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Abstract. We describe a new command, artcat, that calculates sample size
or power for a randomized controlled trial or similar experiment with an ordered
categorical outcome, where analysis is by the proportional-odds model. artcat
implements the method of Whitehead (1993, Statistics in Medicine 12: 2257–2271).
We also propose and implement a new method that 1) allows the user to specify
a treatment effect that does not obey the proportional-odds assumption, 2) offers
greater accuracy for large treatment effects, and 3) allows for noninferiority trials.
We illustrate the command and explore the value of an ordered categorical outcome
over a binary outcome in various settings. We show by simulation that the methods
perform well and that the new method is more accurate than Whitehead’s method.
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1 Introduction
The power of a randomized controlled trial or similar experiment is the probability that
the primary analysis will show a statistically significant result in favor of the studied
treatment (or other intervention). Designers of randomized controlled trials (which we
henceforth simply call “trials”) typically aim to have 80% or 90% power for a given
true treatment effect. Sample-size calculations are used to determine either the sample
size required to give a specified power or the power implied by a specified sample size.
Various formulas are in wide use (Julious 2009).
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The most common sample-size calculation is for comparing two groups, treatment
and control, also called “arms”. Multiarm trials improve efficiency by evaluating sev-
eral new treatments in one trial (Parmar et al. 2017) and are usually designed using
a two-group sample-size calculation, assuming that each treatment group will be com-
pared with the control group. Sample-size calculations for general tests of heterogeneity
between treatment groups are rarely used and are not discussed in this article.

In Stata, several standard sample-size calculations are available in the built-in power
family. More advanced sample-size calculations are provided in the Analysis of Re-
sources for Trials package (Barthel, Royston, and Babiker 2005; Barthel et al. 2006;
Royston and Barthel 2010; Marley-Zagar et al. 2023).

However, none of these packages allows for an ordered categorical outcome, some-
times called an ordinal outcome. Such outcomes have been used, for example, in a
trial evaluating treatments for influenza, where a six-category outcome was defined as
1) death, 2) in intensive care, 3) hospitalized but requiring supplemental oxygen, 4) hos-
pitalized and not requiring supplemental oxygen, 5) discharged but unable to resume
normal activities, or 6) discharged with full resumption of normal activities (Davey et al.
2019).

The present work was motivated by the need to consider the use of ordered categor-
ical outcomes in a proposed trial of treatments for COVID-19, for example, a three-level
outcome of death, in hospital, or alive and not in hospital. Other trials of treatments
for COVID-19 have used various outcome scales, typically with six to eight ordered cat-
egories.

In this article, we introduce a new command, artcat, that addresses this need. The
command performs sample-size calculations using the method of Whitehead (1993).
We also introduce a new method that is both more flexible and more accurate than
Whitehead’s method. The methods are described in section 5. The syntax is described
in section 3.1, followed by examples in section 3, simulation evaluations in section 5,
and a description of our procedures for testing the software in section 6. We end with
section 7 suggesting future directions.

2 Methods
2.1 General sample-size formulas

Suppose the benefit of treatment is captured by an estimand θ (for example, a risk
difference or log odds-ratio) so that the analysis of a superiority trial involves a signif-
icance test of the null hypothesis θ = 0. The designers of the trial want to ensure a
high power, defined as the probability of a significant result, under the assumption that
θ = d. Sample-size formulas relate the type II error (β = 1− power) to the sample size
n when the type I error is set to α. A general sample-size formula relates the required
variance of an estimator θ̂ to d, α, and β [Julious 2004, (2)],
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var
(
θ̂
)
=

d2

(z1−α/2 + z1−β)2

where zp is the standard normal deviate with cumulative density p. Because var(θ̂) is,
to a very good approximation, inversely proportional to the total sample size n, we can
write var(θ̂) = V/n for some V : methods for calculating V in particular settings will be
described below. Hence, the total sample-size requirement is

n =
V (z1−α/2 + z1−β)

2

d2
(1)

The formula above implicitly assumes that the variance is the same under the null
and alternative hypotheses, and this is not true for categorical outcomes. For example,
for binary data, binomial variation follows distributions with different probabilities in
the two groups, but under the null hypothesis, the average probability is assumed for
both groups. We refine (1) by letting var(θ̂) = V/n describe the variance of the estimator
when θ = d, while var(θ̂) = Vtest/n describes its variance when the null hypothesis is
assumed for the data. This gives an improved sample-size formula

n =
(
√
Vtestz1−α/2 +

√
V z1−β)

2

d2
(2)

Let var(θ̂) = VN/n under the null and VA/n under the alternative hypothesis. A “local”
test, assuming small treatment effects, sets V = Vtest = VN ; we call this method NN.
A “distant” test, valid for small or large treatment effects, sets V = VA. We may then
have Vtest = VA (method AA), appropriate if a Wald test is used, or Vtest = VN (method
NA), appropriate for the score test or approximations to it such as the likelihood-ratio
test. All of these values are substituted into (2); methods NN and AA are given by the
simpler formula (1) with V = VN and V = VA, respectively. This gives the formulas

Method NN: n =
VN (z1−α/2 + z1−β)

2

d2
(3)

Method NA: n =
(
√
VNz1−α/2 +

√
VAz1−β)

2

d2
(4)

Method AA: n =
VA(z1−α/2 + z1−β)

2

d2
(5)

For binary data, these formulas are commonly used with the estimand θ defined as
the risk difference. artbin offers a “local” method (NN), a “distant” method (NA), and
a “Wald” method (AA). For ordinal data, θ will be defined as the log odds-ratio.

2.2 Whitehead’s method

We use the equations above in the specific case of an ordered categorical outcome
Y and randomized treatment Z. Let the distribution of Y in the control group be
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p(Y = i|Z = c) = pci, and let the distribution of Y in the experimental (research)
group be p(Y = i|Z = e) = pei, for i = 1, . . . , I. We initially assume for definiteness
that outcome level 1 is the least favorable and level I is the most favorable and that
the aim of the study is to demonstrate lower probabilities of the worse outcomes in the
experimental group.

Whitehead (1993) considered the case where the n participants are randomized to
control and experimental groups in the ratio a : 1 and the distributions of the outcome
in the two groups obey a proportional-odds model,

logit
i=k∑
i=1

pei = logit
i=k∑
i=1

pci + θ (6)

for any k = 1, . . . , I−1 (McCullagh 1980). Here θ is the log odds-ratio, which is assumed
common across levels k. θ < 0 indicates lower probabilities of the less favorable outcomes
in the experimental group and hence a beneficial treatment. This led to the formula

n =
3(a+ 1)2(z1−α/2 + z1−β)

2

ad2(1−
∑

i p
3
i )

(7)

where pi = (apci + pei)/(a+ 1) and d is the expected value of θ (Whitehead 1993).

This is a good and widely known formula. However, it has three limitations. First,
it requires a common odds ratio to be specified at the design stage. In our experience,
clinicians sometimes propose that treatments will reduce the risk of adverse outcomes
by a fixed risk ratio so that pei/pci is the same for all i < I. This does not provide a
value θ. Second, the expression used for the variance V is valid only under the null,
so (7) represents method NN, and other methods may be more accurate; Whitehead
(1993) discussed alternatives. Third, the formula does not cover noninferiority trials
(see section 2.4 below). Our new proposal addresses these limitations.

2.3 New proposal

We propose a new method of sample-size determination that is valid for arbitrary sets
of (pci, pei) that may not obey the proportional-odds model. The idea is to evaluate VN
and VA by constructing a dataset of expected outcomes and fitting the proportional-odds
model with the ologit command.

1. We construct a dataset containing the expected outcomes per participant re-
cruited. This contains two records for each outcome level: one for the experi-
mental group and one for the control group. For each record, we compute the
probability that a participant is randomized to that group and has his or her
outcome at that level. For the control group, for outcome level i, this probability
is p(Z = c)p(Y = i|Z = c) = apci/(a + 1). For the experimental group, this
probability is p(Z = e)p(Y = i|Z = e) = pei/(a + 1). These probabilities sum
to 1.
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2. We perform an ologit analysis of this dataset, using the weights as importance
weights. This analysis yields the expected treatment effect d as the coefficient of
Z. If the proportional-odds assumption does not hold, then d is interpreted as an
average log odds-ratio. This analysis also yields the variance VA as the estimated
variance of the estimated coefficient of Z, so that the variance for a dataset of size
n will be VA/n. This is enough to implement method AA using (5).

3. For methods NN and NA, we change the weights to their values under the null,
api/(a+1) and pi/(a+1), and refit the ologit analysis. Then VN is the estimated
variance of the estimated coefficient of Z. We can then use (3) for method NN
and (4) for method NA.

2.4 Noninferiority trials

In a noninferiority trial, the null hypothesis is that the experimental treatment is worse
than the control treatment by a prespecified amountm, termed the margin. The margin
typically represents a small degree of worsening of the primary outcome that is judged
to be acceptable because of other advantages of the experimental treatment that are
not captured by the primary outcome. In the setting of a categorical outcome ordered
from least (1) to most (I) favorable outcome, the margin is expressed as an odds ratio
greater than 1, and m > 0 is the log odds-ratio. The null hypothesis is then θ = m,
and the alternative hypothesis is θ < m. Typically, the investigators expect the true
treatment effect to be 0, so that pei = pci for all i and d = 0, but some noninferiority
trials are designed under the expectation that the experimental treatment is somewhat
beneficial and so d < 0 (for example, Nunn et al. [2019]).

The expected (alternative) variance of the estimate is given in the same way as for
a superiority trial, but the test (null) variance must be calculated differently to reflect
the noninferiority null. This is easily done in the ologit framework described above,
with (2) modified to

n =
(
√
Vtestz1−α/2 +

√
V z1−β)

2

(d−m)2

Steps 1 and 2 are unchanged. At step 3, we fit model (6) to the dataset of expected
results per participant under the null θ = m by using the offset() option of ologit.
We then estimate the fitted probabilities, with which we revise the dataset of expected
results per participant and fit model (6) again, yielding the test (null) variance VN . If
this procedure is applied with m = 0, then the results are the same as with a superiority
trial.

These methods also apply without modification to a substantial-superiority trial, in
which the aim is to show that the experimental treatment is substantially superior to the
control; this is implemented by setting the marginm < 0. A substantial-superiority trial
requires a larger sample size than a superiority trial with the same expected treatment
effect.
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2.5 Risk difference, risk ratio, or odds ratio

The odds ratio is often a sensible estimand for an ordered categorical outcome because
it is plausibly constant across different levels [k in (6)], unlike the risk difference and
risk ratio. For a binary outcome, this issue does not arise, and the risk difference or
risk ratio is usually preferred because of its simpler interpretation (Altman, Deeks, and
Sackett 1998).

In the binary outcome case, we may ask how sample-size calculations with the dif-
ferent estimands compare. In a superiority trial, all estimands imply the same null
hypothesis—that the two treatments are equal. Sample-size calculations with different
estimands then address the same question but use different approximations: artbin
assumes a normal distribution for the estimated risk difference, while artcat assumes
this for the estimated log odds-ratio. We will explore the impact of these different ap-
proximations in section 4.2. In a noninferiority trial, by contrast, the null hypothesis
depends on the estimand used (Quartagno et al. 2020), so sample-size calculations with
different estimands are not comparable and may differ markedly.

3 Syntax

artcat, pc(numlist) {pe(numlist) | or(exp) | rr(exp)}
[ [

power(#) | n(#)
]

cumulative
[
unfavourable | unfavorable | favourable | favorable

]
margin(#)

aratio(# #) alpha(#) onesided ologit
[
(type)

]
whitehead noprobtable

probformat(string) format(string) noround noheader
]

3.1 Options

pc(numlist) specifies the probabilities in each outcome level; the rightmost level may
be omitted. pc() is required.

pe(numlist) specifies the probabilities in each outcome level, specified as for pc(); or
cumulative probabilities, if the cumulative option is used. One of pe(), or(), or
rr() must be specified.

or(exp) specifies the odds ratio at each outcome level. An odds ratio less than 1 means
that the distribution in the experimental group is shifted toward the rightmost level
compared with the control group. One of pe(), or(), or rr() must be specified.

rr(exp) specifies the risk ratio at each outcome level except the rightmost. A risk ratio
less than 1 means that the experimental group has lower probability at every level
except the rightmost level compared with the control group. One of pe(), or(), or
rr() must be specified.



White et al. 9

power(#) specifies the power required; sample size will be computed. The default
is power(0.8) if neither power() nor n() is specified. You cannot specify both
power() and n().

n(#) specifies the total sample size; power will be computed. You cannot specify both
power() and n().

cumulative specifies that the probabilities in pc() are cumulative probabilities.

unfavourable or unfavorable specifies that the leftmost outcome level represents the
least favorable outcome. Both American and English spellings are allowed.

favourable or favorable specifies that the leftmost outcome level represents the most
favorable outcome. Both American and English spellings are allowed.

margin(#) specifies the margin, as an odds ratio, for a noninferiority or a substantial-
superiority trial. If the unfavorable option is specified, then # > 1 specifies a non-
inferiority trial, and # < 1 specifies a substantial-superiority trial. If the favorable
option is specified, then it is the other way around. If margin() is not specified or
if margin(1) is specified, then a superiority trial is assumed.

aratio(# #) specifies the allocation ratio; for example, aratio(1 2) means 2 partic-
ipants in the experimental group for every 1 participant in the control group.

alpha(#) specifies the significance level. The default is alpha(0.05).

onesided specifies that the level specified by alpha() is the one-sided significance level.
The default is a two-sided significance level.

ologit
[
(type)

]
uses the ologit (new) method. type may be NN, NA, or AA. The default

is ologit(NA). ologit is the same as ologit(NA).

whitehead uses the Whitehead method. This option requires or() to be specified and
is not available with margin().

noprobtable specifies not to display the table of anticipated probabilities (probabilities
at each level in the control and experimental groups).

probformat(string) specifies the format for displaying table of anticipated probabilities.
The default is probformat(%-5.1f).

format(string) specifies the format for displaying calculated sample sizes (default is
format(%6.1f)) or powers (default is format(%6.3f)).

noround specifies not to round the sample size per group to the next largest integer.

noheader specifies not to print the header describing the program.

3.2 Favorable and unfavorable outcomes

The user is recommended to specify whether the leftmost levels of the outcome are
favorable or unfavorable. However, the program also works this out for itself. In a
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superiority trial, an expected odds ratio smaller (larger) than 1 implies an unfavorable
(favorable) outcome. If the margin is specified, then the criterion is whether the expected
odds ratio is smaller or larger than the margin. If the user has specified the favorable
or unfavorable option, then this is checked; if not, the program prints a note stating
which it has inferred.

4 Examples
4.1 Six-level outcome

We reproduce the sample-size calculation for the FLU-IVIG trial (Davey et al. 2019).
The control arm is expected to have a 1.8% probability of the least favorable outcome
(death), a 3.6% probability of the next worst outcome (admission to an intensive care
unit), and so on. The trial is designed to have 80% power if the treatment achieves
an odds ratio of 1.77 for a favorable outcome. We invert this to match the assumption
above of an unfavorable outcome.

. artcat, pc(.018 .036 .156 .141 .39) or(1/1.77) unfavourable
ART - ANALYSIS OF RESOURCES FOR TRIALS (categorical version 1.2 24jun2022)

A sample size program by Ian White with input and support from
Ella Marley-Zagar, Tim Morris, Max Parmar, Patrick Royston and Ab Babiker.
MRC Clinical Trials Unit at UCL, London WC1V 6LJ, UK.

Type of trial superiority
Favourable/unfavourable outcome unfavourable
Null hypothesis odds ratio = 1
Superiority region odds ratio < 1
Allocation ratio C:E 1:1
Anticipated probabilities, control .018 .036 .156 .141 .39

experimental given by odds ratio = 0.565
Table of anticipated probabilities C E

1 least favourable 0.018 0.010
2 0.036 0.021
3 0.156 0.099
4 0.141 0.103
5 0.390 0.384
6 most favourable 0.259 0.382

Alpha 0.050 (two-sided)
Power (designed) 0.800
Method ologit (variance NA)
Total sample size (calculated) 322
Sample size per group (calculated) 161 161

A total sample size of 322 participants (in both trial arms combined) is required.
Below, we get the same answer by reversing the order of levels and hence focusing on
favorable outcomes. The last probability could be omitted in the syntax. We use the
noheader option to shorten the output. Note that the probabilities at each level in each
arm agree with the previous output.
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. artcat, pc(.259 .390 .141 .156 .036 .018) or(1.77) favourable noheader

Type of trial superiority
Favourable/unfavourable outcome favourable
Null hypothesis odds ratio = 1
Superiority region odds ratio > 1
Allocation ratio C:E 1:1
Anticipated probabilities, control .259 .39 .141 .156 .036 .018

experimental given by odds ratio = 1.770
Table of anticipated probabilities C E

1 most favourable 0.259 0.382
2 0.390 0.384
3 0.141 0.103
4 0.156 0.099
5 0.036 0.021
6 least favourable 0.018 0.010

Alpha 0.050 (two-sided)
Power (designed) 0.800
Method ologit (variance NA)
Total sample size (calculated) 322
Sample size per group (calculated) 161 161

We can also check the power if we recruit 322 participants; in principle, we expect
this to be exactly 80%, but because the sample size above is rounded to the next
largest integer, the power is slightly more than 80%. We use the noprobtable option
to suppress the table of assumed probabilities.

. artcat, pc(.018 .036 .156 .141 .39) or(1/1.77) n(322) noprobtable unfavourable
> noheader

Type of trial superiority
Favourable/unfavourable outcome unfavourable
Null hypothesis odds ratio = 1
Superiority region odds ratio < 1
Allocation ratio C:E 1:1
Anticipated probabilities, control .018 .036 .156 .141 .39

experimental given by odds ratio = 0.565
Alpha 0.050 (two-sided)
Total sample size (designed) 322
Method ologit (variance NA)
Power (calculated) 0.801
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We next compare the new methods with the Whitehead method.

. artcat, pc(.018 .036 .156 .141 .39) or(1/1.77) whitehead noprobtable
> unfavourable noheader

Type of trial superiority
Favourable/unfavourable outcome unfavourable
Null hypothesis odds ratio = 1
Superiority region odds ratio < 1
Allocation ratio C:E 1:1
Anticipated probabilities, control .018 .036 .156 .141 .39

experimental given by odds ratio = 0.565
Alpha 0.050 (two-sided)
Power (designed) 0.800
Method Whitehead
Total sample size (calculated) 320
Sample size per group (calculated) 160 160

The Whitehead method gives a sample size just 2 less than the ologit(NA) method.
Using the ologit(NN) option would show that the new method NN agrees exactly with
the Whitehead method.

Suppose that the FLU-IVIG trial found that the experimental treatment worked ex-
actly as proposed and that a further noninferiority trial is designed to show that a
second new treatment has an odds ratio no worse than 1.33 compared with the first
new treatment. We can design this trial using

. artcat, pc(.010 .021 .099 .103 .384) or(1) margin(1.33) noprobtable
> unfavourable noheader

Type of trial non-inferiority
Favourable/unfavourable outcome unfavourable
Null hypothesis odds ratio = 1.330
Non-inferiority region odds ratio < 1.330
Allocation ratio C:E 1:1
Anticipated probabilities, control .01 .021 .099 .103 .384

experimental given by odds ratio = 1.000
Alpha 0.050 (two-sided)
Power (designed) 0.800
Method ologit (variance NA)
Total sample size (calculated) 1314
Sample size per group (calculated) 657 657

The noninferiority trial requires a sample size of 1,314.
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4.2 Binary outcome and comparison with artbin

artcat handles the case of a binary outcome, so we compare it with the standard
sample-size calculations performed by artbin for a binary outcome with probability 0.4
on control and 0.2 on experimental treatment.

. artcat, pc(.4) pe(.2) power(.9) unfavourable noheader

Type of trial superiority
Favourable/unfavourable outcome unfavourable
Null hypothesis odds ratio = 1
Superiority region odds ratio < 1
Allocation ratio C:E 1:1
Anticipated probabilities, control .4

experimental .2
Anticipated average odds ratio 0.375
Table of anticipated probabilities C E

1 least favourable 0.400 0.200
2 most favourable 0.600 0.800

Alpha 0.050 (two-sided)
Power (designed) 0.900
Method ologit (variance NA)
Total sample size (calculated) 216
Sample size per group (calculated) 108 108

. artbin, pr(0.4 0.2) power(.9)
ART - ANALYSIS OF RESOURCES FOR TRIALS (binary version 2.0.1 09june2022)

A sample size program by Abdel Babiker, Patrick Royston, Friederike Barthel,
Ella Marley-Zagar and Ian White
MRC Clinical Trials Unit at UCL, London WC1V 6LJ, UK.

Type of trial superiority
Number of groups 2
Favourable/unfavourable outcome unfavourable

Inferred by the program
Allocation ratio equal group sizes
Statistical test assumed unconditional comparison of 2

binomial proportions
using the score test

Local or distant distant
Continuity correction no
Anticipated event probabilities 0.400 0.200
Alpha 0.050 (two-sided)

(taken as .025 one-sided)
Power (designed) 0.900
Total sample size (calculated) 218
Sample size per group (calculated) 109 109
Expected total number of events 65.40

artbin gives a sample size just 2 greater than artcat. As noted in section 2.5, this is
because the two procedures answer the same question but use different approximations.
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4.3 Effect of subdividing the categories

We finally explore the value of subdividing the unfavorable outcome level of section 4.2,
assuming a common odds ratio of (0.2/0.8)/(0.4/0.6) = 0.375 at all levels. We first add
an outcome level of control probability 0.01 and then another of control probability 0.09.

. artcat, pc(.01 .4) or(.375) power(.9) cumulative unfavourable noheader

Type of trial superiority
Favourable/unfavourable outcome unfavourable
Null hypothesis odds ratio = 1
Superiority region odds ratio < 1
Allocation ratio C:E 1:1
Anticipated probabilities, control .01 .4 (cumulative)

experimental given by odds ratio = 0.375
Table of anticipated probabilities C E

1 least favourable 0.010 0.004
2 0.390 0.196
3 most favourable 0.600 0.800

Alpha 0.050 (two-sided)
Power (designed) 0.900
Method ologit (variance NA)
Total sample size (calculated) 216
Sample size per group (calculated) 108 108

. artcat, pc(.01 .1 .4) or(.375) power(.9) cumulative unfavourable noheader

Type of trial superiority
Favourable/unfavourable outcome unfavourable
Null hypothesis odds ratio = 1
Superiority region odds ratio < 1
Allocation ratio C:E 1:1
Anticipated probabilities, control .01 .1 .4 (cumulative)

experimental given by odds ratio = 0.375
Table of anticipated probabilities C E

1 least favourable 0.010 0.004
2 0.090 0.036
3 0.300 0.160
4 most favourable 0.600 0.800

Alpha 0.050 (two-sided)
Power (designed) 0.900
Method ologit (variance NA)
Total sample size (calculated) 212
Sample size per group (calculated) 106 106
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We see that adding an outcome level of low prevalence has a negligible effect on
sample size. The biggest gains in sample size are achieved when a large outcome level is
split, for example, if the healthy category with control probability 0.6 can be subdivided:

. artcat, pc(.4 .7) or(.375) power(.9) cumulative unfavourable noheader

Type of trial superiority
Favourable/unfavourable outcome unfavourable
Null hypothesis odds ratio = 1
Superiority region odds ratio < 1
Allocation ratio C:E 1:1
Anticipated probabilities, control .4 .7 (cumulative)

experimental given by odds ratio = 0.375
Table of anticipated probabilities C E

1 least favourable 0.400 0.200
2 0.300 0.267
3 most favourable 0.300 0.533

Alpha 0.050 (two-sided)
Power (designed) 0.900
Method ologit (variance NA)
Total sample size (calculated) 154
Sample size per group (calculated) 77 77

However, in practice, subdividing a healthy category may mean that the most impor-
tant clinical differences are swamped by less important differences, which is a concern
if the proportional-odds assumption may not hold. For example, suppose category 1 is
death or disability, category 2 is hospitalization and healthy discharge, and category 3
is healthy without hospitalization. If treatment reduces the risk of hospitalization but
not the risk of death or disability, then the treatment may be estimated to be beneficial,
and it may therefore wrongly be seen as preventing death or disability.

5 Evaluations
5.1 Evaluation 1: Six-level outcome based on the FLU-IVIG study

We explore the difference between methods for the FLU-IVIG setting across a range of
odds ratios. Data are assumed to follow the control outcome distribution as proposed,
and the common odds ratio is fixed at values from 0.2 to 0.8. Sample sizes to give
90% power, estimated by the different methods, are shown in table 1. Differences are
consistently about 10. The relative difference between methods is therefore greater at
more extreme odds ratios.
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Table 1. Sample sizes required to give 90% power for the FLU-IVIG setting, estimated
by the Whitehead and new sample-size formulas

Odds Sample size for 90% power

ratio Whitehead New NN New NA New AA

0.2 56 56 60 67
0.3 98 98 102 109
0.4 168 168 172 178
0.5 291 291 295 302
0.6 534 534 538 544
0.7 1090 1090 1094 1101
0.8 2777 2777 2781 2787

We next evaluate the methods by simulation to gauge the accuracy of the estimated
powers. We simulate data assuming that exactly half the sample is assigned to each
group, using the FLU-IVIG control outcome distribution and a common odds ratio fixed
at values from 0.2 to 0.8. The sample size is determined from the same parameters by
the Whitehead method to give 90% power. We test the null hypothesis of no treatment
effect using a Wald test in the ologit model. The power is the proportion of repetitions
in which the null hypothesis is rejected and is compared with power estimated by each
of the methods described in the earlier sections. We use 100,000 repetitions to get very
small Monte Carlo errors (Morris, White, and Crowther 2019).

Results (table 2) show moderate differences between methods at extreme odds ratios
and negligible differences at large odds ratios. Simulation results are closest to those for
the “new NA” method, which is slightly conservative (that is, it slightly underestimates
power). The Whitehead and “new NN” methods are anticonservative, and the “new AA”
method is conservative and the least accurate.
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Table 2. Power for the FLU-IVIG setting, estimated by the Whitehead and new sample-
size formulas and by simulation. Sample sizes are chosen to give 90% power under the
Whitehead method. Monte Carlo standard error in the simulation results is 0.1%.

Odds Sample Power % from sample-size formula or simulation

ratio size Whitehead New NN New NA New AA Simulation

0.2 56 90.1 90.1 88.1 84.5 88.4
0.3 98 90.1 90.1 88.9 86.9 89.2
0.4 168 90.1 90.1 89.4 88.3 89.5
0.5 291 90.0 90.0 89.6 89.0 89.6
0.6 534 90.0 90.0 89.8 89.5 89.7
0.7 1090 90.0 90.0 89.9 89.7 90.1
0.8 2777 90.0 90.0 90.0 89.9 90.1

5.2 Evaluation 2: Two levels

We compare artcat with the standard sample-size calculations performed by power
and artbin for a two-level outcome. We set pc1 = 0.2 or 0.02 and vary the odds ratio
due to treatment from 0.2 to 0.8. To estimate sample size with artbin, we use both the
method that assumes local alternatives (variance type NN) and the method that allows
distant alternatives (variance type NA); and with artcat, we use the Whitehead and
new NN, NA, and AA alternatives. Variance types are not comparable between artbin
and artcat, because they work on different scales. In particular, artbin works on the
risk difference scale, so local (NN) is most conservative, while artcat works on the log
odds-ratio scale, so AA is most conservative. The results in table 3 show that artbin
and power perform very similarly in all cases, and all methods perform very similarly
for odds ratios of 0.7 or 0.8. Differences between artcat methods and between artcat
and artbin become more pronounced as odds ratios become more extreme. Again, the
NA method of artcat is closest to artbin, but it gives sample sizes more than 10%
smaller than artbin when pC = 0.2 and odds ratio = 0.2 or when pC = 0.02 and odds
ratio = 0.2 or 0.3.
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Table 3. Sample sizes required to give 90% power for an unfavorable outcome, estimated
by power, artbin, and the Whitehead and new methods

Control Odds Sample size

fraction ratio power artbin artcat

pc1 local distant Whitehead New NN New NA New AA

0.20 0.2 194 197 192 150 150 180 230
0.20 0.3 286 290 285 249 249 274 314
0.20 0.4 436 439 436 403 403 425 460
0.20 0.5 696 699 694 666 666 686 717
0.20 0.6 1194 1198 1198 1168 1168 1186 1214
0.20 0.7 2318 2322 2322 2294 2294 2311 2336
0.20 0.8 5660 5664 5664 5638 5638 5654 5677

0.02 0.2 1964 1968 1968 1365 1365 1746 2418
0.02 0.3 2792 2795 2795 2253 2253 2585 3137
0.02 0.4 4106 4110 4110 3615 3615 3914 4394
0.02 0.5 6356 6359 6359 5902 5902 6176 6607
0.02 0.6 10622 10626 10626 10201 10201 10454 10848
0.02 0.7 20118 20121 20121 19722 19722 19959 20324
0.02 0.8 48042 48045 48045 47670 47670 47893 48235

Given the differences between the methods shown in table 3, we use simulation to
evaluate the methods in this setting. We fix pc = 0.2 and use the same range of odds
ratios. We fix the sample size for each odds ratio at that chosen to give 90% power
by artbin with default options. The Whitehead method is omitted because, as seen
above, it is the same as the new NN method, and power is omitted because it agrees
closely with artbin. We test the null hypothesis of no treatment effect using a Wald
test in the logit model. Some simulated datasets with odds ratio = 0.2 or 0.3 have
perfect prediction because no events occur in the experimental group: analysis of such
datasets using logit yields a standard error of zero and a missing Wald test result.
Therefore, we also use a Pearson’s χ2 test. The power is the proportion of repetitions
in which the null hypothesis is rejected and is compared with power estimated by each
of the methods described in the earlier sections. The asymptotic properties of the Wald
and Pearson tests may not hold in the smaller sample sizes, and hence we also evaluate
the type I error of each test by repeating the simulation with the same sample sizes but
with the odds ratio changed to 1. We again use 100,000 repetitions.

The results (table 4) show that all methods perform accurately for odds ratios of 0.7
or 0.8; that is, their estimated powers are very close to those found by simulation. For
smaller (more extreme) odds ratios, new methods NN and AA are inaccurate, respectively
overestimating and underestimating power. artbin underestimates power by up to 3%,
and new method NA appears to be the most accurate, with slight underestimation of
power (by less than 1%) compared with simulated power using the Pearson test. Type I
error is close to the nominal 5%, suggesting that the simulated powers are accurate.
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Table 4. Power with an unfavorable binary outcome, estimated by artbin, artcat, and
simulation. The control group proportion is fixed at 0.2. Sample sizes are chosen to
give 90% power by artbin with distant option. The Monte Carlo standard error in
the simulation results is 0.1%.

Odds Sample Power % by given method Type I

ratio size artbin artcat new Simulation error %

local distant NN NA AA Wald Pearson Wald Pearson

0.2 192 89.4 90.0 95.7 91.7 84.2 90.6 92.1 4.6 5.1
0.3 285 89.6 90.0 93.5 91.1 87.0 90.9 91.3 4.9 5.0
0.4 436 89.8 90.1 92.1 90.7 88.5 90.2 90.7 4.9 5.0
0.5 694 89.8 90.0 91.1 90.3 89.1 90.1 90.4 5.0 5.0
0.6 1198 90.0 90.1 90.7 90.3 89.6 90.3 90.3 4.9 4.9
0.7 2322 90.0 90.1 90.3 90.1 89.8 90.2 90.2 5.0 5.0
0.8 5664 90.0 90.0 90.1 90.1 89.9 90.0 90.0 5.0 5.0

In sensitivity analysis, we varied pc1 to 0.1 and 0.4, and results (not shown) showed
similar patterns.

6 Software testing
This software is for use in the design of randomized trials, so we have been careful
to test it extensively. The program was written by Ian R. White and tested by Ella
Marley-Zagar. Here we report these testing methods.

1. We compared results with those given by Whitehead (1993). Exact agreement
was achieved.

2. We compared results for a binary outcome in a superiority trial with those given
by artbin and power across a range of probabilities and allocation ratios. Close,
but not exact, agreement was achieved, except in a few well-understood cases.

3. We checked error messages in several impossible cases, for example, a negative
odds ratio.

4. We compared results with those given by the R package dani (Quartagno 2020).
This calculates sample sizes for a binary outcome on the odds-ratio scale for nonin-
feriority trials and implicitly uses the AA method. Exact agreement was achieved
for the AA method.

5. We reran the test scripts, implementing the above tests in Stata 13 and 16, with
the default variable types (set type) as float and double.

6. We did various tests of internal consistency of the program. We compared different
ways of stating the same problem (for example, interchanging C and E groups
or reversing the order of the categories) and verified that the same answer was
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achieved. We calculated the power p for a sample size n, calculated the sample size
for power p, then checked that this equaled the original n. We changed options
that should change the sample size and verified that they did change the sample
size.

7. The simulations reported in section 5 also test the software.

7 Conclusions
We have provided software to facilitate sample size and power calculation using White-
head’s method and also proposed a new method, the ologit method with NA variance.
We have shown that Whitehead’s method can be anticonservative (underestimates sam-
ple size and overestimates power), while the new NA method is accurate.

Surprisingly, we have also shown for a binary outcome that the new NA method may
outperform the standard method implemented in artbin and power, with the standard
method being slightly conservative for very large treatment effects. This may be because
the new NA method makes a normal approximation on the log odds scale, while the
artbin method makes a normal approximation on the probability scale, and the former
may be a better approximation. However, the differences between the methods are
small, apply only in the unrealistic setting of huge treatment effects, and should not
discourage the use of artbin or power.

artcat can also be used to design observational studies to explore a protective or
harmful factor in the absence of substantial confounding. The trial types and outcome
levels may need to be reinterpreted as shown in the help file. For example, an observa-
tional study design to demonstrate a protective factor could be designed in exactly the
same way as a trial, but the term “superiority” might be replaced by “benefit”.

A useful future extension will be to allow covariate adjustment, and this can be
straightforwardly implemented using the ologit method. Another future extension
could be to allow more than two groups, as artbin does. The idea of analyzing an
expected dataset may be useful in other sample-size calculations.
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9 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-1

. net install st0700 (to install program files, if available)

. net get st0700 (to install ancillary files, if available)

You can get the latest version of artcat using

. net from https://raw.githubusercontent.com/UCL/artcat/master/package

. net install artcat

The code we used for testing and the testing results are included in the package. The
GitHub repository https: //github.com/UCL/artcat includes these and also contains
the latest version of the program and the code for the evaluations in section 5.
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