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ABSTRACT 
 
Objective:  Although Artificial intelligence (AI) models may offer innovative and 
powerful ways to use the wealth of data generated by diagnostic tools, there are 
important challenges related to their development and validation. Most notably is the 
lack of a perfect reference standard for glaucomatous optic neuropathy (GON). As AI 
models are trained to predict presence of glaucoma or its progression, they generally 
rely on a reference standard that is used to train the model and assess its validity. If an 
improper reference standard is used, the model may be trained to detect or predict 
something that has little or no clinical value. This article summarizes the issues and 
discussions related to the definition of GON in AI applications as presented by the 
Glaucoma Workgroup from the Collaborative Community for Ophthalmic Imaging 
(CCOI) United States Food and Drug Administration (FDA) Virtual Workshop, on 
September 3 and 4, 2020 and on January 28, 2022. 
 
Study Design: Review and Conference Proceedings 
 
Subjects: No human or animal subjects or data therefrom were used in the production 
of this article. 
 
Methods: A summary of the Workshop was produced with input and/or approval from 
all participants. 
 
Main Outcome Measures: Consensus position of the CCOI Workgroup on the 
challenges in defining GON and possible solutions. 
 
Results: The Workshop reviewed existing challenges that arise from the use of 
subjective definitions of GON and highlighted the need for a more objective approach to 
characterize GON that could facilitate replication and comparability of AI studies, and 
allow for better clinical validation of proposed AI tools. Different tests and combination of 
parameters for defining a reference standard for GON have been proposed. Different 
reference standards may need to be considered depending on the scenario in which the 
AI models are going to be applied, such as community-based or opportunistic screening 
versus detection or monitoring of glaucoma in tertiary care.  
 
Conclusions: The development and validation of new AI-based diagnostic tests should 
be based on rigorous methodology with clear determination of how the reference 
standards for glaucomatous damage are constructed and the settings where the tests 
are going to be applied.  
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Glaucoma is an optic neuropathy characterized by progressive degeneration of 
retinal ganglion cells (RGCs) that may lead to irreversible loss of visual function. 
Despite the availability of effective treatments, glaucoma remains one of the leading 
causes of blindness in the world.1 The number of patients with glaucoma is predicted to 
increase substantially as the result of an ageing population, with estimates of over 110 
million people affected by 2040.2  

 
The loss of RGCs in glaucoma tends to follow an insidious course, with the 

majority of patients being asymptomatic and unaware they have the disease until late 
stages.  In fact, it is estimated that approximately 1 in 3 patients may have advanced 
visual field loss in at least one eye at the time of presentation.3,4 In developing 
countries, population-based studies show that over 90% of patients with glaucoma are 
unaware they have the disease. Besides its asymptomatic nature in early stages, 
presentation with advanced disease may also occur because of factors such as 
economic cost, access to services, or health perceptions.  

 
Currently, there are no effective screening strategies to identify all patients with 

glaucoma and a diagnosis of glaucoma or suspicious glaucoma typically occurs 
opportunistically during routine visits to ophthalmologists or community 
optometrists.  Even for patients already diagnosed with glaucoma, monitoring 
progression over time can be challenging due to the insidious nature of the disease and 
the large variability often seen in tests to detect change. Thus, there is a pressing need 
for more effective strategies for detecting and monitoring glaucoma. 
 

Artificial intelligence (AI) and, in particular, deep learning, has risen to the 
forefront of innovative approaches for screening, diagnosis and detection of glaucoma 
progression. Deep learning models have been applied to a variety of tests such as 
fundus photography, optical coherence tomography, and standard automated perimetry. 
However, there are challenges related to the development and validation of such 
models. Most notable is the lack of a perfect reference standard, or “gold standard,” in 
glaucoma. As these models are generally trained to predict presence of glaucoma or its 
progression, these models usually rely on a reference standard that is used to train the 
model and assess its validity. If an improper reference standard is used, the model may 
be trained to detect or predict something that has little or no clinical utility. In fact, the 
selection of the proper reference standard for validating new AI-based tests ultimately 
depends on the purpose of the application, i.e., whether for population-based or 
opportunistic screening, clinic-based diagnostics or detection of progression.  

 
The Key Role of the Reference Standard for Training and Validating AI Models 
 

Deep learning neural networks are computer algorithms made of several layers 
of interconnected artificial “neurons,” whose development was inspired by biological 
brain cells, but which do not really reflect their biological complexity. In a deep learning 
model, each artificial neuron receives input from other neurons and then performs 
computations in order to produce an output. Data are fed to the neural network and 
processed by the many (usually thousands or millions) of interconnected artificial 
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neurons with the goal of producing a certain desired outcome. However, before such 
deep learning networks can be used for specific tasks, they need to be trained so that 
the specific computations performed at each artificial neuron and their pattern of 
interconnections can be determined. This training process involves feeding the network 
with data, observing the results, making modifications to the model, and repeating the 
process iteratively, until a certain desired outcome is achieved. After the network has 
been trained, it can then be used to obtain predictions on previously unseen data.  

 
There are essentially 3 ways to train a deep learning model: supervised learning, 

unsupervised learning, and semi-supervised learning. Supervised learning involves 
training the network using a completely labeled dataset. For example, if an algorithm is 
aimed at identifying glaucoma on fundus photographs, it can be trained by feeding the 
network with labeled photos of glaucoma and normal eyes. The network then “learns” 
the optimal features that will lead to the best discrimination of glaucoma from a normal 
photo. This learning process is done by comparing the algorithm’s predictions to the 
actual labels and readjusting the weights of the artificial neurons, in a process known as 
backpropagation.5 Unsupervised learning, on the other hand, involves training the 
algorithm with unlabeled data with the goal of discovering hidden patterns in the data, 
without providing any information to the network regarding what the final outcome 
should be. This approach has been used, for example, to classify patterns of visual field 
loss in glaucoma, as well as to detect progressive change over time.6-10 Finally, semi-
supervised learning uses a combination of the two approaches.11  

 
Supervised learning has been the most widely used method for developing deep 

learning models for detection of glaucoma.12-22 As these models are trained to predict a 
certain label (e.g., glaucoma versus normal or progression versus stability), the process 
of labeling the data (i.e., the reference standard used), is essential. Ultimately, the deep 
learning model can only be as good as the labeled data. If a poor, biased or imprecise 
reference standard is used to label the data, this will result in a deep learning model that 
will essentially replicate those imperfections. Even if unsupervised training is used, the 
deep learning model ultimately has to be tested against some valid reference standard 
to assess its clinical validity. Therefore, the reference standard is key to the process of 
training and validation of deep learning models for diagnosis, screening and detection of 
glaucoma progression.  

 
 

Reference Standards for AI Applications in Glaucoma: A Summary of the 
Collaborative Community on Ophthalmic Imaging (CCOI) Discussions 
 
 This article summarizes the issues and discussions related to the definition of 
GON in AI applications as presented by the Glaucoma Workgroup from the 
Collaborative Community for Ophthalmic Imaging (CCOI) United States Food and Drug 
Administration (FDA) Virtual Workshop, on September 3 and 4, 2020 and on January 
28, 2022. As this work does not involve any patient or animal data nor collection or 
analyses of research data, institutional review board and patient informed consents 



 7 

were not required. The presentation of this article further adheres to the tenets of the 
Declaration of Helsinki.  

 
When establishing reference standards for training and evaluating deep learning 

models, it is essential to consider the goal at hand. David Garway-Heath, MD, 
Moorfields Eye Hospital, noted in the CCOI meeting that the goal of screening for a 
disease is very much different from that of diagnostics in a clinical setting, which in turn 
is different from detecting progression in known disease. Different clinical settings have 
different pre-test probabilities for disease and different tolerance for false-positive and 
false-negative rates from a cost-effectiveness perspective. For example, a test used to 
screen the population at large cannot have subpar specificity: that would result in 
massive referrals of false-positive patients who do not actually have glaucoma, thereby 
overwhelming specialists and draining public resources. On the other hand, a test used 
to monitor for progression for an already-established clinical population may be 
designed to tolerate more false-positives in order to ensure that the false-negative rate 
is minimized (i.e., not missing any patients who progress). 

 
An important misconception concerns what constitutes early glaucoma diagnosis 

from a screening standpoint, which is often meant to imply diagnosis at a very early 
disease stage, before any significant visual field loss is detectable by perimetry or 
sometimes even before the appearance of clear signs of optic nerve damage. However, 
focusing on such early stages for screening may lead to significant problems related to 
uncertainty in diagnosis, besides being largely unnecessary. From a public health 
standpoint, an early diagnosis means diagnosis at a stage earlier than when the patient 
would have presented symptomatically. As symptomatic presentation of glaucoma 
generally occurs at a late stage, almost any stage of glaucoma can in fact be 
considered early detection from the point of view of screening. Given the relatively low 
prevalence of glaucoma and the difficulties related to discriminating early glaucoma 
from normal variation, attempting to focus screening programs on detection of very early 
disease will likely lead to failure. Moving the focus to well-established cases of 
glaucoma, but who would still be asymptomatic, will lead to much improved diagnostic 
accuracy and effectiveness. This has key implications on determining suitable reference 
standards to be used for development and validation of deep learning models for 
glaucoma screening.  

 
An example of the challenges and importance of the reference standard in AI 

applications, comes from deep learning models applied to fundus photographs. Fundus 
photography represents a relatively low-cost option for screening for certain eye 
diseases, such as diabetic retinopathy.23 There are several inexpensive, portable 
nonmydriatic fundus cameras that can be used in low-resource settings, making this 
method attractive for community-based or opportunistic screening.24 Once a deep 
learning model is successfully trained to recognize the presence of disease on fundus 
photographs, it can then be deployed to provide gradings on previously unseen photos 
in real-time. Ting and colleagues17 proposed that a deep learning algorithm could be 
developed to screen for glaucoma in existing teleretinal imaging. Using a large 
database of 494,661 teleretinal photographs, they developed an algorithm capable of 
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detecting images that were considered “referable” for glaucoma. The reference 
standard was based on subjective grading of the photographs by ophthalmologists or 
professional graders. In the test dataset, their algorithm detected “referable” glaucoma 
on photographs with an area under the receiver operating characteristic (ROC) curve of 
0.942, sensitivity of 96.4%, and specificity of 87.2%. It is important to note that a 
specificity of 87.2% would translate into 13% of those without disease being labeled as 
false positives. When applied in the context of screening, this would likely result in a 
large number of healthy individuals being unnecessarily referred for evaluation. 
Therefore, to minimize the number of false positives, targeting well-established cases of 
glaucoma rather than all suspicious “referable” ones may be warranted in the context of 
population-based screening.  

 
In contrast to diabetic retinopathy, the approach of training deep learning models 

to replicate human gradings of fundus photographs with the goal of screening for 
glaucoma may have significant limitations.  Subjective gradings tend to have limited 
reproducibility25-27 and poor interrater reliability.26-28 Also, ophthalmologists tend to over 
diagnose glaucoma in eyes with physiologically enlarged discs and miss damage in 
eyes with small discs.13 Overall, subjective gradings tend to have low specificity. If such 
subjective gradings are used as the reference standard to train a deep learning model, 
the trained model can only perform as well as those gradings and will carry all their 
imperfections. If used in the context of screening for the disease targeting high 
specificity, graders trained to detect well-established, unequivocal nerve damage, not 
dubious, potentially “referable” or suspect cases will be critical.  

 
The limitations of subjective reference standards for training and validating deep 

learning models for glaucoma diagnosis has led to the quest for a consensus toward an 
objective reference standard that could be used for this purpose. Joel S Schuman, MD, 
New York University-Langone, pointed out during the CCOI meeting that since the 
vast majority of glaucoma research in the present day utilizes optical coherence 
tomography (OCT) and standard automated perimetry, these would be potential tools to 
be used for establishing such a reference standard. Harry A Quigley, MD, Johns 
Hopkins University, described at the CCOI meeting a recent attempt to define 
glaucomatous optic neuropathy (GON), based on a recent consensus process carried 
out with 110 glaucoma experts throughout the world.29 The specialists were asked to 
agree upon several features that should be considered in defining GON including, 
among other factors: that the clinical examination of the retina and optic nerve would be 
necessary to rule out conditions simulating GON, that IOP should not be a criterion for 
diagnosis, that an OCT defect must be in the corresponding opposite hemifield from the 
visual field defect, and that OCT retinal nerve fiber layer (RNFL) assessment should be 
included either alone or with segmented macular thickness.17 To find a set of OCT and 
perimetry criteria to define GON, they recruited participating clinicians across 13 
international centers who entered 2 reliable OCT and 2 perimetric tests from eyes seen 
in their clinics, along with the clinician’s classification of definite GON, probably GON, or 
not GON, taking into consideration the history, clinical exam, perimetry and OCT. 
Classifications for a total of 2580 eyes from 1531 patients were collected. The 
investigators then derived objective criteria derived from OCT and Standard Automated 
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Perimetry (SAP) measures to predict the glaucoma status of each subject.  OCTs were 
graded using software classifications of normal, borderline, or abnormal in the superior 
or inferior quadrants; perimetry was graded as abnormal if a glaucoma hemifield test 
(GHT) ‘outside normal limits’ with 3 points in the pattern deviation plot at a P < 5% or 
worse in the abnormal hemifield was present. Using this data, combinations of OCT and 
VF measures were used to create 4 criteria by which to determine the presence of 
GON, and sensitivity and specificity of each criterion was tested: sensitivity ranged from 
65 to 77%, and the specificity ranged from 98 to 99%.18 The best performing criterion 
achieved a sensitivity of 77% and specificity of 98% by defining GON on the basis of 
abnormal OCT in the superior or inferior RNFL quadrants with matching opposite, 
abnormal GHT in at least 1 of the 2 most recent pairs of tests (Table 1).30  

 
Felipe A Medeiros, Duke University, presented at the CCOI meeting the results 

of another proposed objective definition for GON.31 The criteria proposed that a 
diagnosis of GON should involve corresponding structural and functional damage, 
based on RNFL assessment by spectral-domain OCT (SDOCT) and visual field 
assessment by SAP. The set of criteria are summarized in Table 2 and uses both global 
and localized parameters with the requirement that there be topographic 
correspondence between structural and functional damage which will enhance 
specificity. The investigators assessed the proposed objective reference standard 
against a subjective classification by glaucoma experts and found a 95.2% overall 
agreement, with a weighted kappa of 0.87, indicating excellent agreement. They then 
developed a deep learning model that used fundus photographs to discriminate 
glaucoma from normal eyes, which had been classified based on the objective 
reference standard on a dataset comprised of 9830 fundus photos from 2927 eyes of 
2025 individuals. The deep learning model achieved an overall area under the ROC 
curve of 0.92 to discriminate between objectively defined GON and normal. 
Interestingly, when the same deep learning model was tested against subjectively (by 
glaucoma experts) defined GON and normal, the same performance was achieved. 
These results illustrate the potential to develop deep learning models based on 
objective criteria for GON.  

 
It should be noted that the proposed approaches above for defining an objective 

reference standard for GON both require clinical examination to exclude other potential 
confounding conditions that could lead to OCT abnormality and visual field damage, 
such as, for example, diabetic retinopathy. Therefore, an AI algorithm trained against 
such reference standards may not be used solely to diagnose glaucoma, but rather as a 
tool to assist in referral or as an ancillary test to help in making a final diagnosis. Of 
course, AI algorithms could also be trained to evaluate for the presence of other 
conditions such as diabetic retinopathy, besides glaucoma, in more comprehensive 
approaches targeted at screening. 

 
In another approach to specifying an objective definition of a definition for GON, 

Jayme R Vianna, MD, Dalhousie University, and colleagues presented at the CCOI 
the methods of a Crowd-Sourced Glaucoma Study, in which they created an online 
database of 1270 subjects with or without diagnosis of glaucoma provided by clinicians 
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around the around. This database included an optic disc photograph, a Humphrey 24-2 
or Octopus G1 perimetry result, and OCT imaging of the optic nerve for 1 eye from each 
subject. Glaucoma specialists worldwide were then invited to assess eyes for likelihood 
of glaucoma on a scale from 0 to 100 using only the presented exam findings, with the 
goal that each eye receive evaluations from 20 clinicians. While data collection is 
ongoing the primary analysis of this study will be to assess which objective 
characteristics from perimetry and OCT—or a combination thereof—best discriminate 
between patients with high and low glaucoma likelihood. This and other approaches that 
utilize crowd-sourcing of glaucoma experts’ opinions offer the advantage that they may 
help mitigate biases in glaucoma assessment that may be unique to a specific institution 
or study group, since this reference standard would reflect the combined opinions of 
experts worldwide. In doing so they also bring the collective expertise of glaucoma 
specialists to groups that may lack that expertise. However, because they are still based 
on subjective assessments, albeit those of experts, they are still subject to potential 
human errors and biases. In addition, crowd-sourcing may sometimes be expensive, 
time-consuming and difficult to achieve under a variety of scenarios.  
 

The aforementioned approaches utilize the most widely used structural and 
functional metrics for glaucoma assessment in clinical practice: mean deviation (MD), 
pattern standard deviation (PSD), and GHT of the 24-2 or 30-2 SAP; and the OCT 
peripapillary scan that acquires global and sectoral RNFL thicknesses. While these are 
the most commonly used, Donald C Hood, PhD, Columbia University, pointed out at 
the CCOI meeting that there is some evidence that using 24-2 visual field and OCT 
disc/RNFL scan alone may miss some eyes with glaucoma in early disease stages. 
Hood and De Moraes argue that these tests may miss damage to the macular retinal 
ganglion cells, which can occur even in early stages of glaucoma. To address this, they 
proposed a new automated method32 that uses topographical agreement between 
structure (OCT RNFL and retinal ganglion cell complex [RGC+] probability map) and 
function (10-2 and 24-2 visual field) for detecting abnormal glaucomatous changes. 
Hood and colleagues have also recently published on an approach where deep learning 
models were trained based on OCT probability maps.33 Such models were successful in 
replicating expert gradings of OCTs, suggesting that they could be eventually used to 
assist in the diagnosis of glaucomatous damage while decreasing the reliance on expert 
gradings.  

 
The decision on which specific tests and parameters to use for defining a 

reference standard in AI studies may depend largely on the purpose of the application. 
For example, if an AI algorithm is being developed for population-based or opportunistic 
screening for glaucoma, the reference standard that will serve as the basis for its 
development and validation should exhibit high specificity. Such a reference standard 
should be capable of detecting well-established glaucoma cases at a level of disease 
severity that would avoid the large diagnostic uncertainty that is seen in very early 
glaucoma. It seems unlikely that inclusion of macular OCT and 10-2 tests would be 
necessary to compose such reference standard in this context, as most unequivocal 
glaucoma cases can be promptly diagnosed by a combination of conventional 24-2 
visual field test and OCT RNFL assessment. In contrast, if an AI algorithm is being 
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developed to assist clinicians in detecting the earliest signs of disease in glaucoma 
suspect patients being evaluated at tertiary hospitals, it may make sense for the 
reference standard to also make use of other tests to increase the sensitivity for early 
damage, such as macular OCT, for example.  

 
Other approaches have been proposed to overcome the subjective reference 

standards used to train deep learning models in glaucoma. In an approach named 
machine-to-machine (M2M) proposed by Medeiros et al.14 a deep learning algorithm 
was trained on color fundus photographs that were labeled with an objective 
quantitative reference standard, the corresponding global RNFL thickness 
measurement from SDOCT. By training the M2M deep learning algorithm to predict the 
RNFL thickness value when assessing a color fundus photograph, the degree of 
glaucomatous damage could be quantified rather than just “qualified”. A strong 
correlation was demonstrated between the predicted RNFL value from the photo-based 
deep learning algorithm and the actual RNFL thickness value from the corresponding 
SDOCT (r=0.832, p<0.001), with a mean absolute error of approximately 7 microns. In a 
subsequent work16, the authors showed that the Bruch’s membrane opening-minimum 
rim width (BMO-MRW) parameter could also be used as a reference standard for 
labeling optic disc photographs. The deep learning predictions were also highly 
correlated with the actual BMO-MRW values (Pearson’s r=0.88, p<0.001). Compared to 
training using subjective human labeling as reference standard or objective binary 
definitions of GON, the M2M approach may offer a distinct advantage, since the output 
is quantitative rather than qualitative, of allowing cut-offs to be established in order to 
optimize its application to achieve desired specificity levels.34 In more recent longitudinal 
studies, the authors have also shown that the M2M model was able to successfully 
detect progressive glaucoma over time35 as well as predict development of visual field 
loss among glaucoma suspects.36  

 
It should be noted that there may be scenarios where a subjective reference 

standard may be a feasible option for development and validation of AI models for 
aiding detection of disease progression. For example, suppose that one wishes to 
develop a deep learning model that can replicate in a clinical setting the performance of 
glaucoma experts in detecting disease progression. It is then reasonable to set up a 
study where experts will produce the reference standard by grading tests for 
progression, i.e., a series of OCTs or visual fields, or both, perhaps accompanied by 
other clinical information, and a deep learning model will be trained to attempt to 
replicate such standard. Such an AI model could then potentially assist in bringing 
general practitioners to a level comparable to those of experts when assessing for 
progression in a clinical setting. When creating such reference standard, however, it is 
important to make sure that it represents a valid clinically relevant outcome that is also 
reproducible.  

 
Reaching a consensus on an objective definition of GON has been an elusive 

task to the clinical and scientific community for years. However, as Balwantray 
Chauhan MD, Dalhousie University, discussed at the CCOI meeting, perhaps this is a 
result of genuine differences among clinicians and researchers as to what exactly 
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glaucoma is. And yet, as the CCOI participants emphasized, there is a dire need for 
such a definition, both to improve the quality and consistency of clinical practice and to 
facilitate research using AI in glaucoma. More importantly, most clinicians agree on 
obvious cases of GON. So, as Chauhan notes, perhaps the goal should be to arrive at 
a consensus on a working definition of GON first. Albeit not a perfect all-encompassing 
definition that includes all stages of glaucoma from its very earliest changes, it would 
still serve as an objective and standardized definition by which the burgeoning new AI 
algorithms could be compared and evaluated.  

 
 In conclusion, AI approaches offer enormous potential to develop tools for 
glaucoma diagnosis and assessment of progression. However, it is critically important 
that the development and validation of new AI-based diagnostic tests be based on 
rigorous methodology with clear determination of how the reference standards were 
constructed and the settings where the tests are ultimately going to be applied. The 
suitable reference standards may differ significantly depending on the proposed 
application. Similarly, the requirements for diagnostic accuracy may vary considerably, 
depending on whether the test is being considered for community-based or 
opportunistic screening versus detection or monitoring of disease in tertiary care. The 
use of objective approaches to define reference standards for GON and its progression 
may help improve the comparability of AI studies and allow better clinical validation of 
proposed tests. 
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