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Panel 1: Glossary of terms 

Chronic inflammation: A protracted low-grade maladaptive inflammatory state, 

characterised by a vicious cycle of inflammation and tissue damage, that may arise due 

to a failure to effectively clear an initial noxious stimulus in a timely manner, loss of 

self-tolerance (autoimmune disease), or recurrent episodes of acute inflammation. 

Chronic inflammation can occur on both sides of the blood-brain barrier (BBB) in the 

form of neuroinflammation and chronic systemic inflammation.  

  



Neuroinflammation: inflammation within the central nervous system, largely 

orchestrated by the actions of activated resident microglia and astrocytes but also 

contributed to by endothelial cells and infiltrating peripheral immune cells. Over time, 

neuroinflammation can result in tissue destruction and is associated with an array of 

neurodegenerative diseases.  

  

Systemic inflammation: inflammation outside of the central nervous system (CNS) 

which can modulate neuroinflammation. 

  

Inflammaging: a state of chronic low-grade systemic inflammation, characterised by 

the expression of proinflammatory genes, that is associated with advancing age. 

Maladaptive inflammaging is influenced by an individual’s underlying genotype and its 

interaction with environmental stressors throughout life. Ultimately a pathological 

irreversible proinflammatory threshold is reached and the development of age-related 

conditions typically ensue.  

  

Blood-brain barrier (BBB): capillary endothelial cells connected by tight junctions, 

pericytes and the enveloping end-feet of astrocytes collectively form a selectively 

permeable membrane between the circulatory system and the brain that tightly controls 

the passage of immune cells, drugs and pathogens. The integrity of this barrier can be 

disrupted by inflammation.  

  

Tau: encoded by the microtubule-associated protein tau (MAPT) gene, tau is a protein 

that plays a role in the axonal structural integrity through the stabilisation of 

microtubules. Mutations in the MAPT gene, as well as idiopathic factors, can result in the 

misfolding and mislocalisation of tau to the somatodendritic compartment where it 

accumulates, resulting in neurodegenerative pathology. The MAPT gene can be spliced 

in a manner which results in the expression of tau isoforms that contain either three or 

four repeats of the microtubule binding repeat domain. 

  

Tauopathies: neurodegenerative conditions characterised by the accumulation of tau to 

form intracellular inclusions. This heterogenous group of conditions can be classified as 

primary (resulting from mutations in the MAPT gene) or secondary (downstream of an 

alternate instigator of neuropathology e.g. the accumulation of beta-amyloid). 



Tauopathies can also be classified on the basis of the tau isoform(s) that predominate in 

the intracellular inclusions: 3-repeat (3R) tauopathies, 4-repeat (4R) tauopathies, or 

3R/4R tauopathies. 

  

Neurofibrillary tangles (NFTs): abnormal aggregates of hyperphosphorylated 

filaments of tau that reside within cells. Paired helical filaments are the predominant 

form of aggregated tau seen in neurofibrillary tangles in Alzheimer’s disease.  

  

Mild traumatic brain injury (mTBI): injury to the brain of traumatic origin causing 

structural and/or physiological disruption that includes subconcussion and concussion 

and is associated with a Glasgow Coma Scale (GCS) score of 13-15. It can often manifest 

clinically with amnesia, headache and behavioural changes.  

  

Chronic effects of inflammation on tauopathies 

  

Summary 

Tauopathies are a heterogenous group of neurodegenerative disorders 

characterised by the aggregation of the microtubule-associated protein tau into 

filamentous inclusions within neurons as well as glia. Alzheimer’s disease is the 

single most prevalent tauopathy. Despite years of intense research efforts, clinicians 

remain deprived of disease-modifying interventions for these conditions. The 

detrimental role that chronic inflammation plays in the pathogenesis of Alzheimer’s 

disease is increasingly recognised yet largely ascribed to the accumulation of beta-

amyloid, leaving the impact of chronic inflammation on tau pathology and 

neurofibrillary tangle-related pathways greatly overlooked. Tau pathology can 

independently arise secondary to a range of triggers each associated with 

inflammatory processes including infection, repetitive mild traumatic brain injury, 

seizure activity, and autoimmune disease. A greater understanding of the chronic 



effects of inflammation on the development and/or progression of tauopathies may 

forge a path for the establishment of effective immunomodulatory disease-modifying 

interventions for clinical use. 

  

Introduction 

Tauopathies are clinically, topographically and pathologically heterogeneous. They 

can be primary, for example, related to mutations in the MAPT gene (primary 

tauopathies) (1) or secondary, related to a defined cause, for example the 

accumulation of beta-amyloid (Aβ) (secondary tauopathies) (2). Alzheimer’s disease 

(AD) is the most prevalent secondary tauopathy but tau neurofibrillary tangle (NFT) 

pathology can also be caused by seizure activity (3), traumatic brain injury (4), 

infection (5), and autoimmune disease (6). Often NFT pathology occurs as part of a 

mixed neuropathological process. 

  

Normally, inflammation is resolved in a timely manner that benefits the host, however 

a vicious cycle of deregulated inflammatory responses and excessive or long-lasting 

tissue damage can lead to the development of chronic inflammatory diseases. This 

process has been implicated in the aetiopathogenesis of late-onset AD (7). Chronic 

inflammation has principally been studied in relation to pathways leading to Aβ 

accumulation, whilst its impact on tau pathology and NFT-related pathways is less 

studied. 

  

There are no well-established disease-modifying interventions for AD and other 

tauopathies and an understanding of the important role of chronic inflammation 

across these conditions may generate a fresh approach to therapeutics. In this 



Personal View, we initially recap the immune landscape of the central nervous 

system (CNS) and highlight the genetic evidence for the contribution of inflammation 

to tauopathy. Next, we profile a range of tauopathies, each associated with 

inflammatory risk factors, which we divide into two main neuroanatomical subsets: 

(1) neocortical and medial temporal lobe tauopathies and (2) basal ganglia and 

brainstem tauopathies. We present these tauopathies in approximate order of 

neuroanatomical origin working down from the neocortex to the brainstem. We 

consider neuropathological and clinical hallmarks, as well as the respective links 

between underlying aetiology and tau deposition. Ultimately, we outline the 

convergence of these diverse potential triggers of neuropathology onto a common 

pathway of chronic inflammation as evidenced by basic and clinical research 

findings.  

  

An overview of relevant neuroimmunology 

Innate immunity within the CNS is mediated through the responses of resident 

microglia and astrocytes (8). Microglia represent a complex heterogeneous 

population of cells. Their state is highly context-dependent and is swayed by factors 

such as age, sex, genotype, location within the CNS, CNS pathology, and the activity 

of the peripheral immune system (9). As such, with the exception of acknowledging 

redundant dichotomic nomenclature to describe microglial states, a superseding 

classification system lacks consensus (9).  

 

Inflammaging (see glossary) alters the function of both adaptive and innate 

components of the peripheral immune system, the chronic maladaptive 

proinflammatory state that culminates is believed to contribute to a range of age-



related conditions (10). It is feasible these processes are upholding in the central 

immune system. Regardless, despite the blood-brain barrier (BBB), the peripheral 

and central immune systems are not insular. Crosstalk between the two systems is 

well defined in homeostasis and neurological disease (11) and includes the response 

of microglia to peripheral cytokine production plus lymphocyte and macrophage 

migration into the CNS, the latter of which can assume microglial morphology (9).  

  

A key neuroinflammatory output of certain reactive microglia states is the release of 

the proinflammatory cytokines IL-18 and IL-1β, mediated by the canonical NOD-, 

LRR- and pyrin domain-containing 3 (NLRP3) inflammasome. Two signals are 

required for the NLRP3 inflammasome to become functional: priming and activation. 

Priming of the NLRP3 inflammasome is principally achieved via MyD88-dependent 

signalling downstream of activated toll-like receptors (TLRs). This ultimately leads to 

the nuclear translocation of NF-κB which activates the transcription of NLRP3 as well 

as the inactive precursors of IL-1β and IL-18. Caspase-1-mediated proteolytic 

cleavage gives rise to IL-1β that is capable of triggering the phosphorylation of tau in 

neighbouring neurons, an event which enhances its seeding capacity (12) (figure 1). 

Furthermore, caspase-1 also cleaves gasdermin D (GSDMD), a key step in 

pyroptosis: a form of cell death that has been shown to be active in tauopathies such 

as AD (13). TLR activation from the endosomal compartment by lipopolysaccharide 

(LPS) or nucleic acid instead triggers TRIF-dependent signalling that is linked to the 

induction of type I interferons (IFNs) (figure 1).  

  

Another facet of innate immunity relevant to neuroinflammation and tauopathy is the 

expression of type I interferons resulting from activation of the cyclic GMP-AMP 



synthase (cGAS)-stimulator of interferon genes (cGAS-STING) pathway (figure 1). 

Other outputs of this pathway include upregulation of proinflammatory cytokines via 

NF-κB and the induction of autophagy (14). Double-stranded DNA (dsDNA) of 

endogenous or exogenous origin is the archetypal trigger, although emerging 

evidence suggests tau may also activate this pathway (15) (figure 1).  

  

Following a robust immunological response to an initial trigger, inflammation should 

settle as a resolution phase is reached in which normal tissue homeostasis is 

regained. However, when tissue damage is incurred during the process of 

inflammation it can lead to a self-perpetuating deleterious cycle of inflammation and 

tissue damage; the hallmark of chronic inflammatory diseases. A mixture of genetics, 

autoimmunity and endothelial or epithelial barrier disruption is posited to underlie this 

pathological transition (16).  

  

The genetic basis for chronic inflammation in the aetiopathogenesis of tauopathies 

stems from large-scale AD genome-wide association studies (GWAS) that highlight 

TREM2, CD33, ABCA7, CLU, CR1, EPHA1, and HLA as risk loci (17–20). Chronic 

TREM2 activation in mice inoculated with AD brain-derived tau results in increased 

tau pathology without alteration of the Aβ plaque burden (21). Recently, APOE 

isoforms have gained traction as being implicated in immunological processes (22–

25) and genes associated with TNFα signalling have surfaced as AD risk factors 

(20).  

  

Neocortical and medial temporal lobe tauopathies   

Chronic traumatic encephalopathy  



Chronic traumatic encephalopathy (CTE) is a pathologically defined condition 

associated with repetitive mild traumatic brain injury (mTBI). In its earliest stages, 

CTE affects focal regions of the frontal, temporal, and parietal neocortex which over 

time extends to subcortical nuclei of the medial temporal lobe and brainstem (26). 

Characteristically, neurofibrillary tangles (NFTs) and neuropil threads consisting of 

aggregated, hyperphosphorylated tau are identified at the depths of the cerebral 

sulci in close approximation to vasculature and associated with neuroinflammation 

(26) (figure 2). Although neuronal intracellular tau inclusions are composed of both 

3R and 4R tau, and Aβ plaques have been reported to co-exist with tauopathy, CTE 

differs from AD on both a cell type and an ultrastructural basis (26,27). 

  

So, what connects these neuropathological and clinical changes to repetitive mTBI? 

In mouse models, rapid acceleration-deceleration forces, acting on vulnerable axons 

and blood vessels, elicit the dissociation of tau from its native position on 

microtubules leading to hyperphosphorylation and aggregation (28). Others favour a 

vascular route to tauopathy citing cerebrovascular dysfunction in the form of blood 

brain barrier (BBB) disruption, haemorrhages and ischaemic changes as the driving 

force behind Aβ deposition and the hyperphosphorylation and aggregation of tau into 

NFTs (29). These initial changes are then compounded by reduced clearance of 

pathological proteins seen in states of hypoxia (29). This notion of cerebrovascular 

dysfunction leading to the development of tau pathology aligns more closely with the 

perivascular accumulation of tau NFTs at the sulcal depths. 

  

A unifying hypothesis is that repetitive, frequent mTBI can elicit axonal injury, 

neuroinflammation and neuronal death, with the subsequent formation of damage-



associated molecular patterns perpetuating this cycle and ultimately leading to the 

development of tauopathy. This process may be augmented by hypoxic changes and 

BBB disruption, the latter allowing for greater crosstalk between the central and 

peripheral immune systems. Cherry et al., (30) found that neuroinflammation 

correlated with both AT8 immunostaining for tau NFTs and greater lengths of 

exposure to repetitive head injury in a brain bank cohort of 66 former American 

football athletes with confirmed CTE. Utilising binary logistic regression, this study 

elucidated a link between neuroinflammation and the development of dementia, 

which appeared to be mediated through tau pathology (30). Moreover, 

neuroinflammatory astrocytic transcriptomic signatures have been found to be 

upregulated in CTE white matter samples (31). A genetic predisposition bestowing 

chronic host inflammatory responses may favour the development of tauopathy in 

the context of brain injury as a significant association was found between the APOE 

ε4 haplotype and tau burden in neocortical regions from the post-mortem tissue of 

individuals with a history of repetitive mTBI (32) which was supported by data from 

rodents (33). Overall, both chronic neuroinflammation and tau deposition is 

associated with repetitive mTBI.  

  

Nodding syndrome 

Nodding syndrome is a geographically restricted neurological condition, 

predominantly affecting the paediatric populations of South Sudan and Northern 

Uganda (34). Endemic to these regions is the parasite, Onchocerca volvulus, which 

causes ‘river blindness’. An association between the two is evidenced by the 

reduced incidence in recent years in areas where ivermectin treatment has been 

provided for this parasitic infection, along with interventions to control the blackfly 



vector of O. volvulus (34). Nodding syndrome typically develops between the ages of 

5-15, manifesting as a form of epilepsy. Its name makes reference to the atonic 

seizures that arise in clusters and lead to head-drop (34). This is accompanied by 

progressive cognitive impairment (34,35). MRI data shows varied patterns of marked 

atrophy in the parietal, occipital and cerebellar regions of the brain in affected 

individuals (36).  

  

An initial case series published by Pollanen et al., (37) defined Nodding syndrome as 

a tauopathy with neuronal NFTs composed of both 3R and 4R tau isoforms along 

with neuropil threads and pretangles (figure 2). In a follow-up study (38), the authors 

list three hallmarks of Nodding syndrome: cerebellar atrophy, white matter 

degeneration and tauopathy (38). Cases studied harboured multifocal tau pathology 

in the superficial layers of the neocortex as well as more concentrated pathology in 

the locus coeruleus (LC) and a lack of glial tau pathology.  

  

Despite its links, O. volvulus has not been detected in the brains of individuals with 

Nodding syndrome (34). It has been proposed that initial parasitic infection instigates 

a secondary autoimmune reaction that perpetuates disease following host clearance 

of the pathogen. This para-infectious phenomenon has previously been described for 

viral infections including the development of an anti-NMDA receptor encephalitis in 

patients as a sequela of herpes simplex encephalitis (39). Autoantibodies against the 

actin filament nucleation factor leiomodin-1 are detectable in the CSF and sera of 

patients with Nodding syndrome (40). However, leiomodin-1 gene expression in the 

CNS is fairly non-specific and it includes the hippocampus which is devoid of tau 



pathology in Nodding syndrome. Further efforts to isolate autoantibodies are likely 

necessary.  

  

A case series by Hotterbeekx et al., (41) argues that inflammation drives the clinical 

manifestations of Nodding syndrome rather than tau-associated neurodegeneration 

given that microgliosis was invariably present across all cases of Nodding syndrome 

and onchocerciasis-associated epilepsy, with tau pathology seen in 80% and 50% of 

these cohorts, respectively. A separate case-control study found evidence of 

complement activation and elevated CRP levels in the CSF of long-standing cases of 

Nodding syndrome highlighting the importance of innate immune responses in this 

condition (42). Neuroinflammation may hold bimodal significance across the 

evolution of Nodding syndrome where it firstly drives epileptogenesis following 

parasitic infection then establishes chronicity in this epileptic state, and over time this 

chronic inflammation results in tau pathology. This is supported by both clinical and 

basic research findings that show seizures share a bidirectional connection with 

neuroinflammation (43). While plasma exchange and intravenous immunoglobulin 

therapy has shown no short-term clinical benefits in a small cohort of Nodding 

syndrome patients (44), there remains evidence to support longer-term targeting of 

chronic inflammation to limit tau-mediated effects in Nodding syndrome.  

  

Subacute sclerosing panencephalitis  

SSPE is a progressive neurodegenerative disorder that presents on average around 

9.5 years after measles infection (5) with an incidence of 4-11 cases of SSPE per 

100,000 cases of measles (5). It presents with initial changes in behaviour and 



intellectual performance followed by alterations in motor function; most commonly 

generalised myoclonus.  

  

Pathologically, early findings in SSPE include widespread inflammation and 

demyelination which correlate with subcortical and periventricular white matter 

changes seen on MRI (5). In the advanced stages, hyperphosphorylated tau 

accumulates in the form of NFTs (figure 2) and atrophy ensues. The most profoundly 

affected cortical region is the parieto-occipital cortex. Tangles are also found in the 

superficial layers of the limbic cortex and to a lesser extent the midbrain and 

brainstem (45). 

  

Viral isolates from the brains of affected SSPE cases have revealed mutations that 

impact the fusion glycoprotein (F protein). As neurons do not typically express 

receptors for the measles virus, the consequence of these mutations in primary 

neuron cultures are enhanced membrane fusion and thus neuroinvasiveness (46). 

Recent basic research found that the SARS-CoV-2 S1 spike glycoprotein could 

facilitate the spread of tau via extracellular vesicles in vitro (47). In a similar manner, 

it is plausible that the neuroinvasive measles virus may expedite tau propagation 

rather than promote a chronic inflammatory environment that leads to de novo tau 

pathology.  

 

In contrast, although still poorly understood in genetic terms (48), viral persistence 

may set in motion chronic inflammatory changes that ultimately result in tau 

pathology. A post-mortem study found that although antiviral treatment for diagnosed 

cases of SSPE did suppress measles viral titers, this did not prevent the 



development of tauopathy in long disease durations which instead was considered to 

be a sequela of widespread inflammation as inferred by the non-overlapping 

distributions of phosphorylated tau and measles virus (45). Mouse models of 

tauopathy have shown that NF-κB activation drives tau seeding following their 

inoculation with exogenous tau (49). Interestingly, a case-control study found a 

genetic polymorphism in the NOD1 gene to be protective against SSPE. This is 

further attributed to a reduced capacity for the nod-like receptor encoded by this 

gene to activate NF-κB signalling upon recognition of pathogen-associated molecular 

patterns (50). It is possible that in SSPE, long-term diffuse activation of NF-κB, and 

thus chronic inflammation, may underlie the development and spread of tauopathy in 

genetically-vulnerable individuals.  

  

Alzheimer’s disease 

AD is characterised by the accumulation of extracellular plaques consisting of Aβ 

peptides and intracellular neuronal inclusions composed of hyperphosphorylated tau 

in the form of paired helical filaments (PHFs) and straight filaments (SFs) (51). 

Pathological tau filaments accumulate in the soma as NFTs, and around neuritic 

plaques (NPs) within dystrophic neurites (figure 2). 

  

Clinically, early AD presents with a progressive impairment in episodic and 

topographical memory (52). Over time, other cognitive domains become affected 

resulting in visuospatial impairment, executive dysfunction, language disturbance, as 

well as changes in behaviour and mood (52). Although the exact aetiology of AD 

lacks detailed understanding, tauopathy is strongly associated with age. AD also has 

been linked to several modifiable risk factors including length of education, head 



injury, air pollution, cardiovascular disease, diabetes, social and physical inertia (53). 

Midlife obesity has been posited as the most important modifiable risk factor (54) and 

it will prove interesting as to whether this relates to epigenetic reprogramming of 

innate immune cells as recently observed in mice with a history of obesity that 

became primed to elicit neuroinflammatory retinal changes (55).  

 

AD dementia and vascular pathology frequently coexist (56), the latter characterised 

by cerebral hypoperfusion that is associated with neuroinflammation as discovered in 

murine studies (57). BBB disruption is a necessary but not sufficient event in AD 

pathophysiology, with endothelial dysfunction more profound in AD-relevant areas of 

the medial temporal lobe (MTL) and hippocampus in APOE ε4 carriers (58). This 

may make the CNS more amenable to modulation by the peripheral immune system 

thereby perpetuating inflammation.  

 

The notion that infection, both bacterial and viral, is associated with the development 

of AD has recently gained attention. The Gram-negative anaerobe, P. gingivalis, 

synonymous with periodontal disease, has a number of intriguing associations with 

AD. Gingipains, trypsin-like cysteine proteases produced by this bacterium, have 

been detected in AD brains and correlate with tau load (59). Not only does P. 

gingivalis elicit a reactive increase in Aβ42 production in the murine brain which 

holds antimicrobial implications, in vitro gingipains were found to be capable of 

cleaving tau into pathological fragments associated with self-nucleation (59). 

Infections outside of the CNS that elicit chronic systemic inflammation such as 

chronic periodontitis, may result in long-term cross-talk between the adaptive and 

innate arms of the immune system, on both sides of a more permeable BBB (11). 



Commensal bacteria of the gut too have been implicated in tau pathology, where 

transgenic mice prone to accumulating tau raised in sterile conditions developed 

significantly less tau-associated neurodegeneration with advancing age. This effect 

was reversed upon faecal transplantation from sex-matched mice raised in non-

sterile conditions (60). The effects of microbiota manipulation on tau-associated 

neurodegeneration were both APOE isoform and sex-dependent and correlated with 

the peripheral cytokine response to bacterium-derived short chain fatty acids (60). 

 

The most widely studied pathogen in relation to AD is HSV-1. HSV-1 has a range of 

clinical manifestations from the very rare, namely acute HSV-1 encephalitis (HSE), to 

the very common, specifically herpes labialis (cold sores). HSV-1 infection can also 

set in motion immunological phenomena that result in a loss of self-tolerance as 

exemplified by the development of an anti-NMDA receptor encephalitis following 

acute HSE (39). On a neuroanatomical level, after initial infection with HSV-1, the 

virus establishes latency in the trigeminal ganglion. It is from here that HSV-1 can 

reactivate, travelling anterograde to reach the nerve termini followed by the oral 

mucosa. The trigeminal ganglion is connected to the LC via reciprocal connections 

shared by the spinal trigeminal nucleus and LC. In 1982, Ball made reference to the 

limbic predilection of HSV-1 and suggested that retrograde reactivations are 

implicated in the pathogenesis of AD (61). Interestingly, the LC is one of the early 

regions vulnerable to accumulating tau, an event which may be related to localised 

inflammation incited upon viral reactivations to this region of the brainstem over time. 

Noradrenergic neurons of the LC may exert anti-inflammatory actions themselves in 

projection regions, especially the orbitofrontal cortex and MTL. Therefore, 

degeneration of these neurons could hold neuroinflammatory implications in AD. 



HSV-1 is uniquely able to enter cells via heparin-sulfate proteoglycans (HSPGs). In 

particular, 3-O sulfated heparin-sulfate serves as a key receptor for neuroinvasive 

HSV-1 (62). Polymorphisms in genes encoding 3-O sulfotransferases could 

predispose individuals to central viral reactivations resulting in an increased risk of 

AD (20,63). Cellular uptake of tau has been shown to be significantly augmented by 

both the 6-OS (64,65) and 3-OS (66) moieties. Taken together, a marked increase in 

3-O sulfated HSPGs may be conducive not only to propagation of pathological tau 

but also to the neuroinvasion of HSV-1, the latter, more overlooked, association 

would highlight a role for HSV-1 and inflammation in the aetiology of AD and requires 

further investigation.  

  

The relationship between HSV-1 and tau might be best interpreted in the context of 

the neuropathological complications of chronic inflammation in genetically 

predisposed individuals. Epidemiological studies stratified by APOE genotype 

illustrated an association between HSV-1 infection and dementia (67). Although 

more data is needed, akin to data collected in MS patients in relation to EBV 

infection (68), these findings point to a genetic-environmental interplay with 

neuropathological changes following HSV-1 infection. In vitro, HSV-1 has been 

shown to induce the formation of hyperphosphorylated tau, amyloid plaques and 

elicit neuroinflammation in 3D silk porous scaffolds seeded by human-induced neural 

stem cells (69). 

 

Clinical findings are also supportive of a role for systemic inflammation in AD. A large 

prospective cohort study found that raised markers of systemic inflammation in 

midlife are associated with a sharper decline in cognitive testing over a 20-year 



period (70). Patients treated with anti-TNFα biologics for rheumatoid arthritis or 

psoriasis have a reduced likelihood of developing dementia according to a 

retrospective case-control study (71). Evidence also suggests cognitive decline is 

accelerated following systemic inflammatory events including delirium (11,72). 

Additionally, PET imaging studies targeting the 18 kDa translocator protein (TSPO) 

have illustrated that the temporal pattern of changes in microglia in the presence of 

Aβ is predictive of tau-spread and cognitive decline (73). The precise nature of these 

changes require further investigation given the emerging uncertainties of TSPO 

expression in humans being a by-product of microglial activation or increased 

density (74) [preprint].   

 

In summary, a persistent neuroinflammatory state with crosstalk between central and 

peripheral immune compartments in susceptible individuals can result in tau-

associated neurodegeneration and cognitive decline in AD. 

  

Temporal lobe epilepsy with cognitive decline 

Temporal lobe epilepsy (TLE) is a common form of focal epilepsy. In a study on 

surgically excised tissue, Tai et al., (75) identified NFTs, neuropil threads and 

pretangles of a 3R/4R isoform composition, with one subset of the cohort displaying 

neuropathology reminiscent of CTE and another exhibiting early AD-like tauopathy. 

Common to both were the unique neuropathological changes of mossy fibre axons of 

dentate granule cells (75) that could represent an epileptic tauopathy signature. A 

transcriptomic study of TLE brain tissue identified over-expression of MAPT 

associated with memory dysfunction (76). One hypothesis linking TLE to tauopathy 

is that focal seizures may accelerate tau spread as basic research has found that 



hyperexcitability can augment the propagation of tau across functionally connected 

neurons (77,78).  

  

As already explored in the context of Nodding syndrome, seizure activity and 

neuroinflammation are interlinked. Unique patterns of progressive cortical thinning in 

TLE and other epilepsy syndromes have been described through the ENIGMA 

consortium on MRI (79,80). Neuroimaging and gene expression data, supported by 

post-mortem analysis, showed elevated fractions of reactive microglia in regions of 

reduced cortical thickness (81). The same study also provided evidence of how 

depletion of microglia in a mouse model of acquired epilepsy limited cortical thinning 

highlighting the role of the innate immune system in epilepsy-related atrophy (81). 

Mouse models of TLE have also found that seizures result in the 

hyperphosphorylation of tau which is associated with the activation of astrocytes and 

microglia (3). Moreover, rodents subjected to status epilepticus exhibited glial 

activation accompanied by the long-term upregulation of inflammatory mediators. 

Treatment with anakinra, an IL-1R antagonist, reduced the frequency of seizures 

(82). Case studies mirror these findings as children with febrile infection-related 

epilepsy syndrome (FIRES), a condition associated with intractable seizures and 

medial temporal lobe atrophy, experienced a significant reduction in relapse rate 

when treated with anakinra (83). Finally, the expression of NLRP3 was upregulated 

in sclerosed hippocampi from patients with medial TLE (84) which was shown to be 

of significance to tauopathy in mice (12). Thus, treatment of neuroinflammation in 

certain epileptic disorders may not only ease the burden of seizures but reduce the 

likelihood of tauopathy as a complication of chronic disease.  

  



Basal ganglia and brainstem tauopathies  

Postencephalitic parkinsonism 

Post-mortem analyses of postencephalitic parkinsonism (PEP) brains show severe 

depigmentation and atrophy of the substantia nigra and the LC with gliosis apparent 

in the basal ganglia and brainstem. Widespread, abnormally phosphorylated tau 

accumulation is the pathological signature of PEP and although it can also involve 

the neocortex, it is most concentrated within regions of the basal ganglia, brainstem, 

nucleus basalis, and the amygdaloid complex of the MTL. Subcortical neuropil 

threads and globose NFTs were shown to consist of SFs and PHFs immunopositive 

for both 3R and 4R isoforms of tau (figure 2) and also for TDP-43 (85,86).  

  

Despite its links to the influenza epidemic of 1918, to date, no influenza virus RNA 

has been detected in the brains of patients with PEP (87). This does not however 

rule out involvement of the H1N1 influenza A virus as initial transient infections might 

instigate longer-term autoimmune-mediated pathology. 

  

Accounting for hypersomnolence as a leading feature of EL, curiously, a molecular 

mimicry phenomenon is observed between the influenza nucleoprotein A and the 

human hypocretin receptor. This receptor’s associated signalling pathway is 

implicated in the pathogenesis of narcolepsy (88). The incidence of narcolepsy 

increased following the 2009 H1N1 influenza A pandemic and was associated with 

the Pandemrix vaccine targeting this virus (88). Sera from Pandemrix-vaccinated 

individuals that went on to develop narcolepsy contained antibodies that cross-

reacted with this viral nucleoprotein and the narcolepsy-associated hypocretin 

receptor in vitro (88). Another study involving 20 individuals with presentations 



consistent with EL and PEP following streptococcal pharyngitis identified 

autoantibodies against basal ganglia antigens in 19 out of the 20 participants (89). 

Together, these studies highlight a possible role for autoimmunity in basal ganglia 

pathology in the post-infectious setting.  

  

Further work will be needed to clarify the conjunction of autoimmunity and tauopathy 

in EL and PEP and to determine the role of chronic inflammation in connecting these 

two phenomena in this disease context.  

  

Anti-IgLON5 disease 

Anti-IgLON5 disease presents clinically as a progressive sleep disorder, with bulbar 

impairment, cognitive impairment, and gait instability (90). It is characterised by the 

presence of autoantibodies that target a neural cell adhesion molecule. An early 

diagnosis of anti-IgLON5 disease and prompt initiation of immunotherapy correlates 

with improved prognostic outcomes (91). There may be a role for B cell depleting 

therapies given the presence of IgG4 antibodies which respond best to these 

treatments (92). 

  

Neuropathological examination of anti-IgLON5 post-mortem tissue revealed gliosis 

and neuronal aggregates of hyperphosphorylated tau in the tegmentum of the 

brainstem, hypothalamus, entorhinal cortex and hippocampus (6,93). These 

aggregates accumulated as NFTs, neuropil threads and pretangle tau composed of 

both 3R and 4R isoforms (6) (figure 2). Consistent glial fibrillary tau pathology or 

concomitant amyloid or TDP-43 pathology was not seen (6). Although there is 



sparse evidence for inflammatory changes when examining post-mortem 

parenchymal tissue (6), CSF inflammatory changes are frequently reported (94).  

  

A genetic predisposition has been reported in anti-IgLON5 disease with respect to 

both the HLA and MAPT loci. Specifically, HLA-DRB1*10:01 and DQB1*05:01 are 

more frequent in anti-IgLON5 disease than in the general population (95) and 

homozygosity for the H1 haplotype of MAPT, associated with greater risk of 

tauopathy, is roughly 57% more prevalent in diagnosed cases of anti-IgLON5 

disease than controls (96).  

  

The link between anti-IgLON5 autoantibodies and the formation of tau tangles is 

unclear but basic research conducted by Landa and colleagues (97) has yielded a 

testable hypothesis. Rat hippocampal neurons treated with patient-derived IgG anti-

IgLON5 antibodies resulted in cytoskeletal alterations which could precipitate tau’s 

detachment from microtubules. Although tau hyperphosphorylation was not 

documented in this study (97) it has been described following the treatment of 

human neural stem cells with IgG anti-IgLON5 antibodies which recapitulated these 

neuronal morphological alterations and thus implied neuroinflammation in this 

condition initiates tauopathy (98).  

  

More research into understanding the aetiopathogenesis of anti-IgLON5 disease is 

needed, particularly regarding the inflammatory mechanisms associated with 

autoimmune reaction to IgLON5, the causative IgG subclass (91), and the wider 

association with tauopathy. In doing so, this rare condition may serve as a good 

initial basis for investigation of the broader implications of autoantibodies in 



tauopathies with inflammatory associations. Overall, inflammatory processes 

associated with the generation of autoantibodies against neural cell adhesion 

molecules appear particularly potent in achieving tau-associated neurodegeneration.  

  

Conclusions and future directions  

In this Personal View, we have discussed a range of tauopathies each with their own 

associated risk factors including infection, autoimmunity, hypoxia, mTBI, and seizure 

activity (figure 3). We propose chronic inflammation, encompassing 

neuroinflammation and chronic systemic inflammation, to be a unifying theme. Whilst 

risk factors capable of inciting an inflammatory response are not sufficient alone to 

cause disease, an interplay between such risk factors and a genetically-predisposed 

immune system may tilt the balance in favour of disease.  

 

Although beyond the scope of this Personal View, inflammation is also implicated in 

the development and progression of PD and Lewy Body Dementia (LBD) (99,100). 

Despite its exact immunomodulatory roles remaining ill-defined, it is of interest how 

APOE ε4 is also one of the major genetic loci that increases the risk of LBD (101). 

Inflammation would appear to be ubiquitous amongst neurodegenerative disorders 

pathologically characterised by the accumulation and spread of proteinaceous 

deposits. This Personal View highlights the merited inclusion of tauopathies in this 

category with numerous examples of how chronic inflammation may not only drive 

disease progression but also influence their development. Although direct links 

between inflammatory risk factors and tau pathology are not evident in all examples 

provided in this Personal View, the co-existence of chronic inflammation and 

tauopathy across multiple contexts suggest causality and necessitates follow-up 



studies to delineate this. Similarly, a lot of the data highlighted in this Personal View 

is based on the anti-phospho-tau epitope, AT8. Whilst the presence of this epitope 

and thus phospho-tau accumulation does not lead to NFTs or full-blown disease, 

they represent necessary precursors. More studies will be required to assess the full 

extent of tau pathogenicity in this context.   

 

An important question that needs to be addressed is how risk factors for chronic 

inflammation that seem to converge on a shared pathophysiological pathway can 

result in such a plethora of tauopathies. It is likely that a mixture of at least three 

factors determine the clinical entity: (1) genetic vulnerability of the patient, (2) tau-

specific effects of the primary insult(s), and (3) the neuroanatomical affliction of the 

primary insult(s). The incidence for each of the respective tauopathies presumably 

increases with advancing age as a result of inflammaging and the chronicity of 

neuroinflammatory processes reaching a required threshold to set in motion a 

vicious cycle of neuroinflammation, tau aggregation, and tissue damage (figure 4).  

  

Clinically, awareness of the risk factors associated with chronic neuroinflammation 

and tauopathy could allow for risk stratification for patients that may warrant longer-

term follow-up following infection with certain neuroinvasive pathogens – a category 

which may extend to SARS-CoV-2 (102). Alternatively, a change in the neurological 

picture of patients with longer-term conditions associated with chronic inflammation 

may prompt consideration of further investigations for an underlying emerging 

tauopathy.  

 



Future research should investigate the underlying inflammatory pathways associated 

with tau pathology and their relative contribution to the development and/or clinical 

progression across different tauopathies, which may vary. Regarding disease 

progression, chemical kinetic modelling of tau aggregation and spread in AD has 

inferred that from Braak stage III, tauopathy progression correlates more strongly 

with localised amplification rather than further spread of tau (103). Work that 

investigates whether this local replication of tau correlates with inflammation could 

prove informative. Moreover, the contribution of both the peripheral and central 

immune systems may differ depending on the stage of disease and remains an 

unaddressed high priority question. In order to probe these matters longitudinal 

studies will be imperative. Such studies should identify asymptomatic individuals 

genetically predisposed to common tauopathies like AD and measure the activity of 

the central and peripheral immune systems at regular intervals over time in health 

and disease. The development of non-TSPO PET ligands reflective of NLRP3 

inflammasome activity may augment this type of research.  

 

Barring retrospective studies, current data on anti-inflammatory treatment and 

tauopathy risk is relatively sparse (table 1). With a greater understanding of the role 

of chronic inflammation in tauopathies; whether this is more relevant to disease risk, 

progression, or both, and which facets of the immune system drive these 

pathological changes, a knowledge basis can be built which will aid the design of 

clinical trials that target inflammation in tauopathies. Ultimately, this may permit 

therapeutic approaches tailored to the disease stage with clinicians able to make 

evidence-based decisions on whether to pursue anti-tau or anti-inflammatory 

treatments for tauopathies.  



 

 

  

  

  

  

Search strategy and selection criteria  

 

References for this Personal View were identified by searches of PubMed and 

Google Scholar from Jan 1, 2018, to Jan 19, 2023, with no language restrictions. 

The keyword search items: “inflamm*” AND “tau”, “tauopath*” AND 

“neuroinflammation”, “tauopath*” AND “infection”, “inflammation” AND “chronic 

traumatic encephalopathy”, “inflammation” AND “nodding syndrome”, “inflammation” 

AND “SSPE”,  “inflammation” AND “Alzheimer’s”, “Alzheimer’s” AND “HSV”, 

“inflammation” AND “anti-IgLON5”, “chronic traumatic encephalopathy”, “nodding 

syndrome”, “subacute sclerosing panencephalitis”, “epilepsy” AND “tau”, “post-

encephalitic parkinsonism”, “ALS PDC Guam”, and “anti-iglon5” were used. Subject 

heading searching was also used in PubMed with a search for “inflammation” 

(MeSH) AND “tauopathies” (MeSH), “inflammation” (MeSH) AND “chronic traumatic 

encephalopathy” (MeSH), “inflammation” (MeSH) AND “Alzheimer’s disease” 

(MeSH), “inflammation” (MeSH) AND “temporal lobe epilepsy” (MeSH), and 

“inflammation” (MeSH) AND “IgLON5” (MeSH). Following these searches, 

references were prioritised on the basis of their title, abstract, and where appropriate 

the content of their full-text; specifically, we considered their originality and relevance 

to the context of this Personal View prior to excluding the unselected references. 

Additional references were extracted from the reference lists of select articles and 

our own files. Included are also landmark publications prior to 2018 that were 

deemed important for inclusion in this Personal View to provide context and benefit 

the understanding of the readership. The final reference list was generated on the 

basis of relevance to the scope of this Personal View. 
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Figure 1: Neuroimmunology implicated in tau pathology 

(A) Activation of the NLRP3 inflammasome is marked by the assembly of NLRP3, 

apoptosis-associated speck-like protein (ASC) and caspase-1, the latter of which is 

subsequently cleaved rendering it capable of carrying out its own protease function. Caspase-

1 cleaves pro-IL-1β into IL-1β. IL-1β is capable of triggering the phosphorylation of tau in 

neighbouring neurons, an event which enhances its seeding capacity (12). Caspase-1 also 

frees the N-terminus of Gasdermin D (N-GSDMD) which can form pores in the plasma 

membrane that results in not only the release of cytokines but also pyroptosis, a form of cell 

death associated with inflammation. Non-canonical inflammasome activation can also result 

in pyroptosis via caspase-4 in neurons (13). (B) TLR4 is characteristically activated upon 

recognition of bacterial LPS, however TLR4 homodimers are also capable of recognising 

DAMPs and Aβ peptides. MyD88-dependent signalling downstream of activated TLR4 

receptors ultimately leads to the nuclear translocation of NF-κB and the induction of 

proinflammatory cytokines as well as priming the NLRP3 inflammasome. (C) The presence 

of dsDNA in the cytosol is sensed and actioned by the cGAS-STING pathway that stimulates 

both NF-κB signalling and the induction of type I interferons via IRF3, the latter of which is 

also achieved via (D) TRIF-dependent signalling from endosomal compartments, typically as 

a result of TLR3 recognition of dsRNA. Created with BioRender.com. 



 

Figure 2: select images of AT8 immunohistochemistry across a range of tauopathies 

each associated with chronic inflammation. (A) AT8 immunopositive staining for tau 

NFTs at the depths of a cerebral sulcus in the frontal cortex in a case of CTE (scale bar: 250 

μm) (unpublished data). (B) NFTs immunolabelled with AT8 widely present throughout the 



cortex in SSPE, particularly apparent within the superficial layers closer towards the top of 

the image (scale bars: 500 μm and 50 μm) reproduced with permission from (45). License 

granted from RightsLink. © 2022 The Authors. Brain Pathology Published by John Wiley & 

Sons Ltd on behalf of International Society of Neuropathology. This image was adapted with 

permission to replace the original scale bar with that of a different font and labelled (top left). 

(C) AT8-positive staining for NFTs in the cerebral cortex of a confirmed case of Nodding 

syndrome (scale bar: 200 μm) reproduced with permission from (37). License granted from 

RightsLink; http://creativecommons.org/licenses/by/4.0. This image was adapted to replace 

the original scale bar with that of a different font and labelled (top left). (D) AT8 positive 

immunolabelling for tau NFTs in the hippocampus of AD post-mortem tissue (scale bar: 250 

μm) (unpublished data). (E) AT8 immunopositive tau in dysmorphic neurons in focal 

epilepsy in a case with type IIB cortical dysplasia (scale bar: 100 μm) (unpublished data). (F) 

AT8-immunoreactive neuropil threads and NFTs in the nucleus ambiguus in anti-IgLON5 

disease (93), reproduced with permission from Elsevier. (G) A case of PEP that revealed AT8 

immunopositivity within the hippocampus, here shown is CA2 (scale bar: 250 μm) 

(unpublished data).  

 

Figure 3: Anatomical representation of regions affected by pathological tau in different 

tauopathies and defined or possible causes for each disease. (A) CTE – associated with 

mTBI, tau pathology primarily affects superficial layers of the neocortex in early disease (B) 

http://creativecommons.org/licenses/by/4.0


Nodding Syndrome – associated with parasitic infection. Tau pathology is seen in the 

superficial layers of the neocortex at the gyral crests are affected by tau pathology first, 

followed by the rest of the cortex and later brainstem involvement; (C) SSPE – a long-term 

sequlae of infection by the neuroinvasive measles virus, tau pathology is primarily found in 

the deep layers (II – V) of the frontal cortex, followed by other cortical regions and later 

hippocampal and brainstem involvement; (D) Alzheimer’s Disease (AD) – a likely 

multifactorial aetiology – early stages of tau pathology are described in the transentorhinal 

region, perirhinal cortex and hippocampus with temporal involvement which later spreads to 

all other cortical regions; (E) temporal lobe epilepsy (TLE) – seizure activity has been linked 

to tau deposition, which has been described in the temporal lobe with a distinct pattern of 

subpial tau pathology, hippocampal tau pathology has been described, but in some cases it is 

not seen, which may be a result of neuronal loss following seizure activity; (F) Post-

encephalitic parkinsonism (PEP) – associated with H1N1 viral infection, tau pathology is 

mainly concentrated within the basal ganglia, the brainstem, the nucleus basalis, and the 

amygdaloid complex; (G) Anti-IgLON5 disease – associated with autoantibodies, tau 

pathology is described in the brainstem, hypothalamus and the entorhinal cortex. Created 

with BioRender.com. 

 

Figure 4: Chronic inflammation, a common pathway leading to tauopathy 

Multiple risk factors are associated with both chronic inflammation; be that 

neuroinflammation and/or chronic systemic inflammation, and tau deposition. These risk 

factors can be exogenous or endogenous and are often interconnected (corresponding colours 

highlight risk factors that may be interconnected). BBB disruption is a necessary but not 

sufficient event in tauopathy aetiopathogenesis and may permit systemic inflammatory events 

(e.g. sepsis, delirium or trauma) to exacerbate neuroinflammation due to infiltration of 



peripheral immune cells and pro-inflammatory cytokines, which will in turn modulate the 

activity of microglia and astrocytes. Although the triggers for tauopathy appear to converge 

onto a common pathway, these conditions vary in their neuroanatomical affliction and 

resulting clinical manifestations. It is likely that a mixture of at least three factors determine 

the clinical entity: (1) genetic vulnerability of the patient, (2) tau-specific effects of the 

primary insult(s), and (3) the neuroanatomical affliction of the primary insult(s). Overall, the 

incidence for each of the respective tauopathies presumably increases with advancing age as 

a result of inflammaging. *Autoantibodies can also give rise to specific neurological features. 

Created with BioRender.com. 

 


