
Applied Mathematical Modelling 120 (2023) 769–785

Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier.com/locate/apm

Subset simulation for probabilistic computer models

P.O. Hristov

a , ∗, F.A. DiazDelaO

b

a Institute for Risk and Uncertainty, School of Engineering, University of Liverpool, Liverpool L69 7ZF, UK
b Clinical Operational Research Unit, Department of Mathematics, University College London, London WC1H 0BT, UK

a r t i c l e i n f o

Article history:

Received 26 July 2022

Revised 28 March 2023

Accepted 30 March 2023

Available online 2 April 2023

Keywords:

Reliability analysis

Subset simulation

Probabilistic numerics

Partially-converged simulations

a b s t r a c t

Reliability analysis can be performed efficiently through subset simulation. Through

Markov chain Monte Carlo, subset simulation progressively samples from the input domain

of a performance function (typically a computer model) to find the failure domain, that is,

the set of input configurations that result in an output higher than a prescribed threshold.

Recently, a probabilistic framework for numerical analysis was proposed, whereby com-

putation is treated as a statistical inference problem. The framework, called probabilistic

numerics, treats the output of a computer code as a random variable. This paper presents

a generalisation of subset simulation, which enables reliability analysis for probabilistic

numerical models. The advantages and challenges of the method are discussed, and an

example with industrial application is presented.

© 2023 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Probabilistic reliability analysis (PRA) [1] aims to assess the reliability of physical systems whilst accounting for the

underlying uncertainties. The system’s behaviour is modelled as a performance function , i.e., a mapping between uncertain

inputs and outputs. A central problem in PRA is the identification of the failure domain F , i.e., the set of input configurations

that result in a performance function output that exceeds a critical threshold.

Identifying F for complex, realistic physical systems requires extensive, potentially expensive experimentation. Computer

models, also known as simulators, are commonly employed to reduce this cost. However, this brings further unknowns

into the analyses. For example, a number of assumptions about the form of the model may be required to make its use

feasible, which turn any simulator into an idealised version of the physical system. When calibrating such models, this type

of uncertainty, termed model discrepancy or model inadequacy [2,3] is considered internal to the model and often remains

neglected in the analysis of computer code results.

This paper focuses on another type of error, which stems purely from the numerical nature of the model. For instance,

errors due to discretisation of a continuous geometry, or errors that propagate when using iterative solvers. Such errors

are present even in well-posed, validated numerical simulations [4] . Traditionally, these errors are studied in the field of

numerical analysis, where theoretical convergence rates and bounds are derived [5] . These bounds are usually conservative

and rarely lend themselves to further propagation. This can be especially problematic in computational pipelines, where

the output of one model and its associated uncertainty are fed as an input to another, possibly several times over. These
∗ Corresponding author.

E-mail address: p.hristov@liv.ac.uk (P.O. Hristov) .

https://doi.org/10.1016/j.apm.2023.03.041

0307-904X/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.apm.2023.03.041
http://www.ScienceDirect.com
http://www.elsevier.com/locate/apm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apm.2023.03.041&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:p.hristov@liv.ac.uk
https://doi.org/10.1016/j.apm.2023.03.041
http://creativecommons.org/licenses/by/4.0/

P.O. Hristov and F.A. DiazDelaO Applied Mathematical Modelling 120 (2023) 769–785

Y

computational pipelines arise in, for example, the analysis of complex systems such as aircraft. The complexity can be due

to the requirement to analyse intricate phenomena using, for example, coupled aeroelastic models of the fuselage, wings

and tail plane. Since computer models run on finite computational resources, they are bound to make numerical errors.

Instead of traditional numerical analysis, an alternative approach to the quantification of computational uncertainty is to

analyse it probabilistically . Probabilistic numerics (PN) [6] aims to provide explicit estimates of numerical error that prop-

agate through computational pipelines. The governing principle in PN is to think of computation as a statistical inference

problem. This means estimating a quantity that is unknown due to numerical uncertainty. This way, the framework of statis-

tics is used to assign a measure of uncertainty to the output of computer models. This provides quantifiable information that

can be used to identify computational bottlenecks and inform analysts about sources of numerical error, which could poten-

tially be controlled. Based on this approach, it is now possible to formulate probabilistic versions of computational tasks that

underpin numerical analysis. Integration [7,8] , stochastic optimisation [9] , and the solution of differential equations [10] and

linear systems [11,12] are relevant examples.

In order to estimate a system’s probability of failure, knowledge of the failure domain F is required. However, if the

system is carefully designed against failure, the volume of F can be several orders of magnitude smaller than that of the

original input domain. Moreover, it may exhibit a complex geometry or be disconnected. This makes identifying F very

challenging. Subset simulation (SuS) [13] is an advanced Monte Carlo method, specifically conceived for engineering PRA. The

method offers several advantages over other techniques, among which are its efficiency and scalability [14] . By construction,

SuS works with deterministic computer code outputs and has no provision of including probabilistic description to the data

generating process. This fact presents two limitations. Firstly, the potentially very small size of F means that even small

deviations in the values of the model output might change the estimated geometry of F , resulting in a biased estimate

of the probability of failure. Recognizing and accounting for uncertainty in the output is therefore very important for PRA.

Secondly, it is often prohibitively time-consuming to run the underlying model to convergence a sufficient number of times

to reliably estimate the probability of failure. Probabilistic numerics allows the use of partially converged simulations, whilst

quantifying the output uncertainty resulting from having an incomplete solution. It is currently not possible to use SuS

directly with such information.

The main contribution of this paper is to tackle the above limitations of SuS by introducing probabilistic subset simula-

tion (P-SuS), an extension of SuS capable of working with probabilistic numerical codes. The proposed algorithm takes into

account the probabilistic nature of the output of the simulator, accounting for the computational uncertainty in the identifi-

cation of F and the estimation of the probability of failure. The advantages of P-SuS are motivated using PN methods for the

solution of sparse linear systems, but the proposed algorithm is generally applicable to any computational model possessing

a probabilistic output.

In the case of partially-converged simulations, P-SuS can be used as an efficient pre-processor to a converged SuS-based

PRA, in which input combinations far away from F are discarded at a much lower cost than when using converged simula-

tions and SuS. The paper discusses the proposed method in detail, and demonstrates how P-SuS is a generalisation of SuS.

That is, the estimate for the probability of failure converges to that of SuS in the absence of computational uncertainty.

The paper is organised as follows. Section 2 describes PN methods and SuS to a level of detail required for understanding

P-SuS. Section 3 introduces the proposed approach in detail and discusses some of its properties. In Section 4 , the perfor-

mance of the algorithm is demonstrated through a low-dimensional example and a realistic finite element model (FEM) of

an aircraft wing box. Finally, Section 5 draws some conclusions and outlines directions for future work.

2. Methodology overview

2.1. Subset simulation

Let h : X ⊆ R

d → R be a performance function , namely, a function that models the behaviour of a physical system by

mapping the inputs that determine such behaviour onto the system’s response. When the output y = h (x) at a particular

input combination x ∈ X exceeds a prescribed safe operational threshold t ∗, failure is said to occur. Hence, all combinations

of input parameters leading to failure define the failure domain , F ⊂ X . In this setting, a failure event is F = { Y > t ∗} , where

 is a random variable associated with the system output y . This random variable captures the presence of uncertainties in

the system geometry, material properties, incomplete physical understanding, and inherent variability of the system itself.

Consequently, the system inputs x , are modelled with the random variable X , with a joint probability density function (PDF)

g X (·) and cumulative distribution function (CDF) G X (·) . Whenever clear the subscripts denoting the random variable will be

omitted for notational simplicity. PRA defines the probability of failure as

p F ≡ P (F) =

∫
F

dG (x , ·) = E [I F (x)] . (1)

where the indicator function I F (x) equals 1 if x belongs to F and 0 otherwise.

When the system modelled by the performance function h is reliable, a failure event will be rare. Thus, the volume of

F can be orders of magnitude smaller than that of X and the use of direct Monte Carlo is usually impractical. To overcome

this, SuS models the failure domain F as contained in a sequence of m nested intermediate failure domains F = F m

⊂
F m −1 ⊂ . . . ⊂ F 1 ⊂ F 0 = X . Each intermediate failure domain has an associated intermediate failure event, also known as a
770

P.O. Hristov and F.A. DiazDelaO Applied Mathematical Modelling 120 (2023) 769–785

level , such that F i = { Y > t i } corresponds to the output exceeding an intermediate operational threshold, t i −1 ≤ t i ≤ t i +1

for 1 < i < m . Given the nestedness of these events, the probability of failure can be computed as

p F = P

(

m ⋂

i =1

F i

)

= P (F 1) × P (F 2 | F 1) × . . . × P (F m

| F m −1) . (2)

In order to sample from F and estimate the probability of failure, SuS samples from each intermediate failure event, pro-

gressively approximating F . This is done by setting two initial parameters: the sample size at each level, denoted by N,

and the level probability, denoted by p 0 . In practice, the main driver in choosing N is the available computational budget.

The value of p 0 directly affects the convergence properties of SuS, and is usually chosen as p 0 = [0 . 1 , 0 . 3] to minimize the

coefficient of variation of the failure probability estimator, ˆ p SuS
F

[15] . The estimator of the failure probability is derived from

Eq. (2) , and is given by

ˆ p SuS
F = p m −1

0

1

N

N ∑

k =1

I (x k ∈ F) . (3)

The algorithm requires that the values of p 0 and N are such that p 0 N and 1 /p 0 are integers so that they can be used

for sample indexing. SuS samples initially from the whole input space and adaptively constructs each intermediate failure

event, such that the conditional probabilities in Eq. (2) remain equal to p 0 . To achieve this, the performance function re-

sponses in level i are sorted in descending order to give the list y (k)
i

for k = 1 , . . . , N. To ensure that P (F i | F i −1) = p 0 , the next

intermediate threshold is given by the (1 − p 0)
th quantile of the responses

t i +1 =

y (p 0 N)
i

+ y (p 0 N+1)
i

2

. (4)

The above is the definition in the original SuS paper [13] and is commonly used in the literature. This does not mean that

the intermediate threshold cannot be defined differently, for example by taking the current p 0
N−th highest response, or

t i +1 = y
(p 0 N)

i
. This flexibility will become useful when defining a probabilistic version of SuS. By construction, the top p 0 N

samples in y (k)
i

have responses greater or equal to t i +1 . This guarantees that these samples already belong to the intermedi-

ate failure domain F i +1 and enables the generation of new samples from F i +1 . The p 0 N samples in F i +1 are used as seeds

to generate independent Markov chains from the target PDF g(x , ·| F i +1) ∝ g(x , ·) I (x ∈ F i +1) . The sample from F i +1 consists

of N c = p 0 N Markov chains, each with N s = N/N c = 1 /p 0 samples. Since the seeds are already distributed according to the

target distribution, g(x , ·| F i +1) , there is no burn-in period, which is typically required in MCMC simulations to generate a

single Markov chain. The process of generating nested intermediate failure events is repeated until at least p 0 N samples are

obtained from g(x , ·| F) .

2.2. Bayesian conjugate gradient

For some applications, the performance function h can be described by a simple analytical expression. However, in re-

alistic (e.g., industrial) settings, h is typically implemented as a computer model, or a series of coupled computer models.

In engineering, for example, these computational pipelines consist of finite element (FE) or computational fluid dynamics

(CFD) models. In those scenarios, the physical model usually takes the form of a system of coupled differential equations.

These are discretised, and ultimately expressed as a linear system of the form Ay ∗ = b, where A ∈ R

d×d is a global system

matrix, b ∈ R

d is a forcing vector, and y ∗ ∈ R

d is the solution vector. The matrix A is typically sparse and, for realistic sys-

tems, can be very large. For solving this kind of systems, iterative techniques such as the conjugate gradient (CG) method are

suitable [16] . At the i th iteration of CG, information about the solution vector y ∗ is provided by the search directions s i (for

i = 1 , . . . , d), which determine how the space is explored. In exact arithmetic, the method is guaranteed to find the solution

after at most d iterations. However, in most practical applications d is very large and the solution gets polluted by round-off

errors. This justifies the selection of another iteration threshold n
 d, at which an approximate solution is obtained.

The Bayesian conjugate gradient (BCG) [12] is a probabilistic numerical method (PNM) that computes the posterior dis-

tribution of the solution vector y ∗, given partial information provided by search directions in the form

z i ≡ s T i Ay ∗ = s T i b (5)

After n iterations of the algorithm, the information about the solutions y ∗ is encoded in the vector z n = [z 1 , z 2 , . . . , z n]
T . In

BCG it is assumed that the products in Eq. (5) are computed in exact arithmetic, implying a likelihood model, z n | y which

follows a Dirac distribution δ(z n − S T n Ay) , where S n is a matrix whose columns are given by the first n search directions.

The vector y is treated as a random variable, expressing the uncertainty about the solution vector y ∗. A prior Gaussian

distribution for y is assumed, namely

y ∼ N (y; y 0 , �0) (6)

where y and � are the prior mean and covariance respectively.
0 0

771

P.O. Hristov and F.A. DiazDelaO Applied Mathematical Modelling 120 (2023) 769–785

By defining the matrix �n = S T n A �0 A

T S n and the residual r 0 = b − Ay 0 , it can be shown that the posterior distribution of

y given z n is

y| z n ∼ N (y; y n ,�n) (7)

where the posterior mean and variance of the multivariate normal are:

y n = y 0 + �0 A

T S n �
−1
n S T n r 0 (8)

�n = �0 − �0 A

T S n �
T

n S
T
n A �0 (9)

For more details on the design and implementation of BCG, the reader should refer to Cockayne et al. [12] . For this work, it

is important to observe that when a PNM is used as part of a more general computational model, each response from the

model will have its own probability distribution, determined by the probabilistic numerical method itself. That is, the PNM

determines G Y (·) for the model output, whereas evaluating the model at some input combination x i , gives y i , the collection

of parameters describing the joint distribution of the discretised model output, such that Y i ∼ G Y (y i) . This observation will

become important in the definition of some of the features of P-SuS, described in the next section. In the case of BCG, G Y (·)
will be a normal or a Student-t distribution as described in Cockayne et al. [12] . However, since the linear system under

consideration is a discretisation of a continuous mathematical model, using a PNM effectively casts its solution in the form

of a stochastic process. This stochastic process is defined by the choice of PNM (in the case of BCG, a Gaussian process),

which in turn defines the family of the marginal distributions.

3. Probabilistic subset simulation

This section introduces probabilistic subset simulation (P-SuS), an extension of SuS, designed to accommodate compu-

tational models using probabilistic numerical methods. The building blocks of P-SuS are discussed in turn, highlighting the

modifications introduced and how each step relates to its SuS counterpart.

3.1. Response ranking

P-SuS starts the same way as SuS, namely, with an unconditional level (level 0), where Monte Carlo sampling populates

the input domain with N samples x 1 , . . . , x N from the input distribution G X (·) . These samples are then evaluated using a

probabilistic numerical computer model that encodes the performance function h , resulting in the data set D = { (x j , y j) } N j=1
.

The response y j is not a realisation of the output random variable Y (x j) , as is the case for traditional stochastic models,

but instead contains information about the probability distribution of the true value of the model output, h (x j) at the input

combination x j . Thus, it provides a parameter tuple such that Y (x j) ∼ G Y (·, y j) . For instance, if each response is distributed

as a Gaussian random variable, Y (x j) ∼ N (μ j , σ j) , then y j is the tuple containing the mean, μ j and standard deviation, σ j

of the Gaussian distribution. The interested reader is referred to the source material for detailed description of the methods

[10,12,17] . In this paper, the output of h is assumed to be one dimensional or, if this is not true, that different outputs are

independent. For ease of notation, Y (x j) will be shortened to Y j where this does not cause confusion. Lastly, G Y (·) will be

regarded as a member of the location-scale family of distributions, a general assumption made for computational reasons

that will be described next.

In order to determine an intermediate failure threshold for level 1, the random variables Y j must be ranked according to

the information in y j . In P-SuS, this is done using stochastic ordering. The topic is central to many important problems and

has therefore been studied extensively, giving rise to various methods for ranking univariate random quantities [18] . One

option is to compute a distribution for the k-order statistic of the outputs [19] . This can be challenging because the random

variables Y j are dependent and non-identically distributed [20] . Moreover, the process requires a large computational effort

due to the combinatorial growth of the number of possible rankings.

Another option to rank the random variables is to use the concept of first- and second-order stochastic dominance

[21] . This approach provides a partial order of the random variables, based on their CDFs. Let A and B be two ran-

dom variables with corresponding CDFs, G A (z, ·) and G B (z, ·) . By definition, A (first-order) stochastically dominates B if

G A (z, ·) ≤ G B (z, ·) for all values of z. In situations where the CDFs of A and B intersect, first-order stochastic dominance

is unable to provide a clear ordering. It is then useful to employ second-order stochastic dominance, where A dominates B

if
∫ z
−∞

G B (t, ·) − G A (t, ·) dt ≥ 0 , ∀ z. Second-order stochastic dominance implies first-order stochastic dominance. In the con-

text of P-SuS, the partial ranking, provided by stochastic dominance needs to be translated to a total order, to allow the

establishment of the first intermediate failure threshold. One way to achieve this is by using Copeland counting [22] . This

method counts how many times each of the N random variables has been identified as dominant in the pairwise compar-

isons, awarding it one point. At the same time, it deducts one point when the random variable has been flagged as being

dominated. This results in a final score for each variable, with ties occurring only when two variables are identical. The

ranking procedure requires O(n 2) operations and is summarised in Algorithm 1 .

Computationally, second-order stochastic dominance is more expensive than its first-order counterpart, due to the in-

tegral operation. Additionally, both methods require the repeated evaluation of G Y (z, y j) at each input location. These two
772

P.O. Hristov and F.A. DiazDelaO Applied Mathematical Modelling 120 (2023) 769–785

Algorithm 1 Total stochastic ordering.

Require: A set of N distribution parameter tuples { y j } .
Ensure: A set of dominance scores, s for N random variables.

1: Assign values to the ranking parameters c and N q .

2: Initialise s ≡ { s 1 , . . . , s N } ← { 0 , . . . , 0 }
3: for j = 1 to N do � Copeland counting

4: for k = j + 1 to N do

5: r = mFOSD (y j , y k , c) � Use Algorithm 2

6: if r = 0 then

7: r = SOSD (y j , y k , N q) � Use Algorithm 3

8: end if

9: s j = s j + r

10: s k = s k − r

11: end for

12: end for

factors can have an appreciable effect on running time when several hundred to several thousand random variables must

be compared. Thus, reducing the computational cost on a per-comparison basis is essential to achieving ranking within

reasonable time.

A metric is required to quickly identify pairs of responses with clear separation and dominance. That is, if two distribu-

tions are far enough apart, there is no need to compare them using an expensive test which allows for crossovers. For the

location-scale family of distributions, one can devise a test which does not rely on evaluating G Y (z, y j) . In this case, quan-

tiles that lie at an equal distance from the respective distribution mean will have the same cumulative probability under

that distribution. For example, let A ∼ U(a A , b A) and B ∼ U(a B , b B) , where a A < b A and a B < b B , then

P (A ≤ m A + cs A) = P (B ≤ m B + cs B)

m X =

a + b

2

s X =

√

(b − a)
2

12

where X = { A, B } and c ∈ R . If two values of c are chosen, such that the corresponding quantiles are far apart, then sub-

tracting those quantiles and observing the signs of their differences provides an efficient way of determining the domi-

nance of one distribution over another. Let a A = 0 . 2 , b A = 5 , a B = −5 . 7 , b B = 1 , and c = ±1 . 65 . The corresponding quantiles,

q A = { 0 . 314 , 4 . 886 } and q B = {−5 . 541 , 0 . 841 } enclose approximately 95% of the mass of their respective distributions. The

signs of both elements of the quantile difference, q A − q B = { 5 . 855 , 4 . 045 } are positive, indicating that A dominates B in the

first-order sense.

Note that no evaluation of CDFs is involved in the comparison. This offers speed-up over first-order stochastic dominance.

This modified first-order stochastic dominance (mFOSD) is summarised in Algorithm 2 . In the case where the two signs

Algorithm 2 Modified first-order stochastic dominance (mFOSD).

1: function mFOSD (y j , y k , c)

2: Compute μ j , μk , σ j and σk from y j and y k .

3: μd = μk − μ j

4: σd = c(σk − σ j)

5: if μd < 0 and (μd − σd) < 0 then

6: return d 1 = 1 � Y j dominates Y k
7: else if μd > 0 and (μd − σd) > 0 then

8: return d 1 = −1 � Y k dominates Y j
9: else

10: return d 1 = 0 � Dominance cannot be established via mFOSD

11: end if

12: end function

above differ, the com parison is carried out using the second-order dominance test, detailed in Algorithm 3 . Two points

about mFOSD must be made at this time. Firstly, the larger the value of c, the higher the confidence that the comparison

is correct. However, c also controls the sensitivity of the test. Setting c = ±10 will provide a very high degree of confidence

about the dominance result, but it means that mFOSD will be unable to decide between distributions that cross over at a

very low probability level, which is unlikely to produce reversal of the ranking in practice. Secondly, as mentioned before,
773

P.O. Hristov and F.A. DiazDelaO Applied Mathematical Modelling 120 (2023) 769–785

Algorithm 3 Second-order stochastic dominance (SOSD).

1: function SOSD (y j , y k , N q) � Requires access to CDF for Y j and Y k

2: Discretise support of Y j and Y k into N q levels { z r } N q r=1
3: for r = 1 to N q do

4: Compute Ḡ j,r ≈
∫ z r
∞

G Y (z, y j) dz

5: Compute Ḡ k,r ≈
∫ z r
∞

G Y (z, y k) dz � Via a quadrature scheme

6: end for

7: �Ḡ =

∑

r Ḡ j,r − Ḡ k,r

8: if �Ḡ < 0 then

9: return d 2 = 1 � Y j dominates Y k
10: else

11: return d 2 = −1 � Y k dominates Y j
12: end if

13: end function

Fig. 1. Ranking of distributions using the augmented second-order stochastic dominance test with c = ±3 . Cumulative distribution (left) and probability

density (right) function perspective. Final ranking is given in the legend on the right.

this approach only works when ranking random variables which come from the location-scale family, with c determined

according to the distributions being ranked. However, P-SuS is a general PRA method, so it can be used with any form

of uncertain responses if one accepts the increased computational cost coming from using the full first-order stochastic

dominance test.

It should also be noted that, as the fidelity of simulation results increases and the uncertainty from the PNM shrinks

around its mean estimate, the separation between different Y j becomes increasingly clear. The stochastic ordering used in

P-SuS reflects this and is constructed in a way which provides results identical to those in deterministic SuS ranking, in the

limit of vanishing uncertainty.

Figure 1 illustrates the ranking of 5 distributions with the augmented second-order procedure in Algorithm 1 , for c =
±3 . The comparisons between the distributions ranked first and fourth and between those ranked second and third were

performed with the modified first-order dominance test. The rest of the comparisons required second-order testing.

3.2. Intermediate failure levels

The main purpose of P-SuS is to allow for the uncertainty in the output of the PN model to have an effect on the

estimator of the failure probability, p F . One possible way to do this is by adopting a bottom-up approach whereby the PNM

uncertainty is reflected in the estimation of the conditional probabilities, p 0 , which in turn are used to construct the final,

probabilistic estimator for p F . Since each threshold, t i is based on y j , it would normally inherit the characteristics of these

responses. In P-SuS, this means that t i should have its own probability distribution. However, using the freedom in the choice

of intermediate thresholds, t i are given scalar values equal to the mean of the (p 0 N) − th highest response, denoted μ(p 0 N) .

Since Y (·) is a stochastic process, having a scalar t i means that p 0 will be a random variable. For this reason, in P-SuS, the

probability of F i is renamed from p 0 to p F i to emphasise the fact that it will no longer be a constant as in deterministic

SuS. Consequently, the distribution of p F i will be denoted G F i
(·) , and the parameter p 0 will be used in P-SuS to denote the

nominal value of p F i
774

P.O. Hristov and F.A. DiazDelaO Applied Mathematical Modelling 120 (2023) 769–785

3.3. Probabilistic description of p F i

The possibility of treating the level probability as a random variable to enhance the results of SuS has been investigated

before [15] , albeit in a manner unrelated to the one proposed in P-SuS. There, the authors investigate the uncertainty present

in the estimate of p F i due to the use of a finite sample to compute t i , which may lead to a value of p F i different from p 0 .

In the case of a probabilistic computer code, the uncertainty in p F i is of a different nature. For a fixed t i , each input

combination x j belongs to F i with some probability p i j , given by

p ij = P

(
h

(
x j

)
≥ t i

)
= 1 − G Y

(
t i , y j

)
for j = 1 . . . N i (10)

where N i is the number of responses at the i th level. The probability of F i is given by

p F i =

∫
X

I F i (x) g(x , ·| F i −1) dx

≈ 1

N i

N i ∑

j=1

I F i (x j)

with x j ∼ g(x , ·| F i −1) . In P-SuS, the indicator function is a Bernoulli random variable, such that

I F i (x j) ∼ Bernoulli (p i j) (11)

The summation of N i independent Bernoulli trials with varying probabilities of success is distributed as a Poisson-binomial

random variable, with mean μi =

∑

j

p i j and variance σ 2
i

=

∑

j

p i j (1 − p i j) .

However, since I F i (·) come from the same underlying model, they will not, in general, be independent. In such cases, the

distribution of the sum can be approximated by a Poisson distribution, with an approximation error bound determined by

the strength of the correlations [23] . Moreover, the sum can also be bounded by a normal approximation [24] ∑

j

I F i (x j) ˙ ∼ N (μi , Cσ 2
i) (12)

where C is a positive constant. Defining the joint probability mass function of N i dependent Bernoulli trials, requires

the specification of probability values for each of the 2 N i possible outcomes. Even for moderate sample sizes, such a

task becomes computationally infeasible. At the same time, momentarily neglecting the dependence among I F i
(x j) and

I F i
(x k) ∀ j � = k , allows the construction of a bounding distribution through the use of Lyapunov’s central limit theorem, which

states that the sum of the indicator functions is distributed N (μi , σ
2
i
) . Comparing the two results, it becomes apparent

that regardless of dependence, the distribution of the sum of non-identically distributed Bernoulli random variables can

be approximated by a normal distribution, the dependence affecting only the approximation variance through the scaling

constant, C.

It can be seen then that G F i
(·) is Gaussian, such that

p F i ˙ ∼ N

(
μi

N i

,
Cσ 2

i

N

2
i

)
(13)

where C can be specified if information on the dependence of I F i
(x j) is available [25] . This issue will be the subject of

future work. In this paper, C = 1 . It should be noted, that in the limit of vanishing uncertainty about Y j , the variance of

the bounding distribution, G F i
approaches 0, while its mean approaches the constant p 0 N, coinciding with the deterministic

case.

3.4. Seed selection and conditional sampling

As discussed in Section 2.1 , to populate the i th intermediate failure domain F i , SuS uses MCMC sampling. At each level,

N C samples are selected as seeds to initialise the Markov chains. Since the number of seeds is based on the total number of

samples per level and the probability of that level, in P-SuS N C will be a random variable, here denoted as N C i
.

In order to determine which input combinations will be selected as seeds, the algorithm must acknowledge the compu-

tational uncertainty present in the responses of h . Given the definitions established in Section 3.3 , this can be done in two

steps. In the first step, to respect the probabilistic nature of the PNM output, N

′
C i

out of N i input combinations are selected

with probability p i j , given in Eq. (10) . It can be seen that the distribution of N C i
is given in Eq. (12) . To respect this counting

distribution, in the second step, the first μi =

∑

j

p i j out of the N

′
C i

samples are chosen. This two-step procedure results in

the selection of N C i
= min (N

′
C i

, μi) seeds. Once the sample selection is complete, each point is taken as a seed of a Markov

chain with

N S i =

⌈
N − N C i

N C i

⌉
(14)
775

P.O. Hristov and F.A. DiazDelaO Applied Mathematical Modelling 120 (2023) 769–785

states, where �·� is the ceiling function. This ensures that there will be at least N samples per level, as required by the

analyst. Inspecting Eq. (14) more closely, it can be seen that the number of states reflects the fact that the seeds are kept

as part of the sample from F i , since there is no burn-in, similar to SuS [26] . To generate N S i
states, each Markov chain is

progressed in two stages:

1. A candidate input combination, ˜ x j , is proposed using the independent-component Metropolis algorithm (ICMA) [14] .

2. The corresponding response is accepted with probability p i j in Eq. (10) .

Step 1 is the same as in deterministic SuS. This is because probabilistic numerical models attach uncertainty to the

output only, leaving information about the input unaffected. Step 2 is carried out as follows. For each candidate sample the

probability p i j in Eq. (10) is computed and compared to a random realization of a standard uniform distribution, denoted

u j . If p i j > u j the corresponding candidate input combination, ˜ x j is accepted. This procedure results in

˜ x j being accepted

p i j × 100% of the time, as the number of repetitions goes to infinity, thus allowing for samples that would otherwise be

considered far away from F to be analysed. In line with this probabilistic acceptance policy, some input combinations with

higher p i j
1 may be rejected, reflecting the fact that under the uncertainty provided by the PNM, these samples may, actually,

be outside of F . The final probability of acceptance thus becomes

p acc = p icma × p i j (15)

where p icma denotes the acceptance probability in the independent-component Metropolis algorithm. The value of p icma can

be monitored to ensure it is between 30% and 70% , to allow the stable evolution of the Markov chains [15] .

As more information about h becomes available, the uncertainty of the PN model will decrease, indicating the increase in

confidence about the mean estimate. This reduction in posterior variance is manifested in the sampling step of P-SuS in two

ways. Firstly, the number of samples N i generated in each level will stabilise and begin approaching N. The same thing holds

for, N C i
and N S i

, which will also converge to their deterministic counterparts in SuS. Secondly, the acceptance probability in

Eq. (15) will become dominated by p icma , as p i j transforms from a continuous variable on [0,1] to a dichotomous one -

p i j ∈ { 0 , 1 } as in SuS. Therefore, in the limit of vanishing uncertainty about h , the sampling step in P-SuS will be identical

to that in SuS. The sampling procedure is summarized in Algorithm 4 .

Algorithm 4 Seed selection and conditional sampling for P-SuS.

Require: A vector of probabilities of success, p i j for N i Bernoulli random variables, X 1 , . . . , X N i and a threshold t i .

Ensure: A sample from g(x , ·| F i) and moments of the i th level counting distribution.

1: Compute μi =

∑

j p i j � Mean of counting distribution

2: Compute σ 2
i

=

∑

j p i j (1 − p i j) � Variance of counting distribution

3: Draw N i random numbers u ∼ U(0 , 1)

4: Select N

′
C i

points with p i j > u

5: Take the first μi out of N

′
C i

samples and denote the set N C i

6: Compute N S i
in Equation (14)

7: for j = 1 to N S i
do � Conditional sampling

8: Propose N C i
candidate input combinations ˜ x j via ICMA [14]

9: Evaluate h (̃ x j) to get ˜ y j
10: Compute ˜ p i j = 1 − G Y (t i , ̃ y j)

11: Draw N C i
random numbers u ∼ U(0 , 1)

12: Accept those ˜ x j for which ˜ p i j > u

13: end for

3.5. Stopping condition

At any given level of P-SuS, each sample x j belongs to F with probability given by

p ∗j = P

(
h

(
x j

)
≥ t ∗

)
= 1 − G Y j

(
t ∗, y j

)
for j = 1 . . . N i (16)

Based on Eq. (16) , a number of failure points, N F , can be identified in a manner similar to the one used in the selection of

N

′
C i

, described in Section 3.4 . In this way, the selection of failure points takes into account the uncertainty present in the

output of h . 2 Once N ≥ p N, P-SuS is deemed to have populated F well enough to stop the generation of new conditional
F 0

1 For example, in the case of a symmetric uncertainty model samples with p i j > 0 . 5 belong to F according to their mean estimate. However, they can

still be rejected as the spread of the associated uncertainty may indicate a non-negligible probability for the converged response to lie outside of F .
2 To completely acknowledge the uncertainty in the algorithm, it can be recognised that N F is also a random variable with its own probability distribution,

which will determine the number of intermediate levels in P-SuS. This point is mentioned as a potential direction for future work in Section 5 .

776

P.O. Hristov and F.A. DiazDelaO Applied Mathematical Modelling 120 (2023) 769–785

levels. The point value of the probability of failure after m conditional levels is then estimated as

P (F) ≈ ˆ p P−SuS
F =

N F

N m

m ∏

i =1

N C i

N i −1

(17)

where N 0 = N is the number of direct Monte Carlo samples at the unconditional level. The quotient in the product operator

of Eq. (17) is a point estimator of p F i . Based on the discussion in Section 3.3 , there is uncertainty associated with p F i which

can be propagated to ˆ p P−SuS
F

. In order to get from the individual G F i
(·) to a distribution G F (·) for ˆ p P−SuS

F
, one needs to

compute the distribution of the product of m normal random variables. The product distribution problem is an active area

of research and has been so for decades. There are a number of results for the product of two correlated normal random

variables [27] , as well as for the product of m independent, zero-mean normal random variables [28] .

By using the product operator to compute probabilities, Eq. (17) implicitly assumes independence among the m levels.

This assumption is also at the heart of deterministic SuS, allowing it to express the final estimator for p F in the form of

Eq. (3) , and to obtain some of its other properties [15,29] . Under the independence assumption, the expected value of the

product distribution G F (·) for ˆ p P−SuS
F

can be computed as

E

[
ˆ p P−SuS

F

]
=

m ∏

i =1

E [p F i] (18)

where E is the expected value operator. Due to the seed selection procedure, outlined in Section 3.4 , E

[
ˆ p P−SuS

F

]
will be

slightly higher than the point estimator in Eq. (17) . This artefact depends on the amount of uncertainty in the output of h

and disappears for high fidelity responses. The variance of G F (·) is given by the recurrence relation

V

[
ˆ p P−SuS

F

]
= V

[

m ∏

i =1

p F i

]

(19)

= V [p F m] V

[

m −1 ∏

i =1

p F i

]

+ V [p F m] E

[

m −1 ∏

i =1

p F i

] 2

+ E [p F m]
2
V

[

m −1 ∏

i =1

p F i

]

where V is the variance operator. Due to the independence assumption, G F (·) will be a good descriptor of the uncertainty

in ˆ p P−SuS
F

whenever the correlation between levels, described in Au and Patelli [29] is not too large.

In the limit of vanishing uncertainty, it is straightforward to show, by inspection of constituent terms, that Eq. (17) be-

comes identical to Eq. (3) and G F (·) degenerates around ˆ p P−SuS
F

. The steps of P-SuS are summarised in Algorithm 5 and an

implementation in MATLAB is available at https://github.com/PeterHristov/psus .

4. Numerical experiments

This section presents two examples: a smooth two-dimensional performance function, and a finite element model (FEM)

of a wing box. The first example is a well-known deterministic function. For these experiments, uncertainty is added in a

way in which sampling from one or more sub-domains of F is more challenging than with deterministic SuS. The perfor-

mance function in the second example uses the Bayesian conjugate gradient method outlined in Section 2.2 to estimate

wing tip displacement under static aerodynamic loading.

4.1. Two-dimensional performance function

Consider the modified Branin function [30] h : [−5 , 10] × [0 , 15] → R :

h (x 1 , x 2) =

(
x 2 − 5 . 1

4 π2
x 2 1 +

5

π
x 1 − 6

)2

+ 10 (1 − t) cos (x 1) + 10 + 5 x 1 (20)

The use of the modified Branin function as a benchmark for algorithms in uncertainty quantification and Bayesian opti-

misation (e.g., to test the robustness of algorithms to getting stuck in local optima) is widespread [31,32] . In addition, the

geometry of the Branin function makes it especially suitable as a benchmark for reliability analyses, due to the fact that

complex failure domains can be generated easily. Thus, for instance, letting t ∗ = 230 , the failure domain F = { x : h (x) > t ∗} ,
develops two disjoint sub-domains, such that F = F

(1) ∪ F

(2) , where F

(1) = { x 1 ∈ [0 , 0 . 037] × x 2 ∈ [0 , 0 . 108] : h (x 1 , x 2) ≥ t ∗}
and F

(2) = { x 1 ∈ [0 . 678 , 0 . 866] × x 2 ∈ [0 . 964 , 1] : h (x 1 , x 2) ≥ t ∗} . This feature is instrumental in showing that the proposed

algorithm can uncover different regions of the failure domain, regardless of it being disconnected. The level sets of the

Branin function are shown in Fig. 2 , with F highlighted in red. By construction, the Branin function is deterministic. In

order to mimic a probabilistic numerical model (PNM), the output is prescribed a location-scale distribution, G (·) , with
Y

777

https://github.com/PeterHristov/psus

P.O. Hristov and F.A. DiazDelaO Applied Mathematical Modelling 120 (2023) 769–785

Algorithm 5 P-SuS.

Require: An input distribution, G X (·) , a probabilistic numerical computer model for h () , a critical system threshold, t ∗, a

nominal computational budget, N and a nominal level probability, p 0 .

Ensure: An uncertainty-aware estimate of the probability of failure of the system, ˆ p P−SuS
F

, under G X (·) .
1: Obtain N data points X ∼ G X (·) and responses y = h (X) .

2: Compute dominance scores, s , given y. � Use Algorithm 1

3: Sort s in descending order.

4: Renumber y and X to match s .

5: Calculate p ∗
j

for all samples in X . � In Eq. (16)

6: Draw N points u ∼ U(0 , 1) .

7: Compute N F =

∑ N
j=1 1(p ∗ ≥ u) .

8: Identify F through X F = { X : p ∗ ≥ u } .
9: Set i = 1 .

10: while N F ≤ p 0 N do

11: Identify F i by computing t i = μ(p 0 N) from y.

12: Compute p i j for all samples in X . � In Eq. (10)

13: Obtain X ∼ g(x , ·| F i) , y = h (X) , μi and σi . � Use Algorithm 4

14: Repeat steps 2 − 8 .

15: if N F ≥ p 0 N then � Recompute moments of counting distribution

16: Compute μi =

∑

j p
∗
j

17: Compute σ 2
i

=

∑

j p
∗
j
(1 − p ∗

j
)

18: end if

19: end while

20: Compute ˆ p P−SuS
F

, E

[
ˆ p P−SuS

F

]
and V

[
ˆ p P−SuS

F

]
. � In Eqs. (17)–(19)

Fig. 2. Level contours and reliability analysis results for the modified Branin function. Red shaded regions highlight the failure domain, F . a) deterministic

SuS, which relies only on the mean estimate of the output to identify F , samples (blue dots) only from F (1) (red shading in bottom left); b) using the

full probability distribution of the output h (x) , P-SuS is able to sample from both sub-domains of F (for interpretation of the references to colour in this

figure, the reader is referred to the web version of the article).

mean, μ j and variance, σ 2
j

. Each evaluation of the model supplies information about the value of its output through the

tuple y j = (μ j , σ
2
j
) . In this case study, the variance (scale parameter) of G Y (·) can be constructed in an arbitrary manner,

but is here given the following functional form

σ 2
j = σ 2

(
x j

)
= e −�

∣∣h

(
x j

)∣∣ (21)

where � > 0 is a parameter that controls the scale of the uncertainty in the model response. Since the uncertainty decreases

as the value of � increases, it can be seen as a proxy for the bound on the computational budget available to the analyst.

Varying � allows the performance of P-SuS at different levels of fidelity and its behaviour for σ 2
j

→ 0 to be evaluated.
778

P.O. Hristov and F.A. DiazDelaO Applied Mathematical Modelling 120 (2023) 769–785

Fig. 3. Estimation of failure probability for varying values of the computational budget parameter, � . (a) convergence history for a single run of P-SuS with

median and ±3 standard deviations of G F (·) for maximal values of C and (b) median (dot-line), 10 th and 90 th percentiles (dashed lines) of p F from 100

runs of P-SuS.

It can be shown that for general PN methods, the mean of G Y (·) converges to the solution of the associated (deter-

ministic) numerical method [6] . To model the information-dependent deviation of the mean estimate from the truth, that

estimate is here defined as

μ j = μ
(
x j

)
= h

(
x j

)
− cσ j (22)

where c is a constant scaling factor and σ j is determined via Eq. (21) . Formulated in this way, the PNM proxy is effectively a

deterministic model, i.e., despite the probabilistic information it provides, y j will be precisely the same for repeated values

of x j and � .

Running PRA with deterministic SuS limits the available information to that carried by μ(x) . As such, any conclusions

from the analysis will be based on partial observations and will likely be misguided. To demonstrate this, let � = 0 . 01 in

order to emulate a situation in which the available computational budget is such that μ(x) is only a relatively low-fidelity

approximation to h (x) . The shape of F , according to μ(x) changes, compared to that based on h (x) with F

(1) shrinking

considerably and F

(2) disappearing altogether. Despite the fact that F

(2) still exists, deterministic SuS is unable to find it,

as indicated by the lack of samples (blue dots) in the top right of Fig. 2 (a).

In contrast, P-SuS detects the presence of F

(2) , as seen in Fig. 2 (b), by preserving samples X F which, given the uncer-

tainty in the model output, may belong to F . In this example, SuS was able to find the second failure mode for � > 2 . 5 .

Another important outcome of the analysis is the estimated probability of failure, given in Eq. (17) . The estimates of p F
given by P-SuS, for varying � is shown in Fig. 3 . The results in Fig. 3 (a) show a single trace of ˆ p P−SuS

F
, for a maximal value

of C. In this case, the median of G F (·) is plotted as a solid line, whereas the dashed lines form the 80% credible interval for

ˆ p P−SuS
F

. The results in Fig. 3 (b) are based on 100 independent runs of P-SuS. The solid line shows the median value of the

estimates, while the dashed lines on either side depict their 10 th and the 90 th percentiles. One thing to notice in particular

is that despite the ability of P-SuS to identify both sub-domains of F , ˆ p P−SuS
F

consistently underestimates p F , shown in red

in Fig. 3 . While the underestimation of p F in this particular case is due to the way the mean of the example function, in

Eq. (22) , was constructed, the P-SuS estimator will still produce results away from p F when the output uncertainty is large.

One possible reason for this is that C = 1 in Eqs. (12) and (13) , which encodes an assumption of independence among the

Bernoulli random variables in Eq. (11) . Setting C to a value which results in G F i
having the widest possible positive support,

however, does not seem to address the issue completely, as seen in Fig. 3 (a), where the true value of p F is still far away

from the credible region at small � . Other assumptions which could be revised in an attempt to remedy this behaviour in

ˆ p P−SuS
F

include the assumption of independence among levels and the form of the estimator in Eq. (17) . These and other

pointers for future work are discussed in Section 5 .

4.2. Wing box model

The main purpose of this example is to demonstrate the capability of P-SuS to work with models which have features

representative of industrial problems. Because the example is illustrative by nature, the failure criteria is defined so as to

provide a challenging topology for the failure domain, not an engineering failure condition. In this way, the main advantage

of the proposed method is demonstrated, namely its capability to discover regions of the input space of the numerical model

that could be extremely difficult or impossible to discover otherwise, due to the numerical uncertainty obscuring them.
779

P.O. Hristov and F.A. DiazDelaO Applied Mathematical Modelling 120 (2023) 769–785

Fig. 4. Wing displacement model. (a) panel representation for aerodynamic force analysis. The lift distribution is shown in green. (b) cross section of the

wing box. Finite element mesh of all main components is visible in dark grey. Elements corresponding to input variables in Table 1 are shown with black

arrows. Upper skin is removed to expose inner wingbox structure (for interpretation of the references to colour in this figure, the reader is referred to the

web version of the article).

Table 1

Inputs to the wing box finite element model. Thicknesses are given in meters (m) and elastic moduli are given in

gigapascal (GPa).

Input Distribution

Part Section Subscript Thickness, t Young’s modulus, E

Skin Upper US U(0 . 006 , 0 . 02) U(68 , 88 . 5)

Lower LS U(0 . 006 , 0 . 02) U(68 , 88 . 5)

Spars Leading edge SL U(0 . 01 , 0 . 1) U(68 , 88 . 5)

Center SC U(0 . 01 , 0 . 1) U(68 , 88 . 5)

Trailing edge ST U(0 . 01 , 0 . 1) U(68 , 88 . 5)

Ribs Root to tip R 1 , . . . , R 11 U(0 . 01 , 0 . 05) U(68 , 88 . 5)

4.2.1. Problem description

In this section, P-SuS is applied to a wing box model, subject to aerodynamic lift forces. The test model is a uniform

cantilever wing and is shown in Fig. 4 . The wing has a semi-span (distance from root to tip) L = 20 m and a constant chord,

c = 6 m . For the purposes of load calculation, the wing was given a symmetric, NACA 0012-64 airfoil and was analysed with

an open-source potential flow panel solver [33,34] . The dynamic pressure and Reynolds number of the free stream were set

to q = 2 . 48 kPa and Re = 19 . 7 × 10 6 , respectively. At an angle of attack of 2.5 ◦, which corresponds to a shallow climb, the

total lift force produced by the wing is F Y = 59 . 5 kN with a lift distribution shown in green in Fig. 4 (a). This distribution

was used in defining the load on the wing box.

The structural model is inspired by the Goland research wing [35] , whose main purpose is to provide a common and

simplified test platform for research into aeroelastic problems. This model has also been used in uncertainty quantification

for various aeroelastic phenomena [36,37] . The modified wing box used in this paper has length L = 20 m , width w = 4 m

and height v = 1 m , instead of the dimensions and imperial units used in other studies. This modification was made to

scale the wing to a size more representative of a single-aisle passenger aircraft. The wing box, shown in Fig. 4 (b), is made

up of lower and upper skins, three spars running along the length of the box and eleven ribs perpendicular to the spars.

The components of the wing box are all basic rectangular shapes, allowing them to be accurately discretised into finite

elements. The model was discretised in the commercial FEM suite Abaqus, using 1056 S4R shell elements [38] . In this

representation, the structural response is parameterised by the thickness and stiffness of each element. The parameters

were given a uniform joint distribution over their ranges to simulate the preference to any specific input combination. The

variable parameters along with their distributions are summarised in Table 1 . In this model, the stringers in the wing box

were absorbed into the lower and upper skins [39] . For this reason, the upper bound on the distributions of the two skins

is relatively large compared to v . The wing box is modelled as cantilever beam, i.e., having no translation and rotation at the

root. In view of the illustrative nature of the problem, the quantity of interest for PRA is the maximum vertical displacement

at the wing tip. The failure threshold is set as t ∗ = 1 . 3 m .
780

P.O. Hristov and F.A. DiazDelaO Applied Mathematical Modelling 120 (2023) 769–785

4.2.2. Probabilistic subset simulation setup

The discretisation described in Section 4.2.1 results in a linear system of the form Ku = f where K ∈ R

d×d is called the

stiffness matrix, f ∈ R

d is referred to as the nodal force vector and u ∈ R

d is the displacement vector, and d = 5400 . The

performance function can be written as

h (x) = max u y-tip = max
(
K

−1 f
)| y-tip (23)

The subscript “y-tip” denotes the subset of vertical displacements at the tip. Thus, even though the solution vector, u con-

tains the displacements of the entire wing box, the performance function h (x) is only concerned with the maximum vertical

displacement of the tip. This has the effect of reducing the dimensionality of the output from d to 1. The input vector x ap-

pears implicitly in h (x) , determining the values of the elements in K . Despite the fact that this system can be solved using

direct methods, it is used in this paper to test P-SuS on a problem which preserves all aspects of systems, for which an

iterative solver would be preferred.

Matrices describing physical systems are often times ill-conditioned. This is of particular importance to BCG, due to the

fact that its convergence is governed by κ(K �0 K

T) ≥ κ(K) [12] , where κ(K) is the conditioning number of K , which is very

large for ill-conditioned systems. In order to reduce the computational burden and increase the solution stability, the prior

covariance matrix, �0 , can be chosen such as to form a suitable preconditioner for the system. In this paper, we adopt the

formulation �0 = (P T P) −1 , where P = LL T and L is the lower triangular factor of the incomplete Cholesky (IC) decomposition

of K , denoted as IC(α), where the level of fill-in is determined by the parameter α. In the present example it was possible to

recompute the IC(α) factorisation at every input combination. This was done in an attempt to identify an optimal α for each

system. Naturally, for much larger problems, a different approach to preconditioning will have to be adopted. For example,

it is possible to use a common �0 for systems arising from similar values of the physical parameters. Another approach may

be to use the posterior covariance matrix, �m

in Eq. (9) , as the prior covariance matrix to a subsequent problem. In general,

computing an effective preconditioner efficiently is a non-trivial task that often requires physical insight into the problem

at hand. It is largely an area of ongoing research [40] .

As discussed in Section 3.1 , using PN models, such as BCG results in a set of tuples { y j } , which contain parameter values

for the output distribution, G Y (·, y j) . Since the posterior distribution of the BCG solution vector is Gaussian, y j = (μ j , σ j) .

In BCG, both μ j and σ j are functions of the number of BCG iterations n . For a well-conditioned system, the posterior mean

will approach the true solution and the posterior variance will contract around the mean. The rate of this mean-variance

evolution should be such that h (x j) can be seen as a feasible realisation from the high density region of G Y (·, y j) at any n .

In practice, this means that if μ j is close to h (x j) , then this must be reflected by a small σ j and vice-versa. The process of

ensuring this is the case is referred to as uncertainty calibration [6] . It is claimed here, that in order to efficiently use the

estimator of h (x j) in any subsequent analysis (including PRA), the posterior uncertainty about Y j must be well-calibrated.

In this paper, instead of fixing the number of iterations prior to the run of BCG, bounds on the minimum and maximum

iterations are placed and the algorithm is run until the coefficient of variation (CoV), denoted δY j
, falls below a predefined

threshold, δ̄Y j
. The convergence history of a typical run of BCG is shown in Fig. 5 . At very small number of iterations, partic-

ularly n < 10 , the output of BCG is erratic and it is difficult to draw a conclusion about the displacement of the structure. At

n ≥ 15 the output converges steadily to the solution of the system obtained with a direct solver. From n ≈ 150 , it becomes

difficult to distinguish any further convergence. Based on this behaviour, BCG was run for 15 ≤ n ≤ 200 iterations at each

point in P-SuS. Another observation from Fig. 5 is that, despite the fact that μ j converges relatively quickly to the determin-

istic solution, σ j takes much longer to shrink around μ j , resulting in a conservative estimator for h (x j) . This problem about

BCG is well-known [12] and solutions are being developed [41] .

To assess the performance of P-SuS at different levels of uncertainty, the analysis was carried out for maximum CoV

δ̄Y j
= { 1 , 0 . 75 , 0 . 5 , 0 . 25 , 0 . 1 , 0 . 05 } . The first four levels were easily attained within the maximum number of iterations. At

δ̄Y j
= { 0 . 1 , 0 . 05 } , for which BCG was not able to reach the desired fidelity for all points, the maximum number of iterations

was increased to n = 500 .

Each P-SuS run was set up with N = 500 samples per level and target level probability, p 0 = 0 . 1 . The number of con-

ditional levels in P-SuS depends strongly on the bound of the CoV. In the case of δ̄Y j
= { 1 , 0 . 75 } , P-SuS converged at the

Monte Carlo level, whereas analyses with δ̄Y j
= 0 . 5 , 0 . 25 , 0 . 1 , converged after one conditional level, and that with δ̄Y j

= 0 . 05

required two conditional levels. Using estimations from BCG runs that are allowed to terminate early, due to looser pos-

terior variance requirements, P-SuS can count points far away from F as actually failing. The results from setting δ̄Y j
= 0 . 5

are shown in the panels of the lower triangle of Fig. 6 , where the panels depict two-dimensional pairwise projections of

F , as estimated by the scatter of failure samples. Points considered by P-SuS to have resulted in the occurrence of F are

shown as gray dots. For comparison, samples from SuS, based on a deterministic solution to the linear system and having

the same values for N and p 0 are plotted with red squares. It can be seen that the accuracy of the identification of F by

P-SuS is determined by the fidelity of the supplied data. Only skin and spar thickness parameters are shown in Fig. 6 , since

their variation had the biggest effect on the occurrence of F . In general, for δ̄ = 0 . 5 , the size of F is overestimated and

the projected domain is shifted to higher input values. These are both indicators of the conservative nature of P-SuS, due

to the fact that the algorithm takes the effect of the uncertainty present in the available data into account. Despite this,

P-SuS is capable of populating the failure domain reasonably well. This is particularly noticeable in the t − t projection,
LS US

781

P.O. Hristov and F.A. DiazDelaO Applied Mathematical Modelling 120 (2023) 769–785

Fig. 5. Convergence of the Bayesian conjugate gradient for a single input combination. Deterministic solution is given as a red dashed line. Error bars

show 95% credible interval of Y j . Estimated responses for n > 10 contain the true value in their credible intervals, but exhibit conservative uncertainty (for

interpretation of the references to colour in this figure, the reader is referred to the web version of the article).

Fig. 6. Two-dimensional projections of samples in F . Results from δ̄Y j = 0 . 5 and δ̄Y j = 0 . 05 in lower and upper triangle plots, respectively. Input combina-

tions that are deemed by P-SuS to lead to tip displacements larger than t ∗ are shown as black circles. The size of the circles is proportional to p ∗
j
. Failure

samples from SuS are plotted with red squares (for interpretation of the references to colour in this figure, the reader is referred to the web version of the

article).

where a considerable part of X is correctly identified as safe, without having to invest computational resources to run BCG

to convergence.

The upper triangle of Fig. 6 is set up similarly, excepts that the data shown in gray comes from a P-SuS run based on data

with δ̄Y j
= 0 . 05 . A significant overlap between the P-SuS and SuS scatters is evident, as was anticipated by the discussion in

Section 3 , where it was argued that in the limit of vanishing uncertainty about the underlying data, the results from P-SuS

become qualitatively identical to those of SuS. In both sets of plots, the relative size of the gray dots indicates the value of

p ∗
j
. For δ̄Y j

= 0 . 5 (lower triangle in Fig. 6), a considerable number of larger dots can be seen far from the red squares. Thus,

this plot also reflects the quality of the uncertainty calibration of BCG. Because both, μ j and σ j evolve with each iteration
782

P.O. Hristov and F.A. DiazDelaO Applied Mathematical Modelling 120 (2023) 769–785

Fig. 7. Estimates of the probability of failure for varying levels of response fidelity for the static wing loading example. The mean (black solid line) and

±3 standard deviations (grey dashed lines) of G F steadily approach the ˆ p SuS
F (red solid line) (for interpretation of the references to colour in this figure, the

reader is referred to the web version of the article).

of the algorithm, x j can be far away from F , but if μ j > t ∗ and σ j sufficiently small, this may not be indicated as being in

fact a false positive.

A depiction of ˆ p P−SuS
F

at each δ̄Y j
is shown in Fig. 7 . The point values of the probability of failure for δ̄Y j

= 0 . 5 and δ̄Y j
=

0 . 05 , corresponding to the failure samples shown in Fig. 6 , are ˆ p P−SuS
F

= 0 . 0560 and ˆ p P−SuS
F

= 0 . 0056 , respectively. However,

since the output of BCG is uncertain, this uncertainty will be propagated through the conditional probabilities at each level,

to the final estimate of the failure probability p P−SuS
F

, as outlined in Sections 3.3 and 3.5 . In Fig. 7 , this uncertainty is plotted

as gray dashed lines depicting ±3 standard deviations of G F (·) . It can be seen that ˆ p P−SuS
F

overestimates p F at all CoV levels,

in line with the conservative sampling in Fig. 6 . This conservatism emerges through the probabilistic sample acceptance in

the ICMA step and is responsible for the ability of P-SuS to discover hidden failure sub-domains. As the uncertainty about

the true value of the output decreases (right to left in Fig. 7), the estimate of the probability of failure approaches the value

estimated via SuS (red solid line in Fig. 7).

4.3. Extensions and further applications

In light of the above examples, it is worth noting that P-SuS can be used when the computational cost of the performance

function is very large. This is not uncommon in industrial settings, where a statistical emulator is used to approximate the

model output. In that case, PRA and statistical emulators can be combined [42] and P-SuS could be readily applied. Since

P-SuS can work with any probabilistic output it could be used for different applications where SuS is already being used,

such as optimisation (e.g., Li and Au [43]) and model calibration (e.g., Gong et al. [44]).

5. Conclusions

The analysis of models that incorporate a probabilistic description of computational uncertainty, known as probabilistic

numerical models, has emerged in recent years as a research field called probabilistic numerics. This paper proposes an

approach for conducting probabilistic reliability analysis (PRA) with such models. The method, called P-SuS, can be used for

conducting probabilistic reliability analysis with any probabilistic numerical method in two principal directions:

1. P-SuS can be used for conducting reliability analyses in the setting in which the available computational budget and the

evaluation time of the computer model are such that only results from partially-converged simulations are available.

2. Even if the computational budget is not strictly limited P-SuS can be used as a way of including in PRA the computational

uncertainty present at any level of model fidelity.

The proposed method is based on the widely-used subset simulation algorithm for PRA. Each component of P-SuS was

described in detail, outlining underlying assumptions and showing how P-SuS generalises SuS in the presence of computa-

tional uncertainty. The performance of the proposed approach was demonstrated with two numerical examples, including
783

P.O. Hristov and F.A. DiazDelaO Applied Mathematical Modelling 120 (2023) 769–785

an industrially-representative finite element problem using a probabilistic numerical linear solver. In particular, the exam-

ples demonstrated the capability of P-SuS to reliably discover parts of the input space failure domain which may otherwise

remain unexplored, and to inform the prioritisation of computational experiments at potentially important input locations.

Both probabilistic numerical methods and reliability analyses are extensive topics. As such, any method attempting to

integrate them needs careful consideration and testing. The main aspect of P-SuS which requires further investigation is

the estimator for the probability of failure, so as to enable its distribution to more accurately reflect the amount of uncer-

tainty present in the model responses. Work is ongoing to develop improved uncertainty bounds by allowing computational

uncertainty to have an effect on the number of conditional levels and by identifying more robust ways of incorporating

(lack of knowledge about) dependence at different points in the algorithm. Another feature which is under development

focuses on characterising the complete complementary cumulative distribution function (CCDF) of the model in the pres-

ence of computational uncertainty. Such a capability will be of particular importance to a fuller understanding of the model

response.

Data availability

No data was used for the research described in the article.

Acknowledgements

This work was funded under the EPSRC grant EP/S001476/1 . P. O. Hristov acknowledges the support of Innovate UK, under

Research and Innovation Grant 46357 for the project “Development of advanced wing solutions” (DAWS). F. A. DiazDelaO

acknowledges the support of the Data-centric engineering programme at The Alan Turing Institute, where he was a visiting

fellow under the EPSRC grant EP/S001476/1 .

References

[1] T. Bedford, R. Cooke, Probabilistic Risk Analysis: Foundations and Methods, Cambridge University Press, 2001 .
[2] M.T. Pratola, O.A. Chkrebtii, Bayesian calibration of multistate stochastic simulators, Stat. Sin. 28 (2) (2018) 693–719 .

[3] M.C. Kennedy, A. O’Hagan, Bayesian calibration of computer models, J. R. Stat. Soc. 63 (3) (2001) 425–464 .

[4] W.L. Oberkampf, C.J. Roy, Verification and Validation in Scientific Computing, Cambridge University Press, 2010 .
[5] B. Chartres, R. Stepleman, A general theory of convergence for numerical methods, SIAM J. Numer. Anal. 9 (3) (1972) 476–492 .

[6] P. Hennig, M.A. Osborne, M.A. Girolami, Probabilistic numerics and uncertainty in computations, Proc. R. Soc. A 471 (2015) 20150142 .
[7] Z. Ghahramani, C. Rasmussen, Bayesian Monte Carlo, Advances in Neural Information Processing Systems, vol. 15, 2002 .

[8] F.-X. Briol, C.J. Oates, M.A. Girolami, M.A. Osborne, D. Sejdinovic, Probabilistic integration: a role in statistical computation? Stat. Sci. 34 (1) (2019)
1–22 .

[9] M. Mahsereci, P. Hennig, Probabilistic line searches for stochastic optimization, in: Advances in Neural Information Processing Systems, vol. 28, 2015,
pp. 181–189 .

[10] O.A . Chkrebtii, D.A . Campbell, B. Calderhead, M.A . Girolami, Bayesian solution uncertainty quantification for differential equations, Bayesian Anal. 11

(4) (2016) 1239–1267 .
[11] P. Hennig, Probabilistic interpretation of linear solvers, SIAM J. Optim. 25 (2015) 234–260 .

[12] J. Cockayne, C.J. Oates, I.C.F. Ipsen, M.A. Girolami, A Bayesian conjugate gradient method (with discussion), Bayesian Anal. 14 (3) (2019) 937–1012 .
[13] S.-K. Au, J.L. Beck, Estimation of small failure probabilities in high dimensions by subset simulation, Probab. Eng. Mech. 16 (4) (2001) 263–277 .

[14] K.M. Zuev, Subset simulation method for rare event estimation: an introduction, 2015. arXiv: 1505.03506 .
[15] K.M. Zuev, J.L. Beck, S.-K. Au, L. Katafygiotis, Bayesian post-processor and other enhancements of subset simulation for estimating failure probabilities

in high dimensions, Comput. Struct. 92–93 (2012) 283–296 .

[16] J.R. Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, Technical Report, Carnegie Mellon University, USA,
1994 .

[17] A. O’Hagan, Bayes–Hermite quadrature, J. Stat. Plan. Inference 29 (3) (1991) 245–260 .
[18] F. Belzunce, C. Riquelme, J. Mulero, An Introduction to Stochastic Orders, Elsevier – Academic Press, 2015 .

[19] H. David, H. Nagaraja, Order Statistics, John Wiley & Sons, 2004 .
[20] R.B. Bapat, M.I. Beg, Order statistics for nonidentically distributed variables and permanents, Sankhyã: Indian J. Stat., Ser.A 51 (1) (1989) 79–93 .

[21] A. Müller, D. Stoyan, Comparison Methods for Stochastic Models and Risks, John Wiley & Sons, 2002 .

[22] N.B. Shah, M.J. Wainwright, Simple, robust and optimal ranking from pairwise comparisons, J. Mach. Learn. Res. 18 (199) (2018) 1–38 .
[23] L.H.Y. Chen, Poisson approximation for dependent trials, Ann. Probab. 3 (3) (1975) 534–545 .

[24] C. Stein, A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, in: Proceedings of the Sixth
Berkeley Symposium on Mathematical Statistics and Probability, Vol. II: Probability theory, Univ. California Press, Berkeley, Calif., 1972, pp. 583–602 .

[25] W.L. Oberkampf, W.T. Tucker, J. Zhang, L. Ginzburg, D.J. Berleant, S. Ferson, J. Hajagos, R.B. Nelsen, Dependence in Probabilistic Modeling, Demp-
ster–Shafer Theory, and Probability Bounds Analysis, Technical Report, Sandia National Laboratories, 2004 .

[26] S.-K. Au, Y. Wang, Engineering Risk Assessment with Subset Simulation, John Wiley & Sons, 2014 .

[27] S. Nadarajah, T.K. Pogny, On the distribution of the product of correlated normal random variables, C. R. Math. 354 (2) (2016) 201–204 .
[28] M.D. Springer, W.E. Thompson, The distribution of products of beta, gamma and Gaussian random variables, SIAM J. Appl. Math. 18 (4) (1970) 721–737 .

[29] S.-K. Au, E. Patelli, Rare event simulation in finite-infinite dimensional space, Reliab. Eng. Syst. Saf. 148 (2016) 67–77 .
[30] A.I.J. Forrester, A. Sobester, A.J. Keane, Engineering Design via Surrogate Modelling : A Practical Guide, John Wiley & Sons, 2008 .

[31] A . Garbuno-Inigo, F.A . DiazDelaO, K.M. Zuev, Gaussian process hyper-parameter estimation using parallel asymptotically independent Markov sampling,
Comput. Stat. Data Anal. 103 (2016) 367–383 .

[32] X. Yang, D. Barajas-Solano, G. Tartakovsky, A.M. Tartakovsky, Physics-informed CoKriging: A Gaussian-process-regression-based multifidelity method

for data-model convergence, J. Comput. Phys. 395 (2019) 410–431 .
[33] J. Anderson, Fundamentals of Aerodynamics, McGraw-Hill Education, 2016 .

[34] A. Deperrois, xflr5, 2021. http://www.xflr5.tech/ .
[35] P.S. Beran, N.S. Khot, F.E. Eastep, R.D. Snyder, J.V. Zweber, Numerical analysis of store-induced limit-cycle oscillation, J. Aircr. 41 (6) (2004) 1315–1326 .

[36] S. Marques, K. Badcock, H. Khodaparast, J. Mottershead, CFD based aeroelastic stability predictions under the influence of structural variability, in:
50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2009, pp. 2699–2721 .
784

https://doi.org/10.13039/501100000266
https://doi.org/10.13039/501100000266
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0001
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0002
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0003
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0004
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0005
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0006
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0007
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0008
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0009
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0010
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0011
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0012
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0013
http://arxiv.org/abs/1505.03506
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0014
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0015
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0016
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0017
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0018
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0019
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0020
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0021
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0022
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0023
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0024
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0025
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0026
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0027
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0028
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0029
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0030
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0031
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0032
http://www.xflr5.tech/
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0033
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0034

P.O. Hristov and F.A. DiazDelaO Applied Mathematical Modelling 120 (2023) 769–785

[37] M. Kurdi, N. Lindsley, P.S. Beran, Uncertainty quantification of the Goland+ Wing’s flutter boundary, in: AIAA Atmospheric Flight Mechanics Conference
and Exhibit, 2007, pp. 104–123 .

[38] Anonymous, Shell elements, in: ABAQUS 6.14 Analysis User’s Guide Volume IV: Elements, Dassault Systèmes, 2014, pp. 29.6.1–29.6.10 .
[39] R.M. Ajaj, M.I. Friswell, D. Smith, A.T. Isikveren, A conceptual wing-box weight estimation model for transport aircraft, Aeronaut. J. 117 (1191) (2013)

533–551 .
[40] M. Benzi, Preconditioning techniques for large linear systems: a survey, J. Comput. Phys. 182 (2) (2002) 418–477 .

[41] T.W. Reid, I.C.F. Ipsen, J. Cockayne, C.J. Oates, A probabilistic numerical extension of the conjugate gradient method, 2020. arXiv: 2008.03225v1 .

[42] P.O. Hristov, F.A. DiazDelaO, U. Farooq, K.J. Kubiak, Adaptive Gaussian process emulators for efficient reliability analysis, Appl. Math. Model. 71 (2019)
138–151 .

[43] H.-S. Li, S.-K. Au, Design optimization using subset simulation algorithm, Struct. Saf. 32 (6) (2010) 384–392 .
[44] Z.T. Gong, F.A. DiazDelaO, P.O. Hristov, M. Beer, History matching with subset simulation, Int. J. Uncertain. Quantif. 11 (5) (2021) 19–38 .
785

http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0035
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0036
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0037
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0038
http://arxiv.org/abs/2008.03225v1
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0039
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0040
http://refhub.elsevier.com/S0307-904X(23)00144-0/sbref0041

	Subset simulation for probabilistic computer models
	1 Introduction
	2 Methodology overview
	2.1 Subset simulation
	2.2 Bayesian conjugate gradient

	3 Probabilistic subset simulation
	3.1 Response ranking
	3.2 Intermediate failure levels
	3.3 Probabilistic description of
	3.4 Seed selection and conditional sampling
	3.5 Stopping condition

	4 Numerical experiments
	4.1 Two-dimensional performance function
	4.2 Wing box model
	4.2.1 Problem description
	4.2.2 Probabilistic subset simulation setup

	4.3 Extensions and further applications

	5 Conclusions
	Acknowledgements
	References

