
   

 

   

 

A case study of the approaches used and accuracy of performance modelling for non-domestic 

buildings in the UK. 

Abstract 

The UK's goal of transitioning to net zero carbon buildings has led to an increasing focus on the reliability of 

modelling results for energy consumption. Detailed modelling of HVAC systems and controls is considered a 

breakthrough in improving model accuracy. This paper uses a school building as a case study. Two dynamic 

simulation approaches, template and detailed component level HVAC modelling, are used in the IES VE software 

to predict energy consumption and compare the results with measured data. The root causes of the performance 

gap are analysed based on the calibration of the models. At the same time, this study trades off the complexity of 

the performance modelling input parameters against the accuracy of the output results. Then explore the 

interoperability of input parameters in these two approaches to avoid additional uncertainties introduced by 

detailed modelling. Some insights are provided into the modelling of operational energy use for non-domestic 

buildings in the UK. 

Background 

In the context of the current energy price crisis and climate emergency, there is an urgent need for the UK 

building industry to make the transition to Nearly Zero-Energy Buildings (NZEB) by adopting cost-effective ways to 

improve energy efficiency. The UK government has recast the Approved Document Part L in 2021, requiring a 

further 30% reduction in CO2 emissions for new dwellings and 27% for non-domestic buildings. However, there is 

a mismatch between design expectations and actual energy consumption due to the existence of the energy 

performance gap (Carbon Trust, 2011). Incorrect use of regulation-oriented compliance models is likely to send 

the wrong signal that the building's energy consumption is meeting set targets. Therefore, it is essential to 

accurately predict the building's operational energy performance during the design stage. On the other hand, 

identifying the root causes of the performance gap also facilitates the selection of optimal improvement 

measures during the in-use stage. Overall, the prerequisite for achieving net zero is to bridge this gap rather than 

simply limiting carbon emissions through regulation (LETI, 2020). Nevertheless, both the Standard Assessment 

Procedure (SAP) used for predicting energy consumption in residential buildings and the National Calculation 

Method (NCM) used for non-residential buildings base their calculations on a set of assumptions under standard 

conditions, whilst they ignore unregulated energy use. Hence, there is a need to seek alternatives to compliance 

modelling for predicting building operational performance and quantifying the gap. 

In light of the above, CIBSE TM54 (2022) provides a practical framework to evaluate operational energy 

consumption, which classifies dynamic simulation into template HVAC modelling and detailed component level 

HVAC modelling. The template level means that the users select predefined template HVAC systems and 

customize key parameters in these systems (ibid.). The detailed component level refers to tailoring a specific 

HVAC system based on the performance of each component in the project (ibid.). Currently, there is no 

mandatory requirement for the level of modelling detail in the UK. Besides, The Design for Performance (DfP) 

initiative is launched in the UK now to reduce the performance gap and improve energy efficiency by adapting the 

Australian NABERS commitment agreement protocol to the UK context (Bannister, Cohen and Bordass, 2016). 

Analysis of the DfP pilot projects showed that even when the performance modelling in accordance with the NCM 

was followed, the error in the predicted results due to the lack of a detailed HVAC system analysis was still 

difficult to eliminate (Cohen, Ratcliffe and Bannister, 2018). On the contrary, Ahmad and Culp (2006) found that 



   

 

   

 

complex input parameters introduced additional uncertainty leading to larger discrepancies. However, it is worth 

noting that the model they developed was not calibrated.  

The development of building performance modelling requires the application of advanced simulation software. 

Each type of software adopts different algorithms programs and assumptions, which lead to discrepancies in 

produce results (Strachan et al., 2016; Choi, 2017; Elnabawi, 2020). Besides, the design space of the input 

parameters is affected by the modeller's comprehension and decision-making of building information. This 

human-introduced uncertainty can affect the accuracy of the output as well (Gilles Guyon, 1997; Bradley, 

Kummert and McDowell, 2004; Berkeley, Haves and Kolderup, 2014). Overall, unrealistic modelling and 

simulation assumptions contribute to the performance gap. In particular, the complexity of the HVAC system 

inputs has led existing studies to either simplify these input values or to avoid in-depth analysis. In this paper, a 

school building is modelled separately at the template HVAC level and at the detailed component HVAC level 

using IES VE software and the results are compared with measured data. Figure 1 shows the parameter setting 

interface of the two modelling methods in the IES VE software. Simultaneously, an attempt is made to provide 

some insight into the cut-off points for model accuracy and complexity. 

 

Figure 1. Illustration of ‘template’ and ‘detailed’ HVAC system modelling in IES software (CIBSE, 2022) 

Methodology 

The modelling framework applied in this paper is based on CIBSE TM54 (2022) to assess the impact of the level of 

detail in modelling HVAC systems on energy prediction. As a widely used software by practitioners, IES VE was 

adopted for this study. An existing school building was modelled using the Apache module and the Apache HVAC 

module of this software respectively. The occupancy and all end uses of the building were established in a 

previous post-occupancy evaluation study (Burman, 2016). Thus, the input data was derived from real operational 

data collected on-site, such as temperature set points, operational schedules, building equipment and occupant 

behaviour. The selected inputs following the UK NCM were fine-tuned manually on the basis of evidence and 

reasonable assumptions reflecting the building operation. The results of the iterations were compared with the 



   

 

   

 

measured values to validate that the model could meet the monthly calibration criteria specified in ASHRAE 

Guideline 14 (NMBE<±5%, CVRMSE<15%). Finally, the similarities and differences between the parameters of the 

two models were analysed. The feasibility of interconverting the input parameters and their potential to reduce 

modelling difficulties were also explored.  

Case study 

 

Figure 2. Building model developed for the case study with IES VE 

The case study is a ~2970 m2 Sixth Form building located in North-West England. This three-storey steel frame 

building was completed in summer 2010 and the main activity types are teaching, workshops and offices. The 

building model developed for this case study with IES VE is presented in Figure 2. 

For the building structure and fabrics, the concrete and brick external walls are cavity structures and heavyweight 

construction materials are used to regulate temperature fluctuations. External shading is achieved by canopy 

structures and louvres. For the building services system, three gas-fired condensing boilers are used for the main 

space heating. This means that the hot water produced by the boilers flows mainly to the ceiling-mounted radiant 

panels and the heating coils in the air handling unit (AHU). The ICT-enhanced classrooms and IT workspaces are 

supplied with variable refrigerant flow systems for heating and cooling. The other spaces are cooled by ventilation 

only and no dedicated cooling system was designed. The automatic vents in the atrium space provide natural 

ventilation by responding to the temperature and CO2 concentrations. The kitchen and toilets are fitted with local 

extract fans. Although there are manually operable vents, The remaining areas are mainly mechanically ventilated 

by AHU equipped with thermal wheels to recover heating energy. The domestic hot water was designed to be 

preheated by flat-plate solar thermal panels and has a separate gas-condensing storage water heater for 

supplementary heating. In reality, all boilers work in non-condensing mode and the solar system does not operate 

due to commissioning issues. The internal lighting is designed to be more efficient than 2 W/m²/100 lux, with 

sensors installed in the classrooms and corridors to control switching. For the measurement data, the utility 

supplier provided the gas and electricity consumption of the building for the full year. Based on the above 

information, the model can be developed in the IES VE and Table 1 shows the main input parameters. 

Table 1. Input parameters for the building model 

Categories Details 

External envelope U-value (W/m2K): External wall: 0.2; External floor: 0.21; Roof: 0.16; Window: 
2.03; Door: 1.97.  
Air tightness: 9.09 m³/(m².hr) @ 50 Pa. 

Occupancy Nominal capacity: 250. 



   

 

   

 

Weekdays: 6:15-16:00 and extended to 18:00-21:00 on Tuesdays and 
Thursdays for night school. 
Weekends: unoccupied. 

Heating Gas-fired boilers operating in non-condensing mode. 
Seasonal efficiency: (1) Boilers: 86% (2) VRF system seasonal COP: 3.69 
Weekdays 4:00-6:00 for preheating and 7:00-16:00 and extended to 18:00-
21:00 on Tuesdays and Thursdays for night school. 

Cooling Energy Efficiency Ratio for the VRF system: 3.29. 
Same as the occupancy schedule. 

Domestic hot water (DHW) DHW delivery efficiency: 95%. 
Storage volume: 900 litres. 
Storage losses: 0.005 kWh/(l/day). 

Ventilation Specific Fan Power for AHU: 2.85 W/(l/s). 
Seasonal efficiency for the thermal wheel: 78%. 
Same as the occupancy schedule. 

Lighting Installed power density: 2 W/m2/(100lux). 

Results 

1. Building energy performance 

The simulation results of energy consumption by IES Apache module (template level analysis) and IES Apache 

HVAC module (detail component level analysis) are shown in Figure 3. The gap between simulation and actual 

data was less than ±2%, which indicated that both modules can reliably predict annual energy usage by fine-

tuning the input parameters. To further verify the accuracy of these two modelling approaches, the simulated 

electricity and natural gas consumption were compared with the measured data using different time series spans 

respectively. 

 

Figure 3. Simulated and measured annual energy consumption. 

1.1 Electricity consumption 

Figure 4 compares the monthly electricity usage. The average daily electricity usage for each week is presented in 

Figure 5. The outputs of both simulation modules were in general agreement and both NMBEs met the monthly 

calibration criteria, but the CVRMSEs were outside the acceptable limits. This implied that the monthly simulation 

68.8

55.0

70.0

54.2

69.4

55.3

0

10

20

30

40

50

60

70

80

90

Electricity Natural gas

En
er

gy
 c

o
n

su
m

p
ti

o
n

 (
kW

h
/m

2
)

Apache ApacheHVAC Measured data



   

 

   

 

errors cancel each other out resulting in a smaller systematic bias (NMBEs <±5%). In detail, the simulation results 

were lower than the measured values during the winter and holiday periods, while at other times the electricity 

consumption was overestimated. Furthermore, an unusual situation was that the lowest peak in actual electricity 

consumption occurred in the 23rd week (June), which was not the school closure period. Therefore, it is difficult 

to take these special circumstances into account in the modelling without conducting site visits. 

 

Figure 4. Simulated and actual monthly electricity usage 

 

Figure 5. Average daily electricity consumption for each week 

Figures 6 and 7 compare the simulated and actual electricity consumption for typical weekdays and weekends in 

the winter and summer respectively. The simulation results were closer to the measured data on weekdays in 

winter and weekends in summer. Building baseloads were consistently underestimated, which was likely to be 

the main reason for the poor simulation results for winter and holiday periods. In addition, electricity usage 

predictions for night school operating hours were not accurate. 
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Figure 6. Hourly electrical demand during typical weekdays in winter and summer 

 

Figure 7. Hourly electrical demand during typical weekends in in winter and summer 

1.2 Natural gas consumption 

Figure 8 presents the simulated and actual natural gas usage throughout the year. Apart from holidays and the 

period that covered abnormal system operation in June, the fourth part (from 28th September to 7th December) 

was the only period that was entirely within term time. The simulation results of the Apache HVAC module for 

this period were almost identical to the measured data, but the predicted results of the Apache module were 

lower. At all other times, the predicted results for the use of natural gas showed significant differences from the 

actual data. There was also no regular pattern between the outputs of the two modules.  Similar to the simulation 

results for electricity consumption, CVRMSEs that did not meet the calibration criteria implied the presence of 

error cancellation. However, as the actual gas consumption data lacked granularity on a monthly and half-hourly 

basis, it was less possible to identify the reasons for the modelling errors by analysing the unevenly large time 

spans. 



   

 

   

 

 
Figure 8. Simulated and actual Natural gas usage 

2. Comparison of component level modelling 

In order to analyse the underlying causes of the differences in the output of the Apache and Apache HVAC 

modules, it is necessary to compare their input parameters and calculation methods. For the electrical system, 

lighting and small power consumption were set up and calculated identically in both modules, the simulation of 

auxiliary energy and VRF systems was the source of the difference. The natural gas system served space heating 

and DHW, thus the simulation of the boiler was the main factor affecting the energy output. Therefore, this study 

focused on two components, the air handling unit (AHU) fans and the boiler. 

2.1 AHU fans energy consumption 

The Apache module only requires the Specific fan power (SFP) to be input for the AHU fan system. The SFP set for 

this modelling was 2.85 W/(l/s), which was calculated based on the actual technical specifications of the supply 

and extract fans in the AHU. This data represents the performance of the AHU fans system at full load. The 

calculation equation is shown below (DLUHC, 2021): 

SFP=
Design fan power (sum of all fans in the ventilation system)

Design flow rate
(1) 

Fan motor power consumption=Fresh air supply rate × SFP (2) 

The Apache HVAC module simulates the energy consumption based on user-defined performance parameters 

and curves for each fan under design conditions. The following equations are used to calculate fan motor power 

consumption (ASHRAE, 2016): 

Fan motor power consumption=
y(u)ΔpDVD

ηF
DηM

D
 (3) 

Where, VD: Design flow rate (l/s), ΔPD: Design total pressure rise (Pa), ηF
D: Design fan efficiency (%), ηM

D : Design 

motor efficiency (%), yi: Fraction of design power. 

When yi=1, this represents the case where the fan is used at full load and the calculation result is the design fan 

power. Table 2 shows the link between the parameters provided in the fan specification and the parameters 
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required in the two modules. Although the Apache HVAC module does not require the SFP to be entered, 

inputting the correct design flow rate and design fan power can ensure that the fans simulated by both modules 

have consistent SFPs under the design condition. 

Table 2: The required input parameters and the design parameters provided in the technical specification. 

Technical specification Apache Apache HVAC 

Design flow rate 
Supply fan 6.45m³/s 

SFP 
(9.04+9.37)/6.45 

= 2.85 W/(l/s) 

Design flow rate 
Supply fan 6.45m³/s 

Extract fan 6.45m³/s Extract fan 6.45m³/s 

Design fan 
power 

Supply fan 9.04kW Design fan 
power 

Supply fan 9.04kW 

Extract fan 9.37kW Extract fan 9.37kW 

Design total 
pressure 

Supply fan 450Pa 

 

Design total 
pressure 

Supply fan 450Pa 

Extract fan 450Pa Extract fan 450Pa 

Total efficiency 

Supply fan 58.5% 
Fan efficiency 

Supply fan 
70% 

Motor efficiency 83.58% 

Extract fan 59.5% 
Fan efficiency 

Extract fan 
70% 

Motor efficiency 85% 

This school building used the demand-controlled ventilation (DCV) strategy, which resulted in the SFP being 

constantly variable during actual system operation. According to previous studies and existing empirical 

equations, the variation in fan flow and the associated part-load fan power can be estimated based on occupancy 

levels (Burman et al., 2014; ASHRAE, 2016). This in turn enables the SFP to be extrapolated. 

{
q = 0.5 × q100%      if o≤0.5

q = o × q100%         if o>0.5
 (4) 

P=0.0013+0.1470× (
q

q100%

) +0.9506× (
q

q100%

)

2

-0.0998× (
q

q100%

)

3

(5) 

Where, q: flow rate (l/s), q100%: flow rate at full load (l/s), o: Occupancy level (0–1), P: fraction of full-load fan 

power (0-1). 

Occupancy level refers to the NCM standard profile, which was fine-tuned based on the actual occupancy 

schedule. According to equation (4), the average air supply during the occupied hours was 67.5% of the full load 

supply. Figure 9 presents the SFP variation due to DCV on a typical school day. The average SFP for the AHU fans 

on a typical school day was 2.11 W/(l/s). Since the Apache module does not have a setting that can specifically 

simulate DCV, it is reasonable to use the SFP derived from occupancy rates to simulate the energy consumption of 

the fans with the DCV strategy. 



   

 

   

 

 

Figure 9. SFP variation due to DCV on a typical school day 

The Apache HVAC module can be set up with CO2 sensors to enable DCV and customise the minimum primary air 

supply. However, the default number of people provided by the NCM for each activity area causes the total 

number of simulated people to be three times that of the actual data, which leads to the diversity factor being 

introduced to bring the number of occupants into line with reality. However, the diversity factor is a static value, 

which results in a significant underestimation of the number of people in each room during peak occupancy 

hours. The model iteration revealed that the reduction in occupants caused the ventilation system consistently 

operated at the minimum flow set points in every room. In order to make the simulation scenario more realistic, 

an average air supply equivalent to the actual DCV operation should be estimated. Based on the previous 

extrapolation, it was assumed that the mechanical air supply to the zone heated by the radiant panels would be 

maintained at 67.5% of the design ventilation. The minimum primary airflow to the VRF system zone was 

maintained at the default 30% (ASHRAE, 2016). The software simulation results output the hourly system air flow 

rate and fan power, then calculated that the SFP was consistently maintained at around 1.78 W/(l/s). Figure 10 

compares the SFP of the AHU fans in different simulations methods. 

 

Figure 10. SFP of the AHU fans in different simulations methods 



   

 

   

 

In addition, as the AHU specifications did not provide fan performance curves, this study assumed the use of the 

EDR Typical VSD Fan part load curve, which is predefined by the Apache HVAC module. Meanwhile, in order to 

analyse the impact of the performance curve settings on the prediction of fan energy consumption, the 

differences between the simulation results of the main variable speed drive (VSD) fan curve built into the 

software (Figure 11) and the measured data were compared. The simulation results of the AHU fan energy 

consumption for all scenarios with the Apache and Apache HVAC modules are shown in Table 3. The simulation 

results for the Apache module with DCV and the Apache HVAC module with the EDR typical VSD Fan curve were 

more in line with the actual energy consumption of the fan operation. The ideal fan, referring to the fan based on 

the theoretical Cube Law,  led to the maximum simulation error due to the neglect of operational losses (Burman 

et al., 2014; ASHRAE, 2016).  

 
Figure 11. Performance curve of air supply fan 

Table 3. Comparison of AHU fans energy consumption obtained by iteration of different performance curves and 

measured data 

Fan types 
AHU fans energy 

consumption (kWh/m2/year) 
Percentage differences from 

measured data 

Methods Measured data 2.52  

Apache  
SPF=2.85 3.16 25.53% 

DCV: Average SPF=2.11 2.34 -7.07% 

Apache HVAC 

Variable-speed drive (VSD) fan 3.48 38.01% 

EDR Typical VSD Fan 2.29 -9.17% 

EDR Good SP Reset VSD Fan 2.00 -20.47% 

VSD with SP reset (Good) - Title 24 2.00 -20.47% 
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VSD with SP reset (Prefect) - Title 24 1.58 -37.43% 

Any fan with VSD - Title 24 3.38 34.10% 

Any fan with VSD (90.1) - Title 24 3.43 36.25% 

Fan law (Cube Law Ideal fan) 1.14 -54.84% 

2.2 Boiler Energy Consumption 

In general, boiler energy consumption is the heating energy demand divided by the heating system efficiency. The 

Apache module requires the user to enter a static value for the seasonal coefficient of performance (SCoP) and 

the boiler seasonal efficiency, where SCoP refers to the heating system efficiency. The relationship between these 

two parameters is shown in Equation (6). The heat delivery efficiency is calculated automatically by the software. 

Therefore, it should be guaranteed to be less than 1 to take distribution losses into account. 

Seasonal coefficient of performance (SCoP) = Boiler seasonal efficiency × Heating delivery efficiency (6) 

The Apache HVAC module allows input of detailed boiler parameters, and a range of built-in boiler types can be 

selected. The boiler operating efficiency is calculated as shown in Equation (7), which illustrates that the 

operating efficiency varies dynamically according to the heating load. Each boiler has the specific formula to 

calculate the part-load impact factor fEpt (part-load ratio,T).  

Operating efficiency = Boiler rated efficiency × fEpt (
heating load

Rated heating capacity
, T) (7) 

Where, T: hot water supply (leaving boiler) temperature, and fEpt (1, T) = 1. 

The building was installed with condensing boilers. However, the post-occupancy evaluation found that the boiler 

had been operating in non-condensing mode and had a seasonal efficiency of 86% (Burman, 2016), which was 

used in the Apache module simulation. Based on this known information, the non-condensing boiler was selected 

for the simulation in the Apache HVAC module and the simulated result was 2% lower than the actual energy use. 

Besides, simulation tests were carried out for the performance curves of other boiler types. Table 4 compares the 

difference between the iteration results of different boiler performance curves and the measured data. 

Table 4. Comparison of boilers energy consumption obtained by iteration of different performance curves and 

measured data. 

Boiler types 
Total natural gas 
(kWh/m2/year) 

Percentage difference 
from measured data 

Measured data 55.30  

Apache  Seasonal efficiency: 86% 55.03 -0.49% 

ApacheHVAC 

Condensing Boiler 50.24 -9.15% 

Non-condensing Boiler 54.19 -2.01% 

Circa1975HighTempBoiler 54.12 -2.13% 

Circa1983MidTempBoiler 51.35 -7.14% 

NewerLowTempBoiler 50.71 -8.31% 

Virtual DES Heating 51.64 -6.62% 

Non-condensing Boiler - PLR 61.52 11.25% 

Condensing Boiler - PLR, Entering Temp 50.24 -9.15% 

 

Discussion 

For the annual energy consumption of the building, the simulation results of both the Apache and the Apache 

HVAC module were close to the measured data. However, the CVRMSE of the simulated results for both 



   

 

   

 

electricity and natural gas consumption did not meet the calibration criteria. Specifically, the lack of monthly and 

half-hourly actual data for natural gas made calibration difficult to perform. When the predictions were validated 

through different temporal granularity for electricity consumption, it was noticed that the usage curves calculated 

by the two simulation approaches were relatively close. In detail, the electrical simulation data for weekdays in 

winter was more accurate than for summer, which could be attributed to stable occupant behaviour and near-

peak load operation of the HVAC system. In contrast, occupants may open windows more frequently for natural 

ventilation in summer, and the uncertainty caused by this random behaviour is difficult to properly set in the 

simulation. Besides, night schools and random activities caused the system to operate outside the normal 

schedule, which is difficult to estimate accurately. 

For component level modelling comparisons, the Apache module could reliably estimate the electrical 

consumption of fan operation under DCV strategy by adjusting the SFP. However, the total amount of system air 

supply remains constant. In other words, the Apache module has no capability to respond to the effects of the 

DCV strategy on indoor CO2 concentration and heating energy consumption. It only adjusts the simulation for 

auxiliary energy consumption. The Apache HVAC module can directly fine-tune the air supply percentage, which 

not only simulates the airflow delivered by the fans more reliably, but also gives feedback on the variation in 

indoor CO2 concentration and heating energy consumption caused by different ventilation levels. However, using 

a static diversity factor to achieve the correct input for the total number of people would lead to consistently low 

CO2 concentration, which makes the simulation of both the electrical demand for the fans and the heating energy 

demand inaccurate. Meanwhile, it can lead to an underestimation of cooling demand in summer. Therefore, to 

avoid the error caused by the diversity factor, the average air supply during the occupied periods was taken as the 

minimum primary air supply in this study, which was calculated by an empirical equation. Future research can 

consider using dynamic detection algorithms to replace the steady-state occupancy estimation used in this paper 

(Wang, Burnett and Chong, 1999). The occupancy profile can be estimated by monitoring the CO2 concentration 

and imported into the simulation model (ibid.) Moreover, the sensitivity of the performance curves for fans and 

boilers to the energy consumption results was analysed in the Apache HVAC module, realising that unreliable 

efficiency settings can lead to significantly simulation errors. This illustrates the importance of extracting real 

parameters based on technical specifications, but the existing technical data sheets in the UK and Europe 

normally do not contain detailed performance curves for their equipment. On the other hand, there are 

differences between the actual operating performance curve and the design curve, and future performance 

modelling could consider using measured data to derive the operational performance curve of the equipment 

(Yin, Kiliccote and Piette, 2016). 

Conclusion 

This study developed both template level and component level building performance simulation modelling for a 

school building using two modules (Apache module and Apache HVAC module) in the IES VE software. The first 

key finding was that the annual energy consumption simulation results showed minimal discrepancies with the 

measured data, but the predicted results at the monthly and daily levels did not fully meet the calibration criteria. 

This indicates that using only yearly data to assess the accuracy of performance models may miss significant 

errors in the modelling input process. It is necessary to calibrate the model at a finer temporal granularity to 

prevent misinterpretation due to error cancellation. Secondly, when it comes to complicated control strategies, 

such as demand-controlled ventilation, detailed component-level HVAC modelling is more consistent with actual 

system operation than template-level modelling. Also, detailed modelling takes into account the impact of 



   

 

   

 

interactions between more input parameters on energy consumption. For example, Apache only considers the 

impact of SFP on auxiliary energy, but does not consider that the change in SFP is caused by variations in 

ventilation. Thirdly, the technical data sheets currently available in the UK and Europe are not consistent with the 

level of information required for detailed HVAC modelling. Further updates of information by equipment 

suppliers will facilitate the choice of component level modelling approach for building modellers. 

Future work 

Future research will introduce modeller and software variability into the study, because the personal preferences 

of modellers and the setting of detailed component levels in different model libraries are uncertain factors worth 

considering. The simple case in this paper will be used as a template to develop an exercise for practitioners. IES 

VE and Design Builder, both advanced simulation platforms, will be applied. Two separate groups of practitioners 

will be recruited for each software to model different levels of detail in HVAC systems. The input and output 

parameters of the two modelling approaches will then be compared with each other. A quantitative analysis of 

the results will be conducted to explore the underlying causes of the discrepancies and to discuss the selection of 

the optimal modelling approach. Furthermore, a questionnaire will be developed to obtain feedback from the 

practitioner's viewpoints to provide a qualitative analysis of the existing modelling challenges and the drivers of 

the variation in results. Eventually, the findings of the above study will be linked to larger-scale school buildings to 

improve the accuracy of performance modelling at stock level. 
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