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 A B S T R A C T 

The mechanical performance of curved shell structures is difficult to predict due to their complex 

geometric nonlinearity. There have been many efforts to improve the mechanical property of curved 

shell structures by designing the thickness distributions. However, due to the nonlinear characteristics 

of variable-thickness shells, it is impossible to exhaust all possible structural forms through 

experimental and theoretical approaches. In this paper, we report a new machine learning (ML)-based 

approach to design and optimize bistable curved shell structures. The ML model is used to establish 

the underlying mapping relationship between structural parameters and specific performance. 

Nonlinear shell structures are efficiently and accurately designed and optimized with optimal 

backward snapping forces (B). The results demonstrate an effective approach for the design and 

optimization of curved shell structures and provide a valuable reference for future study of nonlinear 

structures. Moreover, this approach presents an efficient means of designing advanced metamaterials. 

The modular design of meta-atoms based on ML has the potential to construct metamaterials with 

specific properties and functionalities, which will lead to extensive applications in different fields. 

 7 

1.  Introduction 8 

Curved shell structures have been widely used in various engineering fields, such as aerospace, vehicle, pressure 9 

vessel, instruments and apparatuses, et al [1]. Owing to their multi-stability, curved shell structures can also be applied as 10 

typical unit elements to construct some novel architected metamaterials for energy trapping[2, 3]. It is scarcely possible to 11 

fabricate these architected metamaterials by traditional manufacturing technologies in the past, and it is very difficult to 12 

predict their non-linear mechanical behaviours theoretically. The extensive implementation of mechanical metamaterials 13 

in engineering may face significant limitations. Advancements in manufacturing technologies such as 3D printing [4-14 

6]offer potential solutions to these challenges. Even mechanical metamaterials with complex geometries can be more 15 

readily fabricated [7], and their mechanical properties can be further altered by adjusting the printing parameters [8]. 16 

Meanwhile, machine learning, combined with finite element analysis (FEA), provides a feasible method for predicting and 17 

optimizing the mechanical properties of architected metamaterials [9]. Rapidly developing industries bring up new 18 

demands to architected metamaterials, such as to be lightweight [10], negative Poisson’s ratio [11], negative stiffness [12], 19 

energy absorption [13]. Therefore, it becomes essential to propose an appropriate reverse optimization design method for 20 

the bistable properties of curved shell structures based on ML.  21 

Compared with curved beams, curved shell structures have some similar or even better mechanical properties [14], such 22 

as negative stiffness [15, 16], multi-stability [17-19], and excellent energy absorption [20-23]. Over the past few decades, 23 
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significant efforts have been devoted to the approximate theoretical analysis, numerical simulations, and experimental 1 

investigations of the mechanical properties of shell structures[24-26], among them, Civalek et al. have made great 2 

contributions to solving the motion control differential equations of shell structures, using a series of numerical analysis 3 

methods including Generalized Differential Quadrature（GDQ）[27], Discrete Singular Convolution（DSC）[28, 29], 4 

DSC- Differential Quadrature (DQ) coupling method [30] and higher-order shear-normal deformation theory and analytical 5 

approach to the static analysis, etc. Due to the geometric complexity of the shell structures and the limitations of the 6 

manufacturing process, so far, most of the researches have only been focused on the curved shell structures with regular 7 

shape and uniform thickness [31-34]. Previously, researchers have investigated the impact of diverse shell structure 8 

geometries, thicknesses, and material distributions on the mechanical characteristics [35-37]. Stegmann et al. 9 

[36]introduced a material optimization method called Discrete Material Optimization（DMO）to maximize the structural 10 

stiffness of the shell. Shimoda et al. [37] proposed a new numerical shape optimization method for shell structures, and the 11 

obtained shape is an excellent shell load-bearing structure that can be applied to automobiles, airplanes and ships. 12 

Optimizing the thickness distribution of a bistable shell structure entails achieving maximum utilization of materials in 13 

each of its constituent parts, while ensuring equal mass. This is a crucial factor that holds significant importance in the field 14 

of energy absorption [38, 39]. The reverse optimization design of curved shell structures, especially with a variable 15 

thickness distribution, is still a big challenge as the design space is too large to be exhaustive. A variety of optimization 16 

algorithms have been put forward to solve this reverse problem, such as ant colony algorithm [40], particle swarm algorithm 17 

[41], level set method[42], density method [43] and evolutionary approach [44], etc. The ant colony algorithm and particle 18 

swarm algorithm in topology optimization combine topology optimization and bionic concepts [45, 46]. The level set 19 

method simplifies complex boundary shapes and flexibly tunes complex topological changes [42]. Although these 20 

techniques achieve great success not only in mechanical design problems but also in other physical disciplines such as 21 

fluids and acoustics [47, 48], there are still many challenges including the high computational expense, the limited 22 

application range of compliance minimization problems, and the difficulty to apply more geometric and physical constraints 23 

[49].  24 

Since ML was first coined by Arthur Samuel in the 1950s [50], it has achieved great success in image recognition [51], 25 

speech recognition [52], medical prediction [53], and recommendation engines [54], and so on. It has been recognized that 26 

the core capability of ML is to detect and construct the complex internal correlations of input and output variables from a 27 

large-scale dataset. Therefore, it is credible that the non-linear relationship between the geometric parameters of a structure 28 

and its mechanical performance can also be obtained through ML in principle on the basis of building the dataset through 29 

finite element analysis [55]. Based on the established correlation, the corresponding optimization of the shape of the 30 

structure can be easily carried out for various optimization objectives.  31 

Researchers have employed ML to investigate complex optimization and prediction problems in the field of mechanics, 32 

such as metamaterials, auxetic structures and fluid mechanics [56-60]. For example, Wu et al. [56] used genetic ML 33 

algorithms based on Bayesian framework to investigate the relationship between structural parameters and performances, 34 

and optimized the meta-atom with enhanced performances. Hanakata et al. [57] used the convolutional neural networks 35 

(CNN) to establish the nonlinear relationship between the cutting position and the mechanical properties of graphene 36 

kirigami, and developed an optimal stretchable kirigami design. Qiu et al. [14] investigated the bistable properties of curved 37 

beams, based on which Liu et al. [58] further proposed an inverse structural design of curved beam with optimized 38 

properties based on ML. The research of Liu et al. gives inspiration to this paper about bistable properties of the curved 39 

shell. To design auxetic structures with specific Poisson’s ratio, Wang et al. [59] developed a back propagation neural 40 

network (BPNN)-genetic algorithm (GA) model to reversely forecast specified Poisson's ratio structural parameters. 41 

Mosavi et al. [60] also utilized ML in analysis of fluids, which accurately predicted the macroscopic parameters based on 42 
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adaptive-network-based fuzzy inference system (ANFIS). Many studies have demonstrated that ML can be a promising 1 

approach for dealing with nonlinear problems in mechanics, and have been successfully used for optimization of simple 2 

structures like beams and columns [61, 62]. We believe that the problem of complex structural optimization for curved 3 

shells with nonlinear properties can also be tackled using ML.  4 

In this research, we present an inversed design approach using fully connected neural networks and an optimized 5 

shape generator. Curved shell structures are designed and optimized to obtain a maximum backward snapping force (B). 6 

We firstly investigate the general mechanical properties of curved shell structures, conduct FEA on curved shells, and 7 

propose a structural variation mode and the feasibility verification of this variation mode. Then, the ML structure and 8 

optimization methods are described. Based on the ML model, reverse optimization is conducted with multiple self-learning 9 

loops to determine the optimal structure to the targeted performance. Finally, we demonstrate the effect of the ML model 10 

after training with datasets of FEA and obtain the curved shell shape with the larger absolute value of the backward snapping 11 

force, and compare the FEA results of the predicted shape with the results predicted by the ML model. Several studies have 12 

employed new ML approaches for directing the shape optimization of nonlinear structures [63-65]. However, to the best 13 

of our knowledge, the reverse optimization of shell structures utilizing ML techniques remains an unexplored research area. 14 

Compared with the mainstream structural design methods [38, 45, 46], the method presented in this paper constitutes a 15 

significant advance in the design objectives of dynamic problems and nonlinear optimization, with a notable reduction in 16 

computational costs. The study also introduces a novel thickness distribution redistribution approach for shell structures to 17 

obtain the maximum backward snapping force (B). The ML-based optimization method has strong transferability that can 18 

be applied in the parametric design of most mechanical structures. The optimized curved shell unit cell could also be further 19 

expanded for the development of metamaterials.  20 

2.  FEA modeling for bistability of curved shell structures 21 

Curved shell structures may have bistability when their geometric parameters are selected appropriately, which is 22 

similar to pre-shaped curve beams. When a curved shell is in a bistable state, it will not automatically return to the initial 23 

state after removing the external load, but store energy until the system is subjected to enough reverse disturbances to return 24 

to the initial state. Therefore, the bistable curved shells can be applied to construct architected metamaterials for energy 25 

trapping.  26 

A rotationally symmetric curved shell can be obtained by rotating a pre-shaped curved beam 360 degrees about its 27 

axis of symmetry, as shown in Fig. 1(a). Referring to the cylindrical coordinate system with the origin located on the center 28 

of the projected circle, the initial shape of the curved shell can be expressed as follows.  29 

 
2

( ) 1 cos
2

h r
w x

L

 
= + 

 
, (1) 30 

where L is the span and h is the initial apex height of the curved shell with thickness t(r). A vertical force is subjected to 31 

the apex of the shell as shown in Fig. 1(a) and the displacement boundary condition around the outermost circle is assumed 32 

to be clamped.  33 
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Fig. 1 Comparison of mechanical properties between beams and shells of equal thickness under the same mass;(a)&(b) solid model 1 

diagrams of equal-thickness curved shells and equal-thickness curved beams (c) the FE model of the equal-mass curved beam and curved 2 

shell with the same vertical project, Sbeam = Sshell, (d) the results of force-displacement curve.  3 

Through finite element analysis, the typical load-displacement curve can be obtained as shown in Fig. 1(d). Similar 4 

to a curved beam, the highly nonlinear load-displacement curve has three stages, from which three mechanical properties 5 

of the curved shell can be extracted: stiffness (E), forward snapping force (S) and backward snapping force (B). Wherein, 6 

backward snapping force (B) is the most important sign of whether the curved shell is bistable. If B < 0, the curved shell is 7 

bistable. When the absolute value of the backward snapping force (B) is larger, it means that the structure needs to absorb 8 

more energy after entering the second steady state to make the modal step, and the structure is more stable in the second 9 

steady state. Therefore, it is considered to find a structure with a larger absolute value of the backward snapping force to 10 

maximize its stability in the second steady state. So, the goal now is to use the method provided in this paper to find a 11 

suitable structural form in an infinite design space to make the absolute value of the backward snapping force as large as 12 

possible. As shown in Fig. 1(c-d), after FE calculating the equal-mass curved beam and curved shell with the same vertical 13 

project area, it is obvious that the shell better than the beam in the mechanical property of the backward snapping force. 14 

Qiu et al. deduced that in order to achieve bistability, a curved beam with equal thickness t must satisfy the condition 15 

of the ratio Q = h0/t ≤ 2.31 between the arch height and the beam thickness, it is also proposed that changing the thickness 16 

distribution of the beam can also optimize the bistable characteristics of the beam to a certain extent. Inspired by this, we 17 

optimizes the target mechanical properties by changing the thickness distribution of the curved shell as shown in Fig. 2(a-18 

b).Fig. 2(c) is sectional view of FE model of a variable-thickness shell. Fig. 2(d) is the force-displacement curve calculated 19 

from three curved shells with the same mass but different thickness distributions. It shows that there are three different 20 

x 
y 

z 

θ  E=tanθ 

S 
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cases of the backward snapping force (B), B1 > 0, B2 = 0 or B3 < 0, which shows that by changing the thickness distribution 1 

of the shell to reconstruct the structure, the magnitude of the backward snapping force can be completely controlled. When 2 

the backward snapping force (B) is less than 0, it means that the curved shell structure can have bistable properties.  When 3 

the absolute value of the backward snapping force (B) is larger, it means that the structure needs to absorb more energy 4 

after entering the second steady state to make the modal step, and the structure is more stable in the second steady state.  5 

Therefore, it is considered to find a structure with a larger absolute value of the backward snapping force to maximize its 6 

stability in the second steady state. So, the goal now is to use the method provided in this paper to find a suitable structural 7 

form in an infinite design space to make the absolute value of the backward snapping force as large as possible. 8 

In FE calculations, considering the need for subsequent large-scale data operations to establish a database, FE software 9 

and Python language must have good interaction functions, and select ABAQUS for FE simulation calculation. The 10 

establishment and calculation process of the FE model of the curved shell is as follows: (1) the symmetrical curved shell 11 

model is established by establishing the script input analytical formula Eq.(1), L = 60mm, h = 8mm, and thickness is t = 12 

1mm; (2) the curved shell model is divided into FE meshes, and the S4R shell element is selected for the FE discretization 13 

of the geometric model, and the edge length of the FE mesh is set to 0.5mm; (3) define the material properties, the research 14 

object in this paper is 316L stainless steel, which is an elastic-plastic material. Its constitutive relationship is the true stress-15 

strain curve obtained from the test. The material parameters used are shown in Table 1; (4) the boundary conditions are set 16 

as follows: the edge of the curved shell is set as a fixed constraint. In order to prevent the asymmetric mode of the curved 17 

shell, a displacement load of 2h is applied at the vertex of the circular shell, and there is only a translational degree of 18 

freedom in the vertical position; (5) this analysis involves the buckling behavior of the structure. The structure must 19 

release the strain energy to maintain equilibrium. We use a dynamic approach to the buckling response, a quasi-static 20 

analysis. 21 

Table 1 Material parameters 22 

Material Elastic Modulus Density Poisson's ratio 

316L stainless steel 206GPa 7.98g/cm3 0.3 

The FE modeling of the above curved shell is completed in the FE software ABAQUS, the analysis step is defined, 23 

the large deformation is opened, the field variables and history variables are selected to output the results, and the model 24 

is calculated and analyzed. 25 

 26 

 

 

(a) (b) 

x 

y 

z 



 6 / 20 
 

 

 

(c) (d) 

Fig. 2 Curved shell solid model diagram. (a) Axonometric view of solid model of varying thickness curved shell; (b) Sectional view of 1 

solid model of varying thickness curved shell; (c) Sectional view of the FE model of varying thickness curved shell; (d) Force-2 

displacement curves of several types of variable-thickness curved shells under the same material and equal mass, backward snapping 3 

force (Bi, i = 1, 2, 3). 4 

3.  Machine learning model 5 

3.1 Re-entrant structure 6 

Fig. 3(a) shows the geometric configuration of a curved shell with variable thickness, which involves 20 control 7 

parameters that control the relative size of the 20-segment annular shell thickness respectively. According to several trial 8 

calculation results in Fig. 2(d), it is proved that the curved shell under the same material and quality can change its 9 

mechanical properties by changing its thickness distribution, including the backward snapping force of the research object 10 

in this paper. Therefore, the backward snapping force of re-entrant structure is determined as a function of variables ti , [i=1, 11 

2, 3, ..., 19, 20], this function will be determined by the ML model constructed below. 12 

3.2 Machine learning model construction 13 

In this section, a ML model is constructed for cyclic optimization of the thickness distribution of curved shells. The 14 

construction of the ML model mainly consists of two processes: training and testing. The purpose of the training process 15 

is to obtain a one-to-one mapping approximation function f that describes the relationship of the input variable x to get y = 16 

f (x). By training the dataset, a ML model is obtained, which can be regarded as {( , ) | 1 }i iD x y i n= = → . 17 

3.2.1 Dataset construction 18 

A database is established including input features and output labels. The geometric parameters of the curved shell 19 

analytical formula Eq.(1) used for optimization are: l = 60, h = 8. By changing the constant ti, i∈[1, 2, 3, …, 18, 19, 20]. 20 

As Fig. 3(a) shows, an array with 20 numbers representing the relative thicknesses of the 20 sections. All relative 21 

thicknesses are randomly selected in the array ti∈[1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0], and also satisfy the 22 

constraints tmax/tmin ≤ 2, which means that for each variable thickness curved shell its thickest part of the ring will not 23 
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exceed 2 times the thinnest part of the ring. This constraint can be changed by adjusting the array to suit individual needs. 1 

Therefore, the training process of building a ML model is to build the mapping relationship B = f(t1, t2, t3, …, t18, t19, t20) 2 

between (t1, t2, t3, …, t18, t19, t20) and the backward snapping force (B). 3 

 

 

(a) (b) 

 

(c) 

Fig. 3 Building the training datasets. (a) Structure of the equal-thickness shell is re-entrant to the process of changing the thickness of 4 

the irregular shell, where t is the relative thickness of each section; envelope treatment is used after the final optimization to avoid stress 5 

concentration; (b) Top view of curved shell. The radius r of each part is determined, which ensures that S1 = S2 = … = S20. (c) Selection 6 

process of ML models after training using training datasets of different sizes. The i-th dataset has 104 more data than the (i－1)-th dataset. 7 

When the loss value and R2 value obtained after training with the n-th dataset are not greater than those after training with the (n－1)-th 8 

dataset, n×104 training data is selected as the dataset. 9 

The input data used to train the ML model is an array of relative thicknesses. Note that the relative thickness array 10 

must be converted to the actual thickness array in finite element (FE) simulations. The output data is backward snapping 11 

force (B) from FE simulation results. 12 

To ensure all curved shell models have the same quality as the original equal thickness curved shell, and to enhance 13 

the reliability of the final optimization results, the following transformations are needed. First solve Eq. (4), the goal is to 14 

ensure that the area of each ring is consistent as shown Fig. 3(b), which is S1 = S2 =  = S20, 15 
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we know r1 = 30, so can get the width of each ring on the curved shell. Then the mass can be normalized by Eq. (5) to 17 

realize the conversion of relative thickness and real thickness, 18 
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where o

it  is the real thickness array, ti is the relative thickness array. 1 

Each curved shell has 20 sections while each of which has 11 possible relative thicknesses. There are 1120 possible 2 

combinations. This is already a design space close to infinity. In such a complex and highly nonlinear situation, ML 3 

undoubtedly provides the most likely way to find the optimal structure. We randomly generate several thickness arrays of 4 

variable-thickness shells, which are used as input features of thickness and convert the actual thickness. The mechanical 5 

response is calculated in the FE software as output data which are the datasets used to train the ML model. Since we do not 6 

know the number of datasets required to achieve the optimal effect of the ML model, we use the method of constructing 7 

multiple dataset, and use the loss function mean square error (MSE) indicator [66] and the coefficient of determination R2 8 

indicator [66] to determine the effect of the model: 9 
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Nine datasets are constructed here, the first datasets include 104 data, and then each datasets increase 104 data more 12 

than the previous datasets until the last datasets includes 9×104 data. There are a total of nine training datasets of different 13 

sizes. In order to test the prediction accuracy of the ML model after each training, nine additional datasets [n×103(n = 1, 2, 14 

3, …, 8, 9)] which are completely independent of the training set were created using FE software, called test datasets. Each 15 

test datasets is 10% of the corresponding training dataset, it is used to detect whether the model has overfitting[67] and test 16 

the prediction accuracy of the final ML model, and select the ML model with the best effect. Remove the above nine 17 

datasets, three datasets with numbers of 100, 1000, and 5000 were created at the same time for trial training of the ML 18 

model. The whole process is shown in Fig. 3(c). 19 

3.2.2 Machine learning model parameter 20 

After obtaining the datasets, the second step is to determine the ML model algorithm and parameters, and use the 21 

datasets obtained in the first step to train the model. Keras [66] is currently the most widely used machine- learning 22 

framework. This paper considers using the Keras framework for building ML models. First determine the type of model, 23 

considering the highly nonlinear relationship between input features of thickness and output labels of backward snapping 24 

force, the goal is to build a regression-type fitting model, and the neural network sequential model is preferred. As the most 25 

widely used artificial neural network (ANN) algorithm at present, BPNN proposed by Rumelhart et al. in 1986 [68] is a 26 

multi-layer feedforward network trained by error back-propagation algorithm in Fig. 4(a). The basic flow of the 27 

backpropagation algorithm in Fig. 4(b). The composition and operation mechanism of a single neuron in a neural network 28 

in Fig. 4(c). When the input information x is passed to a certain hidden layer node, assuming the hidden layer output value 29 

is y, the neuron node will adjust the resulting approximation through a nonlinear activation function [69] to capture the 30 

nonlinear relationship between the input variable and the intermediate approximation, this intermediate approximation is 31 

y, 32 

 
1

, 1
n

i i

i

y x b i n
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  
=   + = →  

  
 , (6) 33 

where ωi is the weight connecting the input layer xi and the hidden layer unit. b is the correlation bias. σ is a continuously 34 
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differentiable nonlinear activation function. In a neural network, the input layer and output layer are fixed, the number of 1 

hidden layers is tentative, and the type of optimizer and activation function needs to be determined. The choice of the loss 2 

function is also critical, which is related to the accuracy of the entire backpropagation process [66]. 3 

Before training, perform a data cleaning on the data set to identify some outliers, eliminate possible adverse effects 4 

on the results, make the distribution of all backward snapping forces according to the bar graph Fig. 5(a), we can see that 5 

they are in line with the Gaussian normal distribution. Consider using 3σ methods in Fig. 5(b). The probability that the 6 

value is distributed in (μ－3σ, μ＋3σ) is 99.73%, and the values beyond this range is an outlier. 7 

After the data cleaning is completed, the data is preprocessed to remove a few finite element models that cannot be 8 

converged. Considering that the order of magnitude difference between features and labels is too large, the data samples 9 

are standardized according to the following formula: 10 

 
* X

X
−

=


, (7) 11 

where μ is the mean of all sample data, σ is the standard deviation of all sample data. This step of processing can speed up 12 

gradient descent to find the optimal solution, improve accuracy, and prevent model gradient explosion.   13 

 
 

(a) (b) 

 

(c) 

Fig. 4 BPNN structure and principal diagram. (a) Diagram of the overall algorithm structure of BPNN. For the structure proposed in this 14 

paper, it includes 20 nodes in the input layer, several hidden layer nodes, and 1 output layer node. (b) Diagram of the basic flow of the 15 

BPNN algorithm. (c) The basic composition of a single neuron, including input, weight, bias function, activation function, output, and 16 

other elements. 17 
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The framework of ML was constructed as shown in Fig. 4(a). For the hidden layer, we need to determine the number 1 

of layers and nodes. It is generally believed that increasing the number of hidden layers can reduce the network error and 2 

improve the accuracy, but it also complicates the network, thereby increasing the training time of the network and even the 3 

tendency of overfitting. In order to know whether there is an overfitting problem in the ML model, it is necessary to use 4 

the previously constructed testing datasets set to verify the ML model. Methods to prevent overfitting include, but are not 5 

limited to, L2 regularization, adding Dropout layers [70, 71] to simplify neural network models and constantly tuning 6 

hyper-parameters. Generally, designing a neural network gives priority to a three-layer network (one hidden layer). In 7 

theory, one hidden layer can already fit any nonlinear mapping. Therefore, in this model, under the comprehensive 8 

consideration of training time cost and accuracy, one hidden layer is preferentially selected, and the parameters are adjusted 9 

by changing the number of hidden layer nodes. The number of nodes was selected from [120, 240, 360, 480, 600, 720, 840, 10 

960, 1020, 1200]. The ML model was trained with the training dataset described above. During the training process, we 11 

evaluated how well the model is performing and determine that this model provides satisfactory results by the loss function 12 

MSE error and coefficient of determination R2 of the training and test sets. 13 

  
(a) (b) 

Fig. 5 Data cleaning process. (a) The size distribution of the backward snapping force in FEA results of the training data. The blue curve 14 

is the fitted curve according to the vertices of the histogram. (b) Standard Gaussian normal distribution plot. Data beyond 3σ are 15 

considered outliers and should be cleaned.  16 

The choice of activation function is also important. According to the characteristics of the data, we choose among the 17 

four activation function of Sigmoid, Tanh, ReLU and PReLU [69]. The optimizer we choose in Adam and SGD [66] . The 18 

loss function we considers the mean squared error (MSE) and the mean absolute error (MAE) [66]. To sum up, there are 19 

160 (10×4×2×2) parameter combinations, and we filter the best through grid search. Following all the above steps, an ML 20 

model was built specifically for predicting the mechanical properties of curved shells with different thickness distributions. 21 

3.3 Self-learning optimization loop for machine learning models 22 

The self-learning optimization loop process was used to train and test the ML model for targeted performance. We 23 

followed the general optimization procedure proposed by Gu et al. [72] The optimization flow chart is shown in Fig. 6. 24 

First, we use the ML model to predict all the datasets, sort all the predicted results, extract the top 100 results and the 25 

corresponding contours, and then use these 100 contours in the next loop plus 900 randomly generated contours, a total of 26 

1000 contours are re-predicted by the ML model. This is a cyclic optimization process. It is possible that some of the 900 27 

randomly generated contour samples will perform mechanically better than the top 100 passed in the previous cycle. After 28 

each cycle, there is a probability to find some better contour. Through multiple optimization iterations, curved shells with 29 
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better mechanical properties can be obtained.   1 

 2 
Fig. 6 The position of the self-learning optimization loop process of the ML model in the whole process of this article. 3 

4.  Comparison and discussion of results 4 

The calculation time of each numerical simulation is about 20 seconds on the Intel Xeon E5-1650 central processing 5 

unit (CPU), and there are a total of 450,000s FE calculations in a total of nine datasets. In this work, we optimize the 6 

backward snapping force (B) in the force-displacement curve of the curved shell structure, and the goal is to find its largest 7 

absolute value as much as possible. The results show that the mechanical properties of the curved shell can be changed by 8 

changing the thickness distribution, and the target structure can be found effectively. 9 

For ML models, we find the best parameters with the most accurate predictive models by grid search. The final selected 10 

ML model parameters are: the number of neurons in a single hidden layer is 960, the activation functions used in the hidden 11 

layer and the output layer are the PReLU function and the Linear function respectively, the loss function is MSE, the 12 

optimizer is Adam, and the initial learning rate is 0.001. To prevent overfitting, set the L2 regularization parameter to 0.001 13 

and the Dropout layer parameter to 0.3. During error backpropagation, Epoch is set to 200 and Batchsize is set to 128. The 14 

training time for obtaining a complete ML model is about 1h, and the prediction of a mechanical performance result is 15 

about 10−4 seconds, which is about 106 times faster than the FE simulation. 16 

Fig. 7 shows that the different effects of our ML model trained with 12 different numbers of datasets. In order to verify 17 

the model fitting degree after each training, the ML prediction value and FEM result of the test datasets are output in the 18 

form of coordinates, and the loss function curve and the R2 value are used to judge whether the ML model achieves the 19 

desired effect. The loss of the testing dataset and the loss of the training dataset have converged and remain similar, 20 

indicating that there is no overfitting, and the coefficient of determination R2 of the training set and the test set are both 21 

above 0.95, indicating that the ML model can accurately predict mechanical performance. In Fig. 7, the points of the 22 

training datasets and testing datasets are basically distributed around the line y = x, which proves that the fitting degree of 23 

the model is relatively good, and it has a high prediction accuracy. From the variation trend of R2 in Fig. 8(a), it can be seen 24 

that the fitting effect of the constructed 12 datasets when the amount of data exceeds 104 has achieved good results, and 25 

the effect has been improved according to the increase of the training dataset, but when the number of training sets increases 26 

to after 7×104, the effect of improving the ML model is negligible, and there is even a possibility of reducing performance. 27 

Therefore, the selection of the amount of data also needs to be confirmed by experiments. 28 

 29 
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(a) (b) (c) 
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Fig. 7 Training effect on twelve datasets of different numbers. (a−c) are the effects of ML model by 100, 1000, 5000 training data. (d−l) 1 

are the effects of the ML model trained by the [n×104, n = (1, 2, 3, 4, 5, 6, 7, 8, 9)] training data. The black dots represent the training 2 

dataset. The red dots represent the test dataset. The abscissa represents the FE simulation of the posterior occlusal force. The ordinate 3 

represents the predicted value output by the ML model according to the thickness distribution. 4 
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Fig. 8 (a) The R2 values corresponding to the ML models trained by the twelve datasets. (b) The change in the optimizable rate over the 1 

entire design interval. 2 
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(c) (d) 

Fig. 9 The case of excellent contour generation after multiple self-learning optimization loops. (a) After 10 optimization cycles, the top 3 

100 excellent solutions in the previous cycle and the 900 random contours generated during this cycle. (b) After 102 optimization cycles, 4 

the top 100 excellent solutions in the previous cycle and the 900 random contours generated during this cycle. (c) After 103 optimization 5 
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cycles, the top 100 excellent solutions in the previous cycle and the 900 random contours generated during this cycle. (d) After 104 1 

optimization cycles, the top 100 excellent solutions in the previous cycle and the 900 random contours generated during this cycle. 2 

It can be seen in Fig. 9(a) that after 10 cycles of optimization, the mechanical properties of 12 of the 900 random 3 

contours generated are better than the first 100 excellent contours passed down from the previous cycle, the number of 4 

points in the II region that can be discharged into the I region in the next cycle is 12, and this number becomes 7, 2, and 0 5 

respectively in Fig. 9(b–d). Define the optimizable rate in this loop optimization process as the number of points in area 6 

II/total number of points in areas II and IV, and the change trend diagram of the optimal rate can be obtained as shown in 7 

Fig. 8(b). With the continuous increase of the number of loop iterations, the optimization rate becomes lower and lower. 8 

After loop optimization 104 times, the optimization rate is basically close to 0. It is in the process of continuous cyclic 9 

optimization that the screening is realized, so that the top 100 excellent contours are continuously updated and iterated. It 10 

can be seen from Fig. 9(d) that there are no points in the II region. The existence of chance is not ruled out, but the overall 11 

trend can show that with the continuous increase of the number of self-learning loop optimization, the optimization space 12 

is gradually compressed to converge to 0. It can be considered now that the thickness distribution of the curved shell with 13 

better performance for the optimization target in the entire design space is found. 14 
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Fig. 10 Structural optimization results and FE validation tests. (a) The distribution of the excellent solutions after cycle optimization. 1 

The light blue (LB) points are the distribution of 100 excellent solutions after 10 cycles optimizations. The green (G) points are the 2 

distribution of the 100 excellent solutions after the 102 cycles optimization. The pink (P) points are the distribution of the 100 excellent 3 

solutions after the 103 cycles optimization. The dark blue (DB) points are the distribution of the 100 excellent solutions after the 104 4 

cycles optimization. (b) The thickness distribution of the excellent variable-thickness shells A, B and the constant-thickness shell C 5 

obtained after optimization, and the half-section profile after enveloping processing. (c) The force-displacement curve obtained by the 6 

FE simulation of A, B, C. 7 

Fig. 10 (a) shows that there is still relatively obvious optimization space between 10 cycles, 102 cycles, and 103 cycles. 8 

The optimization obtained after 103 cycles already partially overlaps with the results obtained after 104 cycles, and it can 9 

be considered that the self-learning cycle optimization process is close to convergence. Considering the calculation cost 10 

and calculation accuracy, the contour of the curved shell after 104 cycles of optimization is extracted as the mechanical 11 

shape corresponding to the mechanical properties we need to optimize, that is, the thickness distribution. 12 

Among the optimal contours, two possible shapes are mainly generated as shown in Fig. 10 (b). According to the 13 

optimized curved shell section shape, we can roughly divide the variable-thickness curved shell section into five parts I, II, 14 
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III, IV, and V as shown in Fig. 10 (b). In part I, there are two possibilities: thicker (A) and thinner (B). The thickness 1 

distribution of the three parts II, III and IV is regular thin, thick, and thin. In part V, there are two possibilities of thicker 2 

(A) and thinner (B). For the curved shell, the bending energy increases monotonically during the shell deflection, while the 3 

compression energy first increases and then decreases during snap-through. It is the dominance of the change of the 4 

compression energy over the bending energy that gives bistability. Thus, a shell shape that minimizes the change in bending 5 

energy relative to the change in compression energy during shell deflection can help enhance the bistability. Since from the 6 

shell section, the two boundary positions and the vicinity of the central position are the positions with the maximum bending 7 

stress, the thickness of these three positions is reduced, and the effect of bending on the structure is significantly reduced. 8 

This is an energy interpretation that fits the profile of the second type of optimized structure. For the first type of optimized 9 

structural profile generated, it may be that the two ends will generate a large stress concentration during the deformation 10 

process, which evolves into a relatively thick thickness at the constraints at both ends. 11 

From Fig. 10 (c), after 104 cycles of optimization, the backward snapping force performance of the variable-thickness 12 

circular shell structure is improved by about 1.7 times compared with that of the equal thickness curved shell. Therefore, 13 

it is proved that the absolute value of the occlusal force after the round shell structure can be significantly improved by 14 

changing the thickness distribution, and an excellent solution corresponding to the optimization objective is found through 15 

the self-learning optimization loop method proposed in this paper. 16 

The above curved shell structure is obtained after using the ML model to perform 104 optimization cycles, and the 17 

optimization rate is close to 0. It is not ruled out that there are other better designs, but the profile design found here can 18 

correctly guide the design how to achieve the structural form in which the absolute value of the backward snapping force 19 

of the bistable curved shell is maximized. 20 

5.  Conclusions 21 

In this paper, the main work includes using FE software to interact with python to perform large-scale calculations to 22 

obtain the datasets about input features of thickness and output labels of backward snapping force, build ML models, and 23 

propose a complete flow of structural self-learning optimization loops based on ML models. A variable-thickness curved 24 

shell model was calculated by FEA about 20s, but it only takes 10-4s to predict using the ML model, which is about 106 25 

times faster than the FE calculation. After training and testing the ML model with different numbers of datasets, the R2 26 

value of the final selected ML model reached more than 0.95, which fully met the prediction accuracy requirements. The 27 

backward snapping force of curved shells can be accurately predicted by inputting the thickness distribution, which solves 28 

the bistable problem of variable thickness curved shells that cannot be accurately calculated in theory. And through the 29 

proposed structure self-learning optimization loop method, the half-section thickness distribution patterns of two types of 30 

optimized curved shell profiles are rough [thin, thin, thick, thin, thin] and [thick, thin, thick, thin, thick]. Under the condition 31 

of equal quality, the backward snapping force of the curved shell after optimization with variable thickness is 2.6×104 N, 32 

which is increased to 170% of the equal thickness (the backward snapping force is 1.6×104 N). The purposeful structure 33 

optimization is realized. The self-learning optimization method based on ML model has great practical significance for the 34 

design of a series of nonlinear structures. This method can be used for most structural optimization work in which the 35 

structural parameter-property relationship is nonlinear. Our research shows that ML models are effective tools for nonlinear 36 

structural design and optimization, and can have wider application space in interdisciplinary fields. 37 
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