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Phenotyping Superagers by Using Resting-state Functional Magnetic Resonance Imaging 

 

Abstract 

Background and Purpose: Superagers are defined as older adults with episodic memory 

performance similar to or superior to middle-aged adults. This study aimed to investigate the key 

discriminative networks and their main nodes differences between superagers and cognitively 

average elderly controls. In addition, we sought to explore differences in sensitivity in detecting 

these functional activities across the networks at 3 and 7 Tesla (T) MRI fields. 

  

Materials and Methods: Fifty-five subjects ≥ 80-year-old were screened using a detailed 

neuropsychological protocol, and 31 participants, comprising 14 superagers and 17 cognitively 

average elderly controls, were included for analysis. Participants underwent rs-fMRI at 3T and 

7T MRI scanners. A prediction classification algorithm using a penalized regression model on 

the network’s measurements was employed to calculate the probabilities of a healthy older adult 

being a superager. Additionally, Odds Ratios (ORs) quantified the influence of each node across 

pre-selected networks. 

  

Results: The key networks that differentiated superagers and elderly controls were the default 

mode, salience, and language networks. The most discriminative nodes (ORs >1) in superagers 

encompassed areas in the precuneus posterior cingulate cortex, prefrontal cortex, temporoparietal 

junction, temporal pole, extrastriate superior cortex, and insula. The prediction classification 

model for being a superager showed better performance using the 7T over 3T rs-fMRI dataset. 

  

Conclusion: Our findings suggest that the functional connectivity in the default mode, salience, 

and language networks can provide potential imaging biomarkers for predicting superagers. The 

7T field holds promise for the most appropriate study setting to accurately detect the functional 

connectivity patterns in superagers. 

 

Abbreviations: DMN = default mode network; ECN-L = executive control network left; ECN-

R = executive control network right; rs-fMRI = resting state functional MRI; SN = salience 

network; T = Tesla. 
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Introduction 

   

Aging is an increasingly global phenomenon, usually accompanied by cognitive decline, with 

direct implications for the health care system and individuals' lives.1 In this setting, subjects with 

superior memory performance in late life ( ≥ 80 years old) stand out as they hold a model 

capable of clarifying the brain mechanisms underlying cognitive resilience. These subjects have 

been identified as “superagers” in the literature.2 To date, it is known that “superagers” show 

selective cortical preservation in particular regions of the default mode network (DMN) and 

salience network (SN), overlapped by stronger functional connectivity, highlighting possible key 

hubs for memory and cognition.3,4,5 However, these studies included subjects from 60 years old, 

which may be biased to obtain meaningful assertions about “youthful” memory performance in 

late life ( ≥ 80 years old).6 

 

Cognitive maintenance in older adults may reflect intrinsic functional integrity as a 

neurobiological substrate.7 Functional MRI can play an important role in detecting key brain 

hubs sustaining youthful cognition, thereby contributing to understanding the most resilient brain 

areas in superagers. Moreover, alterations in the brain functional connectome were previously 

reported to provide biomarkers for age-related cognitive decline and Alzheimer's disease.8 

 

Resting state functional MRI (rs-fMRI) focuses on the temporal characteristics and spatial 

organization of spontaneous fluctuations of the blood oxygen level-dependent (BOLD) signal 

and is powerful for characterizing brain organization and its abnormalities. Since the 

discrepancies between superagers and cognitively average elderly controls may be modest but 

important to detect early changes in brain function, using an ultra-high field rs-fMRI with 

increased spatial and temporal resolution opens the possibility of studying more subtle 

disruption.9 This is the first time that older adults with superior memory performance have been 

investigated in a 7 Tesla (T) field. 

  

In this study, we compared the differences in the resting-state functional connectivity between 

superagers and cognitively average elderly controls (elderly controls) in a range of neural 

networks with the aim to identify the most discriminative networks and within-network nodes for 

https://paperpile.com/c/cOOjiZ/b1wZE
https://paperpile.com/c/cOOjiZ/IEroz
https://paperpile.com/c/cOOjiZ/C5GoL
https://paperpile.com/c/cOOjiZ/VUmbj
https://paperpile.com/c/cOOjiZ/hERwJ
https://paperpile.com/c/cOOjiZ/MMk6A
https://paperpile.com/c/cOOjiZ/pcpYV
https://paperpile.com/c/cOOjiZ/WhEa1
https://paperpile.com/c/cOOjiZ/64kVt
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predicting superagers. We additionally examined differences in the prediction probability of 

being a superager between the rs-fMRI data at 3T and 7T magnetic fields. We hypothesized that 

hub regions are critical to predicting youthful cognitive function in superagers, and the 

measurements of functional connectivity would be improved at a higher magnetic field. 

 

Materials and Methods 

Selection of participants 

 

Initially, 55 participants were recruited from different centers in the city of Sao Paulo, SP, as 

detailed previously by Godoy et al,10 and the neuropsychological tests were performed at the 

Department of Neurology of Hospital das Clinicas (Medical School of the University of Sao 

Paulo).  

 

The inclusion criteria for the participants were: 1) age ≥ 80 years; 2) education ≥ four years; 3) 

Mini-Mental State Examination (MMSE) normal for their education;11,12 4) functional activity 

questionnaire score (FAQ) ≤ 4;13 5) Clinical Dementia Rating (CDR) score equal to zero; and 6) 

15-question version of the Geriatric Depression Scale (GDS 15) result ≤ 5. 

  

The exclusion criteria included 1) diagnosis of dementia or mild cognitive impairment according 

to the National Institute on Aging and Alzheimer’s Association criteria;14,15 2) diagnosis of a 

major psychiatric disorder by Diagnostic and Statistical Manual of Mental Disorders, Fifth 

Edition (DSM V); 3) history of alcohol or psychoactive drug abuse; 4) current or previous 

diagnosis of diseases of the central nervous system (i.e, stroke or seizure); 5) the presence of 

structural lesions in the central nervous system at image examination that could distort the brain 

parenchyma (i.e, tumor or brain malformation); and 6) visual and/or auditory limitations that 

impair the performance of cognitive tests. 

 

The flowchart of participants’ selection and the neuropsychological tests performed are shown in 

figure 1 and supplementary table 1, respectively. 

  

https://paperpile.com/c/cOOjiZ/AM9hj
https://paperpile.com/c/cOOjiZ/Kjp3e
https://paperpile.com/c/cOOjiZ/8WZou
https://paperpile.com/c/cOOjiZ/Fv19u
https://paperpile.com/c/cOOjiZ/KzVt1
https://paperpile.com/c/cOOjiZ/xNVwd
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Neurocognitive screening 

  

The first assessment consisted of a semi-structured interview with the collection of socio-

demographic data; cognitive assessment using MMSE, Montreal Cognitive Assessment (MoCA), 

and the Brief Cognitive Screening Battery (BCSB);16 screening for depressive symptoms and 

anxiety using GDS-15 and the geriatric anxiety inventory (GAI), respectively; and functional 

assessment with FAQ and CDR. 

  

Subsequently, the subjects who met the inclusion criteria underwent neuropsychological tests. 

The tests included the Forward and Backward Digit Span, Trail Making A (TMA) and B (TMB), 

Verbal Fluency (animals) and Letter Verbal Fluency (FAS) tests, Rey-Osterrieth Complex Figure 

(copy and delayed recall), Logical Memory of the Wechsler Memory Scale, Rey Auditory 

Verbal Learning Test (RAVLT), 60-item version of the Boston Naming Test (BNT-60), and 

Estimated Intelligence Quotient (IQ), that was measured with the Wechsler Adult Intelligence 

Scale Third Edition (WAIS-III). Those who performed equal or less than -1.5 standard 

deviations from average normative values adjusted by age and education for any cognitive test 

aforementioned were excluded. 

  

Healthy older adults grouping 

  

Participants were separated into two groups, namely, superagers (n=14; mean age 82.93 ± 3.47 

years) and cognitively average elderly controls (n=17; mean age 84.47 ± 4.29 years). Superagers 

were defined as the participants who presented a delayed recall score (30 minutes) in the Rey 

Auditory Verbal Learning Test (RAVLT), used as a measure of episodic memory, equal to or 

greater than average normative values for individuals aged 50 to 60 years (≥ 9 words), according 

to the criteria established by the Northwestern SuperAging research program.2 In addition, to 

conform with these criteria, they had to perform within or above one standard deviation (SD) of 

the average for their age and demographics for cognitive function in the non-memory domains 

tests, including Forward and Backward Digit Span, BNT-60, TMA, TMB, Rey-Osterrieth 

Complex Figure, and Verbal Fluency (animals) and Letter Verbal Fluency (FAS) tests.17,18 The 

cognitively average elderly controls performed in memory and non-memory domains within 1 

https://paperpile.com/c/cOOjiZ/fV3LB
https://paperpile.com/c/cOOjiZ/IEroz
https://paperpile.com/c/cOOjiZ/Wgsr4
https://paperpile.com/c/cOOjiZ/Wgsr4
https://paperpile.com/c/cOOjiZ/1MEIq
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SD of the average range for their age and demographics, which means that they were average-

performing older adults according to their cognitive status. 

 

Imaging data acquisition 

 

We acquired MRI data of 31 participants (14 superagers and 17 elderly controls) at a 3T scanner, 

whereas 21 of them (12 superagers and 9  elderly controls) were also imaged at a 7T scanner. 

The fewer subjects scanned at the 7T field were due to MR safety concerns (e.g., the presence of 

ferromagnetic aneurysm clips, pacemakers, and stents)19 and the safety measures in place during 

the COVID 19 pandemic.  

  

The 3T MRI session was scheduled less than one month after the clinical and neuropsychological 

assessments. We used a GE Signa PET/MR 3T with a 32-channel head coil. An anatomical 

whole-brain 3D T1-weighted scan was acquired with the parameters as follows: TR 8 ms, TE 3.2 

ms, FA 80˚, ASSET factor 1.5, FOV 240 × 240, matrix 240 × 240, 180 slices of 1 mm each, 

yielding a voxel size of 1 × 1 × 1 mm, during 5min16s. rs-fMRI was acquired with a T2*-

weighted echo-planar imaging sequence with the following parameters: TR 2000 ms, TE 30 ms, 

FA 90˚, FOV 240 × 240, matrix 80 × 80, slice thickness 3.6 mm (voxel size 3 × 3 × 3.6  mm), 

number of slices 36, gap 0.4 mm, ASSET factor 2.5. Although 208 volumes were acquired 

during 6min56s, the first 4 volumes were discarded, so we had 204 volumes per subject.  

  

The 7T MRI session was performed after acquiring all the data at the 3T scanner and within six 

months after the clinical evaluation. We used a Siemens Magnetom 7T scanner (Siemens, 

Erlangen, USA) with a 32-channel coil (Nova Medical, Wilmington, MA). The 3D T1 image 

was acquired by the MP2RAGE technique and the parameters were: TR 6000 ms, TE 2.25 ms, 

FA 4/5˚, TI 800/2700 ms, iPAT 3, FOV 240 × 240, matrix 320x320, 256 slices, yielding an 

isotropic voxel size of 0.75 mm3, during 9min36s. rs-fMRI was acquired with a T2*-weighted 

EPI multiband sequence, provided by Center for Magnetic Resonance Research (CMRR), with 

the following parameters: TR 1500ms, TE 24ms, FA 70, FOV 210 x 210, matrix 120x120, slice 

thickness 1.75mm (isotropic voxel size 1.75 mm3), number of slices 81, no gap, multiband accel 

factor 3, iPAT 2 and 250 volumes were acquired in 6min38s.  

https://paperpile.com/c/cOOjiZ/y3owk
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During the rs-fMRI at 3T and 7T scanners, participants were told to keep their eyes open while 

looking at a fixation cross. No cognitive tasks or tests were administered before the MRI session. 

 

Brain connectivity analysis 

Resting-state fMRI preprocessing 

The MRI DICOM files were entered into an automatic pipeline in GraphICA20 (Supplementary 

Figure 1). Anatomical and functional images were kept in native space and preprocessed using 

FSL 6.03.21 Preprocessing steps of the T1-weighted anatomical images included bias-field 

correction, brain-extraction, tissue-type segmentation (cerebrospinal fluid, gray matter, white 

matter) and subcortical segmentation. On the functional data, we performed skull stripping, 

motion correction, slice-timing correction, spatial smoothing (ceiling of 1.5*voxel size), 

independent component analysis (ICA)-based automatic removal of motion artifacts (ICA-

Aroma), high-pass filtering of 100 seconds and nuisance regression of white matter and 

cerebrospinal fluid. 

  

Extraction of the functional networks: 

GraphICA performs ICA with dual regression implemented in FMRIB Software Library (FSL).21 

As a part of this process, a set of independent component maps (IC) were identified for each 

network, and dual regression was implemented to identify subject-specific spatial maps using 11 

resting-state network masks: auditory, DMN, executive control network left (ECN-L), executive 

control network right (ECN-R), hippocampal, language, SN, sensorimotor, visual lateral, visual 

medial and visual occipital.  

  

Regional Parcellation 

Each subject’s T1-weighted image was automatically segmented with a pipeline implemented in 

Freesurfer (v7.1.0). Further parcellation was performed with GraphICA using a gradient-

weighted Markov Random Field model procedure described in Schaefer et al.22 The procedure 

yielded 832 parcellated brain regions which were included as network nodes for further analyses. 

  

https://paperpile.com/c/cOOjiZ/jIesY
https://paperpile.com/c/cOOjiZ/cyewf
https://paperpile.com/c/cOOjiZ/cyewf
https://paperpile.com/c/cOOjiZ/jZF0C
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Functional Network Construction & Thresholding. 

After the coregistration of each of the functional resting-state networks (RSN) to the subject, a 

mean z-value was calculated by averaging the scalar map values of the voxel belonging to each 

one of the 832 regions of interest (ROIs). The resulting z-standardized correlation coefficients 

describe the loading of each nodal time course on the respective RSN. To remove spurious or 

weak z-values, for instance, due to noise, the loadings were thresholded with a data-driven 

mixture modelling approach at a single-subject level.23 

  

Global Properties 

The properties include the number of found, missing, and extra regions. These properties were 

calculated based on templates masks created, separated by gender, for each one of the functional 

networks using healthy controls to create a baseline for the quality index and to exclude or keep 

the subjects based on their motion. The data from healthy controls came from Human 

Connectome Project24 and Openneuro,25 comprising 319 female subjects (mean age = 22.18 ± 

25.19) and 482 male subjects (mean age = 25.05 ± 28.26). The number of found regions was 

defined as the regions with z-values different from zero which survived the thresholding process. 

Missing regions were defined as the regions that have not been identified, but they do belong to 

the specific functional template mask. The number of extra regions was defined as those that do 

not belong to the respective functional network template mask but were found. 

 

Regions (Belong Template Mask) = Regions (Found) + Regions (Missing) - Regions (Extra) 

Statistical analysis 

Classification analysis 

The whole-brain connectivity parcellation comprehends 832 ROIs. To avoid overfitting in the 

regression model, we selected six key networks for successful aging,3,4,5 encompassing 397 

distinct ROIs, with some ROIs overlap among the networks, including DMN, SN, ECN-L, ECN-

R, hippocampal, and language networks. Penalized regression analysis used these networks and 

within-network nodes to determine brain regions with statistical differences between superagers 

and cognitively average elderly controls. 

 

https://paperpile.com/c/cOOjiZ/R8dkN
https://paperpile.com/c/cOOjiZ/FNXxO
https://paperpile.com/c/cOOjiZ/r6Feh
https://paperpile.com/c/cOOjiZ/C5GoL
https://paperpile.com/c/cOOjiZ/VUmbj
https://paperpile.com/c/cOOjiZ/hERwJ
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Each of the ROIs, grouped within the specific six networks, was considered as covariates in the 

penalized regression modeling in the following way. For a set of predictors 𝑋 = 𝑋1, … , 𝑋𝑁 with 

𝑝 measurements taken on each, and the response variable 𝑦, regression allows estimation of the 

coefficients 𝛽𝑖 in the following linear regression model: 

𝑦 = 𝑥1𝛽1 + ⋯ 𝑥𝑁𝛽𝑁 = 𝑋𝛽, 

 

The Ordinary Least Squares (OLS) regression finds a set of 𝛽𝑖 that minimize the sum-squared 

approximation error (𝑦 − 𝑥𝛽)2. However, in general, OLS solutions are often unsatisfactory, 

since there is not a unique solution when 𝑝 ≫ 𝑛 and it is difficult to pinpoint which predictors 

are most relevant to the response. Various regularization approaches have been proposed in order 

to handle “large- 𝑝, small-𝑛” datasets and to avoid overfitting, such as LASSO (Least Absolute 

Shrinkage and Selection Operator), ridge regression, or a combination of both.  Elastic Net (EN) 

addresses these shortcomings since variable selection is embedded into their model-fitting 

process. Both of these sparse regularization methods were previously applied to a similar 

problem, with results suggesting that the EN regression was a more robust approach to extreme 

correlations among the predictors.26 Briefly, sparse regularization methods include the L1-norm 

regularization on the coefficients, which is known to produce sparse solutions, i.e., solutions with 

many zeros, thus eliminating predictors that are not essential. 

  

For the analysis here, we used the EN regression that finds an optimal solution to the OLS 

problem objective, augmented with additional regularization terms that include the sparsity-

enforcing. Specifically, there are two types of regularizations that EN allows: L1-norm constraint 

on the regression coefficients that penalizes the absolute size and “shrinks” some coefficients to 

zero and a “grouping” L2-norm constraint, which penalizes the squared size of the coefficients 

and enforces similar coefficients on predictors that are highly correlated with each other, which 

L1-constraint alone do not provide. Formally, EN regression optimizes the following function, 

𝐿(𝜆1, 𝜆2; 𝛽) = (𝑦 − 𝑥𝛽)2 + 𝜆1‖𝛽‖1 + 𝜆2‖𝛽‖2, 

where 𝜆1 is L1-penalty term and 𝜆2 is the quadratic penalty term. 

 

https://paperpile.com/c/cOOjiZ/SWmEI
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In our case, for each of the networks, we let 𝑦 be a binary outcome of either being a superager or 

an elderly control and 𝑋 consists of 397 covariate measurements representing the regions (nodes) 

across the six neural networks. We modeled the relationship as, 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑋𝑖𝛽𝑖,    𝑖 = 1,2, … , 𝑛   (1) 

  

Model prediction and classification 

Using these models, we calculated the expected probabilities of an individual being a superager 

predicted from the penalized regression model using the network’s measurements and plotted 

this as an outcome (on the y-axis) versus the binary observed values of the individual being 

either elderly control or superager to evaluate the model’s prediction performance (Figure 2). 

The diagonal lines in figure 2 represent the mean difference between predicted probabilities for 

superagers and elderly controls. This can be thought of as an OLS linear regression, 

𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 +  (𝑝𝑠𝑢𝑝𝑒𝑟𝑎𝑔𝑒𝑟 − 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙)𝑠 

where s is the observed data superager indicator variable, 𝑝𝑥 is the mean predicted probability of 

being a superager for the observed group (either control or superager), and 𝑝𝑠𝑢𝑝𝑒𝑟𝑎𝑔𝑒𝑟 − 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙      

is the slope of the line, which indicates the discriminatory ability of the model. Larger values 

demonstrate better performance (steeper lines), and zero corresponds to no predictive ability and 

a horizontal line for that network. 

Quantification of regression analysis results 

We used the regression models in (1) to infer the odds ratios (ORs) describing the difference 

between the odds of exposure in each network and region (node) among superagers and elderly 

controls. In our study, they can be interpreted as a measure of the relative influence of a network 

and region within on the likelihood of being a superager. We obtain the ORs using the fitted 

models to give an average comparison between individuals with or without a unit increase in a 

particular region 𝑗; if 𝑝 is the probability of being a superager then: 

  

𝑂𝑅𝑗 =
𝑝𝑗/(1 − 𝑝𝑗)

𝑝/(1 − 𝑝)
= 𝑒𝑥𝑝(𝛽𝑗) 
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We used the ORs to quantify the influence of each region within each of the six networks. We 

identified the regions with the ORs are >1 to be the regions that are most 

differentiable/discriminative between superagers and elderly controls. If the OR values were 

equal to 1 (OR=1), there was no discrimination in the examined regions between groups. Finally, 

if the OR values were <1, the regions negatively discriminated the examined region as 

characteristic for a superager. We noted that the p-value was not generated from this analysis but 

the significance of the influence from a network/region could be inferred from the 95% 

confidence interval for an OR.27 

  

Because the number of variables in the model was very large, the maximum number of non-zero 

variables was limited to ten. For the analyses, the statistical programming language R was used 

(https://www.R-project.org/) and the package glmnet.26  

  

Results 

Demographics and neuropsychological performance scores 

Superagers and elderly controls did not differ in terms of age (p=0.304), education (p=0.299), or 

gender distribution (p=0.224). Superagers had statistically significantly better performance 

compared with elderly controls in MoCA (p=0.003) and some episodic memory tests, including 

Delayed-Recall Brief Cognitive Screening Battery (BCSB) (p=0.036), Delayed-recall RAVLT 

(p<0.001), and Logical Memory Delayed-Recall (p=0.01) (Supplementary Table 1).   

 

Discriminative networks and brain nodes for predicting superagers 

 

The lollipop plots (as an alternative to bar charts) in Figures 3A and 3B show the magnitude 

(dot) and the range (line) of the nodes within each network that are discriminative between 

superagers and elderly controls. Here ORs>1 suggest nodes that are more likely to be different in 

superagers (i.e. larger influence on the predicted probability of being a superager) and are 

illustrated by lollipops in green. Conversely, nodes with OR<1, are less likely to be different in 

superagres (i.e. these regions are negatively discriminated as characteristic of a superager), and 

are illustrated by lollipops in red.  

 

https://paperpile.com/c/cOOjiZ/JDCzt
https://paperpile.com/c/cOOjiZ/SWmEI
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When using the 3T and 7T dataset, although all networks were overall distinct in superagers 

compared with elderly controls (Figure 2), some of them were more differentiable and predictive 

of superagers than others. For example, for the 3T data (Figure 3A), the ORs for the SN and 

language networks were greater than 1 across some regions with relatively good predictive 

performance (Figure 2), suggesting that these regions were discriminative in superagers. In 

contrast, the ECN-L presented only few regions of ORs>1 and others with ORs<1, showing a 

poor predictive performance. For the 7T data analysis (Figure 3B), the lollipop plots in most 

networks had ORs>1 across several nodes and great predictive performance, characterized by a 

steeper slope of the diagonal lines in Figure 2. The DMN, SN, hippocampal, and language 

networks were the most discriminative networks in our model prediction classifier for the 7T 

dataset. Besides, for the 7T magnetic field, we had improved sensitivity in detecting a higher 

number of essential regions within each network. Therefore, based on the classification 

algorithm, when differentiating superagers from elderly controls, we were more confident using 

the model fit from the 7T rather than the 3T scanner. 

 

Supplementary figure 2 delineates the anatomical space of each network studied (networks 

masks). Figures 4, 5, and 6 illustrate the nodes within each network in brain maps, with OR-

values > 1 that predict superagers for the 3T and 7T datasets (Supplementary Tables 2A and 2B). 

We used MNI coordinates to plot the nodes and heatmaps varying from dark blue to dark red 

(OR values furthest away from 1- higher superager’s prediction) to demonstrate the 

discriminative power of each node. The supplementary tables 3A and 3B shows the elastic model 

results for the 3T and 7T datasets for all ROIs included. 

 

Discussion 

 

In this study, we identified functional networks showing that superagers exhibited distinct 

intrinsic connectivity compared to elderly controls in a range of brain networks and the core 

networks to predict a superager were the DMN, SN, and language. Areas in the precuneus 

posterior cingulate cortex, prefrontal cortex, temporoparietal junction, temporal pole, extrastriate 

superior cortex, and insula were the most discriminative nodes within these networks. By 
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exploring separately, the 7T and the 3T datasets, we could demonstrate higher prediction task 

confidence in rs-fMRI datasets acquired at the 7T rather than at the 3T scanner. 

 

Over the last years, clinical fMRI at 7T is gaining traction28 as it offers a beneficial increased 

signal-to-noise ratio (SNR) and BOLD contrast over conventional 1.5T and 3T MRI 

scanners,29,30 translated into a greatly enhanced spatial resolution of functional activity, the main 

clinical advantage of 7T fMRI.31,32  A prior study33 demonstrated up to 300% improvement in 

temporal SNR and resting state functional connectivity coefficients provided by ultra-high field 

7T fMRI compared to 3T, indicating enhanced power for the detection of functional neural 

architecture. We have shown that the higher BOLD contrast to noise ratio available at 7T yielded 

improved sensitivity in detecting differences in the activity across all networks compared to the 

3T field, reflected by a steeper gradient of the lines in the prediction classification algorithm. 

Moreover, higher ORs (OR>1) were observed across several nodes for the 7T compared to the 

3T dataset. These differences imply that 7T scanners may facilitate high-quality connectivity 

measurements capturing stronger evoked rs-fMRI responses, hence offering potentially greater 

group-level power. This raises our confidence for the within-network nodes results, and overall 

model fit from the 7T scanner. Therefore, in the discussion below, the discriminatory nodes for 

identifying superagers at the 7T dataset are more emphasized. 

  

In line with previous studies including successful agers from 60 years old,4,34 we have found 

important features for predicting superagers in the DMN and SN. The DMN is implicated with 

memory encoding, storage, and retrieval, while the SN is believed to be associated with 

executive processes and detecting emotionally relevant stimuli, as well as alerting.5 In parallel, 

normal aging is associated with decreased signal complexity within the DMN and SN nodes,35 

and there is a disrupted variability in these networks in mild cognitive impairment and 

Alzheimer’s disease.36 It stands to reason that the DMN and SN hubs may potentially provide 

valid and reliable biomarkers to early age-related cognitive decline. 

  

Beyond the classical hubs of the DMN and SN, we also found discriminative nodes within the 

ECN-L/R, language, and hippocampal networks for predicting a superager among elderly 

controls. The ECN is generally involved in tasks relying on executive functions, such as the 

https://paperpile.com/c/cOOjiZ/hBayx
https://paperpile.com/c/cOOjiZ/wWjt7+A7lDq
https://paperpile.com/c/cOOjiZ/isunR
https://paperpile.com/c/cOOjiZ/ldTyL
https://paperpile.com/c/cOOjiZ/TFocs
https://paperpile.com/c/cOOjiZ/VUmbj+kB4WI
https://paperpile.com/c/cOOjiZ/hERwJ
https://paperpile.com/c/cOOjiZ/gjxdm
https://paperpile.com/c/cOOjiZ/K77L5
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control process and working memory.37 The hippocampal network plays an important role in the 

consolidation of short-term memory and spatial memory.38 The language network, a critical 

connectome in our model, encompasses regions of the Broca (inferior frontal) and Wernicke 

(superior temporal with extension into the inferior parietal cortex) areas39 and has not been 

previously investigated in understanding the superior preservation of cognitive abilities. 

Although our groups did not show significant differences in verbal fluency tests, modifications in 

the language functional connectivity may anticipate changes in language performance in healthy 

older adults. Moreover, it is well known that the language network can accurately discriminate 

mild cognitive impairment (MCI) patients from healthy controls40 and to demonstrate weaker 

functional connectivity in Alzheimer's disease.41 

  

The nodes with superior importance for predicting superagers encompassed areas in the, 

extrastriate superior cortex and precuneus posterior cingulate cortex in both hemispheres; 

inferior parietal lobule, temporoparietal junction, intraparietal sulcus, insula, and medial 

temporal pole in right brain hemisphere; and prefrontal/dorsal prefrontal cortex, temporo-

occipital junction, and retrosplenial cortex, in left hemisphere. Interestingly, most of these 

cortical nodes presented with stronger intrinsic functional connectivity4,34 and volumetric 

preservation5,42,43 akin to younger adults in previous studies.3 These nodes also have been 

considered as key brain functional hubs for diverse cognitive functions and information 

integration between segregated functional networks.44  

  

Our results indicate that the posterior cingulate cortex, a region mainly engaged in episodic 

memory45 plays a crucial role. Our previous study on superagers46 showed a higher total N- 

acetyl aspartate concentration in superagers than in elderly controls in the posterior cingulate 

cortex, reflecting a metabolically active brain region contributing to superior cognition in late 

life. Therefore, the functional and metabolic features of this structure observed in our cohort may 

underlie the superagers' significantly higher scores in the episodic memory tests. The prefrontal 

cortex, one of the most discriminative nodes in our cohort, is knowingly associated with 

executive functions (planning, decision-making) and social-cognitive processes.47 Another 

powerful discriminatory node, the right temporoparietal junction, is engaged in the social domain 

(empathy, sympathy) and self-evaluate behavior.48 Noteworthy, it was previously observed that 
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superagers present with an increased level of positive relations with others, defined by 

truthfulness and satisfaction, and they could manage stress better.49 

  

Among the discriminative nodes from the classifier, the inferior parietal cortex is known to be 

involved in semantic processing and attention.50 The insula contributes to various brain functions 

through the integration of sensory, emotional, and cognitive information.51 And, the extrastriate 

superior cortex, involved in visual processing information. plays an important role in the DMN 

and hippocampal networks.52 These nodes highlight how structures not directly involved with 

memory can contribute to superior memory performance. 

  

Our study has a number of limitations. Our cohort was small, due to the constraints in data 

collection and for prioritizing a rigorous selection protocol, preventing splitting the dataset into 

training and validation samples. Also, the individuals scanned at 7T were a subset of those 

scanned at 3T due to patient contraindication heightened at 7T. Since for each individual, there 

were hundreds of measurements introducing a risk of over-fitting, the penalized regression 

methodology was selected. The results should be seen as a contribution to the field and not 

definitive, as we aimed to investigate the signal that can be found in the dataset in the presence 

of a low number of subjects and possible measurement error. The regression method used did not 

generate significant p-values, however, even if we used standardized methodologies, these would 

have had to be caveated. Moreover, we compared superagers with cognitively normal older 

adults, reflecting early and subtle age-related cognitive functional changes; thereby, remarkable 

differences would not be expected.  

 

The increased spatial resolution of BOLD on 7T, and secondary higher detection of intrasubject 

variability, can overestimate the intragroup differences in a small sample size.53 There are also 

problems concerning B0 and B1 inhomogeneity created by higher field strengths, resulting in 

geometric distortion and drop-out, respectively, demanding advanced shimming and specialized 

pulse sequence designs.54 The shorter TE (7T: 24ms vs 3T: 30ms), thinner slices (7T: 1.75mm 

vs. 3T 3.6 mm ), and parallel imaging can avoid some of these issues by reducing intra-voxel 

inhomogeneity and through-plane dephasing.54,55 The present study also had constraints 

regarding differences in acquisition protocols between the 3T and 7T scanners. Firstly, the voxel 
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size was different between 7T (isotropic voxel size 1.75 mm3) compared to 3T (voxel size 3 × 3 

× 3.6  mm). The precision of the whole-brain functional connectivity maps shown in this study 

may have been impacted by the smaller voxel size of the 7T protocol compared to 3T.56 The TR 

was also longer at 3T (TR = 2000 ms) compared to 7T (TR = 1500ms), indicating the number of 

frames was higher for 7T for the same scan time. This is expected to improve the temporal 

resolution of the 7T scan compared to 3T. Ultimately, the acceleration factor was higher at 7T 

(multi-band accel factor 3, iPAT 2) compared to 3T (ASSET factor 2.5), which can reduce signal 

distortion, signal drop-out, and partial volume effects but can also increase motion sensitivity 

and reduce SNR.29,57 Even though we highlight advancements in numerous metrics, including 

temporal SNR, sensitivity to detect connectivity measurements, and whole-brain connectivity 

maps for the dataset at 7T compared to 3T, some results may be affected by differences in 

acquisition protocols and different scanners. 

  

Conclusion 

 

Our findings indicated that rs-fMRI may be a useful technique in assessing youthful memory 

performance in late-life and identifying potential superagers, particularly in nodes among the 

DMN, SN, and language network. Our results highlight the benefit of 7T over the 3T magnetic 

field scanners for this diagnostic and classification task and warrant further validation in larger 

prospective studies. 
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Figure legends 

 

Figure 1: Flowchart of participants’ selection. 

  

Figure 2: Plots showing the classification results for superagers across several networks 

examined on 3T and 7T fields. These plots show the observed superager status for each 

participant (blue and red dots) plotted against the probability of being a superager predicted from 

the fitted model. The diagonal lines represent the mean difference between predicted 

probabilities for superagers and elderly controls. The steeper the gradient of the lines, the higher 

the superager's prediction. 

  

Figure 3.  The lollipop plots in Figures 3A (3T dataset) and 3B (7T dataset) indicate the nodes 

within networks that can differentiate superagers from elderly controls. Within the plots, 

we show the magnitude (dot) and the range (line) of the difference between superagers and 

elderly controls. Odds Ratios greater than 1 (ORs>1) suggest a larger influence on the predicted 

probability of being a superager (lollipops in green). ORs<1 indicate regions negatively 

discriminated as characteristic of a superager (lollipops in red).  

Abbreviations of Figure 3: 

Cingp: posterior cingulate cortex. ContA: control A. ContB: control B. ContC: control C. 

DMN: default mode network. DorsAttnA: dorsal attention A. DorsAttnB: dorsal attention B.  

ExStrSup: extra-striate superior cortex. FrMed: frontal medial cortex. Ins: Insula. IPL: inferior 

parietal lobule.  IPS:  intraparietal sulcus. LH: left hemisphere. OFC: orbital frontal cortex. 

ParOper: parietal operculum. PCC: Precuneus posterior cingulate cortex. pCun: precuneus. 

PHC: parahippocampal cortex. PFCd: dorsal prefrontal cortex. PFCl: lateral prefrontal cortex. 

PFClv: lateral ventral prefrontal cortex. PFCm: medial prefrontal cortex. PFCmp: medial 
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posterior prefrontal cortex. PFCv: ventral prefrontal cortex. PostC: postcentral cortex. RH: right 

hemisphere. Rsp: retrosplenial cortex. SalVentAttnA: salience / ventral attention A. 

SalVentAttnB: salience / ventral attention B. SPL: superior parietal lobule. Temp: temporal 

cortex. TempPar: temporoparietal junction. TempPole: medial temporal pole. TempOcc: 

temporo-occipital junction. VisPeri: peripheral visual. 

 

Figure 4. The most discriminative nodes among the DMN and SN in superagers compared to 

elderly controls. Heatmap varying from dark blue to dark red (denoting higher prediction rate for 

classification as superager using Odds Ratio - OR). 

  

Figure 5. The most discriminative nodes among the ECN-L and ECN-R in superagers compared 

to elderly controls. Heatmap varying from dark blue to dark red (denoting higher prediction rate 

for classification as superager using Odds Ratio - OR). 

  

Figure 6. The most discriminative nodes among the hippocampal and language networks in 

superagers compared to elderly controls. Heatmap varying from dark blue to dark red (denoting 

higher prediction rate for classification as superager using Odds Ratio - OR). 

 

 

 

 

 


