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It is rare in the field of biological psychiatry for hypotheses to be definitively refuted. Rather, topics 

of investigation drift into and out of fashion, often driven by the initial excitement of technological 

innovation, followed by the necessary corrective of nuanced or underwhelming clinical results. A 

well-known example of this is the association between depression and abnormal function of the HPA

axis, as measured using the dexamethasone suppression test (DSST; 1). This observation led to a 

great deal of work investigating whether the association might help us identify useful subtypes of 

depression (2) or predict treatment response (3).  As it turned out, the specificity and predictive 

value of the DSST was not thought to be of a level that would be useful clinically and the topic has 

gradually moved out of the spotlight. We are left in the familiar position of knowing that non-

suppression of the DSST is associated with depression, but not being sure how we can use this 

knowledge to help patients. 

An understandable response to this situation is to try and develop better measures—if we had a 

more sophisticated version of the DSST, then perhaps we would be able to realise our clinical 

aspirations. In this commentary we make two suggestions. First, that an alternative approach is to 

ask more precise questions, and second that an underappreciated application of computational 

techniques is that they may help us to do so. 

Computational Answers: Much of the ambition of computational psychiatry to date has been on the 

use of formal models to find hidden answers to interesting clinical questions. For example, a recent 

study asked whether computational modelling might help explain previously described 

electroencephalography (EEG) and magnetic resonance imaging (MRI) data from patients with 

schizophrenia (4). In this important study, the authors replicated the group differences between 

patients and controls using resting state, mismatch negativity and 40-Hz auditory paradigms. They 

then applied a neural mass model to assess what changes at the microcircuit level might produce 

these effects, concluding that they could all be accounted for by reduced synaptic gain on pyramidal 

cells.  In other words, the benefit of the modelling was that it linked EEG and MRI results to putative 

causal processes at the microcircuit level. In this example, the computational model is being used 



analogously to the DSST task described above—as a method of measuring a hidden, but hopefully 

clinically important process. In the next section we consider how models may be useful in a different 

way; to ask, rather than answer, questions.

Computational Questions: A useful feature of computational models is that they don’t just tell us 

what they know, they tell us what they don’t know. This can be useful when we are deciding what 

questions we should answer. For example, turning to the example of how depressed patients learn 

from rewarding experiences, a common finding across the literature is that, when presented with 

two choices, one more rewarding than the other (Figure 1a), patients with depression will select the 

more rewarding choice less consistently than people who are not depressed (Figure 1c; ,5). One way 

of interpreting this finding is that reinforcement learning processes are disrupted in depressed 

individuals. Relatively simple reinforcement learning algorithms (Figures 1b) can successfully 

emulate the choices of both patients and controls. The first type of algorithm that was used in this 

situation had two free parameters (6), a learning rate controlling how quickly value learning occurs, 

and an inverse decision temperature, controlling how much the model uses its learnt values when 

selecting an action (Figure 1; b,c,d). This algorithm attributed the behaviour of depressed patients to 

a reduction in the inverse decision temperature. That is, patients were learning about the choices 

normally, but were not selecting the best option because their decisions were less influenced by the 

values they had learned. Later on, a second generation of algorithm was developed, in which the 

inverse decision temperature parameter was replaced by a reward sensitivity parameter, which 

controls how rewarding the reinforcer used in the task (e.g. points won, money etc) was judged to 

be. Using this model, the behaviour of depressed patients was explained by a reduction in reward 

sensitivity (7). In other words, depressed patients selected the best option less frequently due to a 

specific reduction in how rewarding they found the reinforcer used in the task.

These two classes of model explain the same behaviour in conceptually completely separate ways, 

as either an effect of how patients use information when they make decisions, or as a consequence 

of reduced estimates of the reward value of the reinforcer. One way to arbitrate between these 

competing explanations might be to use a more sophisticated model in which both the inverse 

decision temperature and reward sensitivity parameter are allowed to vary and ask which parameter

differs in depressed patients relative to controls. The result of using this model is illustrated in Figure

1e; the model is unable to estimate reward sensitivity or inverse decision temperature as the two 

parameters are mathematically redundant (7) and therefore completely interchangeable. Thus, even

though the parameters represent conceptually distinct hypotheses about the underlying cognitive 

processes, choice behaviour on these simple tasks is not able to adjudicate between them. Here the 

important thing the model is telling us is that it doesn’t know whether the choice behaviour of 

patients is caused by changes in the inverse decision temperature and/or by changes in reward 

sensitivity. 

In this case, the model is useful not because it tells us what the answer is, but because it tells us, 

precisely, what the question should be; is reduced reward choice in depression caused by difficulty 

in using learnt values when making decisions or by a lower value of reinforcers? Beyond this, the 

model suggests how these questions might be answered; if depression is associated with difficulty in 

using the value of options to make decisions, then the choices of depressed patients should be less 

consistent even when values of options are explicitly presented, and no learning is required (8; 

reports evidence against this prediction). Alternatively, if patients treat reinforcers as less rewarding,

then this effect should be apparent even when no decisions are required (e.g. where response to a 

single rewarded stimuli is measured (9)). To date, the literature is not consistent with a simple 

decision effect, but is generally consistent with reduction in reward sensitivity as the most likely 



process associated with depression, raising interesting subsidiary questions about why this might 

occur (5). 

In summary, computational models can be used to identify hidden processes, some of which might 

be useful for answering clinically interesting questions. But models also tell us when they are unable 

to discriminate between competing explanations, and when this occurs, are a useful way of framing 

the precise mechanistic questions we should be trying to answer to improve our measures. 

The development of clinically useful measures from biological research requires us to ask questions 

that are sufficiently specific that they may be refuted. Computational models help us to ask these 

questions. 
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Figure 1: What computational models don’t know. a) a commonly used learning task in which 

participants must choose between two options, one of which is associated with a higher probability 

of reward than the other. A commonly observed finding is that depressed patients select the most 

rewarded option less consistently than non-depressed participants. b) A simple computational 

model describes how participants may solve this task; Qt, the value of an option, is learnt using a 

simple updating process and is fed into a decision rule. The behaviour of the model can be 

influenced by a number of different parameters including; learning rate (α ), reward sensitivity (ρ) 

and inverse decision temperature (β). c) An illustration of the effect of changing these parameters 

on choice in the task; the learning rate influences the rate at which the model reaches a behavioural 

plateau, both the reward sensitivity and inverse decision temperature control the level of the 

plateau. The behaviour of depressed patients can be captured by either reducing reward sensitivity 

or inverse decision temperature. d) The posterior estimate of parameter values after fitting to a 

participant’s choices, using a model in which learning rate and inverse decision temperature are 

allowed to vary (but reward sensitivity is fixed). Possible values of the inverse temperature 

parameter are represented along the x axis, possible values of learning rate are represented on the y

axis. As can be seen, the parameters are precisely estimated, with learning rate lying between 0.1-

0.2 and the log inverse temperature between 3.5-4. Yellow corresponds to the highest posterior 

probability, i.e. the most likely parameter value given the observed behaviour. e) The marginal 

posterior estimate of reward sensitivity and inverse temperature when all three parameters are 

allowed to vary and the model is fitted to the same data as d (for simplicity, the marginal probability 

of learning rate is not shown). Because the model is unable to discriminate between reward 

sensitivity and inverse decision temperature it is unable to estimate either—any value of inverse 

temperature or reward sensitivity is possible. In other words, the model doesn’t know whether 

participant choices are influenced by changes in reward sensitivity or decision temperature.  
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