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Abstract

Qualitative visual assessment of MRI scans is a key mechanism by which inflammation is

assessed in clinical practice. For example, in axial spondyloarthritis (axSpA), visual assess-

ment focuses on the identification of regions with increased signal in the bone marrow,

known as bone marrow oedema (BMO), on water-sensitive images. The identification of

BMO has an important role in the diagnosis, quantification and monitoring of disease in

axSpA. However, BMO evaluation depends heavily on the experience and expertise of the

image reader, creating substantial imprecision. Deep learning-based segmentation is a nat-

ural approach to addressing this imprecision, but purely automated solutions require large

training sets that are not currently available, and deep learning solutions with limited data

may not be sufficiently trustworthy for use in clinical practice. To address this, we propose a

workflow for inflammation segmentation incorporating both deep learning and human input.

With this ‘human-machine cooperation’ workflow, a preliminary segmentation is generated

automatically by deep learning; a human reader then ‘cleans’ the segmentation by removing

extraneous segmented voxels. The final cleaned segmentation defines the volume of hyper-

intense inflammation (VHI), which is proposed as a quantitative imaging biomarker (QIB) of

inflammation load in axSpA. We implemented and evaluated the proposed human-machine

workflow in a cohort of 29 patients with axSpA who had undergone prospective MRI scans

before and after starting biologic therapy. The performance of the workflow was compared

against purely visual assessment in terms of inter-observer/inter-method segmentation

overlap, inter-observer agreement and assessment of response to biologic therapy. The

human-machine workflow showed superior inter-observer segmentation overlap than purely

manual segmentation (Dice score 0.84 versus 0.56). VHI measurements produced by the
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workflow showed similar or better inter-observer agreement than visual scoring, with similar

response assessments. We conclude that the proposed human-machine workflow offers a

mechanism to improve the consistency of inflammation assessment, and that VHI could be a

valuable QIB of inflammation load in axSpA, as well as offering an exemplar of human-

machine cooperation more broadly.

1 Introduction

Qualitative assessment of MRI scans is the main mechanism by which inflammation, a com-

plex biological response to harmful stimuli, is assessed in clinical practice. For example, in

spondyloarthritis, areas of increased (‘hyperintense’) signal in the subchondral bone on water-

sensitive images (such as those generated by the widely-used short tau inversion recovery

(STIR) sequence) are referred to as bone marrow oedema (BMO) and form part of the diag-

nostic criteria in this disease [1]. The extent of BMO (in terms of the number of involved quad-

rants as well as the presence of particularly bright or deep areas of inflammation) is also the

key feature used in the Spondyloarthritis Research Consortium of Canada (SPARCC) system

for qualitative assessment of the burden of inflammation [2], although this is a research tool

(typically required substantial reader expertise and often also calibration exercises) which is

not used in clinical practice. In standard clinical care, despite the important role that STIR

MRI plays in diagnosis, quantification and monitoring of inflammation, images are typically

interpreted in a purely qualitative fashion. This introduces a source of subjectivity and conse-

quently evaluation of inflammation burden can vary widely depending on reader expertise

and the clinical setting.

The size of the problem was highlighted by a 2017 survey of 269 radiologists, which found

wide variation in the use of MRI for assessing spondyloarthritis, including imaging sequences,

anatomical coverage and image interpretation [3]. Only 75% of radiologists reported aware-

ness of spondyloarthritis as a disease entity, whilst only 25–31% were aware of formal MRI def-

initions of inflammation [3]. Even in a controlled research setting, there is wide disparity in

readers’ agreement on the presence and severity of inflammation [4–7]. This inconsistency

creates a major risk of misinterpretation/misdiagnosis and inappropriate treatment. In clinical

trials, it contributes to reduced power/increased sample size and increased cost.

In addition to the difficulties with interpretation, clinical radiological reports in spondy-

loarthritis are descriptive without quantitative assessment of inflammation. This introduces

scope for misunderstanding of the report, particularly when styles differ between radiologists

[8]. A quantitative, easily-understandable biomarker of inflammation could potentially sim-

plify interpretation substantially for the recipients of these reports.

Deep learning-based segmentation is a natural approach to segmenting and quantifying

inflammation, and could help to improve the objectivity of inflammation assessment. How-

ever, purely automated segmentation algorithms can require large, carefully curated and

labelled training sets that are not currently available for this field (and many others) in order

to reach sufficient performance for use in a clinical workflow. Furthermore, there is an evolv-

ing discussion around the importance of ‘trustworthiness’ of artificial intelligence in medical

imaging [9]. Trustworthiness has a number of facets including the transparency and explain-

ability of the component algorithms [9]. A workflow incorporating discrete algorithms, each

performing relatively simple tasks, that allows radiologists to make a final judgement about the

presence of inflammation might better satisfy these criteria than more complex algorithms
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attempting to perform multiple tasks in one step without human intervention. This may be

particularly important when the size of the training dataset available is limited.

In light of these considerations, we propose a hybrid ‘human-machine’ workflow for

inflammation quantification, aiming to combine deep learning-based segmentation with

human control and oversight of the image assessment. The final segmentation from this

human-machine workflow defines the volume of hyperintense inflammation (VHI), which we

propose as a quantitative imaging biomarker of inflammation load. We hypothesise that this

biomarker can provide an accurate, precise and responsive method of scoring inflammation

for use in clinical practice.

2 Materials and methods

2.1 Overview of study design

We aimed to develop a hybrid ‘human-machine’ segmentation workflow for measuring the

volume of hyperintense inflammation (VHI), which is proposed as a quantitative imaging bio-

marker of inflammation load. To do this, we implemented and evaluated this workflow in a

prospectively-acquired dataset. To assess the performance of VHI as a biomarker, we assessed

its relationship with visual scoring, inter-observer agreement and responsiveness to biologic

therapy in patients with spondyloarthritis who underwent scans before and after biologic ther-

apy. The data, code and models used in the study are available at https://github.com/c-

hepburn/Bone_MRI.

2.2 Study cohort

This study was performed with institutional review board approval (REC reference 15/LO/

1475), and all subjects gave written informed consent.

Data were taken from a completed prospective longitudinal study conducted at (anon-
ymised) hospital between April 2018 and July 2019 (29 subjects consisting of 13 males, 16

females; mean age 42.4 years) with the aim of evaluating the ability of quantitative imaging bio-

markers to measure and predict response to biologic therapy.

Potential participants were identified from clinical records of patients due to start biologic

therapy and were initially approached about participation by rheumatologists at UCLH.

Patients were included in the study if they were aged 18 to 85 years with a diagnosis of axial

spondyloarthritis according to 2009 Assessment of SpondyloArthritis international Society

(ASAS) criteria [1] and active disease according to the National Institute of Clinical Excellence

(NICE guidelines NG65) criteria. Exclusion criteria included contraindications to MRI such as

metallic implants, pacemaker, severe claustrophobia, pregnancy, body weight > 150kg, treat-

ment with an oral, intra-articular or intra-muscular glucocorticoid within 4 weeks. All patients

underwent MRI scan of the sacroiliac joints, and continued in the study if their MRI fulfilled

ASAS criteria for sacroiliitis [10] and were eligible for their first biologic drug (biologic naive)

or a change biologic therapy (switchers) in accordance with best practice (NICE guidelines

NG65). A repeat scan was performed after 12 weeks (+/- 2 weeks) of continuous anti-tumour

necrosis factor (anti-TNF) treatment or 16 weeks (+/- 2 weeks) of anti-interleukin-17 (IL-17)

treatment. Patients were withdrawn from the study if biologic therapy was declined, contrain-

dicated or stopped owing to adverse events.

2.3 Clinical assessments

Information regarding patient demographics (age, sex and ethnicity), disease duration, history

of peripheral arthritis and enthesitis, extra-articular manifestations, human leucocyte antigen
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(HLA) B27 status, drug history and smoking history were recorded at baseline. Symptom

scores, comprising the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and

Ankylosing Spondylitis Disease Activity Score (ASDAS) as well as C-reactive protein (CRP)

and erythrocyte sedimentation rate (ESR) were recorded at baseline and after 12–16 weeks of

continuous treatment. A clinical response was assessed on the basis of a BASDAI improvement

of� 1.2 and an improvement in spinal visual analogue score (VAS) of� 1. This criterion is in

accordance with NICE criteria and was chosen to reflect real-world clinical practice in the UK.

Other clinical response measures included a reduction in BASDAI by 50% (BASDAI 50), a

clinical important improvement in ASDAS (CII ASDAS) defined as a change in ASDAS >1.1

and inactive disease defined as an ASDAS of< 1.3 (ASDAS ID).

2.4 Image acquisition

Images were acquired on a 3T Philips Ingenia scanner. Both conventional and quantitative

MRI scans were acquired for the study. Here, we focused on the conventional MRI protocol

data to ensure wide applicability, although the workflow is general and could also be applied to

quantitative MRI data. The conventional MRI protocol consisted of STIR and T1-weighted

turbo spin echo sequences acquired in an oblique coronal plane (parallel to the sacrum) with

fixed field of view. Quantitative MRI sequences, consisting of Dixon and diffusion-weighted

MRI, were also used but not analysed for the present study. For the STIR acquisition, parame-

ters included: TR 5316ms, TE 50ms, TI 210ms, echo train length 21, slice thickness 3mm, pixel

spacing 0.59x0.59mm, image matrix 336x336, number of slices 23–25. All data were anon-

ymised prior to export from the scanner and subjects were given unique study identifiers for

data handling.

2.5 Deep learning-enabled segmentation workflow

2.5.1 Workflow overview. Inflammation was segmented using a hybrid ‘human-machine’

workflow incorporating deep learning as well as human interpretation; a schematic illustration

is shown in Fig 1. Rather than training a neural network on areas of disease, the network is

simply trained to recognize potentially-inflamed areas of bone, which are referred to as ‘disease

regions’, and then a threshold is used within these disease regions to segment inflammation.

This approach has the advantages that (i) training a network to detect potentially-inflamed

regions (rather than direct recognition of pathology) is a simple task which can be achieved

with a relatively small dataset, (ii) the disease-region segmentations can easily be propagated

onto images from other sequences, thus enabling assessment of disease with multiple

sequences if desired, and (iii) the final threshold-based segmentation step is transparent and

easily-understood.

The pipeline comprises the following steps:

i. ‘Normal bone region’ segmentation
Normal bone marrow in the interforaminal region of the sacrum (which is typically spared

from inflammation) is segmented, using STIR images. Here, we performed this step manu-

ally to ensure that any artifacts or vessels were avoided, although this step can be straightfor-

wardly automated using deep learning.

ii. Estimation of STIR intensity threshold
The normal bone segmented in (i) is used to select a threshold towards the upper end of the

normal bone intensity distribution, enabling separation of normal from inflamed marrow

within the disease region (described below).
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iii. ‘Disease region’ segmentation
Areas of potential inflammation (all of the imaged bone in the pelvis, including bone adja-

cent to the SIJs, apart from the normal bone region) are segmented on T1W images using

a supervised convolutional neural network with U-net architecture [11].

iv. Thresholding within the disease region
Voxels in the disease region are assigned labels of 0 if voxel signal intensity is below the

intensity threshold and 1 if above the intensity threshold

v. Automatic removal of very small segmented regions
Regions containing <4 pixels (i.e. any region with an area<1.39mm2), which are com-

monly due to noise or small vessels within the bone marrow, are automatically removed.

vi. Manual correction of the final segmentation by a human observer
Erroneous regions in the initial segmentation (e.g. areas of artefact or prominent vessels in

the bone marrow) are removed by the radiologist. Once the correction procedure is com-

plete, the final corrected segmentation defines the volume of STIR-hyperintense inflamma-

tion (VHI), which is the proposed biomarker of inflammation load. VHI can be defined in

terms of the volume per se (e.g. in mm3) or as a voxel count (the former is simply the voxel

count multiplied by the volume of an individual voxel).

2.5.2 Details of step (ii)–Determining the segmentation threshold from the ‘normal

bone region’. Two different thresholds were obtained from the distribution of intensity val-

ues in the normal bone region, in order to provide one ‘conservative’ and one ‘sensitive’

Fig 1. Schematic illustration of the proposed ‘human-machine’ workflow. A STIR image (outlined in green) and

corresponding T1w image (outlined in red) (a) are used as the input. In this case, the STIR image shows left-sided

sacroiliac joint inflammation. The normal bone region is manually defined by a radiologist to determine the

distribution of intensity values of normal bone (b). Manual segmentation is used for this step to enable the radiologist

to exercise judgement over the most representative area of normal marrow. The disease region (region of potential

inflammation) is automatically segmented by a convolutional neural network to determine areas of potential disease

(c). The normal bone intensity distribution is determined from the normal bone, and two thresholds are defined [the

maximum of the intensity distribution (upper threshold, red dotted line) and a multiple of the interquartile range

(lower threshold, orange dotted line); (a blue dotted line represents an empirical threshold value). Areas of tissue

within the disease region above these thresholds are then denoted inflamed (e). Areas meeting the lower threshold

alone are shown in yellow, whereas those meeting the upper threshold are shown in red. The final cleaning is

performed by a radiologist to remove areas of artifact or inflammation outside the target area (f). In this example, areas

of inflammation above the L5/S1 disc and in the sacroiliac joint space were removed (along with an artifactual lesion in

the L5 vertebral body which was deemed to be due to a vessel) to facilitate a direct comparison with SPARCC visual

scoring.

https://doi.org/10.1371/journal.pone.0284508.g001
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segmentation. To provide the ‘conservative’ segmentation, an upper limit, Lupper was defined

as the maximum intensity, Imax of the distribution. To provide the ‘sensitive’ segmentation, a

lower limit, Llower was computed as the sum of the upper quartile, QU and a multiple, n of the

inter-quartile range, IQR of the distribution Llower = QU + n � IQR. The multiple was deter-

mined automatically in order to adapt the ‘sensitivity’ for each scan for each patient: starting

with the value of 1.5, the multiple n was incremented by 0.05 until the difference between

upper and lower limits was less than the half of the interquartile range, 0< Lupper − Llower <

IQR/2. If the condition was initially satisfied, no incrementation was performed. Note that, for

the primary analyses in this study, we used the lower, ‘sensitive’ threshold to determine VHI.

2.5.3 Details of step (iii)–Disease region segmentation. Step (iii), i.e. the disease region

segmentation, employed a convolutional neural network with 2D U-net architecture. To

enable an assessment of generalisability, the network was first trained and tested on a subset of

the full dataset (consisting of 248 T1-weighted image slices from 10 subjects), before a further

evaluation of segmentation performance was performed by qualitative visual assessment on

the remaining 19 subjects.

Reference standard. The reference standard for training was manual segmentation of the

disease region, including all bone in the imaged pelvis, the sacroiliac and facet joint spaces (Fig

2). The segmentation was performed by a postdoctoral researcher with two years of MRI expe-

rience who had received training in interpretation of the relevant anatomy by a radiologist;

this radiologist also performed a slice-by-slice review of the segmentations in a subset of the

cases to ensure that these anatomical assessments were accurate. Segmentations were per-

formed using ITK-SNAP Version 3.8 [12].

Data partition. Data was first partitioned at subject level at random into two sets: 200 image

slices (8 subjects) for training with four-fold cross validation to find the optimal set of hyper-

parameters and 48 image slices (2 subjects) for testing. The first set was then subdivided four

Fig 2. Automatic segmentation of disease region: Demonstration of performance on examples from the test

dataset. The T1w images (left-hand column), reference standard (middle column) and model averaging ensemble

prediction of disease region (right-hand column) are shown for illustrative slices from two subjects (top and bottom

row).

https://doi.org/10.1371/journal.pone.0284508.g002
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times (for each of the four validation folds) into a training subset (150 image slices, 6 subjects)

and validation subset (50 image slices, 2 subjects); this subdivision was performed at subject

level to avoid any ‘contamination’ of the test dataset as a result of similarity individual subjects’

image slices.

Data pre-processing and augmentation. To allow the same intensity scale between subjects

and consistency in intensity levels of voxels representing the same tissue for each subject,

images were normalized by three standard deviations of the image intensity distribution. Each

pre-processed image (and the corresponding segmentation masks from the reference stan-

dard) underwent elastic deformation (https://github.com/gvtulder/elasticdeform/tree/v0.4.9),

affine transformation (rotation, scaling, shearing) and random flip with 0.5 probability. To

make the network robust against between-subject variations in the intensity level of bone vox-

els, intensities were raised to a random power after normalisation. All transformation parame-

ters (rotation angle, scaling and shearing factors, power) were randomly sampled from

uniform distributions of pre-defined ranges.

Model training. A convolutional neural network with two-dimensional U-Net architecture

[11] was trained on mini-batches by optimizing binary cross entropy loss [13] using the Adam

optimizer [14]. A publicly-available implementation in Pytorch was used (https://github.com/

jvanvugt/pytorch-unet). The architecture included batch normalization to keep the distribu-

tion of convolution layers outputs fixed, allowing faster convergence [15]. The network was

trained with pre-processed data augmented on the fly, which allowed a substantial increase of

the diversity in the training samples. At each training epoch 350 augmentation steps were per-

formed [16]. At each step, a random batch was selected from the available pool, augmented,

and fed into the model. Data shuffling ensured that the same batch contained different image

slices every epoch. Optimal hyper-parameters were identified through training with four-fold

cross validation, specifically, (i) the number of epochs (60, 100), (ii) the number of resolution

levels (2,4,6), where a level represents all feature maps between two max-pooling or two up-

sampling operations [16] and (iii) convolution kernel size (3×3, 5×5). The batch size (four)

and learning rate (0.001) were kept constant. The model parameters were initialized using the

default Pytorch initialization scheme.

Once the optimal set of hyper-parameters was determined, the network was trained three

times to reduce individual model’s errors, using 200 image slices (8 subjects). Average predic-

tion from three models was computed, then rounded, and performance of model averaging

ensemble was evaluated.

Model evaluation. The performance of the model (averaging ensemble) for disease region

segmentation was evaluated in two ways. First, to provide an evaluation in terms of the Dice

coefficient (details in S1 File), performance was assessed against manual segmentation on the

test dataset of two subjects (48 slices). Second, to assess the generalisability on the model on a

variety of clinical cases, a further evaluation was performed by visual assessment (either satisfac-

tory or not satisfactory) on a further 19 subjects (38 scans, 950 image slices), for which manual

segmentations were not performed. Note that, to make use of all the available annotated data

the model was re-trained three times using all 10 subjects, i.e. 248 slices, prior to the evaluation

on the further 19 subjects. The visual assessment was performed by a postdoctoral researcher

with two years of MRI experience who had received training in interpretation of the relevant

anatomy by a radiologist; this radiologist also performed a slice-by-slice review of the segmenta-

tions in a subset of the cases to ensure that these anatomical assessments were accurate.

For the purposes of the subsequent assessment of the performance of the complete workflow,

disease region segmentations (manual and automated) from 29 subjects were used. If the auto-

mated segmentation failed, the segmentations were manually corrected for use in the subse-

quent evaluation.
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2.5.4 Details of step (vi)–‘Cleaning’. The manual correction (‘cleaning’) procedure in

Step vi was performed by two consultant radiologists, with over 25 and 7 years of musculoskel-

etal MRI experience respectively, as follows. Regions which were deemed non-inflammatory–

for example due to the presence of vessels or artefact–were removed by readers based on mor-

phology and anatomical location. Note that all images undergo this correction procedure, but

the extent to which the images are actually corrected or ‘cleaned’ depends on the accuracy of

the preliminary segmentation, as judged by the human observer.

To minimise subjectivity, lesions were either left in place or removed altogether, i.e., the

boundaries of lesions were not modified, except when the posterior part of the joint or fora-

men were segmented along with a potential lesion. To facilitate the comparison with visual

scoring of bone marrow oedema (see details in the following section), areas of inflammation

located above the L4/5 disc and within the sacroiliac joint space were removed by the observers

as part of the cleaning process, meaning that the cleaned segmentations contained only sub-

chondral bone marrow oedema.

T1-weighted images were used to assist readers in identification of anatomical structures

and regions of increased fat content. The two readers discussed and agreed upon the proce-

dure prior to manual correction.

2.6 Conventional visual scoring

To provide a comparator to VHI, visual scoring was performed on the same STIR images as those

used for the semiautomatic segmentation using the SPARCC BME system [2], by the same two

consultant radiologists as performed the cleaning procedure. Images were read in random order

on a dedicated research workstation where the reader was blinded to clinical diagnosis, treatment

and all quantitative measurements, including VHI. The presence of bone marrow oedema (BME)

was evaluated in six consecutive slices, with the SIJs divided into eight quadrants. Each quadrant

was scored for the presence/absence of BME (1 or 0) with an additional score of 1 if the BME in a

quadrant was more than 10mm deep and a further additional score if the BME was at least as

intense as the cerebrospinal fluid. A total score out of 72 was reached for SPARCC BME.

2.7 Performance assessment

2.7.1 Comparison of inter-observer segmentation overlap—semiautomated pipeline

versus purely manual segmentation. To characterise the variability in manual segmentation

and to establish a baseline segmentation performance, both radiologists performed two sets of

purely manual segmentations in a subset of eight patients. This design allowed separation of

the effects of inter- and intra-observer variability on segmentation performance, and meant

that poor performance due to differences in opinion/expertise could be distinguished from

intrinsic difficulties with performing the task consistently. The segmentations were temporally

separated by one month to minimise any learning effect, and the eight subjects were selected

to provide a range of inflammation severities. Having established the performance baseline,

inflammation was again segmented in the same eight subjects by the same radiologists using

the semiautomated workflow.

Inter-observer was compared between the semiautomated and purely manual segmenta-

tions in terms of Dice scores (further detail is provided in S1 File). To provide a further evalua-

tion in terms of accuracy, we constructed a composite reference standard using a majority vote

from both methods. Voxels which were deemed inflamed at least three times from two manual

segmentation trials and two semiautomated segmentation trials were taken to be truly

inflamed. The performance of the two methods was compared against this composite reference

standard in terms of Dice scores.
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2.7.2 Comparison of interobserver agreement—VHI versus visual scoring. Before pro-

ceeding to the agreement analysis, the relationship between VHI scores and visual scores was

analysed graphically using scatterplots. To improve visualization of VHI measurements clus-

tered at the lower end of the range, scatterplots were generated with the raw data and also fol-

lowing (i) data truncation to remove the highest VHI values and (ii) log(x+1) transformation to

linearize the relationship between VHI and visual scores whilst ensuring that 0 values are unal-

tered after transformation (for ease of interpretation). The relationship between VHI and visual

scores was evaluated with linear regression; slope and intercept values were reported with 95%

confidence intervals.

Bland-Altman 95% limits of agreement (LoA) analysis was performed for both VHI and

SPARCC scoring. Plots were generated using raw data, truncated data and log(x+1)-trans-

formed data across the full dataset of 29 patients. The mean bias and 95% LoA were calculated

and reported using the raw, non-transformed data for both VHI and visual scores. For the pur-

poses of this analysis, only inflammation present in the subchondral bone was included in the

final cleaned segmentations, in order to facilitate a more direct comparison with SPARCC

scoring (which includes only subchondral bone marrow oedema).

2.7.3 Responsiveness to biologic therapy—VHI versus visual scoring. Changes in VHI

and visual scores after treatment were visualized using spaghetti plots in which changes in

both measurements for individual patients were depicted (Fig 9). Separate plots were gener-

ated for those patients who showed evidence of response to therapy using clinical criteria and

for those patients who did not. To provide a numerical summary of the ability of VHI to cap-

ture response, we recorded the agreement between clinical response assessment and VHI-

based response assessment and between clinical response assessment and SPARCC-based

response assessment. For the purposes of this analysis, any patient undergoing an improve-

ment in VHI/SPARCC was deemed to be a VHI/SPARCC responder. Note that this is an imper-

fect assessment and an alternative would be to have a threshold for response based on the

variance in the data, however, the latter is problematic when the distributions of the data are

so different for VHI and SPARCC and risks creating an unfair threshold depending on the spe-

cific transformation used. The proposed approach, whereby any improvement is regarded as a

response, is not regarded as a clinically meaningful threshold but rather as a useful simplifica-

tion for the purpose of this analysis.

2.7.4 Failure analysis. Error analysis was performed for any scan in which the difference

in VHI between observers was more than two standard deviations from 0. The analysis was

conducted by one of the two consultant-level readers. Specifically, the scans and accompa-

nying segmentation masks for each ‘error case’ were inspected to determine the reasons for

discrepancy; errors were classified as anatomical (relating to whether observers agreed that

hyperintense regions classified as subchondral or not, i.e. whether they were in a realistic ana-

tomical location for inflammation to occur), morphological (relating to whether observers

agreed that hyperintense regions were true oedema rather than vessels or other structures, i.e.

whether the morphology was appropriate for an inflammatory lesion) or artefact-related (relat-

ing to whether hyperintense regions were deemed artefactual, i.e. due to a spurious region of

high signal in the image that is erroneously introduced during the reconstruction of the images

by the scanner).

3 Results

3.1 Overview

An example of normal bone segmentation is shown in Fig 1B, an example of disease region

segmentation is shown in Figs 1C and 2, and an example of inflammation segmentation
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(without the final cleaning step) is shown in Figs 1E and 3. The final cleaning step is

highlighted in Fig 1F. The following subsections describe specific evaluations of the individual

components of the workflow, and of the performance of the workflow as a whole for inflam-

mation assessment.

3.2 Disease region segmentation performance

The model was successfully trained without evidence of overfitting. The learning curves for

the training procedure (for different training subsets and validation folds) are shown in S1 Fig.

Assessing performance in terms of Dice scores (test dataset of 48 slices from two subjects),

the model ensemble yielded a mean (range) Dice of 0.94 (0.85 to 0.98), indicating excellent seg-

mentation performance. Examples of automatically segmented disease regions in the test data-

set and the corresponding reference standard segmentations are shown in Fig 2.

Assessing performance qualitatively (19 further subjects), model performance was either

perfect or subject to minor corrections for 16 subjects. The model failed in three subjects, each

of whom was found to have abnormal bone marrow (high fat content or extensive sclerosis,

which were not present in the training dataset). Examples of model failures are shown in

S2 Fig.

3.3. Comparison of inter-observer segmentation overlap for final cleaned

segmentation–semiautomated pipeline versus purely manual segmentation

The improvement in segmentation performance provided by the workflow is shown in terms

of Dice scores in Fig 4.

For purely manual segmentation (without the workflow), Dice scores from the two observ-

ers’ segmentation volumes ranged from 0.28 to 0.87. Intra- and inter-reader median Dice val-

ues were 0.63 and 0.69 for reader 1 and 2 and in the range 0.53–0.56, respectively.

Fig 3. Example outputs from human-machine workflow. Scans for two subjects are shown (S1 and S2, top and

bottom row respectively). The left-hand column shows the STIR images, the middle column shows the preliminary

segmentations (not cleaned to provide a demonstration of the performance of the automated component) and the

right column shows visual summaries of the disease volume. Note that inflammation at the periphery of segmented

lesions is typically captured by the lower ‘sensitive’ threshold, shown in yellow, whereas the most hyperintense

inflammation in the centre of lesions is captured by the higher, ‘conservative’, threshold, shown in red.

https://doi.org/10.1371/journal.pone.0284508.g003
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Using the human-machine workflow, the median Dice scores improved to 0.84, represent-

ing an increase of 28–31% compared to pure manual segmentation. The inter-observer Dice

for the two readers using the human-machine workflow was substantially higher than the

overlap between each reader and the preliminary, non-cleaned segmentation (0.60 / 0.55 for

Readers 1 and 2 respectively).

VHI scores from those obtained from the human-machine workflow also agreed closely

with those obtained from a composite of all four manual segmentations (two from each reader)

(Fig 5).

There was one outlier where the agreement was reduced for the semiautomated method;

review of the images indicated that the disagreement mostly related to the presence of inflam-

mation in the joint space, where blood vessels can be misinterpreted.

3.4 Comparison of interobserver agreement—VHI versus visual scoring

The relationship between VHI and visual scoring is shown in Fig 6. Note that VHI shows a

nonlinear relationship with SPARCC scoring, reflecting the fact that SPARCC scoring

gives binary scores for each quadrant and therefore effectively ‘plateaus’ at higher inflam-

mation volumes. The relationship becomes approximately linear with logarithmic

transformation.

Bland-Altman limits-of-agreement plots for VHI and visual SPARCC scoring are shown in

Fig 7. The Bland-Altman LoA were +191 (-4119 to 4501) voxels over a range of 9.5 to 90081

for VHI and -1.5 (-14.8 to 11.8) voxels over a range of 0 to 47.5 for SPARCC scoring. Note that

the limits are narrower for VHI than visual scoring relative to the range of mean values in the

data, suggesting improved inter-observer agreement.

After logarithmic transformation, the widths of the LoA were similar for VHI and visual

scoring relative to the range of values in the data, suggesting similar inter-observer agreement.

However, note that the log-transformed data highlights greater disagreement in cases where

the clinical burden of inflammation is small. This is natural because decisions on the presence

/ absence of inflammation are more difficult when only small regions are involved.

Fig 4. Improvement in Dice scores for human-machine workflow compared to purely manual segmentation. Dice

scores are shown for individual patients for trials of segmentation of inflammation (volume comparison): (a) and (b)

show results for purely manual segmentation and (c) shows results for corrected automatic (i.e. semiautomated)

segmentations. (a) shows within-reader results, (b) shows between- reader results and (c) shows between-reader

results. Rij stands for reader with the first subscript corresponding to the reader and the second to the segmentation

trial. The figures show boxplots with individual datapoints superimposed; the red line represents the median dice.

https://doi.org/10.1371/journal.pone.0284508.g004
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Furthermore, note that the difference in log-transformed scores indicates proportional dis-

agreement, which can be large even when the absolute size of the differences is small.

3.5 Responsiveness to biologic therapy—VHI versus visual scoring

Examples of pre- and post-treatment scans and accompanying segmentations for a single sub-

ject are shown in Fig 8, and response plots are shown in Fig 9.

16/29 patients underwent a clinical response. Of the 16 clinical responders, 11/16 were also

classified as responding by VHI and 12/16 were classified as responding by SPARCC scoring.

Of the clinical non-responders (13/29), 4/13 were also classified as non-responding by VHI and

6/12 were classified as non-responding by SPARCC scoring.

VHI and clinical assessment agreed on response/non-response in 15/29 subjects. SPARCC

scores and clinical assessment agreed on response/non-response in 18/29 subjects. SPARCC

scores and VHI agreed on response/non-response in 19/29 subjects.

There was a significant linear relationship between the change in VHI and the change in

SPARCC scores, with an estimated regression slope (95% CI) of 2408 (1230 to 3586)

(P = 0.0003), an estimated intercept of 894 (-10760 to 12547) (P = 0.88) and R2 = 0.39.

Fig 5. Accuracy of human-machine workflow against a composite manual reference standard formed from all

four human segmentations (two from each reader). In the scatterplots (top row), the dotted line represents unity. In

the Bland-Altman plots (bottom row) the mean bias (solid line) and 95% limits of agreement (dashed lines) are shown.

Both plots show only a small bias and good precision relative to the range of VHI values present.

https://doi.org/10.1371/journal.pone.0284508.g005
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3.6 Failure analysis

Discrepancies between the two observers for the semiautomated segmentation were identified

in 3/58 cases. The images from these cases are shown in S3 Fig. Inspection of these images

revealed that disagreement was ‘anatomical’ in all two cases (i.e. relating to the location of

hyperintensity) and ‘artefactual’ (i.e. relating to whether hyperintense regions were deemed

artefactual) in one case; there were no instances of morphological (e.g. relating to whether

hyperintense regions were classified as oedema rather than vessels) disagreement. Specifically,

in the two cases of ‘anatomical’ disagreement, the observers disagreed due to the presence of

hyperintense bone in the posterior ilium, which was attributed to inflammation by one

observer but to anatomical variation by the other. In the one case of ‘artefactual’ disagreement,

there was diffuse and mild hyperintensity in subchondral bone which was deemed inflamma-

tory by one reader but normal by the other; this was a post-treatment scan in a patient with

extensive inflammation that had improved after treatment–i.e. the difficulty in this case related

to the identification of resolving inflammation.

4 Discussion

At present, there is no imaging biomarker of inflammation that is used widely in clinical prac-

tice, and image interpretation is performed in a qualitative fashion, introducing substantial

subjectivity. Although deep learning is a natural approach to addressing this problem, purely

automated solutions require large training datasets and may not be sufficiently accurate or

trustworthy for use in clinical practice when only limited data are available for training. Here,

to address these issues, we propose a hybrid ‘human-machine’ workflow that aims to combine

deep learning-based segmentation with human oversight. The output of this workflow defines

a quantitative imaging biomarker known as the volume of hyperintense inflammation (VHI).

By first using a U-net—the current state-of-the-art approach for medical image segmenta-

tion [11, 17]—to recognize potentially inflamed bone and then segmenting areas within this

using thresholding, our approach has the advantages that (i) the disease region segmentation is

relatively trivial and can be achieved with a relatively small dataset, (ii) the segmentation of

inflammation is transparent, easily-understood and objective, removing the need for subjec-

tive intensity-based judgements to be made by radiologists, and (iii) these segmentations can

easily be propagated onto images from other sequences, and could easily be applied to

Fig 6. Relationship between VHI and conventional visual scoring. The raw voxel counts (left column), voxel counts

with truncation of the y-axis (middle column) and voxel counts with log(x+1) transformation (right-hand column) are

shown on scatterplot. The truncation point used to generate (b) is shown on (a) as a blue dotted line. Note that the

relationship between SPARCC scoring and inflammation volume is nonlinear but becomes approximately linear with

log(x+1) transformation. Red points refer to pre-treatment scans, and blue points to post-treatment scans. R1 and R2

refer to reader 1 and reader 2.

https://doi.org/10.1371/journal.pone.0284508.g006
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quantitative MRI. Furthermore, the semiautomated nature of the workflow means that the

burden placed on the radiologist is minimised (since cleaning a sensitive segmentation such as

this requires removal of only ‘chunks’ of oversegmented tissue such as artefacts and vessels, a

quick and simple process), making it amenable to use within a standard radiological workflow.

Our approach is broadly similar to how semiautomated segmentation is already used for a

widely-used and impactful technique known as coronary calcium scoring, where an initial

Fig 7. Improvement in inter-observer agreement for VHI. Bland-Altmans plots for the two observers’ scores are

shown for VHI (top half) and SPARCC scores (bottom half). Red points refer to pre-treatment scans, and blue points

to post-treatment scans. For VHI, the raw voxel counts (left column), voxel counts with truncation of the axes (middle

column) and voxel counts with log(x+1) transformation (right-hand column) are shown on scatterplot (top row) and

Bland-Altman plots (second row). The truncation points used to generate the middle column figures are shown as blue

dotted lines on the plots in the left column. For SPARCC scores, the raw scores (left column) and log(x+1)

transformed scores (right column) are shown on scatterplots (third row) and Bland-Altman plots (fourth row).

https://doi.org/10.1371/journal.pone.0284508.g007
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segmentation is generated by thresholding and then a radiologist adjusts the segmentation to

retain only relevant regions [18–22]. From a clinical perspective, VHI measurements provides

similar information to SPARCC scoring (which is confined to the research setting) yet avoids

the need for subjective and laborious visual assessment of image intensity. VHI measurements

should be simpler to interpret for clinicians than qualitative reports, and the accompanying

segmentations provide a visual illustration of disease burden which is easy to understand for

clinicians and patients.

The key results of our study are as follows. Firstly, the semiautomated workflow produced a

marked improvement in inflammation segmentation performance compared to the purely

manual approach in terms of inter-observer agreement. Second, VHI measurements show sim-

ilar or better inter-observer agreement than visual scoring, although direct comparison is diffi-

cult due to the differences in the metrics’ distributions: comparison on the non-log-

transformed data suggests superior performance for VHI and comparison on the transformed

data suggests similar performance. The former may be more representative of performance in

clinical practice, where absolute differences are more relevant than proportional differences.

Thirdly, VHI measurements show a nonlinear, approximately exponential relationship with

visual scoring, which becomes approximately linear with logarithmic transformation. This

result may reflect the fact that VHI can capture the full burden of inflammation present in the

subchondral bone whereas visual scoring is limited to binary assessments for each quadrant of

the joint, and thus does not distinguish between areas of inflammation of different sizes within

a quadrant. From a clinical perspective, a technique with a greater dynamic range may be able

to better stratify patients by inflammation burden and better capture changes in inflammation

severity with treatment, even when inflammation does not completely resolve (for example,

when performing early response assessments). Fourthly, VHI and visual scoring provide

broadly similar response assessments, although neither metric agrees closely with clinical

response assessments. The latter point probably reflects the complex, multifactorial nature of

pain and the fact that this is not solely due to inflammation.

Fig 8. Example of response to biologic therapy. Pre- and post-treatment scans for a single subject are shown (top and

bottom row respectively). The left-hand column shows the STIR images, the middle column shows the preliminary

segmentations (not cleaned to provide a demonstration of the performance of the automated component) and the

right column shows visual summaries of the disease volume. Regions of acute inflammation showed a reduction in

extent and intensity after treatment, although there is a persistent, slight hyperintensity compared to the normal

interforaminal bone, which manifests as an increase in the proportion of inflammation captured by the lower (yellow)

of the two thresholds (see Details of Step (ii)–Thresholding within disease regions).

https://doi.org/10.1371/journal.pone.0284508.g008
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Fig 9. Spaghetti plot for VHI and SPARCC scores on pre- and post-treatment scans. Subjects with improving

inflammation (based on imaging assessments by either VHI or SPARCC score) are shown in green; subjects with

worsening inflammation are shown in red. The first row shows results for VHI and the second shows results for

SPARCC. The third row shows a scatterplot of VHI changes against SPARCC changes for individual subjects, using

the full data range (bottom left) and truncated y-axes (bottom right). The linear regression line has identical

parameters for the two plots on the bottom row.

https://doi.org/10.1371/journal.pone.0284508.g009
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Several previous studies have also investigated the use of threshold-based methods for

quantifying inflammation [23, 24]. However, these studies relied on manual segmentation to

identify an optimal threshold, whereas our data suggest that using manual segmentation as a

“gold standard” is problematic and may lead to inconsistent interpretation especially in cases

when inflammation is subtle or precise lesion boundary cannot be identified. To highlight this

point, a recent study aiming to demonstrate the feasibility of fully-automated segmentation of

BME [25] revised the threshold value developed in earlier work [23], finding an optimal

threshold of 1 compared to 1.5 in the prior study. Clearly, a threshold which depends on refer-

ence standard provided by human observers is not desirable. In contrast, the approach pro-

posed in this work removes the need for intensity-based judgements to be made by the

observer. The use of an intensity-based threshold derived from normal marrow means that the

choice of voxels is primarily influenced by the physical properties of the tissue, specifically, the

extent to which the intensity in each voxel deviates from the intensity observed in normal mar-

row. The normal bone region effectively serves as a reference region and means that the judg-

ment around which voxels are hyperintense is tailored to each individual and each scan.

Importantly, VHI measurements should be simpler to interpret for clinicians than qualita-

tive reports, which vary in style and length between radiologists and depend on expertise and

opinion. The segmentation masks generated by the workflow could be displayed together with

the VHI measurement, providing a visual illustration of disease burden which is easy to under-

stand for clinicians and patients. Visual illustrations could make disease activity assessments

easier to understand for patients and help them to feel more in control of their disease and

care.

4.1 Limitations

This study has several limitations. First, the network was trained on a relatively small dataset,

and produced errors in cases which were atypical. However, the intention of this study is not

to provide a definitive final algorithm, but to demonstrate the potential of the proposed deep-

learning enabled workflow. The improvement in performance showed by our data suggests

that further development, which might include network training on a larger, multisite dataset

(thus introducing greater robustness to atypical cases), is warranted. Secondly, the perfor-

mance of the method is fundamentally limited by the acquisition modality, which in this case

was STIR imaging. Although widely used, STIR imaging has a number of limitations including

its relatively poor signal-to-noise ratio and the potential for inadequate fat suppression. How-

ever, a strength of our approach is that it can easily be applied to other imaging modalities,

including quantitative imaging, since the disease region masks can easily be propagated to

other modalities. This is a substantial advantage comparing to requiring a network that is

directly trained to identify inflammation on specific sequences. Thirdly, although we showed a

substantial performance improvement for the human-machine workflow compared to qualita-

tive assessment, this is essentially an agreement study and we do not have a true ‘gold standard’

for accuracy assessment. Although obtaining a gold standard is challenging (obtaining histol-

ogy, for example, is limited by ethical constraints), one potential would be to create a compos-

ite or consensus reference standard using a large number of radiologists, and then assess the

performance of further radiologists (with and without machine assistance, and potentially

with varying levels of experience) against this standard. Ideally, this dataset would include

scans from multiple centres to enable an assessment of generalisability of algorithms. However,

at present we are not aware of such a dataset; the study design used here is a practical way to

assess the feasibility of this approach. Finally, our results do indicate that subjective judge-

ments made in the cleaning step of the workflow have a substantial impact on VHI
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measurements, although the use of the semiautomated workflow improved agreement

between observers. Further research could therefore focus on greater automation of the

method, including automatic removal of vessels and image artefacts, further reducing subjec-

tivity. One approach would be to train the U-net to directly identify inflammation from the

STIR images, however, this is a more challenging task and this approach could therefore be

less generalisable to unseen data (e.g. from other scanners or sites), as well as less transparent.

An alternative would be to train a separate algorithm to perform the cleaning step. We suggest

that future research could focus on examining the interplay between the degree of automation,

the time taken for segmentation and the degree of accuracy and precision that can be

achieved.

4.2 Conclusion

We propose a workflow for segmentation of inflammation incorporating both deep learning

and human input. The output of this workflow, the volume of hyperintense inflammation

(VHI), provides a precise assessment of inflammation with superior performance to visual scor-

ing by trained expert radiologists. The proposed human-machine workflow for VHI measure-

ment offers a mechanism to improve the consistency of radiological assessment of

inflammation, and a biomarker of inflammation load to guide treatment decisions in spondy-

loarthritis. It could also be a useful exemplar of human-machine cooperation more broadly.

Supporting information

S1 File. Evaluation metrics.

(DOCX)

S1 Fig. Mean area overlap (Dice score) vs training epoch for different training data subsets (a)

and validation folds (b). Each point represents Dice score averaged over (i) classes (foreground

& background), (ii) samples in a mini batch and (iii) 350 augmentation steps. Area overlap

from pair-wise comparison of reference standard and rounded prediction on the test data

from models averaging ensemble (three runs using all training data, 200 T1W image slices)

(c).

(TIF)

S2 Fig. Examples of model failure in disease region segmentation. T1w image slices in obli-

que coronal plane (top) for three subjects with super-imposed models averaging ensemble

rounded prediction (bottom). Subjects exhibit very abnormal bone, comprising either high fat

content (left, middle) or sclerosis (right), leading to areas of ‘missing’ bone within the segmen-

tations.

(TIF)

S3 Fig. Examples of discrepancies between readers for the cleaning step. The three discrep-

ancies are denoted D1-D3 and shown on separate rows; for each, the STIR image (left column)

and segmentations for the two readers (middle and right column) are shown. The green and

red segmentations correspond to the higher and lower segmentation thresholds. In two cases

(D1, D2), the disagreement was ‘anatomical’ and related to the presence of hyperintensity in

the posterior ilium, which can be attributed to either inflammation or variations in normal

bone composition. In one case (D3) the disagreement was ‘artefactual’ and related to the pres-

ence of faint, diffuse hyperintensity in the potentially-inflamed subchondral bone region,

which was deemed entirely inflammatory by one reader and partly artefactual by the other.

(TIF)
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