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Abstract

In this thesis we investigate interaction driven quantum phase transitions
of semimetals with a point-like Fermi surface. The most famous example
of a member of this family is graphene, which at half-filling hosts gapless
fermionic excitations that are Dirac like, i.e. disperse linearly. Unlike in con-
ventional metals the density of states vanishes at the Fermi level, which in
turn promises novel correlations due to the reduced phase space available to
fluctuations. When subject to strong short-ranged interactions these systems
undergo a phase transition into a broken symmetry phase where the excita-
tions become gapped. However due to the gapless nature of the fermionic
excitations in the semimetallic phase it is not possible to describe the critical-
ity using a Ginzburg-Landau type theory which only contains bosonic order
parameter degrees of freedom. The low-energy theory best equipped for these
so-called fermionic quantum criticality problems is that of the Yukawa-type
effective field theory which couples the dynamical order parameter field to
the fermions.

With the use of Renormalisation Group (RG) we study the critical phe-
nomena of the quantum phase transition from a nodal-point semimetal to
charge density wave (CDW) insulator. We showcase that the screening of
order parameter fluctuations by particle-hole excitations is crucial. Without
inclusion of this non-perturbative effect the RG flows contain non-universal
dependence on the momentum shell cutoff scheme. We compute the exact
critical exponents for the case of Dirac and semi-Dirac fermions in two spatial
dimensions up to linear order in 1/Nf where Nf is the number of fermionic
flavours. Lastly we consider the effects of non-magnetic disorder on a Dirac
semimetal to CDW phase transition, and find a new disordered interacting
fixed point which gives rise to non-Fermi liquid behaviour. We investigate
the scaling of physical observables at this critical fixed point.
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Impact Statement

The study of quantum phase transitions of semimetals is key to understand-
ing how their properties behave under a variety of conditions, knowledge
without which technological applications won’t be developed. Graphene par-
ticularly has various excellent properties with which come great opportunities
for applications like battery storage, bio-membranes for water filtration, and
countless other electronics. Hence the work presented here could be useful
to experimentalists within academia and industry alike. Our work which has
shed light on the importance of dynamical screening near criticality should be
highly relevant to researchers studying quantum phase transitions in strongly
correlated materials that exhibit gapless fermionic excitations.
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Chapter 1

Introduction

Understanding the phases of a material and how they might transition from
one to another has been at the forefront of scientific pursuit from time im-
memorial. This is partly due to the fact that phase transitions are ubiquitous
in our every day life; liquid water to water vapour or liquid water to ice are
two we experience first hand most days. Slightly further away from every-
day life, compounds known as the cuprates upon variations of temperature
and/or can transition into a number of exotic phases like high temperature
superconductivity or into a Mott insulating antiferromagnetic state. More-
over, a thorough understanding of the properties of a material under a variety
of conditions is essential to effective application in real world technologies;
computer chip makers need to be sure that all of their components will retain
their properties over a range of temperatures and currents/voltages.

At a glance the problem of describing the properties and dynamics of
1023 particles within a typical system of interest is intractable. Writing down
the Schrödinger equation for that many degrees of freedom would be neither
possible, nor actually instructive. Knowing the individual positions of the
particles would not be helpful in obtaining the thermodynamic properties
of the system which we are most interested about. To make the connection
from the microscopic to the macroscopic it is imperative to use the language
and the theory of statistical mechanics. At the heart of it, is the partition
function Z which encapsulates the possible configurations of all of its degrees
of freedom,

Z = Tr e−H/kBT (1.1)

where H is the Hamiltonian of the system, kB is Boltzmann’s constant, T
is the temperature of the system, and Tr denotes a sum over all degrees of
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freedom. From the partition function it is possible to obtain the free energy
F = −kBT logZ, from which we are able to calculate the thermodynamic
properties like the specific heat capacity, entropy etc., which are its deriva-
tives with respect to external parameters like temperature, magnetic field,
and so on.

A phase transition occurs at the point in parameter space where the
thermodynamic potential becomes singular1. An early classification of phase
transitions was proposed by P. Ehrenfest, into either first-order or second-
order. The nomenclature comes from lowest order of the derivative of the free
energy with respect to an external parameter to be discontinuous across the
transition. In practice a more accurate classification defines transitions to be
either discontinuous (first-order) or continuous (second and higher orders),
the major difference between the two is that the former involves latent heat
which is the energy released as you transition from a high-temperature to
low-temperature phase. An example of which is the transition from liquid
water to ice.

A continuous transitions attains its name from the fact that macroscopic
properties of the system do not exhibit a discontinuity across the phase tran-
sition. The prototypical example of this is the ferromagnetic-paramagnetic
transition of Iron in zero external magnetic field which occurs at 1040K.
As you approach this transition from below (i.e. from the ferromagnetic
phase) thermal fluctuations destroy the ordering of magnetic moments and
the magnetisation of Iron decreases continuously and is identically zero at the
transition. The point in parameter space where the phase transition occurs
is defined to be the critical point.

It is possible to identify a continuous phase transition by its order param-
eter, a thermodynamic quantity that is zero in the disordered phase, non-zero
in the ordered phase, varies continuously across the transition, and tells us
about the change in symmetry across the two phases. In the case of Iron the
order parameter would be the magnetisation, which encapsulates the break-
ing of time reversal symmetry in the ferromagnetic phase. The fluctuations
of the order parameter are non-zero in both phases, and as you approach the
critical point the spatial and temporal correlations of the fluctuations get
longer and longer. At the critical point the fluctuations are infinitely corre-

1The potential, being a sum of analytic functions, can only become non-analytic in the
thermodynamic limit, i.e. as N → ∞ where N is the number of particles in the system.
In practice in a typical system we have 1027 degrees of freedom which can be taken to be
close to the thermodynamic limit.
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lated and the spatial ξ and temporal ξτ correlation lengths follow a power
law,

ξ ∼ |t|−ν , ξτ ∼ |t|−νz (1.2)

where t is a tuning parameter for the transition (reduced temperature for
classical phase transitions), i.e. at the critical point t = 0. The dynamic
critical exponent and the correlation length exponent are represented by z
and ν respectively. The divergence of both spatial and temporal correlations
implies that there is no characteristic scale in the system and that fluctuations
occur at all length and time scales. This means that the system is scale
invariant, which in turn implies that all observables follow a power law with
some critical exponent which then uniquely defines the transition.

While historically phase transitions that occur at non-zero temperature
have taken the limelight, as of late there has been vast interest in quantum
phase transitions which occur at T = 0. The name is derived from the fact
there are no thermal fluctuations, and that quantum effects are responsible
for the critical behaviour. This means that the phase transition is not driven
by temperature but rather by some parameter of the Hamiltonian, e.g. the
spin density wave insulator to superconductor phase transition in iron based
high-Tc superconductors is driven by the concentration of dopants. As there
are no entropy considerations, it follows that there is a macroscopic rear-
rangement of the ground state of the system across the transition. While it
might seem that an understanding of what happens at absolute zero is un-
helpful given that it’s not possible to reach 0K in experiments nor get close to
it without an awful lot of effort, it turns out that the behaviour at the quan-
tum critical point (QCP) has a huge impact on the finite-T regime [1, 4]. This
phenomenon has been dubbed the quantum critical fan, for it encapsulates
three distinct cross-over regimes in the phase diagram with their boundaries
resembling a fan, as can be seen in Fig. 1.1. Amazingly, within the quantum
critical regime, the critical phenomena at the QCP govern the behaviour of
observables at finite T. Specifically the observables exhibit power-law depen-
dence with respect to temperature with critical exponents derived from those
at the QCP. Such behaviour persists up to temperatures which are compa-
rable with the microscopic energy scales of the system. These theoretical
predictions were also confirmed in an experimental set up [5]. An under-
standing of criticality at a quantum phase transition can then shed light on
the macroscopic behaviour at temperatures that are more accessible, and
hence its studies are paramount.
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Figure 1.1: A phase diagram of a strongly correlated material with a continu-
ous phase transition at critical value of some Hamiltonian parameter gc. For
g < gc the material is in a symmetry broken phase, while for g > gc we are
in a high symmetry phase. The behaviour at the QCP leads to scaling be-
haviour far away in the finite temperature part of the diagram. The existence
of the fun is generic for any continuous phase transition. For more details
regarding the nature of the three regimes (in the case of the Heisenberg AFM
transition in 2D), please consult Ref. [1]

A concept that is helpful in the study of phase transitions of quantum
matter is that of universality. At the simplest level it tells us that systems
with seemingly different microscopic physics, behave in the same way near
a phase transition. In fact it is possible to classify each phase transition
according to the universality class it belongs. All members in a particular
class will posses the same critical exponents. For example, a continuous
liquid-to-gas transition possess the same critical exponents as a ferromagnetic
transition involving Ising spins [6].

Another fundamental tool is that of mean field treatment of a phase
transition, which is the most basic theory to use the order parameter. In it,
the interaction between a large number of degrees of freedom is exchanged
for the interaction between a single degree of freedom and an averaged coarse
grained order parameter. For example in the case of a magnetic transition, we
would consider a singular spin interacting with the averaged magnetization
of its nearest neighbours. Such a basic picture results in a theory that is
solely dependent on a single parameter.

Ginzburg and Landau extended this methodology [7], by assuming a gen-
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eralised thermodynamic potential that is a functional of a spatially fluctu-
ating order parameter field. This theory was first developed for supercon-
ductivity where the order parameter field can become inhomogeneous in the
presence of an external magnetic field. This advance in turn paved way for the
Landau-Ginzburg-Wilson order parameter theory of phase transitions which
traded Landau’s free energy functional for a statistical mechanics action, the
critical properties of which were studied using renormalisation group [8].

Recently there has been interest in phase transitions where an order-
parameter theory is inadequate to describe the criticality. Namely where
fermionic excitations are fundamental to the critical behaviour. Such prob-
lems have been dubbed fermionic quantum criticality. One particular avenue
of interest is the large family of nodal semimetals where valence and con-
duction bands touch at a number of discrete points or around closed (nodal)
loops in the Brillouin zone. The crossings posses a quantized topological
charge which ensures the stability of the fermionic states at the Fermi level.
The gapless nature of the excitations means that the fermionic degrees of
freedom cannot be simply integrated out and are key in describing the po-
tential phase transitions. The semimetals zero-dimensional Fermi surface,
and the vanishing density of states at the nodal points, make them a perfect
setting to study criticality beyond the order parameter paradigm.

The simplest members of this family are Dirac and Weyl semimetals
[9, 10, 11], which are four-fold and two-fold degenerate at the nodal point
respectively and exhibit relativistic dispersion in their vicinity. The most fa-
mous example of a Dirac semimetal is graphene [12], which exhibits massless
Dirac fermions at half-filling. Other examples of Dirac semimetals include
surface states of topological insulators [13, 14], while the more elusive Weyl
semimetals have been predicted to occur in pyrochlore iridates by ab initio
studies [15].

Due to the topological charge of a nodal point, a transition into a topolog-
ically trivial state can only be achieved when a pair of nodal points with oppo-
site topological invariants are merged; at such a topological phase transition
the system no longer exhibits full Lorentz symmetry as the dispersion is now
linear (relativistic) in one direction and quadratic(Newtonian) in the other.
Such excitation has been dubbed as a semi-Dirac fermion [16, 17, 18]. Further
ahead semimetals with a quadratic band touching points (QBT) [19] have
been found in numerous two and three dimensional materials [20, 21, 22, 23].
More recently semimetals that exhibit chiral structure have been found to
host exotic quantum states like multifold fermions which have no analogue
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2d Dirac semi-Dirac 2d QBT

(a) (b) (c)

Figure 1.2: Different types of nodal-point semimetals in d = 2 spatial dimen-
sions. The quasiparticles at the band-touching point disperse linearly along
dL and quadratically along dQ directions, dL + dQ = 2.

in high energy physics [24, 25, 26], as well as long Fermi arc surface states
[15, 27, 28, 29].

We can define the family of anisotropic nodal semimetals to contain dL
linear and dQ quadratic momentum directions in d = dL + dQ spatial di-
mensions, which allows us to interpolate between relativistic Dirac or Weyl
fermions and quasiparticles in systems with quadratic band touching (QBT)
(see Fig. 1.2).

A common feature of most of the semimetals espoused above, is the van-
ishing density of states at the nodal points, which follows a modified power
law, ρ(E) ∼ |E|r, r = (2dL + dQ − 2)/2. Compared to the case of normal
metals where the density of states is constant, this promises novel correla-
tion effects. As such there has been a lot of interest in the phase transitions
driven by electron-electron interactions. In the simplest case of monolayer
graphene, the 2D Dirac semimetal state has been shown to be stable un-
der weak short-range interactions, however it undergoes a quantum phase
transition into a gapped phase at strong coupling [30, 31].

The situation is different in QBT semimetals, where in 3D an arbitrary
weak long-range Coulomb interaction renders the system unstable to the
spontaneous formation of a topological Mott insulator state [32], while in
2D the long-range Coulomb tail is screened and the non-interacting ground
state is unstable to arbitrary weak short-range interactions[33, 34, 35]. The
strong anisotropy of semi-Dirac semimetals makes the system particularly
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interesting; while it transitions into symmetry broken states under a strong
short-ranged interaction[36, 37, 38] it also exhibits exotic, directionally de-
pendent screening effects [39, 40, 41, 42].

1.1 Outline of Thesis

This thesis investigates the fermionic quantum criticality of anisotropic nodal
point semimetals in d = dL + dQ spatial dimensions that disperse linearly in
dL dimensions, and quadratically in the remaining dQ dimensions. When
subject to strong interactions, these systems are susceptible to semimetal-
insulator transitions concurrent with spontaneous symmetry breaking. The
gapless nature of the low energy excitations as well as restricted phase space
available to them promises novel phenomena that cannot be described by a
simple order parameter theory.

Firstly in Chapter 2 we introduce the honeycomb lattice and calculate
its dispersion with the use of a tight-binding Hamiltonian describing non-
interacting fermions with nearest neighbour hopping. We show that at
half-filling the low energy excitations are best described by massless Dirac
fermions. We then consider short-range interactions on the honeycomb lattice
and obtain an effective field theory for the semimetal to charge density wave
(CDW) transition. Lastly we introduce semi-Dirac fermions and write down
a general field theory for the family of anisotropic nodal point semimetals.

In Chapter 3 we utilise Landau’s free energy approach for classification of
phase transitions. Using a path-integral approach we calculate the mean-field
critical exponents for the CDW transition for the case of both Dirac and semi-
Dirac semimetals. Lastly by allowing small, long-wavelength modulations of
the order parameter we calculate the correlation length exponents for the
semi-Dirac case and portray its inherent anisotropy.

A modern way of investigating phase transitions in condensed matter
systems is the the theory of Renormalisation Group and Wilson’s momentum
shell implementation of it. As an introduction to the topic, in Chapter 4 we
consider the scalar φ4 theory which can describe the magnetic transition of
Ising spins on a two dimensional lattice. We calculate the RG equations up
to one-loop order, and then use the famous ε-expansion to show the existence
of the Wilson-Fisher fixed point slightly below the upper critical dimension,
and calculate its critical exponents.

While Wilson’s momentum shell has had incredible amount of success, its
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naive implementation, often performed in the strongly correlated literature,
results in inconsistencies. The Gross-Neveu-Yukawa theory of interacting
Dirac fermions coupled to a dynamic order parameter field has been known to
describe chiral symmetry breaking and spontaneous mass generation in high
energy physics, while in condensed matter it describes the Dirac semimetal
to insulator transition. The theory posses an interacting fixed point which is
Lorentz invariant, however naive calculation of the RG equations at one loop
order using a spherical and a cylindrical cutoff scheme results in disparate
results. The former retains the relativistic invariance while the latter does
not. In Chapter 5 we showcase this inconsistency and then by utilising a
soft cutoff approach we portray the importance of Landau damping of order
parameter fluctuations by particle-hole excitations. We then perform an
RG calculation using a dressed bosonic propagator retaining terms that are
O(1/Nf ) where Nf is the number of fermionic flavours. We obtain critical
exponents which are in full agreement with the previous literature.

In Chapter 6 we extend our soft cutoff methodology to the case of anisotropic
nodal semimetals subject to strong short-range interactions. We consider in-
teractions that go hand in hand with a CDW insulator transition, which
in the language of the effective field theory is represented by a scalar or-
der parameter field in the Yukawa action. We once again show that the
bare bosonic propagator results in consistencies in the RG, and that using
the RPA damped bosonic propagator results in corrections that are cutoff
scheme independent. We calculate the RG equations for a general dimension
D and then calculate the exact critical exponents for semi-Dirac fermions to
leading order in 1/Nf . Finally we consider the ε-expansion around the upper
critical line, and compare the two methods.

Disorder is present in any realistic condensed matter system, the possible
sources of it are endless, e.g. crystal dislocations, charged impurities, lattice
warping. A through understanding of possible symmetry breaking wouldn’t
be complete without its inclusion. In Chapter 7, we investigate the effect
of disorder on the phase transition between a Dirac semimetal and a CDW
insulator. Utilising work from previous chapters we include the effect of
Landau damping, to calculate the RG equations up to leading order in 1/Nf

and the disorder ”strength”. The non-perturbative correction coming from
RPA was found to be crucial for the existence of a new interacting disorder
fixed.

Lastly in Chapter 8 we summarise our results and conclude with remarks
regarding potential future work.
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Chapter 2

Topological Nodal semimetals

In Sec. 2.1, we consider a theory of non-interacting fermions on the hon-
eycomb lattice, and show that at half filling the tight-binding dispersion in
the vicinity of the Fermi surface is best described by an effective field theory
that takes the form of the massless Dirac equation. In Sec. 2.2.1, we go on
to formulate the Gross-Neveu-Yukawa theory for the semimetal-to-insulator
transition for the case of Dirac fermions on the honeycomb lattice. In Sec.
2.3, we generalise the effective field theory to encapsulate d = dL + dQ di-
mensional anisotropic nodal semimetals with dL linear, and dQ quadratic
dispersing directions.

2.1 Non-interacting fermions on the honey-

comb lattice

In graphene the carbon atoms are arranged on a two-dimensional honeycomb
lattice, where the valence and conduction electron bands are formed by 2pz
orbitals. The honeycomb is not a Bravais lattice, but rather a bipartite tri-
angular lattice with two sites per unit cell, denoted by A and B (see Fig. 2.1).

The primitive unit vectors are a1 =
√

3a
2

(1,
√

3),a2 =
√

3a
2

(−1,
√

3), where a
is the distance between the A and B sites in the unit cell. While the nearest-
neighbour vectors are δ1 = a(

√
3, 1)/2, δ2 = a(−

√
3, 1)/2, and δ3 = a(0,−1).

The dispersion of graphene was first calculated by Wallace [43] with the use
of a tight binding approximation, where in the simplest case can be described
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Figure 2.1: The honeycomb bipartite lattice with sublattices A and B, prim-
itive vectors a1,2, and nearest-neighbour vectors δ1,2,3.

by a non-interacting hopping Hamiltonian between nearest neighbours,

H = −t
∑
r

∑
j=1,2,3

(c†A(r)cB(r + δj) + h.c.), (2.1)

where t is the hopping amplitude, the summation is over all nearest neigh-
bours, and (cσ(r), c†σ(r)) are the fermion annihilation and creation operators
respectively which act on site σ = A,B at position r. These second quantized
operators follow the standard anticommutation relations.

The Hamiltonian is then transformed to a Fourier basis where cσ(r) =
1√
N

∑BZ
k cσ(k)eik·r, where the summation is over all momentum modes in

the Brillouin Zone which is defined by the reciprocal lattice vectors b1 =
2π
3a

(
√

3, 1), and b2 = 2π
3a

(−
√

3, 1). This results in,

H = −t
BZ∑
k

(
c†A(k) c†B(k)

)
Hk

(
cA(k)
cB(k)

)
(2.2)

where

Hk = vF

(
0 eik·δ1 + eik·δ2 + eik·δ3

e−ik·δ1 + e−ik·δ2 + e−ik·δ3 0

)
(2.3)
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where vF = 3at/2 is the Fermi velocity. The matrix Hk can now be diago-
nalised and the corresponding eigenvalues give the dispersion,

E±(k) = ±

√√√√3 + 4 cos

(
3ky
2

)
cos

(√
3kx
2

)
+ 2 cos

(√
3kx

)
(2.4)

where k = (kx, ky). Each carbon atom in the two dimensional sheet con-
tributes one electron, which means that the Fermi energy lies exactly at the
band touching points where E(k) = 0. There are six of these points, all
located at the corners of the Brillouin Zone where the density of states van-
ishes linearly with the energy, as illustrated in Fig. 2.2. However only two
of those six are inequivalent, as it is possible to access the other 4 by trans-
lations with the reciprocal lattice vectors, b1, b2. In the literature these two
points, K± = ± 4π

3
√

3
(1, 0), are known as Dirac points (or as valleys). Upon

an expansion of Eq. (2.4) around K+, the dispersion becomes linear as can
be seen in Fig. 2.2(a), and the Hamiltonian takes the form of the massless
Dirac Hamiltonian,

Hk = vF

(
0 kx − iky

kx + iky 0

)
= vFk · σ (2.5)

where σ = (σx, σy) are the Pauli matrices. The Hamiltonian for the other
Dirac point can then be obtained by a time-reversal transformation. Com-
bining the contributions from the two valleys we arrive at the following,

H = vF

∫ Λ

0

d2k

(2π)2
Ψ†(k) k ·α Ψ(k), (2.6)

where
Ψ† = (Ψ†A,+,Ψ

†
B,+,Ψ

†
A,−,Ψ

†
B,−) (2.7)

is a 4-component spinor, and α = (α1, α2) = (τz ⊗ σx, τ0 ⊗ σy) where the
Pauli matrices σi and τi (i = 0, x, y, z) act on the sub-lattice (pseudospin)
and valley spaces respectively. The constant Λ is the ultraviolet cut-off, up
to which the linear approximation of the dispersion is valid.

We see that the energy eigenvalues around the Dirac points are equal
to E(k) = vF |k|. We have shown that graphene at half-filling exhibits
semimetallic behaviour, where the low energy excitations are best described
by massless Dirac fermions.
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(a) (b)

Figure 2.2: (a) The full dispersion of the honeycomb lattice. The Dirac
points sit exactly at charge neutrality, and the dispersion in their vicinity
is linear in the momentum. (b) The first Brillouin Zone of the honeycomb
lattice. The two sets of inequivalent Dirac points are denoted in separate
colours.

It is important to note that the emergence of these relativistic quasipar-
ticles results from the inherent symmetries of the honeycomb lattice, rather
than it being an artefact of the tight-binding model. The honeycomb lattice
posseses, among others, the anti-unitary time reversal symmetry T which
ensures the Hamiltonian is invariant under the exchange of the two sub-
lattices, while the unitary inversion symmetry I ensures invariance under the
exchange of the two Dirac points. Effectively the former maps the wavevec-
tor k → −k, while the latter maps the position vector r → −r. The Dirac
Hamiltonian, must be invariant under both of those symmetries,

T HT −1 = H, IHI−1 = H.

From these equations we obtain two condtions,

T : Hk = H∗−k, (2.8)

I : τ0 ⊗ σxH−kτ0 ⊗ σx = Hk. (2.9)

The combination prohibits a term in Eq.(2.5) that couples to the last Pauli
matrix σz which would gap the spectrum (note that Eqs.(2.8)-(2.9) are valid
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for any Bloch Hamiltonian). A pertubation which is invariant under T and I
then cannot open up a gap but can change the position of Dirac point within
the Brilloun Zone [17]. Further hoppings, next-nearest-neighbour etc., will
not induce a gap, only will shift the energy of the Dirac points. However
with the addition of real spin into the equation, it was shown that intrinisic
spin-orbit coupling would open up a gap and transition graphene from a
semimetal to a quantum spin Hall insulator [44], however subsequent work
found that the gap was of the order 24µeV at the Dirac points and could
only be detected at “unrealistically low temperatures”[45, 46]. The nature
of the low-energy Dirac excitations in graphene seems to be fundamental.

2.2 Interactions on the honeycomb lattice

We’ve established that non-interacting spinless fermions on the honeycomb
lattice result in a semimetallic state, with a point like Fermi surface. Due to
the fact that within the vicinity of the Dirac points the density of states van-
ishes linearly, Dirac fermions on the honeycomb lattice are a perfect setting
to study fermionic quantum criticality, i.e. criticality which cannot be de-
scribed by a conventional order parameter Ginzburg-Landau-Wilson theory
as the nature of the fermions is fundamental to the transition.

The question now is whether the inclusion of electron-electron interactions
might induce a first or a second order phase transition into some strongly
correlated phase. Specifically we’re intersted in interaction-driven phases
which gap the Dirac spectrum, and hence are akin to the metal-insulator
transition of the Hubbard model which hosts a Mott insulating state. We aim
to set up an effective field theory for the description of symmetry breaking
phase transtions in a Dirac semimetal.

The simplest interacting tight-binding Hamiltonian on the honeycomb
lattice involving spinless fermions contains an inter-site (nearest-neighbour)
repulsive interaction with real-valued strength V ,

H = H0 +Hint (2.10)

Hint = V
∑
〈rr′〉

n̂(r)n̂(r′), (2.11)

where H0 is the non-interacting part defined in Eq.(2.1) and the fermion
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Figure 2.3: An illustration of the charge density wave (CDW) phase on the
honeycomb lattice, where the accumulation of charge on one lattice site is
more than on the other. The two sublattices A and B are denoted by red
and blue colours respectively.

number operator is defined as

n̂ =
∑
σ=A,B

n̂σ =
∑
σ=A,B

c†σcσ. (2.12)

As only spinless fermions are considered, the usual Hubbard U term which
denotes on-site interaction has been omitted. Further interactions that might
extend this Hamiltonian, range from a next-nearest-neighbour intersite inter-
action to exchange interactions and ring terms. The nature of the interaction
will determine the possible phases that the Dirac semimetal might transition
into. In this particular case, as we will shortly see, the repulsive nearest-
neighbour interaction goes hand in hand with a charge density wave (CDW)
instability, which is an insulating state that spontaneously breaks the sub-
lattice symmetry, i.e an imbalance between charge densities on the A and B
sublattices. Such a phase transition can be characterised by an order param-
eter which tracks the difference between charge density on the two lattices;
the expectation of which would be zero and non-zero in the semimetal (dis-
ordered) and CDW (ordered) phases respectively. The CDW phase can be
seen in Fig. 2.3.

In order to obtain the low energy effective theory of the interaction, we
take the Fourier transform of Eq.(2.11) and expand around the two Dirac
points K and K ′. Transforming back to real space (for ease of notation) we
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arrive at the following,

Hint = V

∫
d2r

{
Ψ†A,+ΨA,+Ψ†B,+ΨB,+ + Ψ†A,+ΨA,+ψ

†
B,−ΨB,−

+ Ψ†A,−ΨA,−Ψ†B,+ΨB,+ + Ψ†A,−ΨA,−Ψ†B,−ΨB,−

}
(2.13)

= V

∫
d2r

(
Ψ†Aτ0ΨA

)(
Ψ†Bτ0ΨB

)
. (2.14)

The four-fermion interaction can be decoupled into two seperate terms,

Hint =
V

4

∫
d2r

(
Ψ†τ0 ⊗ σ0Ψ

)2 −
(
Ψ†τ0 ⊗ σzΨ

)2
(2.15)

where the first term can be thought of as the total density on sublattice sites
A and B while the second term signifies the difference in densities between
the two sites,

Ψ†Ψ ∼ n̂A + n̂B

Ψ†
(
σz 0
0 σz

)
Ψ = Ψ†α3Ψ ∼ n̂A − n̂B

(2.16)

where we have defined α3 = τ0 ⊗ σz. Taking into consideration only the
momentum modes near the Dirac points, the quantum mechanical action
corresponding to the interacting Hamiltonian at low energies can be written
as

S =

∫ β

0

dτ

∫
dr L(τ, r) (2.17)

with the effective Lagrangian density L defined to be,

L = Ψ† (δτ − ıαiδi) Ψ + Ṽ (Ψ†Ψ)2 − Ṽ (Ψ†α3Ψ)2, (2.18)

where τ is the imaginary time, and β = 1/T the inverse temperature. While
the total density term (Ψ†Ψ)2 will be shown to percipitate nothing but a
redefinition of the chemical potential, the latter four-fermion term will drive,
under sufficiently storng interactions, a continuous phase transtion from the
semimetal state to a CDW phase. A different form of the four fermion
term could come about from considering different types of interactions at
the lattice level. Already the inclusion of a next-nearest-neighbour repulsive
interaction results in a much richer phase diagram, which includes charge
modulated phases similar to the CDW state mentioned here as well as Kekulé
bond order phase [47, 48].
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2.2.1 Gross-Neveu-(Yukawa) Model

The form of the Lagrangian density derived in Eq.(2.18) is one example of
a broader group of models called the Gross-Neveu (GN) models [49] which
describe spontaneous breaking of chiral symmetry in high-energy physics.

We now introduce the imaginary time path integral representation of the
partition function,

Z =

∫
D[Ψ†,Ψ]e−

∫
dτdxL, (2.19)

where L for this situation is the Gross-Neveu Lagrangian density,

L = Ψ† (δτ − iαiδxi) Ψ + gab(Ψ
†MaΨ)(Ψ†MbΨ). (2.20)

The parameter gab denotes the strength of the four-fermion interaction that
is local in space and time, and Ma and Mb are 4×4 matrices. For a discussion
of symmetry allowed interactions consult Ref. [31].

When studying symmetry breaking transitions, it is advantegous to cast
the problem in a different light using the Hubbard Stratonovich transforma-
tion. The aim of said transformation is to bring the Lagrangian into quadratic
term in the fermionic fields Ψ’s. This is first done by decoupling the quartic
term in a “channel” where the expectation of a billinear is nonzero in the
ordered phase. For example, for a s-wave singlet superconducting instability
the decoupling will be in the Cooper channel 〈Ψkα2Ψ−k〉 [2]. The decoupling
is followed by the introduction of an auxilarry bosonic field φ that is conju-
gate to the channel. The final result after integration is a Ψ billinear coupled
to a single auxilarry field φ.

This methodology will be now portrayed for the effective field theory
denoted in Eq.(2.18) which describes a a quantum phase transition from
a Dirac semimetal to a charge density wave (CDW) insulator where the
sublattice symmetry is broken. This corresponds to a spontaneous symmetry
breaking of a Z2 Ising (pseudo)spin degree of freedom, which belongs to the
chiral Ising GNY universality class [49, 50]. We will use the decoupling
shown first in Eq.(2.15), which is in the “charge” channel. Tackling the total
density term first, we introduce an auxilary field χ ∼ Ψ†Ψ with the use of
the Gaussian integral identity for real fields, 1 ≈

∫
dx e−x

2
,

exp

[
− Ṽ

(
Ψ†Ψ

)2
]

=

∫
D [χ] exp

[
− χ

2

4Ṽ
− Ṽ

(
Ψ†Ψ

)2
]
. (2.21)
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Performing a variable transformation, χ→ χ+ 2iṼ
(
Ψ†Ψ

)
, we arrive at the

following identity,

exp

[
− Ṽ

(
Ψ†Ψ

)2
]

=

∫
D [χ] exp

[
− χ2

4Ṽ
− iχ(Ψ†Ψ)

]
. (2.22)

The result is that the four-fermion total density interaction term has been
traded for a fermion billinear coupled to the auxillary field χ. It is worth
pointing out that the Hubbard-Stratonovich transformation is exact, no in-
formation is lost in the process, simply the picture is now of a composite
boson-fermion theory. The mixed term χΨ†Ψ enters in the same way as the
chemical potential, hence it can be absorbed by the redefinition µ̃ = µ+ i〈χ〉.

The transformation for (Ψ†α3Ψ)2 follows the same process, where a real
scalar bosonic field φ ∼ Ψ†α3Ψ is introduced which is equivalent to an order
parameter for the CDW state. The dimensionality of the order parameter
field depends on the phase it’s destined to describe. For a spin density
wave instability, the order parameter would be three dimensional. The full
Hubbard-Stratonovich transformation of Eq.(2.18) results in the following
Lagrangian density,

L = Ψ(δτ − ivα · ∂)Ψ +
1

2

(
−∂2

τ − c2∂ +m2
)
φ2 + gφΨ†α3Ψ, (2.23)

where ∂ = (∂x, ∂y), m
2 is the bosonic mass term which as we’ll see in the next

chapter acts as the tuning parameter for the phase transtion(i.e. ∼ V − Vc).
The parameter g is known as the “Yukawa” coupling, which delineates the
strength of interaction between the boson and fermions. The fermionic and
bosonic velocities are denoted by v and c respectively. The structure of the
dispersion of the bosonic field is a consequence of φ being a real scalar field
which places a constraint on the leading functional form. By symmetry,
analytical terms that are odd in momentum or frequency are not allowed.

The Yukawa coupling anti-commutes with the non-interacting Lagrangian
and thereby fully gaps the fermionic quasiparticle spectrum in the broken-
symmetry phase, as can be seen in Fig.2.2.1,

E(k) = ±
√
v2k2 + g2〈φ〉2, (2.24)

maximizing the condensation energy gain.
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Figure 2.4: Illustration of the Dirac spectrum in the Dirac and the CDW
phases, where the order parameter is zero and non-zero respectively/

We now present the “graphene” representation of the α’s using Dirac
matrices. Identifying

γ0 = α3 = τ0 ⊗ σz =

(
σz 0
0 σz

)
(2.25)

we redefine the fermionic field,

Ψγ0 = Ψ̄ (2.26)

so that our interaction term becomes

φΨ†α3Ψ→ φΨ̄Ψ. (2.27)

This motivates the following defintion,

γ1 = iα3α1 =

(
σy 0
0 −σy

)
, γ2 = iα3α2 =

(
σx 0
0 σx

)
(2.28)

The Clifford algebra is complete with the definition of two anticommuting γ
matrices,

γ3 =

(
0 σy
σy 0

)
, γ5 =

(
0 −iσy
iσy 0

)
. (2.29)
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The Dirac γ matrices anticommute {γµ, γν} = 2δµν for µ, ν = 0, . . . , 5. Hence
the Gross-Neveu-Yukawa (GNY) Lagrangian defined in imaginary time τ
using the γ matrix representation takes the following form,

LGNY = Ψ̄ (∂τγ0 + v∂ · γ + gφ) Ψ +
1

2
φ(−∂2

τ − c2∂2 +m2)φ+ λφ4. (2.30)

The inclusion of the φ4 vertex is a result of the inclusion of the most relevant
(in the RG sense) bosonic interaction allowed by symmetry. The Lagrangian
can be defined for a general d-spatial dimension where then γ = (γ1, · · · , γd)
and ∂ = (∂1, · · · , ∂d).

2.3 Anisotropic nodal semimetals

Graphene is a member of a larger family of nodal semimetals. Other mem-
bers include semimetals where crossings are of the semi-Dirac type, or are
quadratic in nature.

2.3.1 Semi-Dirac semimetal

The former excitation first reported in Ref.[17] occurs at a phase transition
between a Dirac semimetal and a trivial band insulator. While in the case
of the nearest-neighbour tight-binding model on the honeycomb lattice the
Dirac points were located at the high symmetry points in the corners of
the Brillouin Zone, it is possible to change the location of the Dirac points
by varying the lattice parameters. In the derivation in Sec.2.1 we assumed
that the hopping parameters along each nearest-neighbour had the same
magntitude, however if some assymetry were induced then two Dirac points
could be moved fromK± to some new positionD±. Upon sufficient variation
it is feasible that the two points might merge whenD+ = D− = −D+, which
happens at four points within the first BZ, D+ = {b1 +b2, b1, b2,0}/2, where
b1,2 are the reciprocal lattice vectors. Expanding Eq.(2.4) around any of
these points, we find that at linear order the contribution in one direction
vanishes, and an expansion up to secord order is required. This results in
the non-interacting Hamiltonian for the semi-Dirac excitation,

H =

∫ Λ

0

d2k

(2π)2
Ψ†(k)

(
vfkxσ

x +

(
k2
y

2m∗
+ ∆

)
σy
)

Ψ(k) (2.31)
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where the dispersion is obtained through diagnolisation,

Ek = ±
√

(vfkx)2 +

(
k2
y

2m∗
+ ∆

)2

. (2.32)

where as before vf is the Fermi velocity, 1/m∗ is the curvature of the dis-
persion in the y-direction, and the Pauli matrices σ act on the sublattice
space. For ∆ < 0 the dispersion contains two relativistic Dirac points

D± =
(

0,±
√

2m(−∆)
)

, while for ∆ > 0 the dispersion has an energy

gap ∆. Hence ∆ tunes a transition between a Dirac semimetal and a band
insulator. At ∆ = 0, the system undergoes a topological Lifshitz transi-
tion, corresponding to the merging of two Dirac points. At this point the
system exhibits quasiparticle excitations that disperse quadratically along
the direction the Dirac points were merged, and linearly in the other di-
rection. Similarly to the pure Dirac case, the density of states vanishes at
the semi-Dirac point, however with a modified dependence on the energy,
i.e. DOS(E) ∼

√
|E|. This means that the density of states near the nodal

point is enhanced compared with the Dirac case, which could result in novel
behaviour.

2.3.2 Family of nodal semimetals

We can generalise the above continum field theory to classify a d-dimensional
member of the family of anisotropic nodal semimetals by the number of dL
linear and dQ quadratic dispersing directions such that d = dL + dQ, e.g. a
2D semi-Dirac semimetal would be characterised by dL = 1 and dQ = 1. The
non-interacting Lagrangian for such a family would then take the following
form,

L0 = Ψ̄
(
∂τγ0 + ∂L · γL + (iv2

Q∂
2
Q + ∆)γQ

)
Ψ (2.33)

where we have defined ∂L = (∂1, . . . , ∂dL) and ∂Q = (∂dL+1, . . . , ∂dL+dQ). The
parameter vQ is related to the curvature of the quadratic dispersion. The
linear momenta couple to γL = (γ1, . . . , γdL), which together with γ0 and γQ
form a set of mutually anti-commuting gamma matrices, {γµ, γν} = 2δµν . To
incorporate short-ranged interactions, we can follow the same scheme that
was laid out in Sec.2.2. The fermionic effective field theory is gained from
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coarse-graining appropriate interactions coming from the lattice model, upon
which a Hubbard Stratonovich transformation is performed to obtain the full
interacting Lagrangian written in the Yukawa language of fermions coupled
to a dynamical order parameter field,

L = L0 + gφΨ̄Ψ +
1

2

(
−∂2

τ − c2∂ +m2
)
φ2 + λφ4, (2.34)

In this thesis, we consider a scalar order parameter field only. Such an Ising
order parameter, which is coupled to the σz Pauli matrix which in turn
anti-commutes with the non-interacting Hamiltonian, breaks the sub-lattice
symmetry and fully gaps the fermionic spectrum in the broken symmetry
phase.

E(k) =
√
k2
L + (v2

Qk
2
Q + ∆)2 + g2〈φ〉2, (2.35)

where kL = (k1, . . . , kL), kQ = (kdL+1, . . . , kdL+dQ), and k = (kL,kQ).
The parameter ∆ tunes the system through a topological phase transition

from a nodal-surface semimetal (∆ < 0) to a trivial band insulator (∆ > 0).
The nodes for ∆ < 0 are given by the dQ dimensional sphere k2

Q = −∆/v2
Q

for kL = 0. The experimentally most relevant cases are nodal line semimetals
for dQ = 2 and semimetals with a pair of isolated Weyl points for dQ = 1.

Since all quadratic directions couple to the same matrix γQ the dispersion
remains radially symmetric in the dQ subspace. A different class of semimet-
als can be defined in terms of spherical harmonics that couple to different γ
matrices [32, 34]. Such theories, which could describe rotational symmetry
breaking (nematic transitions) in the dQ subspace, are not considered in this
thesis.
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Chapter 3

Mean-field theory of the CDW
transition

In this section we utilise Landau’s free energy approach to study the phase
transition from a Dirac/semi-Dirac semimetal to a charge density wave (CDW)
insulator. The method for the mean-field free energy starting from a path
integration formulation follows closely arguments laid out in Chapter 4 of
[51].

The original work presented in this section first appeared in Quantum
criticality of semi-Dirac fermions in 2+1 dimensions, M. D. Uryszek, E.
Christou, A. Jaefari, F. Krüger, B. Uchoa, Physical Review B, 100, 155101
(2019)[37].

3.1 Landau’s free energy

Landau’s theory of phase transitions is centred around the concept of a local
order parameter φ and a free energy functional F . At a the critical point
of a phase transition the thermodynamic potential and its derivatives are
non-analytic (when expressed in terms of external parameters only). Lan-
dau’s idea was to re-express the potential in terms of the order parameter,
F (T, · · · ) → F (T, · · · , φ(T, · · · )), which itself is analytic (and small) near
the transition. The free energy could then be Taylor expanded in terms of
φ, collecting all terms allowed by symmetry.

F = F0 +
a

2
φ2 +

b

4
φ4 +O(φ6). (3.1)
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Landau then stipulated that the equilibrium state of the system would be
given by some of the order parameter that minimizes the free energy, i.e. φ∗

such that ∂F (φ)/∂φ|φ∗ = 0. The free energy would technically be a functional
and the derivative a functional derivative. However as a first step it is vital
to consider the simplest solution, i.e. one where the order parameter φ is
static in time and space. This is the so called mean-field solution.

3.1.1 Dirac fermions

In this section the mean-field solution for the CDW phase transition of Dirac
fermions will be presented using the functional field formulation. We start
off with the partition function for GNY theory in two spatial dimensions,
with the mean-field ansatz φ(r, τ)→ φ0,

Z =

∫
D
[
Ψ̄,Ψ

]
e−S[Ψ̄,Ψ], (3.2)

S
[
Ψ̄,Ψ

]
=
∑
n

∫ Λ

0

d2k

(2π)2
Ψ†(ωn,k) (−iωn + k · σ + gφ0) Ψ(ωn,k) (3.3)

+
∑
n

∫ Λ

0

d2k

(2π)2

m2φ2
0

2
(3.4)

The Hamiltonian in the above action is diagonalised with the use of a unitary
transformation, which also prompts a transformation of the fermionic fields
U †Ψ ≡ η. The result is an action that is diagonal in the single particle energy
eigenstates,

Z =

∫
D
[
η†a, ηa

]
exp

(
−m

2βΛ

2(2π)2
φ2

0 −
∑
n

∫ Λ

0

d2k

(2π)2
η†a,n(−iωn + εa(k))ηa,n

)
(3.5)

where a = ± and εa(k) = a
√
|k|2 + (gφ0)2. Now changing the sum over

the Matsubara frequencies to a product using properties of exponentials, we
then integrate out the fermionic fields. This is trivial since the diagonalisation
has decoupled the fields, and we can use Wick’s theorem. This results in the
following partition function,

Z = e
− m2βΛ

2(2π)2
φ2

0
∏
n

∫ Λ

0

d2k

(2π)2
(−iωn + εa(k)) (3.6)
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The free energy is related to the partition function by the following, relation
F = −T log(Z), we arrive at the following equation for the free energy,

F =
m2Λ

2(2π)2
φ2

0 − T
∑
n

∫ Λ

0

d2k

(2π)2
log (−iωn + εa(k)) (3.7)

The Matsubara sum can be done with the use of contour integration and a
suitably chosen distribution function (in this case the Fermi-Dirac distribu-
tion) to arrive at the following,

F =
m2Λ

2(2π)2
φ2

0 − T
∫ Λ

0

d2k

(2π)2
log
(
1 + e−βε(k)

)
. (3.8)

In the zero temperature limit the integral can be approximated by an integral
over the occupied energy band, which in the case of charge neutrality, is just
the lower band,

F =
m2Λ

2(2π)2
φ2

0 −
∫ Λ

0

d2k

(2π)2

√
|k|2 + (gφ0)2 (3.9)

=
m2Λ

2
φ2

0 +
g3|φ0|3

3
− (Λ2 + (gφ0)2)

3/2

3
. (3.10)

The appearance of a |φ0|3 term is a signature that already at mean-field level
the phase transition from a Dirac semimetal to a CDW insulator is distinct
from the ordinary Ising transition. The free energy is no longer an analytic
function of the order parameter. Physically the non-analytic term arises from
the gapless nature of the fermionic excitations.

Near the phase transition we can take φ0 to be small and therefore Λ�
gφ0. Using this expansion we can calculate φ0 which minimizes the free
energy,

∂F

∂φ0

= 0 =⇒ φ0

(
Λ(m2 − g2) + g3|φ0|

)
= 0. (3.11)

Hence we see that if m2 > g2 we are in the disordered phase where 〈φ0〉 = 0,
i.e the Dirac semimetal phase, while if m2 < g2 then 〈φ0〉 6= 0 and the
system is in the broken symmetry phase which in this case is the CDW
state. This illustrates why the bosonic mass m2 ∼ g2

(c) can be thought of
as the tuning parameter for the transition. The mean-field order parameter
exponent β can be obtained from the relation φ0 ∼ |(Vc − V )/Vc|βMF where

37



V is a parameter which drives the transition, in our case g2. Hence for the
Dirac semimetal to CDW insulator transition, we find that the mean-field
order parameter exponent βDirac

MF = 1, which is distinct from the exponent for
the Ising transition where βMF = 1

2
.

3.1.2 Semi-Dirac Fermions

We now present the same calculation but for the case of a semi-Dirac semimetal.
Accounting for the difference in the non-interacting dispersion compared to
the Dirac case, Eq.(3.9) becomes,

FSD =
m2Λ

2(2π)2
φ2

0 − T
∫
k2
L+k4

Q≤Λ2

dkLdkQ
(2π)2

√
k2
L + k4

Q + (gφ0)2, (3.12)

where as before kL denotes the linear momentum direction, and kQ denotes
the quadratic direction. Carrying out the integral one obtains

FSD = a(δg)φ2
0 + b|φ0|

5
2 +O(φ4

0). (3.13)

with δg = (g2
c − g2)/g2

c and a, b > 0. As in the case of relativistic Dirac

fermions, the mean-field free energy contains a non-analytic term, |φ0|
5
2 ,

which once again arises from the gapless nature of the excitations as well as
from the vanishing density of states at the nodal point. Minimizing FSD(φ0)
with respect to φ0 one obtains |φ0| ∼ |δg|βSD with βSD = 2.

It’s possible to further extend the description of this phase transition by
allowing the order parameter to vary in space, i.e. φ0 → φ = φ0 + δφ(r),
where δφ(r) is some small, long-wavelength modulations of the order param-
eter away from the mean-field configuration. Then this so-called Ginzburg-
Landau free energy would be a functional of the order parameter, and would
depend on its gradients.

For the case of semi-Dirac, an expansion in small k momentum of the
modulations, would give rise to terms [52]

q2
L

√
|φ|, q2

Q|φ|
3
2 . (3.14)

From these we can estimate the correlation lengths ξL and ξQ along the linear
and quadratic dispersing directions respectively. Since

ξ−2
L |φ0|

1
2 ' ξ−2

Q |φ0|
3
2 ' |δg|φ2

0 (3.15)
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by dimensional analysis, that leads to the quantum critical scaling

ξ2
L ∼ |φ0|−

3
2 |δg|−1 ∼ |δg|−(1+ 3

2
βMF), (3.16)

and
ξ2
Q ∼ |φ0|−

1
2 |δg|−1 ∼ |δg|−(1+ 1

2
βMF). (3.17)

Using βMF = 2, this simple scaling analysis of the mean-field free energy
yields the correlation length exponents νL = 2 and νQ = 1.

The anisotropic scaling of the correlation length along the linear and
quadratic directions could have very interesting implications for ordered
phases in the vicinity of the quantum critical point. In general, the order
parameter becomes relatively softer to spatial modulations along the direc-
tion where the quasiparticles have parabolic dispersion, and more rigid in
the other direction, permitting the emergence of modulated order and stripe
phases [52]. In the superconducting case, the system may effectively respond
to a external magnetic field as a type II superconductor in one direction and
as a type I in the other [52]. This unconventional state could stabilize stripes
of magnetic flux rather than conventional vortex lattices.
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Chapter 4

Introduction to Perturbative
Renormalisation Group

In this chapter we introduce the concepts behind the theory of Renormalisa-
tion Group in Sec. 4.1. Then we use Wilson’s momentum shell implementa-
tion to analyse the φ4 theory near the upper critical dimension in Sec. 4.2.
The famous ε-expansion is also introduced.

4.1 RG basic concepts

Here we introduce the theory of Renormalisation Group (RG) of phase tran-
sitions as first formulated by Wilson [8, 53], a detailed explanation of the
concept can be found in Refs. [6, 54].

In condensed matter we are usually concerned with physics at low ener-
gies and large length scales, as the long-distance behaviour of a correlation
function contains information about any symmetry breaking and therefore
the underlying phase. The theory of RG aims to access the low energy be-
haviour by a successive decimation of short-distance/high-energy degrees of
freedom, followed by a rescaling of the theory such that the long-distance
behaviour remains unchanged. This effectively results in a “flow” of the cou-
pling constants of the theory. Following this so called “RG” flow to longer
and longer length scales, the couplings will flow to asymptotic values (known
as fixed points). If the values of the couplings at this fixed point are zero
or infinite then it corresponds to a stable phase. If on the other hand the
solution to the flow equations is finite then the fixed point corresponds to a
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continuous phase transition. Thus with the use of the decimation of high en-
ergy modes, and rescaling of momenta and fields we aim to find and classify
RG fixed points.

RG transformation

At a critical point between a disordered and an ordered phase the correlation
length ξ diverges (for an infinite sized system), and so any two points are
infinitely correlated (i.e. there is no intrinsic length scale in the system),
hence under a scale transformation

τ ′ = τe−z`, x′i = xie
−` (4.1)

we would expect the system to be invariant. Here the factor of z, known
as the dynamical exponent, serves to account for any difference in scaling
between the spatial directions, xi, and the imaginary time, τ .

For infinitesimal transformations it is valuable to introduce the notion of
a scaling dimension of a parameter X, where under the transformation in
Eq. (4.1), it scales as

X ′ = Xe[X]δ`, (4.2)

which defines [X]. The scaling dimension allows to characterise the nature
of a small perturbation of the parameter to a particular RG fixed point. The
sign of the scaling dimension classifies whether the parameter is a relevant
([X] > 0), irrelevant ([X] < 0), or a marginal ([X] = 0) perturbation. Hence
a fixed point is said to be stable if all symmetry breaking perturbations at
the critical point are irrelevant, and unstable if there is at least one relevant
perturbation.

Momentum-shell RG

In the momentum shell formulation of RG, there are three steps: (a) we are
interested in long-distance physics so the degrees of freedom are separated
into slow modes ψ<(k) where |k| < Λe−δ` and fast modes ψ>(k) where
Λe−δ` < |k| < Λ (b) integrate out the fast modes while preserving the form of
the action, i.e. renormalise the set of couplings {gi} (c) rescale the slow fields
and the momenta up to the original kinematic region. Under a successive
infinitesimal decimation of the fast modes within the above cycle, the flow
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of the couplings can be described by a set of coupled differential equations,

d

d`
gi = f({gi}) (4.3)

which are in the literature known as the β-equations. The solution of these
flow equations will lead to critical points and their characteristics.

Critical exponents

While at the phase transition the correlation length diverges, in its vicinity
it follows a power law,

ξ ∼ |g − gc|−ν (4.4)

where g is a dimensionless coupling of the underlying Hamiltonian that tunes
through the critical point where g = gc, and ν is the correlation length
exponent. Additional power laws define other critical exponents, like the
order parameter exponent β; phase transitions that posses identical critical
exponents are said to be in the same universality class.

4.2 φ4 theory of phase transitions

We now illustrate Wilson’s momentum shell renormalisation group procedure
for the simplest interacting field theory that describes a phase transition, i.e.
the theory of a single fluctuating scalar field φ in d-dimensions known as the
φ4 theory. It’s partition function is given by,

Z =

∫
D[φ(k)]e−S[φ(k)] (4.5)

where the action in momentum space is

S = Sφ + Sλ (4.6)

Sφ =
1

2

∫ Λ

0

ddk

(2π)d
(
k2 +m2

)
φ2(k) (4.7)

Sλ = λ

∫ Λ

0

∏
i=1,2,3,4

ddki
(2π)d

φ(k1)φ(k2)φ(k3)φ(k4)×

× δ(k1 + k2 + k3 + k4) (4.8)
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where k = (k1, · · · , kd) is a d-dimensional vector, k2 = |k|2, and Λ is the UV
cut-off which is inversely proportional to the lattice constant ∼ 1

a
.

There are a plethora of models which after coarse graining take the form
of the φ4 theory - generally any system whose long-range behaviour can
be described by a scalar order parameter. The simplest model is that of
the classical d-dimensional Ising model, which itself describes the magnetic
transition of Ising spins on a lattice.

4.2.1 Tree level scaling

We first define the elementary RG transformation rules, i.e. how the mo-
menta and the bosonic field rescale,

k′ = ke−δ` (4.9)

φ(k) = φ′(k′)e−∆φδ`/2 (4.10)

where the critical dimension ∆φ = [φφ] + ηφ contains the tree-level informa-
tion as well as the anomalous rescaling.

Requiring that the
∫
k2φ2 is invariant under the RG transformation, sets

[φφ] = −(d+ 2), while a similar calculation results in [m2] = 2. This means
that under the successive decimation of high energy modes, the bosonic mass
will keep increasing in value, i.e. it is a relevant coupling under the RG flow.
Worth noting that this is the case for any spatial dimension d. As showcased
in Sec. 3.1, the bosonic mass acts at the tuning parameter for the transition.

Meanwhile the tree level scaling of the quartic term [λ] = 4 − d, tells us
that the interaction is relevant in d < 4, marginal in d = 4, and irrelevant
in d > 4. This sets the upper critical dimension of this action to be four
spatial dimensions, as when we’re above it the φ4 term is irrelevant and can
be discarded, and the critical exponents are of mean-field character.

4.2.2 Cumulant Expansion

We now separate the bosonic fields, into fast φ> and slow fields φ<, which
are defined over |k| < Λe−d` and Λe−d` < |k| < Λ respectively. The action
then takes the form,

Z =

∫
D[φ<, φ>]e−S[φ<]−S[φ>]−Sint[φ<,φ>] (4.11)
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where Sint mixes the fast and the slow fields. The aim now is to integrate out
the fast fields, in order to obtain an action in terms of the slow fields only.
To achieve this we take the average with respect to the fast fields,

Z =

∫
D[φ<]e−S[φ<]

〈
e−Sint[φ<,φ>]

〉
>

(4.12)

where 〈· · · 〉> denotes an average with respect to the fast fields. As it’s not
trivial to perform an average of an exponential, a perturbative expansion in
the coupling λ is performed. The average of the resulting Taylor series can
be then evaluated using Wick’s theorem.

Z =

∫
D[φ<]e−S[φ<]

〈
∞∑
n=1

(−1)n(Sint)
n

n!

〉
>

(4.13)

Each term in the series can be represented by a Feynman diagram, with
n external legs which represent the slow fields. By re-exponentiating the
average it is then possible to use the linked-cluster theorem to exchange the
sum over all possible diagrams to a sum of diagrams that are connected (con.)
and one particle irreducible (1PI).

Z =

∫
D[φ<] exp

−S[φ<] +

〈
∞∑
n=1

(−1)n(Sint)
n

n!

〉1PI, con.

>

 (4.14)

=

∫
D[φ<] exp

− (S[φ<] + δS[φ<])︸ ︷︷ ︸
S′

 (4.15)

Essentially it is now possible to organise the series in the number of internal
loops of the Feynman diagrams as higher loops will come with higer powers
λ. At one loop order, the perturbative corrections for the φ4 theory, Eq.(4.6),
would take the following form,

δSone loop = 〈Sλ〉> −
1

2
〈S2

λ〉>. (4.16)

The two corrections are reproduced diagramatically in Fig. 4.2.3 where as
we’ll see the bosonic mass m2 and the quartic interaction strength term λ
are renormalised, m2 → (m2)′ and λ→ λ′,

S → S ′ =
∫

(k2 + (m2)′)φ2 + λ′
∫
φ4. (4.17)
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(a) (b)

Figure 4.1: Diagrams that contribute at one-loop level to the renormalisation
of the φ4 action. (a) 〈Sλ〉 : contains two external legs, which means that it
renormalises the bosonic propagator, a zero momentum diagram means that
only the bosonic mass is impacted (b) 〈S2

λ〉 : renormalises the quartic term,
evaluated at zero external momentum.

4.2.3 RG at one-loop order

We now present the perturbative RG calculation up to one loop order. To
calculate the corrections the following bosonic propagator is used,

〈φ(k)φ(q)〉 = Gφ(k)δ(k + q) =
δ(k + q)

k2 +m2
(4.18)

The diagram in Fig. 4.2.3(a) evaluates to

〈Sλ〉 = 6λ

∫ Λe−δ`

0

|φ(k)|2 ddk

(2π)d

∫ Λ

Λe−δ`
Gφ(q)

ddq

(2π)d
(4.19)

where φ’s are the slow fields defined over |k| < Λe−d`, and the factor of 6
comes from the number of combinations the fast fields can be contracted.
There is no external momenta in the shell integral, hence the correction
couples to and renormalises the zero momentum term, i.e. the bosonic mass.
In the limit that d` � 1, the shell integral over the bosonic propagator is
trivial and results in the following correction

〈Sλ〉 =
1

2

∫
|φ(k)|2 12Sd

Λdd`

Λ2 +m2
λ. (4.20)

Here Sd denotes the surface area of a d-dimensional unit sphere,

Sd =
1

(2π)d
2πd/2

Γ(d/2)
(4.21)
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Hence we find the change in the bosonic mass,

(m2)′ = m2 + 12Sd
Λdd`

Λ2 +m2
λ. (4.22)

Now coupling this correction with the last step of the RG process, i.e. rescal-
ing up to the original momentum range, we arrive (using the fact that
[m2] = 2) at the RG equation for the bosonic mass,

dm2

d`
= 2m2 + 12Sd

Λd

Λ2 +m2
λ (4.23)

To complete the renormalisation group treatment, we tackle the (b) diagram
in Fig.4.2.3,

−1

2
〈S2

λ〉 = −36Sd
Λdd`

(Λ2 +m2)2
λ2

∫ Λe−δ`

0

ddki
(2π)4d

φ(k1)φ(k2)φ(k3)φ(−k1 − k2 − k3)

(4.24)

after rescaling ([λ] = 4− d), we arrive at the RG equation for the φ4 term

dλ

d`
= (4− d)λ− 36Sd

Λd

(Λ2 +m2)2
λ2 (4.25)

Equations (4.23) and (4.25) are the so-called β-equations for the running
parameters of our theory.

4.2.4 Fixed points of the RG flow

As we will see the system of coupled equations supports two fixed points,
i.e. points for which the RG flow is stationary. The trivial (Gaussian) fixed
point for which both the bosonic mass m2 and quartic interaction λ are zero.

However when we consider what happens away from the Gaussian fixed
point we run into a problem. We have computed the flow using a perturbative
expansion in λ and considered only diagrams up to one-loop order. However
below the upper critical dimension such considerations might not be valid
anymore as the quartic interaction is relevant and the RG flow increases λ,
especially near the physical dimension of interest d = 3.

Wilson and Fischer in their famous paper [55] investigated the flow with
the use of a controlled small parameter ε which denotes the deviation from
the upper critical dimension,

ε ≡ 4− d. (4.26)
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While the shell integrals depend on d the number of dimensions, there is no
constraint on whether it’s continuous or discrete. Close to the upper critical
we are then able take ε � 1 and retain terms of O(ε), which results in the
following flow equations

dm2

d`
= 2m2 + 12S4

Λ4

Λ2 +m2
λ̃+O(ε2) (4.27)

dλ̃

d`
= ελ̃− 36S4

Λ4

(Λ2 +m2)2
λ̃2 +O(ε2) (4.28)

where we’ve redefined λ̃ = Λ−ελ. The ε-expansion also motivates the expan-
sion in the number of loops of Feynman diagrams, e.g. two-loop diagrams
scale as ε2. These coupled RG equations support two fixed points, the previ-
ously mentioned Gaussian fixed point as well as the celebrated Wilson-Fisher
fixed point,

m2
∗ = −1

6
Λ2ε, λ̃∗ =

2π2

9
ε. (4.29)

As long as ε is small, then the value of the quartic interaction at the fixed
point will be small as well, ensuring the self-consistency of the expansion.

Stability of fixed points

To gain an understanding of the RG flow, it is imperative to investigate it
in the vicinity of the fixed points. This can be done so by linearising the
RG equations. Let K∗ = (m2

∗, λ̃∗) denote the critical values of the couplings,
such that near the fixed point K = K∗ + δK. The flow is then

βα(K) =
dK

d`
=
d (K∗ + δK)

d`
=
d(δK)

d`
=
dβα(K)

dK

∣∣∣∣
K∗

δK (4.30)

where βα is the beta-equation (RG flow) for the coupling α. For the case of
the Wilson-Fisher fixed point the stability matrix is,

d

dl

δm2

δλ̃

 =

 2− ε

3

(6 + ε)Λ2

4π2

0 −ε


δm2

δλ̃

 , (4.31)

Diagonalising the matrix, we find two eigenvalues

µ1 = 2− ε

3
+O(ε2), µ2 = −ε+O(ε2), (4.32)
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WF f.p.

Gaussian f.p.

Figure 4.2: The flow diagram of the RG equations for the φ4 theory. The
Gaussian fixed point where (m2, λ̃) = (0, 0) is unstable to both the bosonic
mass and the quartic interactions. While the Wilson-Fisher fixed point where
(m2, λ̃) = (−1

6
Λ2ε, 2π2

9
ε) has one relevant direction and one irrelevant.

with new respective eigencouplings w1,2, which are linear combination of the
original couplings m2 and λ̃, the behaviour of which near the critical points
is governed by the flow equation dwi/d` = µiwi. Hence we see that as µ2 is
negative for any ε, the coupling w1 will always flow back to the Wilson-Fisher
fixed point, i.e. it’s an irrelevant pertubation. This means that the theory
near the fixed point reduces to just the flow of one relevant coupling, namely
w2. This can be seen clearly in Fig. 4.2.4.

We can then associate this relevant coupling with the reduced tempera-
ture w2 ∼ t = |T −Tc|/Tc which measures the deviation away from criticality
and is the relevant direction at the classical Wilson Fisher point. As we
move away from the fixed point we introduce a length scale into the system,
commonly known as the correlation length, which scales as

ξ ∼ t−ν = t−1/µ2 . (4.33)
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Hence we find that the correlation length exponent is

ν =
1

µ1

=
1

2
+

ε

12
+O(ε2). (4.34)

The critical exponent for the scaling of the specific heat is given by the
“hyperscaling relation”, α = 2− dν,

C ∼ t−α where α =
ε

6
+O(ε2). (4.35)

Further critical exponents require calculation of higher loop diagrams, which
enable the renormalisation of the momenta terms in the bosonic propagator.
This in turn allows for the calculation of the bosonic anomalous dimension
ηφ, from which the rest of the critical exponents follow.

While we’ve only established the existence of the Wilson-Fisher fixed
point for small ε, it is instructive to consider what happens at the the di-
mension of interest to us, i.e. d = 3 for which ε = 1. Qualitatively we
might think that the picture of an interacting fixed point persists even as the
pertubation theory breaks down. Sophisticated techniques like conformal
bootstrap and ε-expansions up to fifth order in ε have confirmed this suspi-
cion [56, 57, 58, 59, 60]. Moreover, amazingly the one-loop critical exponents
evaluated at ε = 1 are quite close to more accurate values evaluated with the
aforementioned methods. This portrays the power of the ε-expansion.

49



Chapter 5

RG approach to interacting
Dirac fermions

The original work presented in this Chapter first appeared in Fermionic
criticality of anisotropic nodal point semimetals away from the upper criti-
cal dimension: Exact exponents to leading order in 1

Nf
, M. D. Uryszek, F.

Krüger, E. Christou, Physical Review Research, 2, 043265 (2020)[38].

5.1 Introduction

The discovery of topological insulators has led to an explosion of research into
topological aspects of electronic band structures in two and three dimensions
[13, 14]. In the so-called nodal-point semimetals, valence and conduction
bands touch at a number of discrete points in the Brillouin zone. The most
fundamental members of this family are Weyl or Dirac semimetals [9, 10,
11], which exhibit relativistic low-energy excitations that are protected by
topology and symmetry.

Semimetals with point-like Fermi surfaces provide the simplest setting
to study fermionic quantum criticality. Quantum phase transitions can be
driven by sufficiently strong short-range electron-electron interactions in the
underlying lattice model. Depending on the nature of the microscopic in-
teractions, this can lead to various types of symmetry breaking, resulting in
rich phase diagrams with antiferromagnetic, charge-density wave, and bond-
ordered phases, as studied in great detail for extended Hubbard models on
the honeycomb lattice [61, 47, 62, 63, 48, 64, 65, 66, 67, 68]. Irrespective of
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the particular order, the spontaneous symmetry breaking generically leads
to the opening of a gap in the fermion spectrum and is therefore concurrent
with semimetal-insulator transitions.

The universality of a particular transition can be studied using an effec-
tive field theory that is derived through a Hubbard-Stratonovich decoupling
of the interaction vertex in the relevant channel, followed by the conven-
tional coarse graining procedure. This results in a dynamical bosonic order-
parameter theory which is coupled to the gapless fermion excitations. In the
purely relativistic case of Dirac fermions, this is known as the Gross-Neveu-
Yukawa (GNY) theory [30, 31, 69], which describes chiral symmetry break-
ing and spontaneous mass generation in high-energy physics [49, 50]. The
coupling between the order parameter fields and the gapless Dirac fermions
leads to novel fermion-induced critical behavior that falls outside the Landau-
Ginzburg-Wilson paradigm of a pure order parameter description [70].

Wilson’s momentum shell implementation of the theory Renormalisation
Group (RG) has been extremely successful in discerning the existence of criti-
cal points of phase transitions and in calculating their properties. e.g. critical
exponents. It’s most famous approach being the ε-expansion; a framework
first developed by Wilson and Fisher [55], that has been effective in systems
near the upper critical dimension (UCD). However without going to high
loop order and resummation of divergent series the expansion is unlikely to
be controlled when ε ∼ O(1). This is a pressing problem as most interesting
condensed matter systems are away from the upper critical dimension where
quantum fluctuations are strong.

An alternative perturbative approach within the naive momentum shell
framework has been to work directly in the physical dimension and generalise
to a large number Nf of fermionic flavours. At which point one can either
integrate out the fermions to obtain an effective action in the order parameter
[71, 72], or naively perturb in 1/Nf in the composite fermion and boson
picture. The former approach is not applicable to systems that host gapless
fermionic and bosonic excitations at the critical point (i.e. systems that
exhibit fermionic quantum criticality), as obtained bosonic action is non-
analytic [73]. While the latter naive approach has resulted in disparate results
across nodal-point semimetal literature [74, 75].

The correct procedure within the large Nf formulation (which has not al-
ways been followed in the nodal-point semimetal field) is to compute bosonic
and fermionic self-energies in a self-consistent scheme and to use the dressed
dynamical propagators as input in subsequent RG calculations, as explained
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in Ref. [40]. Such an approach was commonly used to understand quantum
critical behaviour of metals [76, 77, 78, 79, 80, 81, 82, 83], although it was
later shown that the 1/Nf expansion fails at higher-loop order in systems
with a full two-dimensional Fermi surface [84].

The necessity to use a dressed boson propagator is not a mere technical
issue. It is intimately linked to the phenomenon of Landau damping of order-
parameter fluctuations by gapless electronic particle-hole excitations. This
damping is known to completely change the long-wavelength behaviour of
the system, leading to distinct critical behaviour. In itinerant ferromagnets,
long-range spatial correlations associated with the Landau damping of the
order parameter field generate a negative, non-analytic contribution to the
static magnetic susceptibility, rendering the Hertz-Millis-Moriya theory [71,
72] unstable towards first-order behaviour or incommensurate order [85].

We demonstrate that the use of an incorrect bosonic IR propagator gives
rise to non-universal results that depend on the UV cutoff scheme. In turn,
enforcement of cutoff independence leads to the correct scaling form of the
bosonic IR propagator, which is given by the full RPA fermion loop re-
summation.

Using the soft cutoff approach with the dressed order-parameter propa-
gator, we compute the exact critical exponents for relativistic Dirac (1 < d =
dL < 3) fermions to leading order in 1/Nf , and to all loop orders.

In this chapter we tackle the isotropic relativistic (i.e. Dirac) case to illus-
trate the problem of unphysical cutoff dependence, to introduce the method-
ology of our approach in a simplified setting, and to demonstrate that our
approach reproduces the critical exponents obtained by conformal bootstrap
[86, 87, 88] and other methods [89, 90, 91]. The anisotropic case will be
investigated in Chapter 6.

Firstly, in Sec. 5.3 we analyse the tree level scaling of the GNY theory
of Dirac fermions, generalised to large number Nf of fermion flavours. Then
in Sec. 5.5 we show that perturbative momentum shell RG leads to non-
universal, cut-off dependent results, as it does not correctly account for this
non-analytic structure. In turn in Sec. 5.5, using a completely general soft
cut-off formulation, we demonstrate that the correct IR scaling of the dressed
bosonic propagator can be deduced by enforcing that results are independent
of the cut-off scheme. Using the soft cut-off RG with the dressed dynamical
RPA boson propagator, in Sec. 5.6 we compute the exact critical exponents
and compare with previous literature. Lastly, in Sec. 5.7 we look at the
connections between the ε-expansion and the soft-cut off approach near the
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upper critical dimension.

5.2 GNY theory of Dirac fermions

For ease of reading we lay out the GNY action in momentum space and in
D = d + 1 dimensions, where d denotes the number of spatial dimensions
(for the Lagrangian see Eq. (2.30)),

S = SΨ + Sφ + Sg + Sλ, (5.1)

SΨ = −i
∫
dk Ψ̄(ω,k) (ωγ0 + vk · γ) Ψ(ω,k) (5.2)

Sφ =
1

2

∫
dk (ω2 + c2|k|2 +m2)|φ(ω,k)|2 (5.3)

Sg =
g√
Nf

∫
dkdq φ (Ω, q) Ψ̄ (ω + Ω,k + q) Ψ(ω,k) (5.4)

Sλ = λ

∫ ∏
i=1,2,3,4

dki φ(k1)φ(k2)φ(k2)φ(k4)δ(k1 + k2 + k3 + k4). (5.5)

where the measure is defined as∫
dk =

∫ ∞
−∞

dω

2π

∫ Λ

0

ddk

(2π)d
(5.6)

and v and c are the fermionic and bosonic velocities respectively, and δ(ki +
· · · ) is the standard Dirac-delta distribution. To gain analytic control we
have generalised to Nf -component Dirac fields, Ψ = (Ψ1, · · · ,ΨNf ). The
Dirac γ matrices anticommute, {γµ, γν} = 2δµν for µ, ν = 0, · · · , d where
γ = (γ1, · · · , γd) and the identity matrix is implicit. From this it follows that
Tr(γµγν) = Nfδµν . Using this convention, the case of spinless fermions on the
honeycomb lattice corresponds to d = 2 and Nf = 4, where it is customary
to use the “graphene” representation, presented in Eqs. (2.25) - (2.29). We
could then generalise to N flavours of these four-component fermions using
γµ → γµ ⊗ IN where IN is the N -dimensional identity matrix, such that
Nf = 4N . The order parameter mass m2 is an RG relevant perturbation
that tunes through the quantum critical point m2 ∼ Vc − V . In contrast,
although the Yukawa coupling g and the self-interaction λ are relevant at
the non-interacting (Gaussian) fixed point, they are understood to flow to
an infrared fixed point (g∗, λ∗) in the critical plane m2 = 0.
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5.3 Tree-Level Scaling

We start the scaling analysis by defining the transformation of momenta and
frequency,

ω′ = ωe−zδ`, k′ = ke−δ`, (5.7)

where z is the dynamical exponent. We define the rescaling of the fields as

Ψ(k) = Ψ′(k′)e−∆Ψδ`/2, (5.8)

φ(k) = φ′(k′)e−∆φδ`/2, (5.9)

where ∆Ψ = [Ψ̄Ψ] + ηΨ and ∆φ = [φφ] + ηφ are the critical dimensions of
the fermionic and bosonic fields, respectively. Requiring that the full action,
Eq. (5.1), is invariant under the above field and momentum rescaling, we
arrive at the following tree-level dimensions,[

Ψ̄Ψ
]

= −(d+ 2z), [φφ] = −(d+ 3z)

[v] = z − 1, [c] = z − 1, [g] =
3z − d

2
, [λ] = 3z − d,

(5.10)

where the fermionic and bosonic field rescaling was chosen such that the fre-
quency terms in SΨ and Sφ respectively were invariant, as is the convention.
We see that at tree-level if z = 1 then both the fermion and boson veloci-
ties are marginal, and the theory is Lorentz invariant at the Gaussian fixed
point. Whereas the Yukawa vertex g and the φ4 vertex are both relevant
perturbations at the non-interacting fixed point for d < 3, and irrelevant for
d > 3. Hence d = 3 is called the upper critical dimension, where if above it
the critical exponents reduce to their mean-field values.

5.4 Breakdown of naive Wilson RG

Momentum shell RG as first espoused by Wilson has been highly successful in
bosonic theories like the well known φ4 theory and in problems near the upper
critical dimension. However as we will show, the naive formulation breaks
down for the case of Dirac fermions coupled to an Ising order parameter
away from the upper critical dimension. The GNY model at the quantum
critical point possesses an emergent Lorentz invariance in 1 < d < 3 that is
characterised by a dynamical exponent z = 1 and a global terminal velocity,
as has been observed with both the one-loop ε = 3 − d expansion of the

54



(a) cylindrical (b) spherical

Figure 5.1: Wilson’s infinitesimal shell RG integration schemes in d = 2
spatial dimensions, at the cutoff scale Λ: (a) cylindrical and (b) spherical.
Here k0 and k = (k1, k2) denote frequency and momenta, respectively.

effective Gross-Neveu-Yukawa (GNY) field theory [31] and lattice quantum
Monte Carlo [69]. Here we analyse the GNY theory in 1 < d < 3 dimensions,
using Wilson’s momentum-shell RG with two different cutoff schemes, as
shown in Fig. 5.1. Although the universal long-wavelength behaviour should
be independent of the choice of the cutoff scheme, we demonstrate that this is
not the case within the perturbative momentum-shell framework. Using the
cylindrical scheme in Fig. 5.1(a), where the UV cutoff only acts on the spatial
momentum directions and frequency is integrated over the whole real axis,
we find an apparent violation of emergent Lorentz invariance. On the other
hand, treating frequency and momenta on an equal footing and imposing
an isotropic spherical cutoff in D = d + 1 space-time dimensions, as shown
in Fig. 5.1(b), we do find emergent Lorentz invariance. To illustrate the
breakdown of Lorentz invariance, it is sufficient to only study the flow of the
Fermi velocity v and the order parameter velocity c in the vicinity of the GNY
fixed point. We obtain the velocity RG equations at one-loop order, using
Wilson’s momentum-shell RG. In this approach, modes of highest energy
near the ultraviolet cutoff scale Λ, corresponding to infinitesimal shells in
Matsubara frequency ω and momentum k = (k1, . . . , kd), are integrated out.
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(a) (b)

Figure 5.2: One-loop self energy Feynman diagrams for the velocity RG
equations. The fermion propagator is denoted by the arrowed line. The
order parameter boson propagator is denoted by the wavy line.

We consider the shell schemes displayed in Fig. 5.1,

(a) cylinder: −∞ < ω <∞, Λe−δ` < |k| < Λ, (5.11)

(b) sphere: Λe−δ` <
√
ω2/v2 + k2 < Λ. (5.12)

This is followed by the rescaling transformation as espoused in Eq. (5.7).
The quantum corrections are calculated from the one-loop fermion and

boson self energy diagrams displayed in Fig. 5.2.
Using the cylindrical cutoff scheme, the resulting RG equations for the

velocities are given by(
dv

d`

)
cyl

= v

(
z − 1− g2 2(v − c)− (d− 3)c

2Nfvc(v + c)2

)
, (5.13)(

dc

d`

)
cyl

= c

(
z − 1− g2d(c2 − v2)− (d− 3)v2

16dv3c2

)
, (5.14)

where we have made the rescaling SdΛ
d−3g2 → g2. Here Sd denotes the

surface area of the d-dimensional unit sphere,

Sd =
1

(2π)d
2π

d
2

Γ(d/2)
. (5.15)

On the other hand, using the spherical cutoff scheme in D = d + 1 di-
mensions, we obtain the velocity RG equations(

dv

d`

)
sph

= v

(
z − 1− g2 I1

(
c
v

)
− I0

(
c
v

)
Nfv3

)
, (5.16)(

dc

d`

)
sph

= c

(
z − 1− g2 (D − 2)(c2 − v2)

2Dv3c2

)
, (5.17)
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where we have made the rescaling SDΛD−4g2 → g2 and defined the angular
integrals Iµ(x) over the D-dimensional unit sphere (k̂2

0 + k̂2 = 1),

Iµ(x) =
1

SD(2π)D

∫
dΩ̂

1− 2k̂2
µ

k̂2
0 + x2k̂2

. (5.18)

From inspection of the (a) cylindrical (5.13, 5.14) and (b) spherical (5.16, 5.17)
RG equations in d < 3, it is clear that z = 1 and c = v (for finite g) is not a
fixed point solution for (a), but is a solution for (b). Therefore the putative
emergent Lorentz invariance (z = 1, c = v) is violated for (a), but is satisfied
for (b). This is the case even for Nf →∞ where the solution for (a) is z = 1,
c = v(2 − 3/d). Naturally, each scheme will obtain a different set of critical
exponents. However, for the ε = 3 − d expansion, where g2

∗ ∝ ε, Lorentz
invariance emerges for both shell schemes, which also share the same set of
critical exponents. The fact that Lorentz invariance emerges in the spherical
scheme is a manifestation of the scheme itself, where already a symmetry
between the momentum and the frequencies has been hard encoded.

This discussion demonstrates that away from the upper critical dimen-
sion, the perturbative loop expansion can lead to physically distinct conclu-
sions at the same critical fixed point. Seemingly, the notion of universality
breaks down, and the results depend on the way the cutoff RG scheme is
implemented. We resolve this apparent pathology in the next section, where
we identify the conditions for quantum corrections that are independent of
the RG scheme.

5.5 Soft cutoff approach

Here we apply a completely general soft cutoff RG scheme to obtain the con-
ditions for quantum corrections to be independent of the cutoff scheme, and
therefore universal. We prove that for interacting Dirac fermions Eq. (5.1)
away from the upper critical dimension, cutoff independent corrections are
only obtained with a non-analytic order parameter propagator that scales as
kd−1 in d spatial dimensions.

Remarkably, such dynamics arise from Landau damping by the gapless
fermionic excitations, which is captured by the RPA resummation of fermion
loop diagrams. Crucially, this non-perturbative effect is a product of the IR
(k → 0) modes that are not typically accessible by perturbative means, such
as the integration over infinitesimal shells.
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With the soft cutoff RG procedure, we demonstrate the emergence of
Lorentz invariance and calculate the GNY critical exponents in general di-
mensions to leading order in Nf . We find exact agreement with previous
results using the large Nf conformal bootstrap [87, 92] and the critical point
large Nf formalism [89, 90, 91].

5.5.1 General cutoff function

Following Refs. [93, 94, 95, 96, 97], we introduce the ultraviolet cutoff by
means of a completely general, smooth, soft cutoff function,

A(z) ∼ exp(−zn) (n > 0),

A(z → 0) = 1, A(z →∞) = 0.
(5.19)

Within this description, the hard cutoff function is captured by n→∞.
The soft cutoff procedure is implemented by augmenting the fermion and
boson propagators with the cutoff function at the cutoff scale Λ,

GΨ,φ(k)→ GΨ,φ(k)A

(
aµk

2
µ

Λ2

)
= GΨ,φ(k)Ak, (5.20)

where we define the D = d + 1 dimensional kµ = (ω,k) = (k0,k) (the
Matsubara frequency has been redefined ω = k0 for notational simplicity)
and we use implicit summation over repeated µ, ν = 0, . . . , d, such that
k2 = kµkµ. In the following we use the Ak notation for simplicity.

Although implicitly captured by the general definition of A, we explicitly
include aµ to make reference to the different cutoff schemes introduced in
Sec. 5.4: the cylindrical RG scheme corresponds to a0 = 0, aµ 6=0 = 1, whereas
in the spherical scheme a0 = 1/v2, aµ6=0 = 1.

The quantum corrections to RG equations are then obtained by taking the
logarithmic derivative in the cutoff scale Λ d

dΛ
of the one-particle irreducible

vertex functions. This is equivalent to the derivative d
d`

in the shell scheme
with ` = log(Λ/Λ0).

5.5.2 Cutoff independence

Whilst Dirac fermions are fundamental objects that propagate as

GΨ(k) = i
k0γ0 + vk · γ
k2

0 + v2k2
, (5.21)
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the effective order parameter fields are not, and hence we should not nec-
essarily expect them to adhere to the bare analytic dynamics of Eq. (5.3).
Instead, we define a general homogeneous form of the boson propagator (at
m2 = 0),

Gφ(k) =
Gφ(k̂)

ynφ
, (5.22)

where k = yk̂ with k̂2 = 1.
Now we determine the required scaling form of Gφ (through a constraint

on nφ) to achieve cutoff scheme independent RG equations. To do so, it is
sufficient to calculate the quantum corrections from the one-loop fermion self
energy diagram in Fig. 5.2(b),

d

d`
Σ(q) = −Λ

d

dΛ

g2

Nf

∫
k

GΨ(k + q)AkGφ(k)Ak, (5.23)

where
∫
k

=
∫∞
−∞ d

Dk/(2π)D. Notice that the external q dependence has been
excluded from the cutoff function, and instead A only regulates the internal
k integral. This is perfectly consistent with the conventional procedure in
the hard cutoff RG.

After expanding the right-hand side of Eq. (5.23) to linear order in the ex-
ternal qµ, taking the logarithmic derivative and enacting the transformation

k = yk̂ = ỹΛk̂, we obtain

d

d`
Σ =

4iqµγµ
Λnφ+2−D

∫
Ω̂

∫ ∞
0

ỹDdỹ

ỹnφ+1
(2k̂2

µ − 1)aν k̂
2
νĜφA

′A, (5.24)

where A = A(ỹ2aµk̂
2
µ), Ĝφ = Gφ(k̂) and

∫
Ω̂

is the (D−1) dimensional angular
integral scaled by (2π)D. Note that in the above we have rescaled units such
that v = 1. It is simple to extract the cutoff independence by insisting
that the result does not contain the UV cutoff scale Λ, which provides the
constraint,

nφ = D − 2 = d− 1. (5.25)

Imposing this constraint, the radial integral can be evaluated for a general
A and will result in a correction that is independent of aµ (i.e. spherical or
cylindrical schemes). In contrast, if the constraint is not satisfied, the integral
in Eq. (5.24) will depend on the explicit form of the cut-off function A, and
cannot possibly contribute to universal phenomena.
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In fact, cutoff independence of a quantum correction to the RG equations
that corresponds to a diagram with N internal D-dimensional momenta can
be determined by inspection of the scaling in the global radial coordinate
y, k1 = yk̂1, k2 = yx2k̂2, . . . kN = yxN k̂N . Such a quantum correction is
independent of the cutoff scheme, and therefore universal, if the integrand
scales as 1/y. This follows from the identity

Λ
d

dΛ

∫ ∞
0

dy

y

∏
i

Ani
(
y2fi
Λ2

)
= 1, (5.26)

for positive integers ni and non-trivial angular functions
fi = fi(Ω̂1, . . . , Ω̂N , x2, . . . xN).

Finally, we should reiterate that any RG scheme (Wilson’s momentum
shell, minimal subtraction, etc.) is applicable, provided the nφ condition that
ensures cutoff independence is satisfied.

5.5.3 Cutoff independent RPA propagator

That nφ = D − 2 should not be a surprise. This result is in agreement with
the familiar form G−1

φ ∼ k in two spatial dimensions [98, 99, 100, 79] and
naturally arises at the Nf → ∞ GNY fixed point, at which there is a large
O(1) correction to the scaling of the order parameter field, ηφ = 4−D. This is
a consequence of the one-loop fermion diagram in Fig. 5.2(a), indicating that
it is a Landau damping phenomena from the gapless fermionic excitations.
Accounting for the anomalous scaling, the propagator G−1

φ = k2−ηφ satisfies
the condition for cutoff scheme independence.

Away from the upper critical dimension, the cutoff independent propaga-
tor is non-analytic and so is not perturbatively renormalisable. This suggests
that a non-perturbative solution is required.

To self-consistently account for the damped boson dynamics, and to
achieve cutoff independence, we use the non-perturbative RPA re-summation
of fermion loops, which is shown diagrammatically in Fig. 5.3(a), to obtain
the dressed boson propagator

G−1
φ (q) = G−1

φ,0(q) + Π(q), (5.27)

where G−1
φ,0(q) = q2

0 + c2q2 + m2 is the bare boson propagator. The bosonic
self energy

Π(q) =
g2

Nf

∫
k

trGΨ(k + q)GΨ(k), (5.28)
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= +

+

(a)

(b) (c)

(d)

Figure 5.3: Feynman diagrams for large Nf theories. (a) The bold way
line represents the RPA boson propagator of the order parameter field.
The fermion loops are integrated over the full range of modes and are self-
consistently re-summed to infinite order. This results in a non-analytic Lan-
dau damped propagator that satisfies cutoff scheme independence. (b) The
fermion self energy renormalises the fermion propagator (arrowed straight
line). (c) The vertex correction renormalizes the Yukawa coupling g. (d)
The two loop diagrams renormalise the boson mass, and contribute to the
correlation length exponent.
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is calculated by integrating over the full range of modes. Crucially, Π includes
the IR (k → 0) modes that are not accounted for in Wilsonian shell schemes,
and results in the non-analytic propagator (see Appendix B.1)

G−1
φ (k) =

g2SDαD
vD−1

(k2
0 + v2k2)

D−2
2 +m2, (5.29)

where

αD = − π

2 sin(πD
2

)

Γ(D/2)2

Γ(D − 1)
. (5.30)

Note that the IR scaling of the dressed RPA boson propagator (5.29)
satisfies the condition of cutoff independence, Eq. (5.25). We have neglected
the sub-leading momentum terms in G−1

φ,0(k) since these terms are irrelevant
in an RG sense. Formally, the RPA contribution dominates in the large Nf

limit, which is evident after making the rescaling g2 → g2Nf .

The Landau damped dynamics affects the scaling of the effective order
parameter field. At tree level, we have the following equation that governs
the scaling of the Yukawa coupling and the bosonic field,

4 + 2 [g] + [φφ] = 0. (5.31)

Choosing g to be marginal, we find that crucially, the quartic self interaction
λφ4, Eq. (5.5), is rendered irrelevant at tree-level, and so is neglected in the
following. This is a common feature of the “interaction driven scaling” [84]
of gapless fermionic systems.

5.6 Large Nf RG equations

We now perform an RG analysis of the large Nf field theory

L = Ψ̄

(
∂τγ0 + v∂ · γ +

g√
Nf

φ

)
Ψ +

1

2
φG−1

φ φ, (5.32)

using the soft cutoff scheme to calculate the diagrams in Figs. 5.3(b)-(d) to
leading order in Nf . Here Gφ(k) (5.29) is the fully dressed bosonic propaga-
tor that is obtained by the RPA re-summation depicted in Fig. 5.3(a). As
demonstrated in Sec. 5.5.3, Gφ(k) has the correct IR scaling that ensures cut-
off independence. This makes the evaluation of radial integrals trivial since

62



we can simply use the radial integral identity, Eq. (5.26). The remaining
angular integrals of the one loop diagrams are elementary and can be carried
out analytically. Here we only present the results. Details of the calculation,
e.g. on the evaluation of the angular integrals in general dimension, can be
found in Appendix B.2.
For the fermionic self-energy diagram, Fig. 5.3(b), we obtain

d

d`
Σ(q) = −Λ

d

dΛ

g2

Nf

∫
k

GΨ(k + q)Gφ(k)A2
k

= −i D − 2

αDDNf

(q0γ0 + vq · γ), (5.33)

with αD defined in Eq. (5.30). The vertex correction, which is show in
Fig. 5.3(c) and which renormalizes the Yukawa coupling g, is equal to

d

d`
Ξ = Λ

d

dΛ

g3√
Nf

3

∫
k

G2
Ψ(k)Gφ(k)A3

k

= − 1

αDNf

g√
Nf

. (5.34)

We further evaluate the two-loop diagrams in Fig. 5.3(d) for zero external
momentum and frequency but finite boson mass m2 6= 0, since they contain
quantum corrections of order 1/Nf that renormalize m2,

d

d`
Π̃ = Λ

d

dΛ

g4

N2
f

∫
k,q

Gφ(q)Aq × tr
[

GΨ(k + q)GΨ(k + q)GΨ(k)GΨ(k)A2
k+qA

2
k

+2GΨ(k + q)GΨ(k)GΨ(k)GΨ(k)Ak+qA
3
k

]
=

D − 1

α2
DNf sin(πD

2
)

πΓ(D
2

)2

Γ(D − 1)
m2. (5.35)

Details of the calculation of the two-loop diagrams can be found in Ap-
pendix B.3.

The RG equations are obtained by combining quantum corrections and
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rescaling contributions (see Eq. (5.7-5.9)),

dv

d`
= v

[
− (D + z + ∆Ψ) +

D − 2

αDDNf

]
, (5.36)

dg

d`
= g

[
2(1−D − z)−∆Ψ −

∆φ

2
− 1

αDNf

]
, (5.37)

dm2

d`
= m2

[
− (D − 1 + z + ∆φ)

+
D − 1

α2
DNf sin(πD

2
)

πΓ(D
2

)2

Γ(D − 1)

]
, (5.38)

subject to the constraint

∆Ψ = 1−D − 2z +
D − 2

αDDNf

, (5.39)

which follows from the scale invariance of
∫

Ψ̄k0γ0Ψ.
The solution z = 1 of Eq. (5.36), for all v, indicates the emergence of

Lorentz invariance at the quantum critical point. Moreover, g is scale in-
variant since it can be scaled out of the large Nf field theory (5.32), using
φ→ φ/g, m2 → g2m2. From this it follows that

∆φ = 2− 2D − 4
D − 1

αDDNf

. (5.40)

Effectively, Eq. (5.32) describes the (g∗, λ∗) GNY critical fixed point of
Eq. (5.1), at which g and λ are irrelevant perturbations. The correlation
length exponent ν is determined by the flow of the single relevant perturba-
tion at the critical fixed point,

dm2

d`
= ν−1m2, (5.41)

and can therefore be extracted from Eq. (5.38). The resulting critical expo-
nents in D = d+ 1 dimensions, to leading order in Nf , are

ηΨ =
2(2−D)

DNf

sin(πD
2

)

π

Γ(D − 1)

Γ(D
2

)2
, (5.42)

ηφ =
8

DNf

sin(πD
2

)

π

Γ(D)

Γ(D
2

)2
, (5.43)

ν−1 = D − 2 +
D − 2

Nf

sin(πD
2

)

π

Γ(D + 1)

Γ(D+2
2

)2
, (5.44)
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which have been extracted using [Ψ̄Ψ] = −(D + 1) and [φφ] = −2(D − 1).
These exponents are in agreement with previous results using the large Nf

conformal bootstrap [86, 87, 92] and the critical point large Nf formalism
[89, 90, 91].

5.7 Comparison with the ε-expansion

Finally we draw some connections to the ε expansion below the upper criti-
cal dimension for Dirac fermions. The famous expansion, first proposed by
Wilson and Fisher [55], has been extremely successful in describing classical
and quantum phase transitions, especially in purely bosonic systems, e.g. in
the O(N) φ4 model.

We allow the space-time dimension to be a continuous variable and for-
mulate the expansion below the upper critical dimension of the GNY theory,
i.e. D = 4−ε. To zeroth order in ε, the bare bosonic propagator G−1

φ (k) ∼ k2

satisfies the condition (5.25) for cutoff independence, nφ = 2 − ε. The O(ε)
corrections to perturbative loop diagrams are cutoff dependent, but do not
enter RG equations at any order in ε. The GNY RG equations from the
ε-expansion are therefore independent of the cutoff scheme.

Naturally, for D = 4− ε the critical exponents ηΨ (5.42), ηφ (5.43) and ν
(5.44) agree to leading order in Nf with those obtained from the ε-expansion,
order by order in ε. The ε-expansion, however, can also be formulated using
the scheme outlined in Fig. 5.3, and results in the RG equations already
evaluated at the (g∗, λ∗) critical fixed point.

As a first step, the 1/ε pole of the RPA propagator (5.29) must be ex-
tracted. The prefactor to the pole can also be obtained from the logarithmic
divergence of Π in D = 4. Then the remaining diagrams are evaluated using

G−1
φ (k) =

1

ε

g2

16π2
(k2

0 + v2k2) +m2. (5.45)

It can be verified that the quantum loop corrections calculated in this
manner agree with those obtained by perturbative means, after solving for
the fixed point (g∗, λ∗) ∼ O(ε).

Although somewhat trivial for GNY theories, this methodology can act
as an independent check of large Nf critical exponents obtained from the
ε expansion. It has cutoff scheme independence encoded through the RPA
propagator, which is crucial when considering anisotropic systems such as
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those considered in the following text. It is also a shortcut to accessing the
critical fixed point, which is valuable when dealing with a complicated set of
RG equations.

5.8 Discussion

We have investigated the universal critical behaviour of Dirac semimetals at
quantum phase transitions that are driven by strong local interactions. We
have developed a soft cutoff RG approach that can be used to calculate exact
critical exponents to leading order 1/Nf in experimentally relevant spatial
dimensions.

At the heart of the problem is the phenomenon of Landau damping of
order parameter fluctuations by gapless fermion excitations. This leads to
non-analytic bosonic self-energy corrections which dominate over the bare bo-
son propagator in the IR long-wavelength limit. Landau damping is therefore
essential for the universal critical behaviour of the system. The phenomenon
of Landau damping is inherently non-perturbative and not captured by per-
turbative RG schemes that are based upon the successive decimation of UV
modes [40].

As demonstrated within our soft cutoff approach, not accounting for Lan-
dau damping, or more generally, using an incorrect IR boson propagator,
leads to non-universal results that depend on the choice of the UV cutoff
scheme. In turn, enforcing that the quantum corrections do not depend on
the cutoff function and on which frequency and momentum directions the
cutoff acts upon, the correct IR scaling of the Landau damped boson prop-
agator can be deduced. These scaling constraints are satisfied by the fully
dressed RPA boson propagator.

Our soft cutoff approach unifies all possible cutoff schemes, including
those based on cylindrical and spherical hard cutoff momentum shells. Our
work therefore demonstrates that any RG scheme is valid and will produce
the same universal results, given that the correct IR boson propagator is
used. This should resolve controversies over the “correct” RG shell schemes
when there are quantitative discrepancies in the literature, such as in the
case of double-Weyl semimetals [74, 75].

Using the soft cutoff RG with the non-perturbative RPA boson propaga-
tor, we have computed the exact critical exponents to leading order 1/Nf for
relativistic Dirac fermions as well as for two-dimensional anisotropic semi-
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Dirac fermions, coupled to an Ising order parameter field. The soft cutoff
method has a clear advantage over hard cutoff schemes, as it significantly sim-
plifies the calculation of diagrams beyond one-loop order. For the well studied
relativistic case, the soft cutoff RG indeed reproduces the exact critical expo-
nents obtained by conformal bootstrap [86, 87, 88] and other field-theoretical
techniques [89, 90, 91].

There are a number of interesting questions that could be answered with
the methodology presented in this Chapter, one of which is the case of
anisotropic nodal-point semimetals which is presented in the next chapter.
Further afield, starting with relativistic dynamics, the presence of emergent
gauge fields coupled to order parameter fields [97, 101] can alter the dy-
namical scaling at quantum critical points. In this case, the divergencies
associated with non-invertible, damped gauge field propagators can be re-
paired with non-analytic gauge fixing, as is implemented in pseduo-QED
[102]. There are instances where broken symmetry states on lattices allow
for cubic terms in the order parameter fields in the low energy effective field
theory [70, 103, 104, 101]. In principal, following the Landau criterion, these
can render quantum phase transitions first order. However gapless fermion
excitations are expected to render such cubic terms irrelevant. In these prob-
lems, damping effects away from upper critical dimensions have not been
accounted for.

In topological nodal systems the fermions are fundamental in the region of
the nodal points. The fermion dynamics must therefore be analytic, implying
that non-analytic fermion self energy corrections are absent. Consequently
the large Nf expansion is controlled, as Nf does not appear in the fermion
propagator. This is in contrast to the case of metallic quantum critical
systems, in which the fermions are strongly renormalized by the infinite sea of
excitations, resulting in non-analytic fermion self energy corrections. These
terms are typically more relevant than the bare fermion dynamics, and render
the large Nf uncontrolled [84]. Entirely non-perturbative solutions of the
Schwinger-Dyson equations are then required [105]. Using our soft cutoff
formalism, it might be possible to derive scaling constraints for both bosonic
and fermionic self energies. This could potentially provide an important step
towards the discovery of such non-perturbative solutions.
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Chapter 6

RG aproach to anisotropic
nodal semimetals

The original work presented in this Chapter first appeared in Fermionic
criticality of anisotropic nodal point semimetals away from the upper criti-
cal dimension: Exact exponents to leading order in 1

Nf
, M. D. Uryszek, F.

Krüger, E. Christou, Physical Review Research, 2, 043265 (2020)[38].

6.1 Introduction

A Dirac semimetal can transition into a gapped insulating state either by
breaking the protecting symmetry or by tuning the band structure through
a topological phase transition where nodal points with opposite chirality
merge. Such a topological phase transition was observed in black phospho-
rous [106, 107], and is predicted to occur in strained honeycomb lattices
[108] and VO2–TiO2 heterostructures [108, 109]. At the transition point
the dispersion becomes quadratic along the momentum direction that the
nodal points merge, whilst it remains relativistic along the other direction
[16, 17]. Such quasiparticles were termed semi-Dirac fermions [108, 18]. Anal-
ogous hybrid-quasiparticles exist at topological quantum phase transitions
in noncentrosymmetric three-dimensional materials [110, 39]. Further ahead
semimetals with a quadratic band touching point (QBT) [19] in 2D have
been found in bilayer graphene[20], and topological crystalline insulators,
which are a counterpart of topological insulators in materials without spin
orbit coupling [21]. While in 3D these have been found in pyrchlore iridi-
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ates and in many gapless semiconductors[22, 23]. Anisotropic nodal fermions
with dL linear and dQ quadratic momentum directions in d = dL + dQ spa-
tial dimensions interpolate between relativistic Dirac or Weyl fermions and
quasiparticles in systems with QBTs.

Strong short-range repulsive interactions are known to lead to a sym-
metry breaking transitions in semi-Dirac semimetals. In the ordered phase
the fermionic spectrum is gapped and therefore it goes hand in hand with a
semimetal-to-insulator transition like the ones found in Dirac semimetals. A
thorough investigation of phase transitions in anisotropic semimetals is hoped
to serve as a stepping stone towards an understanding of quantum criticality
in metals with extended Fermi surfaces (partly due to similarity of dispersions
between the two systems). More generally the lack of Lorentz invariance (in
the anisotropic case) and the different scaling of the density of states near
the nodal points leads to distinct fermion-induced criticality in nodal fermion
systems with quadratic [33, 32, 34, 35] and semi-Dirac [111, 112, 37, 36] band-
touching points. The latter are particularly interesting because the intrinsic
electronic structure gives rise to highly anisotropic order-parameter correla-
tions with different correlation-length exponents along linear and quadratic
momentum directions.

Symmetry breaking transitions of semi-Dirac fermions were tackled pre-
viously in literature using different complementary expansions to obtain an-
alytic control in renormalisation-group (RG) calculations. In Ref. [112], the
problem was analysed in two spatial dimensions but with a generalized dis-
persion k2n

x in the non-relativistic direction, facilitating a controlled ascent
from one dimension (n → ∞). More traditional approaches include a 1/Nf

expansion in the number of fermion flavours [37] and an ε expansion below
the line of upper critical dimensions 2dL + dQ = 4, expanding in the number
of quadratic directions, dL = 1, dQ = 2 − εQ [36]. At the same time, the
anisotropic dispersion of semi-Dirac fermions makes this problem difficult.
Under conventional momentum-shell RG, the bosonic order-parameter prop-
agator develops unphysical divergencies, irrespective of the expansion scheme
[36, 37]. This is because along the linear momentum directions, the loop cor-
rections to the propagator, obtained by successive integration of modes from
a shell near the UV cutoff, are irrelevant in an RG sense. The related diver-
gencies need to be regularized by an additional IR contribution to the bosonic
propagator that is not generated or renormalized under the Wilsonian RG.
Instead it needs to be computed separately by integrating the fermion po-
larization diagram over the entire frequency and momentum range up to the
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infinitesimal shell [39, 42, 36, 37, 113, 40, 41].
In order to identify the universal critical behaviour of a general dL-dQ

nodal-fermion system, it is of crucial importance to use the correct bosonic
IR propagator. However, due to the inherent anisotropy, the evaluation of
the fermionic polarization diagram that determines the bosonic self energy
Π(q,Ω) is rather involved [40]. As one might anticipate, Π(q,Ω) is non-
analytic and highly anisotropic, and often approximations or interpolations
between different asymptotic forms are used [40, 41, 37, 36], potentially lead-
ing to non-universal results. This problem is apparent in recent studies of
the effects of long-range Coulomb interactions between semi-Dirac fermions
[40, 41]. While the Coulomb interaction in two dimensions is represented by
a bare gauge-boson propagator G−1

φ ∼ |q|, the long-wavelength behaviour
is completely dominated by the non-analytic bosonic self energy Π(q,Ω),
giving rise to marginal Fermi-liquid behavior at smallest energies, with vari-
ous anomalous physical properties [40]. Using an incomplete IR propagator,
e.g. neglecting the dynamic part of Π(q,Ω), leads to fundamentally different
results [41].

In this chapter we consider the quantum criticality of the family of anisotropic
nodal-point semimetals, using a soft cutoff RG approach [93, 94, 95, 96, 97]
within the large Nf expansion as utilised in the previous chapter. With the
use of the dressed order-parameter propagator, we compute the exact critical
exponents for anisotropic semi-Dirac (dL = 1, dQ = 1) fermions to leading
order in 1/Nf , and to all loop orders.

Unlike in the Dirac case, the bosonic propagator in anisotropic dL-dQ
nodal-point semimetals remains non-analytic, and therefore not perturba-
tively renormalisable, even at the upper critical dimension line 2dL + dQ = 4
[36]. This has important consequences for the ε expansion. Approaching
semi-Dirac fermions (dL = dQ = 1) by expanding in the number of quadratic
dimensions, dQ = 2 − εQ, dL = 1, one obtains leading corrections to crit-
ical exponents that are non-analytic and of the form ∼ εQ ln εQ [36]. Here
we show that the non-analytic dependence changes with the starting point
on the upper critical line. Expanding in the number of linear dimensions,
dQ = 1, dL = (3 − εL)/2, we find leading ∼ √εL corrections, putting the
uniqueness of the ε expansion into question.

The outline of this chapter is as follows: In Secs. 6.2 and 6.3 we re-
introduce the action for the family of anisotropic nodal-point semimetals
and tackle the tree-level scaling. In Sec. 6.4 we show that the dressed RPA
boson propagator satisfies the condition of cutoff independence, while the
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RG equations for a general system with dL and dQ linear and quadratic
directions are presented in Sec.6.5. In Sec. 6.6 the RPA bubble is evaluated
in approximate and exact forms and then used to calculate the exact 1/Nf

critical exponents to linear order. Finally in Sec. 6.7 the ε-expansion is
tackled and the results are discussed in Sec. 6.8.

6.2 Action

We now present the full action for the family of anisotropic nodal-point
semimetals with dL linear and dQ quadratic momentum directions. For gen-
eral dL + dQ + 1 space-time dimensions, it takes the following form

S = SΨ + Sφ + Sg + Sλ, (6.1)

SΨ =

∫
dk Ψ̄(k)

(
k0γ0 + kL · γL + (iv2

Q|kQ|2 + ∆)
)

Ψ(k) (6.2)

Sφ =
1

2

∫
dk G−1

φ (k)|φ(k)|2 (6.3)

Sg =
g√
Nf

∫
dkdq φ(q)Ψ̄ (k + q) Ψ(k) (6.4)

Sλ = λ

∫ ∏
i=1,2,3,4

dki φ(k1)φ(k2)φ(k2)φ(k4)δ(k1 + k2 + k3 + k4) (6.5)

where as before the integration measure,∫
dk =

dL+dQ∏
i=0

∫ ∞
−∞

dki
2π

(6.6)

where we have anticipated the use of the soft-cut off formulation which
has eliminated the need for the hard cut off Λ from the upper limit of
the momentum integral. We have defined k0 to be Matsubara frequency,
kL = (k1, · · · , kdL) and kQ = (kdL+1, · · · , kdL+dQ) to be the vectors of the
liner and quadratic directions respectively. The parameter vQ is related to
the curvature of the quadratic dispersion. The linear momenta couple to
γL = (γ1, . . . , γdL), which together with γ0 and γQ form a set of mutually
anti-commuting gamma matrices, {γµ, γν} = 2δµν . The tuning parameter ∆
controls the topological transition from a nodal surface semimetal (∆ < 0)
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to a trivial band insulator (∆ > 0). We have once again generalised to Nf -
component Grassmanian fields Ψ = (Ψ1, · · · ,ΨNf ). Note that for dQ = 0 the
model reduces to the large-Nf GNY theory defined in Eq. (5.1).

6.3 Tree-level Scaling

We start by a scaling analysis of the Yukawa-type field theory for dL-dQ
fermions, given in Eq. (6.1). To account for the different scaling of linear and
quadratic momenta, we define two scaling exponents, zL and zQ, such that

k0 = k′0e
−zLδ`, kL = k′Le

−zLδ`, kQ = k′Qe
−zQδ`, (6.7)

under rescaling. This allows us to unify the different scaling conventions in
previous studies of anisotropic systems: (zL = 2, zQ = 1) [39, 41, 37, 36] and
(zL = 1, zQ = 1/2) [40, 111, 112].

Note that we have rescaled frequency and linear momenta with the same
exponent. In general, one should consider different exponents z0 and zL
and allow for a renormalisation of the Fermi velocity vL along the linear
momentum direction. However, exactly as for the purely relativistic case,
there is an emergent Lorentz invariance in the k0-kL subspace at the critical
fixed point. For that reason we have set z0 = zL and vL = 1, without loss of
generality.

At tree-level, the gapless fermionic quasiparticle energy E(k) at the multi-
critical point (∆ = 0, m2 = 0, 〈φ〉 = 0) scales as

E(k) = E(k′)e−zLδ`, (6.8)

under the condition that [v2
Q] + 2zQ = zL. The latter is satisfied if vQ is scale

invariant, [vQ] = 0, and zQ/zL = 1/2. The RG procedure could therefore be
established by integrating out modes from the D = dL + dQ + 1 dimensional
shell

Λe−zLδ` ≤
√
k2

0 + E2(k) ≤ Λ (6.9)

below the UV cutoff Λ. The additional factor of zL in the exponent suggests
that one should consider zLδ` as the “unit length” and define the rescaling
of the fields as

Ψ(k) = Ψ′(k′)e−∆ΨzLδ`/2 (6.10)

φ(k) = φ′(k′)e−∆φzLδ`/2 (6.11)
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where ∆Ψ = [Ψ̄Ψ] + ηΨ and ∆φ = [φφ] + ηφ are the critical dimensions
of the fermionic and bosonic fields, respectively. With these conventions
the universal critical behaviour will only depend on the ratio zQ/zL. Scale
invariance of the free-fermion action at tree-level requires that

[Ψ̄Ψ] = − (2 + dL + dQ/2) . (6.12)
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Figure 6.1: Lower and upper critical dimension lines of nodal point semimet-
als with dL linear and dQ quadratic momentum directions. For dQ > 0 the
line of upper critical dimensions 2dL + dQ = 4 (red solid line) is obtained
from the condition that cQ is scale invariant. The dashed red line is obtained
from the condition that cL is scale invariant and therefore terminates at the
upper critical dimension dL = duc = 3 of the GNY theory. The universal
critical behaviour of semi-Dirac fermions (dL = dQ = 1) could be approached
by ε expansions in both the number of linear and quadratic dimensions.

We now turn our attention to the bosonic sector. Since the bare order
parameter propagator

G−1
φ,0(k) = cL

(
k2

0 + k2
L

)
+ cQk

2
Q, (6.13)
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does not show the same anisotropic momentum scaling as the fermionic quasi-
particles, but instead depends quadratically on both kL and kQ, scale invari-
ance is violated at the bare, non-interacting level.

For systems with a finite number of quadratic band touching directions,
dQ > 0, it is natural to choose the boson scaling

[φφ] = −(2 + dL + dQ/2), (6.14)

such that cQ is marginal, but cL is irrelevant. The resulting tree-level scaling
dimension of the Yukawa coupling is given by

[g] =
1

4
(4− 2dL − dQ), (6.15)

defining an upper critical line 2dL + dQ = 4 of marginal interactions, shown
in Fig. 6.1. Note that this line does not contain the upper-critical dimension
dL = duc = 3 of the GNY theory (dQ = 0). This point is the termination of
the upper critical line 2dL+dQ = 6 obtained from [cL] = 0 and [g] = 0. Note
that in this case cQ relevant. Lastly we see that the φ4 term is irrelevant
([λ] < 0), and it will be ignored henceforth.

6.4 Cutoff independence and dressed RPA bo-

son propagator

The lack of scale invariance of the bare bosonic order parameter propagator
G−1
φ,0(k) (6.13) in dL-dQ fermion systems is intimately linked to the funda-

mental problem that perturbative RG procedures do not correctly account
for the long-wavelength fluctuations of the order parameter, e.g. they neglect
the phenomenon of Landau damping.

The irrelevance of cL suggests an IR divergence on approach to the critical
fixed point. Previously it was argued that this unphysical divergence should
be regulated with the asymptotic self-energy correction Π(k0,kL,kQ = 0)
along the linear momentum and frequency directions [36, 37].

Within our soft cutoff approach it is clear, however, that below the up-
per critical line such a partially dressed boson propagator leads to quantum
corrections that are dependent upon the the UV cutoff scheme and hence
non-universal. By enforcing that the results are independent of the cutoff
scheme we can deduce the correct IR scaling of the dressed boson propaga-
tor.
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Since the dressed boson propagator should inherit the different scaling of
momenta along linear and quadratic directions, we make the Ansatz

Gφ(k) =
Gφ(k̂)

εnφ
, (6.16)

where we have defined the (dL + 2) dimensional vector

εµ = (k0, . . . , kdL ,k
2
Q), (6.17)

and ε2 = εµεµ, using implicit summation over µ.
In the soft cutoff approach we dress boson and fermion propagators with

a completely general cutoff function A,

GΨ,φ(k)→ GΨ,φ(k)A

(
aµε

2
µ

Λ2

)
, (6.18)

which only needs to satisfy the boundary conditionsA(0) = 1 and limz→∞A(z) =
0. The hard cutoff is included as the special case where A is a step function,
A(z) = Θ(1 − z). We can also include coefficients aµ to allow for different
cutoff schemes, e.g. aµ = 1 for µ = 0, · · · , dL + dQ corresponds to the spher-
ical scheme of Eq. (6.9), while in the cylindrical scheme, a0 = 0, aµ 6=0 = 1,
the cutoff only acts on the spatial momenta.

Cutoff independence means that the quantum corrections do not depend
upon the the UV scale Λ, the cutoff function A, and the choice of coefficients
aµ. As discussed in detail in Sec. 5.5, this is the case if the integrands of the
loop corrections scale as 1/ε, since all cutoff dependence vanishes due to the
radial integral identity (5.26) for y = ε. For the dL-dQ system this is only
the case if the dressed boson propagators scales with the exponent

nφ = dL + dQ/2− 1. (6.19)

As in the case of relativistic Weyl or Dirac fermions, the fully dressed RPA
boson propagator G−1

φ (k) = G−1
φ,0(k) + Π(k) satisfies the condition (6.19) of

cutoff independence in the long-wavelength limit. It is not possible, however,
to obtain a closed expression for the bosonic self energy Π(k). The asymptotic
forms of Π(k) for 2 < 2dL+dQ ≤ 4 and dQ > 0 along the linear and quadratic
directions is given by

Π(k) ∼
{

(k2
0 + k2

L)
1
4

(2dL+dQ−2) for kQ = 0

k
(2dL+dQ−2)
Q for k0,kL = 0

(6.20)
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Below the upper critical line 2dL+dQ = 4, the self energy Π(k) dominates
over the bare terms in the propagator in the k → 0 limit and therefore
determines the universal critical behaviour. The resulting propagator G−1

φ (k)
is inherently anisotropic, reflecting the different scaling of momenta, and non-
analytic, showing that is is inaccessible by perturbative means. It strongly
scales with the dimensions dL, dQ of the system, G−1

φ ∼ εdL+dQ/2−1, satisfying
the condition (6.19) and resulting in cutoff independent quantum corrections.

Note that the boson propagator G−1
φ in anisotropic nodal fermion sys-

tems remains non-analytic even along the line of upper critical dimensions.
Although in this case the conventional scaling∼ k2

Q along the quadratic direc-

tions is recovered, the IR scaling along the linear directions, G−1
φ ∼

√
k2

0 + k2
L

remains non-analytic.

6.5 Large Nf RG equations for general dL, dQ

We use the soft cutoff procedure with the dressed RPA boson propagator,
Fig. 5.3(a), to compute the quantum corrections shown in Fig. 5.3(b)-(d).
In this section, we derive the general form of the corrections, introducing
symbolic expressions for the different loop integrals. These integrals depend
on the values of dL and dQ, through the dimensionality of the loop inte-
gral and, more importantly, through the non-perturbative boson propagator,
which strongly scales with dimension. Combining quantum corrections and
re-scaling contributions, we derive general RG equations, which we solve
to obtain expressions for critical exponents of order 1/Nf in terms of the
loop integrals. These integrals will be evaluated for semi-Dirac fermions
(dL = dQ = 1) in Sec. 6.6.

The cutoff independent quantum corrections are obtained by taking the
logarithmic derivatives of the diagrams in Fig. 5.3, with zL` = log(Λ/Λ0),
where the extra factor of zL comes from the redefinition of “unit length”.
Expanding the fermionic self energy diagram, Fig. 5.3(b), to leading order in
frequency, momenta and ∆, we obtain

d

d`
Σ = −i zL

[
δΣL (k0γ0 + kL · γL) +

(
δΣQ v

2
Qk

2
Q + δΣ∆ ∆

)
γQ
]
, (6.21)

with certain loop integrals δΣL, δΣQ, δΣ∆ ∼ 1/Nf that will be computed
later. Likewise, the quantum corrections corresponding to the diagrams in
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Figs. 5.3(c) and (d), which renormalise the Yukawa coupling g and order-
parameter mass m2, respectively, can be written in the general form

d

d`
Ξ = zLδΞ

g√
Nf

,
d

d`
Π̃(0) = zLδΠ̃m2. (6.22)

Here δΞ, δΠ̃ ∼ 1/Nf are one and two-loop integrals over internal momenta.
Combining these quantum corrections with the rescaling given in Eqs. (6.7),
(6.10) and (6.11), we obtain the following set of RG equations,

d ln v2
Q

d˜̀
= δΣQ − 1− dL − (2 + dQ)

zQ
zL
−∆Ψ, (6.23)

d ln g

d˜̀
= δΞ− 2

(
1 + dL + dQ

zQ
zL

)
−∆Ψ −

∆φ

2
, (6.24)

d ln ∆

d˜̀
= δΣ∆ − 1− dL − dQ

zQ
zL
−∆Ψ = ν−1

∆ , (6.25)

d lnm2

d˜̀
= δΠ̃− 1− dL − dQ

zQ
zL
−∆φ = ν−1

φ , (6.26)

where we have defined ˜̀ = zL`. The critical dimensions of the fermion and
boson fields consist of the tree-level scaling [. . .], given in Eqs. (6.12) and
(6.14), and the anomalous dimensions η, ∆Ψ = [Ψ̄Ψ] + ηΨ, ∆φ = [φφ] + ηφ.
Note that the RG flow of the two relevant coupling constants ∆ and m2

defines the correlation length exponents ν∆ and νφ of the multi-critical point.
In addition to the above RG equations, we have to satisfy the constraint

∆Ψ = δΣL − 2− dL − dQ
zQ
zL
, (6.27)

which follows form the condition that the the coefficient of the linear terms
k0γ0 + kL · γL of the fermion propagator remains constant under the RG.

From the RG equations it is straightforward to extract general expressions
for critical exponents in terms of the loop integrals. Inserting Eq. (6.27) into
Eq. (6.23) and demanding that vQ does not flow under the RG, we obtain

zQ
zL

=
1

2
− 1

2
(δΣL − δΣQ) (6.28)

for the ratio of scaling exponents of momenta along quadratic and linear di-
rections. As to be expected, 1/Nf corrections to the “tree-level” value of 1/2
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arise because of different fermionic self-energy corrections along quadratic
and linear directions. Using this result along with the tree-level scaling di-
mension of the fermion field (6.12), we obtain the anomalous dimension of
the fermion field,

ηΨ = δΣL +
dQ
2

(δΣL − δΣQ) . (6.29)

In order to determine the critical dimension ∆φ of the boson field and the
related anomalous dimension ηφ, we can use the same argument as for the
large-Nf GNY theory: since it is possible, to scale out the Yukawa coupling
g by the simple transformation φ → φ/g and m2 → g2m2, the coupling g
should not renormalise. From Eq. (6.24) and the already determined critical
exponents we obtain the anomalous dimension

ηφ = 2− dL −
dQ
2

+ 2 (δΞ− δΣL) + dQ (δΣL − δΣQ) (6.30)

of the boson fields. Note that ηφ has a contribution of order (1/Nf )
0 that

vanishes along the upper critical dimension line 2dL+dQ = 4. In the following
we redefine the order parameter scaling such that the anomalous dimension
is solely composed of quantum corrections, and the (1/Nf )

0 contribution is
absorbed into the tree-level scaling

[φφ] = −(2dL + dQ), (6.31)

ηφ = 2 (δΞ− δΣL) + dQ (δΣL − δΣQ) . (6.32)

And finally, from Eqs. (6.25) and (6.26), we extract the two correlation
length exponents

ν−1
∆ = 1 + δΣ∆ − δΣL, (6.33)

ν−1
φ = −1 + dL +

dQ
2

+ δΠ̃− 2(δΞ− δΣL)− dQ
2

(δΣL − δΣQ) , (6.34)

of the multi-critical fixed point, where νφ, ν∆ correspond to the symmetry
breaking transition and the topological phase transition, respectively.

6.6 Exact 1/Nf exponents for semi-Dirac fermions

(dL = 1, dQ = 1)

In order to calculate the quantum corrections δΣL, δΣQ, δΣ∆, δΞ, and δΠ̃ for
semi-Dirac fermions, we first need to compute the dressed IR boson propa-
gator G−1

φ (k) = Π(k) +m2. Unlike for relativistic fermions, it is not possible
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Figure 6.2: The function F (u) determining the bosonic self energy (6.35).
The blue dots show the exact result from numerical integration of Eq. 6.36,
the red solid line the closed expression obtained in the regime u� 1.

to analytically evaluate the fermionic polarization Π(k) for anisotropic nodal
fermions [39, 40, 36]. As shown in Appendix C.1, the bosonic self energy for
dL = dQ = 1 can be written in the form

Π(k) =
g2

8π2
|kQ|F

(
k2

0 + k2
L

v4
Qk

4
Q

)
, (6.35)

where the function F is defined as the integral

F (u) =

∫ 1

0

dt

∫ ∞
−∞

dp
(p+ 1)4 − p2(p+ 1)2 + (1− t)u
(p+ 1)4t+ p4(1− t) + t(1− t)u. (6.36)

Notice that in this form, Π(k) still satisfies the condition (6.19) for cutoff
independence, nφ = dL+dQ/2−1 = 1/2, since |kQ| ∼ ε1/2 while the argument
of the function F is independent of ε.

The dominant contributions to the quantum corrections come from the
regime where kQ → 0 for finite k0, kL, corresponding to large values of the
argument u. In this regime, it is possible to obtain a closed asymptotic form
for F (u), resulting in the approximate boson self energy

Π(q) ≈ g2

[
aL(q2

0 + q2
L)

(q2
0 + q2

L + b4
Qq

4
Q)

3
4

+
aQq

2
Q

(q2
0 + q2

L + b4
Qq

4
Q)

1
4

]
, (6.37)
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with aL = Γ(5/4)2/
√

2π3/2, aQ = 5Γ(3/4)2/16
√

2π3/2, and bQ = 8aQ.
The function F (u) obtained from numerically evaluating the integral

(6.36) and the closed asymptotic approximation for large u, leading to Eq. (6.37),
are shown in Fig. 6.2.

As shown in Appendix C.2, all quantum corrections can be written as
one-dimensional integrals over the function F (u), e.g.

δΣL =
1

Nf

∫ ∞
0

du
1

(1 + u)2F (u)
=

0.0797

Nf

, (6.38)

where we have used the exact form of F (u) to obtain the numerical value. The
other quantum corrections are δΣQ = 0.0214/Nf , δΣ∆ = 0.2755/Nf , δΞ =
−0.4350/Nf , δΠ̃ = −0.10541/Nf . The resulting exact critical exponents,
describing the multi-critical fixed point of semi-Dirac fermions, are

zQ
zL

=
1

2
− 0.0292

Nf

(6.39)

ηΨ =
0.1089

Nf

, ηφ = −0.9712

Nf

(6.40)

ν−1
φ =

1

2
− 0.0537

Nf

, ν−1
∆ = 1 +

0.1958

Nf

. (6.41)

Numerical values of the quantum corrections obtained with the approx-
imate closed form of F (u), corresponding to the approximate propagator
(6.37), are given in Appendix C.2. These values deviate by less than 3.5%
from the exact ones, except for δΣQ where the deviation is about 17%. The
larger deviation for δΣQ is due to the fact that the corresponding integral
has considerably more weight for small u.

6.7 Expansion around an upper critical line

In this subsection we formulate an ε-expansion below the upper critical line
2dL + dQ = 4 of anisotropic dL-dQ nodal fermion systems. In principle,
such expansions should allow for a controlled descent to strongly interacting
systems of interest, such as the semi-Dirac fermion system with dL = dQ = 1.

Unlike in the purely Dirac case there is now a freedom in the choice of
the starting point on the upper critical line. Here we focus on two natural
starting points which correspond to a descent towards semi-Dirac fermions

80



by expanding in the number of (i) linear and (ii) quadratic dimensions, as
illustrated in Fig. 6.1. This corresponds to (i) dL = (3 − εL)/2, dQ = 1
and (ii) dL = 1, dQ = 2 − εQ, where semi-Dirac fermions are reached for
εL = 1 and εQ = 1, respectively. Note that the expansion (ii) in the number
of quadratically dispersing directions was used in Ref. [36].

As explained in Sec. 6.4, the bare order parameter propagator, G−1
φ,0(q) ∼

q2, does not satisfy the condition for cutoff independence, even at the up-
per critical line. A fully perturbative RG calculation as the one used in the
D = 4 − ε expansion for GNY theory is therefore insufficient. Instead, the
phenomenon of Landau damping remains of crucial importance at the up-
per critical line, giving rise to a non-analytic bosonic self-energy correction
Π(q0, qL, qQ = 0) ∼ (q2

0 +q2
L)1/2 along the linear directions. As expected from

the condition of cutoff independence, the scaling of the self-energy along the
quadratic directions approaches the form Π(q0 = 0, qL = 0, qQ) ∼ q2

Q.
However, the coefficient diverges logarithmically on approach of the upper

critical line. As shown in Appendix D.1, it is possible to extract the leading
1/ε pole associated with this divergence. Since the fermionic polarization
diagram cannot be calculated for general q = (q0, qL, qQ) we approximate
the dressed IR boson propagator by the sum of the two asymptotic forms of
the self energy along linear and quadratic directions.

For the expansion (i) in the linear dimensions, dL = (3− εL)/2, dQ = 1,
we obtain

G−1
φ (q) =

g2π1/4

32Γ(3/4)
(q2

0 + q2
L)1/2 +

1

εL

g2

2π5/4Γ(1/4)
q2
Q, (6.42)

while for the expansion (ii) in the quadratic directions, dL = 1, dQ = 2− εQ,
the result is

G−1
φ (q) =

g2

64
(q2

0 + q2
L)1/2 +

1

εQ

g2

8π2
q2
Q. (6.43)

Details of the derivation can be found in Appendix D.1. Note that the
propagators satisfy the condition (6.19) of cutoff independence.

To demonstrate the fundamental differences between the εL and εQ ex-
pansions, it is sufficient to calculate the ratio of the scaling dimensions zQ/zL
and the anomalous dimensions ηΨ and ηφ for the two cases. These critical
exponents are expressed in Eqs. (6.28,6.29,6.32) in terms of the quantum
corrections δΣL, δΣQ, which arise from the expansion of the fermion self
energy [Fig. 5.3(b)], and δΞ from the vertex correction [Fig. 5.3(c)]. The

81



Table 6.1: Critical exponents zQ/zL, ηΨ and ηφ for two distinct ε-expansions
around the upper critical line 2dL + dQ = 4. Here α−1

1 = (2π)1/4Γ(9/4) and
α2 = π2/8, for brevity.

dL = (3− εL)/2, dQ = 1 dQ = 2− εQ, dL = 1
zQ
zL

1
2

+ α1

√
εL
Nf
− 3εL

2Nf

1
2
− εQ

2Nf
log(α2εQ)− 5εQ

4Nf

ηΨ −α1

√
εL

2Nf
+ 3εL

2Nf

εQ
Nf

log(α2εQ) +
3εQ
Nf

ηφ −α1
8
√
εL

Nf
+ 5εL

Nf

4εQ
Nf

log(α2εQ) +
4εQ
Nf

corresponding one-loop integrals are computed in Appendix D.2, using the
the soft cutoff approach with the dressed IR boson propagators Eqs. (6.42)
and (6.43). The resulting critical exponents are summarized in Table 6.1.

For the expansion along the number of quadratic dimensions, dL = 1, dQ =
2− εQ, we find that the quantum corrections computed with the soft-cutoff
RG and the non-perturbative boson propagator (6.43) are in perfect agree-
ment with those obtained in Ref. [36], when evaluated at the interacting fixed
point. To leading order in εQ log εQ the critical exponents also agree, once
the different definitions of the critical dimension of the bosonic field and the
number of fermionic flavours have been accounted for. Further details can
be found in Appendix D.5.

While the leading quantum corrections are non-analytic for both the εL
and εQ expansions, the functional dependencies ∼ √εL and ∼ εQ log εQ are
completely different, potentially signalling an intrinsic problem with ε ex-
pansions in dL-dQ nodal fermion systems. This is further supported by the
significant disparity between critical exponents obtained from the extrapola-
tion of the two expansions to the semi-Dirac point, εL = 1 and εQ = 1.

6.8 Discussion

We have investigated the quantum phase transition from an anisotropic nodal
semimetal to a CDW insulator. Unlike in the isotropic case, the bare bosonic
propagator is already not scale invariant at the non-interacting level which
suggests an IR divergence near the critical fixed point. This prompted previ-
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ous works [37] to use an IR regulator with an asymptotic bosonic self-energy
correction along the irrelevant momentum directions. We showed that simi-
larly to the Dirac case, the non-perturbative RPA resummation of fermionic
loops results in the correct IR scaling of the bosonic propagator. However due
to the inherent anisotropy closed form solutions for the general d = dL + dQ
case were not possible. We presented the general RG equations paying close
attention to the effect of two different ”dynamical critical exponents”. Fo-
cussing on the semi-Dirac case, we computed the RPA contribution in exact
and approximate forms, and calculated the exact critical exponents to lead-
ing order in 1/Nf . Finally we commented on the connections between the
ε-expansion and the soft cutoff large-Nf approach presented here.

We briefly compare some of our exact critical exponents for semi-Dirac
fermions,

ηΨ =
0.1089

Nf

, ηφ = −0.9712

Nf

, ν−1
φ =

1

2
− 0.0537

Nf

.

with those reported in the literature. As discussed in Appendix D.5 one
needs to account for different definitions of the number of fermion flavours
Nf and scaling exponents zL and zQ.

Ref. [37] employed one-loop perturbative RG with the bosonic IR diver-
gence in cL (6.13) regulated by the RPA re-summation. Although a stable
interacting critical fixed point was located, the results are inherently cut-
off dependent as the partially dressed boson propagator does not satisfy the
scaling constraint (6.19) for cutoff independence. Moreover, the two-loop dia-
grams that contribute to the mass renormalization and hence the correlation
length exponent νφ at order 1/Nf were neglected. Consequently, there are
significant discrepancies in the exponents ηΨ = 0.0229/Nf , ηφ = −0.1004/Nf

and ν−1
φ = 1/2 + 0.2466/Nf .

Ref. [111] obtained cutoff independent fermion self energy quantum cor-
rections, using an approximation for the bosonic self energy Π(q) that sat-
isfied the scaling constraint (6.19). However, the approximation did not
capture the full anisotropy, resulting in δΣQ that is only 12% of that found
here (6.38). In addition, the renormalisation of zL/zQ was not accounted
for in scaling, resulting in ηΨ = 0.0870/Nf . Other exponents and quantum
corrections were not computed.

We have compared ε expansions that descended on the semi-Dirac point
by expanding in the number of (i) linear dL = (3 − εL)/2, dQ = 1 and (ii)
quadratic dL = (3 − εL)/2, dQ = 1 dimensions. In both cases we found
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quantum corrections and critical exponents that are non-analytic in ε. How-
ever the functional dependencies

√
εL and εQ log εQ are completely different.

This calls into question the validity, uniqueness, and extent of perturbative
control of this approach for anisotropic nodal fermion systems, in contrast to
relativistic GNY and bosonic φ4 theories. Further analysis, and exploration
beyond one-loop order is required to make concrete conclusions. Finally, it
would be interesting to study the crossover behaviour from perturbative ε
to integer dL-dQ systems, similar to recent work on quantum critical met-
als [114]. There it was found that low energy and integer dimension limits
do not commute.

The scaling constraints we have derived from the requirement of cut-
off independence highlight the important role of non-perturbative effects in
quantum critical systems. Interestingly, it has been known for some time
that the non-perturbative screening of long-range Coulomb interactions in
relativistic nodal systems is crucial [99, 100, 79], and formally equivalent to
Landau damping. However, such effects are typically neglected when study-
ing spontaneous symmetry breaking from short range interactions. As a
result, cutoff independence is often violated in the literature when studying
the quantum criticality of two dimensional systems [37, 70, 103, 101, 115].
Screening is also important in anisotropic semi-Dirac systems at low ener-
gies. Our analysis shows that the entire polarization function is relevant,
leading us to agree with Ref. [40] regarding Coulomb quantum criticality of
semi-Dirac fermions: the dynamical part of the polarization should not be
neglected, contrary to what was argued in Ref. [41].

There are a number of interesting avenues for future research into strongly
interacting nodal systems away from their upper critical dimension. Closely
linked to semi Dirac fermions are two and three dimensional nodal line
semimetals. These are are described by the same effective field theory (6.1)
but at finite ∆ < 0, away from the topological phase transition point. The
criticality of such systems due to spontaneous symmetry breaking was pre-
viously studied within perturbative RG [115], not taking into account the
effects of Landau damping. In nodal line semimetals Landau damping is
expected to have even stronger effects than in the nodal point case, due to
the greatly enhanced electronic density of states at low energies. It would
also be interesting to revisit nematic quantum phase transitions in quadratic
band touching systems, previously studied within perturbative RG near the
upper critical dimension [34, 32]. The bare tensorial order parameter propa-
gator of these theories does not satisfy the condition of cutoff independence
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in physically relevant dimensions, highlighting that non-perturbative effects
are crucial for the universal critical behaviour.
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Chapter 7

Disordered CDW transition on
the honeycomb lattice

The original work presented in this Chapter first appeared in Interplay of in-
teractions and disorder at the charge density wave transition of two-dimensional
Dirac semimetals, M. D. Uryszek, F. Krüger, Physical Review B, 105, 075143
(2022) [116].

7.1 Introduction

In any realistic condensed matter system disorder is present, hence its under-
standing is paramount. Quenched, non-dynamical disorder has been widely
studied in the non-interacting limit of systems that exhibit two-dimensional
Dirac fermions, e.g. degenerate (or zero-gap) semiconductors [117, 118],
graphene [119, 120, 121, 122, 123, 124, 125], and d-wave superconductors
[126, 127, 128].

A lot of interest was triggered by the first graphene experiments [129, 130,
131] which showed a minimal conductivity of the order of the conductance
quantum e2/h over a wide range of temperatures. It was shown theoretically
that the transport properties depend crucially on the type of disorder [120]
but that for randomness which preserves one of the chiral symmetries of the
clean Hamiltonian the conductivity is equal to the minimal value [120, 121],
suggesting that the transport is not affected by localization and remains
ballistic. However, this universal result is based on a self-consistent Born ap-
proximation, which is not applicable to massless Dirac fermions in two spatial
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dimensions [119, 126, 127]. More recently, it was argued that over the experi-
mentally accessible temperature range, graphene is in the Drude–Boltzmann
diffusive transport regime and that density inhomogeneities from remote
charge impurities render the Dirac points effectively inaccessible to exper-
iments [122, 123]. Using a self consistent RPA-Boltzmann approach, the
authors showed that the conductivity is indeed of order e2/h but with a
non-universal pre-factor that depends on the disorder distribution. Remote
charge impurities can be viewed as random chemical potential shifts that
give rise to puddles of electron and hole-doped regions in the graphene layer.
Building on that picture, the scaling of the conductivity was obtained within
a random resistor network model that describes the percolation of p- and
n-type regions [124].

As the minimal conductivity puzzle shows, there is a lot of rich physics
already at the non-interacting level. However, an accurate description of a
Dirac semimetal also must include the effects of electron-electron interac-
tions, on top of the disorder. For weak Coulomb interactions the clean two-
dimensional Dirac fixed point is unstable against generic disorder and the RG
flow is dominated by the randomness in the chemical potential [132, 133, 134],
similar to the non-interacting case [119] and consistent with the picture of
local electron and hole “puddles”. On the other hand, in the regime of moder-
ate to strong Coulomb interactions, it was found that fluctuations associated
with such random potential disorder are parametrically cut off by screening
and that instead the runaway flow is dominated by vector potential disorder
[135]. Such disorder from elastic lattice deformations (“ripples”) [120] and
topological lattice defects [136, 137, 138].

The situation is very different in three-dimensional Dirac/Weyl semimet-
als with long-range Coulomb interactions. In these systems the semi-metallic
phase is stable against short-range correlated disorder. Above a critical disor-
der strength, the semi-metallic phase undergoes a quantum phase transition
into a disorder controlled diffusive metallic phase with a finite density of
states at the Fermi level [139, 140, 141, 142]. It remains a controversial is-
sue whether the disorder transition is rounded out by non-perturbative, rare
region effects [143, 144, 145] or not [146, 147].

Under a sufficiently strong short-ranged electron-electron interaction a
Dirac semimetal will undergo a quantum phase transition into a symmetry
broken state where the fermionic spectrum is gapped. Such a transition
is best described using a composite fermion-boson approach, resulting from
a Hubbard-Stratonovich decoupling of the fermionic interaction vertex in
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the relevant channel with a dynamical order parameter field. In the case of
Dirac fermions the resulting field theory is known as the Gross-Neveu-Yukawa
(GNY) model which describes chiral symmetry breaking and spontaneous
mass generation in high energy physics [49, 50]. The symmetry broken phase
is dependent on the nature of the microscopic interactions; for the half-filled
Hubbard model on the honeycomb lattice with competing interactions a vast
array of phases were found [61], including antiferromagnetism, different types
of charge order, Kekule phases and topological Quantum Hall states.

The effects of weak quenched disorder on the semimetal-to-superconductor
transition, described by the XY GNY model, were studied using ε expansions
below the upper critical dimension [2, 3]. It was found that chemical potential
disorder is strongly irrelevant at the clean quantum-critical point in D = 4−ε
space-time dimensions but that disorder in the superconducting order pa-
rameter mass plays a crucial role. Such bosonic disorder would arise from
randomness in the attractive fermion interaction after Hubbard-Stratonovich
decoupling. In the supersymmetric case of a single two-component Dirac field
coupled to the XY order parameter, there is a marginal flow away from the
clean critical point to strong disorder [2, 3]. However, if degeneracies such as
spin or valley pseudo-spin are included, the clean fixed point becomes stable
against weak bosonic mass disorder and a finite-disorder multi-critical point
with non-integer dynamical exponent (z > 1) can be identified within the
double ε expansion [3]. Similar finite disorder fixed points were established
in the chiral Ising and Heisenberg GNY models with bosonic random-mass
disorder, using triple ε expansion [148].

In this work we revisit the effects of disorder on the quantum criticality
of two dimensional Dirac/Weyl fermions. For simplicity, we focus on quan-
tum phase transitions that, in the absence of disorder, are described by the
chiral Ising GNY theory. An example is the CDW transition of electrons
on the half-filled honeycomb lattice that is driven by a repulsive nearest-
neighbour interaction and characterized by an imbalance of charge on the
two sublattices. Our work departs in two important aspects from previous
studies [2, 3, 148]. Firstly, we omit an ε expansion and compute the quantum
corrections in two spatial dimensions. Away from the upper critical dimen-
sion, the Landau damping of long-wavelength order-parameter fluctuations
is a non-perturbative effect. It renders the order parameter propagator non-
analytic in the IR limit, thereby changing the universal critical behaviour
[38, 85]. This physics is not captured by the ε expansion since the boson
propagator remains analytic at the upper critical dimension. Secondly, we
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consider disorder on the level of the original fermionic theory, e.g. in the form
of a random potential from point-like impurities. In the physical dimension,
such fermionic potential disorder is marginal at the clean GNY fixed point.

This chapter is organised as follows, in Sec. 7.2 we lay out the clean
GNY action with a damped bosonic propagator. Then in Sec. 7.3 disorder
on the fermionic level is introduced and then transformed using the replica
theory culminating in the final full disordered action. Then in Sec. 7.4 we
perform an RG analysis up to leading order in 1/Nf as well as in the disorder
strength. We show the existence of a new disordered fixed point and calculate
its critical exponents. Finally in Sec. 7.5 we present a summary of our final
findings and compare with previous literature.

7.2 Clean Action

The non-interacting imaginary time action for Dirac fermions in two spatial
dimensions is given by

Sψ =

∫
d2x

∫
dτ Ψ† (∂τ + iv∂ · σ) Ψ, (7.1)

over fermionic Grassmann fields Ψ(x, τ). Here ∂ = (∂x, ∂y) and σ = (σx, σy)
are the conventional 2×2 Pauli matrices. This action describes non-interacting
electrons on the half-filled honeycomb lattice in the long-wavelength, low-
energy limit, where in this case the Pauli matrices act on the {A,B} sublat-
tice pseudospin subspace. In addition, the fermionic Grassmann fields carry
the electron spin flavours and the valley indices from the two distinct Dirac
points in the Brillouin zone.

In the following, we do not consider spontaneous symmetry breaking or
disorder that lift the spin and valley degeneracies. We further generalize to
a total number of Nf components of the fermion fields, Ψ = (ψ1, . . . , ψN), in
order to gain analytic control through an expansion in 1/Nf . For brevity, we
use the short-hand notation Tr[σiσj] = Nfδij.

We consider the case where strong short-range interactions drive an insta-
bility in the charge channel, which corresponds to a quantum phase transition
from a Dirac semimetal to a CDW insulator where the sublattice symmetry
is spontaneously broken. Generally this transition belongs to the chiral Ising
GNY universality class [49, 50], which is best studied within the Yukawa
language where the Dirac fermions couple to a real-valued, scalar dynamical
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order parameter φ(x, τ).

Sg =
g√
Nf

∫
d2x

∫
dτ φΨ†σzΨ. (7.2)

where g is the Yukawa “coupling”.
As detailed thoroughly in Sec. 5.5, it is imperative to consider the phe-

nomenon of Landau damping of the order parameter fluctuations by gapless
electronic particle-hole excitations, when away from the upper critical dimen-
sion (d+1 < 4). To self-consistently account for these damped dynamics, we
use the non-perturbative RPA resummation of fermion loops to obtain the
dressed inverse boson propagator. In the long-wavelength limit of small fre-
quency and momenta the damped dynamics dominate over the (ω2 + c2k2)
terms in the bare inverse propagator, which we can then drop. Hence we
arrive at the damped clean (non-disordered) GNY theory,

SGNY = SΨ + Sg + Sφ, (7.3)

Sφ =
1

2

∫
dω

∫
d2k G−1

φ (ω,k)|φ(ω,k)|2 (7.4)

where

G−1
φ (ω,k) =

g2

16v2

(
ω2 + v2k2

)1/2
+m2 (7.5)

where m2 is the bosonic mass which serves as the tuning parameter for the
Dirac semiemtal to CDW insulator phase transition. Similarly to the argu-
ments laid out in previous chapters, we drop the φ4 term which is irrelevant
in the RG sense.

7.3 Coupling to Disorder

We will consider different forms of quenched disorder fields Vi(x) that arise
from non-magnetic charge impurities and are expected to affect the quantum
phase transition between the Dirac semimetal and CDW insulator. These
fields couple to the fermions in the different channels of the 2× 2 sublattice
pseudospin space,

Sdis =
∑

i=0,x,y,z

∫
d2x

∫
dτVi(x)Ψ†(x, τ)σiΨ(x, τ), (7.6)
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where in addition to the three Pauli matrices we have defined the identity
matrix as σ0. Other forms of disorder which would break degeneracies of the
other fermion flavours, e.g. spin or valley degeneracies, are not considered
here.

V0 and Vz are random potentials that couple to the symmetric (ψ†AψA +
ψ†BψB) and anti-symmetric (ψ†AψA − ψ†BψB) combinations of the local elec-
tron densities on the two sites in the unit cell. The latter combination is
required as some charge impurities will affect the two sites differently and
locally break the symmetry between the two sub-lattices. In the following,
we will refer to V0 as “chemical potential disorder” since it can be viewed as
spatial variations of the homogeneous chemical potential µ = 0, and to Vz as
“random mass disorder” since it couples in the same way as the electronic
mass gap generated by the condensation of the CDW order parameter.

The components V⊥ := Vx = Vy correspond to random gauge (vector)
potential disorder. As discussed in the context of graphene, the random
gauge potential describes elastic lattice deformations or ripples [135, 149,
150], which will be caused by impurity atoms. The different disorder fields
Vi are present in any system with non-magnetic impurities and, as we will
show later, there exists a rich interplay between them.

We assume that the random potentials Vi(x) are uncorrelated and that
they follow Gaussian distributions with zero mean and variances ∆i ≥ 0,

〈Vi(x)〉dis = 0, (7.7)

〈Vi(x1)Vj(x2)〉dis = ∆iδijδ(x1 − x2), (7.8)

where 〈. . .〉dis denotes the average over the disorder. The presence of disorder
on the level of the quadratic fermion action, Eq. (7.6), does not affect the
Hubbard-Stratonovich decoupling of the fermion interaction. The resulting
field theory is therefore given by SGNY[Ψ†,Ψ, φ] +Sdis[Ψ

†,Ψ]. It is important
to stress that disorder does not enter in the bosonic sector of the theory, e.g.
in the form of random-mass disorder of the CDW order parameter field φ.

7.3.1 Replica Field Theory

We are interested in the disorder averaged free energy, which we are able to
calculate with the use of the replica trick [151, 152],

〈F 〉dis = −T 〈logZ〉dis = −T lim
n→0

〈Zn〉dis − 1

n
, (7.9)
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where Z =
∫
D[Ψ†,Ψ, φ]e−(SGNY+Sdis) denotes the partition function. To deal

with the n-times replicated partition function in the numerator of the limit,
we introduce a “replica” index a = 1, · · · , n,

Zn =

(∫
D[Ψ†,Ψ, φ] exp

(
−S[Ψ†,Ψ, φ]

))n
=

∫
D[Ψ†a,Ψa, φa] exp

(
−

n∑
a=1

S[Ψ†a,Ψa, φa]

)
(7.10)

The average over disorder will only affect the disordered part of the action,

〈Zn〉dis =

∫
D[Ψ†a,Ψa, φa]e

−
∑
a SGNY[Ψ†a,Ψa,φa]

〈
e−

∑
a Sdis[Ψ

†
a,Ψa]

〉
dis
. (7.11)

Taylor expanding the 〈· · · 〉 term, we obtain

〈
e−

∑
a Sdis[Ψ

†
a,Ψa]

〉
dis

=1−
〈∑

a

Sdis[Ψ
†
a,Ψa]

〉
dis

+
1

2

〈∑
a,b

Sdis[Ψ
†
a,Ψa]Sdis[Ψ

†
b,Ψb]

〉
dis

+ · · · (7.12)

The disorder average over the first order term evaluates to zero due to
Eq.(7.7), while the second term evaluates to,〈∑

a,b

Sdis[Ψ
†
a,Ψa]Sdis[Ψ

†
b,Ψb]

〉
dis

=∫
x

∫
τ,τ ′

∆i

[
Ψ†a(x, τ)σiΨa(x, τ)

][
Ψ†b(x, τ

′)σiΨb(x, τ
′)

]
(7.13)

where we have used Eq. (7.7). It’s important to note that the replicated
disorder part of the action is no longer local in imaginary time. Essentially
with the use of the replica trick, we have traded a non-spatially uniform
potential Vi(x) coupled to a fermion bilinear for a four-fermion interaction
that should be easier to deal with in an RG calculation, albeit with a more
complicated internal structure.
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We then arrive at the final effective replica field theory,

S =
n∑
a=1

∫
d2x

∫
dτ Ψ†a

(
∂τ + iv∂ · σ +

g√
N
φaσ

z

)
Ψa

+
1

2

n∑
a=1

∫
|k|≤Λ

d2k

(2π)2

∫ ∞
−∞

dω

2π
G−1
φ (k, ω)|φa(k, ω)|2

− 1

2

n∑
a,b=1

∫
d2x

∫
dτ

∫
dτ ′

∑
i=0,x,y,z

∆i

×
[
Ψ†a(x, τ)σiΨa(x, τ)

][
Ψ†b(x, τ

′)σiΨb(x, τ
′)

]
, (7.14)

at zero temperature. Here G−1
φ (ω,k), defined in Eq.(7.5), is the inverse

dressed bosonic propagator that is obtained by the RPA resummation as
outlined in Sec. 5.5.

Unlike Refs. [2, 3, 148], we do not include a four-boson disorder vertex.
Such a vertex would arise from a replica average of random-mass disorder
of the CDW order parameter field φ which is not present in our theory. In
Appendix E, we show that starting with the bare replica action (7.14), a
four-boson disorder vertex is not generated under the RG at two-loop order.

7.4 Renormalisation Group analysis

In the following we perform a momentum-shell RG analysis of the replica ac-
tion (7.14). We integrate out fast modes with momenta from an infinitesimal
shell Λe−d` < |k| < Λ near the UV momentum cutoff Λ. This is followed by
the conventional rescaling of momenta, frequency and fields. To restore the
original cutoff we rescale momenta as k = k′e−d` while ω = ω′e−zd` with z
the dynamical exponent. The fields are rescaled as

Ψ(k, ω) = Ψ′(k′, ω′)e−δΨd`/2,

φ(k, ω) = φ′(k′, ω′)e−δφd`/2.
(7.15)

We start with a simple tree-level scaling analysis. In the absence of disor-
der and at the critical point m2 = 0 the field theory remains invariant under
the above rescaling for z = 1, δΨ = −2 − 2z, and δφ = −4. As the tuning
parameter of the quantum phase transition, the order-parameter mass is a

93
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Figure 7.1: Feynman diagrams ofO(∆i,
1
N

) for the large-N theory, Eq. (7.14).
(a)-(b) Fermion self energy corrections that renormalise the fermionic propa-
gator. (c)-(d) Renormalisation of the Yukawa vertex. (e)-(f) Renormalisation
of the bosonic mass. (g)-(k) Corrections to the fermionic disorder vertex. The
dashed line represents the replicated disorder interaction.

relevant perturbation with tree-level scaling dimension [m2] = 2 − z. Due
to the interaction driven scaling as detailed in Sec. 5.5, we have neglected
the usual φ4 vertex which is irrelevant at the GNY fixed point. Under these
scaling conventions the fermionic disorder is vertex is marginal at tree level
which motivates a perturbative expansion in the couplings ∆i of fermionic
disorder.

We compute all diagrams, shown in Fig. 7.1, that contribute in the replica
limit n→ 0 at O(∆i,

1
N

) in d = 2. The full calculation of which can be found
in Appendix F.

We first consider the fermionic self-energy corrections due to the Yukawa
coupling at second order and the disorder vertex at linear order, which are
shown by the two diagrams in Fig. 7.1(a)-(b), respectively. The first diagram
leads to a renormalisation of the overall prefactor of the inverse fermion
propagator, resulting in an anomalous dimension of the fermion fields. The
disorder induced self energy only affects the frequency term and therefore
breaks the symmetry between momentum and frequency scaling, leading to
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a correction to the dynamical exponent z. The inverse fermion propagator
remains invariant under the RG for

δΨ = −4 +
8

3π2N
− 1

2

(
∆̃0 + ∆̃z + 2∆̃⊥

)
, (7.16)

z = 1 +
1

2

(
∆̃0 + ∆̃z + 2∆̃⊥

)
, (7.17)

where we have defined the rescaled disorder variances

∆̃i =
∆i

πv2
(7.18)

and ∆̃⊥ := ∆̃x = ∆̃y. Hence the theory will no longer be Lorentz invariant
for any finite disorder fixed point. The renormalisation of the Yukawa vertex
is calculated from the diagrams in Fig. 7.1(c)-(d),

dg

d`
=

[
−4− 2z − δΨ −

δφ
2

(7.19)

− 8

π2N
+

1

4

(
2∆̃⊥ − ∆̃z − ∆̃0

)]
g.

Since the coupling g can be scaled out of the large-N replica theory,
Eq. (7.14), using φ→ φ/g, m2 → g2m2, we demand that it is scale invariant.
This determines the critical dimension of the order-parameter field φ,

δφ = −4− 64

3π2N
− 1

2

(
2∆̃⊥ + 3∆̃z + 3∆̃0

)
, (7.20)

where we have eliminated δΨ and z, using Eqs. (7.16) and (7.17). The
renormalisation of the order parameter mass m2 is given by the two-loop
diagrams in Fig. 7.1(e)-(f). The resulting RG equation is given by

dm2

d`
=

(
1− 32

3π2N
+ ∆̃z + ∆̃0

)
m2, (7.21)

where the dependence on disorder arises through z (7.17) and δφ (7.20). At
any finite disorder fixed point the order parameter correlation length expo-
nent ν, defined through the identification dm2/d` = ν−1m2, will therefore
differ from the one in the clean system.
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Finally, the coupled RG equations for the different types of disorder are
obtained from the diagrams in Fig. 7.1(g)-(k),

d∆̃0

d`
= ∆̃0

(
∆̃0 + ∆̃z + 2∆̃⊥ −

32

9π2N

)
+ 2∆̃⊥∆̃z,

d∆̃⊥
d`

= −∆̃⊥

(
∆̃z

6
+

32

9π2N

)
+ ∆̃0∆̃z, (7.22)

d∆̃z

d`
= ∆̃z

(
5∆̃⊥

3
− ∆̃z − ∆̃0 −

32

3π2N

)
+ 2∆̃⊥∆̃0.

In the non-interacting limit, corresponding to diagrams in Fig. 7.1 that
only include the disorder vertex, the RG equations for the disorder variances
agree with previous results [153, 133, 120, 124].

7.4.1 RG flow and fixed points

We start by summarizing the critical exponents for the interaction-driven
semimetal to CDW insulator transition of the clean system at T = 0 in
d = 2. The critical exponents of order 1/N at the clean interacting critical
fixed point, which we denote by Pclean, are obtained from Eqs. (7.16), (7.17),
(7.20) and (7.21) by setting ∆̃0 = ∆̃⊥ = ∆̃z = 0. In the absence of disorder
the theory satisfies Lorentz invariance with dynamical exponent z = 1. The
anomalous critical dimensions of the fields, defined through δΨ = −4 + ηΨ,
δφ = −4 + ηφ, and the correlation length exponent ν reduce to

ηclean
Ψ =

8

3π2N
, ηclean

φ = − 64

3π2N
,

νclean = 1 +
32

3π2N
.

(7.23)

These exponents are in agreement with those obtained from soft cutoff
RG [38] and with previous results using the large N conformal bootstrap
[86, 87, 92] and the critical point large N formalism [89, 90, 91]. At Pclean,
the order parameter mass m2 is the only relevant parameter, representing
the tuning parameter of the quantum phase transition.

In order to analyse whether the clean system CDW critical point is stable
against weak charge-impurity disorder, we numerically integrate the coupled
RG equations for ∆̃0, ∆̃⊥ and ∆̃z (7.22). The resulting RG flow of the three
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disorder variances on the critical manifold m2 = 0 is shown in Fig. 7.2. For
small disorder, in the regime bounded by the transparent purple surface, the
flow is towards the clean system critical point Pclean, demonstrating that the
CDW quantum critical point is stable against weak disorder. This is in line
with the Harris criterion which states that a non-disordered fixed point is
stable if νclean ≥ 2/d, where d is the dimensionality of the system [154, 155].

Figure 7.2: RG flow in the disorder subspace on the critical manifold m2 = 0,
as defined by Eqs. (7.22). Within the region bounded by the transparent
surface disorder renormalizes to zero, showing that the CDW critical point
Pclean is stable against small disorder. Near this boundary surface the RG flow
is towards a finite disorder fixed point P

(c)
dis at which only chemical potential

disorder is relevant.

Close to the boundary surface, the RG flow is controlled by the only finite
disorder fixed point in the accessible region of positive variances,

P
(c)
dis :

(
∆̃

(c)
0 , ∆̃

(c)
⊥ , ∆̃

(c)
z

)
=

(
32

9π2Nf

, 0, 0

)
. (7.24)

P
(c)
dis is unstable along the ∆̃0 direction but stable against ∆̃⊥ and ∆̃z. This

is consistent with the RG flow for initial values ∆̃i(0) that are very close to
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the separating surface in Fig. 7.2. Shown are three pairs of trajectories with
initial values that are slightly inside (blue) and outside (red) of the region
bounded by the surface. The trajectories closely track the surface and split
very close to P

(c)
dis , where the flow is either to the clean fixed point, ∆̃0 → 0

or strong chemical potential disorder, ∆̃0 →∞.
Our RG analysis shows that the transition to a glassy state is always

driven by potential disorder, even if the other forms of disorder initially
dominate. Since the random gauge field and random mass disorders are
irrelevant at P

(c)
dis we neglect them in the following. The RG equations for

the chemical potential disorder ∆̃0 and the order parameter mass m2 then
reduce to

d∆̃0

d`
= ∆̃0

(
∆̃0 −

32

9π2Nf

)
, (7.25)

dm2

d`
=

(
1− 32

3π2Nf

+ ∆̃0

)
m2. (7.26)

Inserting the critical disorder strength ∆̃
(c)
0 = 32

9π2Nf
into Eqs. (7.16),

(7.17), (7.20) and (7.26) we obtain the critical exponents at the finite disorder

multi-critical point P
(c)
dis ,

ηdirty
Ψ =

8

9π2Nf

, ηdirty
φ = − 80

3π2Nf

,

νdirty = 1 +
64

9π2Nf

, zdirty = 1 +
16

9π2Nf

.
(7.27)

At both the clean system semimetal to CDW insulator transition and at
the finite disorder multicritical point the fermion anomalous dimension ηΨ is
greater than zero. This implies that at the quantum critical points (QCPs)
the fermion Green’s function has branch cuts rather than quasiparticle poles,
and the fermionic liquid is therefore a non-Fermi liquid. Approaching the
QCPs from the metallic side, V < Vc and Vc − V → 0, the quasiparticle
residue has to vanish with some characteristic exponent. On the CDW side,
the condensation of the order parameter leads to the formation of a gap M
in the fermion spectrum, which increases as a power of V − Vc > 0.

In order to extract these exponents we perform a scaling analysis of the
fermionic spectral function. Details can be found in Ref. [31]. Here we only
give the results. Approaching the quantum phase transition from the metallic
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Dirac
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�⇢CDW
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Figure 7.3: Behaviour of the the quasiparticle pole strength Z, the Fermi ve-
locity v and the gap M in the fermion spectrum at the clean semimetal/CDW
insulator transition and at the finite disorder multicritical point, as a func-
tion of the nearest neighbour repulsion V −Vc. Here we evaluated the critical
exponents for Nf = 8, corresponding to Dirac electrons on the honeycomb
lattice with valley and spin degeneracies.

side, the quasiparticle pole strength vanishes as

Z ∼ (Vc − V )(z−1+ηΨ)ν = (Vc − V )
8

3π2N , (7.28)

where to order 1/Nf the critical exponents are the same for the clean and
dirty fixed points Pclean and Pdirty. The Fermi velocity behaves as

v ∼ |Vc − V |(z−1)ν =

{
const at Pclean

|Vc − V |
16

9π2N at Pdirty

(7.29)

Finally, on the CDW insulator side of the quantum phase transition the
gap in the electron spectrum increases as

M ∼ (V − Vc)zν =

{
(V − Vc)1+ 32

3π2N at Pclean

(V − Vc)1+ 80
9π2N at Pdirty

(7.30)

The behaviour of Z, v and M near the clean and finite-disorder QCPs is
illustrated in Fig. 7.3.
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In order to estimate the phase boundary between the CDW insulator
and the disordered phase in the close proximity of Pdirty for V > Vc and

∆̃0 > ∆̃
(c)
0 we compare the CDW induced gap M in the electron spectrum

with the standard deviation
√

∆̃0 of the chemical potential disorder. Close
to Pdirty, the disorder increase exponentially under the RG,

∆̃0(`)− ∆̃
(c)
0 '

(
∆̃0 − ∆̃

(c)
0

)
eν
−1
∆ ` with ν−1

∆ =
32

9π2N
.

We evaluate the disorder variance at the “correlation length” ξ ∼ e`
∗ ∼

(V − Vc)−ν , where m2(`∗) ' −1. Equating the resulting standard deviation
with the gap M near Pdirty, Eq. (7.30), we obtain the phase boundary

(
∆̃0 − ∆̃

(c)
0

)
' (V − Vc)(2zdirty+ν−1

∆ )νdirty

' (V − Vc)
2

(
1+ 32

3π2Nf

)
. (7.31)

CDW Insulator

Dirac Semimetal

Disordered 
Phase(s)

?

Figure 7.4: Schematic Phase diagram as a function of the interaction strength
V − Vc and the variance ∆̃0 of the chemical potential disorder.

A schematic phase diagram as a function of the interaction strength V −
Vc ' −m2 and the chemical potential disorder ∆̃0 is shown in Fig. 7.4.
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7.5 Discussion

We have investigated the effects of quenched short-ranged disorder on the
quantum phase transition between a two-dimensional Dirac semi-metal and
a charge density wave (CDW) insulator. In the absence of disorder, the
phase transition belongs to the chiral Ising Gross-Neveu-Yukawa (GNY) uni-
versality class. In order to achieve analytic control in d = 2, far below the
upper critical dimension, we have analysed the problem in the limit of a large
number N of Dirac fermion flavours. We have used the RPA fermion loop
resummation to self-consistently account for the Landau damping of the bo-
son dynamics by electronic particle-hole excitations. As pointed out in the
literature [38, 85], this is a non-perturbative effect in two spatial dimensions
that changes the IR physics and hence the universal critical behaviour. As
we have demonstrated in our work, Landau damping also plays a crucial role
in how the critical system responds to disorder.

We have considered three types of electronic disorder that all arise from
non-magnetic charge impurities. The random potential from the impurities is
decomposed into random mass disorder, which locally breaks the symmetry
between the two sublattices, and symmetric random chemical potential dis-
order. The local lattice deformations caused by impurity atoms is accounted
for by random gauge potential disorder [120]. For simplicity, we have ne-
glected correlations between the different types of disorder and assumed that
disorder is uncorrelated between different positions in space.

After averaging over disorder, using the replica formalism, we have per-
formed a perturbative RG calculation to leading order in the disorder strength
and in 1/N . Our analysis shows that the clean GNY critical point is sta-
ble against weak disorder. This is in stark contrast to non-interacting or
weakly interacting two-dimensional Dirac fermions where disorder is a rel-
evant perturbation, resulting in a run-away flow towards strong disorder
[119, 132, 133, 134].

Most importantly, we have identified a dirty GNY critical point at a finite
value of the chemical potential disorder of order 1/N . At this multicritcal
point, the random mass and random gauge potential disorders are irrelevant.
This shows that the transition into a disordered state is driven by chemical
potential disorder, even if the other forms of disorder dominate on shorter
length and time scales.

The disorder driven phase transition along the line of critical interaction
in the two-dimensional system might be similar to the transition in weakly
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interacting, three dimensional Weyl/Dirac semimetals [139, 140, 141, 142].
In both cases, the transition is driven by chemical potential disorder which
is expected to induce a finite zero-energy density of states in the disordered
phase, giving rise to diffusive metallic behaviour. This would be consistent
with our naive picture for the transition between the CDW insulator, which
forms above the critical interaction strength, and the disordered phase: if
the standard deviation of the random chemical potential shifts exceeds the
electronic gap induced by the symmetry breaking, the system will develop a
finite density of states at the average chemical potential, leading to diffusive
metallic behaviour. However, further calculations are required to ascertain
the properties of the disordered phase in the strongly interacting, two di-
mensional system. An investigation of the dependence on the form of the
disorder distribution, e.g. whether it is bounded, Gaussian or exhibits long
tails, as well as of any potential replica symmetry breaking [156], indicative
of glassy behaviour, would be very interesting.

Our renormalisation-group approach does not capture non-perturbative,
rare region effects, which have spurned a lot of discussion in the context of
three dimensional Weyl/Dirac semimetals. A study by Nandkishore et al.
[143] first proposed that rare region effects induce a non-vanishing density of
states at the Weyl/Dirac points, thereby turning the disorder-driven phase
transition into a crossover. This was substantiated by numerical calculations
[144, 145] but remains at odds with recent theoretical literature [146, 147].
However, as chemical potential disorder is marginal in two spatial dimensions,
and irrelevant in three, it is expected that rare region resonances will have a
“sub-leading effect” on the physics of the transition in two dimensions [157].

We have shown that the symmetry-breaking quantum phase transition at
the dirty GNY does not belong to the chiral-Ising GNY universality of the
clean system. We have computed the critical exponents at the finite-disorder
multi-critical point to order 1/N and found that the anomalous dimensions
of the boson and fermion fields, the correlation length exponent of the CDW
order parameter and the dynamical critical exponent differ from those at the
clean GNY fixed point. This leads to different critical behaviour of physical
observables such as the electronic gap, the Fermi velocity, and the quasi-
particle residue near the transition and results in a novel non-Fermi liquid
state at the multicritical point.

The interplay between symmetry breaking and disorder was previously
studied for the XY GNY [2, 3] and the chiral Ising and Heisenberg GNY
models [148], using the replica formalism combined with ε expansions. Near
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the upper critical dimension fermionic disorder is strongly irrelevant at the
clean system quantum critical points. Instead, short-ranged disorder of the
bosonic order parameter mass (sometimes referred to as random Tc disorder)
gives rise to a finite disorder multicritical point, regardless of the symmetry
of the order parameter. At this finite disorder critical point the Lorentz
invariance is broken with a dynamical exponent z > 1, similar to our dirty
GNY fixed point, while the fermionic and bosonic anomalous dimensions
remain unchanged, which is not the case in our theory.

The irrelevance of the chemical potential disorder seems to be only valid
near the upper critical dimension, hence any extrapolation to the physical
dimension of d = 2 without the inclusion of it is questionable. Moreover, the
non-perturbative Landau damping which is crucial for the universal critical
behaviour of the two-dimensional system, is not captured by an ε expansion
below the upper critical dimension. On the other hand, we have not included
bosonic disorder in our theory. Starting from an interacting fermionic model
with a random potential, bosonic disorder would not arise from a Hubbard-
Stratonovich decoupling of the fermionic interaction vertex. However, as
pointed out in Refs. [2] and [3], at two-loop order chemical potential disorder
could generate a bosonic disorder vertex in the replica theory. We have
presented an explicit calculation in Appendix E, demonstrating that this is
not the case.

In future extensions of our work it would be interesting to investigate
the effects of long-range correlations of disorder. It is often assumed that
impurities and imperfections are screened effectively and that disorder can
therefore be taken to be uncorrelated. However, it has been reported that
in graphene the correlations between disorder-induced puddles of electron-
and hole-doped regions decay algebraically [158, 159, 160]. Such power-law
correlations are expected to change the long-wavelength physics and hence
the universal critical behaviour. One might also include other types of disor-
der, e.g. defects that lead to inter-valley scattering, magnetic impurities that
break the spin degeneracy, or topological lattice defects that are described
by random non-Abelian gauge fields. The interplay of the different types
of disorder is expected to lead to rich phase behaviour and novel critical
phenomena, in particular if competing fermionic interactions are taken into
account.

103



Chapter 8

Concluding Remarks

We now conclude with a summary of work found in this thesis. For detailed
discussion please consult the end of the chapters.

We have investigated the universal critical behaviour of nodal point semimet-
als at quantum phase transitions that are driven by strong local interactions
and/or disorder. Due to the gapless nature of the excitations the critical
behaviour cannot be described with a Ginzburg-Landau type of theory, and
no longer can the universality class of the transition be defined by the di-
mensionality of the problem and the symmetry of the order parameter. The
natural description involves treating the bosonic and fermionic degrees of
freedom on equal footing in a Yukawa-type theory. The transitions investi-
gated in this thesis are the simplest examples of fermionic quantum criticality
which should shed some light on criticality in systems with extended Fermi
surfaces.

In Chapter 3, we used the path integration formulation of Landau’s free
energy approach to phase transitions, to show that already at mean-field
level the role of fermions is fundamental to the criticality. The mean-field
exponents differ from the standard Ising universality class. This was due to
the appearance of non-analytic terms in the mean-field free energy which in
turn are a consequence of the vanishing density of states at the half-filling
point. The density of states took the form of ρ(ε) = ε,

√
ε for the Dirac and

semi-Dirac case respectively, which in turn resulted in disparate critical ex-
ponents for the two cases. Moreover we showed that the inherent anisotropy
of the semi-Dirac excitations results in different correlation length scaling
along the inequivalent directions, which could stabilise emergent modulated
order and stripe phases.
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In Chapter 5 we utilised the Wilson’s momentum shell RG to investigate
the criticality of the Gross-Neveu-Yukawa theory with a scalar order param-
eter, which describes the quantum phase transition from a Dirac semimetal
to a charge density wave insulator. We found that using two different cut-
off scheme in the momentum shell gave rise to disparities in the resulting
RG equations. Specifically using a cylindrical cutoff scheme (which is prob-
ably the most natural one) resulted in the breaking of Lorentz invariance, a
symmetry that is well known to exist at the interacting fixed point. Such
inconsistencies were solved with the use of a soft cutoff scheme that set a
constraint on the scaling of the bosonic propagator, which in two spatial
dimensions required for it to be non-analytical. A non-perturbative effect
which turned out to be a consequence of screening (Landau damping) of or-
der parameter fluctuations by particle-hole excitations. To self-consistently
account for this effect an RPA resummation of UV convergent fermionic loops
was calculated. We found that with the use of damped boson propagator we
obtained critical exponents that were in exact agreement with the literature.

Building on the knowledge developed in the previous chapter, we inves-
tigate fermionic quantum criticality of nodal point semimetals with dL, dQ
linearly and quadratically dispersing directions respectively. The anisotropy
makes the problem more interesting as parts of the bare bosonic propagator
are RG irrelevant in all dimensions of interest. Once again with the soft
cutoff method we illustrated that Landau damping is crucial, and should be
included even when at the upper critical line. However a closed form expres-
sion of the RPA resummation of fermion loops was not possible, hence we
calculated the critical exponents for the case of semi-Dirac only.

Lastly in Chapter 7 we considered the effect of non-magnetic disorder on
the Dirac semimetal to charge density wave insulator quantum phase tran-
sition. While clean non-interacting graphene is stable against disorder, it
was known that the interplay of Coulomb interaction and disorder was far
from trivial in the Dirac semimetal. Moreover previous works on the disor-
dered symmetry breaking transitions of Dirac semimetals utilised variations
of the famous ε-expansion and failed to agree in their results, and even more
importantly failed to include the Landau damping effect. Using a combi-
nation of replica theory and RG we computed the flow of this disordered
GNY model, and found a new disordered interacting fixed point which was
characterised by non-zero chemical potential disorder. Interestingly enough
the other two disorders considered (vector potential and random mass) were
irrelevant to the criticality, even though physically one might expect them to
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be interlinked with the chemical potential disorder. However the clean GNY
interacting fixed point was found to be stable to any disorder, and that a
transition to some sort of a glassy phase occurs past a critical value of the
chemical potential disorder.

More generally, we have contributed to the understanding of fermionic
quantum criticality, and elucidated the importance of order parameter screen-
ing in semimetals which are subject to strong short-range interactions which
in turn drive a phase transition into a broken symmetry phase.
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Appendix A

Useful integral identities

The loop calculations utilize integral identities that follow from the integral
representations of the Γ function. Typically, k-integrals are rewritten in
hyper-spherical coordinates kµ = yk̂µ with k̂µk̂µ = 1,∫

k

=

∫
dDk

(2π)D
=

∫
dΩ̂k

(2π)D

∫ ∞
0

dy yD−1. (A.1)

The radial integral identity∫ ∞
0

dy
yD−1+α

(yβ +M)n
=

Γ(D+α
β

)Γ(n− D+α
β

)

β Γ(n)Mn−D+α
β

, (A.2)

is valid for D + α > 0 and nβ > D + α. The angular integral identity over
the D-dimensional unit sphere∫

dΩ̂k

(2π)D
k̂2n
µ = SD

Γ(D
2

)Γ(2n+1
2

)√
πΓ(2n+D

2
)
, (A.3)

for integer n. Integrals over odd powers of k̂µ are zero, by symmetry. Here
µ = 0, . . . , D is not summed over and

SD =
1

(2π)
D
2

2π
D
2

Γ(D
2

)
, (A.4)

is the surface area of a D-dimensional unit sphere.
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The Feynman parameterization

1

anbm
=

Γ(n+m)

Γ(n)Γ(m)

∫ 1

0

dt
tn−1(1− t)m−1

[ta+ (1− t)b]n+m
, (A.5)

in conjunction with appropriate linear momentum shifts is used to render
integrals radially symmetric.

The Feynman parameter integral identity∫ 1

0

dt ta(1− t)b =
Γ (a+ 1) Γ (b+ 1)

Γ (a+ b+ 2)
, (A.6)

is valid for a > −1 and b > −1.
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Appendix B

GNY diagrams

B.1 RPA boson propagator

We work in units where the Fermi velocity v = 1, such that

GΨ(k) =
ikµγµ
k2

. (B.1)

The fermion loop diagram is displayed in Fig. 5.2(a). We calculate the reg-
ularized fermion loop Π(q)→ Π(q)− Π(0),

Π(q) =
g2

Nf

∫
k

tr [GΨ(k + q)GΨ(k)−GΨ(k)GΨ(k)]

= g2

∫
k

(kµ + qµ)qµ
(k + q)2k2

, (B.2)

where we have used that tr γµγν = Nfδµν . After using the Feynman parametriza-
tion (A.5) with n = m = 1, a = (k + q)2 and b = k2, and substituting
k̃ = k + tq, the k̃ integral is radially symmetric,

Π(q) = g2

∫ 1

0

dt

∫
k̃

(1− t)q2

[k̃2 + t(1− t)q2)]2
. (B.3)

Evaluating the k̃ integral, using the radial integration formula (A.2), and
then carrying out the one-dimensional integral over the Feynman parameter
t, using the identity (A.6), we obtain

Π(q) =
g2SDαD
vD−1

(q2
0 + v2q2)

D−2
2 , (B.4)
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where we have reinstated the Fermi velocity v, and defined

αD = − π

2 sin(πD
2

)

Γ(D/2)2

Γ(D − 1)
. (B.5)

The resulting dressed RPA boson propagator is given by

G−1
φ (q) = G−1

φ,0(q) + Π(q)

=
g2SDαD
vD−1

(q2
0 + v2q2)

D−2
2 +m2, (B.6)

where we neglected the sub-leading momentum and frequency terms from
the bare propagator G−1

φ,0(q).

B.2 Soft cutoff one-loop quantum corrections

In the following we work in rescaled units, such that v = 1. The dependence
on the Fermi velocity will be reinstated in the end. The propagators are
augmented by cutoff functions A as described in the main text with Ak =
A(aµk

2
µ/Λ

2). The flow of the fermion self energy correction Σ(q), Fig. 5.3(b),
is

d

d`
Σ(q) = −Λ

d

dΛ

g2

Nf

∫
k

GΨ(k + q)Gφ(k)AkAk. (B.7)

We extract the relevant linear q term on the critical surface m2 = 0,

d

d`
Σ(q) =

iqµγν
SDαDNf

Λ
d

dΛ

∫
k

2kµkν − δµνk2

kD+2
A2
k, (B.8)

and rewrite the integral in terms of angular and radial integrals, defining
k = yk̂,

d

d`
Σ(q) =

iqµγν
SDαDNf

∫
Ω̂

(
2k̂µk̂ν − δµν

)
×Λ

d

dΛ

∫ ∞
0

dy

y
A2

(
f(Ω̂)y2

Λ2

)
. (B.9)

While the radial y integral becomes trivial, using the soft cutoff integral
identity (5.26), the angular integral can be computed using Eq. (A.3). The
final result is

d

d`
Σ(q) = −i D − 2

αDDNf

(q0γ0 + vq · γ). (B.10)

126



To compute the flow of the vertex correction Ξ, Fig. 5.3(c), we follow the
same steps,

d

d`
Ξ = Λ

d

dΛ

g3√
Nf

3

∫
k

G2
Ψ(k)Gφ(k)A3

k

= − g

SDαD
√
Nf

3 Λ
d

dΛ

∫
Ω̂

∫ ∞
0

dy

y
A3

(
f(Ω̂)y2

Λ2

)
= − 1

αDNf

g√
Nf

. (B.11)

B.3 Soft cutoff two-loop quantum corrections

The flow of the two loop boson self energy Π̃, Fig. 5.3(d), that renormalizes
the boson mass (at zero external momentum) is

d

d`
Π̃ = Λ

d

dΛ

g4

N2
f

∫
k,q

Gφ(q)Aq × tr
[

GΨ(k + q)GΨ(k + q)GΨ(k)GΨ(k)A2
k+qA

2
k

+ 2GΨ(k + q)GΨ(k)GΨ(k)GΨ(k)Ak+qA
3
k

]
. (B.12)

We extract the relevant m2 contribution

d

d`
Π̃ = − m2

(SDαD)2Nf

Λ
d

dΛ

∫
k,q

1

q2D−4k2(k + q)2

×
[
A2
kA

2
k+qAq +

2(kµ + qµ)kµ
k2

A3
kAk+qAq

]
. (B.13)

The two loop calculation involves more steps. We use the transformation
qµ = yq̂µ, kµ = yxk̂µ, where q̂µq̂µ = 1 and k̂µk̂µ = 1, such that

d

d`
Π̃ = − m2

(SDαD)2Nf

∫
Ω̂k

(2π)D

∫
dΩ̂q

(2π)D

∫ ∞
0

dx xD−1

× Λ
d

dΛ

∫ ∞
0

dy

y

1

x2(xk̂ + q̂)2

[
A2
yxk̂
A2
y(xk̂+q̂)

Ayq̂

+
2(x2 + xk̂µq̂µ)

x2
A3
yxk̂
Ay(xk̂+q̂)Ayq̂

]
. (B.14)
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The y integral is evaluated with the soft cutoff identity (5.26). The integral
is rendered radially symmetric in x after the introduction of the Feynman
parameter t (A.5), with the shift k̂ → k̂ − tq̂/x. Then the angular integrals
are evaluated resulting in

d

d`
Π̃ = − m2

α2
DNf

∫ 1

0

dt

∫ ∞
0

dx xD−1
{

1

[x2 + t(1− t)]2 + 4(1− t) x2 − t(1− t)
[x2 + t(1− t)]3

}
. (B.15)

The radial x integral and the integral over the Feynman parameter t are
evaluated using Eqs. (A.2) and (A.6), respectively. The final result is

d

d`
Π̃ =

D − 1

α2
DNf sin(πD

2
)

πΓ(D
2

)2

Γ(D − 1)
m2. (B.16)
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Appendix C

Diagrams for semi-Dirac
(dL = dQ = 1) systems

We work in units where the vQ = 1, and define

εµ(k) = (k0, kL, k
2
Q), (C.1)

as well as γµ = (γ0, γL, γQ), such that (at ∆ = 0)

GΨ(k) = i
εµ(k)γµ
ε2(k)

= i
k0γ0 + kLγL + k2

QγQ

k2
0 + k2

L + k4
Q

. (C.2)

C.1 RPA boson propagator

We compute the boson self energy, which is given by the fermion polarization
diagram,

Π(q) =
g2

Nf

∫
k

tr [GΨ(k + q)GΨ(k)−GΨ(k)GΨ(k)]

= g2

∫
k

{
q0(k0 + q0) + qL(kL + qL) + (kQ + qQ)2

×
[
(kQ + qQ)2 − k2

Q

] }/{
(k2

0 + k2
L + k4

Q)

×
[
(k0 + q0)2 + (kL + qL)2 + (kQ + qQ)4

] }
, (C.3)

where we have used that trγµγν = Nfδµν . This integral can be rendered
radially symmetric in (k0, kL) by introducing the Feynman parameter t (A.5)
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followed by the shift (k0, kL)→ (k0, kL)− t(q0, qL),

Π(q) =
g2

4π2

∫ 1

0

dt

∫ ∞
−∞

dkQ

∫ ∞
0

dy y (C.4)

× (1− t)(q2
0 + q2

L) + (kQ + qQ)2
[
(kQ + qQ)2 − k2

Q

]
[y2 + t(1− t)(q2

0 + q2
L) + t(kQ + qQ)4 + (1− t)k4

Q]2
,

where y2 = k2
0 + k2

L. The radial integral over y can be performed using the
radial integral identity (A.2),

Π(q) =
g2

8π2

∫ 1

0

dt

∫ ∞
−∞

dkQ (C.5)

× (1− t)(q2
0 + q2

L) + (kQ + qQ)2
[
(kQ + qQ)2 − k2

Q

]
t(1− t)(q2

0 + q2
L) + t(kQ + qQ)4 + (1− t)k4

Q

,

Substituting p = kQ/|qQ|, we can write the bosonic self energy in the form

Π(q) =
g2

8π2
|qQ|F

(
q2

0 + q2
L

q4
Q

)
, (C.6)

where

F (u) =

∫ 1

0

dt

∫ ∞
−∞

dp
(p+ 1)4 − p2(p+ 1)2 + (1− t)u
(p+ 1)4t+ p4(1− t) + t(1− t)u. (C.7)

This is evaluated numerically, and is used to obtain numerically exact quan-
tum corrections.

C.2 Soft cutoff one-loop quantum corrections

Using the non-analytic RPA boson propagator

G−1
φ (k) =

g2

8π2
|kQ|F

(
k2

0 + k2
L

k4
Q

)
+m2, (C.8)

without the sub-leading bare terms, we compute the loop integrals δΣL, δΣQ,
and δΣ∆, which arise in the expansion of the fermion self-energy correction,
Eq. (6.21), and δΞ, which enters in the quantum correction that renormalizes
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the Yukawa coupling, Eq. (6.22). The corresponding diagrams are shown in
Figs. 5.3(b) and (c), respectively. The one-loop integrals we need to compute
are

δΣL =
8π2

Nf

Λ
d

dΛ

∫
k

A2
k

|kQ|Fk

(
1

ε2
k

− k2
0 + k2

L

ε4
k

)
, (C.9)

δΣQ =
8π2

Nf

Λ
d

dΛ

∫
k

A2
k

|kQ|Fk
× (C.10)

×
(

(k2
0 + k2

L)2 − 12(k2
0 + k2

L)k4
Q + 3k8

Q

ε6
k

)
,

δΣ∆ =
8π2

Nf

Λ
d

dΛ

∫
k

A2
k

|kQ|Fk

(
k2

0 + k2
L − k4

Q

ε4
k

)
, (C.11)

δΞ = −8π2

Nf

Λ
d

dΛ

∫
k

A3
k

|kQ|Fk

(
1

ε2
k

)
, (C.12)

where we have defined Fk = F [(k2
0 + k2

L)/k4
Q], Ak = A(aµε

2
µ(k)/Λ2), and

ε2
k = εµ(k)εµ(k), for brevity.

Using the transformation

k0 = y cos θ, kL = y sin θ, kQ =
√
yk̃Q, (C.13)

the integral over the global radial coordinate y in conjunction with the loga-
rithmic derivative Λ d

dΛ
becomes trivial due to the soft cutoff identity (5.26).

After evaluating the angular integral over θ and substitution u = 1/k̃4
Q, we

obtain

δΣL =
1

Nf

∫ ∞
0

du
1

(1 + u)2F (u)
=

0.0797

Nf

, (C.14)

δΣQ =
1

Nf

∫ ∞
0

du
u2 − 12u+ 3

(1 + u)3F (u)
=

0.0214

Nf

, (C.15)

δΣ∆ =
1

Nf

∫ ∞
0

du
u− 1

(1 + u)2F (u)
=

0.2755

Nf

, (C.16)

δΞ = − 1

Nf

∫ ∞
0

du
1

(1 + u)F (u)
= −0.4350

Nf

, (C.17)

where in the last step we have numerically evaluated the integral over u, using
the exact function F (u) (C.7) which is itself a two-dimensional integral.
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Alternatively it is possible to compute the corrections with the asymp-
totic propagator in Eq. (6.37). In this case F (u) is approximated by a
closed form expression and only the one dimensional integral over u needs
to be performed numerically. The resulting quantum corrections are δΣL ≈
0.0771/Nf , δΣQ ≈ 0.0250/Nf , δΣ∆ ≈ 0.2759/Nf , δΞ ≈ −0.4300/Nf .

C.3 Soft cutoff two-loop quantum corrections

The two-loop integrals that contribute to the mass renormalization, Eq. (6.22),
are given by

δΠ̃ = −(8π2)2

Nf

Λ
d

dΛ

∫
k,q

1

ε2
k+qε

2
k |qQ|2 F 2

q

[
A2
kA

2
k+qAq +

2εµk+qε
µ
k

ε2
k

A3
kAk+qAq

]
. (C.18)

We use the transformation

q0 = yq̂0, qL = yq̂L, qQ =
√
yq̃Q,

k0 = yxk̂0, kL = yxk̂L, kQ =
√
yk̃Q.

(C.19)

with k̂2
0 + k̂2

L = 1 and q̂2
0 + q̂2

L = 1, e.g. k̂0 = cos θ, k̂L = sin θ, q̂0 = cosφ, and
q̂L = sinφ.

The global radial integral over y is trivial due to the soft cutoff identity
(5.26) that reflects the cutoff independence. We then introduce the Feynman
parameter t (A.5) to render the x integral radially symmetric, after the shift
xk̂0,L → xk̂0,L − tq̂0,L. Evaluating the angular integrals results in

δΠ̃ = −16π2

Nf

∫
kQ,qQ

1

|q̃Q|2 F (q̃−4
Q )2

∫ 1

0

dt

∫ ∞
0

dx x
{

1

[x2 + t(1− t) + t(k̃Q + q̃Q)4 + (1− t)k̃4
Q]2

+
4(1− t)[x2 − t(1− t) + (k̃Q + q̃Q)2k̃2

Q]

[x2 + t(1− t) + t(k̃Q + q̃Q)4 + (1− t)k̃4
Q]3

}
. (C.20)
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Using the identity (A.2) the radial x integral is evaluated resulting in

δΠ̃ = − 2

Nf

∫ ∞
−∞

dq̃Q
1

|q̃Q|2 F (q̃−4
Q )2

∫ 1

0

dt

∫ ∞
−∞

dk̃Q

{
1 + 2(1− t)

[t(1− t) + t(k̃Q + q̃Q)4 + (1− t)k̃4
Q]

+
2(1− t)[(k̃Q + q̃Q)2k̃2

Q − t(1− t)]
[t(1− t) + t(k̃Q + q̃Q)4 + (1− t)k̃4

Q]2

}
. (C.21)

Although the Feynman parameter can be evaluated, we find that numerical
stability of integration is enhanced if the current three-dimensional form is
used. We find that δΠ = −1.053/Nf with the full F , and is approximated as
δΠ ≈ −1.037/Nf with the asymptotic propagator (6.37).
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Appendix D

εL,Q-expansions for anisotropic
nodal semimetals

D.1 Derivation of the RPA near the upper

critical line

Here we compute the regularized bosonic self energy (C.3) for the two cases:
(i) dL = (3 − εL)/2, dQ = 1 and (ii) dL = 1, dQ = 2 − εQ. The first steps
are carried out for general dL and dQ. Using Feynman parametrization (A.5)
together with the shift (k0,kL)→ (k0,kL)−t(q0, qL), the integral is rendered
radially symmetric in the linear (k0,kL) subspace,

Π(q) =
g2

2dLπ(dL+1)/2Γ(dL+1
2

)

∫
kQ

∫ 1

0

dt

∫ ∞
0

dy ydL

(1− t)(q2
0 + q2

L) + (kQ + qQ)2[(kQ + qQ)2 − k2
Q]

[y2 + t(1− t)(q2
0 + q2

L) + t(kQ + qQ)4 + (1− t)k4
Q]2

, (D.1)

where k2
0 + k2

L = y2 and t denotes the Feynman parameter. Note that we
have evaluated the angular integral over the dL + 1 dimensional sphere and
evaluated the surface area SdL+1 using Eq. (A.4). Using the integral identity
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in Eq. (A.2) we can integrate over y,

Π(q) =
g2 sec

(
dLπ

2

)
(dL − 1)

22+dLπ(dL−1)/2Γ(dL+1
2

)

∫
kQ

∫ 1

0

dt

{
[
(kQ + qQ)2(2kQ · qQ + q2

Q) + (q2
0 + q2

L)(1− t)
]
×[

k2
Q + (2kQ · qQ + q2

Q + (q2
0 + q2

L)(1− t))t
](dL−3)/2

}
. (D.2)

This integral cannot be computed in closed form so we look at two limits,
first where qQ = 0, and second where (q0, qL) = 0. The final asymptotic
form of the propagator will be approximated by G−1

φ (q) = Π(q0, qL, qQ =
0) + Π(q0 = 0, qL = 0, qQ). In the first limit, qQ = 0, the integral does not
diverge for any dL, dQ > 0 and 2dL + dQ < 6, and results in

Π(q0, qL, qQ = 0) =

− g2
π(3−dL−dQ)/2 sec

(
(2dL+dQ)π

4

)
4dL+dQΓ

(
2+dQ

4

)
Γ
(

2dL+dQ
4

)(q2
0 + q2

L)
2dL+dQ−2

4 . (D.3)

Evaluating this expression for the two starting points (i) dL = 3/2, dQ = 1
and (ii) dL = 1, dQ = 2 on the upper critical line results in the linear terms
in Eqs. (6.42) and (6.43).

The integral in the second limit, (q0, qL) = 0, is however typically diver-
gent on the upper critical line, but upon an evaluation in 2dL+dQ = 4− εL,Q
we can obtain the leading εL,Q behavior, i.e. the 1/εL,Q pole. This divergence
can be recovered upon first making the spherical transformation |kQ|4 = r2,
and then expanding the integral in the limit of large r in dQ+2dL = 4− εL,Q.
The leading term ∼ |qQ|2−εL,Q/r1+εL,Q is extracted, and upon the evaluation
of the integral results in

Π(q0 = 0, qL = 0, qQ) =

(2dL + dQ − 2)π(1−dL−dQ)/2 sec
(
dLπ

2

)
dQ2dL+dQ(2dL + dQ − 4)Γ

(
dL−1

2

)
Γ
(
dQ
2

) |qQ|2dL+dQ−2. (D.4)

Evaluating the pre-factor for (i) dL = (3 − εL)/2, dQ = 1 and (ii) dL =
1, dQ = 2 − εQ and extracting the leading 1/εL and 1/εQ divergencies, we
obtain the quadratic terms in Eqs. (6.42) and (6.43).
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D.2 Fermion self-energy and the Vertex cor-

rection

We proceed to compute the one-loop diagrams in Figs. 5.3(b) and (c), using
the soft cutoff approach. Expanding the fermion self energy diagram to
leading order in external frequency and momenta we obtain the quantum
corrections to the linear and quadratic momentum directions as well as to
the Yukawa vertex for a general dL-dQ system,

δΣL =
g2

Nf

Λ
d

dΛ

∫
k

(
1

ε2
k

− 2(k2
0 + k2

L)

(dL + 1)ε4
k

)
Gφ(k)A2

k, (D.5)

δΣQ =
g2

Nf

Λ
d

dΛ

∫
k

{
Gφ(k)A2

k

ε6
k

,

(
4k8

Q − 12(k2
0 + k2

L)k4
Q

dQ
+ (k2

0 + k2
L)2 − k8

Q

)}
, (D.6)

δΞ = − g2

Nf

Λ
d

dΛ

∫
k

Gφ(k)A3
k

ε2
k

, (D.7)

Here Gφ(k) is the IR order parameter propagator defined in Eq. (6.42) for
the εL expansion and in Eq. (6.43) for the εQ expansion.

D.3 εL-expansion

We compute the above integrals in dL = 3/2, dQ = 1 dimensions with the
boson propagator Gφ(k) in Eq. (6.42). Defining the radial coordinate y in the
dL + 1 = 5/2 dimensional (k0,kL) subspace, k2

0 + k2
L = y2, and substituting

kQ =
√
yx, the y integrals can be evaluated with the soft cutoff identity

(5.26), reflecting the cutoff independence. The angular integral simply gives
a factor S5/2 = (8π5/4)/Γ(1/4). The remaining one-dimensional x integrals
can be computed analytically. Keeping the leading ∼ √εL and first sub-
leading ∼ εL contributions for small εL, we obtain the quantum corrections

δΣL =
64εL
5πNf

∫ ∞
0

(1 + 5x4)dx

(1 + x4)2
(

16
√

2 x2 +
√
π Γ

(
1
4

)2
εL

)
=

23/4

5π1/4Γ
(

5
4

)√εL
Nf

, (D.8)
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δΣQ =
64εL
πNf

∫ ∞
0

(1− 12x4 + 3x8)dx

(1 + x4)3
(

16
√

2 x2 +
√
π Γ

(
1
4

)2
εL

)
=

23/4

π1/4Γ
(

5
4

)√εL
Nf

− 3εL
Nf

, (D.9)

δΞ = −64εL
πNf

∫ ∞
0

dx

(1 + x4)
(

16
√

2 x2 +
√
π Γ

(
1
4

)2
εL

)
= − 23/4

π1/4Γ
(

5
4

)√εL
Nf

+
εL
Nf

. (D.10)

D.4 εQ-expansion

For the expansion in the number of quadratic dimensions, we compute the
integrals in Eqs. (D.5)-(D.7) in dL = 1, dQ = 2, using the IR boson propaga-
tor given in Eq. (6.43). Defining k2

0 + k2
L = y2 and k2

Q = yx2, the y integral
and the angular integrals are again trivial. Keeping the leading ∼ εQ log εQ
and first sub-leading ∼ εQ contributions for small εQ, the final x integrals
result in

δΣL =
16εQ
Nf

∫ ∞
0

dx
x5

(1 + x4)2(8x2 + π2εQ)

=
εQ

2Nf

, (D.11)

δΣQ =
16εQ
Nf

∫ ∞
0

dx
x(1− 6x4 + x8)

(1 + x4)3(8x2 + π2εQ)

= − εQ
Nf

log

(
π2εQ

8

)
− 2εQ
Nf

, (D.12)

δΞ = −16εQ
Nf

∫ ∞
0

dx
x

(1 + x4)(8x2 + π2εQ)

=
εQ
Nf

log

(
π2εQ

8

)
. (D.13)
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D.5 Comparing scaling and critical exponents

When comparing to critical exponents found in the literature one must be
careful about the variation in definitions of the number of fermion compo-
nents Nf , and the unit length scale zL = 1 or zQ = 1. We discuss how to do
so here.

Throughout the literature, various n-component fermions are considered,
depending on the symmetry of the initial Hamiltonian. For analytic control,
the generalization to Nn flavors is made. The conversion to our convention
is then Nf = nNn.

We have defined a unified scaling relying on the “unit length” zLδ`,

X(k) = X ′(k′)e−∆XzLδ`/2, (D.14)

where X = Ψ, φ and ∆X = [X†X]+ηX are the total scaling dimensions. Here
ηX contains all order 1/Nf corrections by definition. We did so because in the
literature there are variations in the definition of the unit length scale, either
using: (i) linear zL = 1 and (ii) quadratic zQ = 1 momentum directions. As
we found in the main text, the ratio zL/zQ renormalizes and so, for example,
fixing zL = 1 causes zQ to renormalize with 1/Nf corrections.

We seek to compare to previous results in the literature, where in general
the scaling is defined as

X(k) = X ′(k′)e−∆̃Xδ`/2, (D.15)

and typically either zL = 1 is fixed, or zQ = 1 is fixed. When the linear
momentum has been defined as the unit length scale, ∆̃X = ∆X , as zL = 1 is
fixed. Where as, for the quadratic momentum defining the unit length scale,
∆̃X = zL∆X , as zQ = 1 but zL is not fixed.

In the case zQ = 1 there are subtleties in the conversion between anoma-

lous dimensions ηX and η̃X . To leading order in Nf we define zL = z
(0)
L +

z
(1)
L /Nf , then expand ∆̃X = zL∆X and equate 1/Nf terms resulting in the

relation

ηX =
η̃X

z
(0)
L

− z
(1)
L [X̃†X]

(z
(0)
L )2Nf

. (D.16)

There can be other variations in scaling definitions, for example Ref. [36]

defined ∆̃X = [X̃†X] + 2η̂X , such that η̃X = 2η̂X . We use the comparison of
the order parameter anomalous dimension as a relevant example.
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Appendix E

Genertion of Bosonic disorder
at two-loops

Here we address the question if the electronic disorder, which are defined
on the level of the quadratic fermion action [see Eq. (7.6)], can generate
random mass disorder of the bosonic order parameter field at two loop order,
as suggested in Refs. [2] and [3]. In the disorder averaged replica theory
the electronic disorder is described by a disorder vertex that is quartic in
the fermionic Grassmann fields, couples different replicas, and is non-local
in imaginary time [see Eq. (7.14)]. Similarly, bosonic random mass disorder
gives rise to a disorder vertex

Sdis
φ = −σ

2

2

n∑
a,b=1

∫
d2x

∫
dτ

∫
dτ ′φ2

a(x, τ)φ2
b(x, τ

′) (E.1)

in the replica field theory, where σ2 is the variance of the bosonic random
mass disorder distribution. This vertex would be generated by the two-loop
diagram shown in Fig. E.1 where the external momenta in the loop integrals
are set to zero. This results in

σ2 ∼ g4

N2

∑
i=0,x,y,z

D2
i∆i (E.2)

with

Di =

∫
k,ω

Tr
[
GΨ(k, ω)σzGΨ(k, ω)σzGΨ(k, ω)σi

]
. (E.3)
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σz

σz

σi σi

σz

σz

Figure E.1: The two-loop diagram that according to Refs.[2, 3] generates the
bosonic disorder vertex.

It is straightforward to see that electronic random mass disorder ∆z does
not contribute since the trace over the product of Pauli matrices vanishes in
this case, Dz = 0. In the other channels we obtain the integrals

D0 = −N
∫
k,ω

iω

(ω2 + v2k2)2
,

Dx = −N
∫
k,ω

vkx
(ω2 + v2k2)2

,

Dy = −N
∫
k,ω

vky
(ω2 + v2k2)2

,

after taking the trace. These integrals are either odd in the frequency or
momenta and therefore evaluate to zero. This shows that for the chiral Ising
GNY theory with purely electronic disorder, the bosonic disorder vertex is
not generated at two-loop order.

There are certain higher-loop diagrams that vanish for similar reasons,
or after taking the Replica limit n → 0. However, we don’t see a general
argument for why boson mass disorder can’t be generated at higher-loop
order. As stated in the main text, there are other ways to generate boson
mass disorder, e.g. by considering disorder in the nearest neighbour fermion
interaction before Hubbard-Stratonovich decoupling.

We stress that the two-loop diagrams only vanish if external frequencies
and momenta are set to zero. But only such diagrams result in a boson vertex
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of the form φ2
aφ

2
b corresponding to Replica averaged random mass disorder.

Expanding out external momenta is equivalent to a gradient expansion and
gives rise to additional boson vertices such (∇φa)2φ2

b or (∇φa)2(∇φb)2, which
are irrelevant under the RG.
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Appendix F

Diagrams for the disordered
CDW phase transtion

For the calculation of diagrams in Fig. 7.1, the following fermionic propagator
is used,

GΨ(ω,k) =
iω + vk · σ
ω2 + v2k2

, (F.1)

the momentum vector k = (kx, ky) is two dimensional while ω denotes the
Matsubara frequency. We also use the damped bosonic propagator, the
derivation of which can be found in Appendix B.1,

G−1
φ (ω,k) =

g2

16v2

(
ω2 + v2k2

)1/2
+m2. (F.2)

In what follows, for ease of notation we define,∫
k

=

∫
Λe−d`<|k|<Λ

d2k

(2π)2
,

∫
ω

=

∫ ∞
−∞

dω

2π
,

∫
~k

=

∫
ω

∫
k

(F.3)

F.1 One-loop corrections

Henceforth a diagram depicted in Fig. 7.1 with a subscript (x) will be denoted
by D(x).

The flow of the clean fermionic self-energy has been previously derived in
Appendix B.2 in Eqs. (B.7)-(B.10). The first “dirty” diagram we tackle is
the fermionic self-energy depicted in Fig. 7.1(b), which is given by,

D(b) = −∆i

∫
k

σiGΨ(ω,k)σi (F.4)
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Unlike the clean fermionic self-energy only the frequency prefactor in the
fermionic sector is renormalised. This means that disorder will break the
emergent Lorentz invariance of the pure GNY model. To obtain the correc-
tion we expand in ω and retain the leading contribution,

D(b) =
∆i

v2

∫
q

−iω + vq · σ
q2

=
∆0 + 2∆⊥ + ∆z

2πv2
d` (−iω) (F.5)

The renormalisation of the Yukawa vertex coming from the four-fermion
disorder term is depicted in Fig. 7.1(d),

D(d) =
g√
N

∆i

2

∫
k

σiGΨ(0,k)σzGΨ(0,k)σi

=
2∆⊥ −∆0 −∆z

4πv2
d`

(
g√
Nf

)
(F.6)

where in the first line we had already set the external momenta to be zero as
the Yukawa interaction is a contact one and has no momentum dependence.
The integral is then trivial and the result is portrayed in the second line.
The differing signs of the disorders come from the fact that the gauge field
disorder anti-commutes with σz while the other two orders commute.

The four-fermion disorder vertex is renormalised by diagrams in Fig.
7.1(g)-(k). Tackling (g) and (h) first, we obtain

D(g) = −∆i∆j

2

∫
k

{
σiGΨ(0,−k)σj

}
⊗
{
σiGΨ(0,k)σj

}
D(h) = −∆i∆j

2

∫
k

{
σjGΨ(0,−k)σi

}
⊗
{
σiGΨ(0,k)σj

}
(F.7)

where in the bare disorder term a ∆i couples to σi⊗ σi. The sum of the two
diagrams then can be computed,

D(g) + D(h) =
d`

πv2

[
2∆⊥∆zσ

0 ⊗ σ0 + ∆0∆z(σ
x ⊗ σx + σy ⊗ σy)+

+2∆0∆⊥σ
z ⊗ σz

] (F.8)
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The remaining two one-loop diagrams that renormalise the bare disorder
term, are depicted in (i) and (j). The former only contains disorder vertices,

D(i) = −∆i∆j

∫
k

σjGΨ(0,k)σiGΨ(0,k)σj

=
d`

πv2

[
∆0 (∆0 + ∆z + 2∆⊥)σ0 ⊗ σ0+

+ ∆z (2∆⊥ −∆0 −∆z)σ
z ⊗ σz

]
. (F.9)

We see that the gauge disorder ∆⊥ is not renormalised by this diagram as
there is no σx,y ⊗ σx,y term. Lastly diagram (j) which mixes the Landau
damped propagator and the disorder vertex.

D(j) =
g2∆i

3N

∫
~k

Gφ(~k) σzGΨ(~k)σiGΨ(~k)σz

=
16

9π2N
d`
(
∆0σ

0 ⊗ σ0 + ∆⊥(σx ⊗ σx + σy ⊗ σy)− 3∆zσ
z ⊗ σz

)
(F.10)

F.2 Two-loop correction

The inclusion of the two-loop diagram in Fig.7.1(k) is justified on the basis
that it isO(∆2) hence contributes at the same order as the rest of the disorder
diagrams considered thus far. The extra factor of 1/Nf is cancelled by the
fermionic loop and the the damped bosonic propagator similarly cancels out
the Yukawa coupling g. It’s functional form is given by,

D(k) = ∆i∆j

(
g2

Nf

)∫
k,q

∫
ω

Gφ(0, q)

{
σiGΨ(0, q)σz

}
⊗ σj

× Tr

[
σiGΨ(ω,k)σzGΨ(ω,k + q)σjGΨ(ω,k + q)

]
. (F.11)

Due to the nature of the diagram it is easier to compute it using a soft cut-
off approach or by simply exracting the leading log divergence, as opposed
to using Wilson’s momentum shell scheme. With the help of of identities
outlined in Appendix A, we arrive at the following result,

D(k) = − d`

6πv2

[
∆⊥∆z(σ

x ⊗ σx + σy ⊗ σy) + 2∆⊥∆zσ
z ⊗ σz

]
. (F.12)
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F.3 RG equations

Finally we arrive at the final set of RG equations for the “frequency” coupling
cω which will help us set the fermionic critical dimension δΨ, the fermionic
velocity v which constrains the dynamical exponent z, the Yukawa coupling
g through which we calculate the bosonic critical dimension δφ, and all the
disorder variances,

d log cω
d`

= − (2 + 2z + δΨ) +
8

3π2Nf

+
∆0 + 2∆⊥ + ∆z

2πv2
(F.13)

d log v

d`
= − (3 + z + δΨ) +

8

3π2Nf

(F.14)

d log g

d`
= −

(
4 + 2z + δΨ +

δφ
2

)
− 8

π2Nf

+
2∆⊥ −∆0 −∆z

4πv2
(F.15)

d∆0

d`
= ∆0

[
− (6 + 2z + 2δΨ) +

∆0 + ∆z + 2∆⊥
πv2

+
16

9π2Nf

]
+

2∆⊥∆z

πv2

(F.16)

d∆⊥
d`

= ∆⊥

[
− (6 + 2z + 2δΨ) +

16

9π2Nf

− ∆z

6πv2

]
+

∆0∆z

πv2
(F.17)

d∆z

d`
= ∆z

[
− (6 + 2z + 2δΨ) +

2∆⊥ −∆0 −∆z

πv2
− 16

3π2Nf

− ∆⊥
3πv2

]
+

2∆0∆⊥
πv2

.

(F.18)

It is trivial to check that the form of δΨ, z and δφ given in Eqs. (7.16), (7.17),
and (7.20) respectively result in the reduced set of RG equations delinenated
in Eq. (7.22).
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