Hermitian

operator A:

A =
d−1∑
a=0

λa |ψa〉 〈ψa| , (4.42)

where d is the dimension of the space and A acts on orthonormal states |ψa〉. Each

|ψa〉 is an eigenstate of the operator with corresponding real eigenvalue λa. Note for a

unitary operator each |λa| = 1, but can be complex. As the set of eigenvectors {|ψa〉}
form an orthonormal basis there always exists a unitary R that maps this basis to

another: R |ψa〉 = |ea〉 or |ψa〉 = R† |ea〉. The operator A can be written in this basis:

A =
d−1∑
a=0

λa |ψa〉 〈ψa|

=
d∑
a=1

λaR
† |ea〉 〈ea|R

= R†
( d∑

a=1

λa |ea〉 〈ea|
)
R

= R†QR.

(4.43)

The expectation value of A can be found by 〈A〉 = 〈ψ|A |ψ〉 = 〈ψ|R†QR |ψ〉. As

the unitary constraint means the expectation value must be +1 or −1, it can be eval-

uated at once on a quantum computer. This idea underpins the unitary partitioning
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strategy for measurement reduction.

In order to make a general sum of Pauli operators, L =
∑

a caPa, unitary three

conditions must be met [197, 198]:

1. {Pi, Pj} = 0 ∀Pi, Pj ∈ L and i 6= j

2.
∑

j |cj|2 = 1

3. Im
(
c∗jci
)

= 0 ∀ci, cj ∈ L

The first condition requires each Pauli operator in the linear combination to pairwise

anticommute with all the other operators, where {,} is the anticommutator defined

as {A,B} ≡ AB+BA. The second condition ensures the eigenvalues of the resulting

linear combination will have a norm of one. The final condition ensures sum will

be Hermitian, as no imaginary coefficient can be generated, and is a constraint that

ensures the group is a valid observable. If we take a general linear combination of

anticommuting Pauli operators χ =
∑k−1

i=0 ciPi, meeting these conditions then:

χ2 =
k−1∑
i=0

k−1∑
j=0

cicjPiPj

=
k−1∑
i=0
∀j=i

cicjPiPj +
k−1∑
i=0
∀i 6=j

cicjPiPj

=
k−1∑
i=0

c2
iP

2
i +

k−1∑
i>j

(
cicjPiPj + cjciPjPi

)

=
k−1∑
i=0

c2
i I +

k−1∑
i>j

cicj {Pi, Pj}︸ ︷︷ ︸
=0

=
k−1∑
i=0

c2
i I = I

( k−1∑
i=0

c2
i

)
︸ ︷︷ ︸

=1

= I.

(4.44)

Thus proving a normalized linear combination of anticommuting Pauli operators is a

unitary operator. As each coefficient is also real, this operator is also Hermitian.

To implement unitary partitioning, the Hamiltonian is decomposed into normal-
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ized anticommuting cliques. This is concisely written:

H =

O(N4)∑
i

ciPi

=
∑
j

γjC
U
j

=
∑
j

γj

( |CUj |∑
k

{Pa,Pb}=0

∀Pa,Pb∈CUj
a6=b

ck
γj
Pk

)
,

(4.45)

where γj =
(∑CUj

k c2
k

)0.5
and is the normalization factor for each anticommuting

clique CU
j . The superscript U is used to denote the clique is a unitary operator.

Using equation 4.43, we can rewrite each CU
j term yielding:

H =
∑
j

γjC
U
j

=
∑
j

γj
(
R†jAjRj

)
.

(4.46)

In an experiment to evaluate 〈ψ|R†jAjRj |ψ〉, one performs R followed by measuring

Aj. The details on how Rj is constructed and what Aj is will be discussed in detail

in Section 4.3.

Numerical evidence of unitary partitioning applied to different quantum chem-

istry Hamiltonians showed a K-fold reduction in the number of measurable groups as

O(K4) 7→ O(K3) [197]. An algorithm was given by Zhao et al. in [199] that proved

a linear reduction is always possible. Their approach is based on writing the second

quantized Hamiltonian as a linear combination of majorana operators. They show a

linear reduction is always possible by counting the number of anticommuting terms

by orbital index. They note their partitioning scheme is not an optimal solution, but

can always be applied to obtain a linear term reduction in K. A numerical study is

then presented, for different molecular systems, and they show graph based heuristics

can improve the partitioning of the molecular Hamiltonian into anticommuting sets.

Such graph strategies are discussed next.

4.2.5.4 The problem of finding cliques

So far in this Section, we have reviewed different partitioning approaches that split a

Hamiltonian (equation 4.33) into different groups according to some property. Either

all terms within a group will pairwise commute, pairwise qubit-wise commute, or all

pairwise anticommute. This structure allows the problem to be mapped to a graph
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1 2

3 4

5 6

7

G(V,E) = G(7, 10)

V (G) = {1, 2, 3, 4, 5, 6, 7}
E(G) = {(1, 2), (1, 4), (1, 3),

(2, 3), (2, 4), (3, 4),
(2, 5), (5, 6), (5, 7),
(6, 7)}

Figure 4.1: Example graph using standard notation.

problem. Before we discuss how this can be done, we quickly review what a graph is

along with some basic definitions.

A graph G is a collection of vertices V (sometimes called nodes) and edges E. The

following notation is commonly used: G = (V,E), which means a graph that has V

vertices and E edges. It is common notation to use V (G) to represent the set of nodes

and E(G) to represent the set of edges. Figure 4.1 illustrates a simple example.

A clique is defined as follows: A set of vertices C is a clique of the graph G if and

only if C ⊆ V (G) such that a, b ∈ E(G) ∀ a, b ∈ C ∧a 6= b. Unpacking this definition,

a clique is a subset of the vertex set V (G) such that all the distinct vertices in this set

are joined by an edge. Another way to think of this is a clique is a complete subgraph

of G. A graph where all nodes are connected to each other is known as a complete

graph. Figure 4.2 gives two examples.

The degree of a vertex a, is denoted deg(a), which represents the number of vertices

adjacent to a, or equivalently, the number of edges incident to a. The maximum degree

of all vertices in a graph is donated ∆(G) and the minimum by δ(G).

Next, we define what maximum and maximal cliques are, which can often be

1 2

3 4

5 6

7

G(V,E) = G(7, 10)

C0 = {1, 2, 3, 4}

1 2

3 4

5 6

7

C1 = {5, 6, 7}

C0 = {1, 3, 4}
C1 = {2, 5}
C2 = {6, 7}

(a) (b)

Figure 4.2: Example clique covers of the graph in Figure 4.1.
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Clique relation Strategy

Commuting
1. Construct a graph with edges between anticommuting Pauli operators
2. Perform a graph colouring

Qubit-wise commuting
1. Construct a graph with edges between qubit-wise commuting Pauli operators
2. Find the complement graph from the previous step
3. Perform a graph colouring of the graph obtained in step 2

Anticommuting
1. Construct a graph with edges between commuting Pauli operators
2. Perform a graph colouring

Table 4.1: Graph based colouring strategies to partition a Hamiltonian into cliques.
For the qubit-wise commuting clique relation, we note the complement of a graph is
a different graph with the same vertices that have edges between vertices if and only
if they are not adjacent in the original graph.

confused due to their similar names. A clique is maximal if and only if it is not a

proper subgraph of another clique. In other words, a clique is maximal if it cannot be

made larger by adding another vertex/node (which will need to have an edge with all

the nodes within the clique so it still remains a clique). A maximum clique of a graph

is a clique that has the most possible vertices. We note there can be many maximum

cliques within a graph decomposed into cliques. From these definitions, it should be

clear that a maximum clique will be maximal, but not every maximal clique will be

a maximum clique.

The minimum degree vertex of a clique bounds the size of the clique as |C| ≤
δ(GC)− 1, where GC is the graph of the clique. This comes from the definition of a

clique, which requires a complete graph.

The goal of measurement reduction is to reduce the number of measurements

required to obtain an expectation value within precision ε. When partitioning the

Hamiltonian into groups, it seems logical to group them into the fewest simultaneously

measurable parts as possible. This is an instance of the well-known Minimum Clique

Cover problem. This is an NP-hard problem [200]; however, heuristic algorithms can

provide sufficiently good approximate solutions to this problem.

To solve the minimum clique cover problem, first our Hamiltonian must be mapped

onto a graph. To do this each Pauli operator is represented by a vertex (node) and

each edge by a certain commutation property, depending on the type of partitioning

desired. Table 4.1 summarises each scenario.

Finding the minimum clique cover can then be done via different graph algorithms.

Verteletskyi et al. explored different heuristics to solve this problem [196]. Their

study found that the largest first graph colouring algorithm found the best qubit-

wise commuting cliques for a set of different molecular Hamiltonians. Note a graph

colouring searches for the minimum number of colours required to colour the graph,

where no neighbours of a node can have the same colour as the node itself.
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4.2.6 Variance in grouped measurement strategies

As discussed in the previous section, it is possible to partition a Hamiltonian into NC

cliques:

H =
∑
i

ciPi =

NC∑
j

Cj =

NC∑
j

( |Cj |∑
k

c
(j)
k P

(j)
k︸ ︷︷ ︸

Cj

)
, (4.47)

based on certain conditions each clique Cj or linear combination of Pauli opera-

tors must obey. We presented commuting, qubit-wise commuting or anti-commuting

cliques. However, partitioning into the minimum number of measurable sets does not

necessarily minimize the total number of measurements. What is actually needed

is a partitioning that requires the fewest number of measurements to obtain 〈H〉 to

a certain precision. We follow the analysis of Crawford et al. that gives a way to

evaluate the measurement reduction given by a certain partitioning [201]. Using the

same process as Section 4.1.3, we find the measurement requirement for measuring a

grouped set of terms being:

Mg =
1

V ar[H]

(
NC∑
j

√
V ar[Cj]

)2

, (4.48)

where the derivation follows in the same manner as before - up to the penultimate line

of equation 4.19. The previous result of measuring single Pauli operators (equation

4.19) turns out to be a particular instance of this, where each clique has a size of one

and can be written:

Mu =
1

V ar[H]

(
NC∑
j

[ |Ck|−1∑
k=0

|c(j)
k |
√
V ar[P

(j)
k

])2

. (4.49)

The subscripts u and g are used to denote no grouping and grouping respectively.

A natural metric to evaluate the measurement cost of a particular grouping of Pauli

operators is therefore given by the ratio R of these two terms:

R =
Mu

Mg

=

(∑NC
j

[∑|Cj |−1
k=0 |c(j)

k |
√
V ar[P

(j)
k

]
∑NC

j

√
V ar[Cj]

)2

, (4.50)

where the greater the value of R, the better the measurement saving is by assembling

these operators into a particular group. The problem with this metric is it assumes

the variances of all the operators P
(j)
k and Cj must be known, but these are state-

dependent properties. This issue was addressed in [201], where all the variance and

covariance terms are replaced with their expectation value over uniform spherical
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distribution. This gives a new ratio metric R̃:

R̃ =

( (∑NA
j

[∑|Aj |
k |cji |

])
(∑NA

j

[√∑|Aj |
k |cji |2

]))2

. (4.51)

Interestingly, this new measure is now state-independent. This is useful as it can

approximate R, but can be calculated analytically without prior knowledge of the

quantum state being measured. Their proof was restricted to commuting Paul oper-

ators and required utilizing Theorem 3 of [190], which proved E
(
Cov[Pi, Pj]

)
= 0 for

pairwise commuting Pauli operators if the expectation is taken over a uniform distri-

bution over all possible state vectors (the Haar distribution). However, in general the

covariance of commuting operators will not be 0 and at worst will be ±1 [163]. We

therefore find:

V ar[Cj] = V ar[
∑
i

ciPi] =
∑
i

∑
j

Cov[ciPi, cjPj]

=
∑
i

c2
iV ar[Pi] +

∑
i

∑
j
∀j 6=i

cicjCov[Pi, Pj].
(4.52)

The maximum variance for a commuting clique is therefore:

V armax[〈Cj〉] =
∑
i

c2
iV ar[Pi] +

∑
i

∑
j
∀j 6=i

∣∣∣cicj√V ar[Pi]V ar[Pj]
∣∣∣

≤
∑
i

c2
i +

∑
i

∑
j
∀j 6=i

|cicj|
(4.53)

and the lowest variance possible will be:

V armin[〈Cj〉] =
∑
i

c2
iV ar[Pi]−

∑
i

∑
j
∀j 6=i

∣∣∣cicj√V ar[Pi]V ar[Pj]
∣∣∣,

(4.54)

where |
√
V ar[Pi]V ar[Pj]| ≥ Cov[Pi, Pj] has been utilized to bound the covariance

[163]. Therefore, for a clique of commuting operators we can introduce an upper and

lower bound on R:

R =
Mu

Mg

≥ Rmin =

(∑NC
j

[∑|Cj |−1
k=0 |c(j)

k |
√
V ar[P

(j)
k ]

]
∑NC

j

√
V armax[Cj]

)2

, (4.55a)
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R =
Mu

Mg

≤ Rmax =

(∑NC
j

[∑|Cj |−1
k=0 |c(j)

k |
√
V ar[P

(j)
k ]

]
∑NC

j

√
V armin[Cj]

)2

. (4.55b)

The benefit of both Rmin and Rmax is they show the best and worst scenarios Rmin ≤
R ≤ Rmax, whereas the approach in [201] turns out to only model the case when

Cov[Pi, Pj] = 0∀i 6= j. A potentially better way to evaluate equation 4.52 is to use

a quantum state obtained from a classical chemistry method. This can be used to

estimate the variance and covariance terms. and could help find better cliques. We

leave this potential improvement as an avenue for future work.

Next, we provide a new analysis for the anticommuting case. Here we examine the

covariance of two anticommuting Pauli operators: {Pi, Pj} = 0. The amount two ran-

dom variables vary together (co-vary) is measured by their covariance. Consider the

results of random variables x and y, one can obtain a set of M paired measurements:

{(x0, y0),

(x1, y1),

. . . ,

(xM−1, yM−1)}.

(4.56)

A positive covariance indicates that higher than average values of one variable tend to

be paired with higher than average values of the other variable. A negative covariance

indicates that a higher than average value of one variable tends to be paired with lower

than average values of the other. If two random variables are independent, then their

covariance will be zero. However, a covariance of zero does not mean two random

variables are independent, as nonlinear relationships can result in a covariance of

zero.

In the context of measuring a quantum state in the Pauli basis on a quantum

computer, this would be a set of paired single shot samples {sai , sbi |i = 0, 1, . . . , N−1},
where sai , s

b
i ∈ {−1,+1}. Experimentally, each pair is the (single shot) measurement

outcome for Pa followed by the (single shot) measurement outcome for Pb. Taking

simultaneous projective measurements, without re-preparing the quantum state is a

meaningful operation for commuting operators as they share a common eigenbasis.

This is due to the order of measurement not affecting the measurement outcomes,

but the paired samples will be statistically correlated and have a certain covariance.

However, for anticommuting operators this is not the case, as these operators do not

share a common eigenbasis. Projective measurement means the expectation value of

these operators cannot be known simultaneously. We consider the covariance in this

scenario.
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Consider the spectral decomposition of two anticommuting Pauli operators {Pa, Pb}:

Pa = +1 |κ0〉 〈κ0| − 1 |κ1〉 〈κ1| , (4.57)

and

Pb = +1 |Ω0〉 〈Ω0| − 1 |Ω1〉 〈Ω1| , (4.58)

where for Pauli operators:

〈κ0|κ0〉 = 〈κ1|κ1〉 = 〈Ω0|Ω0〉 = 〈Ω1|Ω1〉 = 1, (4.59a)

〈κ0|κ1〉 = 〈Ω0|Ω1〉 = 0, (4.59b)

| 〈κ0|Ω0〉|2 = | 〈κ0|Ω1〉|2 = | 〈κ1|Ω0〉|2 = | 〈κ1|Ω1〉|2 = 0.5. (4.59c)

Without loss of generality, assume Pa is measured first on a general normalized quan-

tum state |ψ〉 = γ |κ0〉+δ |κ1〉. The only possible post-measurement outcomes are |κ0〉
or |κ1〉, with probabilities |γ|2 or |δ|2 respectively. Consider the result of subsequently

measuring Pb. The expectation value in each scenario will be:

〈κ0|Pb |κ0〉 = 〈κ0|
(
|Ω0〉 〈Ω0| − |Ω1〉 〈Ω1|

)
|κ0〉

= 〈κ0|Ω0〉〈Ω0 |κ0〉 − 〈κ0|Ω1〉〈Ω1 |κ0〉

= | 〈κ0|Ω0〉|2 − | 〈κ0|Ω1〉|2

= 0.5︸︷︷︸
P(Ω0|κ0)

− 0.5︸︷︷︸
P(Ω1|κ0)

= 0,

(4.60a)

〈κ1|Pb |κ1〉 = 〈κ1|
(
|Ω0〉 〈Ω0| − |Ω1〉 〈Ω1|

)
|κ1〉

= 〈κ1|Ω0〉〈Ω0 |κ1〉 − 〈κ1|Ω1〉〈Ω1 |κ1〉

= | 〈κ1|Ω0〉|2 − | 〈κ1|Ω1〉|2

= 0.5︸︷︷︸
P(Ω0|κ1)

− 0.5︸︷︷︸
P(Ω1|κ1)

= 0.

(4.60b)

Overall, we find the probabilities of all possible combinations of measurement out-

comes to be:

P
(
Pb = |Ω0〉 |Pa = |κ0〉

)
= P

(
Pb = |Ω1〉 |Pa = |κ0〉

)
= 0.5,

P
(
Pb = |Ω0〉 |Pa = |κ1〉

)
= P

(
Pb = |Ω1〉 |Pa = |κ1〉

)
= 0.5.

(4.61)

This result shows that the probability of obtaining |Ω0〉 or |Ω1〉 is not affected by

the probability of obtaining |κ0〉 or |κ1〉 in the first measurement. The variables are
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therefore statistically independent 3. We find the covariance of Pa and Pb, where

{Pa, Pb} = 0, to be:

Cov[Pa, Pb] = E

[(
pa − 〈Pa〉

)(
pb − 〈Pb〉

)]

= E

[(
papb − pa〈Pb〉 − 〈Pa〉pb + 〈Pa〉〈Pb〉

)]

=

(
E[papb]− E[pa〈Pb〉]− E[〈Pa〉pb] + E[〈Pa〉〈Pb〉]

)
= 〈PaPb〉 − 〈Pa〉〈Pb〉 − 〈Pa〉〈Pb〉+ 〈Pa〉〈Pb〉

= 〈PaPb〉 − 〈Pa〉〈Pb〉

= 〈Pa〉〈Pb〉 − 〈Pa〉〈Pb〉 = 0,

(4.62)

where under independence: 〈PaPb〉 = 〈Pa〉〈Pb〉. Intuitively, this result makes sense.

The projective measurement of the first Pauli operator maximally randomizes the

expectation value of the other Pauli operator and thus the covariance will be zero.

Interestingly, the projective measurement causes the underlying distribution of the

quantum state to change and so subsequent measurements generating paired samples

are not well defined in this setting (for anticommuting operators). This phenomenon

is not present in classical experiments. However, the same statistical analysis can

be done if we just take pairs of subsequent measurements and only do a statistical

analysis on these random variables. We note that our analysis did not have to account

for 〈PaPb〉 not being a valid observable for anticommuting Pauli operators due to the

resulting operator not being Hermitian and so not a valid observable.

Given the covariance of two anticommuting Pauli operators is zero, we find the

variance of a normalized anticommuting clique γjCj to be:

V ar[γjC
U
j ] = γ2

jV ar[C
U
j ] = γ2

jV ar[

|CUj |∑
i

ci
γj
Pi] = γ2

j

|CUj |∑
i

|CUj |∑
k

Cov[
ci
γj
Pi,

ck
γj
Pk]

= γ2
j

|CUj |∑
i

c2
i

γ2
j

V ar[Pi] + γ2
j

|CUj |∑
i

|CUj |∑
k
∀k 6=i

ci
γj

ck
γj
Cov[Pi, Pk]︸ ︷︷ ︸

=0

=

|CUj |∑
i

c2
iV ar[Pi].

(4.63)

3This analysis is strictly for the case of subsequent measurement of anticommuting Pauli opera-
tors.
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We use this to obtain the following R ratio (equation 4.50):

R =
Mu

Mg

=

(∑NC
j

[∑|CUj |−1

k=0

√
V ar[c

(j)
k P

(j)
k ]

]
∑NC

j

√
V ar[γjCU

j ]

)2

=

(∑NC
j

[∑|CUj |−1

k=0 |c(j)
k |
√
V ar[P

(j)
k ]

]
∑NC

j

√∑|CUj |−1

k=0 |c(j)
k |2V ar[P

(j)
k ]

)2

=

(∑NC
j

[∑|CUj |−1

k=0 |x(j)
k |
]

∑NC
j

√∑|CUj |−1

k=0 |x(j)
k |2

)2

=

(∑NC
j ‖~xj‖1∑NC
j ‖~xj‖2

)2

,

(4.64)

where x
(j)
k = |c(j)

k |
√
V ar[P

(j)
k ] and ~xj = (x

(j)
0 , x

(j)
1 , . . . , x

(j)

|CUj |−1
). Minkowski inequality

ensures ‖~xj‖2 ≤ ‖~xj‖1. At worst unitary partitioning will achieve the same number of

measurements as no grouping and will more often achieve an improvement. However,

we can actually bound the improvement in general as:

‖u‖1 =
ν∑
i

|ui| =
ν∑
i

|ui| · 1 ≤
( ν∑

i

|ui|2
)0.5

·
( ν∑

i

12

)0.5

=
√
ν‖u‖2, (4.65)

where the Cauchy-Schwarz inequality has been utilized. Overall, we find ‖u‖2 ≤
‖u‖1 ≤

√
ν‖u‖2 and thus:

1 ≤ R =
Mu

Mg

=

(∑NC
j ‖~xj‖1∑NC
j ‖~xj‖2

)2

≤

(∑NC
j

√
|CU

j | · ‖~xj‖2∑NC
j ‖~xj‖2

)2

. (4.66)

This result gives a recipe for how to maximise the possible measurement reduction ob-

tained by unitary partitioning. The numerator of equation 4.66 should be maximised

and the denominator minimized. However, evaluating each term requires knowledge

of the variance of each Pauli operator. This can either be found precisely on the true

ground state or estimated by a classical approximation to the ground state. Instead,

we can also use the upper bound of each Pauli: V ar[Pi] ≤ 1 to estimate equation 4.66.

In this scenario, R can be maximised by finding anticommuting cliques that have their

1-norm maximised. This strategy turns out to be the same as discussed by Crawford

et al. for commuting cliques [201]. Using this idea as motivation, they introduce a

heuristic algorithm called “sorted insertion” to maximise R. This begins by ordering

the Pauli operators in a Hamiltonian by the absolute magnitude of their coefficients.

85



4.3. UNITARY PARTITIONING STUDY

In this order, a Pauli operator is added to a collection if it commutes with all terms

within that collection. If not, a new collection is created and that operator is inserted

there. During enumeration, each collection is checked in order of their creation. The

algorithm is terminated once the final Pauli operator is inserted into a clique. This

algorithm can be trivially extended to treat anticommuting cliques, where collections

of pairwise anticommuting operators are built rather than commuting operators.

The advantage of “sorted insertion” over graph based approaches is it requires a

sorting algorithm, such as merge sort that scales as O(|H| log(|H|)) [202], followed by

a two-fold loop over Pauli operators in the Hamiltonian scaling as O(|H|2). Whereas,

just constructing the graph of a Hamiltonian has a cost of O(|H|2) without even

considering the cost of subsequent graph colouring algorithms used to find different

cliques.

Yen and Izmaylov in [203] found that the sorted insertion method gave the best

measurement reduction for a given precision on a set of molecular problems defined

on up to 20 qubits.

4.3 Unitary partitioning study

The primary research question during the first half of the Ph.D. was to investigate

the performance of the unitary partitioning measurement reduction strategy applied

to VQE simulating chemistry problems on an actual quantum device. Two differ-

ent circuit implementations of this technique are given in [198]. One is achieved by a

sequence of rotations and the other by a linear combination of unitaries (LCU). Deter-

mining which construction is best and whether unitary partitioning actually reduces

the number of measurements needed by VQE was the goal of the numerical study.

To study the circuit costs we restrict our analysis to quantum circuits composed of

Clifford gates and arbitrary single qubit gates , which is a universal gate set [204].

Continuing from Section 4.2.5.3, once the Hamiltonian has been partitioned into

cliques according to equation 4.46, Rj must be coherently performed in circuit before

measuring Aj. In the following subsections, we show how Rj is can be built by two

different circuit constructions and what the operator Aj being measured is. Without

loss of generality, we show this for a single normalized anticommuting clique CU
j . For

ease of reading, we rewrite the definition of the j-th normalized anticommuting clique:

CU
j =

|CUj |∑
k

{Pa,Pb}=0

∀Pa,Pb∈CUj
a6=b

βkPk,
(4.67)
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where βk are real coefficients and
∑|CUj |

k β2
k = 1.

4.3.1 Sequence of rotations approach

In this subsection, Rj is constructed as a sequence of rotations and follows the work

in [198]. First, we define a set of Hermitian self-inverse operators [198]:

{χ(j)
ωk = iP (j)

ω P
(j)
k | ∀P

(j)
k ∈ C

U
j where k 6= ω and Pω ∈ CU

j }. (4.68)

As every Pl operator in CU
j anticommutes with all other operators in the set by

definition, it is clear from equation 4.68 that χ
(j)
ωk will commute with all {P (j)

l ∈
CU
j ∀ l 6= ω, k} and anticommute with P

(j)
ω and P

(j)
k . This property is the crux of the

sequence of rotations method.

The adjoint rotation of χ
(j)
ωk , for a particular k, can be written [198]:

R
(j)
ωk = e

(
−i

θ
(j)
ωk
2
χ

(j)
ωk

)
, (4.69)

where each χ
(j)
ωk is just a real Pauli operator. The action on a single CU

j is [198]:

R
(j)
ωkC

U
j R

†(j)
ωk =

(
βk cos θωk − βn sin θωk

)
P

(j)
k +(

βk sin θωk + βn cos θωk
)
P (j)
n +

∑
Pl∈CUj
∀l 6=n,k

βlPl. (4.70)

The coefficient of P
(j)
k can be made to go to 0, by setting β

(j)
k cos θ

(j)
ωk = β

(j)
n sin θ

(j)
ωk .

This approach removes the term with index k and increases the coefficient of P
(j)
ω

from β
(j)
ω 7→

√
(β

(j)
ω )2 + (β

(j)
k )2. This process is repeated over all indices excluding

k = ω until only the P
(j)
ω term remains.

The whole procedure can be concisely written using the following operator:

RSj =

|CUj |−1∏
k=0
∀k 6=ω

R
(j)
ωk

(
θωk
)
, (4.71)

which is simply a sequence of rotations. The angle θωk is defined iteratively at each

step of the removal process, as the coefficient of P
(l)
ω increases at each step and thus

must be taken into account. Importantly the correct solution for θωk must be chosen

given the signs of βω and βk [198]. The overall action of this sequence of rotations is:

RSjC
U
j R

†
Sj

= RSj

( |CUj |∑
l

{Pa,Pb}=0

∀Pa,Pb∈CUj
a6=b

δlP
(j)
l

)
R†Sj = P (j)

ω . (4.72)
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In summary, for a Hamiltonian of m terms partitioned into mc cliques we obtain:

H =
m∑
i

ciPi =
mc∑
j

γjC
U
j

=
mc∑
j

γj
(
R†SjP

(j)
ω RSj

)
,

(4.73)

where each CU
j has been rewritten by applying the result of equation 4.72. The

number of terms requiring separate measurement has been reduced from m 7→ mc.

In an experiment, measuring 〈Cj〉 requires first performing RSj coherently in circuit

followed by measuring P
(j)
ω . We cover the circuits required for this next.

4.3.1.1 Sequence of rotations circuit

To implement the sequence of rotations, defined in equation 4.71, each individual

Pauli rotation (equation 4.69) must be done in circuit. Whitfield et al. in [205] show

how such unitary operators can be composed via quantum circuits using standard

gates. An example is provided in Figure 4.3.

The additional circuit requirement to perform a single rotation in the sequence

of rotations method is O
(
2(n − 1)

)
CNOT gates and O(2n) single qubit change of

basis gates. The number of terms in an anticommuting clique is upper bounded as

|CU
j | ≤ 2n + 1 [206] and so the maximum number of single rotations required will

be 2n. Overall, we find that unitary partitioning via a sequence of rotations has an

increased circuit cost scaling as O(n2) single qubit and CNOT gates.

It is possible to optimize these circuits, as many of the change of basis gates and

CNOT gates between each rotation R
(j)
ωk (equation 4.69) can be cancelled. As the order

of rotations in RSj (equation 4.71) is free to choose, the possible gate cancellations can

be maximized by choosing sequential Pauli operators that share as many single qubit

Pauli operators on each individual qubit as possible. Different circuit optimizations

are then possible, for example the Phase Gadget Synthesis method [207], which uses

tools from ZX-calculus to optimize circuits built as sequential rotations generated by

Pauli operators. Furthermore, if the gates are ordered lexicographically then the Pauli

matrices in common between Pauli operators will be maximised [208]. We leave such

improvements to future work.

4.3.2 Linear combination of unitaries approach

In this section, we describe how Rj is constructed via a linear combination of unitaries

(LCU). To motivate the construction, we first summarise the LCU technique proposed

by Childs and Wiebe in 2012 [209].
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0

1

2

3

U = e(−i θ
2
X0Z2Y3) =

H

change to
Z basis

Rx(
π
2
) Rz(θ)

H

undo basis
change

Rx(−π
2
)

e(−i θ
2
Z0Z2Z3)

Figure 4.3: Circuit construction to perform rotation generated by a Pauli operator
P , in this case P = XIZY .

4.3.2.1 The LCU technique

Consider any complex operator A given as some linear combination of d unitary

operators [210]:

A =
d−1∑
i=0

αiUi, ‖A‖ ≤
d−1∑
i=0

(
|αi| · ‖Ui‖︸︷︷︸

=1

)
=

d−1∑
i=0

|αi| = ‖A‖1, (4.74)

where the upper bound on the spectral norm of A is the l1 norm. Without loss of

generality, we can make all |αi| > 0 by absorbing the complex phases into the unitaries

Uj. Given a list of αi and each Ui, which are assumed to be easy to implement as

controlled operations on a quantum device, the block encoding can be constructed

using the oracles [210]:

G =
d−1∑
i=0

√
αi
‖A‖1

|i〉 〈0|a + . . . =


(

α0

‖A‖1

)1/2 · . . .(
α1

‖A‖1

)1/2 · . . .
...

. . . . . .(αd−1

‖A‖1

)1/2 · . . .

 (4.75)

and

Uselect =
d−1∑
i=0

(
|i〉 〈i|a ⊗ Ui

)
. (4.76)

Here subscript s denotes the system register and a the ancilla register. The number

of ancilla qubits required will be na = dlog2(d)e. In the block encoding literature G

and Uselect are often called the “Prepare” and “Select” oracles [210].

The “Prepare” oracle is a unitary that prepares the state |G〉 =
∑d−1

i=0

√
αi
‖A‖1 |i〉

from the all-zero state on the ancilla register - i.e. |0̄〉 7→ |G〉a. This is why in equation

4.75 only the first column is defined. The other columns can be anything so long as

they are orthogonal and G remains unitary. This means there is a lot of choice in
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|0〉a

|0〉a

...

|0〉a

|ψ〉s
ns

G

U0 U1 U2 U3

· · ·

· · ·

· · ·

· · · Ud−1

G†
...

Uselect

Figure 4.4: General circuit to block encode an operator via a linear combina-
tion of unitaries (equation 4.80). For unitary partitioning, this circuit gives a
(‖ ~αq(j)‖1, dlog2(|CU

j | − 1)e, 0)-Rj block encoding. Here Uselect is defined in equation

4.93, where each P
(j)
i = Ui. Equation 4.92 defines G for a particular anticommuting

clique j.

how to construct this operator. A practical note is that if one finds the quantum

circuit to do |0̄〉a 7→ |G〉a, then the action of the circuit on the other basis states

are automatically accounted for and the whole of G will be defined. This requires

arbitrary state preparation, which will be discussed later in Section 4.3.2.3.

We can check these oracles give the correct block encoding, by the following proof

[210]:

[
〈G|a ⊗ Is

]
Uselect

[
|G〉a ⊗ Is

]
=

[
〈G|a ⊗ Is

]( d−1∑
i=0

√
αi
‖A‖1

|i〉 ⊗ Ui

)

=

(
d−1∑
k=0

√
αk
‖A‖1

〈k| ⊗ Is

)(
d−1∑
i=0

√
αi
‖A‖1

|i〉 ⊗ Ui

)

=
d−1∑
i=0

d−1∑
k=0

√
αiαk
‖A‖1

〈k| i〉 ⊗ Ui

=
1

‖A‖1

d−1∑
i=0

αiUi.

(4.77)

Figure 4.4 shows how this block encoding is achieved via a quantum circuit. Step-
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ping through each operation, we observe the following action:

G†aUselectGa |0̄〉a |ψ〉s = G†aUselect |G〉a |ψ〉s

= G†a

[
|G〉a

A

‖A‖1

|ψ〉s + |G⊥〉a

√
1− ‖ A

‖A‖1

|ψ〉s ‖2 |ψ〉s

]

= |0̄〉a
A

‖A‖1

|ψ〉s + |⊥〉a

√
1− ‖ A

‖A‖1

|ψ〉s ‖2 |ψ〉s .

(4.78)

Therefore, by post-selecting on the all-zero state in the ancilla register |0̄〉a, the system

register will be projected onto A
‖A‖1 |ψ〉s and A was successfully applied to the quantum

state |ψ〉s. If any other state is measured in the ancilla register, then the quantum

state will be projected into the wrong part of the Hilbert space and A will not have

been applied. This method therefore gives a probabilistic implementation of A, where

the probability of success is given by:

Psucesss = 〈ψ|s 〈0̄|a
A†

‖A‖1

A

‖A‖1

|ψ〉a |0̄〉a

=

(
1

‖A‖1

)2

〈ψ|sA
†A |ψ〉s .

(4.79)

As A is usually not unitary, A†A does not necessarily result in the identity matrix.

The probability of success therefore depends on both ‖A‖1 and |ψ〉s. For example,

consider the case of A = α0U0 + α1U1 = 1
2
I + 1

2
Z = |0〉 〈0|. This matrix defines

the projector onto the all-zero state and is a non-unitary operation. The probability

of success when block encoding this matrix will depend heavily on whether |ψ〉s has

overlap with |0〉s. If |ψ〉s = |1〉s, then the probability of success would be zero. Finally,

we note that if A is unitary then the probability of success will just be ‖A‖−2
1 .

An alternate way to describe LCU is to see that the oracle G†UG encodes the

matrix A (does not have to be unitary) in the top left block of a larger matrix B that

is unitary:

B = G†UselectG =

[
A
‖A‖1 ∗
∗ ∗

]
, (4.80)

where ∗ denotes different matrices, each determined by the block encoding method.

In this diagram, A
‖A‖1 is selected by the projector |0̄〉 〈0̄|a. The reason why the block

encoding B has A divided by ‖A‖1 is due to unitary matrices requiring eigenvalues

in the form of eiθ. The spectral norm of a matrix is the maximum singular value of

a matrix. As the spectral norm must be less than the 1-norm, normalizing by ‖A‖1

ensures that B can be unitary (now dependent on ∗ parts).
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A final note on notation. When a matrix, e.g. A, is block encoded using U

we usually say “the unitary U gives an (α, k, ε)-block encoding of A”. Here α is a

normalization constant applied to the matrix to be block encoded. k is the extra

ancilla qubits required to perform the block encoding. For LCU this depends on the

number of operators in the linear combination of unitaries (equation 4.74) and scales

logarithmically as k = dlog2(|A|)e, where |A| is the number of operators in the linear

combination. Finally, ε is the error of the block encoding and is determined by [211]:

ε = ‖A− α
(
〈0̄|aB |0̄〉a

)
‖. (4.81)

In this work, we focus on exact block encodings - i.e ε = 0. Approximate block

encoding strategies are also possible [212, 213], but a discussion is outside the scope

of this thesis.

4.3.2.2 Unitary partitioning via LCU

To construct Rj via LCU, we first need to manipulate each of the mc anticommuting

sets (CU
j ) that the qubit Hamiltonian was partitioned into (equation 4.45). As before,

a particular Pauli operator Pω ∈ Sl in each set is selected to be reduced to. Again this

will be denoted by the index ω and written as P
(j)
ω , where j indexes the particular

clique. To begin the construction as a linear combination of Pauli operators, we first

define the operator CU
j\ω:

CU
j\ω =

|CUj |−1∑
∀k 6=ω

δkPk, (4.82a)

where

|CUj |−1∑
∀k 6=ω

δ2
k = 1. (4.82b)

CU
j\ω is simply a normalized anticommuting clique, where the β

(j)
w P

(j)
w operator has

been removed from CU
j followed by a normalization. Taking each normalised clique

CU
j , we perform the following steps. First, we rewrite CU

j (equation 4.67) with the

term we are reducing to (β
(j)
w P

(j)
w ) outside the sum:

CU
j = β(j)

ω P (j)
ω +

|CU
j\ω |−2∑
l=0
∀l 6=ω

β
(j)
l P

(j)
l . (4.83)
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Then re-normalising:

CU
j = β(j)

ω P (j)
ω + Ωj

|CUj |−2∑
l=0
∀l 6=ω

δ
(j)
l P

(j)
l , (4.84a)

where

|CUj |−2∑
l=0
∀l 6=ω

δ
2(j)
l = 1, (4.84b)

and β
(j)
l = Ωjδ

(j)
l , (4.84c)

we can substitute equation 4.82a into equation 4.84a:

CU
j = β(j)

ω P (j)
ω + ΩjC

U
j\ω, (4.85)

where (β
(j)
ω )2 + Ω2

j = 1. In this form, we can use the trigonometric identity cos2(θ) +

sin2(θ) = 1 to define the following operator:

H(j)
ω = cos(φ(j)

ω )P (j)
ω + sin(φ(j)

ω )CU
j\ω. (4.86)

Comparing equations 4.85 and 4.86 it is clear that cos(φ
(j)
ω ) = β

(j)
ω or sin(φ

(j)
ω ) = Ωj.

Next using the definition of H
(j)
ω in equation 4.86 it was shown in [198] that one can

consider rotations of H
(j)
ω around an axis that is Hilbert-Schmidt orthogonal to both

CU
j\ω (equation 4.82a) and P

(j)
ω :

χ(j) =
i

2

[
CU
j\ω, P

(j)
ω

]
= i

|CUj |−2∑
k=0
∀k 6=ω

δ
(j)
k P

(j)
k P (j)

ω . (4.87)

χ(j) anticommutes with H
(j)
ω , is self-inverse and has the following action [198]:

χ(j)H(j)
w = i

(
− sinφ(j)

ω P (j)
ω + cosφ(j)

ω CU
j\ω
)
. (4.88)

This defines the rotation:
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RLCU
j = e

(
−iα

(j)

2
χ(j)
)

= cos
(α(l)

2

)
I − i sin

(α(j)

2

)
χ(j) (4.89a)

= cos
(α(j)

2

)
I − i sin

(α(j)

2

)(
i

|CUj |−2∑
k=0
∀k 6=ω

δ
(j)
k P

(j)
k P (j)

ω

)
(4.89b)

= cos
(α(j)

2

)
I + sin

(α(j)

2

) |CUj |−2∑
k=0
∀k 6=ω

δ
(j)
k P

(j)
kω , (4.89c)

where P
(j)
k P

(j)
ω = P

(j)
kω . Note the first line of equation 4.89 stems from χ(j) being

a self-inverse Hermitian operator (equation 4.44). Importantly P
(j)
kω will be another

tensor product of Pauli operators, as products of n-fold Pauli operators will yield

another operator in the Pauli group. Note the multiplication of anticommuting Pauli

operators results in each P
(j)
kω having a ±i phase. The adjoint action of this rotation

on H
(j)
ω is:

RLCU
j H(j)

ω R† LCUj = sin
(
φ(j)
ω − θ(j)

)
CU
j\ω+

cos
(
φ(j)
ω − θ(j)

)
P (j)
ω .

(4.90)

By setting θ(j) = φ
(j)
ω , the coefficient of CU

j\ω will go to zero and we achieve the intended

result of RjC
U
j R

†
j = P

(j)
ω . To build Rj by the LCU method, we use its definition in

equation 4.89c. In practice, it is easier to re-write equation 4.89 using the fact that

all Pkω and I are in the Pauli group. The terms can thus be combined into a single

sum:

RLCU
j =α(j)I +

|CUj |−2∑
k=0
∀k 6=ω

α
(j)
k P

(j)
kω (4.91a)

=

|CUj |−1∑
q=0
∀q 6=ω

α(j)
q P (j)

q . (4.91b)

Note all αq(j) must be real and positive for the LCU technique. This is achieved by

absorbing negative signs and imaginary phases into each P
(j)
kω , hence these operators

are n-fold tensor Pauli operators up to a complex phase. When written in this form,

it is easy to define the operators G (equation 4.75) and ULCU (equation 4.76):
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G(j) =

|CUj |−1∑
q=0

√
α

(j)
q

‖ ~αq(j)‖1

|q〉a 〈0|a + . . . =



( α
(j)
0

‖ ~αq(j)‖1

)1/2 · . . .( α
(j)
1

‖ ~αq(j)‖1

)1/2 · . . .
...

. . . . . .(α(j)

|CU
j
|−1

‖ ~αq(j)‖1

)1/2 · . . .


, (4.92)

U
(j)
LCU =

|CUj |−1∑
q=0

|q〉a 〈q|a ⊗ P
(j)
q , (4.93)

that are required to perform Rj as a LCU. Overall the operator is encoded as:

〈0̄|aG
(j)†U

(j)
LCUG

(j) |0̄〉a = 〈G(j)|a U
(j)
LCU |G

(j)〉a =
RLCU
j

‖ ~αq‖1

. (4.94)

As RLCU
j is unitary, the probability of success is given by the square of the 1-norm of

RLCU
j (equation 4.79). Note that the 1-norm is defined as ‖ ~αq(j)‖1 =

∑|CUj |−1

q=0 |α(j)
q |.

Figure 4.4 shows the circuit construction to encode Rj via a linear combination of

unitaries. Next, we need to consider how G and Uselect are constructed.

4.3.2.3 Preparation circuit

The prepare operator (equation 4.92) requires being able to generate any real quantum

state, on an ancilla register from the all-zero state |0̄〉a. There are many different

proposals on how to prepare arbitrary quantum states [214–217]. We discuss the

approach given in [215–217], which leverages quantum multiplexors.

Quantum multiplexors were first used to describe circuit blocks implementing

quantum conditional (if -then-else) circuits [216, 218]. If true, perform action in

the then clause and if false perform the action in the else clause. At the opera-

tional level this may be performed by first processing the two clauses in parallel and

then multiplexing the output. This is a common primitive in classical computing.

The quantum analogue acts in a similar way, but generates linear combinations of

if -else-then outcomes [216].

Shende et al. in [216] show how any normalized quantum state can be efficiently

prepared on a quantum computer. The intuition of their approaches comes from

recursively disentangling the least significant bit. To understand this, first we need

to consider an arbitrary two-dimensional complex vector:
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|ψn+1〉
n

Rz(−~φ) Ry(−~θ)

|ψn〉

|0〉

Figure 4.5: Quantum circuit to disentangle an n + 1 qubit state ( equation 4.100).
Figure 4.6b defines the controls of a multiplexor gate and an efficient realisation of
the gate is given in Figure 4.6c [216, 219].

|ψ〉 =

[
α

β

]
= α |0〉+ β |1〉

= r
[α
r
|0〉+

β

r
|1〉
]

= r
[

cos(θ/2)eit |0〉+ sin(θ/2)eik |0〉
]

= re
i
2
te

i
2
k
[

cos(θ/2)e
i
2

(t−k) |0〉+ sin(θ/2)e−
i
2

(t−k) |0〉
]

= re
i
2

(t+k)
[

cos(θ/2)e−
i
2

(k−t) |0〉+ sin(θ/2)e+ i
2

(k−t) |0〉
]

= re
i
2
ω
[

cos(θ/2)e−
i
2
φ |0〉+ sin(θ/2)e+ i

2
φ |0〉

]
,

(4.95)

where:

r =
√
|α|2 + |β|2, (4.96a)

t = arctan 2

(
Im(α), Re(α)

)
, (4.96b)

k = arctan 2

(
Im(β), Re(β)

)
, (4.96c)

θ = 2× arccos
(
|α|
r

)
, (4.96d)

φ = k − t, (4.96e)

ω = t+ k. (4.96f)

Here r is a normalization constant and e
i
2
ω a global phase. The constant factor re

i
2
ω

is undetectable and thus we only need to consider the variables θ and φ [216]. We

can rotate such a 2D complex vector |ψ〉 as follows [216]:

Ry(−θ)Rz(−φ) |ψ〉 = rei
t
2 |0〉 . (4.97)

Theorem 9 in [216] proves that equation 4.97 can be used to disentangle the least

significant of an arbitrary quantum state. Given any (n + 1)-qubit state, this can
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|0〉

|0〉

|0〉

|0〉

Ry(α)

Ry( ~β2)

Ry(~γ4)

Ry(~δ8)

∑15
i=0 ηi |i〉

(a)

Rσ(~θ)

=

Rσ(θ0) Rσ(θ1) Rσ(θ2) Rσ(θ3) Rσ(θ4) Rσ(θ5) Rσ(θ6) Rσ(θ7)

(b)

Rσ(φ0) Rσ(φ1) Rσ(φ2) Rσ(φ3) Rσ(φ4) Rσ(φ5) Rσ(φ6) Rσ(φ7)

(c)

Figure 4.6: (a) Quantum circuit to prepare any real amplitude four-qubit state, (b)
uniformly controlled Pauli rotation (σ ∈ {X, Y, Z}) defined as a multiplexor, (c)
Efficient circuit implementation of uniformly controlled multiplexor rotation [215].
The subscript numbers in Figure 4.6a indicate the size of the vector of angles.

be disentangled by the quantum circuit illustrated in Figure 4.5. A 2n+1 element

vector describing |ψn+1〉 is divided into two 2n sized blocks. Each is interpreted as

two-dimensional complex vector, formally:

|ψn+1〉 =
2n+1−1∑
i=0

αi |i〉 =
2n−1∑
i=0

[
|i〉 ⊗

(
α2i |0〉+ α2(i+1) |1〉

)]
=

2n−1∑
i=0

[
|i〉︸︷︷︸

n qubits

⊗ |ρi〉︸︷︷︸
1 qubit

]
.

(4.98)

The angles to disentangle the least significant bit (furthest right) are then found. Each

single qubit state {|ρi〉 |i = 0, 1, . . . , 2n − 1} is rotated onto |0〉 by an appropriate θi

and φi (equation 4.97). This can be done simultaneously by multiplexing the following

unitary:
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U =


Ry(−θ0)Rz(−φ0) 0 · · · 0

0 Ry(−θ1)Rz(−φ1) · · · 0
...

...
. . .

...

0 0 . . . Ry(−θ2n−1)Rz(−φ2n−1)

 , (4.99)

that has the following action:

U |ψn+1〉 =


r0e

iω0

r1e
iω1

...

r2n−1e
iω2n−1

⊗ |0〉 = |ψn〉 ⊗ |0〉 . (4.100)

Each Rz and Ry operation in U can be performed in parallel via a quantum mul-

tiplexor. Figure 4.5 illustrates the circuit template which achieves this. A general

rotation multiplexor can be efficiently implemented in parallel via the circuit illus-

trated in Figure 4.6c The angles required for each multiplexor are obtained by solving

a single matrix-vector problem (see equation 4 in [219]).

For a general state |ψ〉, these steps can be called recursively on the least significant

bit until only a global phase remains. Combining all these steps into a single unitary V

and taking the conjugate transpose of the operator will therefore implement V † |0̄〉 =

|ψ〉. To obtain the circuit for V † this involves reversing the circuit for V and negating

all the angles in each rotation gate.

The linear combination of unitaries technique only requires a real quantum state

to be prepared and so the Rz multiplexor is not required. In [216, 217], it is shown

that any real quantum state can be loaded on a quantum device via a sequence of

sequential control Ry operations controlled by an increasing number of qubits. A four-

qubit example is given in Figure 4.6a. Each nc-control multiplexor can be decomposed

into 2nc CNOT gates and 2nc single qubit Ry rotations [215, 216]. Figure 4.6b shows

an example of a Ry multiplexor with three control qubits (nc = 3). Any real n

quantum state (2n real amplitudes) can thus be prepared on a quantum computer

with the number of single and CNOT gates scaling as [215, 216]:

# single qubit gates =
n∑
i=0

2i = 2n+1 − 1 =⇒ O(2n), (4.101a)

# CNOT gates =
n∑
i=1

2i = 2n+1 − 2 =⇒ O(2n). (4.101b)

For unitary partitioning, as the size of RLCU
j scales with the size of the anti-
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n

iZ
=

n

Rz(−π)
=

n

Rz(−π
2
) X Rz(+

π
2
) X

(a)

n

−Z
=

n

X Z X

(b)

Figure 4.7: Circuit primitives to implement imaginary (a) and negative (b) n-control
single quit Pauli matrices using standard gates [220]. Equation 4.102a and equation
4.102b give the logic behind these operations.

commuting clique, explicitly: |CU
j | − 1 (equation 4.92), the number of ancilla qubits

required will scale as log2d|CU
j | − 1e or O(log2(|CU

j |). As the number of anticom-

muting operators on ns qubits must be less than or equal to 2ns + 1, the number

of prepare (ancillary) qubits required will scale as O
(

log2(ns)
)
. This is the qubit

register that requires being able to implement arbitrary state preparation on. Due

to the number of prepare qubits required scaling logarithmically with the number of

system qubits, the gate cost for the prepare oracle will have a circuit cost scaling as

O(2log2(ns)) = O(ns) single qubit and CNOT gates. This linear gate cost in system

qubits makes the technique practical for near-term use.

4.3.2.4 Circuit construction of select operator in unitary partitioning

To implement the select oracle (equation 4.93) via quantum circuits, we need to be

able to implement control Pauli gates that have the phase and sign encoded at the

operator level. To do this, we can utilize commutation properties within the Pauli

group. For the single qubit Pauli matrices, we utilize the following relations:

−σk = σjσkσj ∀σk 6= σj and σk, σj ∈ {X, Y, Z}, (4.102a)

Rσk(∓π) = e∓i
π
2
σk = ±iσk where σk ∈ {X, Y, Z}. (4.102b)

Figure 4.7 shows how to implement these rules within quantum circuits. For now we

leave this topic, but in Section 4.3.4 we revisit these circuits and show how they can

be improved upon. Next, we report our numerical study on unitary partitioning.

4.3.3 Numerical study

The unitary partitioning measurement reduction is dependent on the problem Hamil-

tonian. To assess the performance, we applied the method to two chemical Hamilto-
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(a) Graph of qubit Hamiltonian of H2

with commuting Pauli operators joined
by edges

(b) Graph colouring of Graph (a), each
colour represents a clique.

Figure 4.8: Illustration of graph approach to finding anticommuting sets of Pi opera-
tors.

nians. This section summarises these results, which have been published in [221].

4.3.3.1 Method

We consider Hamiltonians for H2 and LiH molecules employing the STO-3G and

STO-6G basis sets respectively. These were calculated using Openfermion-PySCF

and converted into the qubit Hamiltonian using the Bravyi-Kitaev transformation in

OpenFermion [222–224]. The raw details on each Hamiltonian may be found online

in the Supporting Material of the publication in [221].

NetworkX [225] was used to partition each molecular Hamiltonian, described as a

linear combination of Pauli operators, into, anticommuting sets CU
j . First, a graph of

the qubit Hamiltonian was built, where each node is a term in the Hamiltonian. Next

edges are put between nodes on the graph that commute. A graph colouring was then

performed. The “largest first” colouring strategy in NetworkX was used [225, 226].

Each unique colour represents an anticommuting clique. Fig. 4.8 shows the method

applied to H2.

The input state |ψ(~θ)〉 for all calculations was the exact full configuration interac-

tion (FCI) ground state, found by diagonalizing the Hamiltonian. As our aim was to

investigate different implementations of unitary partitioning, this meant the Ansatz

optimization step in VQE was not required.

For the simulations performed on IBM’s ibmqx2 quantum processing unit (QPU),

a measurement error mitigation strategy available in Qiskit was utilized and is a

simple inversion procedure [227]. The quantum circuits required were generated by the

qiskit.ignis complete meas cal method and executed alongside each separate ibmqx2

experiment, with the maximum number of shots (8192). This sampling cost was

not included in the number of calls to quantum device. The CompleteMeasFitter
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(a) (b) (c)

Figure 4.9: Probability density functions of single-shot VQE estimates of the ground
state energy ej of H2. A bin is given to every possible energy outcome. Note EFCI =
−1.13728 Ha. The raw results from ibmqx2 are given in (a), (b) shows these results
with measurement error mitigation applied and (c) gives results from simulation on a
noise-free QPU.

method in qiskit.ignis [228] was used to generate the calibration matrix required for

measurement error mitigation [227, 228].

We denote the number of terms in the original Hamiltonian by to and tp for

the unitary partitioned Hamiltonian. For each implementation, we fix M the total

number of calls to the QPU. This can be thought of as a measurement budget. The

total number of ej samples - single shot estimates of all n-fold Pauli operators in the

Hamiltonian - is No = M/to for the original Hamiltonian and Np = M/tp for the

partitioned Hamiltonian. Clearly, because unitary partitioning reduces the number

of terms in Hq, more energy samples are obtained for a fixed M .

4.3.3.2 Results

For a given preparation of the true ground state of H2, we compare both implemen-

tations of measurement reduction by unitary partitioning against a standard VQE

calculation on IBM’s open access quantum device (ibmq 5 Yorktown - ibmqx2) and

Qiskit’s qasm simulator [228]. Fig. 4.9 shows the distribution of single-shot energy

estimates of all three techniques applied to molecular hydrogen. The average energy

is given by 〈E〉 = 1
N

∑N−1
j=0 ej. To compare each method the measurement budget was

fixed to M = 1.2663× 106. A calibration matrix method available in Qiskit was used

to mitigate measurement errors by amending the raw outputs from ibmqx2.

The qubit Hamiltonian for H2 has five terms, which is reduced to three by unitary

partitioning, not including the identity term. The number of energy estimates ej

obtained was 253260 for standard VQE and 5/3 this for unitary partitioning by the

sequence of rotations method. This is because the smaller number of terms allowed a

correspondingly larger number of samples to be taken for a fixed M . The total number

of ej samples from ibmqx2 for these techniques was reduced to 253074 and 421951 after

measurement error mitigation was applied. The LCU approach to unitary partitioning

is probabilistic and requires post-selection on the all-zero state of the ancilla register.
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Figure 4.10: Probability density function of single-shot VQE estimates of the ground
state energy ej of LiH, from a noise-free QPU simulation. The number of bins was
set to 2500 and the centre of each plotted. Note EFCI = −7.97118 Ha.

After post-selection, our simulation of unitary partitioning as a LCU on ibmqx2 gave

333407 raw ej samples and 332763 ej samples after measurement error mitigation was

applied to the raw output. Our emulation of this method on a noise-free quantum

processing unit (QPU) gave 336390 ej samples after post-selection. The theoretical

maximum possible number of samples for LCU would be the same as the sequence of

rotations method if all samples obtained were successful.

Figure 4.9 summarises the results of the H2 study. The reason a normal distribu-

tion is not obtained is due to the number of terms in the qubit Hamiltonian being so

few. At most only 32 distinct values of ej are possible for standard VQE and 8 under

unitary partitioning, and so we do not expect the central limit argument to apply

here.

To investigate the distribution of energies obtained from each method in more de-

tail, we simulated the larger problem of LiH using Qiskit’s statevector simulator [228].

Fig. 4.10 summarizes the results. Again, each data point is an energy estimate found

from the weighted measurement outcomes of a single-shot VQE run. The standard

qubit Hamiltonian for this problem is made up of 630 terms, which after applying

unitary partitioning is then composed of 102 terms. These counts do not include the

identity term. The measurement budget was fixed at M = 1.018521× 109. The total

number of energy estimates ej for standard VQE, the sequence of rotations and the

LCU methods after post-selection were 1616700, 9985500 and 1447349 respectively.

We performed the Kolmogorov-Smirnov [229] and Shapiro-Wilk tests [230] on the

data in Fig. 4.10 to check for normality. The p-values obtained in all cases were

smaller than 0.05, and thus we could not assume a normal distribution. This may be
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caused by insufficient samples allowing convergence to the central limit or the problem

size still being too small. To estimate the statistics of the true distribution we thus

employed bootstrap resampling [231].

4.3.3.3 Discussion

In our results, for a fixed measurement budget M we obtain a set of independent

identically distributed random energy samples {e1, e2, ..., eN}. The standard deviation

of this sample σe converges to the true standard deviation as the number of samples

increases. As the number of samples increases, the error on the sample mean decreases.

The standard error of the mean (SEM) is defined:

SEM = σe/
√
N, (4.103)

for N energy samples and is the square root of equation 4.9. For a fixed measurement

budget M , if the SEM is reduced by unitary partitioning over standard VQE then

the method has led to an improvement.

To benchmark each method, we compare σe and SEM of the ground state energies

samples. 95% confidence intervals (CI) were calculated using bootstrapping with

10, 000 resamples with replacement. The full statistical analysis is given in Table 4.2.

Qualitatively, the noise-free LiH simulation results in Fig. 4.10 show that VQE

with unitary partitioning applied as either a LCU or a sequence of rotations give a

similar distribution of energies compared to standard VQE.

In the original work these techniques were proposed, it was shown that the variance

of the different methods should be similar [198]. We obverse this on both the QPU

emulator and quantum device. Quantitatively, the σe of ground state energy estimates

of LiH for each method were very similar, with the largest difference being 4.8 mHa.

We see this in Figure 4.10, with each distribution looking very similar. However, it is

important to note the number of data points in each plot is significantly different from

one another and therefore the SEM is different for each implementation. Whereas,

for the noise-free simulation of H2 (Fig. 4.9c), the sample standard deviation of ej

from VQE with unitary partitioning applied were an order of magnitude lower than

standard VQE. We expect this is due to the small number of distinct ej outcomes for

this specific problem under unitary partitioning.

We calculated the R-score (equation 4.64) for each system and obtained a value

of 1.99 and 3.11 for H2 and LiH respectively. To do this the variance of each Pauli

operator was required. These were calculated analytically on classical hardware with

reference to the FCI ground state (equation 4.8). Unitary partitioning is therefore

expected to give a measurement reduction by a factor of 2 and 3 respectively. For the

sequence of rotations method, our noiseless simulations show that the SEM of both
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Molecule Method Backend N 〈E〉 / Ha 〈E〉 95%CI / Ha σe / Ha σe 95%CI / Ha SEM / Ha SEM 95%CI / Ha

H2 LCU ibmqx2 - mit 332763 -1.021 [-1.022, -1.020] 3.166e-01 [3.150e-01, 3.182e-01] 5.489e-04 [5.462e-04, 5.516e-04]
H2 SeqRot ibmqx2 - mit 421951 -1.025 [-1.026, -1.024] 3.198e-01 [3.184e-01, 3.213e-01] 4.924e-04 [4.902e-04, 4.946e-04]
H2 standard ibmqx2 - mit 253074 -1.038 [-1.039, -1.037] 3.424e-01 [3.405e-01, 3.442e-01] 6.806e-04 [6.770e-04, 6.843e-04]
H2 LCU ibmqx2 - raw 333407 -0.545 [-0.548, -0.543] 6.529e-01 [6.513e-01, 6.544e-01] 1.131e-03 [1.128e-03, 1.133e-03]
H2 SeqRot ibmqx2 - raw 422100 -0.559 [-0.561 -0.557] 6.503e-01 [6.489e-01, 6.516e-01] 1.001e-03 [9.987e-04, 1.003e-03]
H2 standard ibmqx2 - raw 253260 -0.765 [-0.767, -0.763] 5.663e-01 [5.644e-01, 5.681e-01] 1.125e-03 [1.122e-03, 1.129e-03]
H2 LCU simulator 336390 -1.137 [-1.137, -1.137] 1.566e-02 [1.431e-02, 1.708e-02] 2.699e-05 [2.469e-05, 2.939e-05]
H2 SeqRot simulator 422100 -1.137 [-1.137, -1.137] 1.629e-02 [1.508e-02, 1.753e-02] 2.507e-05 [2.315e-05, 2.697e-05]
H2 standard simulator 253260 -1.137 [-1.138, -1.136] 1.775e-01 [1.763e-01, 1.787e-01] 3.528e-04 [3.504e-04, 3.551e-04]
LiH LCU simulator 1447349 -7.972 [-7.972, -7.971] 2.727e-01 [2.721e-01, 2.732e-01] 2.267e-04 [2.262e-04, 2.271e-04]
LiH SeqRot simulator 9985500 -7.971 [-7.971, -7.971] 2.729e-01 [2.727e-01, 2.731e-01] 8.637e-05 [8.630e-05, 8.643e-05]
LiH standard simulator 1616700. -7.972 [-7.972, -7.971] 2.682e-01 [2.677e-01, 2.686e-01] 2.109e-04 [2.106e-04, 2.113e-04]

Table 4.2: The mean, standard deviation and standard error on the mean for each
method calculating the ground state energies of H2 and LiH using single-shot VQE.
The simulator backend represents a noise-free QPU emulator and ibmqx2 is a real
quantum device. Ibmqx2-raw are the raw experimental results from the QPU and
ibmqx2-mit with measurement error mitigation applied. 95% confidence intervals
(CI) were calculated using bootstrap resampling [231].

H2 and LiH was an order of magnitude lower than standard VQE. On the other hand,

the LCU realization of unitary partitioning is probabilistic. Even though the R-score

indicates an improvement should be obtained, post-selection requires some samples to

be discarded. We see this in the simulation for LiH, where the LCU approach actually

has the fewest ej samples at 1447349 compared to 1616700 for standard VQE. As the

σe of all three approaches are similar, the LCU implementation has the highest SEM

in this case. The advantage over standard VQE is thus dependent on the success

probability, which for each circuit is given by the inverse of the 1-norm squared of the

operator to be implemented as a LCU. We re-iterate, post-selection is only performed

on the ancilla register.

The experimental results for H2 on ibmqx2 show that applying the unitary parti-

tioning technique does not appreciably change the performance of VQE, when com-

bined with error mitigation techniques. We suspect this is due to the extra coherent

resource required to perform Rl causing an increase in errors, which offsets the im-

provement of the SEM given by the technique. We expect this to be mitigated as gate

fidelities increase.

The experimental execution of Rl by LCU on ibmqx2 performed comparably to the

sequence of rotations realization. Ignoring post-selection issues, the LCU algorithm is

more complex and requires more qubits to implement. We believe this motivates fur-

ther examination of the use of more advanced quantum algorithms on NISQ devices.

A particular feature of our results from ibmqx2 (Fig. 4.9) is that the mean ground

state energy obtained is overestimated by a seemingly constant amount. We suspect

this could be due to two effects. Firstly, our ansatz circuit prepares the ground state.

Any coherent errors in this circuit will increase the energy of the state prepared by

virtue of the variational principle [18]. Secondly, inspecting the qubit Hamiltonian for

H2 most coefficients are positive. As our results overestimate the energy, it implies
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that measurement outcomes of each n-fold Pauli operator are more frequently +1

causing each estimate of ej to be larger. This could be an indication of a higher |0〉
count on each qubit or P(0|1) > P(1|0).

The single-qubit gate error rates of IBM QPU’s have error rates in the range of

0.1%-0.3% and two-qubit gate errors in the range of 2%-5% [232]. The most error-

prone operation is measurement and ibmqx2 on average has a measurement error

rate of 4%, but this can be much higher (13%) [232]. This large measurement error

is apparent when comparing the raw and measurement error mitigated results from

the QPU simulation of H2. In future experiments, it would be interesting to improve

measurement fidelity, for example by using invert-and-measure designs [232] as well

as flipping the qubit encoding (|0〉 7→ |1〉 and |1〉 7→ |0〉) as in [106], or by other

mitigation schemes [233].

Crucially, when partitioning the qubit Hamiltonian into anticommuting cliques,

the greatest measurement reduction is obtained if R is maximised (equation 4.64).

However, if non-optimal partitioning is done a measurement reduction can still be

obtained. We propose that for practical applications a non-optimal clique cover may

be beneficial. By splitting the problem Hamiltonian into pairs of anticommuting op-

erators (|HSl | = 2 ∀{l}l=0,1,...,mc−1), the extra coherent resources required to perform

Rl are experimentally realistic for current and near-term devices. The choice of par-

titioning can be motivated by estimating the value of R (equation 4.64). To do this

the variance and covariances of the Pauli operators can be estimated on quantum

hardware or classically determined using an approximate ground state wavefunction.

If this is not possible, then the upper bound of the variance of each Pauli operator

can be used (equation 4.8).

4.3.4 LCU circuit optimization

In this section, we provide a different analysis of how to improve the quantum circuits

required to implement the select operator in LCU more efficiently. The gate set we

consider in this section are arbitrary single qubit gates and CNOT gates. We do not

discuss the Prepare part of the algorithm, which we analysed previously in Section

4.3.2.3.

Efficient block encoding strategies are an important primitive in many of the

most recent quantum algorithms. This topic is outside the scope of this thesis, but

we recommend the review by Martyn et al. on the grand unification of quantum

algorithms [234].
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Z
=

Z

Z

Figure 4.11: Circuit template for Z · Z operation.

4.3.4.1 Select circuit

In Section 4.3.2.3 we showed how the prepare part of the LCU approach to unitary

partitioning scales linearly with the number of system qubits and is therefore tractable.

The next consideration is the select operator (equation 4.93). The complicated control

structure of this operator makes this operation hard to experimentally realise. Here

we analyse how to reduce the quantum resources to implement this gate. We report

a new approach that improves upon the original work in [221], requiring no extra

ancillary qubits.

Naively, each nc-control Pauli operator can be decomposed into separate nc-control

single qubit Pauli operators on each ns qubit. Up to a change of basis, these will

then require nc controlled single qubit Z gate decompositions. However, this can be

improved. We analyse two distinct methods.

The first method requires the following circuit primitive illustrated in Figure 4.11.

We prove this identity as follows. Consider the CNOT gate decomposed in the Pauli

basis as

CNOT (i, j) =

(
|0〉 〈0| ⊗ Ij + |1〉 〈1| ⊗Xj

)
=

(
(Ii + Zi)

2
⊗ Ij +

(Ii − Zi)
2

⊗Xj

)
.

(4.104)
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Z

Z

Z

Z

=
Z

Z

Z

=
Z

Z

=

Z

Figure 4.12: Result of recursively applying the template given in Figure 4.11 to a
sequence of single qubit Z gates.

Then the left hand side of Figure 4.11 implements the following:

CNOT (0, 1)·I0Z1 · CNOT (0, 1)

=

(
|0〉 〈0| ⊗ I + |1〉 〈1| ⊗X

)
· (I ⊗ Z) ·

(
|0〉 〈0| ⊗ I + |1〉 〈1| ⊗X

)
=

(
|0〉 〈0| ⊗ Z − |1〉 〈1| ⊗ iY

)(
|0〉 〈0| ⊗ I + |1〉 〈1| ⊗X

)
=

(
|0〉 〈0| ⊗ Z − |1〉 〈1| ⊗ Z

)
=

1

2

(
(I + Z)⊗ Z − (I − Z)⊗ Z

)
=

1

2

(
IZ + ZZ − IZ + ZZ

)
=

2(ZZ)

2
= ZZ.

(4.105)

We can recursively apply this result on a set of single Pauli Z operators acting on

independent qubits - see Figure 4.12. The importance of this circuit is it allows an

efficient construction of a multicontrol Pauli operator composed of single qubit Z

and I terms. Consider the 3-qubit version of Figure 4.12, controlled on an arbitrary

number of nc qubits. We obtain the circuit illustrated in Figure 4.13. The nc-controls

on each CNOT gate, in the furthest right circuit in Figure 4.13, can be removed due

to their trivial action if the nc-control Z operator does not act. We observe that the

three nc-control Z gates have been converted to a ladder of CNOT gates acting on

the system qubits and a single nc-control Z gate.

In general, we find that an nc control P operator, where P ∈ {I, Z}⊗ns , can be

decomposed into a ladder of 2(ns − 1) CNOT gates and a single nc-control single

qubit Z gate. A change of basis on each system qubit, using the single qubit gates

{H,S†, S}, applied on either side of the CNOT ladders can then be used to transform

the control Pauli operator made up of single qubit Pauli Z and I terms into a general

Pauli operator P ∈ {I,X, Y, Z}⊗ns . Figure 4.14 shows the type of circuit. Therefore,
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nc

Z

Z

Z

=
ZZZ

=

Z

=

Z

Figure 4.13: Circuit template of a nc-control P , where P ∈ {I, Z}⊗3.

0

1

2

nc

(i)kX0Y1Z2

=
H

S H

(i)kZ

H

H S†

Figure 4.14: Circuit template to implement a multicontrol Pauli operator, where the
single qubit (i)kZ gate for k ∈ {0, 1, 2, 3} can be built via Figure 4.7.

rather than naively requiring a single multicontrol nc-Z gate per system qubit only

a single one is required and a ladder of CNOT gates. This approach was given in

[221]; however an interesting circuit template was missed. RLCU
j (equation 4.89) is

composed of a real Identity Pauli operator and a linear combination of P
(j)
kω terms that

each has an imaginary phase. A control operation for the first term is unnecessary as

a controlled identity has no action and only needs to be accounted for in the prepare

operation. For the remaining operators, a multicontrol Rz(∓π) = ±iZ can be used

in combination with the template in Figure 4.14, replacing the multicontrol nc-Z

gate. The multicontrol Rz gate can then efficiently be implemented via a quantum

multiplexor - see Figure 4.6b and Figure 4.6c. The angles in each single qubit Rz gate

should be set to θa = (−1)a(∓π)
2nc

, where a is an index of the rotation angle in ~θ and

nc is the number of control qubits. Figure 4.15 shows an example with three control

qubits. The gate cost for this multipilexor is given in equation 4.101. The cost of

implementing the template is illustrated in Figure 4.14, where k ∈ 1, 3, has a cost

scaling as O(2nc + ns) CNOT and single qubit gates. Again as discussed in Section

4.3.2.3, the number of control qubits in the LCU method scale as O
(
log2(ns)

)
and so

the overall cost to implement RLCU
j (equation 4.89) scales as O(|CU

j |ns) CNOT and

single qubit gates.

The second approach uses the same process as before, except the single nc-control

Z gate in Figure 4.14 is decomposed in a slightly different manner. The main idea

stems from the fact that P ∈ {I, Z}⊗ns unitary operators and their controlled versions,

are diagonal operators. In [218] Bullock and Markov show that any n-qubit diagonal

gate can be implemented in 2n+1−3 alternating controlled NOT gates and single qubit
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±iZ

=

Rz(∓π
8
) Rz(±π

8
) Rz(∓π
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8
) Rz(±π

8
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8
) Rz(±π

8
)

Figure 4.15: Example of a multicontrol ±iZ gate, implemented via a multicontrol
Rz(∓π) multiplexor.

∆ =

Rz(~α)

Rz(~β)

Rz(~γ)

Rz(δ)

Figure 4.16: Decomposition of a diagonal unitary ∆ as a sequence of multicontrol Rz

multiplexors [218].

Rz rotations. This is asymptotically optimal [218]. An example is shown in Figure

4.16. Therefore, implementing a single nc-control ikZ gate requires 2nc+2 − 3 single

and two qubit gates. Again, as the number of control gates scales logarithmically

with the number of system qubits we find this has a CNOT and single qubit gate

cost scaling linearly as O(ns). Therefore, the overall circuit cost to implement RLCU
j

(equation 4.89) scales the same as the first method - O(|CU
j |ns) CNOT and single

qubit gates. While this method has a slightly larger circuit cost in practice compared

to the previous approach, we report this methodology as the first method requires

Pauli operators with an imaginary phase ±iP (k ∈ {1, 3} in Figure 4.14) whereas this

formulation has no such restriction - i.e. k ∈ {0, 1, 2, 3}.

4.4 Conclusion

In this chapter, we examined why the O(K4) scaling of the second quantized molecu-

lar Hamiltonian led to the number of measurements required to achieve a precision of

ε scaling as O(K8/ε2). Due to the desired precision for most chemistry applications

being ε = 1.6 × 10−3 Ha, this meant that even though VQE appears to scale poly-

nomially with problem size, the sheer number of measurement samples required can

cause the runtime of the algorithm to take many years. This ignores other problems

associated with VQE, such as what Ansatz to use and how to perform the classical

optimization. Chapter 3 provides an introduction to some of these concerns. Further-

more, these issues are compounded by the lack of an error-corrected quantum device

[235].

We analysed the performance of the unitary partitioning method that in prin-

ciple decreases the number of Pauli operators requiring separate measurement from

O(K4) 7→ O(K3). Our numerical results showed that the unitary partitioning tech-
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nique can significantly improve the precision of variational calculations. For a fixed

measurement budget M , fewer terms required measurement and thus the total num-

ber of separate energy estimates was increased. As the sample standard deviation of

energies is similar for the different approaches, the standard error of the mean will

be lower when unitary partitioning is applied. In general, we expect the R ratio to

be greater than one and so a measurement reduction should be obtained. Our results

indicate that the deterministic sequence of rotations implementation offers the best

improvement, which we find in our noiseless simulation of H2 and LiH. In contrast,

the LCU approach is probabilistic and some measurements must be discarded. The

advantage over standard VQE is thus dependent on the success probability. This

naive implementation of LCU can be improved by using oblivious and standard am-

plitude amplification [236–239], which can boost the probability of success. However,

further coherent resources would be required and this is unlikely to be applicable for

near-term applications.

We note the LCU technique allows non-unitary operations to be implemented

probabilistically on a quantum computer. However, for unitary partitioning the op-

erator we block encode RLCU
j (equation 4.91), which is already unitary. This means

it can be deterministically implemented as a quantum gate and so should not require

a block encoding. The only complication is that it is currently not known how to

construct a quantum circuit for a linear combination of Pauli operators that define a

unitary operator. Instead, as the operator is already provided as a linear combination

of Pauli operators it is natural to use the LCU method. It would be interesting to

determine whether an efficient circuit for RLCU
j was possible.

The experimental results obtained using IBM’s NISQ device (ibmqx2) show VQE

with unitary partitioning applied performs no worse than conventional VQE for a

fixed M , when combined with error mitigation techniques. Even though unitary par-

titioning requires fewer terms to be combined to give an energy estimate leading to

less statistical noise and more energy samples, we suspect the additional coherent re-

sources required causes an increased error accumulation, which offsets the advantages

given by the technique. As quantum devices continue to improve, this effect should

be reduced and we expect unitary partitioning will benefit many variational quantum

algorithms.

Our work shows how precision can be improved for a fixed number of calls to a

QPU. An alternate outlook, is how this technique may allow larger problems to be

studied. For a given precision, applying unitary partitioning requires fewer samples

and thus may allow larger scale simulations to be performed on reasonable timescales.

However, we note that the issue of the measurement roadblock for VQE still re-

mains even when using unitary partitioning. The formal scaling in the number of

measurements is O(K6/ε2) and thus still poses a major problem. In fact, what is

110



4.4. CONCLUSION

more important is the R-ratio, which indicates the real improvement achieved by

a given measurement reduction. This takes into account variances and covariances,

which ultimately determines the overall measurement cost. Therefore, even if other

measurement reduction schemes can further reduce the number of terms requiring

separate measurement. If each term requires more measurements to determine the

expectation value to a fixed precision then the resulting measurement cost can be the

same or even worse. However, what makes the discussion slightly ambiguous is the

state-dependence of the R-ratio. Absolute statements about the improvement in the

number of measurements for different measurement reduction schemes are therefore

hard to make in general. One advantage the unitary partitioning technique has is the

R-ratio can never be below one and thus can never do worse than if no measurement

reduction is applied. On the other hand, the possible improvement is also bounded

(equation 4.66) and is related to the size of the anticommuting cliques, which have a

maximum size of 2n+ 1. Due to this, we observe that the R-ratio will scale as O(
√
n)

and thus the fundamental issue of the number of measurements required by VQE

making the runtime of VQE infeasible still remains when using unitary partitioning.

We note some interesting avenues for future work. (1) It would be interesting to

apply the sorted insertion algorithm to partition a qubit Hamiltonian into anticom-

muting sets. It is likely this method will improve the possible measurement reduction

obtained, which could be evaluated from an R score. (2) Given the coefficients of each

Pauli operator can affect the measurement reduction obtained it would be interesting

to explore methods that can increase the norm of such operators. For example in

[240], Koridon and coworkers use orbital localization methods to change the 1-norm

of a given molecular Hamiltonian. This could be used to improve the probability

of success for the LCU method and the R-ratio. This idea can also be used with

other measurement reduction methods. (3) It should be possible to perform com-

muting, qubit-wise commuting and anticommuting partitioning at once for a given

qubit Hamiltonian. How to combine these techniques to achieve the best possible

measurement reduction is an interesting question. (4) Given the classical shadow

method requires measurement in random bases, the unitary rotations used by unitary

partitioning to simultaneously measure an anticommuting clique could be used.

Finally, at a high level our results show that the deterministic sequence of rota-

tions approach to unitary partitioning is better than the probabilistic LCU procedure.

While it seems like the LCU construction is unlikely to be useful going forward, we will

show in the next chapter that this formulation offers a major algorithmic improvement

for the contextual-subspace VQE algorithm.
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Chapter 5

The Contextual-Subspace

Variational Quantum Eigensolver

Present-day quantum computers have many constraints such as: lack of error correc-

tion, device topology (qubit connectivity) and low numbers of qubits. Consequently,

this has given rise to a family of quantum-classical algorithms that leverage as much

classical processing as possible to reduce the quantum resources required to solve the

problem at hand. As discussed in Chapter 3 one of these is the variational quantum

eigensolver (VQE) [94]. Other common examples include the Quantum Approxi-

mate Optimization Algorithm (QAOA) [241] and Variational Quantum Linear Solver

(VQLS) [242]. A good example of how classical resources can alleviate some of the

quantum resources required is the recently proposed entanglement forging method

[114], where the electronic structure problem for H2O was reduced from a 10-qubit

problem to multiple 5 qubit problems that were each studied using conventional VQE

and classically combined. Another recent novel approach is known as the Quantum-

Classical hybrid Quantum Monte Carlo (QC-QMC) method, which was used to un-

bias the sign problem in the projector Monte Carlo (PMC) method, which implements

imaginary time evolution [243]. At a high level, the accuracy of a constrained PMC

calculation is determined by the quality of trial wavefunctions. Quantum comput-

ers offer a way to efficiently store highly entangled trial wavefunctions and measure

certain overlaps, that would require exponential resources classically. Huggins et al.

performed QC-QMC simulations of different chemical systems on Google’s Sycamore

processor and obtain results competitive with state-of-the-art classical methods [243].

The contextual subspace VQE (CS-VQE) algorithm is another hybrid quantum-

classical approach [244]. It gives an approximate simulation method, where the quan-

tum resources required can be varied for a trade-off in accuracy. This allows problems

to be studied where the full Hamiltonian would normally be too large to investigate

on current NISQ hardware. This was shown in the original CS-VQE paper, where

chemical accuracy for various molecular systems was reached using significantly fewer

qubits compared with the number required for VQE on the full system [244]. As

CS-VQE reduces the number of qubits required for simulation, the number of terms

in a Hamiltonian requiring separate measurements is also reduced.
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A natural question that arises from this is whether further measurement reduction

schemes can be utilized to reduce the overall measurement cost even more [103, 177–

179, 185, 187, 188, 190, 193, 195, 196, 198, 201, 245]. The goal of this work was to

investigate the possible reductions given by the unitary partitioning strategy [197, 198,

221] and whether chemical accuracy on larger molecules can be reached on currently

available NISQ hardware.

In this chapter, we first summarise what contextuality is and where it can occur

in qubit Hamiltonians. We then introduce the CS-VQE algorithm, where we intro-

duce changes that improve the original implementation. We then apply the unitary

partitioning measurement reduction technique along with CS-VQE on a test bed of

different molecular structure Hamiltonians, where the contextual subspace approxi-

mation has been employed.

5.1 Contextuality

The foundation of quantum contextuality goes back to the Bell-Kochen-Specker (BKS)

theorem [246]. In lay terms, every measurement provides a classical probability dis-

tribution (via the spectral theorem) and a joint distribution can be built as a product

over all possible measurements [247]. The BKS theorem proves that it is impossible

to reproduce the probabilities of every possible measurement outcome for a quantum

system as marginals of this joint probability distribution [248]. This is related to how

quantum mechanics does not allow models that are locally causal in a classical sense

[249]. Contextuality is a generalization of nonlocality [249, 250]. This means that

quantum measurement cannot be understood as simply revealing a pre-existing value

of some underlying hidden variable [251, 252].

A good example of this phenomenon is the “Peres-Mermin square” [252, 253],

where no state preparation is involved and only observables are considered. The

example considers nine measurements arranged in a square. In this section, we follow

the construction given in [248]. Each measurement has only two possible outcomes

(dichotomic) +1 and −1. In a realistic interpretation, performing each measurement

on an object reveals whether the property is present (+1) or absent (−1), yielding

nine properties.

We take three measurements along a column or row to form a “context” - a set

of measurements whose values can be jointly measured i.e. the observables commute

and thus share a common eigenbasis. Table 5.1 gives an example.

In a classical (noncontextual) model for this system, the nine measurements

{IZ, ZI, ZZ,XI, IX,XX,XZ,ZX, Y Y } (5.1)
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IZ ZI ZZ r0

XI IX XX r1

XZ ZX YY r2

c0 c1 c2

Table 5.1: Example Peres-Mermin square of nine possible observables for a physical
system, where each measurement can be assigned a ±1 value.

can be assigned a definite value independent of the context the measurement is ob-

tained in. For example, if all measurements are assigned +1 in Table 5.1, then

c0 = c1 = c2 = r0 = r1 = r2 = +1 and six positive products are obtained. If a

single entry in Table 5.1 is changed it will affect two products (a row and column

product). We consider the following Equation in this setting:

〈PM〉 ≡〈IZ · ZI · ZZ〉+ 〈XI · IX ·XX〉+

〈XZ · ZX · Y Y 〉+ 〈IZ ·XI ·XZ〉+

〈ZI · IX · ZX〉 − 〈ZZ ·XX · Y Y 〉

=r0 + r1 + r2 + c0 + c1 − c2

(5.2)

and find that classically we get an inequality 〈PM〉 ≤ 4. We reiterate that this is

the setting of eight +1 assignments and a single −1 assignment. This inequality is

saturated when the −1 value is assigned to one of the observables in the last column

of Table 5.1.

The significance of this inequality is that it can be violated by quantum systems.

Thinking of this in a quantum setting, the operators in rows and columns of Table 5.1

commute. If we multiply along the rows and columns we get +II apart from the last

column where c2 = −II (see Table 5.2). This is the case regardless of what quantum

state is considered. Using the expectation values of the product of these operators in

Equation 5.2, we find 〈PM〉 = 6, violating the classical bound.

Classically Equation 5.2 is bounded as 〈PM〉 ≤ 4 due to the assumption that the

nine observables of the object can be assigned a value consistently. Violation of this

bound implies that either the value assignment must depend on which context (row or

column) the observable appears in or there is no value assignment. This phenomenon

is known as quantum contextuality [248].

IZ ZI ZZ 〈+II〉 = +1
XI IX XX 〈+II〉 = +1
XZ ZX YY 〈+II〉 = +1
〈+II〉 = +1 〈+II〉 = +1 〈−II〉 = −1

Table 5.2: Example Peres-Mermin square of nine Hermitian operators, all with ±1
eigenvalues - representing observables.
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In VQE, a Hamiltonian is defined by a linear combination of Pauli operators.

The expectation value is obtained by measuring each Pauli operator in a separate

experiment and combining the results. Different groups of commuting operators form

contexts. In general there will be incompatible contexts where it is impossible to

consistently assign joint outcomes. In other words, different inference relations will

lead to contradictions. Outcomes assigned to individual measurements are therefore

context-dependent and the problem is contextual. If not, then the problem is non-

contextual and a noncontextual (classical) hidden variable model can be used to solve

such systems. Colloquially, for a noncontextual problem it is possible to assign deter-

ministic outcomes to observables simultaneously without contradiction; however, for

a contextual problem this is not possible [244].

The contextual subspace VQE algorithm uses the idea of contextuality to motivate

different approximations decreasing the quantum resources required to study a given

problem. The next Section introduces this algorithm in full.

5.2 Contextual-subspace VQE

The contextual-Subspace VQE algorithm is based on partitioning any qubit Hamil-

tonian:

Hfull =
∑
a

caPa =
∑
a

ca

( n−1⊗
j=0

σ
(a)
j

)
=
∑
a

ca
(
σ

(a)
0 ⊗ σ

(a)
1 ⊗ ...⊗ σ

(a)
n−1

)
,

(5.3)

into two disjoint components. One is noncontextual and the other is contextual,

explicitly [244]:

Hfull = Hcon +Hnoncon. (5.4)

Here ca are real coefficients. Each Pauli operator Pa is made up of an n-fold tensor

product of single qubit Pauli matrices σj ∈ {I, X, Y, Z}, where j indexes the qubit

the operator acts on.

At a high level, CS-VQE starts by solving the noncontextual problem Hnoncon

and then solves the contextual part Hcon constrained by the solution of Hnoncon. We

will see later that this constraint manifests from a subspace of states defined by the

noncontextual solution. The method projects the contextual part of this problem into

a subspace consistent with these states and so any new solution is compatible with the

noncontextual result. We note that this projection in general will result in a loss of

information and thus leads to approximations. However, as there is flexibility in how

the projection is done, the technique allows different levels of approximations from a
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PA PB

PC PD

PA PB

PC PD

PA PB

PC PD

a b c

Figure 5.1: Compatibility graphs for contextual sets of four Pauli operators [254].
Edges are between Pauli operators that commute.

completely noncontextual approximation to no approximation (standard VQE). We

will see that this allows problems to be significantly simplified, while still maintaining

enough accuracy to be meaningful. The subsequent subsections introduce each part

of the CS-VQE algorithm starting with how the Hamiltonian is partitioned.

5.2.1 Partitioning the Hamiltonian

Let SHfull be the set of Pauli operators, in the full system Hamiltonian, requiring

measurement in a VQE experiment. It was shown in [206, 254], that a set of four Pauli

operators {PA, PB, PC , PD} is strongly contextual if any of the compatibility graphs

shown in Figure 5.1 are present. Alternatively, for a general set of Pauli operators,

once globally commuting operators are removed if commutation is transitive then the

set is noncontextual and if commutation is not transitive then the set is contextual.

Given an arbitrary set of Pauli operators P , this gives an algorithm to check for

contextuality [254]. We focus on the graph illustrated in figure 5.1a. To check if

P is contextual, all we need to do is check certain commutativity relations between

operators in the set P . A pseudo algorithm is given in algorithm 1. First, an O(|P|2)

routine is used to remove operators in P that commute with all operators. These

terms represent symmetries of the problem and are put into the set Z. The leftover

terms are put into the set T , mathematically we write this as: T = P \ Z. The

remaining procedure takes O(|T |3) steps to determine whether P is contextual. This

goes through unique triples of Pauli operators in T and checks for the structure

in Figure 5.1a (where PD need not be considered). If any triple is found where

[PA, PB] = 0, [PA, PC ] = 0 and {PA, PC} = 0 the problem is contextual. This check

for contextuality is implemented in OpenFermion [224].

We note two edge cases. All one qubit problems are noncontextual and any Hamil-

tonian H with |T | ≤ 3 must be noncontextual.

To begin CS-VQE, we first need to define the contextual and noncontextual parts.

The task of finding the largest noncontextual subset of Pauli operators in SHfull is a
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Algorithm 1 Test for strong contextuality in a given set of Pauli operators [254]

Input: P = {P0, P1, P2, ...} . Input P is a set of Pauli operators.
Output: contextual (True/False) . Whether the set P is strongly contextual.

Z ← {}
T ← {}
contextual← False

for i = 0 to |P| − 1 do
if [Pi, Pj] = 0 ∀j 6= i where j = 0 to |P| − 1 then
Z ← Z ∪ {Pi}

else
T ← T ∪ {Pi}

end if
end for

for i = 0 to |T | − 3 do
for j = i+ 1 to |T | − 2 do

for k = j + 1 to |T | − 1 do

if [Pi, Pj] = 0, [Pi, Pk] = 0 and {Pj, Pk} = 0 then
contextual← True
return contextual

else
continue

end if

end for
end for

end for
return contextual

generalization of the disjoint clique problem [255, 256], which is NP-complete. How-

ever, different heuristics can be used to approximately solve this problem. To date,

VQE experiments have mainly focused on chemistry Hamiltonians, where Hartree-

Fock accounts for most of the energy. Such Hamiltonians contain Pauli operators

that l1 norms are dominated by diagonal terms - i.e. Pauli operators made up of

tensor products of single qubit I and Pauli Z matrices. To find a noncontextual set

in such a scenario a greedy heuristic can be used. Here, we enumerate through the

Pauli operators of a given Hamiltonian and add operators to a set so long as the set

remains noncontextual via Algorithm 1. This gives a noncontextual set containing

mainly diagonal terms, with some additional operators [256]. Alternative procedures

to find the largest noncontextual subsets remain an open question for the CS-VQE
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algorithm.

5.2.2 Solving the noncontextual Hamiltonian

Once the noncontextual Hamiltonian Hnoncon is determined, we can define the set

SHnoncon to be the Pauli operators in Hnoncon. We split SHnoncon into two subsets Z
and T - representing the set of universally commuting Pauli operators Z and their

complement respectively [244, 256]:

SHnoncon = Z ∪ T =

{ |Z|−1⋃
i=0
∀Pi∈Z

Pi

}
∪

{ |T |−1⋃
i=0
∀Pi∈T

Pi

}
. (5.5)

Slight modifications to Algorithm 1 achieve this - where P should be set to SHnoncon

and both Z, T should be returned.

The operators in Z are noncontextual, as by definition they are universally com-

muting and represent symmetries of Hnoncon. For the overall superset SHnoncon to be

noncontextual, the remaining operators in T must be made up of N disjoint cliques

Cj [256], where operators within a clique all pairwise commute and operators between

cliques pairwise anticommute. This is because commutation forms an equivalence re-

lation on T if and only if SHnoncon is noncontextual [206, 244, 256]. We can write T
as:

T =

|T |−1⋃
i=0
∀Pi∈T

Pi =
N−1⋃
j=0

Cj =
N−1⋃
j=0

( |Cj |−1⋃
k=0

where
[Pk,Pl]=0
∀Pk,Pl∈Cj

P
(j)
k

)
. (5.6)

We re-define each clique Cj using the identity operation defined by the first operator

of the jth clique, P
(j)
0 P

(j)
0 = I, which represents the first operator in each of the N

cliques. We write the jth clique as [256]:

Cj =
⋃

∀Pk∈Cj

P
(j)
k =

⋃
∀Pk∈Cj

P
(j)
k P

(j)
0 P

(j)
0︸ ︷︷ ︸

I

=
⋃

∀Pk∈Cj

(
P

(j)
k P

(j)
0

)
P

(j)
0 =

|Cj |−1⋃
k=0

A
(j)
k P

(j)
0 .

(5.7)

The new operators A
(j)
k = P

(j)
k P

(j)
0 are just Pauli operators up to a complex phase.

The new operators A
(j)
k must still commute with the universally commuting operators

in Z, but now must also commute with all the other terms in the N − 1 cliques Cj

[256]. Using this, the noncontextual set (Equation 5.5) can be rewritten as:
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SHnoncon =

{ |Z|−1⋃
i=0
∀Pi∈Z

Pi

}
∪

{
N−1⋃
j=0

Cj

}
(5.8a)

=

{ |Z|−1⋃
i=0
∀Pi∈Z

Pi

}
︸ ︷︷ ︸

Z

∪

{
N−1⋃
j=0

( |Cj |−1⋃
k=0

where
[Pk,Pl]=0
∀Pk,Pl∈Cj

A
(j)
k P

(j)
0

)}

︸ ︷︷ ︸
T

. (5.8b)

So far we have considered the noncontextual set of Pauli operators SHnoncon , which

in general will be a dependent set. By this we mean that some operators in the set

can be written as a product of other commuting operators in the set. We need to

reduce this set SHnoncon to an independent set of Pauli operators, where all operators

in the noncontextual Hamiltonian can be inferred from the values of other operators

in the set under the Jordan product.

To obtain an independent set from SHnoncon , we first take the completely commuting

Pauli operators:

G ′ ≡ Z ∪

{
N−1⋃
j=0

{A(j)
k |k = 1, 2, . . . , |Cj| − 1}

}

≡

{ |Z|−1⋃
i=0
∀Pi∈Z

Pi

}
∪

{
N−1⋃
j=0

{A(j)
k |k = 1, 2, . . . , |Cj| − 1}

}
,

(5.9)

and using the procedure in [124] find an independent subset G:

G ≡ {Pi|i = 0, 1, . . . , |G| − 1}. (5.10)

The set G represents a generating set for the symmetry operators of Hnoncon. In other

words, different products of operators in G can be used to generate any Pauli operator

that by definition must commute with Hnoncon.

Finally, we need to consider the N pairwise anticommuting P
(j)
0 operators defined

by the N anticommuting cliques. As the operators in G universally commute with all

operators in the noncontextual Hamiltonian, each operator (clique representative) in

the set {P (j)
0 |j = 0, 1, . . . , (N − 1)} must be independent [256]. We combine the N

anticommuting operators into the observable [256]:

A(~r) =
N−1∑
j=0

rjP
(j)
0 . (5.11)
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We denote the set of Pauli operators making up this operator as A ≡ {P (j)
0 |j =

0, 1 . . . , N − 1}.
Next, we combine the A and G into an independent set R [256]:

R ≡ A ∪ G

≡ {P (j)
0 |j = 0, 1, . . . , N − 1} ∪ G.

(5.12)

Inspecting the properties of R, one can bound its size. The set G has size at most

n− 1, as n independent commuting Pauli operators form a complete commuting set

of observables for n qubits. In other words, as G is a universally commuting set if its

size was n (or more) then taking G and one operator P
(j)
0 (the set G ∪ {P (j)

0 }) is also

a fully commuting set - and would be a commuting set of size n + 1 (or more) [256].

The maximum number of independent anticomuting operators on n qubits was shown

in [206] to be 2n+ 1. This actually bounds the size of R, which occurs when the set

G = {} (and thus Z is empty) and |A| = 2n+ 1 [256].

Looking at the noncontextual set of Pauli operators in equation 5.8, making up

Hnoncon, we see that the subset G ⊆ R (Equation 5.12) includes all the generators

for the terms in Z and each Pauli A
(j)
k operator. Any operator in Z and each Pauli

A
(j)
k operator can therefore be found by a finite combination of operators in G. Each

operator in T can also be generated by a combination of one P
(j)
0 operator and some

combination of operators in G. Again R (Equation 5.12) contains all the operators

required. To summarise, the set R contains all the required terms to reproduce the

expectation value of any operator in SHnoncon under the Jordan product. The Jordan

product is defined as: Pa ◦ Pb = {Pa,Pb}
2

and is equal to the regular matrix product if

the operators commute, and equal to zero if the operators anticommute. This ensures

a product of anticommuting Pauli operators cannot be taken, as a simultaneous value

assignment of anticommuting Pauli operators is not possible.

Next, as all terms in Hnoncon can be simultaneously assigned a definite value with-

out contradiction, a phase space description of its eigenspace can be used [244, 256,

257]. The phase space points are the possible joint value assignments to a set of

observables in R. The eigenstates of Hnoncon are probability distributions over this

phase space [244]. This is a quasi-quantized model which is a classical phase-space

model, with an uncertainty relation imposed upon the allowed probability distribu-

tions (sometimes called epistemic states) on the phase space [244, 257, 258].

The states for this quasi-quantized model we denote as “noncontextual” states.

These noncontextual states are probability distributions over the phase space points

i.e. the eigenvalue assignments of each Pauli operator in R. Probability distributions

corresponding to valid quantum states must obey an uncertainty relation [257, 258].

Kirby et al. in [256], show that a sufficient condition is that the symmetry generators

Gi ∈ G take definite ±1 values and the expectation value of each clique representative
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〈P (j)
0 〉 form a unit vector [256]. If we let each noncontextual state be defined by the

parameters (~q, ~r) then:

〈Gi〉 = qi = ±1, (5.13a)

〈P (j)
0 〉 = ri, (5.13b)

where:

(~q, ~r) =(q0, q1, . . . , q|G|−1, r0, r1, . . . , r|A|−1),

and
( |A|−1∑

i=0

|ri|2
)1/2

= 1.
(5.14)

The joint probability distribution (classical) associated with the set of expectation

values given in equation 5.13 is supplied in [256]. A discussion on this is outside the

scope of this thesis.

In summary, with respect to the phase-space model [256] a valid noncontextual

state (~q, ~r) sets the expectation value of the operators in R (Equation 5.12). The

expectation value of all the operators in SHnoncon are generated from some finite com-

bination of terms in R under the Jordan product. Explicitly, let PZi ∈ Z ⊆ SHnoncon

then if we let J G
PZi

be the set of indices such that PZi =
∏

i∈J G
PZ
i

Gi; then [256]:

〈PZi 〉 =
∏

i∈J G
PZ
i

〈Gi〉 =
∏

i∈J G
PZ
i

qi.
(5.15)

In words, we combine the expectation value of some finite set of Pauli operators in

the independent set G - given by J G
PZi

- to reproduce the expectation value for 〈PZi 〉.
Similarly, the expectation value for each A

(j)
k P

(j)
0 ∈ T ⊆ SHnoncon (Equation 5.8)

term is given by:

〈A(j),∈G
i P

(j),∈T
0 〉 =

( ∏
i∈J G

A
(j)
i

〈Gi〉
)
rj =

( ∏
i∈J G

A
(j)
i

qi

)
rj,

(5.16)

where J G
A

(j)
i

are the set of indices such that 〈A(j)
i 〉 =

∏
i∈J G

A
(j)
i

〈Gi〉 and 〈P (j)
0 〉 = rj

[256].

We can write the noncontexual Hamiltonian as:

Hnoncon =
( |Z|−1∑

i=0

ciP
Z
i

)
+

N−1∑
j=0

[ |Cj |−1∑
k=0

akA
(j)
k P

(j)
0

]
(5.17)
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and find the energy of a particular noncontextual state (~q, ~r):

〈Hnoncon〉 = Enoncon(~q, ~r) =
( |Z|−1∑

i=0

βi〈PZi 〉
)

+
N−1∑
j=0

[ |Cj |−1∑
k=0

βk〈A(j)
k P

(j)
0 〉

]
, (5.18)

where βi and βk are real coefficients and each expectation value is given by equation

5.15 and 5.16 [256].

To find the ground state of Hnoncon, we minimize Equation 5.18 via a brute-force

search as described in [256]. Algorithm 2 summarises the steps. First, a trial ~q is

defined. This is a set of ±1 expectation values for each Gj. An initial guess of the

amplitudes ri of the unit vector ~r is made and the energy (Equation 5.18) is minimized

over this continuous parameterization of ~r for a fixed trial ~q, until the energy converges

to a minimum. These steps are repeated for all the 2|G| assignments of ~q. The (~q, ~r)

combination that gives the lowest overall energy represents the noncontextual ground

state of the physical system. We denote this parameterization as (~q0, ~r0). Note for a

fixed ~q, we optimize over ~r. This can be thought of as optimizing a function defined

on a hypersphere. Currently, we haven’t explored the properties of this function.

It remains an open question for the CS-VQE algorithm if alternate optimization

strategies are possible, for example using chemical intuition during optimization. This

brute force approach of searching over all 2|G| possibilities for ~q may not be necessary.

In the next section, we discuss how to map the contextual problem into a subspace

consistent with a defined noncontextual state (~q, ~r).

5.2.3 Noncontextual stabilizers

Thus far, we have solved the classical part of CS-VQE. Now we look at solving the

contextual component that has so far been neglected. At a high level this section

involves solving Hcon while keeping the solution consistent with Hnoncon. We use

the stabilizer framework to achieve this, where Hcon can be constrained by a set of

stabilizers based on R ≡ A ∪ G (equation 5.12) and the noncontextual state.

To start this process, we first need to consider the observable A(~r) (equation 5.11).

For a given noncontextual state (~q, ~r) we find the expectation value of A(~r) is fixed

as:

〈A(~r)〉 =
N−1∑
j=0

rj〈P (j)
0 〉 =

N−1∑
j=0

rjrj =
N−1∑
j=0

|rj|2 = +1. (5.19)

Using this result, a noncontextual state (~q, ~r) is equivalent to the joint expectation

value assignment of 〈Gi〉 = qi = ±1 and 〈A(~r)〉 = +1. This defines a set of “stabilizer-
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Algorithm 2 Brute force method to solve noncontexual problem

Q ← {q0, q1, ..., q|G|−1}2|G| . Set Q contains all possible ~q vectors, where
qi ∈ {+1,−1}.

~q0 ← {}
~r0 ← {}
E0

noncon ← 0

for ~qtest in Q do
~ropt, E

opt
noncon ← argmin

~r

[Enoncon(~qtest, ~r)] . for a given ~qtest, minimize the energy

(Equation 5.18)with respect to ~r.

if Eopt
noncon < E0

noncon then
~q0 ← ~qtest

~r0 ← ~ropt
E0

noncon ← Eopt
noncon

else
continue

end if
end for

return ~q0, ~r0, E
0
noncon

like” operators:

Wall ≡ {qiQi|i = 0, 1, . . . , |G| − 1︸ ︷︷ ︸
Gi∈G and qi∈~q

} ∪ A(~r)}, (5.20)

which by definition must stabilize that noncontextual state (~q, ~r) or more precisely, the

subspace of quantum states corresponding to it. The reason we call these operators

“stabilizer-like” is due to A(~r) not being a stabilizer, as it is not an element of the Pauli

group, but is unitary equivalent to one. This stems from unitary partitioning, where

a linear combination of normalized anticommuting Pauli operators can be rotated

onto a single Pauli via a unitary operator. Section 4.3 in the previous chapter covers

this process in full. We can consider equation 5.20 under this unitary transformation,

where Wall becomes:

Wall 7→ W
′

all ≡ {qi RQiR
†|i = 0, 1, . . . , |G| − 1} ∪RA(~r)R†}

≡ {q0G0, q1G1, ..., q|G|−1G|G|−1, ξ P
(k)
0 }.

(5.21)

This defines a regular set of stabilizers for the noncontextual state (~q, ~r) that defines

a subspace of quantum states. Here ξ = ±1 and is determined by RA(~r)R† = ξP
(k)
0
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and can always be chosen to be +1, which we do throughout this chapter. Here

R can be constructed as a LCU RLCU (Section 4.3.2.2) or a sequence of rotations

RS (Section 4.3.1) and P
(k)
0 ∈ A. As the symmetry generators universally commute

with the operators R (due to R being composed of Pauli operators in A), we find:

RGiR
† = RR†Gi = Gi ∀Gi ∈ G.

5.2.4 Mapping to contextual subspace

In CS-VQE, the expectation value of the full Hamiltonian (equation 5.4) is obtained

by first solving the noncontextual problem yielding a noncontextual state (~q, ~r) -

normally the ground state (~q0, ~r0). Next, the contextual Hamiltonian is projected

into the subspace of allowed quantum states consistent with the defined noncontextual

state. This constraint is imposed via: Hfull 7→ H ′full = Q†WU
†
WHfullUWQW , where the

expectation value is then found on a quantum device. The ground state of H ′full is

then found, which is an approximate ground state of Hfull. In this section, we define

what UW (a unitary) and QW (a projector) are.

The unitary operation UW is defined by the set of contextual stabilizersW ⊆Wall

(equation 5.20) that eigenvalue we fix according to the noncontextual state. If A(~r) ∈
W , meaning 〈A(~r)〉 is fixed to be +1, then the steps summarised in Equation 5.21

must first be performed to reduce A(~r) to a single Pauli operator. Clifford operators

Vi(P ) are then used to map each P ∈ W to a single-qubit Z operator. Each Vi is made

up of at most two π
2

Clifford rotations, generated by Pauli operators, per element in

W . In [244] it was shown that at most there will be 2n of these rotations, where n

is the number of qubits the problem is defined on [86]. We provide details on this

operation in Appendix A.1. We can write the overall operator as:

U †W(~q, ~r) =


∏

Pi∈W⊆Wall
Vi(Pi), if A(~r) 6∈ W(∏

Pi∈W⊆Wall
Vi(Pi)

)
R, if A(~r) ∈ W

. (5.22)

Applying U †WWUW = WZ results in a set of single-qubit Z Pauli operators. An

implementation note is that each operator Vi(Pi) in UW depends on each other - this

can be seen by expanding U †WWUW . Therefore, each Vi operator is dependent on

the stabilizers in W and in what order they occur. We recursively define each Vi as

follows:

1. Set W = RWR† iff A(~r) ∈ W .

2. Find the unitary V0 mapping the first Pauli operator P0 ∈ W to a single qubit

Pauli operator.

3. Apply this operator to each operator in the set: V0WV †0 =W(0).
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4. Find the unitary V1 mapping V0P1V
†

0 ∈ W(0) to a single-qubit Z Pauli operator.

5. Apply this operator to all operators in the set: V1W(0)V †1 =W(1)

6. Repeat this procedure from step (3) until all the operators are mapped to single

qubit Z Pauli operators: W 7→ WZ .

Finally, the eigenvalue of the single-qubit Z Pauli stabilizers in WZ are defined

by the vector ~q of the noncontextual ground state (~q, ~r), note 〈A(~r)〉 is fixed to +1

and thus ~r isn’t important here. UW can flip the sign of these assignments, but it is

efficient to classically determine by tracking how UW affects the sign of the operators

in W .

To project the Hamiltonian into the subspace consistent with the noncontextual

state, we first perform the following rotation Hfull 7→ HWfull = U †WHfullUW . As this is a

unitary transform, the resultant operator has the same spectrum as before. We then

restrict the rotated Hamiltonian to the correct subspace by enforcing the eigenvalue

of the operators in WZ - where the outcomes are defined by the noncontextual state.

As each operator in WZ only acts nontrivially on a unique qubit, each stabilizer fixes

the state of that qubit to be either |0〉 or |1〉. We write this state as:

|ψfixed〉 =
⊗

Pv∈WZ

|i〉v

i = 0, if 〈Pv〉 = +1

i = 1, if 〈Pv〉 = −1
, (5.23)

where v indexes the qubit a given single-qubit stabilizer acts on and 〈Pv〉 is defined

by the noncontextual state. We can write the projector onto this state as:

QW = |ψfixed〉 〈ψfixed| ⊗ I(n−|WZ |), (5.24)

where I(n−|WZ |) is the identity operator acting on the (n− |WZ |) qubits not fixed by

the single-qubit Pv stabilizers. The action on a general state |φ〉 is:

QW |φ〉 = |ψfixed〉 〈ψfixed|φ〉 ⊗ |φ〉(n−|WZ |) , (5.25)

where QW has only fixed the state of qubits v and thus each stabilizer Pv removes

one qubit from the problem. As the states of these qubits are fixed, the expectation

value of the single-qubit Pauli matrices indexed on qubits v are known. Thus the

Pauli operators in the rotated Hamiltonian HWfull = U †WHfullUW acting on these qubits

can be updated accordingly and the Pauli matrices on qubits v dropped. Any term

in the rotated Hamiltonian that anticommutes with a fixed generator Pv is forced to

have an expectation value of zero and can be completely removed from the problem

Hamiltonian. The resultant Hamiltonian acts on |WZ | fewer qubits. We denote this

operation as Hfull 7→ HW
′

full = Q†WU
†
WHfullUWQW . The noncontextual approximation
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will be stored in the identity term of the problem and therefore doesn’t need to be

tracked separately.

The choice of which stabilizer eigenvalues to fix (i.e. what is included in W) and

which to allow to vary remains an open question of the CS-VQE algorithm. The

number of possible stabilizer combinations will be
∑|Wall|

i=1

(|Wall|
i

)
= 2|Wall|−1. Rather

than searching over all 2|Wall| − 1 combinations of stabilizers to fix, in this work we

use the heuristic given in [244]. This begins at the full noncontextual approximation,

where W contains all possible stabilizers. We then add a qubit to the quantum

correction, by removing an operator from W and greedily choosing each pair that

gives the lowest ground state energy estimate [244]. Alternative strategies on how

to do this remains an open question for CS-VQE. A possible way to approach this

problem is to look at the priority of different terms in Hcon [259]. Note that the quality

of the approximation is sensitive to which stabilizers are included in W . When fewer

stabilizers are considered (included inW), the resultant rotated Hamiltonians will act

on more qubits and approximate the true ground state energy better.

Kirby et al. in [244] construct R as a sequence of rotations (exponentiated Pauli

operators) defined by A(~r) as defined by the unitary partitioning method [197, 198].

We denote this operation RS. Section 4.3.1 gives the full definition of this operator. If

RS is considered as just an arbitrary sequence of rotations generated by exponentiated

Pauli operators, then the transformation Hfull 7→ HRS
full = RSHfullR

†
S can result in an

operatorHRS
full composed of more Pauli operators. In fact the number of terms increases

by a factor of O(2N), where N is the number of cliques defined from T [244]. This

presented a possible roadblock for the CS-VQE algorithm, as classically precomputing

U †WHfullUW could cause the number of terms to exponentially increase. We give a

further analysis of this operation in Appendix A.2 and show that additional structure

between RS and Hfull can make the base of the exponent slightly lower; however,

the scaling still remains exponential in the number of qubits n. The only case in

which there is not an exponential increase in terms is for the trivial instance that RS

commutes with Hfull. In the next section, we provide an alternative construction of

R via a linear combination of unitaries that results in only a quadratic increase in

the number of terms of the Hamiltonian when transformed. This avoids the need to

apply the unitary partitioning operator R (via a sequence of rotations) coherently in

the quantum circuit after the ansatz circuit, which was proposed in [244].

5.2.5 Linear combination of unitaries construction of R

In the unitary partitioning method [197, 198], it was shown that R could also be built

as a linear combination of Pauli operators[198, 221]. We denote the operator as RLCU

(equation 4.91). Rotating a general Hamiltonian Hfull by this operation RLCU results
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in:

RLCUHfullR
†
LCU =

|Hfull|∑
i

(µi)Pi+

|A|−1∑
j

|Hfull|∑
i

∀{PjPk,Pi}=0

µijPjPkPi+

|A|−1∑
j

|Hfull|∑
i

|A|−1∑
l>j

∀{Pi,PjPl}=0

µijlPiPjPl.

(5.26)

The Pauli operators Pj, Pk and Pl are operators in A, further details are covered in

Appendix A.3. Overall, this unitary transformation causes the number of terms in

the Hamiltonian to scale as O
(
|Hfull| · |A|2

)
. This scaling is quadratic in the size

of A and as |A| ≤ 2n + 1 [256], the number of terms in the rotated system will at

worst scale quadratically with the number of qubits n. In a different context, this

scaling result was also obtained for involutory linear combinations of entanglers [260].

Overall, unlike the sequence of rotations approach, this non-Clifford operation does

not cause the number of terms in a Hamiltonian to increase exponentially.

The transformation given in Equation 5.26 Hfull 7→ HLCU ′

full = R†LCUHfullRLCU

is performed classically in CS-VQE. This is efficient to do because it just involves

Pauli operator multiplication, which can be done symbolically or via a symplectic

approach [261]. This operation could be applied within the quantum circuit. How-

ever, contrary to the deterministic sequence of rotations approach, this implementa-

tion would be probabilistic as it requires post-selection on an ancillary register [198,

209, 210, 221]. Amplitude amplification techniques could improve this but would re-

quire further coherent resources [236–239]. Doing this transformation in a classical

pre-processing step, therefore, reduces the coherent resources required and at worst

increases the number of terms needing measuring quadratically with respect to the

number of qubits.

5.2.6 CS-VQE implementation

In the original CS-VQE proposal [244], UW(~q, ~r) was fixed to include all the stabilizers

of the noncontextual ground state W ≡ Wall (Equation 5.20), rather than possible

subsetsW ⊆Wall. The whole Hamiltonian was mapped according to Hfull 7→ HWall
full =

U †Wall
HfullUWall

. In general A(~r) ∈ W and UWall
will therefore normally include the

unitary partitioning operator R. The problem with this approach is the unitary R is

not a Clifford operation and the transformation can cause the number of terms in the

Hamiltonian to increase. This increase is exponential if RS is used and quadratic if
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RLCU is employed. As this step can generate more terms, R should only be included

in UW if the eigenvalue of A(~r) is fixed to +1; otherwise, it is a redundant operation

as the spectrum of the operator rotated by R is unchanged. We therefore modify

the CS-VQE algorithm to construct UW from the CS-VQE noncontextual generator

eigenvalues that are fixed. This means W ⊆ Wall and ensures that the number of

terms can only increase if the eigenvalue of A(~r) is fixed.

5.3 Numerical results

We split our results into two subsections. First, we explore a toy problem, showing

the steps of the CS-VQE algorithm. We show how classically applying R without

fixing the eigenvalue of A(~r) to +1 can unnecessarily increase the number of terms

in a Hamiltonian without changing its spectrum. Finally, in Section 5.3.3 we ap-

ply measurement reduction combined with CS-VQE to a set of electronic structure

Hamiltonians and show that this can significantly reduce the number of terms requir-

ing separate measurement. These results have been published in [262].

5.3.1 Method

We investigated the same electronic structure Hamiltonians considered in the origi-

nal CS-VQE paper [244]. All molecules considered had a multiplicity of 1 and thus

a singlet ground state. The same qubit tapering was performed to remove the Z2

symmetries [124]. For each tapered Hamiltonian, we generate a set of reduced Hamil-

tonians {Q†WU
†
WHfullUWQW} where the size ofW varies from 1 to |Wall|, representing

differing noncontextual approximations, as summarised in Section 5.2.6. To generate

the different CS-VQE Hamiltonians, we modify the original CS-VQE source code used

in [244, 263]. The code was modified to implement the unitary partitioning step of

CS-VQE if and only if the eigenvalue of A(~r) was fixed. This ensured the number of

terms in the rotated Hamiltonian didn’t increase unnecessarily, as described in Section

5.2.6.

For each electronic structure Hamiltonian generated in this way, we then apply the

unitary partitioning measurement reduction scheme to further reduce the number of

terms requiring separate measurement [197, 198, 221]. Partitioning into anticommut-

ing sets was performed using NETWORKX [225]. A graph of the qubit Hamiltonian

is built, where nodes represent Pauli operators and edges are between nodes that

commute. A graph coloring can be used to find the anticommuting cliques of the

graph. This searches for the minimum number of colors required to color the graph,

where no neighbors of a node can have the same color as the node itself. The “largest

first” coloring strategy in NETWORKX was used in all cases [225, 226].
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Figure 5.2: Summary of different contextual subspace approximations for the
toy problem given in equation 5.27. Each Hamiltonian has been transformed as
Q†WU

†
WHUWQW , apart from the 4 qubit case, which is the full H. The scatter plot is

associated with the left-hand y-axis and gives the energy error of the ground-state as:
∆E = |Eapprox−Etrue|. The bar chart gives the number of terms in each Hamiltonian
and is associated with the right-hand y-axis. From left to right the following gener-
ators are fixed: {Y IY I, IXY I, IIIZ,A(~r0)}, {IXY I, IIIZ,A(~r0)}, {IXY I, IIIZ},
{IIIZ} and {}. TheW = {} case represents standard full VQE over the full problem.
The 0 qubit case presents the scenario where the problem is fully noncontextual and
no quantum correction is made. The full details on how each Hamiltonian is built is
provided in Appendix A.4. The horizontal black line indicates an absolute error of
1.6× 10−3. SeqRot, sequence of rotations

We calculate the ground state energy of each Hamiltonian in this study by directly

evaluating the lowest eigenvalues. This was achieved by diagonalising them on a

conventional computer.

5.3.2 Toy example

We consider the qubit Hamiltonian:

H = 0.6 IIY I + 0.7XYXI + 0.7XZXI + 0.6XZZI+

0.1 Y XY I + 0.7 ZZZI + 0.5 IIIZ + 0.1XXXI+

0.5XXY I + 0.2XXZI + 0.2 Y XXI + 0.2 Y Y ZI+

0.1 Y ZXI + 0.1 ZY Y I,

(5.27)

129



5.3. NUMERICAL RESULTS

and use it to exemplify the steps of the CS-VQE algorithm. The results are reported

to three decimal places and full numerical details can be found in Appendix A.4.

Following the CS-VQE procedure [244], we first split the Hamiltonian into its

contextual and noncontextual parts (Equation 5.4):

Hnoncon = 0.5 IIIZ︸ ︷︷ ︸
Z

+

0.7XZXI + 0.7 ZZZI+

0.1 Y XY I + 0.6 IIY I+

0.7XYXI + 0.6XZZI︸ ︷︷ ︸
T

,

(5.28a)

Hcon = 0.1XXXI + 0.5XXY I + 0.2XXZI+

0.2 Y XXI + 0.2 Y Y ZI + 0.1 Y ZXI+

0.1 ZY Y I.

(5.28b)

Each row after the first in Equation 5.28a, is a clique of T . From here, we define the

set R (Equation 5.12):

R = {Y IY I, IXY I, IIIZ}︸ ︷︷ ︸
G

∪{XZXI, Y XY I,XY XI}︸ ︷︷ ︸
{P (j)

0 |j=0,1,...,N−1}

.
(5.29)

Note how different combinations of the operators in Equation 5.29 allow all the op-

erators in Hnoncon (Equation 5.28a) to be inferred under the Jordan product, defined

as: Pa ◦ Pb = {Pa,Pb}
2

.

The expectation value for Hnoncon can be induced, by setting the expectation values

of operators in R (Equation 5.29), as the Pauli operators in Hnoncon are generated by

R under the Jordan product. The expectation value of each operator in Hnoncon can

therefore be inferred without contradiction. To find the ground-state of Hnoncon, we

checked all possible ±1 expectation values for each Gj (23 = 8 possibilities). For each

possible ±1 combination, the energy was minimized with respect to the unit vector

~r, which sets the expectation value for each 〈P (j)
0 〉 = rj. The vector (~q, ~r) that was

found to give the lowest energy defines the noncontextual ground-state. In this case

the ground-state is:

(−1,+1,−1︸ ︷︷ ︸
~q0

,+0.253,−0.658,−0.709︸ ︷︷ ︸
~r0

).
(5.30)

This noncontextual state defines the operator A(~r0):

A(~r0) = 0.253 Y XY I − 0.658XYXI − 0.709XZXI. (5.31)
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Figure 5.3: Number of Pauli operators requiring separate measurement to determine
the ground-state energy of a particular molecular Hamiltonian to within chemical ac-
curacy. For each molecule, the full Hamiltonian, tapered Hamiltonian, CS-VQE and
CS-VQE with unitary partitioning measurement reduction applied are given. Full nu-
merical details of each are provided in Appendix A.5. The size of the Hamiltonian for
LiH (3-21G singlet) with measurement reduction applied is different for the sequence
of rotations and LCU unitary partitioning methods. This is an artifact of the graph
color heuristic finding different anticommuting cliques in the CS-VQE Hamiltonian.

From this we can write Wall (Equation 5.20):

Wall ≡ {A(~r0)} ∪ {−Y IY I, IXY I,−IIIZ} . (5.32)

To map A(~r0) to a single Pauli operator we use unitary partitioning [197, 198, 221].

The required unitary can be constructed as either a sequence of rotations [198],

RS = e−1i·0.788·ZY ZI · e+1i·1.204·ZZZI , (5.33)

or linear combination of unitaries [198],

RLCU = 0.792 IIII + 0.416i ZZZI − 0.448i ZY ZI. (5.34)

These operators perform the following reduction: RSA(~r0)R†S = RLCUA(~r0)R†LCU =

Y XY I.

If the eigenvalue of A(~r0) is fixed, then we should consider Wall (Equation 5.32)
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under the unitary transform RLCU or RS (Equation 5.20):

W ′

all = RS/LCUA(~r)R†S/LCU ∪ {−Y IY I, IXY I,−IIIZ}

= {Y XY I} ∪ {Y IY I, IXY I, IIIZ}.
(5.35)

Next, we define different UW (Equation 5.22), depending on which stabilizers W
we wish to fix. For this problem we found the optimal ordering of which stabilizers

to fix to be:

1. {−1Y IY I,+1 IXY I,+1A(~r0),−1 IIIZ}

2. {+1 IXY I,−1 IIIZ,+1A(~r0)}

3. {+1 IXY I,−1 IIIZ}

4. {−1 IIIZ}.

This ordering was found by a brute force search over all
∑|Wall|

i=1

(|Wall|
i

)
= 24 − 1 = 15

possibilities for W .

The members of the resulting set of four different W each represent different non-

contextual approximations. These give four different UW built according to Equation

5.22. The full definition of each operator is given in Appendix A.4.

Taking a specific example, forW = {+IXY I,−IIIZ,+A(~r0)} we define U †W (Equa-

tion 5.22). This operator transformsW asWZ = U †WWUW = {+IZII,−IIIZ,+IIZI}.
The eigenvalues of the operators in WZ are fixed by the noncontextual state to be

〈IZII〉 = +1, 〈IIZI〉 = +1, 〈IIIZ〉 = −1. This defines the projector:

QW =
(
|0〉 〈0|+ |1〉 〈1|︸ ︷︷ ︸

I
(n−|WZ |)

)
⊗ |0〉 〈0| ⊗ |0〉 〈0| ⊗ |1〉 〈1|︸ ︷︷ ︸

|ψfixed〉

= I ⊗ |001〉 〈001| .

(5.36)

The reduced Hamiltonian is therefore

H 7→ HLCU
W = Q†WU

† (LCU)
W HfullU

(LCU)
W QW

= −1.827 I − 0.414X − 0.292 Z + 0.648 Y.
(5.37)

Appendix A.4 gives further details about this operation and provides the specifics for

the other projected Hamiltonians.

Overall four Hamiltonians are generated, representing different levels of approxi-

mation, that act on 0, 1, 2 and 3 qubits respectively. The 4-qubit case represents the

standard VQE on the full Hamiltonian. Figure 5.2 summarizes the error ∆E of each

of these compared with the true ground-state energy (scatter plot). The number of

terms in each Hamiltonian is given by the bar chart. The green and orange results

haveW ≡Wall for all cases and represent the old CS-VQE implementation. For these
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Figure 5.4: Number of qubits required to simulate different electronic structure Hamil-
tonians in order to achieve chemical accuracy. For each molecule the full Hamiltonian,
tapered Hamiltonian, CS-VQE and CS-VQE with unitary partitioning measurement
reduction applied are given. Numerical details for each result are provided in Ap-
pendix A.5.

results, in the 3 and 4 qubit Hamiltonians have an increased number of terms due to

RS/LCU being implemented, even though the eigenvalue of A(~r0) is not being fixed to

+1. On the other hand, the gray and blue results in Figure 5.2 build UW according to

Equation 5.22, where W ⊆ Wall. This approach ensures that RS/LCU is only applied

when necessary.

5.3.3 Measurement reduction

Figures 5.3 and 5.4 summarize the results of applying the unitary partitioning mea-

surement reduction strategy to a set of electronic structure Hamiltonians We report

the number of terms and number of qubits in each Hamiltonian required to achieve

chemical accuracy compared with the original problem. Appendix A.5 gives further

information about each result, where the different levels of noncontextual approxima-

tion are shown. As previously discussed in [244], even though CS-VQE in general is

an approximate method, chemical accuracy can still be achieved using significantly

fewer qubits. Applying unitary partitioning on-top of the reduced CS-VQE Hamilto-

nians required to achieve chemical accuracy can further reduce the number of terms

by roughly an order of magnitude. This is consistent with the previous results in
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Molecule Basis Number of gates for RS

BeH2 (STO-3G) [90, 72]
Mg (STO-3G) [189, 162]
H3

+ (3-21G) [209, 176]
O2 (STO-3G) [184, 160]

OH– (STO-3G) [104, 80]
CH4 (STO-3G) [325, 286]
Be (STO-3G) [14, 8]

NH3 (STO-3G) [299, 260]
H2S (STO-3G) [120, 96]
H2 (3-21G) [66, 48]
HF (3-21G) [735, 672]
F2 (STO-3G) [133, 112]

HCl (STO-3G) [36, 24]
HeH+ (3-21G) [88, 64]
MgH2 (STO-3G) [403, 364]
CO (STO-3G) [325, 286]
LiH (STO-3G) [36, 24]
N2 (STO-3G) [207, 180]

NaH (STO-3G) [493, 442]
H2O (STO-3G) [120, 96]
H3

+ (STO-3G) [3, 0]
LiOH (STO-3G) [378, 336]
LiH (3-21G) [459, 408]
H2 (6-31G) [66, 48]

NH4
+ (STO-3G) [325, 286]

HF (STO-3G) [36, 24]

Table 5.3: Gate requirements to implement R as a sequence of rotations in the unitary
partitioning measurement reduction step. The square tuple gives the upper bound
on the number of single qubit and CNOT gates required - [single, CNOT ]. These
resource requirements are based on the largest anticommuting clique of each Hamil-
tonian, as these have the largest circuit requirements for RS.

[221].

To actually obtain a measurement reduction, one needs to show that the number

of measurements required to measure the energy of a molecular system, to a certain

precision ε, is reduced. Currently, Figure 5.3 only shows that we have reduced the

number of Pauli terms being measured. We have not commented on the variance. In

Section 4.2.6, we prove that simultaneous measurement of normalized anticommuting

cliques can never do worse than performing no measurement reduction and will more

often than not give an improvement. The proof given is state independent. There

are other measurement strategies based on grouping techniques, such as splitting a

Hamiltonian into commuting or qubit-wise commuting cliques [103, 190, 195, 196,

201]. The measurement reduction obtained from these methods is more complicated,

as the covariance of operators within a clique must be carefully accounted for [95,
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190]. This is one of the reasons we do not analyse the performance of these strategies

in this work. Many other measurement methods have also been proposed [163, 172,

177–179, 185, 187, 188, 193, 245] and their effect on the number of measurements

would be interesting to investigate.

In Table 5.3, we report the upper bound on the gate count required to implement

measurement reduction as a sequence of rotations. The LCU method would require

ancilla qubits and analysis of the circuit depth is more complicated. Further analysis

can be found in [221]. The number of extra coherent resources required to implement

unitary partitioning measurement reduction is proportional to the size of each anti-

commuting clique a Hamiltonian is split into [198, 221]. The sequence of rotations

circuit depth scales as O
(
Ns(|C| − 1)

)
single qubit and O

(
Ns(|C| − 1)

)
CNOT gates,

where Ns is the number of system qubits and |C| is the size of the anticommuting

clique being measured. Table 5.3 reports the gate count upper bound for the largest

anticommuting clique of a given CS-VQE Hamiltonian. We do not consider possible

circuit simplifications, such as gate cancellations. To decrease the depth of the quan-

tum circuit required for practical application, we suggest finding nonoptimal clique

covers; for example, if anticommuting cliques are fixed to a size of 2, the resources

required to perform RS are experimentally realistic for current and near-term devices,

as only O(Ns) single qubit and O(Ns) CNOT gates are required [221].

The heuristic used to determine the operators in Hnoncon selected terms in the full

Hamiltonian greedily by coefficient magnitude, while keeping the set noncontextual

[256]. The Hamiltonians studied here had weights dominated by diagonal Pauli op-

erators, as the Hartree-Fock approximation accounts for most of the energy. This

heavily constrains the operators allowed in A. For the electronic structure Hamilto-

nians considered in this study, we found in all cases that |A| = 2. In general, we do

expect more commuting terms in Hnoncon than anticommuting terms. This is because

there are more possible commuting Pauli operators defined on n qubits compared

with anticommuting operators (2n vs 2n+1). G will therefore in general be the larger

contributor to superset R (Equation 5.12).

In Figure 5.3, the CS-VQE bars have not been split into two for the case when

R is constructed as RLCU or RS. This is due to |A| being 2 in all cases, which is

the special case when these operators (RLCU and RS) end up being identical. In this

instance R has the form R = αI+iβP and thus the number of terms will only increase

for every term in the Hamiltonian that P anticommutes with. However, in general

|A| will be greater than 2 and the effect of R can dramatically affect the number of

terms in the resultant rotated Hamiltonian. We observe this in Fig. 5.2 of the toy

example, where the 2 and 3 qubit CS-VQE Hamiltonians have had UWall
applied to

them even though the eigenvalue of A(~r) is not fixed. In that example, for the 3

qubit approximation the sequence-of-rotations rotated Hamiltonian (green) actually
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has fewer terms than the LCU rotated operator (orange). This result is an artifact

of the small problem size. In Appendix A.3 we show that the scaling will favor the

LCU implementation, where the number of terms in a Hamiltonian can only increase

quadratically, not exponentially, when performing the unitary partitioning rotation

as a LCU rather than a sequence of rotations.

In Appendix A.5, we show the convergence of CS-VQE at different noncontextual

approximations. The results illustrate that CS-VQE can converge to below chemical

accuracy well before the case when no noncontextual approximation is made (full

VQE). Results beyond convergence are included to show the different possible levels of

approximation. In practice, knowledge of the true ground-state energy is not known a

priori and so using chemical precision to motivate the noncontextual approximation

will not be possible. In this setting, a way to approach quantum advantage is to

note that CS-VQE is a variational method. The quantum resources required can be

expanded until the energy obtained by CS-VQE is lower than that coming from the

best possible classical method. At this point, either the algorithm can be terminated

or further contextual corrections can be added until the energy converges, at which

point the algorithm should be stopped.

5.4 Conclusion

The work presented in this chapter shows that combining the unitary partitioning

measurement reduction strategy with the CS-VQE algorithm can further reduce the

number of terms in the projected Hamiltonian requiring separate measurement by

roughly an order of magnitude for a given molecular Hamiltonian. The number of

qubits needed to achieve chemical accuracy in most cases was also dramatically de-

creased, for example the H2S (STO-3G singlet) problem was reduced to 7 qubits from

22.

We also improve two parts of the CS-VQE algorithm. First, we avoid having to

apply the unitary partitioning operator R after the ansatz which averts the potential

exponential increase in the number of Pauli operators of the CS-VQE Hamiltonian

caused by classically computing the non-Clifford rotation of the full Hamiltonian when

R is defined as a sequence of rotations [198, 244]. We show that applying this operation

as a linear combination of unitaries [198]: Hfull 7→ HLCU ′

full = R†LCUHfullRLCU , results in

the number of terms at worst increasing quadratically with the number of qubits. This

result makes classically precomputing this transformation tractable and R no longer

needs to be performed coherently after the ansatz. Secondly, we define the unitary

UW , which maps each stabilizer in Wall (equation 5.21) to a distinct single-qubit

Pauli matrix, according to which stabilizer eigenvalues are fixed by the noncontextual

state. This ensures that the non-Clifford rotation required by CS-VQE is only applied
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when necessary and also reduces the number of redundant Clifford operations that

are classically performed.

There are still several open questions for the CS-VQE algorithm. We summarize

a few here. (1) What is the best optimization strategy to use when minimizing the

energy over (~q, ~r) in the classical noncontextual problem? (2) What heuristic is best

to construct the largest |Hnoncon|? (3) How can we efficiently determine which non-

contextual stabilizers to fix while maintaining low errors? In this work, the size of

each electronic structure problem allowed us to classically compute the ground-state

energies at each step, but if this is not possible then VQE calculations would be

required. However, as each run requires fewer qubits and decreases the number of

terms requiring separate measurement this approach may overall still be less costly

than performing VQE over the whole problem, especially when combined with further

measurement reduction strategies. (4) What are the most important terms to include

in Hcon or equivalently in Hnoncon? Currently, it is not known whether |Hnoncon| should

be maximized or whether selecting high-priority terms [259] from the whole Hamilto-

nian results in a better approximation for a given problem. We leave these questions

to future work. We have written an open-source CS-VQE code [264] that includes all

the updated methodologies discussed in this chapter - in particular using the LCU

approach to unitary partitioning and constructing UW (equation 5.22) according to

which operators in W have their eigenvalue fixed. We hope to further expand this

codebase in the future.
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Chapter 6

Multiscale Quantum Simulation via

Projection-Based Embedding

Quantum embedding schemes for electronic structure problems aim to reduce the

computational cost of a problem by dividing a molecular problem into smaller (and

so less costly) subsystems [265]. There are many different embedding approaches that

each divide a problem in different ways. Most embedding methods focus on divid-

ing a given problem into what makes the most chemical sense, for example avoiding

breaking bonds, which can be important to a given property being simulated [265].

The important aspect of embedding techniques is different levels of theory can be

“mixed and matched”. We restrict this chapter to only consider “QM:QM” em-

bedding, which involves embedding a quantum mechanical (QM) system in another

quantum mechanical system. We do not discuss “QM:MM”, which involves a quan-

tum mechanical calculation embedded in a molecular mechanics (MM) simulation.

The importance of these methods is evidenced by the 2013 Nobel Prize in chemistry

awarded to Martin Karplus, Michel Levitt, and Arieh Warshel “for the development

of multiscale models for complex chemical systems” [266].

For QM:QM approaches, the main embedding methods are [267]: (1) Green’s func-

tion embedding [268–272], (2) density matrix embeddings [273–276] and (3) density

functional embeddings. Due to the sheer breadth and number of different embedding

techniques, in this chapter we restrict our background to only cover density functional

embeddings. We then introduce the projection-based embedding (PBE) model and

provide a numerical investigation of the resource reductions obtained for a test bed

of large molecules. The importance of this approach is it allows larger systems to be

studied on current NISQ hardware.

6.1 Density functional embeddings

Embedding methods based on DFT are often used as they can account for electron

exchange and correlation in a computationally tractable fashion. Standard DFT cal-

culations are commonly used to study systems of hundreds of atoms giving properties

such as energetics, conformational properties and magnetic properties among many
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Citation Date first proposed Method

Cortona [277] 1991 Subsystem DFT (sDFT)

Wesolowski et al. [278],
Wesolowski et al. [279]

1993 Frozen Density Embedding Theory (FDET)

Govind et al. [280],
Klüner et al. [281],
Libisch et al. [282]

1999 Density Functional Embedding Theory (DFET)

Elliot et al. [283],
Elliot et al. [284]

2009 Partition Density Functional Theory (PFET)

Huang et al. [285] 2011 Potential-Functional Embedding Theory (PFET)
Manby et al. [286, 287] 2012 Projection-Based Embedding (PBE)

Mosquera et al. [288]
Mosquere et al. [289]

2018 Locally Coupled Open Subsystems (LCOS)

Mosquere et al. [290] 2019 Domain Separated DFT (DS-DFT)

Table 6.1: A brief history of different DFT embedding methods.

others. For further details see [291] and references therein. Embedding approaches

seek to utilize these techniques with other approximations.

To our knowledge, the early ideas of DFT embedding were first discussed by Parr

et al [292] . Cortona [277] and closely after Wesolowski and Warshel [278] formalized

these ideas forming the groundwork of subsequent methods.

Consider the ground-state density ρA of a molecular system A, adjusted through

an external field vembA , where the field comes from the environment. Through the

Coulomb interaction and indirectly the Pauli exclusion principle, the energy of A

is modified by its interactions with the environment. These energetic contributions

to the ground state are contained within a ∆E term, where the embedding DFT

framework provides rigorous foundations for vembA and ∆E as functionals [267].

To understand the embedding process, we first need to consider the exact energy

density functional for the full system (equation 2.96). For readability, we repeat this

here:

E[ρ] = F [ρ] +

∫
d3~r vext(~r)ρ(~r). (6.1)

Consider this functional written in terms of the Kohn-Sham kinetic, Coulomb, ex-

ternal, and exchange-correlation terms (equation 2.101). The Euler equation for this
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problem is given by equation 2.104, which again we reproduce here as:

µ =
∂F [ρ]

∂ρ(~r)
+ vext(~r)

=
∂Ts[ρ]

∂ρ(~r)
+ veff (~r),

(6.2)

where:

veff (~r) =
∂J [ρ]

∂ρ(~r)
+
∂Exc[ρ]

∂ρ(~r)
+ vext(~r)

=

∫
ρ(~r)′

|~r − ~r′|
d~r′ + vxc(~r) + vext(~r)

= vH(~r) + vxc(~r) + vext(~r).

(6.3)

As discussed in Section 2.9 , Exc[ρ] and vxc account for the nontrivial correlation

effects and must be approximated.

In DFT embedding, the total energy E[ρ] (equation 6.1) is split into two parts

based on the fragment energy and its remainder [267]:

E[ρ] = E[ρA] + ∆E[ρ, ρA], (6.4)

where

∂

∂ρA

(
E[ρA] + ∆E[ρ, ρA]

)
− µ = 0. (6.5)

This result is the same as the Euler equation for A placed in an external field vembA ,

by choosing [267]:

vembA =
∂∆E[ρ, ρA]

∂ρA
. (6.6)

This definition for vembA gives the exact embedding potential that yields the exact

subsystem density ρA.

In DFT embedding, it is common to divide the total electron density as:

ρ = ρtotal = ρA + ρB. (6.7)

It is standard practice to refer to ρA as the density of the embedded subsystem and

ρB as the environment density. An advantage of this methodology is if ρA and ρB are

N -representable then so is ρtotal [267, 293].

Written in terms of subsystems and the environment, vembA can be written in its
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components [267]:

vembA =
∂

∂ρA

(
Ts[ρtotal]− Ts[ρA]

)
+ vH [ρtotal − ρA︸ ︷︷ ︸

ρB

] +
∂

∂ρA

(
Exc[ρtotal]− Exc[ρA]

)
= vnadds + vBH + vnaddxc ,

(6.8)

where vnadds is the nonadditive kinetic potential, vBH is the environment Coulomb po-

tential and vnaddxc is the nonadditive exchange-correlation potential [267]. The nonad-

ditive kinetic potential (NAKE) is the largest contribution and includes the exclusion

principle that forces electrons in the active subsystem to occupy states orthogonal to

those in the environment [267, 277, 278]. Explicitly, we can write the nonadditive

kinetic energy as [278]:

Ts[ρtotal] = Ts[ρA + ρB] = Ts[ρA] + Ts[ρB] + T nadds [ρA, ρB]. (6.9)

The nonadditive exchange-correlation term can be obtained in the same way. These

nonadditive terms account for the interaction between subsystems.

Given this formalism, we give a brief chronology of the development of DFT em-

beddings, which is summarised in Table 6.1 and use this timeline as a natural flow of

our discussion. Subsystem DFT was first proposed by Cortona [277]. The main idea

is each atom is treated as a subsystem and assigned a particular electron density [265,

277]. The total electron density is then simply a sum of all these atomic like densities,

where the intratomic kinetic energy is obtained exactly and the interatomic kinetic

energy approximated. The exchange-correlation functional is also approximated by

the local density approximation (LDA). A modern account of this method is presented

by Jacob and Neugebauer in [294]. They relate the approximations of this model back

to the non-additive contribution arising from the exchange-correlation functional and

the non-additive kinetic energy.

Wesolowski and Warshel then introduced Frozen Density Embedding theory (FDET)

[278]. They split a system into two fragments. One is kept frozen (or fixed) and

used to generate an effective potential for the active system, which is then solved

self-consistently. Explicitly, this would involve keeping ρB in equation 6.7 fixed and

solving for ρA. This technique was then extended by Wesolowski to iteratively solve

subsystem ρA keeping ρB fixed and then solving ρB while keeping the updated ρA den-

sity fixed. This procedure is repeated until both densities converge and is commonly

known as “freeze-and-thaw” iterations. It is possible to further extend this theory to

multiple subsystems. A richer discussion on this is outside the scope of this thesis,

but a review of FDET and its extensions may be found in [279].

Then in 1999, Govind et al. introduced density functional embedding theory
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(DFET). This combined DFT with first principle correlation techniques allowing post-

SCF methods to be applied to the active system. The energy is found according to

[280–282]:

Eemb
total = EDFT

A + EDFT
B + EDFT

nonadd + (EWFT
A − EDFT

A )

= EDFT
total + (EWFT

A − EDFT
A ),

(6.10)

where WFT denotes post-SCF wavefunction calculations of the active system of in-

terest. This requires the Hamiltonian H of the active system to be modified to

Hemb = H + V emb
A [282]. Region A is not treated in isolation, but rather in the

presence of an embedding potential that is generated from a DFT calculation on the

environment fragments. This allows a user to systematically improve the description

of energetics in a local region. It should be noted that this subtractive method, re-

quires a well-converged reference density and reference energy for the total system

[265], as seen by the form of equation 6.10. Again, the kinetic-energy contribution

to vembA (~r) is the most challenging component [280]. A problem with all wavefunction

in DFT embeddings can be seen in equation 6.10, where the error in the nonadditive

energy of the DFT calculation requires exactly cancelling the wavefunction descrip-

tion of the system - i.e. the EWFT
A − EDFT

A term requires exact error cancellation in

EDFT
nonadd. Incomplete cancellation is denoted as “double counting” [267].

Klüner et al. extended the DFET method by improving descriptions of the ground

state and treating excited states. It is noted in [280] that this scheme is exact in theory,

but in practice there is ambiguity coming from the kinetic and exchange-correlation

contribution to the embedding potential.

A conceptual problem that arises for DFET is the problem of infinitely many

ways to obtain a partitioning of the total electron density (equation 6.7) [295]. Carter

and coworkers devised a way to avoid the non-uniqueness of the density partitioning

by requiring that the active and environment subsystems share the same embedding

potential, vembA = vembB , where the number of electrons in each subsystem is fixed [296].

This follows from similar ideas used in Partition Density Functional Theory (PDFT).

Density Functional Partition Theory (DFPT) was introduced in 2009 and later

revised to Partition Density Functional Theory (PDFT) by Elliot et al. [283, 284].

The technique involves dividing the total density ρtotal(~r) into fragments, while en-

suring the sum of fragment densities matches the molecular density. The system of

interacting fragments is mapped to an effective system of non-interacting fragments

that share a common embedding potential [285, 297]. In the context of PDFT this is

known as the partition potential and is found as the Lagrange multiplier in a func-

tional minimization of the sum of fragment energies [294]. Unlike DFET, PDFT is

formulated without constraints on having integer electron numbers in each subsystem,

allowing fractional occupation to occur in each subsystem. The only constraint is the
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total number of electrons is fixed [284, 294, 296].

Both DFPT and PDFT do not consider changes in the environment due to the

wavefunction description of the active system [282]. A more accurate theory should

update the embedding potential from the wavefunction description of the active sys-

tem. Carter and Huang in [285] developed potential-functional embedding theory

(PFET) to do this, where rather than optimizing the electron densities, the embed-

ding potential is optimized instead. This formalism is based on the fact that the

embedding potential is a unique property of the total system for a given partitioning

[282].

A deficiency of many subsystem based embedding techniques is if an embedding

potential strongly delocalises the density of the embedded system over to the environ-

ment or vice versa. Under such regimes, these subsystem methods are likely to have

trouble describing charge-transfer processes [265]. Mosquera et al. introduced tools

to deal with this issue.

In 2018, Mosquera et al. proposed the Locally Coupled Open Subsystem (LCOS)

method [288, 289]. This uses an auxiliary wavefunction expressed as a linear combi-

nation of tensor products of subsystem states, in which one can use fully correlated

wavefunctions or Kohn-Sham Slater determinants. For this system, the auxiliary

Hamiltonian is expressed over subsystem Hamiltonians plus a coupling operator that

allows electron transfer between subsystems. This coupling operator, which the au-

thors denote the “coupling potential”, can be estimated using density functional ap-

proximations or machine learning approaches [289]. If the charge-transfer operator in

the DFT version of LCOS is not included then it becomes equivalent to PDFT and

can be implemented as an extension of other methods such as FDET, subsystem DFT

and PFET [265]. In fact, the authors recommend integration of the LCOS approach

with such fragment-based formalisms [289].

Chan and Sun in [267] comment on how one of the major disadvantages of DFT

embedding is that when examining ρA alone it is difficult to distinguish between

the scenarios of A bonded to the environment and one that isn’t. This is due to the

density by definition not containing off-diagonal density matrix correlations describing

entanglement. In principle, all these effects are given by the exact density functional;

however, in all practical instances this has to be approximated and so the lack of the

off-diagonal information can pose difficulties for density functional approximations

used in practice. We note that the LCOS approach may be able to correct some of

these deficiencies; however, further investigation is required.

Another embedding approach is denoted as Domain Separated Density Functional

Theory (DS-DFT). The main idea behind this method is using the electronic repulsion

operator to motivate decomposing a problem into different volume elements. This

partitioning allows users to apply different levels of theory to different regions of space.
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In other words, different regions of a molecule may be studied by different types

of electron interaction operators (and thereby different levels of theory). Practical

implementation of this method requires density functional approximations to subtract

the global Hartree exchange-correlation energy associated with the regions that are

to be computed with nonlocal interactions or explicit wavefunction methods [290].

In many of the DFT embeddings methods introduced, most suffer from approxi-

mating the nonadditive kinetic potential vnadds (equation 6.8) and energy T nadds [ρA, ρB]

(equation 6.9). A problem arises because the KS molecular orbitals of the whole sys-

tem are not available [295]. One approach involves approximating Ts using a density

functional approximation, such as the Thomas-Fermi functional [277, 278]. However,

this strategy is limited by approximation of the kinetic energy term [267]. More re-

cently, there have been proposals to calculate the nonadditive kinetic potential vnadds

and ∂Ts
∂ρA

numerically [298–300]. As the noninteracting ground state density can be

found from an external potential vs 7→ ρ with a cost O(N3) where N is the number

of electrons [267], inversion of this mapping is tractable [267, 301]. Such an inver-

sion determines a KS potential and orbitals corresponding to a given electron density.

Common KS inversion methods are Zhao-Morrison-Parr (ZMP) [302] and Wu-Yang

(WY) [301]. The KS-pies python library offers a useful open-source implementation

of these methods [303]. However, in practice there can be numerical issues leading to

nonphysical potentials with wild oscillations that lead to poor approximations of vs

[304, 305].

The issue of the nonadditive kinetic potential and energy under certain conditions

is not a problem. Wesolowski and Weber in Appendix A of [306] prove that the

nonadditive kinetic energy is zero for subsystems electron densities ρA and ρB that do

not overlap for all points in space. The projection-based embedding (PBE) framework

proposed by Manby and coworkers doesn’t have the issue of nonadditive kinetic energy

due to this [286]. As will be discussed in the next section, this is due to a level-shifting

projector keeping the orbitals of different subsystems orthogonal to one another.

6.2 Theory of projection-based embedding

Just as the other embedding methods discussed in the previous section, in projection-

based embedding (PBE) the total system density is written as a sum of two subsystems

- i.e. ρtotal = ρA + ρB (equation 6.7). The Kohn-Sham DFT energy is then written as

a combination of subsystem energies and a nonadditive term [286]:

E[ρA + ρB] = E[ρA] + E[ρB] + ∆E[ρA, ρB], (6.11)
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where subsystem A defines the active system and B defines the environment subsys-

tem. As discussed in the previous section, the ∆E[ρA, ρB] term contains the exchange-

correlation effects between subsystems [286]:

∆Exc[ρA, ρB] = Exc[ρA + ρB]− Exc[ρA]− Exc[ρB]. (6.12)

An advantage of the PBE method is the nonadditive kinetic energy (equation 6.9) is

zero and does not need to be approximated. We will see later that this is due to a

projector term keeping the molecular orbitals between subsystems orthogonal - i.e.

〈ψAi |ψBj 〉 = 0.

The projection-based embedding procedure can be broken down into three major

steps: a global calculation, localization step and partitioning step. The following

subsections summarise each part.

6.2.1 Global calculation

The first step in the PBE procedure is to perform a low-level (cheap) self-consistent

field calculation (SCF) of the whole molecular system under consideration. We call

this the global calculation. For both Hartree-Fock and Kohn-Sham DFT calculations,

this yields a set of spatial molecular orbitals (MOs) {ψi(~r)|i = 1, 2, . . . , η}. Each MO

is formed from a linear combination of K known atomic orbital (AO) basis functions

{φj(~r)|j = 1, 2, . . . , K}:

ψi(~r) =
K∑
j=1

Cjiφj(~r), (6.13)

where C is a matrix of canonical MO coefficients - just as equation 2.57. In general,

the AO basis functions φj(~r) are not orthonormal. We can see this by the (K ×K)

overlap matrix:

Sµν = 〈φµ|φν〉 =

∫
d~r φµ(~r)∗φν(~r). (6.14)

If S is the identity matrix then all the AO basis functions are orthonormal; however,

in general this is not the case. However, linear combinations of these non-orthogonal

AOs, given by the columns of C, construct orthogonal MOs ψi(~r) - i.e. we need

C†SC = I.

In order to partition the molecular problem into an active and environment part,

these canonical MOs ψi must first be localized and assigned to a subsystem. We

introduce how this is done next.
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6.2.2 Localization of molecular orbitals

In [307], Lehtola and Jónsson state “Hartree-Fock and KS-DFT is invariant under

a unitary transformation of the occupied-occupied and virtual-virtual blocks”. This

is true because the Hartree-Fock and KS-DFT wavefunctions are approximated as a

single Slater determinant. From linear algebra, it is well known that the determinant

of a matrix product is given by the product of their determinants - i.e. for general

matrices det(AB) = det(A)det(B). Using this property and the fact that the determi-

nant of the identity matrix is det(I) = 1. Given a unitary matrix V , where V †V = I,

we obtain the following:

1 = det(I) = det(V †V ) = det(V †)det(V ) = det(V )∗det(V ) = |det(V )|2, (6.15)

which implies that the determinant of any unitary matrix must have a value of eiθ,

as |eiθ| = 1. Therefore, acting with a unitary will leave the Slater determinant un-

changed up to a global phase and so observable quantities of the wavefunction will be

unchanged. Thus, the solution to an SCF problem can be described by a set of dif-

ferent (unitarily) rotated orbitals. Such a unitary rotation U can be used to spatially

localize each MO ψi as much as possible. The form of U is defined by a particular

localization procedure and there are many methods based on different localization

criteria. We denote these orbitals as localized molecular orbitals (LMOs) or ψLMO
i .

The matrix of orbital coefficients for these localized orbitals are given by the columns

of CLMO defined as [240]:

CLMO = CU. (6.16)

This construction ensures the orthonormality condition of each molecular orbital is

still conserved - i.e.
(
CLMO

)†
SCLMO = I. We see this via the following proof:(

CLMO
)†
SCLMO = U †C†SCU

= U †IU = IU †U

= I.

(6.17)

This construction allows for U to be determined from C and CLMO:(
CLMO

)†
SCLMO = U †C†SCLMO = I

=⇒ U = C†SCLMO
(6.18)

by multiplying on the left with U . The reason we include equation 6.18 is sometimes

quantum chemistry packages only return CLMO without U .
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In summary, we get the following mapping:

ψi(~r) =
K∑
j=1

Cjiφj(~r) 7→ ψLMO
i =

K∑
j=1

[CU ]jiφj(~r) =
K∑
j=1

CLMO
ji φj(~r). (6.19)

Next, we show how the charge density remains unchanged.

For a closed shell molecule, described by a single determinant wavefunction, each

MO ψi contains two electrons and thus the total charge density is [18]:

ρ(~r) = 2

η/2∑
i=1

ψ∗i (~r)ψi(~r)

= 2

η/2∑
i=1

(
K∑
ν=1

C∗νiφ
∗
ν(~r)︸ ︷︷ ︸

ψ∗i (~r)

K∑
µ=1

Cµiφµ(~r)︸ ︷︷ ︸
ψi(~r)

)

=
K∑
µ=1

K∑
ν=1

[
2

η/2∑
i=1

CµiC
∗
νi

]
φ∗ν(~r)φµ(~r)

=
K∑
µ=1

K∑
ν=1

γµνφ
∗
ν(~r)φµ(~r).

(6.20)

Here the square brackets define the density matrix γµν (defined in the AO basis):

γµν = 2

η/2∑
i=1

CµiC
†
νi, (6.21)

that for a set of basis function {φj(~r)|j = 1, 2, . . . , K} fully specifies the charge density

ρ(~r) [18]. The sum runs over η/2, as these are the occupied MOs of a closed shell

calculation. The whole matrix can be obtained as γtotal = 2Cocc(Cocc)
†, where occ

denotes only using the occupied columns of the C matrix (the first η/2 columns,

indexed by i in Equation 6.21). In the localized basis, the density matrix remains

unchanged as:

γtotal = 2Cocc(Cocc)
†

= 2[CLMO
occ U ] [U †(CLMO

occ )†]

= 2CLMO
occ (CLMO

occ )†.

(6.22)

Given a set of localised molecular orbitals, we partition them into two subsystems

denoted act (active) and env (environment). There are different methods to do so

and we discuss this later in Section 6.3 . Overall we generate a set of (occupied)

LMO indices K and L for the active and environment subsystems respectively. The
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resulting charge density for each subsystem can then be written as:

γactµν = 2
∑
k∈K

CLMO
µk (CLMO

νk )†, (6.23a)

γenvµν = 2
∑
l∈L

CLMO
µl (CLMO

νl )†, (6.23b)

for closed-shell calculations. The set K∪L contains all the occupied molecular orbital

indices.

The total system electron density is written as a sum of subsystem densities:

γtotal = γact + γenv

= 2CLMO
K (CLMO

K )† + 2CLMO
L (CLMO

L )†

= 2CLMO
occ (CLMO

occ )†.

(6.24)

The number of electrons will also be split according to ntotale = nacte +nenve = Tr(Sγact)+

Tr(Sγenv) = Tr(Sγtotal), where Tr denotes the trace operation.

The energy of the full system can be found from its components via [308]:

E[γact, γenv] = Tr(γacthcore) + g(γact)︸ ︷︷ ︸
energy of isolated act system

+

Tr(γenvhcore) + g(γenv)︸ ︷︷ ︸
energy of isolated env system

+

g(γact, γenv)︸ ︷︷ ︸
nonadditive two-electron energy

.

(6.25)

Here hcore is the one-electron core Hamiltonian and g groups the two-electron terms

- Coulomb and exchange for Hartree-Fock and exchange-correlation for DFT. The

nonadditive two-electron energy is given by:

g(γact, γenv) = g(γact + γenv)− g(γact)− g(γenv), (6.26)

and accounts for the interaction between subsystems [308].

6.2.3 Projection

Next, we want to solve the active system using a higher (more accurate) level of

theory. The effect of the interaction between the active and environment subsystems

is accounted for by additional terms in the core Hamiltonian. The Fock matrix for
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the active system embedded in the environment system is [286]:

F act
emb = hcore + Vemb + P env

proj + g(γactemb)

= hemb + g(γactemb),
(6.27)

where:

Vemb = g(γact + γenv)− g(γact)

=
(
Vxc[γ

act + γenv]− Vxc[γact]
)

+
(
J [γact + γenv]− J [γact]

) (6.28a)

hemb = hcore + Vemb + P env
proj. (6.28b)

Here the matrices J , Vxc and hcore are obtained according to equations 2.113b, 2.113c

and 2.113a respectively. Note the definition of Vemb is consistent with the previous

section (see equation 6.8, with vnadds = 0). The embedding potential Vemb describes all

the interactions (nonadditive part) between the active and environment subsystems

[309]. Due to the subsystem densities (Equation 6.24) being constructed from disjoint

subsets of orthogonal orbitals, the normally difficult-to-evaluate nonadditive kinetic

potential (NAKP) terms [298] are exactly zero [286, 309, 310].

P env
proj is a projection operator that enforces inter-subsystem (orbital) orthogonality.

There are different ways to define this operator and we consider two in this work.

The first definition was proposed by the Manby and Miller groups [286]. They use

a parameter µ to shift the orbital energies of the environment to high energies -

effectively meaning they will never be occupied. This projector is defined as:

(P env
µ )ij = µ 〈ψLMO

i |P env |ψLMO
j 〉

= µ[SγenvS]ij,
(6.29)

where µ is some large integer, S is the AO overlap matrix. P env is a projector defined

as:

P env =
∑
l∈L

|ψLMO
l 〉 〈ψLMO

l | . (6.30)

Here we use the notation l ∈ L to mean the sum over the set of occupied MO

indices for the environment orbitals. The work in [286, 308] shows µ is numerically

robust and can usually be set to µ = 106. In the limit that µ → ∞ this method

is exact, as the environment orbitals will be pushed to infinite energy and thus will

never be occupied. The action of this operator with the Fock matrix is:

(F + P env
µ ) |ψLMO

k 〉 = εactk |ψLMO
k 〉 , (6.31a)

149



6.2. THEORY OF PROJECTION-BASED EMBEDDING

(F + P env
µ ) |ψLMO

l 〉 = (εenvl + µ) |ψLMO
l 〉 ≈ +µ |ψLMO

l 〉 . (6.31b)

Again, k and l represent occupied LMOs of the active and environment subsystems

respectively. Qualitatively the orbital energies of the active system are left unchanged

and the orbitals for the environment are pushed to very high energies as µ >> εenvi -

effectively suppressing transitions to these states and stopping hybridisation.

The second approach, proposed by Kallay et al. [311], is to use the Huzinaga

projector [312, 313]:

P env
huz = −

(
FP env + P envF

)
= −1

2

(
FγenvS + SγenvF

)
.

(6.32)

Note that the −1
2

prefactor is needed for closed-shell systems. This operator enforces

orthogonality of the occupied orbitals of each subsystem [314]. The form of this

operator increases the orbital energy for the occupied environment orbitals and leaves

the active system unchanged. We write its action formally as:

(F + P env
huz ) |ψLMO

k 〉 = εactk |ψLMO
k 〉 , (6.33a)

(F + P env
huz ) |ψLMO

l 〉 = (εenvl − 2εenvl ) |ψLMO
l 〉

= −1εenvl |ψLMO
l 〉 .

(6.33b)

It is common for occupied orbitals to have negative energy and so equation 6.33b

shows how the environment εenvl orbitals are usually shifted to positive energies (as-

suming negative εenvl ) and thus will not be filled. If any occupied εenvl are positive,

then equation 6.32 can be modified to treat such systems correctly- this operator is

known as the “Fermi-shifted Huzinaga operator” [315]. This formalism guarantees

that [P env
huz , F

act
emb] = 0 and removes the need for the µ parameter shift [316].

The energy of the active system embedded in the environment is given by:

E[γactemb; γ
act, γenv] = E [γactemb] + E[γenv] + g(γact, γenv)

+ Tr
(

(γactemb − γact)(Vemb + P env
proj)

)
,

(6.34)

colloquially denoted as a DFT-in-DFT calculation. We use the same notation as

Claudino and coworkers [308], where E differs from E as it allows for different function-

als to be applied and is computed from the embedded density matrix of the active sys-

tem. Note that Equation 6.27 is solved self-consistently to give γactemb. Equation 6.34 re-

duces to Equation 6.25 for the case that the active and environment regions are treated

at the same level of theory [308]. Importantly, E [γactemb] = Tr(γactembhcore) + g(γactemb) does

not involve Vemb or P env
proj. The final term in Equation 6.34 is a first-order correction
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that accounts for the difference between g(γact, γenv) and g(γactemb, γ
env), and corrects

for the fact that in general γact 6= γactemb [317].

This projection-based embedding approach then allows for the active system to be

treated using some wavefunction level of theory and therefore can be studied using a

quantum computer. The electronic energy for this is given by [308]:

E[Ψact
emb; γ

act, γenv] = 〈Ψact
emb|Hemb |Ψact

emb〉+ E[γenv]

+ g(γact, γenv)− Tr
(
γact(Vemb + P env

proj)
)
.

(6.35)

Importantly Hemb = hemb+g(Ψact
emb), where g(Ψact

emb) is the two-electron operator for

a given wavefunction method and hemb is the embedded core Hamiltonian (Equation

6.28b) which depends on γact and γenv [318]. As the embedding terms have been

included in Hemb, the final correction term is therefore slightly different to Equation

6.34 [317]. The wavefunction calculation in Equation 6.35 includes contributions

from (Vemb +P env
proj) - similar to: Tr(γactemb(Vemb +P env

proj)). The correction therefore only

requires subtracting Tr(γact(Vemb +P env
proj)), unlike in Equation 6.34, where E does not

use (Vemb + P env
proj) to calculate the energy of the active system.

6.3 Molecular orbital localization

In this Section, we investigate different molecular orbital localization schemes. We

focus on five: The Foster-Boys (FB) [319], Edmiston-Ruedenberg (ER) [320], Pipek-

Mezey (PM) [321], intrinsic bonding orbitals (IBO) [322] and subsystem Projected

AO DEcomposition (SPADE) approach [308]. Except for the SPADE method, in each

subsection we present the cost function L(U) that is either maximized or minimized

in order to find the optimal unitary transformation matrix U (equation 6.16). We do

not discuss how U is updated in each optimization step such that it remains a unitary

operator. Further details on this can be found in [323–327]. Each cost function

gives a measure of the locality of the molecular orbitals. These differ because there

is ambiguity regarding the choice of this function, hence the different localization

methods.

6.3.1 Foster-Boys

The Foster-Boys (FB) localization scheme minimizes the spread of an orbital, by

minimizing the square of the distance separating two electrons r2
12 = |r1 − r2|2 [319].

The set of LMOs is obtained by minimizing [240]:

LFB(U) =

[
K∑
i

∫ ∫
|ψLMO
i (~r1)|2 r2

12 |ψLMO
i (~r2)|2d~r1d~r2

]
, (6.36)
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where each ψLMO
i is given by equation 6.19 and is where the unitary U appears. It

can be shown this is equivalent to maximizing [30]:

LFB(U) =

[
K∑
i

(
〈ψLMO

i | r |ψLMO
i 〉

)2

]
. (6.37)

Currently this formalism still requires a description in molecular orbitals, not atomic

orbitals. In chapter nine of [30], it is shown that the dipole integrals in the molecular

basis may be obtained from the corresponding AO integrals:

〈ψi| r |ψj〉 =
M∑
α

Cαi

(
M∑
β

Cβi 〈φi| r |φi〉

)
. (6.38)

The overall computational cost of this localization therefore scales asO(K3) multiplied

by the number of times the cost function is called [30].

6.3.2 Edmiston-Ruedenberg

The Edmiston-Ruedenberg localization scheme minimizes the inverse distance be-

tween two electrons 1/r12 = 1/|r1 − r2| [320], which is proportional to the two-body

electronic repulsion operator. The LMOs are obtained by maximising [240]:

LER(U) =

[
K∑
i

∫ ∫
|ψLMO
i (~r1)|2 1

r12

|ψLMO
i (~r2)|2d~r1d~r2

]
, (6.39)

where each ψLMO
i is given by equation 6.19 and is where the unitary U appears. Again,

as with the FB scheme, currently this formalism requires a description in molecular

orbitals, not atomic orbitals. Unlike before, the trick of using the AO dipole integrals

to obtain the MO integrals is not possible. The cost of this scheme therefore currently

scales as O(K5) [30], due to the atomic-to-molecular-orbital transformation required

(see Section 2.7). Work by Head-Gordon et al. showed that this scaling can be

reduced to O(K3) [30, 328], an analysis of this resource reduction is outside the scope

of this thesis. The overall cost will be this scaling multiplied by the number of times

the cost function is called [240].

6.3.3 Pipek-Mezey

The Pipek-Mezey scheme involves maximizing the Mulliken charge of each orbital

[321]. This is done by maximising [240]:

LPM(U) =

[
M∑
J

K∑
i

(Qi
J)2

]
, (6.40)
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where

Qi
J =

∑
µ∈J

K∑
ν

CLMO
µi SµνC

LMO
νi . (6.41)

Here M is the number atoms, Qi
J is the contribution of orbital i to the Mulliken

charge of atom J and each ψLMO
i is given by equation 6.19. Equation 6.19 gives the

definition of CLMO and is where the unitary U appears. The scaling of PM is O(K3)

multiplied by the number of times the cost function is called [240].

6.3.4 Intrinsic bonding orbitals

Intrinsic Bonding Orbitals (IBOs) are constructed as a linear combination of intrinsic

atomic orbitals (IAOs), where the number of atoms the orbital charge is spread over

is minimized. The localization performed is similar to the Pipek-Mezey approach.

Taking the canonical orbitals defined as:

|ψi〉 =
K∑
j=1

Cji |φj〉 , (6.42)

where |φj〉 ∈ B1 are basis functions from a basis set B1. A key problem with this

form is each MO |ψi〉 is hard to interpret, as each atomic orbital’s (AO) basis func-

tions |φj〉 cannot be associated with a given atom [322]. Normally MOs are highly

delocalized and each |φj〉 will contribute where it is needed most. Thus, we would

like to expand the MOs over another minimal basis B2 of free-atom atomic orbitals

for each atom, which we write as {|φ̃〉} ∈ B2. This would make the wavefunction easy

to interpret, but would be inaccurate and even incorrect, as free-atom AOs contain

no polarization due to the molecular environment. The IAO method aims to combine

the best properties of these.

First, a molecular SCF wavefunction |Φ〉 is calculated that defines a set of molec-

ular orbitals |ψi〉. Then a set of polarized atomic orbitals {|φ(IAO)〉} /∈ B2 are formed

that can express |Φ〉s in the occupied MOs |ψi〉. To do this, projectors onto the occu-

pied and virtual MOs are defined: P =
∑

i |ψi〉 〈ψi| and Q = I −P respectively [329].

The AO projectors onto the bases B1 and B2 are also defined as [322]:

P12

∑
|φ〉i,|φ〉j∈B1

|φ〉i S
−1
ij 〈φ|j , (6.43a)

P21

∑
|φ̃〉k,|φ̃〉l∈B2

|φ̃〉k S̃
−1
kl 〈φ̃|l . (6.43b)

Here S−1
ij and S̃−1

kl are the inverse overlap matrices in the bases B1 and B2. The set
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of depolarized MOs is then given by [322, 329]:

{|ψ̃i〉} = {P12P21 |ψi〉}. (6.44)

These depolarized molecular orbitals are then used to define the projectors: P̃ =∑
i |ψ̃i〉 〈ψ̃i| and Q̃ = I − P̃ . The IAOs are finally given by:

|φ(IAO)〉 =
(
PP̃ +QQ̃

)
P12 |φ̃〉 . (6.45)

The IAO basis is then orthonormalized [322, 329]. Overall, each IAO is obtained by

a simple set of matrix operations. The utility of IAOs stems from the fact that they

are directly associated with atoms and can be used to define atomic properties like

partial charges and are basis set independent, unlike the Pipek-Mezey approach.

Often we want to know about molecular bonding rather than atomic properties.

Knizia showed that by combining IAOs with a localization in the spirit of Pipek-

Mezey, one can obtain intrinsic bonding orbitals (IBOs). The IBOs are found by

maximizing [322]:

LIBO(U) =

[
M∑
J

η∑
i

[nJ(i)]4

]
. (6.46)

Here nJ(i) is the number of electrons from ψLMO
i (equation 6.19) located on the IAOs

{|φ(IAO)〉} of atom J . Explicitly, we write this as [322]:

nJ(i) = 2
∑

|φ(IAO)〉∈J

〈ψLMO
i |φ(IAO)〉 〈φ(IAO)|ψLMO

i 〉. (6.47)

This construction minimizes the number of atoms upon which an orbital is centred

[322].

6.3.5 Subsystem projected AO decomposition

The Subsystem projected AO decomposition (SPADE) involves first having defined

occupied MOs {ψi} in terms of the AO basis (see equation 2.57) obtained from an

SCF calculation. To start, Löwdin’s method of symmetric orthogonalization is used

to generate orthogonal MOs [330, 331]. This is performed as:

C̃ = S1/2C, (6.48)

where S is the AO overlap matrix and C is the matrix of orbital coefficients (equation

6.13) [308]. This generates a set of orthogonal MOs that have a shape closest to the

original AOs in the least square sense [240, 332]. In this basis, the projector QA is
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defined [308]:

QA =
∑
φ̃∈A

|φ̃i〉 〈φ̃i| , (6.49)

where {φ̃} are the set of orthogonal AOs associated with atoms in subsystem A. Next,

if we let C̃A
occ be the MO coefficients from AOs from the atoms in subsystem A, we

have [308]:

QA =
∑
φ̃∈A

|φ̃i〉 〈φ̃i| =⇒ QAC̃occ = C̃A
occ, (6.50)

where occ denotes that only the occupied orbitals are considered.

New orbitals can be obtained by rotating the original MOs (Cocc) according to

the right-singular vectors of C̃A
occ, where the corresponding singular values signal their

relative importance of the associated vectors. Taking the singular value decomposition

(SVD) of C̃A
occ given by:

C̃A
occ = UAΣA(V A)†. (6.51)

The column vectors of V A are identical to the eigenvectors of (C̃A
occ)
†C̃A

occ [308]. A set

of localized MOs can be obtained by rotating the original MOs given by Cocc. This

procedure is SPADE, which is implemented as [308]:

CSPADE
occ = CoccV

A. (6.52)

Using the appropriate atoms from each subsystem, A and B, the resulting orbital

subspaces emerge from the distribution of singular values {σ}. Taking the difference

of successive singular values gives and finding the largest difference gives the most

adequate partition of the set of MOs. We write this as:

imax = argmax
i

[∆σi] = argmax
i

[
σi − σi+1

]
, (6.53)

where the index imax represents the largest singular value difference. The indices

from [0, imax] define the occupied orbital indices for subsystem A and (imax, η− 1] for

subsystem B 1. Here η is the number of electrons, aka the indices go over occupied

orbitals.

There are two main benefits of the SPADE approach for PBE. First, the singular

values are similar to occupation numbers. This is due to the similarity with a natural

population analysis, which has been shown to avoid some of the flaws of the Mul-

1Closed intervals using square brackets include endpoints. Parentheses refer to intervals that do
not include endpoints.
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liken analysis [308, 333]. Secondly, the fact that C̃A
occ (equation 6.50) only contains

coefficients from atoms in subsystem A, the corresponding rotated orbitals CSPADE
occ

(equation 6.52) will mostly be constrained to their corresponding subsystems [308].

This differs from most localization schemes that attempt to localize orbitals in atoms

or bonds, whereas SPADE orbitals are local only in the sense that they remain in

their native subsystems which is one of the requirements for successful embedding

[308].

6.3.6 Partitioning into subsystems

To assign these localized molecular orbitals to the active and environment subsystems

we calculate the percentage of the i-th LMO over the active atoms as:

pAi (C) =

∑
ν∈AC

2
iν∑K

ν=1 C
2
iν

, (6.54)

where ν ∈ A are the atomic orbital indices for the atoms defined in the active region.

The denominator includes all the AOs of the i-th MO. This is the approach given in

Equation 10 in the work of Koch et al.[334]. Any pAi > 95% we associate to the active

subsystem. Our open source implementation of PBE uses this metric [335], where any

C matrix (preferably localized) can be used. The codebase can run any localization

strategy supplied by PySCF and the SPADE approach. Users can also define their

own localization schemes if desired.

6.4 Numerical study

In this Section, we present our numerical analysis of the PBE model used to generate

embedded qubit Hamiltonians. These results can be found in the preprint [336].

6.4.1 Method

We studied the performance of our wavefunction projection-based embedding method

on a selected set of molecular systems. We have developed a python package, Nbed

[335], that utilizes the PySCF and Openfermion quantum chemistry packages to build

each embedded model [222–224]. The package outputs a qubit Hamiltonian for the

wavefunction portion of an embedded problem and the classical energy corrections

from density functional theory. This is freely available for use on GitHub [335].

For all calculations presented, the minimal STO-3G basis set was employed. Each

global DFT calculation performed, prior to orbital localisation, used the B3LY P

functional. The Intrinsic Bonding Orbitals (IBO) or Subsystem Projected AO DE-

composition (SPADE) localisation procedures are used to isolate the molecular or-
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(a) (CH3)2NH (b) CH3CHO (c) CH3CN

(d) CH3CH2NH2 (e) CH3CH2OH (f) CH3CH2F

(g) HCONH2
(h) H2O (i) H2O

Figure 6.1: Planar representations of the molecules used in embedding calculations.
Atoms shaded in green were selected as active for localisation procedures. Images
were generated using MolView [337]. 6.1a N-methylmethanamine; 6.1b acetaldehyde;
6.1c acetonitrile; 6.1d ethanamine; 6.1e ethanol; 6.1f flouroethane; 6.1g formamide;
6.1h water (fixed bond active); 6.1i water (stretching bond active)

bitals to the active and environment subsystem from pre-selected active atoms [308,

322]. For the IBO procedure, in order to assign the active and environment molec-

ular orbitals, we calculate the percentage of the i-th LMO over atoms a user defines

as the active subsystem. Any LMO that has a percentage higher than a predefined

threshold (we used 95 %) is assigned to the active region (see equation 6.54). We

performed both the µ-shift and Huzinaga methods for each. A Hartree-Fock calcula-

tion for the active system, using the modified core Hamiltonian (equation 6.28b), was

performed for each molecular system. The second quantized molecular Hamiltonian

was then constructed with Openfermion and converted to a qubit Hamiltonian using

the in-built Jordan-Wigner transformation [123]. Post-Hartree-Fock methods were

performed with PySCF. The frozen core approximation was not used and all virtual

orbitals were included in the wavefunction calculations. Only the occupied environ-

ment molecular orbitals were removed from the wavefunction calculations of the active

systems. To achieve this, the columns of C (the matrix of MO coefficients) associated

with the environment were masked and not considered by further post-Hartree-Fock

(HF) methods on the embedded active system (the WF part of a WF-in-DFT calcu-

lation). The removal of these (occupied) environment orbitals is what gives a qubit

reduction (when constructing the second quantized molecular Hamiltonian). We note

that this removal approach is slightly different to the implementation of Goodpaster

and coworkers [316], where these orbitals are left in the embedded calculation. Our
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approach is justified as the environment MOs have been projected out of the SCF

problem. More qualitatively, in Goodpaster’s approach the results of the Huzinaga

and µ-shifted approaches are very similar [316]. For the µ-shifted approach, the

occupied environment orbitals are shifted to such high energies that they remain un-

occupied in subsequent post-HF calculations. This is not the case for the Huzinaga

method but, as it gives similar results to the µ-shifted technique, removing the as-

sociated (occupied environment) orbitals of the Huzinaga method follows inline with

them not being able to be occupied in the µ-shifted approach.

For the single point electronic structure calculations we perform a CCSD-in-DFT

calculation (active subsystem treated at CCSD level). Each result is then compared

to full system CCSD(T) calculations. Each molecular geometry was obtained from

PubChem [338]. The potential energy surface of an OH bond stretching in water was

calculated using FCI-in-DFT, where the embedded molecular Hamiltonian at each ge-

ometry was diagonalized to find the ground state energy of the active system. This was

compared to a full system FCI calculation at each step. As the PBE model requires

a full system DFT calculation to determine the active and environment subsystems,

we also report these DFT results.

6.4.2 Results and discussion

In the following subsections, we apply our model to different molecular systems.

6.4.2.1 Molecular ground state energy

In order to assess the ability of the embedding procedure, we selected a test bed

of molecular structures - which are summarised in Figure 6.1. The active atoms

considered at a more expensive level of theory are highlighted in green. The choice

of these molecules was motivated by selecting compounds commonly encountered by

chemists. To date, most quantum computing studies consider only the smallest molec-

ular systems (often H2, LiH, BeH2) [36, 94, 103], due to current quantum computing

constraints - low numbers of qubits numbers and high error rates. The goal of this

study is to show this embedding approach will allow larger systems to be studied

on such devices. Figure 6.2 reports the results for SPADE localized CCSD-in-DFT

embedding molecular ground state energy calculations for the molecules in Figure 6.1.

The numerical values of these results are available in Appendix B. The results for the

same calculations using IBO localized orbitals can also be found there.

The embedded second quantized Hamiltonians (describing the active region) out-

put using both localisation methods were significantly reduced in the number of Pauli

operators and qubit counts compared to the full system second quantized Hamilto-

nian. However, they still exceed the limit of what is practical to exactly solve using
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Figure 6.2: Results for WF-in-DFT calculation of small molecules (Figure 6.1), where
the SPADE localisation method has been used. Bar chart (a) reports the ground
state energy error for small molecules compared to full system CCSD(T): |∆E| =
|Eexp −ECCSD(T )|. For the blue result Eexp is the full-system DFT (B3LY P ) ground
state energy, for the orange result Eexp gives the µ-shift CCSD-in-DFT embedding
energy and for the grey result Eexp is the Huzinaga CCSD-in-DFT embedding energy.
Plot (b) shows the number of qubits needed to describe the embedded Hamiltonian,
with the reference showing the number required for the full system second quantized
Hamiltonian. Plot (c) reports the number of terms in the Jordan-Wigner encoded
embedded FCI-in-DFT Hamiltonian for each molecule with the blue bar representing
the number of terms in the second quantized Hamiltonian of the full system.

classical computers. We therefore performed classical CCSD-in-DFT calculations, the

results of which are given in Figure 6.1(a). Our results show increased accuracy in

CCSD-in-DFT calculated molecular ground state energies, compared to full system

DFT. We benchmarked these approaches compared to full system CCSD(T), as full

system FCI was not possible. The following metric was used |∆E| = |Eexp−ECCSD(T )|
to approximate the true error |∆Etrue| = |Eexp−EFCI |, where Eexp is the ground state

energy calculated via different procedures as specified and ECCSD(T ) is a full system

CCSD(T) reference ground state energy that is used to approximate each (full sys-

tem) FCI ground state energy EFCI . Our results show that PBE embedding gives

ground state energies closer to the reference value, namely the full system CCSD(T)

energy. It is known that different DFT functionals will give different ground state
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densities and thus energies [339]; however, there will always be a true ground state

wavefunction and energy. The results in Figure 6.1 show that we can improve on the

results of a DFT calculation by getting closer to the true ground state energy - which

in our case we approximate with CCSD(T). Qualitatively, we attribute the improve-

ment of our PBE method to it including different correlation effects not captured by

the DFT calculation. Further evidence of this will be seen in the next section on

strong correlation.

Typically, results for the µ-shift and Huzinaga projectors are very similar. This is

expected as the active and environment subsystems were described in the supermolec-

ular basis in our implementation of PBE [311, 316]. If the subsystems were described

in an alternate basis, it has been shown that the Huzinaga operator outperforms

the µ-shift approach [316]. In our results, the Huzinaga projector usually produces

marginally more accurate energies compared to the µ-shifted implementation. We

attribute this to the Huzinaga approach being based on a formally exact embedding,

while the µ-shift embedding is approximate due to a finite shift value being used.

The number of qubits describing the embedded second quantized Hamiltonian (of

an FCI-in-DFT problem) will be the same between the embedding methods - Figure

6.1b. This is due to the number of qubits depending on how many spin orbitals are

considered in the embedded active system. In this work, only the occupied molecular

orbitals of the environment are removed from the embedded active subsystem WF

calculations (which leads to a qubit reduction). To further reduce the qubit count,

virtual (unoccupied) molecular orbitals should also be removed from the embedded

active subsystem calculations. This requires partitioning of the virtual space between

the active and environment subsystems. Recent work by Yuan and coworkers showed

that truncating the virtual space can still give reliable estimates of both energies and

molecular properties and we anticipate that this result will also be found if virtual

environment orbitals are removed from the active embedded subsystem [340]. We

leave this to future work, but note that it could lead to a significant further reduction

in the number of qubits.

The number of terms in the Jordan-Wigner encoded qubit second quantized Hamil-

tonian of the embedded WF problem (FCI-in-DFT problem), |H|, is typically very

similar between the two projection methods, as shown in Figure 6.1c. This is expected

as the number of molecular orbitals used to describe the embedded problem is the

same between the different projection methods.

In comparing the two localisation methods, we find that for acetonitrile and for-

mamide, SPADE and IBO partition the active system in a similar way. This results in

a similar number of active MOs and hence the ground state estimation and resource

requirements are very similar for these systems. For the majority of the molecules

we study, SPADE includes more MOs, resulting in significantly more accurate ground
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state energies while still reducing the size of the Hamiltonian. However, by reducing

the threshold for assigning the localized MOs from IBO to the active region, addi-

tional MOs could be included giving a similar result to SPADE. See Appendix B for

further details.

6.4.2.2 Strong correlation

The impact of active region selection is demonstrated by our results shown in Figure

6.3. We consider the bond dissociation of an OH bond in water, where at high bond

lengths, a correlated state is created [114, 341]. We perform projection-based FCI-in-

DFT calculations, at different molecular geometries, for two different active regions.

One has the atoms in the fixed OH bond set active and the other has the atoms in the

changing OH bond set active. We show this pictorially in Fig. 6.1h and 6.1i. These

results are compared to full system FCI calculations.

For the FCI-in-DFT results given in Figure 6.3b, we note that the error in the

embedded calculation is actually higher than the global DFT calculation at an OH

bond length of 4.0 Å. There is also a significant difference in the number of qubits and

Hamiltonian terms at OH bond lengths of 0.4, 0.6 and 4.0 Å. The variation, compared

with the SPADE results (Figure 6.3a), is mainly due to the localization method giving

different numbers of active MOs. We repeated the IBO calculation using a different

active region threshold (using a minimum setting of 90%) and obtained similar results,

as the number of active MOs then matched that of the SPADE calculation. Figure

B.2 in Appendix B summarises this result.

At near equilibrium bond lengths, we observe in Figure 6.3 a similar performance

between the different active systems. This is due to the symmetrical structure of H2O,

hence at low bond lengths there is little difference between the two active regions. In

fact, the third data point gives results for the scenario where both OH bonds are the

same length and consequently is why the results for the different active regions are

the same here. However, in the correlated regime - at large bond lengths - selecting

the active region to encompass the stretched atoms leads to significant improvements

in energy calculation over DFT alone. This is due to the correlation being effectively

captured in the wavefunction calculation. In contrast, the full DFT calculation is

plagued by deficiencies in current approximate exchange-correlation functionals [72,

342]. We see in Figure 6.3 that the global DFT calculation overestimates the bond

dissociation energy. This problem is attributed to static correlation [72]. As there is

no systematic way to improve the approximate exchange-correlation functionals, the

way forward in describing such systems is hybrid quantum-classical embedding. Here

quantum processors could be exploited most effectively by application to only those

regions of a molecule that are highly correlated.
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(a)

(b)

Figure 6.3: Potential energy curve for H2O, with changing OH bond length. Active
stretch result has the changing OH bond as the active region and environment stretch
result has the fixed OH bond selected as the active region. Figure 6.3a uses SPADE
localization and Figure 6.3b uses IBO localization (95% threshold). For each data
set the full problem is reduced from 14 to 12 qubits, with the number of active
MOs being four in all cases. In each subfigure, the top plot reports the log base 10
error with respect to the exact FCI ground state energy (EFCI) of the whole system,
where |∆E| = |Eexp−EFCI |. Here Eexp is obtained from an FCI-in-DFT calculation.
The bottom plot reports the number of terms in each Jordan-Wigner encoded qubit
Hamiltonian. The blue result gives the size of the full system Hamiltonian, the orange
and yellow results are for µ-shifted embedded Hamiltonians while the grey and black
results are for the Huzinaga embedded Hamiltonians. Numerical details are available
in Appendix B
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6.5. CONCLUSION

6.5 Conclusion

For a select set of molecules, too large to study completely (full system) on currently

available quantum hardware, we have shown that the PBE method allows a smaller

active system to be studied using fewer resources on a quantum computer and the

calculated energies of such embedding calculations are closer to the “gold standard”

CCSD(T) of the full system compared to full system DFT. Furthermore, we have

shown its ability to capture the effects of strong correlation by investigating the bond

dissociation of H2O.

We use the projection-based embedding technique [286] to reduce the size of an

electronic structure calculation studied at the wavefunction level. The molecular

problem is split into active and environment parts, each solved using different levels

of theory. The active part is treated using a wavefunction approach and an embedded

qubit Hamiltonian is generated. Solving this provides EWF
act = 〈Ψact

emb|Hemb |Ψact
emb〉.

The whole system and environment are treated using density functional theory and

the overall electronic energy is found via an additive procedure [316–318]. What

is included in the active region can be modified and thus the size of the quantum

problem varied. This allows users to tune their problem to available hardware and so

it is possible to simulate large molecular problems on small quantum devices.

As this approach generates an embedded qubit Hamiltonian, it is agnostic to the

quantum algorithm used to solve Hemb. NISQ friendly approaches such as the VQE

algorithm can therefore be used, but also fault-tolerant methods such as quantum

phase estimation (QPE) [89, 94].

Moreover, as our method outputs a qubit Hamiltonian, different resource reduction

techniques can be used in conjunction with it; for example, the contextual-subspace

approach of Kirby and coworkers, [244] or the entanglement forging approach of Ed-

dins [114]. Similarly, the Z2-symmetries of the problem can also be removed via qubit

tapering [124].

As our method does not rely on imposing constraints on the system studied or

costly parameter fitting, it may be reasonably combined with other hybridisation

techniques which do [343, 344].

We note a few avenues for future work. (1) As significant resource reduction

is achieved by localisation of only the occupied orbitals, virtual orbital localisation

could lead to a greater reduction in computational resources [308]. In the context of

this work, if virtual LMOs are included in the active and environment subsystems

respectively, then the number of qubits will reduce by how many are included in the

environment. This will also have the effect of decreasing the total number of Pauli

operators in the associated embedded qubit Hamiltonian. (2) A minor defect of this

method is that the subsystems do not interact in a given calculation. It would be
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interesting to see if the Locally Coupled Open Subsystem (LCOS) method [288, 289]

could correct for some of these deficiencies, where off-diagonal information can be

included.
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Chapter 7

Conclusions and Outlook

In this thesis, we have analysed a set of tools that aid studying electronic structure

problems on quantum computers. Classical treatment of such systems quickly be-

comes intractable due to the exponential scaling of the Hilbert space dimension with

K (the number of spin orbitals), which can naturally be represented on a linear num-

ber of qubits. However, due to the limitations of current quantum devices - lack of

error correction, device topology (qubit connectivity) and low qubit numbers - it is

not possible to implement fault-tolerant quantum algorithms, such as quantum phase

estimation [76, 77]. Instead, variational quantum-classical algorithms, such as the

variational quantum eigensolver [94], are used to study these problems. These algo-

rithms are more NISQ friendly; however, suffer from many drawbacks. For VQE, one

major obstacle to its success is the sheer number of measurements required to obtain

the energy of a molecular system to within chemical precision. Estimates into the

runtime of VQE for simple molecules has been put in the millions of years [175]. In

chapter 4, we investigated the unitary partitioning measurement reduction strategy

that decreases the measurement overhead of VQE and thus the algorithm’s runtime.

We numerically found that for two molecular examples, the unitary partitioning mea-

surement reduction strategy improves the standard error on the mean by an order of

magnitude if applied as a sequence of rotations. As the SEM ∝ 1√
M

, this is a 100

fold measurement reduction. Theoretically, it was proven that unitary partitioning

can always reduce the number of terms requiring separate measurement linearly with

respect to the number of spin orbitals from O(K4) 7→ O(K3) [198]. However, as

discussed in chapter 4, what is more important to show is that for a fixed precision ε

the total number of measurements required is reduced. Therefore, even though alter-

nate measurement reduction approaches can reduce the number of terms by a greater

amount - e.g. the “Basis Rotation Grouping ” strategy [179] O(K4) 7→ O(K), what

is important to investigate is the R-ratio [201]. This takes into account variances and

covariances which is the critical thing to consider when analysing the measurement re-

duction obtained for a given problem. Gonthier et al. investigated this in the context

of quantum chemistry and wrote: “work on improving Hamiltonian transformations

to reduce the Hamiltonian variance” is needed [163]. This is a very interesting point;

however, they did not outline how this could be done. We believe one avenue to
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achieve this is to use orbital localization schemes such as those discussed in chapter 6,

to transform a molecular Hamiltonian into an alternate basis, where the Pauli coeffi-

cients should be updated to improve the measurement reduction obtained. This could

be done by maximising the R-ratio. While the unitary partitioning measurement re-

duction approach does not solve the measurement roadblock of VQE, this idea can

be used in combination with many other reduction methods. We leave this to future

investigation.

In chapter 5, we analysed the contextual subspace VQE algorithm [244], which

gives an approximate simulation method where the quantum resources for a problem

can be reduced. This allows one to approximately solve any given qubit problem on

current and near term quantum computers. We deconstructed each step of the CS-

VQE algorithm and showed that classically applying the unitary partitioning rotation

step as a linear combination of unitaries will at worst increase the number of Pauli

operators in an n-qubit Hamiltonian by O(n2). Importantly, this makes mapping the

problem into the contextual subspace classically tractable and gives an exponential

improvement upon the O(2n) scaling in the originating work [244]. We then applied

the unitary partitioning measurement reduction strategy to different CS-VQE Hamil-

tonians to investigate further possible measurement reductions. As the R-ratio for

unitary partitioning is lower bounded at 1 and the conditions to meet this bound are

highly unlikely, for example when no partitioning is done, a measurement reduction

will be obtained. While we focused on quantum resource reduction, in the future

we plan to look into if there is any structure in the contextual terms of a molecular

Hamiltonian and if anything can be said about where they arise from. Furthermore,

we suspect that the contextual subspace could be a good tool for motivating an active

space approximation for a given molecular problem. What is interesting about using

this method here is it approaches the problem from a quantum foundations angle,

rather than using a “chemist’s intuition”. Which is better is unknown and we leave

an investigation for future work. Importantly, the contextual subspace approach does

not necessarily require being solved via VQE, for instance quantum phase estimation

can be used to solve the contextual problem (Hcon). This algorithm will therefore be

useful even when fault-tolerant quantum devices are available.

As it stands, the CS-VQE method doesn’t utilize classical quantum chemistry

techniques beyond Hartree-Fock. This is common in most of the quantum computing

approaches to quantum chemistry, where problems only begin from the Hartree-Fock

solution; however, many post-Hartree-Fock methods can still be taken advantage of.

Such approximate classical solutions offer a wealth of information. Something I feel is

lacking in the quantum computing community is not utilizing this information. With

respect to this, we are currently investigating how the noncontextual Hamiltonian

can be motivated by a classical solution to a given electronic structure problem. This
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is ongoing work, but the core idea is to construct stabilizers from a conventional

chemistry solution (such as a classically obtained CCSD wavefunction), that are then

used to motivate the contextual subspace. We believe this could be a way to achieve

quantum advantage, as by the variational principle any decrease in ground state

energy measured results in a better approximation of the true ground state. The

utility of this approach is it uses the best-in-class classical methods to help motivate

the quantum problem.

In a similar vein to the idea of using classical quantum chemistry methods to help

study a given electronic structure problem, in chapter 6 we introduced the projection-

based embedding model in the context of generating an embedded qubit Hamiltonian

[286]. We showed this model can dramatically decrease the resources required to study

a given molecular problem on quantum hardware. Importantly, this tool allows any

molecular problem to be studied on any sized available quantum hardware. Thus even

when fault-tolerant quantum computers are available, such multi-scale approaches

can still be used. For instance, a protein can be made of millions of atoms and a

full quantum mechanical description of such a system is unforeseeable in the near

term future. We see such problems through the lens of an embedding problem, where

an active system should be grown (either in number of active atoms or basis set) to

fit on the available quantum hardware. Any remaining part of the problem should

then be solved via classically tractable methods using any necessary approximations.

By targeting the best resources to areas of interest in a molecular problem, such as

specific functional groups, we hope this will improve our understanding of different

materials and molecules.

Finally, it is my view that quantum computers are unlikely to ever fully replace

classical computers in the study of quantum chemistry. I believe integrating PBE,

CS-VQE and measurement reduction techniques in a combined quantum-classical

hierarchy will offer a powerful tool to study molecular problems utilizing the best

classical and quantum computers available. As we have open-source code for each of

these methods [264, 335], we hope this approach will allow new insights into quantum

chemistry problems.
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Appendix A

CS-VQE Appendix

A.1 Mapping Pauli operators to single-qubit Pauli

Z operators

In Appendix A of [244] a proof is given on how to map a completely commuting set of

Pauli operators to a single qubit Pauli Z operator. We summarise their approach here.

Take a Pauli operator on n qubits to be: P =
⊗n−1

j=0 σ
P
j , where σj are single qubit

Pauli operators. There are two cases we need to consider (diagonal and non-diagonal),

with the goal to reduce the operators in W ′

all ≡ {q0G0, q1G1, ..., q|G|−1G|G|−1, ξ P
(k)
0 }

(Equation 5.21) to single-qubit Z Pauli operators.

For a non-diagonal Pauli operators Pa ∈ W
′

all, there must be at least one single

qubit Pauli operator indexed by qubit k such that: σPak ∈ {X, Y }. We can use this to

define operator Pb that must anticommute with Pa:

Pa =

( k−1⊗
j=0

σPaj

)
⊗ σPak ⊗

( n−1⊗
j=k+1

σPaj

)

Pb =

( k−1⊗
j=0

σPaj

)
⊗ σ′k ⊗

( n−1⊗
j=k+1

σPaj

) where {Pa, Pb} = 0⇔ σ′k =

X, if σPak = Y

Y, if σPak = X
.

(A.1)

These two Pauli operators differ by exactly one Pauli operator on qubit index k.

We can define the rotation:

B = exp

(
i
π

4
Pb

)
=

1√
2

(1 + iPb). (A.2)

Conjugating Pa with this operator results in:

BPaB
† = ±1

( k−1⊗
j=0

Ij

)
⊗ Zk ⊗

( n−1⊗
j=k+1

Ij

)
= P ′a, (A.3)

and Pa has been mapped to a single qubit Pauli Z operator.

For diagonal operators Pc ∈ W
′

all, all the n-fold tensor products of single qubit

Pauli operators must be either Z or I: Pc =
⊗n−1

j=0 σ
Pc
j where σPcj ∈ {I, Z} ∀i. Since
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A.2. CS-VQE VIA A SEQUENCE OF ROTATIONS

W ′

all (equation 5.21) is an independent set, for all the rotated P ′a there must be at

least one index l such that σ
P ′a
l = I and σPcl = Z. We denote this operator Pc. We

also define a new operator Pd from this, which only acts non-trivially on the l-th qubit

with a single qubit Y . To summarise:

Pc =

( l−1⊗
j=0

σPcj

)
⊗ Zl ⊗

( n−1⊗
j=k+1

σPcj

)
where σPcj ∈ {I, Z} ∀i

Pd =

( l−1⊗
j=0

Ij

)
⊗ Yl ⊗

( n−1⊗
j=l+1

Ij

)

P ′a =

( l−1⊗
j=0

σ
P ′a
j

)
⊗ Il ⊗

( n−1⊗
j=l+1

σ
P ′a
j

)
where [Pd, P

′
a] = 0 and σ

P ′a
j ∈ {I, Z}∀ j

. (A.4)

We can define the rotation:

D = exp

(
i
π

4
Pd

)
=

1√
2

(1 + iPd). (A.5)

Conjugating Pc with this operator results in:

DPcD
† = ±1

( l−1⊗
j=0

σPcj

)
⊗Xl ⊗

( n−1⊗
j=l+1

σPcj

)
= P ′c. (A.6)

P ′c is now a non-diagonal Pauli operator (contains a single qubit X acting on qubit

l). This operator P ′c can now be mapped to a single qubit Z operator using a further
π
2
-rotation following the previously given procedure for non-diagonal Pauli operators.

The Vi operators in the main text (equation 5.22) are defined by these π
2
-rotations,

such that each qiGi and P
(k)
0 is mapped to a single qubit Pauli Z term. At worst, two

π
2
-rotations are needed for every operator inW ′

all (Equation 5.21), which occurs when

all operators in W ′

all are diagonal.

A.2 CS-VQE via a sequence of rotations

In this subsection, we show how the sequence of rotations step in CS-VQE can cause an

exponential increasing in the number of Pauli operators of a given Hamiltonian when

rotating into the contextual subspace [198, 221, 262]. We use the following shorthand

notation, where Pauli operators with multiple indices represent the multiplication of

Pauli operators: PaPbPc = Pabc.

Given the set of anticommuting operators A(~r) (Equation 5.11), we can define the
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following self-inverse operators:

{Xkj = iP
(k)
0 P

(j)
0 ∀P (j)

0 ∈ A where j 6= k}, (A.7)

where P
(k)
0 ∈ A. To simplify the notation we drop the subscript 0 (denoting the first

operator in a clique) and write each P
(k)
0 , P

(j)
0 as Pk and Pj respectively.

The adjoint rotation generated by one of these Xkj operators will be:

e(−i
θkj
2
Xkj)A(~r)e(+i

θkj
2
Xkj) = RSkj(θkj)A(~r)R†Skj(θkj)

=
(
rj cos θkj − rk sin θkj

)
Pj +

(
βj sin θkj + rk cos θkj

)
Pk +

∑
Pl∈A
∀l 6=k,j

βlPl.

(A.8)

The coefficient of Pj can be made to go to 0, by setting rj cos θkj = rk sin θkj. This

approach removes the term with index j and increases the coefficient of Pk from

rk 7→
√
r2
k + r2

j [198]. This process is repeated over all indices excluding j = k until

only the Pk term remains. This procedure can be concisely written using the following

operator [198]:

RS =

|A|−1∏
j=0
∀j 6=k

e(−i
θkj
2

)Xkj =

|A|−1∏
j=0
∀j 6=k

RSkj(θkj) =

|A|−1∏
j=0
∀j 6=k

[
cos
(θkj

2

)
I − i sin

(θkj
2

)
Xkj
]
, (A.9)

which is simply a sequence of rotations. The angle θkj is defined recursively at each

step of the removal process, as the coefficient of Pk increases at each step and thus

must be taken into account. The correct solution for θkj must be chosen given the

signs of rk and rk [198]. The overall action of this sequence of rotations is:

RSA(~r)R†S = Pk. (A.10)

Looking at Equation A.9, expanding the product of rotations results in RS con-

taining O(2|A|−1) Pauli operators. We write this operator as:

RS =

O(2|A|−1)∑
b

δbPb. (A.11)
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A.2. CS-VQE VIA A SEQUENCE OF ROTATIONS

The adjoint rotation of RS on a general Hamiltonian Hq =
∑|Hq |

a caPa is:

RSHqR
†
S =

(O(2|A|−1)∑
b

δbPb

) |Hq |∑
a

caPa

(O(2|A|−1)∑
c

δ∗cPc

)

=

O(2|A|−1)∑
b

|Hq |∑
a

O(2|A|−1)∑
c

(δbcaδ
∗
c )PbPaPc.

(A.12)

We see that the number of terms increases as O(2|A||Hq|) which was previously shown

in [256]. What we show next is the additional structure in RS - due to the Xkj

operators - mean that the base of the exponent can be slightly lower; however, it still

remains exponential in |A|.
Consider the adjoint rotation of a particular Xkj in RS (Equation A.9):

RSkj = cos
(θkj

2

)
I + sin

(θkj
2

)
Pkj,

R†Skj = cos
(θkj

2

)
I + sin

(θkj
2

)
Pjk.

(A.13)

Performing the adjoint rotation on Hq results in the following:

RSkjHqR
†
Skj

=

[
αkjI + βkjPkj

]∑
a

caPa

[
αkjI + βkjPjk

]

=
∑
a

ca
(
αkjPa + βkjPkjPa

)[
αkjI + βkjPjk

]
=
∑
a

ca
(
α2
kjPa + αkjβkjPaPjk + αkjβkjPkjPa + β2

kjPkjPaPjk
)

=
∑
a

ca
(
α2
kjPa + αkjβkjPaPjk − αkjβkjPjkPa + β2

kjPkjPaPjk
)

=
∑
a

ca
(
α2
kjPa + αkjβkj[Pa, Pjk] + β2

kjPkjPaPjk
)

=
∑
a

ca


(
α2
kjPa + β2

kjPkjPaPjk
)
, if [Pa, Pjk] = 0(

α2
kjPa + 2αkjβkjPaPjk + β2

kjPkjPaPjk
)
, else {Pa, Pjk} = 0.

(A.14)
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When [Pa, Pjk] = 0, we get:∑
a

ca
(
α2
kjPa + β2

kjPkjPaPjk
)

=
∑
a

ca
(
α2
kjPa + β2

kjPkjPjkPa
)

=
∑
a

ca
(
α2
kjPa + β2

kjPa
)

=
∑
a

ca
(
α2
kj + β2

kj

)
Pa

=
∑
a

caPa.

(A.15)

When {Pa, Pjk} = 0, we find:

∑
a

ca
(
α2
kjPa + 2αkjβkjPaPjk + β2

kjPkjPaPjk
)

=
∑
a

ca
(
α2
kjPa + 2αkjβkjPaPjk − β2

kjPkjPjkPa
)

=
∑
a

ca
(
α2
kjPa + 2αkjβkjPaPjk − β2

kjPa
)

=
∑
a

ca
(
α2
kjPa + sin(θkj)PaPjk − β2

kjPa
)

=
∑
a

ca
(
(α2

kj − β2
kj)Pa + sin(θkj)PaPjk

)
=
∑
a

ca
(
cos(θkj)Pa + sin(θkj)PaPjk

)
.

(A.16)

Both cases use the following identities:

α2
kj − β2

kj = cos2
(θkj

2

)
− sin2

(θkj
2

)
= cos

(
θkj
)
,

α2
kj + β2

kj = 1,

2αkjβkj = 2 cos
(θkj

2

)
sin
(θkj

2

)
= sin

(
θkj
)
,

(A.17)

where αkj = cos
( θkj

2

)
and βkj = sin

( θkj
2

)
. Using these results Equation A.14 reduces

to:

RSkjHqR
†
Skj

=
∑
a

∀[Pa,Pjk]=0

caPa +
∑
a

∀{Pa,Pjk}=0

ca

(
cos(θkj)Pa + sin(θkj)PaPjk

)

=
∑
a

ηaPa +
∑
a

∀{Pa,Pjk}=0

ηa
(
PjkPa

)
,

(A.18)

where ηa represent the new real coefficients.

Consider the application of the next rotation operator Rkl in RS (note k index
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represents the same Pauli operator Pk):

RSklRSkjHqR
†
Skj
R†Skl = RSkl

(∑
a

ηaPa

)
R†Skl +RSkl

( ∑
a

∀{Pa,Pjk}=0

ηa
(
PjkPa

))
R†Skl .

(A.19)

Focusing on the last term in Equation A.19:

RSkl

( ∑
a

∀{Pa,Pjk}=0

ηa
(
PjkPa

))
R†Skl =

[
γklI + δklPkl

] ∑
a

∀{Pa,Pjk}=0

ηa
(
PjkPa

)[
γklI + δklPlk

]

=
∑
a

∀{Pa,Pjk}=0

ηa

(
γklPjkPa + δklPklPjkPa

)[
γklI + δklPlk

]

=
∑
a

∀{Pa,Pjk}=0

ηa

(
γ2
klPjkPa + γklδklPjkPaPlk + γklδklPklPjkPa + δ2

klPklPjkPaPlk

)

=
∑
a

∀{Pa,Pjk}=0

ηa

(
γ2
klPjkPa + γklδklPjkPaPlk − γklδklPkjPlkPa + δ2

klPklPjkPaPlk

)

=
∑
a

∀{Pa,Pjk}=0

ηa

(
γ2
klPjkPa + γklδklPjkPaPlk + γklδklPjkPlkPa + δ2

klPklPjkPaPlk

)

=
∑
a

∀{Pa,Pjk}=0

ηa

(
γ2
klPjkPa + γklδklPjk{Pa, Plk}+ δ2

klPklPjkPaPlk

)

=
∑
a

∀{Pa,Pjk}=0

ηa


(
γ2
klPjkPa + 2γklδklPjkPaPlk + δ2

klPklPjkPaPlk

)
, if [Pa, Plk] = 0(

γ2
klPjkPa + δ2

klPklPjkPaPlk

)
, if {Pa, Plk} = 0

.

(A.20)
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For the case {Pa, Plk} = 0:

∑
a

∀{Pa,Pjk}=0

ηa

(
γ2
klPjkPa + δ2

klPklPjkPaPlk

)
=

∑
a

∀{Pa,Pjk}=0

ηa

(
γ2
klPjkPa − δ2

klPklPjkPlkPa

)

=
∑
a

∀{Pa,Pjk}=0

ηa

(
γ2
klPjkPa + δ2

klPjkPklPlkPa

)

=
∑
a

∀{Pa,Pjk}=0

ηa

(
γ2
klPjkPa + δ2

klPjkPa

)

=
∑
a

∀{Pa,Pjk}=0

ηa

(
PjkPa

)
.

(A.21)

We observe that there is no increase in the number of terms and the weight of each

Pauli operator changes.

For the case [Pa, Plk] = 0:

∑
a

∀{Pa,Pjk}=0

ηa
(
γ2
klPjkPa + 2γklδklPjkPaPlk + δ2

klPklPjkPaPlk
)

=
∑
a

∀{Pa,Pjk}=0

ηa
(
γ2
klPjkPa + 2γklδklPjkPaPlk + δ2

klPklPjkPlkPa
)

=
∑
a

∀{Pa,Pjk}=0

ηa
(
γ2
klPjkPa + 2γklδklPjkPaPlk − δ2

klPjkPklPlkPa
)

=
∑
a

∀{Pa,Pjk}=0

ηa
(
γ2
klPjkPa + 2γklδklPjkPaPlk − δ2

klPjkPa
)

=
∑
a

∀{Pa,Pjk}=0

ηa
(
(γ2
kl − δ2

kl)PjkPa + 2γklδklPjkPaPlk
)

=
∑
a

∀{Pa,Pjk}=0

ηa
(

cos
(
θkl
)
PjkPa + sin

(
θkl
)
PjkPaPlk

)
.

(A.22)

The number of terms in the resulting operator has increased for each case where
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[Pa, Plk] = 0. The action of two rotations of RS on the whole Hamiltonian results in:

RSklRSkjHR
†
Skj
R†Skl = RSkl

(∑
a

ηaPa

)
R†Skl +RSkl

( ∑
a

∀{Pa,Pjk}=0

ηa
(
PjkPa

))
R†Skl

=RSkl

(∑
a

ηaPa

)
R†Skl +

∑
a

∀{Pa,Pjk}=0
∀{Pa,Plk}=0

ηaPjkPa+

∑
a

∀{Pa,Pjk}=0
[Pa,Plk]=0

ηa
(

cos
(
θkl
)
PjkPa + sin

(
θkl
)
PjkPaPlk

)

=RSkl

(∑
a

ηaPa

)
R†Skl +

∑
a

∀{Pa,Pjk}=0

µaPjkPa +
∑
a

∀{Pa,Pjk}=0
[Pa,Plk]=0

µaPjkPaPlk

=
∑
a

νaPa +
∑
a

∀{Pa,Plk}=0

νa
(
PlkPa

)
+

∑
a

∀{Pa,Pjk}=0

µaPjkPa +
∑
a

∀{Pa,Pjk}=0
[Pa,Plk]=0

µaPjkPaPlk,

(A.23)

where Greek letters are new coefficients according to the expansion. We use the

results of equations A.21 and A.22 to determine what occurs to the second term

of Equation A.23. We have applied the result in Equation A.18 to the first term

(RSkl

(∑
i ηiPi

)
R†Skl) in Equation A.23.

From these results, we can infer how the terms in Hq will scale for a general

sequence of rotations of size |RS| (Equation A.9), which in general change as:

|Hq|
|RS |∑
g=0

(
|RS|
g

)
= 2|RS ||Hq|. (A.24)

This operation increases the number of terms in Hq to O
(
2(|A|−1)|Hq|

)
. How-

ever, the structure of the sequence of rotation operator actually requires 2g com-

muting/anticommuting conditions to be met for new Pauli operators to be gener-

ated by subsequent rotations. We therefore need to consider the probability that a

given Pauli operator will either commute or anticommute with another. For the case

of single qubit Pauli matrices σa, σb ∈ {I,X, Y, Z} by a simple counting argument

P ([σa, σb] = 0) = 5
8

and P ({σa, σb} = 0) = 3
8
, for Pauli matrices selected uniformly

at random. Generalising this to tensor products of Pauli matrices on n qubits, for

a Pauli operator to anticommute with another there needs to be an odd number of

anticommuting tensor factors. First, consider the binomial distribution:

P (x) =

(
n

x

)
pxqn−x, (A.25)
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where n is the number of trials (repeated experiments), p is the probability of success

- here the probability a single Pauli matrix anticommutes with another (p = 3
8
) - and q

is the probability of failure - here the probability a single Pauli matrix commutes with

another (q = 5
8
). Under these conditions, P (x) gives the probability that two n-fold

Pauli operators, selected uniformly at random, anticommute in x-many tensor factors.

Therefore, the probability of two uniformly random Pauli operators anticommuting

(commuting) is given as a sum over odd (even) values of x ≤ n:

P
(
{Pa, Pb} = 0

)
=

dn/2e∑
c=1

P (2c− 1). (A.26)

Now, the binomial theorem states

(p+ q)n =
n∑
c=0

(
n

c

)
pcqn−c, (A.27)

for any p, q ∈ R. We can define the following difference:

(p+q)n−(−p+q)n =
n∑
c=0

(
n

c

) [
1− (−1)c

]︸ ︷︷ ︸
=


2, if c odd

0, if c even

pcqn−c = 2

dn/2e∑
c=1

(
n

2c− 1

)
p2c−1qn−(2c−1).

(A.28)

Overall we find the probability that two n-fold Pauli operators anticommute to be:

P
(
{Pa, Pb} = 0

)
=

dn/2e∑
c=1

P (2c− 1)

=

dn/2e∑
c=1

(
n

2c− 1

)
·
(

3

8

)2c−1

·
(

5

8

)n−(2c−1)

=
1

2

[(3

8
+

5

8

)n − (− 3

8
+

5

8

)n]
=

1

2

[
1−

(
1

4

)n]
,

(A.29)

when each operator Pa, Pb is chosen uniformly at random. The n choose 2c− 1 term

in equation A.29 counts all the possible ways an odd number of single qubit pairs of

Pauli tensor factors can differ on n qubits, the first fraction gives the probability that

there are 2c − 1 anticommuting terms on each pair of qubits and the final fraction

gives the probability that the remaining n−(2c−1) qubit positions pairwise commute

on each qubit. The penultimate line of equation A.29 uses the definition in A.28, with

the factor of two taken into account. Through equation A.29, it can be seen that the
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probability of two n-fold Pauli operators anticommuting quickly converges to 0.5 as

the number of qubits n increases. The motivation for A.28 arises from observing that

the quantity we subtract, (1/4)n, is the probability of obtaining an n-fold identity

operator, which has the unique property of commuting universally. The complement

1 − (1/4)n therefore corresponds with the probability of selecting uniformly at ran-

dom a Pauli operator with at least one non-trivial tensor factor. After discounting

identity operators from consideration, the probabilities of anticommuting or commut-

ing coincide, hence each occurs half of the time, explaining the 1/2 factor in A.29;

the probability bias towards commutation is a consequence of the identity opera-

tor commuting universally, whereas there is no such operator that can anticommute

universally.

If we consider how the number of terms in Hq changes upon the sequence of ro-

tations transformation: Hq 7→ RSHqR
†
S where terms either commute or anticommute

with a probability of 0.5, then the scaling is as follows:

|RS |∑
g=0

|Hq|
2g

(
|RS|
g

)
=
(3

2

)|RS ||Hq|. (A.30)

Equation A.24 is modified to have a constant factor of 2−g, where g represents the

number of commuting or anticommuting conditions required for operators in Hq to

obey in order to increase the number of terms upon a rotation of RS. Here each

condition is assumed to occur with a probability of 0.5. This operation increases the

number of terms in Hq to O
(
1.5(|A|−1)|Hq|

)
. Note |RS| = |A| − 1. In general, the

scaling will be O
(
x(|A|−1)|Hq|

)
where 1 ≤ x ≤ 2, depending on how each rotation

in the sequence of rotations commutes with terms in Hq. The x = 1 case occurs if

each rotation in RS commutes with the whole Hamiltonian. Apart from this special

case, the number of terms in Hq will increase exponentially with the size of A or

equivalently with the number of qubits n (as |A| ≤ 2n + 1 [256]) when R is defined

by a sequence of rotations.

A.3 CS-VQE via a linear combination of unitaries

Here, we analyse the LCU approach of CS-VQE when mapping a Hamiltonian into the

contextual subspace. We consider the set of anticommuting Pauli operators making

up A(~r) (Equation 5.11). We can rewrite this Equation, with the term we are reducing

to (rkP
(k)
0 ) outside the sum:

A(~r) = rkP
(k)
0 +

N−1∑
j=0
∀j 6=k

rjP
(j)
0 . (A.31)
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To simplify the notation we drop the subscript 0 (denoting the first operator in a

clique) and write each P
(k)
0 , P

(j)
0 as Pk and Pj respectively.

A re-normalization can be performed on the remaining sum yielding:

A(~r) = rkPk + Ω
N−1∑
j=0
∀j 6=k

δjPj

= rkPk + ΩHA\{rkPk},

(A.32)

where:

N−1∑
j=0
∀j 6=k

|δj|2 = 1, (A.33a)

rj = Ωδj, (A.33b)

HA\{rkPk} =
N−1∑
j=0
∀j 6=k

δjPj. (A.33c)

Using the Pythagorean trigonometric identity: sin2(x) + cos2(x) = 1, A(~r) can be

re-written as:

A(~r) = cos(φk)Pk + sin(φk)
N−1∑
j=0
∀j 6=k

δiPj

= cos(φk)Pk + sin(φk)HA\{rkPk}.

(A.34)

Comparing Equations A.32 and A.34, it is clear that cos(φk) = rk and sin(φk) = Ω.

It was shown in [198] that one can consider rotations of A(~r) around an axis that

is Hilbert-Schmidt orthogonal to both HA\{rkPk} and Pk :

X =
i

2

[
HA\{rkPk}, Pk

]
= i

|HA\{rkPk}|−1∑
j=0
∀j 6=k

δjPjPk. (A.35)

X anticommutes with A and is self-inverse [198] - see equation 4.44. We can therefore

define the rotation [198, 221]:
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RLCU = e

(
−iα

2
X
)

= cos
(α

2

)
I − i sin

(α
2

)
X (A.36a)

= cos
(α

2

)
I − i sin

(α
2

)(
i

|HA\{rkPk}|−1∑
j=0
∀j 6=k

δjPjPk

)
(A.36b)

= cos
(α

2

)
I + sin

(α
2

) |HA\{rkPk}|−1∑
j=0
∀j 6=k

δjPjk, (A.36c)

= δII +

|HA\{rkPk}|−1∑
j=0
∀j 6=k

δjPjk. (A.36d)

The conjugate rotation will be:

R†LCU = cos
(α

2

)
I + i sin

(α
2

)
i

|HA\{rkPk}|−1∑
j=0
∀j 6=k

δjPjPk, (A.37a)

= cos
(α

2

)
I + sin

(α
2

) |HA\{rkPk}|−1∑
j=0
∀j 6=k

δj PkPj︸︷︷︸
order change

, (A.37b)

= δII +

|HA\{rkPk}|−1∑
j=0
∀j 6=k

δjPkj. (A.37c)

Note the different order of j and k for RLCU and R†LCU . The adjoint action of RLCU

on A(~r) is:

RLCUA(~r)R†LCU = cos
(
φk − α

)
Pk + sin

(
φk − α

)
HA\{rkPk}. (A.38)

By choosing α = φk, the following transformation occurs RLCUA(~r)R†LCU = Pk [198,

221]. This fully defines the RLCU operator required by unitary partitioning. Next, we

need to consider the use of this operator in CS-VQE.

The adjoint action of RLCU on a general Hamiltonian Hq =
∑|Hq |

i ciPi is:
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RLCUHqR
†
LCU =

(
δII +

|RLCU |−1∑
j

δjPjk

) |Hq |∑
i

ciPi

(
δII +

|RLCU |−1∑
l

δlPkl

)
(A.39a)

=

(
δI

|Hq |∑
i

ciPi +

|RLCU |−1∑
j

|Hq |∑
i

δjciPjkPi

)(
δII +

|RLCU |−1∑
l

δlPkl

)
(A.39b)

= δ2
I

|Hq |∑
i

ciPi (A.39c)

+

|RLCU |−1∑
l

|Hq |∑
i

δIciδlPiPkl +

|RLCU |−1∑
j

|Hq |∑
i

δIδjciPjkPi (A.39d)

+

|RLCU |−1∑
j

|Hq |∑
i

|RLCU |−1∑
l

δjciδlPjkPiPkl. (A.39e)

We can rewrite the final term (Equation A.39e) as:

|RLCU |−1∑
j

|Hq |∑
i

|RLCU |−1∑
l

δjciδlPjkPiPkl =

|RLCU |−1∑
j

|Hq |∑
i

|RLCU |−1∑
l=j

[Pjk,Pi]=0

(ciδjδ
∗
j )Pi (A.40a)

+

|RLCU |−1∑
j

|Hq |∑
i

|RLCU |−1∑
l=j

{Pjk,Pi}=0

(−ciδjδ∗j )Pi (A.40b)

+

|RLCU |−1∑
j

|Hq |∑
i

|RLCU |−1∑
l 6=j

(δjciδl)PjkPiPkl. (A.40c)

Here we have applied the identity of conjugating a Pauli operator Pu with another

Pauli operator Pv resulting in two cases:

PvPuPv =

Pu, if [Pv, Pu] = 0

−Pu, otherwise {Pv, Pu} = 0
. (A.41)

Focusing on the last term of Equation A.40, we can simplify A.40c as j and l run over

the same indices we can re-write each l 6= j sum as l > j and expand into two terms:

|RLCU |−1∑
j

|Hq |∑
i

|RLCU |−1∑
l 6=j

(δjciδl)PjkPiPkl =

|RLCU |−1∑
j

|Hq |∑
i

|RLCU |−1∑
l>j

(δjciδl)
(
PjkPiPkl + PlkPiPkj

)
.

(A.42)
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We can expand then expand this equation into the four cases for when:

1. [Pjk, Pi] = 0 and [Plk, Pi] = 0

2. [Pjk, Pi] = 0 and {Plk, Pi} = 0

3. {Pjk, Pi} = 0 and [Plk, Pi] = 0

4. {Pjk, Pi} = 0 and {Plk, Pi} = 0

For the first case and last case:

|RLCU |−1∑
j

|Hq |∑
i

|RLCU |−1∑
l>j

(δjciδl)
(
PjkPiPkl + PlkPiPkj

)

=
∑
j

|Hq |∑
i

∑
l>j

(δjciδl)
(
± PiPjkPkl ± PiPlkPkj

)

=
∑
j

|Hq |∑
i

∑
l>j

(δjciδl)
(
± PiPjPl ± PiPlPj

)

=
∑
j

|Hq |∑
i

∑
l>j

(δjciδl)± Pi{Pj, Pl}

= 0.

(A.43)

Whereas, for the second and third cases:

|RLCU |−1∑
j

|Hq |∑
i

|RLCU |−1∑
l>j

(δjciδl)
(
PjkPiPkl + PlkPiPkj

)

=
∑
j

|Hq |∑
i

∑
l>j

(δjciδl)
(
± PiPjkPkl ∓ PiPlkPkj

)

=
∑
j

|Hq |∑
i

∑
l>j

(δjciδl)
(
± PiPjPl ∓ PiPlPj

)

=
∑
j

|Hq |∑
i

∑
l>j

(δjciδl)
(
± PiPjPl ± PiPjPl

)

=
∑
j

|Hq |∑
i

∑
l>j

(δjciδl)± 2PiPjPl.

(A.44)
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We can rewrite Equation A.40 using this result:

|RLCU |−1∑
j

|Hq |∑
i

|RLCU |−1∑
l

(δjciδl)PjkPiPkl

=
∑
j

|Hq |∑
i

∑
l=j

[Pjk,Pi]=0

(ciδjδ
∗
j )Pi +

∑
j

|Hq |∑
i

∑
l=j

{Pjk,Pi}=0

(−ciδjδ∗j )Pi+

∑
j

|Hq |∑
i

∑
l>j

∀[Pjk,Pi]=0
{Plk,Pi}=0

(δjciδl)2PiPjPl −
∑
j

|Hq |∑
i

∑
l>j

∀{Pjk,Pi}=0
[Plk,Pi]=0

(δjciδl)2PiPjPl

=

|Hq |∑
i

νiPi +

|RLCU |−1∑
j

|Hq |∑
i

|RLCU |−1∑
l>j

∀{Pi,PjPl}=0

νijlPiPjPl,

(A.45)

where we have combined the second and third conditions into a single condition of

{Pa, PjkPkl} = {Pa, PjPl} = 0 and combined the new coefficients into one coefficient

denoted ν.

Next consider the A.39d term of equation A.39. One can use the fact that j and

l run over the same indices:

|RLCU |−1∑
l

|Hq |∑
i

δIciδlPiPkl︸ ︷︷ ︸
re-write using l=j

+

|RLCU |−1∑
j

|Hq |∑
i

δIδjciPjkPi

=

|RLCU |−1∑
j

|Hq |∑
i

δIciδjPiPkj +

|RLCU |−1∑
j

|Hq |∑
i

δIδjciPjkPi

=

|RLCU |−1∑
j

|Hq |∑
i

−δIciδjPiPjk +

|RLCU |−1∑
j

|Hq |∑
i

δIδjciPjkPi

=

|RLCU |−1∑
j

|Hq |∑
i

δIciδj
(
PjkPi − PiPjk

)
=

|RLCU |−1∑
j

|Hq |∑
i

δIciδj[Pjk, Pi]

=

|RLCU |−1∑
j

|Hq |∑
i

∀{Pjk,Pi}=0

2δIciδjPjkPi.

(A.46)
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Overall we can re-write equation A.39 using these results, yielding:

RLCUHqR
†
LCU = δ2

I

|Hq |∑
i

ciPi︸ ︷︷ ︸
A.39c

+

|RLCU |−1∑
j

|Hq |∑
i

∀{Pjk,Pi}=0

2δIciδjPjkPi

︸ ︷︷ ︸
A.39d using A.46

+

|Hq |∑
i

νiPi +

|RLCU |−1∑
j

|Hq |∑
i

|RLCU |−1∑
l>j

∀{Pi,PjPl}=0

νijlPiPjPl

︸ ︷︷ ︸
A.39e using A.45

=

|Hq |∑
i

(δ2
Ici + νi)Pi +

|RLCU |−1∑
j

|Hq |∑
i

∀{Pjk,Pi}=0

2δIciδjPjkPi +

|RLCU |−1∑
j

|Hq |∑
i

|RLCU |−1∑
l>j

∀{Pi,PjPl}=0

νijlPiPjPl.

(A.47)

We observe that the number of terms in RLCUHqR
†
LCU at worst scales as |Hq|+ |Hq| ·

(|RLCU |−1)+ |Hq|
( (|RLCU |−1)(|RLCU |−2)

2

)
or O

(
|Hq| · |A|2

)
. The total number of qubits

n bounds the size of |A| ≤ 2n + 1 [256], and thus the number of terms in Hq will

increase quadratically with the size of A or number of qubits n when R is defined by

a linear combination of unitaries.

A.4 Numerical details of the toy example

This section provides all the details for the Toy problem described in Section 5.3.2.

The full noncontextual ground state is:

(−1,+1,−1︸ ︷︷ ︸
~q0

, 0.25318483,−0.65828059,−0.70891756︸ ︷︷ ︸
~r0

).
(A.48)

This defines the A(~r0):

A(~r0) = 0.25318483 Y XY I − 0.65828059XYXI − 0.70891756XZXI. (A.49)

The operators to map A(~r0) to a single Pauli operator are:

RS = e+1i·−0.7879622757719398·ZY ZI · e+1i·1.2036225088338255·ZZZI , (A.50)
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and

RLCU = 0.79157591 IIII + 0.41580383i ZZZI − 0.44778874i ZY ZI. (A.51)

Their action results in: RSA(~r0)R†S = RLCUA(~r0)R†LCU = Y XY I.

We then defined U depending on which generators we wished to fix. We found the

optimal ordering of stabilizers to fix via a brute force search over all
∑|Wall|

i=1

(|Wall|
i

)
=

24 − 1 = 15 possibilities for W . The following optimal ordering was obtained:

1. {−1 IIIZ}

2. {+1 IXY I,−1 IIIZ}

3. {+1 IXY I,−1 IIIZ,+1A(~r0)}

4. {−1 Y IY I,+1 IXY I,−1 IIIZ,+1A(~r0)}.

This defines all the information required to implement CS-VQE. Table A.1 summarises

the stabilizers fixed, the rotation UW , required projection QW and final projected

Hamiltonian Q†WU
†
WHUWQW for this ordering.

The old approach of applying U †Wall
HUWall

and then fixing certain stabilizer eigen-

values are summarised in Table A.2. It can be seen from these results, that always

implementing the unitary partitioning rotation R can unnecessarily increase the num-

ber of terms in the Hamiltonian and thus should only be applied if the eigenvalue for

〈A(~r)〉 is fixed.
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W U †W WZ = U †WWUW QW Q†WU
†
WHUWQW

-1 YIYI
+1 IXYI
-1 IIIZ
A(~r0)

e1iπ
4
XIY Ie1iπ

4
IY Y IRS/LCU

- ZIII
+ IZII
- IIIZ
+ IIZI

|1〉 〈1| ⊗ |0〉 〈0| ⊗ |1〉 〈1| ⊗ |0〉 〈0| -2.475+0.000j

+1 IXYI
-1 IIIZ
A(~r0)

e1iπ
4
IY Y IRS/LCU

+ IZII
- IIIZ
+ IIZI

I ⊗ |0〉 〈0| ⊗ |0〉 〈0| ⊗ |1〉 〈1|

SeqRot
-1.827+0.000j I +
-0.198+0.000j X +
-0.467+0.000j Z +

0.648+0.000j Y

LCU
-1.827+0.000j I +
-0.414+0.000j X +
-0.292+0.000j Z +

0.648+0.000j Y

+1 IXYI
-1 IIIZ

e1iπ
4
IY Y I + IZII

- IIIZ
I ⊗ |0〉 〈0| ⊗ I ⊗ |1〉 〈1|

-0.500+0.000j II +
0.500+0.000j XI +
0.700+0.000j XX +
0.100+0.000j YI +

-0.100+0.000j YX +
1.300+0.000j XZ +
0.600+0.000j IY +
0.700+0.000j ZZ

-1 IIIZ IIII -IIIZ I ⊗ I ⊗ I ⊗ |1〉 〈1|

-0.500+0.000j III +
0.100+0.000j XXX +
0.200+0.000j YXX +
0.700+0.000j XZX +
0.700+0.000j XYX +
0.100+0.000j YZX +
0.200+0.000j XXZ +
0.600+0.000j IIY +

0.500+0.000j XXY +
0.100+0.000j YXY +
0.600+0.000j XZZ +
0.700+0.000j ZZZ +
0.200+0.000j YYZ +

0.100+0.000j ZYY

Table A.1: Different contextual subspace Hamiltonians defined from H (Equation
5.27). RS and RLCU are defined in Equations A.50 and A.51.
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HSeqRot = U †,SeqRotWall
HUSeqRotWall

HLCU = U †,LCUWall
HULCUWall

WZ QW Q†WHSeqRotQW Q†WHLCUQW

0.932-0.000j ZIII +
-0.056+0.000j YIII +
-0.025+0.000j ZXII +
-0.025+0.000j YXII +
0.057-0.000j ZIXI +
-0.197+0.000j YIXI +
-0.051+0.000j ZXXI +
0.051+0.000j YXXI +
0.560-0.000j XZII +
0.395+0.000j ZZII +
0.397-0.000j YZII +
0.141-0.000j ZZXI +
0.142-0.000j YZXI +
0.345-0.000j XIZI +
0.093-0.000j XXZI +
0.467-0.000j IIYI +
-0.187+0.000j IXYI +
-0.496+0.000j ZIZI +
0.494-0.000j YIZI +
0.215+0.000j XZZI +
-0.200+0.000j IYZI +
-0.152+0.000j ZZZI +
-0.153+0.000j YZZI +
0.071+0.000j ZYYI +
0.071-0.000j YYYI +
-0.500+0.000j IIIZ

0.261-0.000j XIII +
0.932-0.000j ZIII +
-0.230+0.000j YIII +
-0.025+0.000j ZXII +
-0.071+0.000j YXII +
0.295-0.000j ZIXI +
-0.197+0.000j YIXI +
-0.142+0.000j ZXXI +
0.051+0.000j YXXI +
0.395-0.000j XZII +
0.037-0.000j IYXI +
0.395-0.000j ZZII +
0.223-0.000j YZII +
0.120-0.000j ZZXI +
0.142-0.000j YZXI +
0.263-0.000j XIZI +
0.066-0.000j XXZI +
0.366-0.000j IIYI +
-0.132+0.000j IXYI +
-0.496+0.000j ZIZI +
0.419-0.000j YIZI +
0.393+0.000j XZZI +
-0.200+0.000j IYZI +
-0.074+0.000j IZYI +
-0.152+0.000j ZZZI +
-0.425+0.000j YZZI +
0.060+0.000j ZYYI +
0.071-0.000j YYYI +
-0.500+0.000j IIIZ

- ZIII
+ IZII
- IIIZ
+ IIZI

|1〉 〈1| ⊗ |0〉 〈0| ⊗ |1〉 〈1| ⊗ |0〉 〈0| -2.475+0.000j -2.475+0.000j

+ IZII
- IIIZ
+ IIZI

I ⊗ |0〉 〈0| ⊗ |0〉 〈0| ⊗ |1〉 〈1|

-1.827+0.000j I +
-0.198+0.000j X +
0.648+0.000j Z +
0.467+0.000j Y

-1.827+0.000j I +
-0.414+0.000j X +
0.648+0.000j Z +
0.292+0.000j Y

+ IZII
- IIIZ

I ⊗ |0〉 〈0| ⊗ I ⊗ |1〉 〈1|

-0.500+0.000j II +
0.560+0.000j XI +
1.327+0.000j ZI +
0.341+0.000j YI +
0.198+0.000j ZX +
-0.056+0.000j YX +
0.560+0.000j XZ +
0.467+0.000j IY +
-0.648+0.000j ZZ +
0.341+0.000j YZ

-0.500+0.000j II +
0.656+0.000j XI +
1.327+0.000j ZI +
-0.006+0.000j YI +
0.414+0.000j ZX +
-0.056+0.000j YX +
0.656+0.000j XZ +
0.292+0.000j IY +
-0.648+0.000j ZZ +
-0.006+0.000j YZ

-IIIZ I ⊗ I ⊗ I ⊗ |1〉 〈1|

-0.500+0.000j III +
0.932+0.000j ZII +
-0.056+0.000j YII +
-0.025+0.000j ZXI +
-0.025+0.000j YXI +
0.057+0.000j ZIX +
-0.197+0.000j YIX +
-0.051+0.000j ZXX +
0.051+0.000j YXX +
0.560+0.000j XZI +
0.395+0.000j ZZI +
0.397+0.000j YZI +
0.141+0.000j ZZX +
0.142+0.000j YZX +
0.345+0.000j XIZ +
0.093+0.000j XXZ +
0.467+0.000j IIY +
-0.187+0.000j IXY +
-0.496+0.000j ZIZ +
0.494+0.000j YIZ +
0.215+0.000j XZZ +
-0.200+0.000j IYZ +
-0.152+0.000j ZZZ +
-0.153+0.000j YZZ +
0.071+0.000j ZYY +
0.071+0.000j YYY

-0.500+0.000j III +
0.261+0.000j XII +
0.932+0.000j ZII +
-0.230+0.000j YII +
-0.025+0.000j ZXI +
-0.071+0.000j YXI +
0.295+0.000j ZIX +
-0.197+0.000j YIX +
-0.142+0.000j ZXX +
0.051+0.000j YXX +
0.395+0.000j XZI +
0.037+0.000j IYX +
0.395+0.000j ZZI +
0.223+0.000j YZI +
0.120+0.000j ZZX +
0.142+0.000j YZX +
0.263+0.000j XIZ +
0.066+0.000j XXZ +
0.366+0.000j IIY +
-0.132+0.000j IXY +
-0.496+0.000j ZIZ +
0.419+0.000j YIZ +
0.393+0.000j XZZ +
-0.200+0.000j IYZ +
-0.074+0.000j IZY +
-0.152+0.000j ZZZ +
-0.425+0.000j YZZ +
0.060+0.000j ZYY +
0.071+0.000j YYY

Table A.2: Different contextual subspace Hamiltonians defined from H (Equation
5.27). Here W has been set to Wall, which defines U †Wall

= e1iπ
4
XIY Ie1iπ

4
IY Y IRS/LCU .

RS and RLCU are defined in Equations A.50 and A.51. The two left columns (HSeqRot

and HLCU) give H rotated by UW . Each projected Hamiltonian is generated from
these, where the eigenvalue of certain stabilizers are fixed according to the projector
QW . For the last two rows, the eigenvalue of A(~r0) has not been fixed, but the non-
Clifford operator RS/LCU is still included within U †Wall

. This leads to an unnecessary
increase in the number of Pauli operators for these two cases, as these transformed
operators are isospectral with associated Hamiltonians in Table A.1.
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A.5 Graphical results for CS-VQE simulation of

each molecular Hamiltonian
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A.5. GRAPHICAL RESULTS FOR CS-VQE SIMULATION OF EACH
MOLECULAR HAMILTONIAN

(x) (y)

(z) (aa)

Figure A.1: CS-VQE approximation errors ∆E versus number of qubits used on the
quantum computer (scatter plot). The horizontal solid black lines indicate chemical
accuracy. The number of terms in each molecular Hamiltonian is given by the bar
chart.

All the subplots in Figure A.1 give the simulation results of each molecular Hamil-

tonian at different levels of noncontextual approximations. This is equivalent to how

many contextual stabilizers W eigenvalues are fixed. In each plot, the leftmost data

represents the case when all the noncontextual stabilizer eigenvalues are fixed and

is the case for the full noncontextual approximation to a given problem [256]. Mov-

ing right, we remove a single stabilizer from W and thus don’t fix the eigenvalue of

that stabilizer. This reintroduces a qubit’s worth degree of freedom into the problem.

At the limit that no stabilizer eigenvalues are fixed (W = {}) we return to stan-

dard VQE over the full problem and no noncontextual approximation is made. In

each plot this scenario is represented by the far right data point (excluding the data

for the full non-tapered Hamiltonian that is supplied for reference only). The raw

data for these results is supplied in the Supplemental Material of [262]. We include

data beyond Hamiltonians achieving chemical accuracy, to show the different possible

approximations, rather than stopping once chemical accuracy was achieved.
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A.6. TABULATED RESULTS OF SIMULATION

molecule basis HCS-VQE H CS-VQE + UP (LCU) HCS-VQE + UP (SeqRot) Htapered RHtaperedR
† Hfull

BeH2 STO-3G (7, 268) (7, 61) (7, 61) (9, 596) (9, 614) (14, 666)
Mg STO-3G (10, 675) (10, 114) (10, 114) (13, 1465) (13, 1465) (18, 3388)
H3

+ 3-21G (9, 914) (9, 115) (9, 115) (9, 914) (9, 786) (12, 1501)
O2 STO-3G (11, 815) (11, 157) (11, 157) (15, 2229) (15, 2374) (20, 2255)
OH STO-3G (6, 231) (6, 62) (6, 62) (8, 558) (8, 558) (12, 631)
CH4 STO-3G (12, 1359) (12, 203) (12, 203) (14, 2194) (14, 2194) (18, 5288)
Be STO-3G (3, 20) (3, 9) (3, 9) (5, 102) (5, 108) (10, 156)

NH3 STO-3G (11, 1733) (11, 200) (11, 200) (13, 3048) (13, 2738) (16, 4293)
H2S STO-3G (7, 435) (7, 92) (7, 92) (18, 6237) (18, 6237) (22, 6246)
H2 3-21G (5, 122) (5, 27) (5, 27) (5, 122) (5, 124) (8, 185)
HF 3-21G (17, 5530) (17, 648) (17, 648) (18, 6852) (18, 6852) (22, 13958)
F2 STO-3G (9, 527) (9, 99) (9, 99) (15, 2229) (15, 2229) (20, 2367)

HCl STO-3G (4, 100) (4, 35) (4, 35) (16, 4409) (16, 4409) (20, 8159)
HeH+ 3-21G (5, 155) (5, 35) (5, 35) (6, 319) (6, 319) (8, 361)
MgH2 STO-3G (15, 2285) (15, 289) (15, 289) (17, 3540) (17, 3540) (22, 4582)
CO STO-3G (12, 1599) (12, 241) (12, 241) (16, 4409) (16, 4409) (20, 5475)
LiH STO-3G (4, 100) (4, 35) (4, 35) (8, 558) (8, 586) (12, 631)
N2 STO-3G (11, 815) (11, 153) (11, 153) (15, 2229) (15, 2229) (20, 2975)

NaH STO-3G (14, 2722) (14, 375) (14, 375) (16, 4409) (16, 4409) (20, 5851)
H2O STO-3G (7, 435) (7, 73) (7, 73) (10, 1035) (10, 1035) (14, 1086)
H3

+ STO-3G (1, 3) (1, 2) (1, 2) (3, 34) (3, 35) (6, 78)
LiOH STO-3G (13, 2104) (13, 296) (13, 296) (18, 6852) (18, 6852) (22, 8758)
LiH 3-21G (13, 2732) (13, 375) (13, 383) (18, 6852) (18, 6852) (22, 8758)
H2 6-31G (5, 122) (5, 27) (5, 27) (5, 122) (5, 124) (8, 185)

NH4
+ STO-3G (12, 1359) (12, 176) (12, 176) (14, 2194) (14, 2194) (18, 6892)

HF STO-3G (4, 100) (4, 35) (4, 35) (8, 558) (8, 558) (12, 631)

Table A.3: Different resource requirements to study different electronic structure
Hamiltonians required to achieve chemical accuracy. Each round bracket tuple reports
(n, |H|) and gives the number of qubits and terms for each Hamiltonian considered.
RHtaperedR

† describes the effect of the CS-VQE unitary partitioning rotation on the

problem Hamiltonian and HCS-VQE = QWU
†
WHfullUWQ

†
W . The size of the Hamilto-

nian for LiH (3-21G singlet) with measurement reduction applied is different for the
sequence of rotations and LCU unitary partitioning methods. This is an artefact
of the graph colouring heuristic when finding different anticommuting cliques in the
CS-VQE Hamiltonian.

A.6 Tabulated results of simulation

Table A.3 summarises the numerical results of Figures 5.3 and 5.4.
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Appendix B

PBE Appendix

B.1 Molecular ground state energy

In addition to the result displayed in Figure 6.2, which were calculated using the

SPADE projection method, we present results for the same molecules using the In-

trinsic Bonding Orbitals localisation method in Figure B.1. Numerical values for these

results are given in Table B.1 for reference values, and Tables B.2 and B.3 for our

calculated results.

Molecule εDFT Q |H|
N-methylmethanamine 0.5733 44 338971
acetaldehyde 0.569 38 182702
acetonitrile 0.485 36 136067
ethanamine 0.573 44 329283
ethanol 0.609 42 283020
fluoroethane 0.637 40 217385
formamide 0.619 36 138235

Table B.1: Full-system reference values for embedding calculations of small molecules,
as shown in Figures 6.2 and B.1. εDFT gives the difference between full-system RKS
DFT, using the B3LYP functional, and CCSD(T). Q and |H| give respectively the
number of qubits and terms in the Jordan-Wigner encoded qubit Hamiltonian of the
full system. All energies are reported in Hartree (Ha).

B.2 Strong correlation

We provide the numerical details of our strongly correlated H2O study in this section,

where SPADE localization has been used. These results form Figure 6.3 in the main

text. We also include results for IBO localization, with the localization threshold

lowered.

For the H2O projection-based embedding calculations, at different molecular ge-

ometries, we considered two different active regions. One had the atoms in the fixed

OH bond set active and the other had the atoms in the changing OH bond set active.

The structure for H2O with an OH bond length of 0.4 Å is given in Table B.4. The
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B.2. STRONG CORRELATION

Molecule εhuz εµ Qhuz Qµ |Hhuz
emb| |H

µ
emb|

N-methylmethanamine 0.491 0.494 24 24 29701 29737
acetaldehyde 0.099 0.178 30 30 70118 69554
acetonitrile 0.462 0.462 18 18 9232 9016
ethanamine 0.394 0.399 26 26 38716 39924
ethanol 0.340 0.350 26 26 40948 41060
fluoroethane 0.299 0.312 26 26 35020 38180
formamide 0.043 0.109 30 30 62434 61914

Table B.2: Numerical values of the calculations shown in Figure B.1. For each cal-
culation the energy difference between CCSD(T)-in-DFT embedding and full system
CCSD(T), ε, is given. The number of qubits Q and the number of terms in the output
Jordan-Wigner encoded qubit Hamiltonian |H| are given. Results for IBO localisation
are shown, with results for SPADE in Table B.3 reference values using the full system
given in Table B.1. All energies are reported in Hartree (Ha).

Molecule εhuz εµ Qhuz Qµ |Hhuz
emb| |Hµ

emb|
N-methylmethanamine 0.135 0.169 36 36 152223 152415
acetaldehyde 0.098 0.176 30 30 70474 69982
acetonitrile 0.403 0.409 20 20 13439 13111
ethanamine 0.136 0.169 36 36 145067 149819
ethanol 0.132 0.169 34 34 120928 121036
fluoroethane 0.136 0.170 32 32 85781 89377
formamide 0.045 0.110 30 30 62366 61958

Table B.3: Numerical values of the calculations shown in Figure 6.2. For each cal-
culation the energy difference between CCSD(T)-in-DFT embedding and full system
CCSD(T), ε, is given. The number of qubits Q and the number of terms in the output
Jordan-Wigner encoded qubit Hamiltonian |H| are given. Results for SPADE local-
isation are shown, with results for IBO in Table B.2 reference values using the full
system given in Table B.1. All energies have been reported in Hartree (Ha).
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B.2. STRONG CORRELATION

Figure B.1: Results for embedding of small molecules using the IBO localisation
method. (a) Ground state energies error for small molecules, with full-system DFT
energy error as a reference, µ-shift CCSD-in-DFT embedding energy in orange and
Huzinaga CCSD-in-DFT embedding in grey. All error values are calculated with
respect to whole system CCSD(T) energies. (b) The number of qubits required to
describe the embedded FCI-in-DFT Hamiltonians, with the reference showing the
number required for the full system second quantized Hamiltonian. (c) The num-
ber of terms in the Jordan-Wigner encoded FCI-in-DFT qubit Hamiltonian for each
molecule. Again the reference gives the number needed for the full system second
quantized Hamiltonian.

other geometries can be generated from this structure. Tables B.5 and B.6 summarise

the numerical results for the different active systems where SPADE localization has

been used. Tables B.7 and B.8 give the numerical results for the different active sys-

tems when IBO localization was used. Finally, Figure B.2 provides a summary of the

IBO results when the minimum localization threshold was reduced to 90%.
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B.2. STRONG CORRELATION

atom x y z

H 0.3751747 0.0000000 0.1387225
O 0.0000000 0.0000000 0.0000000
H -0.7493682 0.0000000 0.2770822

Table B.4: Cartesian coordinates of atoms in H2O for the structure with an OH
bond length of 0.4 Å defined from the first H and O atoms in this Table. The other
structures (different OH bond lengths) were generated from this file by changing the
position of the first H atom. Note the H-O-H angle remained fixed.

OH length Eglobal
FCI Eglobal

DFT EhuzFCI-in-DFT EµFCI-in-DFT |Hfull| |Hhuz
FCI-in-DFT| |H

µ
FCI-in-DFT| Qglobal

FCI QhuzFCI-in-DFT QµFCI-in-DFT # active MOs

0.400000 -72.981056 -73.259936 -72.988008 -72.988009 2110 1079 1079 14 12 12 4
0.600000 -74.499220 -74.773419 -74.508545 -74.508545 2110 1079 1079 14 12 12 4
0.798954 -74.851089 -75.122053 -74.864002 -74.864002 1086 1079 1079 14 12 12 4
1.000000 -74.900658 -75.170068 -74.918225 -74.918226 2110 1079 1079 14 12 12 4
1.200000 -74.867498 -75.134418 -74.890912 -74.890913 2110 1079 1079 14 12 12 4
1.500000 -74.807539 -75.057384 -74.840739 -74.840739 2110 1079 1079 14 12 12 4
2.000000 -74.776263 -74.962535 -74.816902 -74.816902 2110 1079 1079 14 12 12 4
3.000000 -74.771687 -74.890577 -74.820223 -74.820224 2530 1327 1327 14 12 12 4
4.000000 -74.771719 -74.876129 -74.820261 -74.820262 3346 1819 1819 14 12 12 4
5.000000 -74.771718 -74.872116 -74.820410 -74.820411 3054 1799 1799 14 12 12 4

Table B.5: Numerical values of the calculations shown in Figure 6.3a for the case
when the changing OH bond is set as the active region and SPADE localization has
been used. For each calculation the absolute energy is reported (each Hamiltonian
was diagonalized to give the exact ground state). The number of qubits Q and the
number of terms in the output Jordan-Wigner encoded qubit Hamiltonian |H| are
given. All energies are reported in Hartree (Ha).

OH length Eglobal
FCI Eglobal

DFT EhuzFCI-in-DFT EµFCI-in-DFT |Hfull| |Hhuz
FCI-in-DFT| |H

µ
FCI-in-DFT| Qglobal

FCI QhuzFCI-in-DFT QµFCI-in-DFT # active MOs

0.400000 -72.981056 -73.259936 -72.887822 -72.887827 2110 1079 1079 14 12 12 4
0.600000 -74.499220 -74.773419 -74.473689 -74.473691 2110 1079 1079 14 12 12 4
0.798954 -74.851089 -75.122053 -74.864002 -74.864002 1086 1079 1079 14 12 12 4
1.000000 -74.900658 -75.170068 -74.936101 -74.936101 2110 1079 1079 14 12 12 4
1.200000 -74.867498 -75.134418 -74.914336 -74.914336 2110 1079 1079 14 12 12 4
1.500000 -74.807539 -75.057384 -74.847328 -74.847328 2110 1079 1079 14 12 12 4
2.000000 -74.776263 -74.962535 -74.755506 -74.755506 2110 1079 1079 14 12 12 4
3.000000 -74.771692 -74.890579 -74.683921 -74.683921 2406 1203 1327 14 12 12 4
4.000000 -74.771719 -74.876127 -74.669427 -74.669427 2598 1083 1119 14 12 12 4
5.000000 -74.771718 -74.872381 -74.665626 -74.665626 3046 1759 1799 14 12 12 4

Table B.6: Numerical values of the calculations shown in Figure 6.3a for the case
when the fixed OH bond is set as the active region and SPADE localization has
been used. For each calculation the absolute energy is reported (each Hamiltonian
was diagonalized to give the exact ground state). The number of qubits Q and the
number of terms in the output Jordan-Wigner encoded qubit Hamiltonian |H| are
given. All energies are reported in Hartree (Ha).
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B.2. STRONG CORRELATION

OH length Eglobal
FCI Eglobal

DFT EhuzFCI-in-DFT EµFCI-in-DFT |Hfull| |Hhuz
FCI-in-DFT| |H

µ
FCI-in-DFT| Qglobal

FCI QhuzFCI-in-DFT QµFCI-in-DFT # active MOs

0.400000 -72.981056 -73.259936 -72.928542 -72.923051 2110 492 492 14 10 10 3
0.600000 -74.499220 -74.773419 -74.484545 -74.484551 2110 492 492 14 10 10 3
0.798954 -74.851089 -75.122053 -74.852614 -74.852616 1086 1079 1079 14 12 12 4
1.000000 -74.900658 -75.170068 -74.899540 -74.899543 2110 1079 1079 14 12 12 4
1.200000 -74.867498 -75.134418 -74.868096 -74.868099 2110 1079 1079 14 12 12 4
1.500000 -74.807539 -75.057384 -74.819776 -74.819778 2110 1079 1079 14 12 12 4
2.000000 -74.776263 -74.962535 -74.798952 -74.798954 2110 1079 1079 14 12 12 4
3.000000 -74.771692 -74.890578 -74.804924 -74.804927 2238 1379 1383 14 12 12 4
4.000000 -74.771719 -74.873986 -74.470749 -74.470821 2342 876 876 14 10 10 3
5.000000 -74.771718 -74.872112 -74.805202 -74.805204 3210 1779 1775 14 12 12 4

Table B.7: Numerical values of the calculations shown in Figure 6.3b for the case
when the changing OH bond is set as the active region and IBO localization (95%
threshold) is been used. For each calculation the absolute energy is reported (each
Hamiltonian was diagonalized to give the exact ground state). The number of qubits
Q and the number of terms in the output Jordan-Wigner encoded qubit Hamiltonian
|H| are given. All energies are reported in Hartree (Ha).

OH length Eglobal
FCI Eglobal

DFT EhuzFCI-in-DFT EµFCI-in-DFT |Hfull| |Hhuz
FCI-in-DFT| |H

µ
FCI-in-DFT| Qglobal

FCI QhuzFCI-in-DFT QµFCI-in-DFT # active MOs

0.400000 -72.981056 -73.259936 -72.928542 -72.923051 2110 492 492 14 10 10 3
0.600000 -74.499220 -74.773419 -74.484545 -74.484551 2110 492 492 14 10 10 3
0.798954 -74.851089 -75.122053 -74.852614 -74.852616 1086 1079 1079 14 12 12 4
1.000000 -74.900658 -75.170068 -74.899540 -74.899543 2110 1079 1079 14 12 12 4
1.200000 -74.867498 -75.134418 -74.868096 -74.868099 2110 1079 1079 14 12 12 4
1.500000 -74.807539 -75.057384 -74.819776 -74.819778 2110 1079 1079 14 12 12 4
2.000000 -74.776263 -74.962535 -74.798952 -74.798954 2110 1079 1079 14 12 12 4
3.000000 -74.771692 -74.890578 -74.804924 -74.804927 2238 1379 1383 14 12 12 4
4.000000 -74.771719 -74.873986 -74.470749 -74.470821 2342 876 876 14 10 10 3
5.000000 -74.771718 -74.872112 -74.805202 -74.805204 3210 1779 1775 14 12 12 4

Table B.8: Numerical values of the calculations shown in Figure 6.3b when the fixed
OH bond is set as the active region and IBO localization (95% threshold) is been
used. For each calculation the absolute energy is reported (each Hamiltonian was
diagonalized to give the exact ground state). The number of qubits Q and the number
of terms in the output Jordan-Wigner encoded qubit Hamiltonian |H| are given. All
energies are reported in Hartree (Ha).
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Figure B.2: Potential energy curve for H2O, with changing OH bond length. Active
stretch result has the changing OH bond as the active region and environment stretch
result has the fixed OH bond selected as the active region. results use IBO localization
(see raw data [336] for threshold values - lowest setting was 90%). For each data set
the full problem is reduced from 14 to 12 qubits, with the number of active MOs being
four in all cases. The top plot reports the log base 10 error with respect to the exact
FCI ground state energy (EFCI) of the whole system, where |∆E| = |Eexp − EFCI |.
Here Eexp is obtained from an FCI-in-DFT calculation. The bottom plot reports the
number of terms in each Jordan-Wigner encoded qubit Hamiltonian. The blue result
gives the size of the full system Hamiltonian, the orange and yellow results are for µ-
shifted embedded Hamiltonians while the grey and black results are for the Huzinaga
embedded Hamiltonians.
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