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Abstract  

Background 

Attrition is a major issue in drug development with less than 5% of drug development 

programmes yielding licensed drugs. Retrospective studies have suggested that human 

genomic data could be used to help prioritise drug development programmes and reduce the 

risk of clinical-stage failure. The investment of pharmaceutical companies in healthcare 

genomic initiatives has been incentivised largely by studies showing that genetically-supported 

targets would succeed twice as often as those without genetic support, and comparative studies 

revealing that the effect of licensed drugs on biomarkers and disease endpoints coincide with 

the observed associations of variants in the genes encoding the corresponding target. However, 

historically, genome-wide association studies (GWAS) of human diseases and pharmaceutical 

research and development have largely proceeded independently. Knowledge of the overlap 

between existing GWAS and current or historical drug development programmes is important 

to maximise the utility of existing data for repurposing opportunities and mechanism-based 

adverse effect prediction. Additionally, for novel target identification, questions remain about 

what type of genomic data is most informative and what methods are most robust. Mendelian 

randomisation (MR), a genetic epidemiology approach for causal inference, has been used to 

assess the causal nature of exposures on outcomes. Its application has recently been extended 

to the evaluation of drug targets against disease (‘drug target MR’). However, very limited 

validation of the parameters used in drug target MR studies exists across multiple target loci 

and diseases. 
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Aim 

To investigate the extent to which the spectrum of human diseases has been addressed by 

genetic analyses, or by drug development, and the degree to which these efforts overlap. To 

evaluate the genetic support for approved drug target-indication pairs from GWAS and drug 

target MR applications. 

Methods 

 Human disease information from the Disease Ontology and drug data from ChEMBL 

version 25 were used. Genetic associations with diseases and clinical endpoints were sourced 

from the GWAS Catalog and UK Biobank (through Neale Lab), and genetic associations for 

circulating protein levels measured by the SomaLogic v4 proteomic platform from the Fenland 

study and UCLEB Consortium.  

I calculated the disease coverage, overlap and divergence of human genetic studies and 

pharmaceutical research and development. I provided a revised estimate of the value of genetic 

evidence for drug target-indication pairs in progressing in clinical-phase drug development, 

and investigated different approaches to assign genetic associations identified by GWAS to 

causal genes. I evaluated the drug target MR framework with a curated ‘truth’ set of drug target-

indication pairs for which genetic associations with the circulating levels of the protein target 

and the intended indication were available. I applied the drug target MR framework using 

genetic associations with blood lipids (LDL-cholesterol, HDL-cholesterol and triglycerides) to 

prioritise drug targets for the treatment and prevention of coronary heart disease. 

Results 

Only 9% (953 out of 10,901) of human diseases have been studied by GWAS. Of these, 

only 369 correspond to diseases with an approved treatment and/or a treatment under clinical 
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or preclinical development, leaving 584 diseases that have been the subject of investigation in 

GWAS, but which have yet to be investigated in drug development. For those indications that 

are or have been the subject of clinical phase drug development and have been studied by 

GWAS, I found that drug target-indication pairings with genetic support are twice more likely 

to get approved than those without genetic support (2.18; 95%CI: 1.86; 2.51). The evaluation 

of the drug target MR framework with the subset of target-indication pairings of approved 

drugs with available genetic associations with the circulating protein levels recapitulated the 

mechanism of action of up to 13% (16 out of 121) of the drug target gene – indication pairings 

and returned results in the unanticipated direction of effect for 11% (14 out of 121) of the 

pairings explored. The systematic application of the biomarker-weighted drug target MR using 

blood lipid levels robustly identified 30 targets that should be prioritised for the prevention or 

treatment of coronary heart disease. 

Conclusion 

I identified points of convergence or divergence between genomic research and drug 

development efforts in the sample space of all the human drug targets and diseases, and 

demonstrated the utility of GWAS data for drug target identification and validation through the 

mapping of genetic associations to causal genes and the application of the drug target MR 

framework. The work of this thesis informs prioritisation strategies in drug development and 

future research so the investment and impact of human genetic studies can be maximised. 
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Impact statement  

It has been suggested that human genomics may help increase the efficiency of drug 

development by generating evidence for drug target identification and validation. 

Pharmaceutical companies have shown growing interest in the use of human genomic data, 

however, the detailed analysis of disease coverage, overlap and divergence of human genetic 

studies and pharmaceutical research and development in Chapter 4, shows that less than 10% 

of human diseases have been studied by genome-wide association studies (GWAS), indicating 

that further efforts are needed to explore the genetic predisposition of the remaining diseases, 

and more importantly, the genetic contribution for those >9,000 diseases without an approved 

or investigational drug. In addition, the analysis described in Chapter 5 provides further 

evidence of the additional value of genetic evidence for drug target-indication pairings in 

progressing in the drug development pipeline. Genetic support could help prioritise medicines 

for cardiovascular disease or repurposing approved drugs. The findings from this chapter 

encourage the research community and pharmaceutical industry to align efforts and perform 

genetic studies in cardiovascular diseases or other therapeutic areas without an approved or 

investigational drug. 

Large population-based cohort studies, and particularly biobanks, have emerged as a 

powerful resource to advance biomedical research. The linkage of human genetic data to 

medical records, clinical biomarkers and molecular traits, such as circulating protein levels, 

represents an unique opportunity to exploit genomic data and inform drug target identification 

and validation. Different techniques in genetic epidemiology are used to infer the effect of a 

drug on a target in a particular disease. This thesis evaluated in Chapter 6 the use of drug target 

Mendelian Randomisation using circulating protein levels to estimate the effect of perturbating 

a target in a particular disease using a set of licensed drug target – indication pairings. The 
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methods and findings from the work in Chapter 6 are intended in large part to pave the way for 

further studies exploring the application of drug target Mendelian randomisation with protein 

level data for drug target validation and identification.  

While Mendelian randomisation methods using molecular traits become better 

understood, traditional clinically-validated biomarkers are used to infer the effect of perturbing 

a drug target in a particular disease. Chapter 7 prioritises a set of 30 targets that might elicit 

beneficial effects in the prevention or treatment of coronary heart disease using blood lipid data 

as the exposure. 

The full integration of genome-wide association studies in the drug development pipeline 

is still very much a work-in-progress. There are several drugs that have been prioritised based 

on population-level genetic data showing promising therapeutic benefit. Academic research 

and clinical trials of these candidates are ongoing at the time of writing this thesis. This thesis 

anticipates that the mining of data from genome-wide association studies will help address the 

attrition problem in the pharmaceutical industry. 
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1 | Introduction 

This introductory chapter will provide an overview of the current state of drug 

development, the potential of human genetic studies to address the high attrition rates and 

increase efficacy in clinical development, and the application of Mendelian randomisation for 

drug target identification, validation and prioritisation. 
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 The current state of drug development 

Most successful medicines target proteins. Therefore, the challenge in drug development 

is to identify disease relevant proteins and design compounds that can modify their function to 

treat disease. However, less than 5% of drug development programmes yield licensed drugs1,2. 

Reasons for failure include the compound failing to show benefits compared to another 

treatment or placebo (lack of therapeutic efficacy, ~60% of failures), safety concerns (~17% of 

failures), or strategic reasons, for example, when a pharmaceutical company ceases the 

development due to market competition or financial constraints (~20% of failures)3. 

The vast majority of failures arising due to lack of efficacy occur at a late stage in the 

development pipeline, in phase II or phase III randomised clinical trials3,4. Many of these drugs 

may have been strong pre-clinical candidates indicating that early experiments in cells and 

animals are poor predictors of human efficacy. In addition, early-phase clinical trials (phase I), 

which evaluate dose safety and tolerability, are not designed to determine if the drug target 

plays a relevant role in a disease. Phase I studies are usually performed in small cohorts of 

healthy volunteers over a short period of time to help evaluate pharmacokinetics and dose 

range, as well as to measure any commonly observed adverse effects rather than to confirm or 

test target validity5.  

Late-phase failures raise ethical concerns (e.g. thousands of patients being exposed to 

ineffective or potential harmful drugs) and have financial implications, because a phase III trial 

requires an enormous investment in addition to costs already incurred to progress a compound 

to that stage. The average cost of introducing a drug into the market is estimated in $985.3 

million6 and in some cases even several billion dollars7. Clearly, the current situation is not 

sustainable and demands improved methodologies that can provide robust evidence of target 

efficacy in early stages of the drug development process. A key requirement of any new method 
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would be to enable early, reliable insight on the likelihood of success of any target and disease 

indication combination to remove those pairings unlikely to be successful from the drug 

development pipeline prior to clinical phase trials, thus reducing overall development cost. 

 

 The potential of genome-wide association studies in drug 

development  

Genome-wide association studies (GWAS) in patients and populations test relationships 

between natural sequence variation (genotype) and disease risk factors, biomarkers and clinical 

endpoints using population-based cohort and case-control designs8. In the last 13 years, over 

5,687 GWAS have been completed in approximately 4,083 traits9. The rise of genome-wide 

association studies has been enabled by the significant reduction of genotyping costs and the 

substantial investment in sequencing, genotyping or molecular phenotyping of large cohort 

studies (e.g., University College London-Edinburgh-Bristol Consortium; UCLEB10) and 

national biobanks which are connected to routinely collected primary and secondary care health 

records (e.g., UK Biobank11 and FinGenn12). Many of these comprise molecular traits such as 

proteomics and metabolomics measures in addition to genetic data. Some examples of the 

largest biobanks with ‘omic-’  data are shown in Table 1.1. Future initiatives that will 

incorporate genomic data linked to medical history include the All of Us program in the USA13 

or the planned Three Million African Genomes14.  

Several public repositories exist that systematically catalogue, curate and store GWAS 

summary statistics. For example, the latest update of the European Molecular Biology 

Laboratory, European Bioinformatics Institute (EMBL-EBI) GWAS catalog9 contains over 

5,000 publications of published GWAS done in different human populations, and almost 
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400,000 associations between SNP and traits. Another GWAS repository is the GWAS 

database (GWASdb), developed at the University of Hong Kong, and combines GWAS results 

with functional annotations15. Similarly, the Genome-Wide Repository of Associations 

Between SNPs and Phenotypes (GRASP) collects information about significant associations 

in genetic studies, including methylation and expression quantitative trait loci (eQTL) 

analysis16. Other relevant resource is provided by Neale Lab17 which has released to the public 

summary statistics from genome-wide association studies for approximately 2,000 phenotypes 

measured in ~337,000 participants of the UK Biobank. 

Table 1.1. Examples of the population-based biobanks 

Study (Location) Study type Number of 
participants 

Omic data available (samples) 

UK Biobank11 (UK) Biobank 500,000 

• Genotype data (500,000) 
• Whole exome sequencing data 

(200,000) 
• Whole genome sequencing data 

(200,000) 
• Proteomics (53,000) 
• Metabolomics – 249 molecules 

measured by Nuclear magnetic 
resonance (120,000) 

• 34 clinical biomarkers (500,000) 
FinnGen12 (Finland) Biobank 476,400 • Genotype data (365,000) 

The Estonian 
Biobank (Estonia)18 Biobank 200,000 

• Genotype data (200,000) 
• Whole exome sequencing data 

(2,500) 
• Whole genome sequencing data 

(3,000) 
• Metabolomics NMR - 120 

molecules (11,000) 
• 42 Clinical biomarkers (2,700) 
• Proteomics (~1,000) 
• Transcriptomics (~1,000) 

BioBank Japan19,20 
(Japan) Biobank 260,000 

• Genotype data (~220,000) 
• Whole genome sequencing data 

(~218,000) 
• Metabolomics - 39 molecules 

measured by capillary 
electrophoresis mass spectrometry 
(500) 
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The design of genome-wide association studies has shown potential as a novel resource 

for drug development. Retrospective analyses of successful drugs whose indications have been 

studied by GWAS have shown that selecting drugs targets where genetic associations have 

been found near or in the gene encoding the target could double the success rate in clinical 

development21,22. Further, several analyses have been completed that demonstrate GWAS have 

rediscovered 39 drug targets, including 8 targets for cardiovascular drugs (Table 1.2). 

Moreover, GWAS have potentially uncovered numerous repurposing opportunities (Fig. 1.1). 

In an effort to streamline drug development from GWAS data, Finan et al., 2017 defined the 

druggable genome23, the set of genes whose protein products are already drugged or have a 

greater probability of encoding a protein amenable to targeting with a pharmaceutical. The 

most recent definition comprises 4,863 genes and incorporates potential targets for monoclonal 

antibodies. 

  

 

 

 

 

Figure 1.1 Potential repurposing opportunities uncovered by GWAS. The disease categories 

on the circumference are MeSH root disease terms. The directional chords represent a 

connection from an indication class of drug to a GWAS phenotype. This connection is 

determined by a drug target gene occurring within 50 kilo base pair (kbp) of a GWAS 

association. The width of the chords is proportional to the number of genes connecting two 

therapeutic classes. Figure adapted from Finan et al., 201723.  
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As described by Hingorani et al., 201924, GWAS overcome many design flaws inherent 

in preclinical experiments in isolated systems (cells, tissues, isolated organs) and animal 

models as they are performed in the organism of interest (the human), have a low false 

discovery rate and have the capability to interrogate every potential drug target in the condition 

of interest. Yet, the main challenge in GWAS interpretation is the identification of the true 

‘causal’ gene driving the association, given that the majority of genetic associations found 

through GWAS are located in non-coding regions and that may include several genes. 

Recently, several statistical tools have been developed, including coloc25, moloc26, CaMMEL27 

and SMR28, that aim to co-localise genetic associations with mRNA (or protein) expression 

and disease endpoints to help assign the responsible gene in an linkage disequilibrium (LD) 

interval. Despite all the proposed methodologies, assigning variants to genes based on genomic 

proximity has been described as the most reliable approach to map causal genes29,30. Still, very 

few discovery GWAS have identified the gene(s) driving the association so at present, it is not 

clear which method is optimal. 

Nevertheless, while GWAS alone can potentially inform drug target identification and 

validation, deciding whether to design an inhibitor or activator of the target cannot be readily 

inferred simply from identification of the locus. 

 

 

 

 

 



 24 

Table 1.2. Examples of GWAS ‘rediscoveries’ of licensed drug targets 

GWAS Phenotype Associated Gene  Compound  

Total/LDL 

cholesterol 

3-hydroxy-3-methylglutaryl-CoA reductase 

(HMGCR) 

Lovastatin, 

Pravastatin, 
Simvastatin 

Diastolic blood 
pressure 

CACNA1D calcium voltage-gated channel 
subunit alpha1 D (CACNA1D) 

Amlodipine 

Large artery stroke Plasminogen (PLG) Alteplase 

Heart rate Acetylcholinesterase (ACHE) 
Neostigmine 
Methylsulfate 

 Cholinergic receptor muscarinic 2 (CHRM2) 
Tolterodine 
Tartrate 

Type 2 diabetes 
Potassium inwardly-rectifying channel 
subfamily J member 11 (KCNJ11) 

Glimepiride, 
Glipizide, 

Glyburide,  
Nateglinide, 
Repaglinide 

 
ATP binding cassette subfamily C member 8 

(ABCC8) 

Glimepiride, 

Glipizide, 
Glyburide,  

Nateglinide, 
Repaglinide 

 Peroxisome proliferator-activated receptor 

gamma (PPARG) 
Pioglitazone 
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 Nature’s randomised trials: Mendelian randomisation 

Mendel’s second law (the ‘law of independent assortment’) states that the segregation of 

alleles at a locus during conception is mutually independent and independent of other factors, 

and thus, genotypes of individuals are obtained by the random allocation of alleles during 

meiosis when DNA is passed from parents to offspring (Mendelian randomisation; MR). If an 

allele of a genetic variant results in an increase or decrease in disease risk or biomarker level, 

then Mendel’s second law is analogous to the randomisation of an active drug or placebo in a 

randomised controlled trial. Therefore, genetic variation can be used to mimic randomised 

clinical trials without requiring the time-consuming and costly development of a drug 

compound31 (Fig. 1.2).  

 

 

 

 

 

 

Figure 1.2. Mendelian randomisation trials as a nature phase III randomised clinical trial. 

Expected outcome from hypothetical randomised control trial and from Mendelian 

randomisation analysis, if the target is causal in the development of the disease. ‘AA’ and ‘aa’ 

refer to alleles of the gene encoding the target of a drug (only homozygous individuals are 

shown). In this example, genotypes are also associated with low or high risk of developing the 

particular disease. Figure adapted from Hingorani & Humphries, 200531. 
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Where the variable of interest in an MR analysis is a disease biomarker, rather than a 

specific drug target, established MR approaches have utilised selected variants in or near 

multiple genes that have been identified in GWAS of biomarker levels from throughout the 

genome. Collectively, these variants are known as a genetic instrument. An MR analysis will 

assess the effects of the genetic instrument on a biomarker level and the effects of the genetic 

instrument with respect to the disease risk to determine if the biomarker exposure is causal in 

the disease outcome. The resulting estimate will determine how much an increase or decrease 

in the biomarker impacts the increase or decrease in disease risk. This is referred to as MR 

analysis for biomarker validation or ‘genome-wide biomarker MR’32. 

For illustration, genome-wide biomarker MR studies have further validated the causal 

role of low-density lipoprotein cholesterol (LDL-C) on coronary heart disease (CHD), which 

was first established in observational  studies and eventually confirmed as causal by 

randomised controlled trials of LDL-C lowering statin drugs33,34, PCSK9 inhibitors35 and 

ezetimibe, which targets NPC1L136,37 (Table 1.3). 
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Table 1.3. Causal odds ratios (95% CI) for coronary heart disease per standard deviation 

increase in each lipid fraction. All the studies used variants from the Global Lipid Genetic 

Consortium (GLGC) to instrument causal effects of the three lipid subfractions on CHD from 

the CardiogramPlusC4D Consortium. (*) Derived from Table 3 of Do et al., 201338. 

 

Method 

LDL-C 

OR (95%CI) 

HDL-C 

OR (95%CI) 

Triglycerides 

OR (95%CI) 
Ref. 

Regression-based 

method* 

1.46 (1.37, 1.57) 

nvariants = 185 

0.96 (0.89, 1.03) 

nvariants = 185 

1.43 (1.28, 1.61) 

nvariants = 185 

38 

Multivariable 

IVW MR 

1.48 (1.36, 1.61) 

nvariants = 185 

0.93 (0.85, 1.02) 

nvariants = 185 

1.16 (1.04, 1.29) 

nvariants = 185 

39 

Restricted allelele 

score 

1.92 (1.68, 2.19) 

nvariants = 19 

0.91 (0.42, 1.98) 

nvariants = 19 

1.61 (1.00, 2.59) 

nvariants = 19 

40 

 

Genome-wide biomarker MR has also been applied to non-LDL lipid subfractions such 

as high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG), for which a causal role 

in CHD risk remains controversial. Non-randomised observational studies have reported a risk 

increasing association between TG and CHD40, an association that has recently been suggested 

to be causal by genome-wide biomarker MR studies (Table 1.3). The role of TG in CHD is 

currently under investigation in clinical trials of evinacumab, an ANGPTL3 inhibitor predicted 

to reduce CHD risk by lowering TG levels41. In contrast, and despite suggestive but 

inconclusive MR estimates (Table 1.3), causality of the HDL-C and CHD association remains 

controversial. Despite several attempts to raise HDL-C by inhibiting CETP, a key enzyme in 

HDL-C metabolism, none of the CETP inhibitors43–46 have been approved yet, questioning 

HDL-C role in CHD and leading to confusion as to therapeutic targeting of HDL-C metabolism 
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is likely to be fruitful. Furthermore, only the CETP inhibitor anacetrapib showed a reduction 

in cardiovascular events in phase III clinical trials46, suggesting between-compound 

heterogeneity. Therefore, the anticipated CHD effect may depend on the method of intervening 

on downstream lipid biomarkers (i.e. which proteins are targeted by drugs). To explore this 

situation in which the therapeutic response varies between different interventions on a 

biomarker and to comprehensively evaluate a drug effect on a specific target protein regardless 

of heterogeneity in downstream pathways, Schmidt et al., 202032 proposed a drug target MR 

approach. 

 

 Mendelian randomisation for drug target validation 

It has been shown that variants in a gene encoding a specific drug target, that alter the 

target’s expression or function, can be used as a tool to anticipate the effect of drug action on 

the same target. This application of Mendelian randomisation is known as ‘drug target MR’47. 

In contrast to a genome-wide biomarker MR, where the variants comprising the genetic 

instrument are selected from across the genome, in a drug target MR analysis, variants are 

selected from the gene of interest or neighbouring genomic region because these variants are 

most likely to associate with the expression or function of the encoded protein (acting in cis). 

Whereas genome-wide biomarker MR helps infer the causal relevance of a biomarker for a 

disease, a drug target MR helps infer whether and, in certain cases in what direction, a drug 

that acts on the encoded protein, whether an antagonist, agonist, activator or inhibitor, will alter 

disease risk (Table 1.4). 
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Table 1.4. Main conceptual differences between genome-wide biomarker and drug target MR 

approaches.  

 Biomarker MR Drug target MR 

Aim 
Causal effect 

of a biomarker 

Causal relevance 

of a drug target 

SNP selection Genome-wide Locus specific 

Ideal exposure 
Clinically relevant 

quantitative trait 

mRNA or protein  

expression of  
the encoded gene  

MR methods 
IVW, MR-Egger and other 

(see later section) 

Methods accounting for  
residual genetic correlation 

to maximise power 

 

Further evidence on the validity of this approach is that the licensed LDL-C lowering 

targets have also been rediscovered by drug target MR approaches. Polymorphisms in 

NPC1L1, the gene that encodes the target of ezetimibe, are associated both with lower LDL-C 

levels and decreased CHD risk (OR: 0.95, 95% CI: 0.92,0.99)48. The effect of instrumenting 

LDL-C on CHD using LDL-lowering variants in HMGCR is 0.81 (95% CI: 0.72, 0.90) and 

0.81 (95% CI: 0.74, 0.89) when using variants in PCSK949, consistent with the effect of statins 

and PCSK9 inhibitors in clinical trials33,35. Furthermore, a drug target MR of CETP on CHD, 

using variants in the CETP gene weighted by their effect on HDL-C, indicates protection from 

disease (odds ratio: 0.87; 95%CI: 0.84, 0.90)32. The finding is consistent with the effect of 

allocation to the CETP-inhibitor anacetrapib in a placebo-controlled trial (0.93; 95%CI: 0.86, 

0.99) and is compatible with the view that targeting CETP is an effective therapeutic approach 

to prevent CHD (Fig. 1.3)46. 
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Figure 1.3. HDL-C, CETP inhibitor and CHD: genome-wide biomarker vs drug target MR. 

Forest plot of the HDL-C biomarker MR estimate (Holmes et al., 201539), drug target MR 

estimate of CETP level and function using HDL-C as a proxy (Schmidt et al., 202032) and odds 

ratio of anacetrapib clinical trial (HPS3/TIMI55–REVEAL Collaborative Group, 201746). OR 

= odds ratio; CI = confidence interval; SD = standard deviation.  

 

In addition to drug target validation, drug target Mendelian randomisation has also been 

employed to anticipate the outcome of a phase II/III randomised clinical trial49 and identify 

potential drug repurposing opportunities. For example, it has been demonstrated that the 

increased risk of type 2 diabetes associated with statin treatment is an effect of HMG-CoA 

inhibition48, whereas the blood pressure raising effect of torcetrapib, a CETP inhibitor, was an 

off- target effect and unrelated to CETP inhibition50. Further applications include drug 

repositioning. For instance, tocilizumab, a monoclonal antibody that blocks the interleukin-6 

receptor originally licensed to treat rheumatoid arthritis, was later suggested as a potential 

therapeutic agent for the treatment of coronary heart diseases based on the causal role of the 

target in the development of the disease51. Inhibition of the same target may also be effective 

in abdominal aortic aneurysms52, atrial fibrillation53, and inflammatory bowel disease54 but 

might increase the risk of asthma53. This illustrates the concept that drugs targeting a single 

protein may affect multiple disease outcomes. 
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 Aim and objectives 

As introduced earlier in the chapter, mapping disease loci identified by genome-wide 

association studies (GWAS) to the genes encoding the protein targets of licensed drugs has 

suggested that i) GWAS could provide a useful tool for systematic identification of new drug 

targets for human disease, ii) drug targets genetically-validated by GWAS are more likely to 

succeed. However, the extent to which GWAS are exploited and used to inform drug 

development is unknown. Furthermore, deciding whether to design an inhibitor or activator 

(agonist or antagonist for receptor targets) of the target cannot be readily inferred simply from 

identification of the locus. To help infer the correct mechanism of action for a new drug, I 

propose the cis-Mendelian Randomisation (MR) approach (‘drug target MR’). By using protein 

expression levels (protein quantitative trait loci; pQTL) as a potential proxy for protein 

function, a drug target MR analysis assesses the effects of variants in a single gene on its pQTL 

with respect to disease risk. The inference determines whether and by how much an increase 

or decrease in the protein impacts disease risk, suggesting a plausible mechanism of action for 

the drug. However, as discussed in the following chapter, multiple parameters determine MR 

performance including linkage disequilibrium (LD) or strength of the association with the 

exposure. 

I hypothesise that by using publicly available GWAS data combined with drug 

information and in-house genetic and proteomic data, I will be able to investigate the 

performance of large scale drug target MR analysis. By using these parameters I could (a) better 

predict the efficacy of preclinical candidates (b) uncover repurposing opportunities (c) predict 

mechanism-based side effects of licensed and drugs in development and (d) evaluate the 

therapeutic potential of novel druggable genes in cardiovascular, among other disease 
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outcomes. The hypothesis outlined here will be accomplished by working on the following 

aims: 

1. Investigating the extent to which the spectrum of human diseases has been addressed by 

genome-wide association studies, or by drug development, and the degree to which these 

efforts overlap to inform genetically guided pharmaceutical research. 

2. Evaluating the genetic evidence from GWAS on drug target-indication progression along 

the drug development process and providing an updated estimate of the probability of 

success for drug target-indication pairing given genetic support. 

3. Validating the drug-target MR approach using a ‘truth’ set of approved drugs for which 

available GWAS data on circulating protein levels (pQTL) of the target are available and 

the intended indication has also been studied by GWAS to investigate if the ‘pQTL-

weighted drug target MR’ framework recapitulates their mechanism of action. 

4. Consolidating a ‘biomarker-weighted drug target MR’ approach to systematically 

prioritise and validate drug targets where circulating protein levels have not been measured 

directly, and genetic associations with a clinical biomarker downstream to the protein are 

available and could be used as a proxy for protein concentration or activity. 
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2 | Review of Mendelian Randomisation methods, 

considerations and applications 

Several Mendelian randomisation (MR) methods have been developed to assess causality 

using data from genetic studies, each of them with distinct strengths and limitations. In this 

chapter, I will describe the standard Mendelian randomisation model, discuss the instrumental 

variables assumptions and review the Mendelian randomisation approaches commonly used in 

the field of genetic epidemiology, and frequently applied in genome-wide biomarker MR. In a 

subsequent section, I describe methods relevant to drug target MR.  
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2.1. Canonical Mendelian randomisation model and assumptions 

The canonical Mendelian randomisation model assumes that for each individual i (i = 

1,…, N), J genetic variants Gij (j = 1, . . . , J), a modifiable exposure (Xi), an outcome variable 

(Yi), and unknown confounders (Ui ). Suppose the exposure is defined as a linear function of J 

genetic variants, the unknown confounders and an independent error term (!iX ), with the 

coefficient βX j representing the effects of each genetic variant j on the exposure: 

 

Suppose the outcome is defined as a linear function of J genetic variants, the exposure, 

the confounders and an independent error term (!i Y). The coefficient ⍺ j represents the direct 

effect of each genetic variant on the outcome, and μβX j the indirect effect via the exposure: 

 

To be a valid instrumental variable (IV), the genetic variant Gj must hold to the following 

assumptions: 

 

i) ‘Relevance’ assumption. The genetic variants must be associated with the exposure of 

interest (X ). This assumption implies βX j ¹ 0.  

 

Xi = ∑ βX j Gij + Ui +!i
X (1)

J

j = 1

Yi = ∑  ⍺j Gij + μXi + Ui +"i
Y     (2)

J

j = i

(1) 

(2) 
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ii) ‘Exchangeability’ assumption. There should be no unmeasured confounders of the 

associations between the genetic variant (Gj) and outcome (Y ). This assumption could 

be violated in the presence of genetic confounding such as population stratification, when 

there is a systematic difference in allele frequencies between subpopulations in a sample 

due to different ancestry, and cryptic relatedness when there is unknown or 

undocumented familial relationships among individuals in the sample1,2. Both scenarios 

should have been controlled for during the genetic association study stage, and thus, they 

should not impact the MR inference.  

 

iii) ‘Exclusion restriction’ assumption. The variants should affect the outcome only through 

their effect on the risk factor of interest. This assumption implies ⍺ j = 0. It is also known 

as the ‘no-horizontal pleiotropy’ assumption, where pleiotropy is defined as a situation 

in which a genetic variant influences multiple traits. If the variant influences multiple 

traits in the same biological pathway as the exposure it is referred to as ‘vertical 

pleiotropy’, if it influences multiple traits in independent pathways it is referred to as 

‘horizontal pleiotropy’. Whereas horizontal pleiotropy compromises causal inference in 

a MR analysis, vertical pleiotropy does not. 

 

The model described above, including the instrumental variable assumptions and 

coefficients from equations (1) and (2) are illustrated in Figure 2.1.  
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Figure 2.1. Canonical Mendelian randomisation model. Diagram of the model assumed for 

genetic variant Gj, showing the effect on the exposure X (βX ), the indirect effect on the outcome 

Y  through confounders (ϕj), the direct effect on the outcome Y (⍺ j) and the causal effect of 

exposure X on the outcome Y ( μ ). Solid lines indicate instrumental variable assumptions and 

dashed lines ways these assumptions could be violated.  

 

2.2. Comparison of Mendelian randomisation methods  

Based on the data source, two different Mendelian randomisation settings can be defined: 

one-sample and two-sample MR. One-sample MR is performed when the genetic associations 

with the exposure and the outcome are from the same population and requires access to 

individual participant data. This scenario is sensitive to ‘winner's curse’ bias which can 

overestimate true causal effects in overlapping samples3. Furthermore, it is also subject to 

‘weak instrument’ bias which depends on the strength of the genetic instrument, and arises if 

the chance difference in confounders explains more of the variation in the outcome than the 

association of the genetic instrument with the exposure4. The increasing availability of genetic 

summary data allows the evaluation of causality using genetic associations from independent 

studies (two-sample MR) under the assumption that the associations are derived from the same 

underlying population and adjusted for the same covariates5. By using separate studies, the 

statistical power in the two-sample MR scenario increases due to the possibility of obtaining 

more precise estimates of the genetic associations with the outcome6. Several Mendelian 

Gj

⍺ j

U

X YβX j μ

ϕj



 43 

randomisation methods have been developed to evaluate causality in both settings, the most 

commonly used will be briefly described in the following section and summarised in Table 2.1. 

 

2.2.1. Wald method 

The simplest Mendelian randomisation method is the Wald method or ratio estimator 

method in which a single variant is used in the genetic instrument7. In this case, the outcome is 

defined as: 

                                                                                (3) 

The Wald ratio is estimated as the coefficient from regressing the outcome (3) on the 

genetic variant (	β%Y j  ) divided by the coefficient from regression of the exposure on the variant 

( β%X j ) :  

                                                                                    (4) 

 

If the genetic variant is a valid instrumental variable, then ⍺ j = 0 and the casual effect of 

the exposure on the outcome (⍺ j   + μ βX j	)	/ βX j  = μ . This estimate can be interpreted as a μ 

change in the outcome for one unit increase in the exposure. 

 

 

 

 

β!"#$% =
	β"Y	!

β"X j

Y  =  (⍺j  + μ βX j ) Gj +"’j
Y (3)
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2.2.2.  Inverse-variance weighted (IVW) method 

When multiple uncorrelated genetic variants satisfy the IV assumptions, an optimisation 

of the Wald ratio allows to include all of them in a single analysis to maximise the power to 

detect a causal effect8. The estimate is a weighted average of the ratio estimates for J genetic 

variants (inverse-variance weighted estimate): 

 

                                                                                                    (5) 

 

where the weights ('j ) are derived from the first-order term of the delta expansion of the 

variance9 and represent the inverse-variance of the ratio estimates: 

 

                                                                                                     (6) 

 

If the association of the genetic variant Gj with the exposure is β%X j with standard error se 

(	β%X j ), and with the outcome is β%Y j  with standard error se (	β%Y j ), then the causal estimate derived 

from expanding the formula for the weights (6) into the equation (5) is: 

 

                                                                                                                                 (7) 

 

 

β!	!"#	%&'()) =    
∑ 	"j			β#Wald	j

∑			$j

J

j = i

J

j = i

!j	 =    
β!X j

2

se 	β!Y	j 	
2

β!	!"#	%&'()) =    

∑			β"X j
2		#$	 	β"Y	j 	

-2  β"%&'(	)
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−2
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			∑  β"X j
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The IVW estimate is equivalent to the two-stage least square estimate with summary 

data, where the exposure is regressed on the genetic instrument in a first stage regression and 

the outcome is regressed on the fitted values10. When the genetic variants are correlated, the 

method can be extended to account for their correlation using a weighting matrix ( Ω )  where 

ρj1 j2 is the correlation coefficient between variants j1 and j211 :  

                         (8) 

with β%X
   and β%Y as the genetic associations vectors for the exposure and outcome respectively,  

and T the transpose vector, the IVW estimate accounting for correlation is defined as: 

 

  (9) 

 

If all the genetic variants are valid IVs, the IVW estimator provides the most precise 

estimates across all the MR methods.  

 

2.2.3. Principal component analysis - IVW method 

If too many correlated variants are included in the IVW model, even accounting for the 

correlation can lead to numerical instabilities and inflated Type 1 error rates12. These issues 

can occur due to inconsistencies in the data (i.e. rounding of association estimates) and near-

singular correlation matrices, which result in the model failing, misleading estimates and/or 

over-precision in the causal estimates. 

 

Ω j1 j2 = se 	β"Y j1 	 se 	β"Y j2 ρj1 j2

β!	!"#	%&'' =    
Ω  	β"X 

T  
 β"Y	

Ω −1 	β"X 
T  

 β"X
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A method based on principal component analysis has been developed to allow the 

inclusion of multiple correlated variants under the assumption that all the variants are estimated 

in the same sample size12.  In this situation, the IVW model uses a weighted version of the 

genetic correlation matrix, 

Ψ j1 j2  =  β%X j1		β%X j2  se (	β%Y j1)	-1 se (	β%Y j2) 
-1 

 ρj1 j2                                    (10) 

Then, the first principal component is a linear combination of the variants explaining the 

largest proportion of variance in the exposure. This method implies the choice of a threshold 

of variance to define the number of principal components in the weighting correlation matrix. 

The causal effect is estimated using the IVW method with the transformed vectors of genetic 

associations and the transformed correlation matrix as indicated in the following expression, 

where WK  is the matrix constructed for the first K principal components:  

 

                                                                                                                        (11) 

 

This method is suitable for highly correlated variants (e.g. fine-mapped genetic data), 

and results in estimates more robust than the ones derived from methods that LD prune instead, 

however these are less precise12. 
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2.2.4. Methods with invalid genetic instruments 

The methods described in the subsequent sections aim to estimate the causal effect when 

genetic variants are ‘invalid’ instruments due to the presence of horizontal pleiotropy. 

 

2.2.4.1. Median-based method 

The median-based method provides a consistent estimate of the causal effect even if up 

to 50% of the variants in the instrument are invalid (‘majority valid’ assumption)13. There are 

three different modalities: the simple, the weighted and the penalized weighted median 

estimator. The simple median estimator is the median of the Wald ratio of the variants. To 

account for variability in the precision of the individual estimates, the weighted median 

estimator uses the inverse of the variances of the ratio estimates as the weights. Being 'j  the 

weight for the j-th ordered ratio, the weighted-median estimator is the median of a distribution 

having estimate β%j as its ρj – th percentile:  

 (12) 

 

The penalized weighted median estimator down-weights the contribution of genetic 

variants with outlying Wald ratios. The Cochran’s Q statistics (Q) is used to quantify the 

heterogeneity14: 

 

 (13) 

 

j

k = 1

ρ! = 100 ( ∑	""		−"j	/2)

Q  = ∑	 Q! = ∑	"!	(		β$j− β$IVW )
j j
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Cochran’s Q statistics follows a chi-squared distribution with J − 1 degrees of freedom 

under the assumption that all variants are valid IVs and show the same causal effect (i.e., the j-

th contribution to Q, Q j ⁠, is approximately chi-squared distributed on 1 degree of freedom). In 

the penalized method, outlying variants are down-weighted by multiplying the inverse-

variance weights by the one-sided upper p value on a chi-squared distribution corresponding 

to Qj , multiplied by 20 (or by 1 if the p value > 0.05). 

This method is robust to outliers, as the median of the distribution is not affected by the 

magnitude of the ratio estimates. However, it is sensitive to changes in the selection of variants 

when constructing the genetic instrument.  

 

2.2.4.2. Mode-based method 

The mode-based method obtains the mode of the ratio estimates if the true causal effect 

is the value taken for the largest number of genetic variants (‘plurality valid’ assumption)15. 

Since in finite samples the mode does not exist, this method generates a normal density for 

each genetic variant centred around the ratio estimate. The spread of the density depends on a 

bandwidth parameter and, in the case of the weighted mode estimator, the precision of the ratio 

estimate. The causal estimate is the maximum point of a smoothed density function constructed 

by adding the normal densities of all variants.  

Similar to the median-based method, the mode-based estimator is robust to pleiotropic 

outliers, however the causal estimates are influenced by the selection of variants. In addition, 

the mode-based estimator requires the choice of a value for the bandwidth parameter.  
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2.2.4.3. MR-Egger regression method 

MR-Egger regression provides consistent causal estimates even in the presence of invalid 

instruments under the assumption that the association of each variant with the exposure is 

independent of the strength of the pleiotropic effects ⍺ j (‘Instrument Strength Independent of 

Direct Effect (InSIDE)’ assumption)16,17. This model requires all the genetic associations with 

the exposure orientated in the positive direction and uses the inverse-variance of the ratio 

estimates as the weights in the regression. A non-zero intercept term ( β0E ) is allowed in the 

linear regression which can be interpreted as the average pleiotropic effect of all J genetic 

variants. 

(14) 

 

If the average pleiotropic effect is zero, referred to as ‘balanced horizontal pleiotropy’, 

then the MR Egger estimate β1E will equal the IVW estimate. If there is directional horizontal 

pleiotropy or the InSIDE assumption is violated, the intercept term will differ from zero 

indicating that the IVW estimate is biased. As this estimator is a modification of the IVW 

method, it can also be extended to account for the correlation between genetic variants using a 

weighting correlation matrix.  

Under the InSIDE assumption, the MR Egger method estimates a consistent causal effect 

even when all the genetic variants are invalid IVs. However, it is sensitive to outliers and 

provides less precise causal estimates due to the variability between the genetic associations 

with the exposure.  

 

β!Y =  β0E + β1E	β!X j + #j
Y
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2.2.4.4. Multivariable Mendelian randomisation method 

The multivariable Mendelian randomisation method (MVMR) is an extension of the 

IVW and MR-Egger estimators that uses genetic variants associated with multiple exposures 

to estimate the causal relevance of each exposure in a single model (Fig. 2.2)10,18. To be 

included in the instrument, a genetic variant must adhere to the following rules: 

i. It is associated with at least one of the exposures. 

ii. It is not associated with a confounder of any of the exposure–outcome 

associations. 

iii. It is conditionally independent of the outcome given the exposure and 

confounders. 

 

 

 

 

 

Figure 2.2. Diagram of the multivariable model. Model assumed for genetic variant Gj, 

showing the effect on three exposures X1 (βX1 j), X2 (βX2 j), X3 (βX3 j), the direct effect on the 

outcome Y (⍺ ’j) and the three causal effect of exposures on the outcome Y (μ1, μ2, μ3). Solid 

lines indicate instrumental variable assumptions and dashed lines ways these assumptions 

could be violated. 
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In a three exposure scenario, the multivariable IVW method estimates the causal effects 

using a multivariable weighted linear regression of the genetic association estimates, with the 

intercept set to zero and the inverse variance weights se (	β%Y j)	-2:  

 

 (15) 

 

It can also be extended to multivariable MR Egger by allowing for a intercept term (μ0ME): 

 

  (16) 

 

Since these methods are based on the univariable IVW estimator, they can account for 

correlation between genetic variants using a weighting correlation matrix. 

 

The multivariable MR method accounts for measured pleiotropy (and unmeasured 

pleiotropy in the case of MVMR MR Egger) by evaluating the causal effect of multiple 

exposures in a single regression analysis even if none of the genetic variants are uniquely 

associated with one of the exposures. The multivariable extension of the IVW and MR Egger 

methods is sensitive to ‘weak instrument bias’ due to the inclusion of multiple variants not 

strongly associated with the exposures in the model, and the precision in the estimates is 

affected when using highly correlated exposures.  

β!Y =  μ1MI β!X1 j + μ2MI β!X2 j + μ3MI β!X3 j + "MIj

β!Y =  μ0ME + μ1ME β!X1 j + μ2ME β!X2 j + μ3ME β!X3 j + "MEj
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Table 2.1. Commonly used Mendelian Randomisation approaches with large number of genetic 

variants using summary data.  

Method Assumption    Potentials    Limitations Ref. 

Inverse-
variance 

weighted 
(IVW) 

All variants are 
valid IVs 

•Allows for 

correlated variants 

• Provides precise 

estimates  

• Biased in the 
presence of 

directional 

pleiotropy  

8–11 

PCA IVW Associations are 
estimated in the 

same sample 
size 

• Allows for highly 

correlated variants 

• Robust to variable 

selection 

• Biased in the 
presence of 
directional 

pleiotropy 

• Less precise than 

IVW 

12 

MR Egger InSIDE 

assumption 
 

• Allows for 

correlated variants 

• Reliable when all 
variants are invaild 

IVs 

• Sensitive to 

outliers 

• Imprecise 

estimates  

 16,17 

Median-based ‘Majority valid’ 
assumption 

• Robust to outliers • Sensitive to the 
choice of genetic 

variants 

   13 

Mode-based ‘Plurality valid’ 
assumption 

 

• Robust to outliers 

 

• Sensitive to the 
choice of genetic 

variants and 
bandwidth 

parameter  

• Generally 

conservative 

15 

Multivariable 

IVW 

Any association 

with the 
outcome is via 

the measured 
exposures 

• Allows for 

correlated variants 

• Accounts for 

measured pleiotropy 

• Susceptible to 
‘weak instrument’ 

bias 

• Sensitive to 
highly correlated 

exposures 

18 

Multivariable 
MR Egger 

InSIDE 
assumption 

must hold for 
all measured 

exposures 
 

• Allows for 

correlated variants 

• Accounts for 
measured and 
unmeasured 

pleiotropy 

• Susceptible to 
‘weak instrument’ 

bias 

• Sensitive to 
highly correlated 

exposures 

• Imprecise 

estimates 

18 
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2.2.5. Other methods 

Several additional Mendelian randomisation approaches have been developed to 

overcome some of the limitations of the methods described in the previous section. However, 

most of them have not been as commonly used in applied examples as the methods described 

earlier. 

For instance, the contamination mixture method provides a consistent estimates under 

the ‘plurality valid’ assumption by constructing a likelihood function based on the ratio 

estimates and assuming that the values estimated by invalid instruments are normally 

distributed around zero with a large standard deviation19. While apparently robust to outliers, 

this method is particularly sensitive to the choice of the standard deviation parameter. 

The MR-Pleiotropy Residual Sum and Outlier (MR-PRESSO) performs in a IVW 

framework by removing genetic variants based on a heterogeneity measurement until all the 

variants have similar estimates20. It inherits the precision of the IVW method but it is more 

time-consuming than other methods and unstable when multiple variants are pleiotropic.  

One of the most recent methods is the multivariable MR approach based on Bayesian 

model averaging (MR-BMA) which is optimised for analyses with high-dimensional sets of 

potential risk factors21. It performs a Bayesian variable selection step before the weighted 

regression model and computes the marginal inclusion probability for each exposure  (i.e. the 

sum of the posterior probabilities over all models where the exposure is present). While it 

allows the selection of causal risk factors from a large set of variables, it is influenced by the 

choice of parameters and assumes that the proportion of true causal exposures compared with 

all potential exposures is small. The developers also highlighted that the causal estimates 

should not be interpreted absolutely and rather be used to compare exposures or to interpret 

direction of effects.  
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2.3. Detecting and accounting for heterogeneity in Mendelian 

randomisation 

In section 2.2.4.1, the Cochran’s Q statistic was introduced to assess heterogeneity and 

detect pleiotropy based on the assumption that valid IVs should follow, asymptotically, a chi-

squared distribution, with degrees of freedom (df) equal to the number of genetic variants 

minus 114,22. If a genetic variant shows excessive heterogeneity, this could indicate the violation 

of the ‘no-horizontal pleiotropy’ assumption. For example, genetic variants in or near APOE 

gene are associated with LDL-C as well as very strongly associated with Alzheimer’s disease 

(AD). In MR studies using variants across the genome to estimate the lipid effect on AD risk, 

SNPs in this locus showed large heterogeneity and they were excluded based on their 

established pleiotropic effect on AD risk23. However, if there is heterogeneity due to pleiotropy 

but the InSIDE assumption holds and the pleiotropy is balanced, then the IVW estimator under 

a random-effects model instead of the fixed-effects model can be used to account for the 

additional uncertainty due to pleiotropy22. When the InSIDE assumption holds, but there is 

directional pleiotropy, the MR Egger method can be used to estimate the mean pleiotropic 

effect and provide a reliable causal estimate, as described in section 2.2.4.3.  

It is possible to test for residual heterogeneity in the MR-Egger model using an extended 

version of the Cochran’s Q statistic, known as Rücker’s Q’ statistic24,25. The Rücker model-

selection framework (Fig. 2.3) uses both statistical values to inform the selection of fixed-effect 

IVW,  random-effects IVW , fixed-effect  MR-Egger, random-effects MR-Egger models based 

on their goodness of fit. This hierarchical framework involves the following steps: 
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i) An initial IVW analysis under a fixed-effect model is performed and the Cochran’s Q 

statistic (Q) calculated. 

ii) A random-effects IVW model is preferred over the fixed-effect model if Q reveals 

sufficient heterogeneity at significance level d (e.g. 0.05) with respect to a chi-squared 

distribution with degrees of freedom equal to the number of genetic variants minus 1. 

iii) A fixed-effect MR-Egger analysis is performed and the Rücker’s Q’ statistic (Q’) 

calculated. If the difference Q-Q’ is significant at level d with respect to a chi-squared 

distribution with degrees of freedom equal to the number of genetic variants minus 2, 

this model is selected.  

iv) A random-effects MR-Egger model is selected if Q’ still reveals sufficient 

heterogeneity at significance level d with respect to a chi-squared distribution with 

degrees of freedom equal to the number of genetic variants minus 2. 

 

 

 

 

 

 

Figure 2.3. Illustration of the Rücker model-selection framework. The two dimensional  space 

is defined by Q, Q’, L genetic variants and a significance threshold for detecting pleiotropy d. 

From Bowden et al., 201822.  
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The Rücker model-selection framework is an automatic statistical method that favours 

the IVW model and recommends the MR–Egger model only when there is an improvement of 

the goodness of fit of the data when this approach is used. While it is a systematic and fast 

approach to choose between competing MR models, the uncertainty about the optimal model 

still remains. A Bayesian model averaging framework has been developed to account for model 

uncertainty in posterior causal estimates26, however, it is sensitive to the choice of priors and 

more computationally expensive. Another suggested approach is the mixture-of-experts 

machine learning framework27 (MR-MoE 1.0) which is trained using random forest decision 

trees, however, it can lead to high type 1 error rates as has been observed in other data driven 

approaches28.  

Other statistical measurements besides Cochran’s Q statistic and Rücker’s Q’ statistic 

have been suggested to detect outliers in regression models29, and their rationale is that variants 

with excessive contribution to the model can be identified based on their effect on the 

regression (‘leverage’). Variants with high leverage can influence the regression model and 

provide misleading causal estimates. 
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2.4.  Molecular traits in drug target Mendelian randomisation 

Many of the traits studied by GWAS are diseases, clinically relevant biomarkers and 

quantitative phenotypes such as expression quantitative trait loci (eQTL), metabolite-levels 

quantitative trait loci (mQTL) or protein-levels quantitative trait loci (pQTL). Numerous 

publicly available GWAS summary estimates of eQTLs are available, for example, GTEX30 

with a total of 11,688 samples and 53 tissues across 714 donors, or eQTLGen31 with 31,684 

blood samples from healthy individuals. Recently, GWAS of circulating proteins (pQTLs) 

have become available such as the Interval study (~3,000 proteins)32 and the SCALLOP 

Consortium (~1,000 proteins)33. These data provide estimates for a substantial proportion of 

the encoded human proteome, the latest assays from SomaLogic34 cover ~7,000 proteins 

(SomaLogic 7k panel) including some potential cardiovascular targets such as CETP.  

Crucially, the summary estimates from many of these studies are publicly available, with 

novel MR techniques able to use these summary level data as inputs for analysis. While the 

increase in GWAS sample sizes has boosted the power of MR studies in binary traits, genetic 

associations with molecular quantitative trait loci, particularly pQTLs, provide a valuable 

resource for drug target MR analyses as proteins are the targets of most drugs. In the absence 

of pQTL or protein activity data, eQTL associations can be used to weight instruments in a 

drug target MR analysis, where the major caveat is deciding on the relevant tissue for a 

particular disease. Therefore, the raw material now exists for large scale drug target validation 

analyses. 
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2.4.1. Additional considerations for defining genetic instrumental variables using 

molecular exposures 

In addition to the assumptions discussed in section 2.1, each Mendelian randomisation 

setting requires careful selection of the parameters that define the genetic instrument. Since 

Mendelian randomisation for drug target validation is framed as a cis-focused analysis (i.e. the 

exposure of interest is the protein encoded by a specific gene or a proxy of the protein’s 

function or level), and explores the effect of modifying a particular protein target 

pharmacologically, the instrument selection is different from MR for validating the causal 

relevance of other exposures (e.g. disease biomarkers such as blood lipids). Furthermore, it 

comprises additional challenges and choices, for instance, defining the locus of interest; 

selecting and accounting for linkage disequilibrium between genetic variants; and selecting the 

exposure used to weight the effect of the genetic instruments on the disease risk35.  

One consideration that applies to both genome-wide biomarker and drug target MR 

settings is the p value threshold for genetic associations used to identify potential instruments. 

Yet, there is no consensus concerning the optimal threshold. The thresholds employed vary 

from very conservative cut-offs (e.g. p value £ 5 x 10-8) to less stringent thresholds (e.g. p value 

£ 10-5). The latter often results in improved performance, particularly in the cis-MR setting36,35, 

and could be justified if there are strong priors and/or the burden of multiple testing is reduced 

compared to a GWAS where the p value threshold is typically 5 x 10-8. While the statistical 

power is maximised using methods that include multiple genetic instruments, they usually 

involve a first LD clumping step to remove highly correlated variants. Despite some evidence 

showing that high LD thresholds lead to numerical instabilities35,12, an agreement on the choice 

of a general LD threshold has also not been reached yet. An extra complexity arises when using 

multiple correlated variants, since the modelling of the remaining pairwise LD requires the 
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selection of a LD-reference panel. Resources such as UK Biobank where individual level data 

is available for thousands of samples, are likely to improve the accuracy of the modelling 

compared to previous studies based on 1000 genomes populations37. Such resources also 

provide more precise allele frequencies, where a minor allele frequency (MAF) threshold of 

0.01 is usually used to define common variants. 

Several intermediate traits, such as lipid blood levels, have been previously used to 

inform drug target validation. However, since over 90% of drug targets are proteins38, 

weighting by protein levels or activity in a disease-relevant tissue would provide the most 

informative cis-MR analysis for drug target validation. Since some drugs are designed to target 

circulating proteins (e.g. PCSK9 inhibitors), and these can now be measured by high 

throughput proteomics technologies, opportunities for cis-MR analysis are increasing. Figure 

2.4 illustrates the protein-weighted MR model. 

 

 

 

 

   

Figure 2.4. Protein weighted MR model. Diagram of the model assumed for genetic variant G, 

showing the direct effect on the protein P, the indirect effect on  X (*), the indirect effect on 

the outcome Y through confounders (ϕ), the direct effect on the outcome Y (⍺ ) and the causal 

effect of exposure X on the outcome Y (β). Solid lines indicate instrumental variable 

assumptions and dashed lines ways these assumptions could be violated. Adapted from 

Schmidt et al., 202035.  
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By selecting genetic variants in-and-around the gene encoding the protein of interest, the 

cis-MR analysis of proteins is less prone to violation of the horizontal pleiotropy assumption. 

The rationale for this was presented by Schmidt et al., 202035 and illustrated in Figure 2.5. In 

the first scenario (Fig. 2.5a), the protein of interest is instrumented by using genetic variants in 

its encoding gene (cis-). In this example, the genetic variants associate with multiple proteins 

on the same biological pathway, where the protein instrumented is upstream of all of the other 

proteins in the causal pathway. It illustrates how valid instruments for cis-MR can also have, 

and indeed would oftentimes be expected to also have, trans- effects. In the second scenario 

(Fig. 2.5b), the protein of interest is instrumented by using genetic variants in the other genes 

that are associated with the level of the protein of interest (trans-). The genetic variants 

associate with multiple proteins on the same biological pathway, where the protein 

instrumented is in the causal pathway. The effect on the outcome is still through the 

instrumented protein and thus, the trans-MR analysis provides the correct inference. In the 

third scenario (Fig. 2.5c), the protein of interested is also instrumented by using genetic variants 

in the other genes (trans-). However, the genetic variants associate with multiple proteins on 

different biological pathways, where the protein instrumented is not in the causal pathway. 

Here, the association of the trans-variants with the instrumented protein is due to horizontal 

pleiotropy and any inference about a causal association of the protein of interest with the 

disease outcome is erroneous.  

While a cis-MR approach reduces the potential for misleading inferences due to 

horizontal pleiotropy, defining the locus of interest and the size of the surrounding cis-genetic 

region are additional challenges that can impact MR performance, as neighbouring genes can 

lead to pleiotropy effects due to LD. Again, defining a standard region that is generalisable to 

all the genes in the genome and is able to capture accurately all variants involved in expression, 
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regulation and function is not possible, and pairwise grid-searches for each exposure and 

outcome have been proposed to select the optimal region size for each gene35.  

While tissue-relevant protein QTL (pQTL) data is not currently available, many of the 

circulating proteins measured by existing proteomics platforms are the actual targets for many 

approved or developmental therapeutics (e.g. from ~ 2036 druggable proteins in SomaLogic 

v4 or 973 in O-link35). Previous drug target MR analyses weighting blood protein levels of 

F10, of interleukin-12 subunit beta (IL12B) and plasminogen (PLG) have shown that MR with 

proteomics data has potential for genetic target validation through direct assay of the efficacy 

target. For example, the drug target MR analysis of circulating F10 recapitulated the 

mechanism of action of F10 inhibitors in stroke prevention in patients with atrial 

fibrillation35,39. Similarly, higher circulating concentration of IL12B and PLG were associated 

with higher risk of Crohn’s disease and lower risk of ischaemic stroke, respectively35. Both 

drug target MR analyses rediscovered the mechanism of action of the approved drugs for these 

indications40,41.  
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Figure 2.5. Paradoxical scenarios in protein Mendelian Randomisation. a. An example of 

protein MR using genetic variants in the encoding gene (cis-). The genetic variants associate 

with multiple proteins on the same biological pathway, where the protein instrumented is 

upstream of all of the other proteins in the causal pathway. b. An example of protein MR using 

genetic variants in another gene (trans-). The genetic variants associate with multiple proteins 

on the same biological pathway, and the protein instrumented is in the causal pathway. The 

effect on the outcome is still through the instrumented protein and thus, the trans-MR analysis 

provides the correct inference. c. An example of protein MR using genetic variants in another 

gene (trans-). The genetic variants associate with multiple proteins on different biological 

pathways, but the protein instrumented is not in the causal pathway. Here, the association of 

the trans variants with the instrumented protein is due to horizontal pleiotropy and any 

a. Vertical pleiotropy scenario when using cis-genetic variants 
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inference that there is a causal association of the protein of interest with the disease outcome 

is erroneous. Figure adapted from Schmidt et al., 202035. 

Even in the absence of relevant pQTL data, a protein can remain the inferential target in 

a cis-MR setting by weighting the analysis using an intermediate trait positioned downstream 

between the protein and the disease. In such circumstances, the intermediate biomarker is 

known to be altered by the perturbation of the protein of interest. For example, GWAS on blood 

lipids levels have been used to genetically validate drug targets such as PCSK942 for CHD 

prevention. Later, the causal effect anticipated by the cis-MR analysis using LDL-C as an 

intermediate phenotype was confirmed using PCSK9 pQTL measurements when protein level 

data became available35.  

All the parameters discussed in this section, in addition to the general MR and method-

specific assumptions, should be carefully scrutinised before constructing the genetic 

instrument. The setting (i.e. biomarker or drug target MR) as well as the exposure type (i.e. 

pQTL, eQTL or intermediate traits) should guide the choice of these parameters. 
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3 | Methods: An overview 

This chapter provides an overview of the datasets, exposure and outcome phenotype 

measures used throughout this thesis. Detailed methods are discussed further in the relevant 

results chapters.  
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3.1. Data sources 

 Human diseases 

To estimate the disease coverage, overlap and divergence of human genetic studies and 

pharmaceutical research and development (Chapter 4), the total number of human diseases was 

estimated using information from the following disease classification systems and ontologies 

as of the 30th November 2021: ICD-10, ICD-11, Human Disease Ontology (DO)1, Medical 

Subject Headings (MeSH)2, Human Phenotype Ontology3, Clinical Classification Software4, 

PheWAS Catalog5, SNOMED CT6. For the MeSH terminology, MeSH terms falling within the 

categories C (diseases) or F (Psychiatry and Psychology) were selected. Since the number of 

terms in the DO is updated regularly, the rationale described in previous studies7 was followed 

and a figure of 10,901 (i.e., disease terms in the DO as of 30 November 2021) was proposed 

as a reasonable estimate of the number of common human diseases with genetic susceptibility. 

To facilitate further mappings to estimate the overlap between all human diseases, disease 

studied by genome-wide association studies (GWAS) and diseases investigated in 

pharmaceutical research and development, disease terms were mapped to Unified Medical 

Language System (UMLS)8 concepts using the UMLS2020AA. The UMLS was selected as 

the anchoring coding system as it integrates several medical vocabularies to enable 

interoperability between data sources and facilitate the link between terms from different 

ontologies. Further details on the UMLS system are provided in section 3.3 and in the 

succeeding results chapters. 
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 Genetic association data 

Data from GWAS were used throughout the thesis to estimate the disease coverage, 

overlap and divergence of human genetic studies and pharmaceutical research and development 

(Chapter 4), to estimate the genetic support of approved drug target-indication pairings 

(Chapter 5) and as the exposure and outcome data in Mendelian Randomisation analyses 

(Chapter 6 and 7).  

Several public repositories exist that systematically catalogue, curate and store GWAS 

summary statistics. In this thesis, the European Bioinformatics Institute (EMBL-EBI) GWAS 

Catalog v1.0.29 was used to extract diseases studied by GWAS and download summary 

statistics for biomarkers and diseases used in the drug target MR analyses. The collection of 

traits in the GWAS Catalog was enriched by adding summary statistics of GWAS performed 

in the UK Biobank and available through Neale data (GWAS Round 2, Results shared 1st 

August 201810), and summary statistics from the University College London–Edinburgh-

Bristol (UCLEB) Consortium11. 

Genetic associations with protein quantitative trait locus (pQTL) were used as the 

exposure data in the drug target MR analyses performed in Chapter 6. GWAS data on pQTL 

was accessed through an established collaboration with Claudia Langenberg’s group at the 

Medical Research Council (MRC) Epidemiology Unit in Cambridge, and included 10,078 

samples who were participants in the Fenland study assayed using the SomaLogic proteomic 

platform (SomaLogic v4 panel). This technology utilises short single-stranded oligonucleotides 

(‘SOMAmers’) that bind with high affinity and specificity to a variety of proteins and enable 

the quantification of their levels. The SomaLogic v4 platform included 5,284 SOMAmers. 

Following the company advice, 373 SOMAmers were excluded due to lack of specificity or 

incorrect SOMAmer– protein mapping. 
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In. addition, genetic associations with protein activity was correlated to pQTL data in 

Chapter 6 to illustrate the potential of pQTL-weighted drug target MR approach when GWAS 

data on protein activity or function is not available. Genetic associations with 

Butyrylcholinesterase (BCHE) were sourced from a published GWAS12 and those with 

coagulation factor VII activity data were obtained from the UCLEB Consortium.  

Lastly, in Chapter 7, genetic associations with lipid subfractions were sourced from a 

meta-analysis of GWAS summary statistics of metabolic measures by the UCLEB Consortium 

and Kettunen et al.,13 utilizing Nuclear magnetic resonance (NMR) spectroscopy. 

 

 Drug, target and indication data 

ChEMBL14 is a manually curated database that compiles data about drugs or drug-like 

small molecules, their targets and associated indications, and provides detailed information 

about their molecular structure, mechanism of action and bioactivity profile. Compound, target 

and drug indication data (where relevant) were extracted from ChEMBL version. 25 (v25)14. 

ChEMBL includes compounds under both preclinical (phase 0) and clinical development 

(phases 1-3), and licenced (phase 4). Information in ChEMBL is itself based on several 

resources including United States Adopted Name (USAN) applications, ClinicalTrials.gov; the 

FDA Orange Book database, the British National Formulary, and the ATC classification for 

compounds with a license. Additional information on intended indications is sourced from 

DailyMed and the ATC classification.  

Since proteins are the major category of drug targets (the main focus of this thesis), drug 

targets were mapped to their corresponding UniProt identifiers, and thence to gene identifiers 

in Ensembl version 95 (GRCh37) (see section 3.2). Compounds flagged as withdrawn (n=239) 
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or non-human targets (n=262) were excluded from all the analyses performed throughout this 

thesis. 

From the drug repurposing perspective, the development and improvement of databases 

that integrate data from clinical trials is crucial. Not only do successful trials provide valuable 

information, but also studies that fail due to safety reasons or inadequate efficacy can be 

relevant for clinical practice, drug discovery or repositioning. The clinicaltrials.gov database 

compiles information from interventional studies and displays a summary of the study, 

including the number of participants, outcomes measured and adverse effects. This database 

was used in Chapter 7 to examine if known lipid-related trial outcomes and adverse events 

were identified via biomarker-weighted drug target MR for drugs and clinical candidates.  

 

3.2. The druggable genome 

The set of genes encoding proteins that are already drugged or have a greater probability 

of being amenable to targeting with a pharmaceutical druggable genome is known as the 

druggable genome. It was first described in 2002 by Hopkins and Groom15 and updated by 

Finan et al., in 201716. At the time of this thesis, the definition comprises 4,729 human genes 

and encompasses potential targets for monoclonal antibodies.  

In this thesis, the druggable genome was used to generate a sample space bounded by all 

druggable genes and all human diseases, diseases in clinical and preclinical development 

(Chapter 4). In addition, it was used to map drug targets to the encoding gene in Ensembl 

version 95 (GRCh37), which facilitated the extraction of genomic coordinates for the 

investigation of the support of genetic evidence from genome-wide association studies for 

approved drug targets (Chapter 5) and drug target MR analyses (Chapter 6 and 7). 
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3.3. Standardisation of GWAS and indication data 

Ontologies are increasingly used in research and clinical settings. Essentially, they are 

repositories of standardised vocabulary that provide standard terms and identifiers for 

conditions and relations to enable data integration across multiple systems17. Several databases 

incorporate terms from a variety of ontologies to index the different phenotypes, diseases, 

molecules and pathways associated to an entry. The Medical Subject Headings (MeSH)18 and 

the Unified Medical Language System (UMLS)8 are biomedical ontologies and organise the 

knowledge in hierarchies with the purpose of generating a standard terminology for use in 

healthcare systems and research. The Experimental Factor Ontology (EFO) provides a 

systematic description of diseases, chemical compounds and other experimental variables 

available in EBI databases, and it is currently being used to unify the phenotypes of association 

studies collected in the GWAS Catalog19. 

In this thesis, the UMLS version 2020AA, which contained approximately 4.28 million 

concepts (CUIs) and 15.5 million unique concept names (AUIs), was used as the anchoring 

coding system for existing diseases, traits studied by GWAS and drug indications. This system 

was selected because it integrates several medical vocabularies and enables interoperability 

between data sources by facilitating the link between terms from different ontologies, which 

are not consistently used across GWAS and drug databases. The phenotypes available in the 

GWAS Catalog were mapped to UMLS terms through a combination of several approaches 

including manual curation (details provided in Chapter 4). The set of traits sourced from the 

UK Biobank were provided using International Classification of Diseases 10th revision (ICD-

10) codes, which allowed for a direct mapping to the UMLS as the ICD-10 system is one of 

the multiple vocabularies included. Similarly, MeSH terms are provided for drug indications 

in ChEMBL v25, which were latter mapped to UMLS terms.  
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3.4. Statistical analysis methods 

 Mendelian Randomisation analyses 

Drug target Mendelian Randomisation (MR) analyses were performed using different 

strategies for drug target gene and instrument selection based on the specific research question. 

Specific MR methods are described in detail in the succeeding results chapters in the respective 

methods sections. 

As an overview, in Chapter 6 and Chapter 7, the Rücker model-selection framework was 

used to decide between competing inverse-variance weighted (IVW) fixed-effects, IVW 

random-effects, MR-Egger fixed effects or MR-Egger random-effects models20. While IVW 

models assume an absence of directional horizontal pleiotropy, Egger models allow for 

possible directional pleiotropy at the cost of power. The Rücker model-selection framework 

was chosen as it provides a systematic, fast and data-driven approach to choose between 

competing MR models. Details and differences between models were described in Chapter 2.2. 

In addition, genetic variants with large heterogeneity or leverage were removed to avoid 

outliers to influence the regression model and result in misleading causal estimates. See 

Chapter 2.3 for approaches to detecting and accounting for heterogeneity in Mendelian 

randomisation.  

In addition, all the Mendelian randomisation analyses performed accounted for residual 

correlation between variants by using a linkage disequilibrium (LD) reference dataset derived 

from UK Biobank. LD reference matrices were created by extracting a random subset of 5,000 

unrelated individuals of European ancestry from UK Biobank. Details on the quality control 

steps performed can be found in the succeeding results chapters. 
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Additionally, a drug target multivariable MR analysis was conducted in Chapter 7 to 

account for potential pleiotropic effects of target perturbation via other pathways. Further 

details on the MVMR are provided in the section 2.2.4.4 and 7.3.4. 

 

 Other statistical analyses 

Chapter 5 estimates a series of probabilities related to the added value of genetic support 

in the probability of success or failure of a drug target-indication pair in drug development. 

Information on the proportion of successful and unsuccessful drug target gene -indication pairs 

and the proportion of drug development programmes with and without genetic support was 

sourced and 2x2 tables generated for each phase of development progression and overall. 

Details can be found in the  succeeding results chapters. 

In addition, to assess the possibility of false positive results during the biomarker-

weighted drug target MR analyses (Chapter 7), the empirical p value distribution of the MR 

findings was compared against the continuous uniform distribution using the Kolmogorov-

Smirnov goodness-of-fit test (two-sided). Under the null hypothesis of no association, p values 

follow a continuous uniform distribution between 0 and 121. 

All the analysis were performed in Python 3.7.6 and 3.7.7, R Studio 3.6.1., locally or in 

High Performance Computing (HPC) environments (e.g., Myriad, CS Cluster and 

eMedlab22,23). Visualisations were generated using Python 3.7.7. The code used is available in 

GitLab (https://gitlab.com/mgordi). 
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4 | Disease coverage, overlap and divergence of human 

genetic studies and pharmaceutical research and development 

 

4.1. Abstract 

Human genomics may help increase the efficiency of drug development by generating 

evidence for drug target identification and validation. However, the extent to which the 

spectrum of human diseases has been addressed by genetic analyses, or by drug development, 

and the degree to which these efforts overlap remains unclear. In this chapter different data 

sources are harmonised and integrated to create a sample space of all the human drug targets 

and diseases and identify points of convergence or divergence of genomics and drug 

development efforts. Approximately 9% (953 out of 10,901) of human diseases have been 

studied by genome-wide association studies (GWAS). Of these, only 369 correspond to 

diseases with an approved treatment and/or a treatment under clinical or preclinical 

development, leaving 584 diseases that have been the subject of investigation in GWAS, but 

which have yet to be investigated in drug development. This chapter illustrates how different 

regions of the drug target-disease space can be used to identify opportunities for genetic studies, 

either to help prioritise conditions with unmet clinical need, to expand the indications for 

licensed drugs or to identify repurposing opportunities for clinical candidates that failed in their 

originally intended indication.   
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4.2. Introduction 

Pre-clinical, cell and animal model-based approaches for drug target identification and 

validation have been poorly predictive of human efficacy, contributing to the high failure rate 

in clinical phase drug development1–3 due to lack of therapeutic efficacy or unanticipated 

mechanism-based adverse effects4,5. 

Human genomics may help improve drug development efficiency by helping to map drug 

targets to diseases more accurately and systematically through genome-wide association 

studies (GWAS) (target identification); and by using DNA sequence variants in a gene 

encoding a drug target, that influence its expression or function, to anticipate the full range of 

beneficial and harmful mechanism-based effects of a drug acting on the encoded protein (target 

validation), using drug target Mendelian randomisation6–10. Several lines of empirical evidence 

support this concept: (1) Many GWAS have rediscovered established drug targets for the 

corresponding diseases11–13; (2) Target-disease pairings with genetic support are enriched 

among successful drug development programmes14–16; (3) Comparative studies have shown 

that the effect of licensed drugs on biomarkers and disease endpoints coincide with the 

observed associations of variants in the genes encoding the corresponding target17–19; and (4) 

Several drugs have now been successfully developed or repurposed on the basis of human 

genetic evidence (e.g., maraviroc for treatment of HIV infection20,21; PCSK9 inhibitors for 

hypercholesterolaemia and coronary disease prevention18,22 and tocilizumab for treatment of 

SARS-CoV-2 infection23,24). 

For this reason, the pharmaceutical industry has shown growing interest in the use of 

human genomic data to help prioritise drug development programmes and reduce the risk of 

clinical-stage failure. For example, joint-pharma partnerships have provided substantial 

investment for sequencing, genotyping or molecular phenotyping of large national biobanks 
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which are connected to routinely collected primary and secondary care health records (e.g., in 

the UK25 and Finland26). Some have engaged in partnerships with healthcare providers (e.g., 

Regeneron with Geisinger Healthcare in the US). Others with consumer genetic testing 

companies (e.g., GSK with 23andMe27). Several pharmaceutical companies have also invested 

in Open Targets, a partnership with the European Bioinformatics Institute and the Welcome 

Trust Sanger Institute that seeks to harness summary level genetic association data from GWAS 

to inform therapeutic hypotheses13. 

However, until recently, genetic studies of human diseases and pharmaceutical research 

and development have largely proceeded independently. Thus, the extent to which the causes 

of human disease have been addressed by genetic analyses, or by drug development, and the 

degree to which these efforts overlap, has not been investigated systematically. Filling this gap 

in knowledge will have several applications. First, a survey of this type would help understand 

where future drug development programmes could be directed if they are seeking to exploit 

existing genetic evidence. Conversely, such an effort could help prioritise new, large-scale 

GWAS or sequencing studies to help stimulate drug development for diseases currently without 

effective treatments. Third, it could help quantify opportunities to expand the indications for 

licensed drugs or identify repurposing opportunities for the many safe drugs that failed in 

clinical trials because of lack of efficacy in the originally intended indication. To address this 

gap, disparate sources of data were connected to evaluate disease coverage and overlap of 

genomic and pharmaceutical research and development. 
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4.3. Methods 

4.3.1. Human diseases 

To estimate the total number of human diseases, information from the following disease 

classification systems and ontologies was retrieved on the 30th November 2021: ICD-10, ICD-

11, Human Disease Ontology (DO)28, Medical Subject Headings (MeSH)29,30, Human 

Phenotype Ontology31, Clinical Classification Software32, PheWAS Catalog33, SNOMED 

CT34. The websites from where these data were sourced are specified in Table 4.1. MeSH terms 

falling within the categories C (diseases) or F (Psychiatry and Psychology) were selected. As 

of 30 November 2021, the DO had 10,901 disease terms. Since the number of terms in the DO 

is updated regularly, the rationale described in previous studies35 was followed and a figure of 

10,901 was proposed as a reasonable estimate of the number of common human diseases with 

genetic susceptibility. Diseases with an approved treatment and/or a treatment under clinical 

or preclinical development were sourced from ChEMBL version 25 (v25)36, which provided 

standardised indication terms based on MeSH. To facilitate further mappings and estimate the 

coverage, overlap and divergence of human genetic studies and diseases investigated in 

pharmaceutical research and development,  disease terms from DO and ChEMBL v25 were 

mapped to Unified Medical Language System (UMLS)37 concepts using the UMLS2020AA. 

The UMLS was selected as the anchoring coding system as it integrates several medical 

vocabularies to enable interoperability between data sources and facilitate the link between 

terms from different ontologies. 
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Table 4.1. The number of disease terms within widely used classification systems and 

ontologies as of 30 November 2021. 

Coding Scheme Type Number  
of terms 

Data source 

ICD-10 Disease 

classification 

8,196 https://www.nlm.nih.gov/research/u

mls/licensedcontent/umlsknowledg
esources.html 

ICD-11 Disease 
classification 

12,096 https://icd.who.int/dev11/download
s/ 

Human Disease 
Ontology 

Ontology 10,901 https://github.com/DiseaseOntolog
y/HumanDiseaseOntology/blob/ma

in/RELEASES.md#2021-releases 

Medical 
Subject 
Headings 

Ontology 5,785 https://www.nlm.nih.gov/research/u

mls/licensedcontent/umlsknowledg
esources.html 

Human 
Phenotype 
Ontology 

Ontology 14,547 https://www.nlm.nih.gov/research/u
mls/licensedcontent/umlsknowledg

esources.html 

Clinical 
Classification 
Software 

Disease 
groups 

259 http://www.ahrq.gov/research/data/
hcup/icd10usrgd.html 

PheWAS 
Catalog 

Disease 

groups 

1,670 https://phewascatalog.org/ 

SNOMED CT Clinical 

terminology 

349,385 https://www.nlm.nih.gov/research/u

mls/licensedcontent/umlsknowledg
esources.html 

 

4.3.2. Drug and target data 

Compound, target and drug indication data were extracted from ChEMBL version 25 

(v25)36. ChEMBL includes compounds under both preclinical and clinical development. 

Information in ChEMBL is itself based on several resources including United States Adopted 

Name (USAN) applications, ClinicalTrials.gov; the FDA Orange Book database, the British 

National Formulary, and the ATC classification for compounds with a license. Additional 

information on intended indications was sourced from DailyMed and the ATC classification. 

Since proteins are the major category of drug targets, drug targets were mapped to the 

corresponding UniProt identifiers, and thence to gene identifiers in Ensembl version 95 
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(GRCh37) through the updated druggable genome11. Compounds flagged as withdrawn 

(n=239) or directed to non-human targets (n=262) were excluded from the analysis. 

 

4.3.3. GWAS data 

The collection of traits studied by GWAS were obtained from a public central repository 

(GWAS Catalog v1.0.238) and from UK Biobank through Neale data (GWAS Round 2, Results 

shared 1st August 201839). These included 2,452 unique traits and 633 clinical diagnoses, 

respectively. To filter human diseases from the 2,452 traits in the GWAS Catalog, terms were 

mapped to UMLS concepts using several complementary approaches. One thousand eight traits 

were mapped to 1,364 UMLS concepts using MetaMap40, 225 traits were mapped to 227 

UMLS concepts using direct string matching, 14 traits were mapped to 16 UMLS concepts 

using the UMLS and 35 traits were mapped to 75 UMLS concepts using cross-mapping 

between ontologies in DisGeNET41, and 1,099 traits were manually mapped to 967 terms using 

the UMLS Methasaurus. The 633 ICD-10 diagnosis in Neale data were automatically mapped 

to UMLS concepts using the UMLS2020AA. In total, 983 unique diseases were identified and 

manually curated. The diseases were mapped to disease areas according to ICD10 chapters. 

Diseases classified in the chapters: ‘Animal diseases’, ‘Findings, not elsewhere classified’ and 

‘Pregnancy, childbirth and the puerperium’ were excluded, resulting in a total of 953 unique 

disease terms.  
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4.4. Results 

4.4.1. Protein-coding genes and genes encoding drug targets  

To generate a sample space bounded by all human protein-coding genes and all human 

diseases, estimates of the total number of protein-coding genes were obtained. From this, the 

subset of protein coding genes considered to be most amenable to targeting by drugs, a subset 

of the protein-coding genome known as the ‘druggable genome’11, was identified. At the time 

of analysis, the total number of protein-coding genes in the human genome was estimated in 

19,95542; of which 4,729 were estimated to be amenable to targeting by small molecule drugs 

or bio-therapeutics. Of all human genes encoding druggable targets, 672 (14.2%) are already 

the gene targets of approved drugs, 1,113 (23.5%) are the targets of drugs in clinical 

development, 278 (5.8%) are gene targets of drugs in preclinical development and 3,604 

(76.2%) are currently ‘undrugged’ (Fig. 4.1). Data on drugs in preclinical development may be 

incomplete as information on many withdrawn targets is not publicly available. 
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Figure 4.1. Total count of genes encoding druggable targets, with subsets and overlaps of genes 

encoding the targets of approved drugs, and drugs in clinical or preclinical development.  

 

4.4.2. Human diseases evaluated in drug development and in GWAS  

Producing a stable, exact figure for the total number of human diseases (the ‘disease-

ome’) is challenging due to the hierarchical nature of biomedical vocabularies, duplications 

and descriptive terms beyond diagnoses present in clinical terminologies and disease 

classification systems. In 2019, a figure of 10,000 was proposed as a reasonable estimate of the 

number of common human diseases with genetic susceptibility35. In this analysis, an updated 

figure of 10,901 diseases was used which corresponded to number of terms in the DO as of 30 

November 2021. The DO was selected as it is updated regularly and would provide the most 

up-to-date figure. Separate estimates could be derived for monogenic diseases (~7,00043), for 
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which loss-of-function variants have correctly predicted the safety and phenotypic effect of 

pharmacological inhibition44. However, the analysis of predicted loss-of-function variants 

requires very large sample sizes due to their low frequency in the population, and thus, a figure 

of the common polygenic human diseases (which are the ones subjected to GWAS) was used. 

By sourcing data from the open-access drug database ChEMBL v2536, it was found that 

only 1,370 diseases (12.6% of the total number of human diseases listed in DO) have an 

approved treatment and/or a treatment under clinical or preclinical development. This 

comprises 463 diseases that are the indication of approved drugs, 1,242 diseases that are or 

have been the indication of drugs in clinical development and 217 diseases that are or have 

been indications for drugs in preclinical development. 

Equally, estimating the proportion of diseases covered by genome-wide association 

studies is difficult because some diseases could have been studied through a validated clinical 

biomarker (e.g., LDL cholesterol for coronary heart disease) as well as directly with the disease 

endpoint. There may also be inconsistencies in annotation of clinical end points to a coding 

system (e.g., non-small cell lung cancer and non-small cell lung carcinoma have different codes 

in the unified medical language system, UMLS). Nevertheless, with these caveats, 953 diseases 

covered by GWAS (8.7% of the total number of common human diseases) were identified 

based on the mapping and manual curation of phenotype terms in the GWAS Catalog38 and 

UK Biobank through Neale data39 to UMLS concepts. However, it was found that only 369 of 

the 1,370 diseases with an approved treatment and/or a treatment under clinical or preclinical 

development had also been investigated by GWAS (Fig. 4.2a and Fig. 4.3) leaving 584 diseases 

that have been the subject of investigation in GWAS, but which have yet to be investigated in 

drug development. However, this intersection of GWAS and drug development efforts varied 

by disease area (Fig. 4.4). For example, 48 (34.0%; confidence interval: 26.2 - 41.9%) out of 



 89 

the 141 diseases of the circulatory system with an approved treatment and/or with a treatment 

under clinical or preclinical development had been studied in a GWAS, while for endocrine, 

nutritional or metabolic diseases this figure was 14.4% (27 out of 188; confidence interval: 9.3 

- 19.4%).  
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Figure 4.2. Illustration of the sample space and subsets of human proteins and diseases. The complete sample set (A) is bounded by the total 

number of protein coding genes and the sum total of common, complex human diseases. The subset of all potentially druggable target-disease 

indication pairings is indicated by subset B, the drug target-disease indication pairings studied in clinical phase drug development by subset C, 

and the target-disease indication pairings of approved drugs by subset D. The vertical lines represent diseases studied by GWAS on the 

assumption that GWAS interrogate all genes in the human genome (subset E and F). The presence of two GWAS subsets is to illustrate the point 

that only a subset of diseases studied in GWAS have also been the subject of drug development (E). See text for further explanation. 
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Figure 4.3. Intersection between diseases with a current approved treatment, with a treatment under clinical development, with a treatment under 

preclinical development, or investigated by GWAS. Data sources: ChEMBL v25 (approved, clinical and preclinical development), GWAS Catalog 

(GWAS studies) and UK Biobank through Neale data (GWAS studies). 
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Figure 4.4. Diseases with an approved treatment, a treatment under investigation and studied by GWAS by disease area (ICD-10 chapter). Total 

numbers: 463 diseases that are the indication for an approved drug, 1,248 diseases with a drug investigated in clinical or preclinical studies and 

953 diseases studied by GWAS.
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4.4.3. Important subcategories of drug target-disease indication pairings 

Based on the previous mappings, sample spaces based on different sub-categories of drug 

target-disease indication pairings were generated to help inform future genomic and drug 

development efforts.  

Sample space bounded by all protein coding genes and diseases 

As a denominator, a sample space bounded by 19,955 protein coding genes and 10,901 

diseases was generated, which produces ~217 million protein-disease indication pairings 

(217,529,455; labelled A in Fig. 4.2a). 

Sample space bounded by the druggable genome and all human diseases 

Since not all proteins are readily targeted by small molecule drugs or monoclonal 

antibody or peptide therapeutics, the sample space more relevant to drug development is 

bounded by 4,729 genes encoding druggable targets11 and the 10,901 human diseases, which 

produces ~52 million (51,550,829) drug target-disease indication pairings that might be the 

subject of drug development. This space is labelled B in Figure 4.2a. 

Sample space bounded by target-indication pairings under clinical investigation 

Having defined these key denominator values, the number of drug target-disease 

indication pairs that are or have been the subject of clinical phase drug development was 

investigated. This space, labelled ‘C’ in Figure 4.2a, is bounded by 1,113 genes encoding the 

targets of drugs (Fig. 4.1) and 1,242 diseases that have been the investigated in clinical phase 

drug development (Fig. 4.3), giving around 1.4 million (1,382,346) target-indication parings. 

It should be noted that although this sample space encompasses ~1.4 million drug target-

disease indication pairings, it represents only about 2.5% of the ~52 million drug target-
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indication pairings that could be studied (sample space B), and 0.6% of the ~217 million 

protein-disease pairings (sample space A). Moreover, of the ~1.3 million the number of drug 

target-disease indication pairings, only 29,326 (2.1%) have actually been explored. Further, 

coverage of targets and disease areas is uneven with some disease and targets being intensively 

investigated and others less so or not at all (Fig. 4.5).
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Figure 4.5. Sample space bounded by target indication pairs under clinical investigation (a) or by target-indication pairings for approved drugs (b). (a) The Y-

axis includes the 1,125 druggable genes investigated in a clinical phase for at least one indication and the X-axis the 1,242 diseases that have been the tackled 

in clinical phase drug development. (b) The Y-axis includes the 672 druggable genes of approved drugs and the X-axis the 463 disease indications. The colours 

in the X-axis indicate five major group of diseases: neoplasms (blue), nervous system diseases (purple), cardiovascular diseases (green), endocrine, nutritional 

and metabolic (orange), psychiatry and psychology disorders (pink), and others (grey). 
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Sample space bounded by target-indication pairings for approved drugs 

I identified 672 targets of approved drugs (Fig. 4.1) for 463 disease indications (Fig. 4.3), 

giving a sample space (labelled D in Fig. 4.2a) of just under 312,000 target indication pairs 

(312,261). Again, the number drug target-disease indication hypotheses that have actually been 

explored and led to approval within this bounded space is ~ 1% (n=3,154) of the maximum 

space available at the time of analysis. As for target-indication pairings investigated in clinical 

development, the coverage of targets and indications of approved drugs is uneven. Some 

diseases (e.g., hypertension) have a large number of targets for approved drugs (e.g., there are 

24 approved drug targets for the treatment of hypertension), whereas others (e.g., Iridocyclitis) 

have treatments directed at a single target (Fig. 4.6). The median number of drug targets per 

approved indication is two. Similarly, several drug targets have been approved for multiple 

indications, including different disease areas. For example the glucocorticoid receptor is 

employed for the treatment of up to 87 diseases, including disorders of the blood, immune, 

circulatory, respiratory systems and different cancers (Fig. 4.7). Others have only been licensed 

for a single disease (e.g., Fig. 4.7).   
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Figure 4.6. Number of drug targets by disease (top 10 diseases). 

 

 

Figure 4.7. Disease indications by drug target. The dashed line separates the drug targets with 

the most approved indications from a random subset of ten drug targets with a single approved 

indication. 

Number of targets

Number of disease indications
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Diseases and targets evaluated in GWAS and drug development 

I identified 672 targets of currently approved drugs (14% of all druggable targets) 

employed in the treatment of 463 diseases (4% of all 10,901 diseases). Of these diseases, 173 

have also been studied in GWAS. It is through this intersection that it has been possible to 

show that GWAS have frequently rediscovered established drug targets for the corresponding 

diseases11–13. The 1,125 targets of drugs that are or have been the subject of clinical 

investigation (which includes the targets of approved drugs), have been or are being evaluated 

for the treatment of 1,370 diseases. Prior research has shown that drugs which the target-

indication pairing has genetic support have higher rates of approval. However, of the 1,242 

disease indications being evaluated in clinical development, only 349 has been the subject of a 

GWAS. High failure rates in clinical phase drug development have heightened interest in 

therapeutic repurposing of drugs that failed in their originally intended indication for lack of 

efficacy. Previous modelling studies have suggested that any given drug target might be useful 

in the treatment of multiple diseases35. There are well-established examples of this. Beta-

adrenoceptor antagonists are used in the treatment of hypertension, coronary heart disease, 

heart failure, portal hypertension and migraine. SGLT2-inhibitors developed for diabetes also 

reduce risk of heart failure with preserved ejection fraction, coronary and renal disease and can 

also treat obesity. Since GWAS can be used as a source of evidence for drug target 

identification, one route to expanding the indications of licensed drugs or those in development, 

or to repurpose investigational drugs that fail in their intended indication, would be to 

systematically interrogate the association of variants in the genes encoding the targets of these 

drugs in GWAS data. Since GWAS have already investigated 953 diseases there is already a 

large dataset that could be utilised for this purpose. For example, the interleukin-6 receptor is 

the target of an approved drug (tocilizumab) used in the treatment of rheumatoid arthritis. 

However, the gene encoding this receptor has also been identified using GWAS of coronary 
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heart disease, abdominal aortic aneurysm and atrial fibrillation, suggesting a number of 

indication expansion opportunities19,45,46. Another example is the interleukin-23 receptor 

inhibitor ustekinumab, which was originally intended to treat psoriasis, and after identifying a 

GWAS signal for Crohn’s disease was investigated for such indication and eventually approved 

in 201747–49.   

Creating new opportunities for genetic drug target validation 

The development of a sample space of druggable targets and disease indications 

illustrates how new opportunities for genetic drug target validation can be exploited.         

One way would be by increasing the range of druggable targets (space B in Fig 2a). This 

is becoming possible through technological developments. These include: 1) the growing use 

of monoclonal antibodies and the development of cyclic peptides as therapeutics for protein 

targets that lack a binding pocket amenable to targeting by conventional small molecule 

therapeutics47–51, 2) the targeting of RNAs rather than proteins using RNA silencing approaches 

and the emergence of CRISPR-Case 9 based gene editing in cases for proteins that remain 

difficult to drug52–54.  

A complementary approach, necessary to map the expanded range of druggable targets 

to the correct diseases is to increase the range of diseases that have been studies in GWAS. 

This is becoming possible by the greater deployment of genetic studies within large national 

biobanks linked to health care data25,55–57, and even in healthcare systems58,59. 

 

 

 



 101 

4.5. Discussion 

4.5.1. Summary 

Previous research has shown that human genetic evidence could support drug 

development11,14,15,35. However, the extent to which the genomic efforts, specifically GWAS, 

align with ongoing drug development efforts and unmet need has not been explored in detail. 

The current analysis shows: 1) Only a small fraction of the 10,901 diseases curated in the 

human DO have been investigated in drug development (13%; 1,370 out of 10,901) or GWAS 

(9%; 953 out of 10,901); 2) of disease being pursued in clinical phase drug development, only 

27% (369 out of 1,370) has been the subject of a GWAS; 3) even for the 349 diseases that are 

the subject of ongoing clinical phase drug development and have been covered by GWAS, it 

remains uncertain how many specific target-indication pairings have genetic support. The 

construction of a sample space of disease and targets including subsets of target-disease 

pairings that have been covered by GWAS (which interrogate all possible targets by design) 

and clinical phase drug development can help generate insights into how these efforts can be 

utilised in concert.  

For example, the intersection between targets of approved drugs and diseases studied by 

GWAS can help identifying new indications for existing approved drugs. On the other hand, 

the intersection between targets of drugs under clinical investigation and diseases studied by 

GWAS can lead to potential repurposing opportunities of drugs that proved safe but lacked 

efficacy for the originally intended indication, or for indication expansion of approved drugs. 

Both indication expansion and repurposing are attractive alternatives to the de novo drug 

development, mainly because such compounds have been proven to engage well-characterised 

targets and the medicines have proven safe in clinical trials, which leads to a reduction of the 

costs and development timelines60. In addition, the sample space of human targets and diseases 
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could also inform de novo drug development for druggable targets and disease indication 

pairings that have yet to be investigated.  

 

4.5.2. Research in context 

There are groups of targets that could especially benefit from having genetic support. For 

example, identifying soluble or secreted protein targets with genetic evidence for a particular 

disease represent an attractive venture since such proteins are readily targeted by monoclonal 

antibodies or peptides, which typically exhibit higher selectivity and reduced development 

timelines compared to small molecules61. Information on the set of human secreted proteins 

(the human ‘secretome’9) is available in the public domain, and researchers and the 

pharmaceutical industry could use these resources to identify high priority putative circulating 

protein targets. In addition to therapeutics that exert their action at the protein level, novel 

therapies based on RNA silencing or interference provide a solution to downregulate protein 

targets that are resistant to small or large molecule therapeutics52. While this technique is 

challenged by the effective delivery of the RNA into the target tissue, existing technologies 

support efficient targeting of the liver with RNA-based therapeutics62. Therefore, genetically-

supported targets with an elevated gene expression in liver may be prioritised for RNA 

silencing therapy.  

Furthermore, the sample space of human protein targets and diseases can be used to 

inform new drug development programmes and research (Fig. 2c). For example, only 9% of 

the human diseases have been investigated in a GWAS, and over 8,000 diseases exist without 

an approved treatment or under clinical investigation. Prioritising diseases for genomic analysis 

with a view to generating critical evidence for drug development is one of the numerous 

applications of the current analysis. Large biobanks with genetic data linked to routinely 
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collected primary and secondary care health records provide an opportunity to investigate 

targets with genetic support in conditions with unmet medical needs or to increase the power 

in diseases where a GWAS is available but the number of cases were not sufficient to reliably 

identify genetic associations. Furthermore, increasing population representativeness in genetic 

studies may also be important (since approximately 86% of the genetic studies have been 

performed in Europeans63) to evaluate if the findings are transferable across ancestries and to 

ensure fairness in the application of human genomics.  

Part of this analysis was based on the druggable genome but this concept is an evolving 

entity. While it is currently defined as the set of proteins with potential to be modulated by a 

drug-like small molecule or monoclonal antibody, novel therapeutic modalities, such as RNA 

silencing or gene editing, hold the promise of modifying the function of any protein targeting 

any gene in the genome. This is likely to expand the range of potential druggable targets64–66. 

Lastly, in addition to the advances in molecular therapeutics, several companies have shown 

growing interest in the use of artificial intelligence for target identification and drug discovery. 

The application of data-driven approaches and computer modelling have solved protein 

structures and revealed previously unknown protein motifs, turning undruggable protein targets 

into druggable ones67. 

 

4.5.3. Strengths and limitations 

The results presented in this chapter represent the first systematic survey of the coverage, 

overlap and divergence of human genetic studies and diseases investigated in pharmaceutical 

research and development. One of the strengths of this analysis is that the data used were 

available in the public domain which facilitates the revisiting of the estimates in the future. 

Another is that the analysis was stratified to show how the overlap between diseases with an 
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approved treatment, a treatment under clinical development and studied by GWAS differs also 

at the level of individual disease. Moreover, standardisation of terms across data sources was 

challenged by the use of different coding systems in the drug and GWAS databases and the 

lack of a direct mapping across terminologies. By using the UMLS as an anchoring ontology 

to standardise the diseases across data sources and including a step of manual curation of the 

disease terms and areas, the error due to inaccurate mapping cross-databases was reduced. 

There are several limitations to the analysis described. First, information on drugs in 

preclinical or clinical development may be incomplete or not available in the public domain, 

which may lead to an underestimation of the number of diseases studied in drug development, 

particularly for the preclinical candidates which did not progress to clinical trials. Regarding 

the number of diseases investigated by GWAS, some diseases could have been studied through 

a validated clinical biomarker which may not have been captured by this approach. To 

minimise this error, where possible, GWAS of biomarkers in the GWAS Catalog were 

manually curated and linked to diseases. 
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4.6. Conclusion 

The analysis described in this chapter shows the divergence between diseases studied by 

GWAS and those investigated by the pharmaceutical industry. Only 369 of the 1,370 diseases 

with an approved treatment and/or a treatment under clinical or preclinical development have 

also been investigated by GWAS. Further efforts are needed to explore the genetic 

predisposition of the remaining diseases, and more importantly, the genetic contribution for 

those >9,000 diseases without an approved or investigational drug, based on ChEMBL v25 

database. Nevertheless, almost 1,000 diseases have been investigated by GWAS which 

provides opportunities to investigate the additional value of genetic support in drug 

development and evaluate the genetic evidence of drug target-indication pairings using genetic 

epidemiology methodologies such as Mendelian Randomisation. These two applications of 

GWAS will be described in the following chapters. 

 

  



 106 

4.7. References 

1. Macleod, M. R. et al. Risk of Bias in Reports of In Vivo Research: A Focus for 

Improvement. PLOS Biology 13, e1002273 (2015). 

2. Perel, P. et al. Comparison of treatment effects between animal experiments and clinical 

trials: systematic review. BMJ 334, 197 (2007). 

3. Worp, H. B. van der et al. Can Animal Models of Disease Reliably Inform Human 

Studies? PLOS Medicine 7, e1000245 (2010). 

4. Hay, M., Thomas, D. W., Craighead, J. L., Economides, C. & Rosenthal, J. Clinical 

development success rates for investigational drugs. Nat Biotechnol 32, 40–51 (2014). 

5. Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in 

pharmaceutical R&D efficiency. Nat Rev Drug Discov 11, 191–200 (2012). 

6. Schmidt, A. F. et al. Genetic drug target validation using Mendelian randomisation. 

Nature Communications 11, 3255 (2020). 

7. Gill, D. et al. Mendelian randomization for studying the effects of perturbing drug 

targets. Wellcome Open Res 6, 16 (2021). 

8. Walker, V. M., Davey Smith, G., Davies, N. M. & Martin, R. M. Mendelian 

randomization: a novel approach for the prediction of adverse drug events and drug 

repurposing opportunities. International Journal of Epidemiology 46, 2078–2089 (2017). 

9. Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through 

human genetics. Nat Rev Drug Discov 12, 581–594 (2013). 

10. Hingorani, A. & Humphries, S. Nature’s randomised trials. The Lancet 366, 1906–1908 

(2005). 

11. Finan, C. et al. The druggable genome and support for target identification and validation 

in drug development. Sci Transl Med 9, (2017). 



 107 

12. Forgetta, V. et al. An effector index to predict target genes at GWAS loci. Hum Genet 

(2022) doi:10.1007/s00439-022-02434-z. 

13. Ghoussaini, M. et al. Open Targets Genetics: systematic identification of trait-associated 

genes using large-scale genetics and functional genomics. Nucleic Acids Research 49, 

D1311–D1320 (2021). 

14. Nelson, M. R. et al. The support of human genetic evidence for approved drug 

indications. Nat Genet 47, 856–860 (2015). 

15. King, E. A., Davis, J. W. & Degner, J. F. Are drug targets with genetic support twice as 

likely to be approved? Revised estimates of the impact of genetic support for drug 

mechanisms on the probability of drug approval. PLOS Genetics 15, e1008489 (2019). 

16. Ochoa, D. et al. Human genetics evidence supports two-thirds of the 2021 FDA-approved 

drugs. Nature Reviews Drug Discovery 21, 551–551 (2022). 

17. Gordillo-Marañón, M. et al. Validation of lipid-related therapeutic targets for coronary 

heart disease prevention using human genetics. Nat Commun 12, 6120 (2021). 

18. Schmidt, A. F. et al. PCSK9 monoclonal antibodies for the primary and secondary 

prevention of cardiovascular disease. Cochrane Database Syst Rev 4, CD011748 (2017). 

19. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium et al. 

The interleukin-6 receptor as a target for prevention of coronary heart disease: a 

mendelian randomisation analysis. Lancet 379, 1214–1224 (2012). 

20. Dean, L. Maraviroc Therapy and CCR5 Genotype. in Medical Genetics Summaries (eds. 

Pratt, V. M. et al.) (National Center for Biotechnology Information (US), 2012). 

21. Gu, W.-G. & Chen, X.-Q. Targeting CCR5 for anti-HIV research. Eur J Clin Microbiol 

Infect Dis 33, 1881–1887 (2014). 

22. Lopez, D. Inhibition of PCSK9 as a novel strategy for the treatment of 

hypercholesterolemia. Drug News Perspect. 21, 323–330 (2008). 



 108 

23. Salama, C. et al. Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia. New 

England Journal of Medicine 384, 20–30 (2021). 

24. Bovijn, J., Lindgren, C. M. & Holmes, M. V. Genetic variants mimicking therapeutic 

inhibition of IL-6 receptor signaling and risk of COVID-19. Lancet Rheumatol 2, e658–

e659 (2020). 

25. Sudlow, C. et al. UK Biobank: An Open Access Resource for Identifying the Causes of a 

Wide Range of Complex Diseases of Middle and Old Age. PLOS Medicine 12, e1001779 

(2015). 

26. FinnGen-tutkimushanke vie suomalaiset löytöretkelle genomitietoon. FinnGen 

https://www.finngen.fi/fi/finngen_tutkimushanke_vie_suomalaiset_loytoretkelle_genomit

ietoon. 

27. GSK and 23andMe sign agreement to leverage genetic insights for the development of 

novel medicines | GSK. https://www.gsk.com/en-gb/media/press-releases/gsk-and-

23andme-sign-agreement-to-leverage-genetic-insights-for-the-development-of-novel-

medicines/. 

28. Schriml, L. M. et al. The Human Disease Ontology 2022 update. Nucleic Acids Research 

50, D1255–D1261 (2022). 

29. Rogers, F. B. Medical subject headings. Bull Med Libr Assoc 51, 114–116 (1963). 

30. Medical Subject Headings - Home Page. https://www.nlm.nih.gov/mesh/meshhome.html. 

31. Köhler, S. et al. The Human Phenotype Ontology in 2021. Nucleic Acids Research 49, 

D1207–D1217 (2021). 

32. Clinical Classifications Software (CCS) for ICD-10-PCS (beta version). 

https://www.hcup-us.ahrq.gov/toolssoftware/ccs10/ccs10.jsp. 



 109 

33. Denny, J. C. et al. Systematic comparison of phenome-wide association study of 

electronic medical record data and genome-wide association study data. Nat Biotechnol 

31, 1102–1111 (2013). 

34. SNOMED CT. https://www.nlm.nih.gov/healthit/snomedct/index.html. 

35. Hingorani, A. D. et al. Improving the odds of drug development success through human 

genomics: modelling study. Sci Rep 9, 18911 (2019). 

36. Mendez, D. et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids 

Research 47, D930–D940 (2018). 

37. Bodenreider, O. The Unified Medical Language System (UMLS): integrating biomedical 

terminology. Nucleic Acids Res. 32, D267-270 (2004). 

38. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide 

association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, 

D1005–D1012 (2019). 

39. UK Biobank. Neale lab http://www.nealelab.is/uk-biobank. 

40. MetaMap. https://lhncbc.nlm.nih.gov/ii/tools/MetaMap.html. 

41. Piñero, J. et al. The DisGeNET knowledge platform for disease genomics: 2019 update. 

Nucleic Acids Research 48, D845–D855 (2020). 

42. Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. 

Nucleic Acids Res 47, D766–D773 (2019). 

43. Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A. & McKusick, V. A. Online 

Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic 

disorders. Nucleic Acids Res 33, D514–D517 (2005). 

44. Minikel, E. V. et al. Evaluating drug targets through human loss-of-function genetic 

variation. Nature 581, 459–464 (2020). 



 110 

45. Harrison, S. C. et al. Interleukin-6 receptor pathways in abdominal aortic aneurysm. Eur 

Heart J 34, 3707–3716 (2013). 

46. Rosa, M. et al. A Mendelian randomization study of IL6 signaling in cardiovascular 

diseases, immune-related disorders and longevity. npj Genom. Med. 4, 1–10 (2019). 

47. Simon, E. G., Ghosh, S., Iacucci, M. & Moran, G. W. Ustekinumab for the treatment of 

Crohn’s disease: can it find its niche? Therap Adv Gastroenterol 9, 26–36 (2016). 

48. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory 

bowel disease gene. Science 314, 1461–1463 (2006). 

49. Wang, K. et al. Diverse genome-wide association studies associate the IL12/IL23 

pathway with Crohn Disease. Am J Hum Genet 84, 399–405 (2009). 

50. Wang, L. et al. Therapeutic peptides: current applications and future directions. Sig 

Transduct Target Ther 7, 1–27 (2022). 

51. Joo, S. H. Cyclic Peptides as Therapeutic Agents and Biochemical Tools. Biomol Ther 

(Seoul) 20, 19–26 (2012). 

52. Kim, D. H. & Rossi, J. J. Strategies for silencing human disease using RNA interference. 

Nat Rev Genet 8, 173–184 (2007). 

53. Bumcrot, D., Manoharan, M., Koteliansky, V. & Sah, D. W. Y. RNAi therapeutics: a 

potential new class of pharmaceutical drugs. Nat Chem Biol 2, 711–719 (2006). 

54. Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics — developing a new class 

of drugs. Nat Rev Drug Discov 13, 759–780 (2014). 

55. Leitsalu, L. et al. Cohort Profile: Estonian Biobank of the Estonian Genome Center, 

University of Tartu. Int J Epidemiol 44, 1137–1147 (2015). 

56. Hansen, T. F. et al. DBDS Genomic Cohort, a prospective and comprehensive resource 

for integrative and temporal analysis of genetic, environmental and lifestyle factors 

affecting health of blood donors. BMJ Open 9, e028401 (2019). 



 111 

57. Kurki, M. I. et al. FinnGen: Unique genetic insights from combining isolated population 

and national health register data. 2022.03.03.22271360 Preprint at 

https://doi.org/10.1101/2022.03.03.22271360 (2022). 

58. Ayatollahi, H., Hosseini, S. F. & Hemmat, M. Integrating Genetic Data into Electronic 

Health Records: Medical Geneticists’ Perspectives. Healthc Inform Res 25, 289–296 

(2019). 

59. Lau-Min, K. S. et al. Real-world integration of genomic data into the electronic health 

record: the PennChart Genomics Initiative. Genet Med 23, 603–605 (2021). 

60. Pushpakom, S. et al. Drug repurposing: progress, challenges and recommendations. Nat 

Rev Drug Discov 18, 41–58 (2019). 

61. Shepard, H. M., Phillips, G. L., Thanos, C. D. & Feldmann, M. Developments in therapy 

with monoclonal antibodies and related proteins. Clin Med (Lond) 17, 220–232 (2017). 

62. Holm, A., Løvendorf, M. B. & Kauppinen, S. Development of siRNA Therapeutics for 

the Treatment of Liver Diseases. in Design and Delivery of SiRNA Therapeutics (eds. 

Ditzel, H. J., Tuttolomondo, M. & Kauppinen, S.) 57–75 (Springer US, 2021). 

doi:10.1007/978-1-0716-1298-9_5. 

63. Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat Med 1–8 (2022) 

doi:10.1038/s41591-021-01672-4. 

64. Zaafar, D., Elemary, T., Hady, Y. A. & Essawy, A. RNA-targeting Therapy: A Promising 

Approach to Reach Non-Druggable Targets. Biomedical and Pharmacology Journal 14, 

1781–1790 (2021). 

65. Fellmann, C., Gowen, B. G., Lin, P.-C., Doudna, J. A. & Corn, J. E. Cornerstones of 

CRISPR-Cas in drug discovery and therapy. Nat Rev Drug Discov 16, 89–100 (2017). 

66. Schneider, M. et al. The PROTACtable genome. Nat Rev Drug Discov 20, 789–797 

(2021). 



 112 

67. He, H., Liu, B., Luo, H., Zhang, T. & Jiang, J. Big data and artificial intelligence discover 

novel drugs targeting proteins without 3D structure and overcome the undruggable 

targets. Stroke Vasc Neurol 5, (2020). 

 

  



 113 

5 | The support of genetic evidence from genome-wide 

association studies for approved drug targets  

 

5.1. Abstract 

In the previous chapter it was shown that only 27% of the diseases with an approved drug 

or a drug under clinical investigation have been studied by genome-wide association studies 

(GWAS). Despite the limited GWAS data on existing indications, previous studies that mapped 

genetic associations identified by GWAS to the genes encoding the protein targets of approved 

drugs have suggested that GWAS could provide a useful tool for systematic identification of 

new drug targets for human disease. In this chapter, I use a ‘truth’ set of approved drug target 

gene – indication pairings to investigate how different p value thresholds and physical 

proximity of the causal gene to the association signal, identified in  a GWAS of the intended 

indication, influence genetic rediscoveries of known drug targets. By expanding the set to 

compounds in clinical development, I provide an updated estimate of the probability of phase 

progression for drug target gene - indication pairings given genetic support. The findings 

showed that the use of stringent p value threshold to select significant associations may lead to 

an oversight of true genetic associations, and relaxing the p value threshold to 5´10-6 increased 

the percent of rediscoveries by 32% on average. Moreover, in up to 43% of the genetic 

association - drug target gene - indication combinations, the target gene was within the five 

closest genes. Lastly, I provide additional evidence on the value of GWAS for target 

identification, by showing that the odds to get approved for a target-indication pairing with 

genetic support is almost three times greater than the odds for a pairing without genetic support, 

an increase over previous estimates. 
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5.2. Introduction 

Previously, mapping disease loci identified by genome-wide association studies (GWAS) 

to the genes encoding the protein targets of approved drugs has suggested that GWAS could 

provide a useful tool for systematic identification of new drug targets for human disease1. In 

fact, after mapping genetic variants to potential causal genes, Nelson et al.2, showed that 

selecting genetically supported targets could double the success rate in clinical development. 

This result was then replicated by King et al3. These studies rely on assigning genetic 

associations from GWAS data to a causal gene, which remains a challenge in GWAS 

interpretation because association signals from variants in high linkage disequilibrium (LD) 

may span multiple genes. Several gold-standard datasets have been used to explore the best 

approach to assign GWAS signals to genes. These ‘truth’ sets include genes whose perturbation 

causes a Mendelian form of a common disease4, the set of expression and protein QTLs5, 

curated metabolite QTLs6, manually curated examples from the literature7, and approved drug 

target-indication pairings where the indication has been studied by GWAS1,7. Numerous 

approaches have been suggested to assign GWAS signals to genes, such as co-localisation8, or 

machine-learning techniques7. Yet, physical proximity remains the simplest and most widely 

used proxy to map association signals to genes6,9. Although examples exist where the closest 

gene is not the putative causal gene10,11, several studies using set of genes with well validated 

causal relationships to disease have revealed the closest gene to a GWAS signal to be the causal 

gene in about two-thirds of cases6, and have shown that the relative distance to the gene is the 

best single predictor of causal genes7. 

In this chapter, I evaluate the genetic support from GWAS on drug target -indication 

progression along the drug development process and investigate how often the closest gene is 

the causal gene when evaluating genetic associations using different threshold p values. To do 
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so, I first create a ‘truth’ set of approved drug target gene - indication pairs available for 

rediscovery by GWAS of the corresponding diseases, under the assumption that there is a 1:1 

relationship between the drug target gene and its encoded protein. Such dataset was anticipated 

to include a larger number of drug target gene-indication pairs compared to previous datasets 

generated by Nelson et al., (19,085 target-indication pairs)2 and King et al. (21,934 target-

indication pairs)3. Second, I evaluate the utility of different p value thresholds and physical 

proximity of the causal gene to the association signal for target identification. Third, I provide 

an updated estimate of the probability of success for drug target-indication pairings given 

genetic support. Lastly, I discuss strengths and limitations of using GWAS data to reduce the 

high attrition rate in drug development due to lack of efficacy.  
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5.3. Methods 

5.3.1. Drug data 

Drug data were extracted from ChEMBL version 25 (v25)12, which included compounds 

under preclinical (phase 0) or clinical development (phase 1-3), and licensed (phase 4). 

Information in ChEMBL is itself based on several resources including United States Adopted 

Name (USAN) applications, ClinicalTrials.gov; the FDA Orange Book database, the British 

National Formulary, and the ATC classification for compounds with a license. Additional 

information on intended indications is sourced from DailyMed and the ATC classification.  The 

corresponding drug targets were mapped to UniProt identifiers, and to gene identifiers in 

Ensembl version 95 (GRCh37) through the updated druggable genome1(see Chapter 3.2), and 

the standardised indications in Medical Subject Headings (MeSH) used in ChEMBL v25 were 

mapped to Unified Medical Language System (UMLS)13 concepts using the UMLS2020AA to 

facilitate further mappings (see Chapter 3.1.1.). Compounds flagged as withdrawn, not 

intended for human use or whose target is encoded by a gene in the extended major 

histocompatibility complex (xMHC) region (chr6: 28477797- 33448354, GRCh37), were 

excluded from the analysis. For each drug target gene-indication pairs, the maximum 

development phase was selected for any drug.  

 

5.3.2. GWAS data 

Genetic associations were obtained from the public central repository (GWAS Catalog 

v1.0.2) and from UK Biobank through Neale data (GWAS Round 2, Results shared 1st August 

2018). Genetic associations from UK Biobank were filtered for a p value £ 1´10-5 to match the 

minimum significance threshold required by the GWAS Catalog14. The GWAS Catalog 
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included 6,021 MeSH terms from 3,374 publications that were mapped to UMLS concepts. 

The UK Biobank Neale dataset covered 633 ICD10 main diagnosis that were mapped to 633 

UMLS concepts to facilitate the mapping to drug indications. Because one of the aims of this 

analysis was to compared the updated to previous estimates, the approach described by Nelson 

et al., 20152 was used, which restricted the GWAS data to those indications that have been 

reasonably well studied by genetic approaches. Therefore, the initial GWAS dataset was further 

restricted to indications with at least five genetic associations reported and to genetic 

associations reaching genome-wide significance for the analysis of the probability of success 

and phase progression given genetic support. In addition to the argument provided by Nelson 

et al.2, such restriction of the data would also imply that the sample size used in the GWAS 

was large enough to detect significant association. Disease categories were mapped using a 

standard list based on the MeSH subcategories (Category C – diseases and Category F - F – 

Psychiatry and Psychology) and ICD10 chapters. A list of the GWAS traits evaluated is shown 

in Appendix 5.A. 

 

5.3.3. Linking GWAS associations to drug targets 

Two approaches were used to map association signals to drug target genes: absolute 

distance and relative distance. Using absolute distance, a drug target gene-indication pair was 

considered to have genetic support if a genetic association with the intended indication was 

present within the gene boundaries plus or minus 5 kbp. Using the relative distance, a drug 

target gene-indication pair was considered to have genetic support if the target gene was the 

closest protein-coding gene to the association signal according to their base pair distance. For 

each approved drug target-indication pair, genetic associations that overlap within a 1 Mega 

base pair (Mbp) window upstream and downstream the target gene were extracted. Such 
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distance has been recently suggested as the cut-off for cis- vs trans- signals based on empirical 

evidence from molecular traits, under the assumption that cis- signals are acting through the 

gene in closest proximity5. Variants located within the gene were given a distance of 0 bp. For 

each genetic association - drug target gene - indication combination, the relative distance 

according to base pair distance from the target gene to the GWAS significant SNP was 

calculated, using all the genes in the genome excluding the xMHC region (57,392 genes) or 

limiting the ranking to protein-coding genes excluding the xMHC region (20,147 genes). 

 

5.3.4. Estimating P(S+|G+)  from P(G+|S+) 

While the interest in drug development is on the probability of success given genetic 

support !(# + |& +), I only had access to the inverse (i.e., the probability of genetic support 

given approval !(& + |# +)). However, it is possible to derive !(# + |& +) from !(& + |# +) 

using Bayes’ Rule together with information on the proportion of successful and unsuccessful 

drug target gene - indication pairs and the proportion of drug development programmes with 

and without genetic support. To do so, information on the number of drug target gene - 

indication pairs per maximum phase of indication (‘no success’, S-) was extracted, and the 

successful pairs (S+) derived by subtracting unsuccessful pairs to the total number of pairs. For 

drug target-indication pairs with genetic support, the two metrics described in the previous 

section 5.3.3. were used to define genetic evidence. This information was then used to generate 

2x2 tables as follows for each phase of development progression and overall. An example with 

real data is shown below: 
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Phase I to phase II Success (S+) No success (S-) Total 

Genetic support (G+) 444 69 513 

No genetic support (G-) 14,328 3,224 17,552 

Total 14,772 3,293 18,065 

 

The probability of genetic support given success !(& + |# +) is given by: 

!(& + |	# +) = !(& +∩ 	# +)
!(# +) ⇒ !(& +∩ # +) = !(# +) ∙ 	!(& + |	# +) 

The probability of success given genetic support !(# + |& +) is given by: 

!(# + |	& +) = !(# +∩ 	& +)
!(& +) ⇒ !(# +	∩ & +) = !(& +) ∙ 	!(# + |	& +) 

Since !(& +∩ # +) = 	!(# +	∩ & +): 

!(# +) ∙ 	!(& + |	# +)	 = !(& +) ∙ 	!(# + |	& +) 

Thus, 

!(# + |	& +) =	 !(#$)∙	!(($|#$)	!(($)  

From the example table, values for !(# +), !(& + |# +)	and !(& +)  are .*+,--.*/,012/, . +++
*+,--./ 

and . 2*3
*/,012/ respectively, thus  

!(# + |	& +) =	 4
56,778
59,:;<=	∙(

666
56,778)

( <5>
59,:;<)

= 0.87 
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This process was repeated for all phases of progression using data summarised in the 2 x2 

tables in Appendix 5.B. 

The following probabilities were also estimated based on the contingency tables: 

P(S+|G+) (Positive predictive value), P(S+|G-) (False omission rate), P(S-|G-) (Negative 

predictive value), P(S-|G+) (False discovery rate), P(G+| S+) (Recall rate), P(G+|S-) (False 

positive rate), P(G-| S+) (False negative rate), P(G-| S-) (True negative rate), and the following 

odds: odds(S+|G+), odds(S+|G-). Subsequently, the following ratios were estimated: 

P(S+|G+)/P(S+|G-), P(S-| G-)/P(S-|G+), positive likelihood ratio, negative likelihood ratio, and 

the diagnostic odds ratio. The calculations are illustrated in Figure 5.1. Confidence intervals 

were computed using the ‘riskratio.boot’ function in the ‘epitools’ R package, and the 

‘epi.tests’ function in the ‘epiR’ R package. 
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Figure 5.1. Probabilities, likelihoods and odds ratios estimated to evaluate the impact of genetic 

support in drug target gene-indication progression. 

 

 

 

 

 

 

 

Total target-indication pairs Success (S+) No success (S-)

Genetic support (G+) a b

No genetic support (G-) c d

Probabilities Likelihood ratios Odds ratio

P(S+|G+) = Positive predictive value = a/a+b P(S+|G+)
P(S+|G−)P(S+|G-)  = False omission rate = c/c+d

P(S-|G-)   = Negative predictive value = 
d/c+d

P(S−|G−)
P(S−|G+)

P(S-|G+)  = False discovery rate = b/a+b

P(G+|S+) = Recall rate = a/a+c P(G+|S+)
P(G+|S−)

(Positive likelihood ratio)

Positive likelihood ratio
Negative likelihood ratio

(Diagnostic odds ratio)
P(G+|S-) = False positive rate = b/b+d

P(G-|S+) = False negative rate = c/c+d P(G−|S+)
P(G−|S−)

(Negative likelihood ratio)
P(G-|S-)  = True negative rate = d/b+d
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5.4. Results 

5.4.1. GWAS rediscoveries of approved drug target-indication pairs 

Determining if an approved drug target-indication pair has been rediscovered by genetic 

associations with the intended indication is directly influenced by the definition of genetic 

evidence. Therefore, I first evaluated the impact of defining genetic evidence using different  p 

value thresholds and physical proximity to map genetic associations to causal genes. To do so, 

a ‘truth’ set of approved drug target-indication pairs was created by sourcing data on approved 

drugs, their targets and intended indications from ChEMBL v2512. Following the approach of 

Nelson et al. 20152, drugs with nonhuman (e.g., antimicrobial drugs which target a protein in 

the pathogen) or extended major histocompatibility complex (xMHC) targets were excluded. 

In total, ChEMBL included 371 indications (UMLS concepts) and 898 approved drugs which 

target proteins encoded by 665 drug target genes (Fig. 5.2). The total number of unique drug 

target gene-indications pairs was 3,118.  

Genetic associations were obtained from a public central repository (GWAS Catalog 

v1.0.2) and from UK Biobank through Neale dataset. Overall, 213 approved indications were 

covered in genetic studies (GWAS Catalog plus UK Biobank, Appendix 5.A), which 

represented 2,338 unique target-indication pairs (Fig. 5.2). 
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Figure 5.2.  Summary of data sources and mappings between them. Summary of each data 

source and the key filtering and processing steps applied to create the final set of gene-trait and 

drug target–indication combinations investigated in this study. GWAS Catalog sources 

correspond to unique PubMed ID.  

• Well-studied indications  (³ 5 genetic 
associations)

• P-value £ 5´10-8

GWAS data

GWAS catalogue (December 2019) 
:
• 6,021 traits 
• 3,373 sources

UKBB - Neale data: 
• 633 ICD10 diagnosis

GWAS
rediscoveries

Well-studied indications:
• 144 approved indications (UMLS concepts)
• 639 target genes
• 1,969 indications-target genes

All:
• 213 approved indications (UMLS concepts)
• 647 target genes
• 2,338 indications-target genes

GWAS 
survey

• 309 indications (UMLS concepts)
• 1,078 target genes
• 18,065 indications-target genes

Phase Compounds Targets Indications

1 1,196 955 516

2 1,413 993 816

3 975 797 689

4 898 665 371

Drug data
(ChEMBL 25)

2,675 compounds
1,253 indications (UMLS concepts)

2,275 compounds
1,113 unique target genes

1,143 unique indications (UMLS concepts)

2,288 compounds
1,125 unique target genes

1,143 unique indications (UMLS concepts)

1. Map to drug target 
genes

2. Exclusion of HLA region

Non-human targets 
(e.g., tumoral, antimicrobial…)

12 target genes in or near 
the xMHC region

3. Stratification by 
development phase
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To explore if the absolute distance could help identifying the causal gene responsible for 

an association signal, and under the assumption that the drug target gene should be the causal 

gene in the region, the distance from the associated variant to the gene of interest was 

calculated. It was found that, as the flanking region expanded, the number of drug target gene-

indications rediscovered increased at the cost of increasing the median number of protein-

coding genes between the target gene and the genetic association (Fig. 5.3). For example, 

genetic associations could be found within 1Mbp for 27% of the drug target gene – indication 

pairs (p value £ 1´10-5), being the drug target gene within the closest six genes for most drug 

target gene – indication pairs explored. Noticeably, the percentage of drug target gene – 

indication pairs rediscovered did not reach 100%. This is explained by genetic associations 

located in a chromosome other than the chromosome containing the gene encoding the drug 

target. 

Figure 5.3. Analyses of drug target genes-indications pairs rediscovered by GWAS 

associations. SNP associations with the intended indication were mapped to the gene encoding 

the drug target allowing for different flanking regions: 242Mbp (whole chromosome 2, largest 

chromosome), 100Mbp, 50 Mbp, 20 Mbp, 10Mbp, 5Mbp,1 Mbp and 500kbp, 100kbp, 200kbp 

and 10kbp, for three significance thresholds: 5´10-8, 5´10-6, 1´10-5. Total: 2,338 approved drug 

target gene – indication pairings, of which 2,023 had associations in the same chromosome as 

the drug target gene.   
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Subsequently, the gene distance rank (or relative distance) was defined using all or 

protein-coding genes in the region to investigate how often the closest gene is the causal gene 

when a significant genetic association with the intended indication lies in or near the gene of 

interest. Table 5.1 shows the percentage of drug target gene - indication pairs rediscovered by 

the relative distance using different p value thresholds, with an illustration of the calculation of 

the different measures in Figure 5.4. It was found that when filtering for genome-wide 

significant associations, the closest protein-coding gene was the drug target gene in 20.5% 

(95% CI: 18.9; 22.1) of the 2,441 genetic association - drug target gene - indication 

combinations explored (31.6% of the target genes rediscovered), with an enrichment of GWAS 

signals within 250 kbp upstream the target gene (Fig. 5.5). Moreover, in 42.8% of cases the 

drug target gene was within the five closest protein-coding genes. The percentage decreases 

when including all the genes in the region, as shown by the decrease to 16.4% (95% CI: 14.9; 

17.9) of rediscoveries for the total genetic association - drug target gene - indication 

combinations when filtering for genome-wide significant associations. Lastly, it was also 

observed that relaxing the p value threshold used to filter significant genetic association did 

not have a substantial impact on the number of drug target gene -indication pairs rediscovered.  

 

 

 

 

Figure 5.4. Illustration of the calculation of the measures genetic variant-drug target gene-

indication, drug target gene-indication and drug target gene used for the rediscoveries 

estimation. The boxes represent drug target genes B and C. Genetic variants are represented 

with lollipops.   
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Figure 5.5. Absolute and relative distance of drugged target genes to GWAS SNPs (p value £ 

5´10-8). Each point in the scatterplot represents a GWAS signal located within 1Mbp of a 

drugged gene, where the GWAS trait represents the intended indication. The position on the x 

axis indicates the absolute distance of the SNP to the drugged target gene. Position in the y axis 

indicates the number of protein-coding genes in the interval that are closer to the signal than 

the drugged target gene, excluding those in the xMHC region. The top panel indicates the signal 

density for all such SNPs, and the side panel provides the counts of drug target gene-indication 

pairs rediscovered using a gene distance rank = 1. Total number of drug target gene-indication 

pairs overlapping genetic associations (p value £ 5´10-8) with the intended indication: 425. 
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Table 5.1. Rediscoveries by relative distance. Percentage and 95% CI of rediscoveries at the level of genetic variant (i.e., the denominator is the 

total genetic variant-drug target gene-indication combinations), drug target gene-indication pair (i.e., the denominator is the total drug target 

gene-indication pairs), and drug target gene (i.e., the denominator is the total drug target gene investigated, regardless of the indication). 

Gene distance rank 

Gene distance rank including all the genes Gene distance rank including protein-coding genes 
Percentage of 

rediscoveries at the 
level of genetic 

variant (%) 

Percentage of 
rediscoveries at the level 

of drug target gene-
indication pair (%) 

Percentage of 
rediscoveries at 

the level of drug 
target gene (%) 

Percentage of 
rediscoveries at the 

level of genetic 
variant (%) 

Percentage of 
rediscoveries at the level 

of drug target gene-
indication pair (%) 

Percentage of 
rediscoveries at 

the level of drug 
target gene (%) 

SNPs with p value £ 1´10-5       
1 15.3 (14.1; 16.5) 20.7 (17.68; 23.8) 26.3 (21.7; 30.9) 19.2 (17.8; 20.6) 25.8 (22.4; 29.2) 31.5 (26.7; 36.3) 
2 3.8 (3.1; 4.5) 10.5 (8.1; 12.9) 14.3 (10.7; 17.9) 8.4 (7.4; 9.4) 14.2 (11.5; 16.9) 18.3 (14.3; 22.3) 

3 - 5 10.0 (9.0; 11.0) 16.8 (13.9; 19.7) 20.7 (16.5; 24.9) 13.3 (12.1; 14.5) 27.0 (23.6; 30.4) 33.7 (28.8; 38.6) 
6-10 8.2 (7.3; 9.1) 18.7 (15.7; 21.7) 24.9 (20.4; 29.4) 18.4 (17.1; 19.7) 32.9 (29.3; 36.5) 42.4 (37.3; 47.5) 
>10 62.8 (61.1; 64.5) 81.3 (78.3; 84.3) 86.5 (83.0; 90.0) 40.7 (39.0; 42.4) 56.1 (52.2; 60.0) 63.2 (58.2; 68.2) 

Total 3265 637 357 3265 637 357 
SNPs with p value £ 5´10-6       

1 15.4 (14.1; 16.7) 20.8 (17.5; 24.1) 25.2 (20.6; 29.8) 19.4 (18.0; 20.8) 25.9 (22.3; 29.5) 30.2 (25.4; 35.0) 
2 3.9 (3.2; 4.6) 11.1 (8.6; 13.6) 14.5 (10.8; 18.2) 8.6 (7.6; 9.6) 14.9 (12.0; 17.8) 18.3 (14.2; 22.4) 

3 - 5 10.1 (9.0; 11.2) 17.2 (14.1; 20.3) 19.7 (15.5; 23.9) 13.3 (12.1; 14.5) 27.5 (23.9; 31.1) 32.8 (27.8; 37.8) 
6-10 8.2 (7.2; 8.2) 19.2 (16.0; 22.4) 24.3 (19.8; 28.8) 18.3 (16.9; 19.7) 33.2 (29.4; 37.0) 40.7 (35.5; 45.9) 
>10 62.4 (60.7; 64.1) 82.0 (78.9; 85.1) 86.4 (82.8; 90.0) 40.5 (38.8; 42.2) 56.2 (52.2; 60.2) 63.1 (58.0; 68.2) 

Total 3118 583 345 3118 583 345 
SNPs with p value £ 5´10-8 
(Genome-wide significant)       

1 16.4 (14.9; 17.9) 24.5 (20.4; 28.6) 28.9 (23.5; 34.3) 20.5 (18.9; 22.1) 28.2 (23.9; 32.5) 31.6 (26.0; 37.2) 
2 3.9 (3.1; 4.7) 12.0 (8.9; 15.1) 15.0 (10.7; 19.3) 9.0 (7.9; 10.1) 17.6 (14.0; 21.2) 20.7 (15.8; 25.6) 

3 - 5 10.8 (9.6; 12.0) 19.8 (16.0; 23.6) 21.1 (16.2; 26.0) 13.3 (12.0; 14.6) 26.6 (22.4; 30.8) 29.7 (24.2; 35.2) 
6-10 8.0 (6.9; 9.1) 20.5 (16.7; 24.3) 24.4 (19.2; 29.6) 17.5 (16.0; 19.0) 33.9 (29.4; 38.4) 41.4 (35.5; 47.3) 
>10 60.9 (59.0; 62.8) 80.2 (76.4; 84.0) 86.5 (82.4; 90.6) 39.7 (37.8; 41.6) 55.3 (50.6; 60.0) 62.8 (57.0; 68.6) 

Total 2441 425 266 2441 425 266 
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5.4.2. Probability of success and phase progression given genetic support 

To provide a revised estimate of the probability of drug development progression given 

the drug target has genetic support in the intended indication, the dataset was expanded to drugs 

in clinical development (phase I, II, III clinical trials). 

Compounds at various stages of clinical development, their indications, maximum 

development phase and targets were extracted from ChEMBL v25. Of a total of 2,675 

compounds, 2,275 were known to modulate the target encoded by 1,113 non-xMHC genes for 

1,143 UMLS indications. Of the 1,113 non-xMHC genes, 604 encoded single protein targets, 

668 encoded a protein belonging to a protein family or protein complex, eight encoded proteins 

involved in a selectivity group (i.e. pair of proteins for which selectivity has been assessed), 

two encoded a part of a chimeric protein, and four encoded proteins involved in protein-protein 

interactions. Data were aggregated at drug target gene-indication level to avoid duplications 

due to shared mechanism of action between compounds and to account for multiple genes 

involved in a single target scenario (i.e. protein complex). This yielded a total of 32,022 drug 

target gene-indication pairs. 

To allow comparisons with previous estimates, the approach described by Nelson et al., 

20152 was followed and the summary results were filtered for those GWAS traits that contained 

at least 5 genome-wide significant associations (p value £ 5´10-8), yielding 3,403 traits that 

had been reasonably investigated by GWAS.  

To investigate the association of genetic support for progression or approval of drug 

target-indications, the overlap between the 3,403 GWAS traits and the 1,143 indications 

(UMLS concepts) reported in ChEMBL v25 was used (Fig. 5.2). This returned a total of 309 

unique indications for 1,078 unique drug target genes (18,065 target genes-indications pairs, in 
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contrast to 4,184 pairs by Nelson et al. 20152), of which 1,969 target gene-indication pairs 

corresponded to 144 unique indications and 639 unique targets encoding genes for approved 

drugs. To determine genetic support, two previously published definitions of genetic evidence 

were used and compared: i) if a genetic association with the intended indication was present 

within the gene boundaries plus or minus 5 kbp2 or ii) if the target gene was the closest protein-

coding gene according to their base pair distance (relative distance or gene distance rank)1. 

Of the 1,969 approved target gene-indication pairs that overlapped genetic associations 

with the intended indication, 123 (6.2%; 95% CI: 5.2; 7.3) and 150 (7.6%; 95%CI: 6.4; 8.8) 

approved drug target-indications pairs were supported by one or more genetic associations, 

when defining genetic support based on absolute distance or relative distance, respectively. 

Moreover, variability was found among indication areas, with chemically-induced disorders 

(e.g. alcoholism) and circulatory system diseases showing the highest degree of genetic support 

(Fig. 5.6), and neoplasms and diseases of the genitourinary system the lowest evidence. Such 

low genetic support for drug targets in neoplasms could be explained by cancer drugs targeting 

proteins that are overexpressed in the tumour due to somatic mutations, and therefore, genetic 

associations from GWAS which are based on germline variation may not be as useful in these 

diseases. As expected, the percentage of drug target gene - indication pairs with genetic 

evidence increased with phase progression (Table 5.2). For instance, when using the relative 

distance (gene distance rank = 1) to define genetic evidence, 2.9% of drug target gene – 

indication pairs had genetic support at phase I compared to the 7.6% at approved phase.  
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Table 5.2. Drug target gene - indication pairs with genetic support by maximum phase of 

indication and source of genetic evidence 

Maximum 
phase of 

indication 

Number of drug 
target gene – 

indication pairs 

Number of drug 
target gene – 

indication pairs 
with genetic 

support 

Percentage Source of genetic 
evidence 

Phase I 3293 69 2.10 absolute distance 
Phase II 8279 174 2.10 absolute distance 

Phase III 4524 147 3.25 absolute distance 
Approved 1969 123 6.25 absolute distance 

Total 18065 513 2.84 absolute distance 
Phase I 3293 95 2.88 relative distance 

Phase II 8279 227 2.74 relative distance 
Phase III 4524 185 4.09 relative distance 

Approved 1969 150 7.62 relative distance 
Total 18065 657 3.64 relative distance 
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Figure 5.6. Proportion of approved target-indications pairs by disease area with genetic support. 

Genetic support defined as a genetic association is present within 5kbp window from the gene 

(a) or the target gene being the closest gene to a genetic association with the intended indication 

(b). Disease are is defined by ICD10 chapter. 

a 

b 
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Subsequently, I calculated the probabilities, likelihoods and odds ratios as described in 

Figure 5.1 to estimate the rate of success and phase progression given genetic support using 

contingency tables (Appendix 5.C). It was found that the probability of a drug target gene - 

indication pair with genetic support (gene distance rank = 1) progressing from phase I to 

approval was 2.18 (95%CI: 1.86; 2.51) times the probability of progressing without genetic 

evidence. For drug target gene – indication pairs that did not progress in the pipeline, it was 

found that the lack of genetic support, estimated as the probability of no progression without 

genetic support P(S-|G-) divided by the probability of no progression with genetic support P(S-

|G+), had the greatest impact from phase II to phase III (1.40, 95%CI: 1.28; 1.56; Appendix 

5.C), as expected since phase II trials aim to evaluate clinical efficacy. Lastly, the ratio of the 

probability of a drug target gene – indication pair progressing in the drug development pipeline 

with genetic support P(S+|G+) was compared to the probability of the drug progressing without 

genetic support P(S+|G-)  to that previously reported by Nelson et al., 20152 (Table 5.3). These 

findings suggest that selecting genetically supported targets could increase the success rate in 

clinical development and, after the comparison with previous studies, the estimates in the 

current analysis which are based on a larger dataset indicate that the increase may be greater 

than two-fold. 
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Table 5.3. Comparison of the relative value of genetic support for the probability that a target 

indication-pair progresses along the drug development pipeline with estimates by Nelson et al. 

20152.  

 

 

 

!(# + |& +)
!(# + |& −) 

 

 

 

Data source for genetic 

associations: GWAS 

Catalog 

(Genetic support based 

on absolute distance) 

Data source for genetic 

associations: GWAS 

Catalog 

(Genetic support based 

on relative distance) 

Data source for 

genetic associations: 

GWASdb 

(Nelson et al. 2015) 

Phase I to approval 2.3 (1.9; 2.7) 2.2 (1.9; 2.5) 1.8 (1.3; 2.3) 

Phase III to approval 1.5 (1.3; 1.8) 1.5 (1.3; 1.7) 1.0 (0.8; 1.2) 

Phase II to Phase III 1.4 (1.3; 1.5) 1.4 (1.3; 1.5) 1.4 (1.2; 1.7) 

Phase I to Phase II 1.1 (1.0; 1.1) 1.0 (1.0; 1.1) 1.2 (1.1; 1.3) 

Total number of target-

indication pairings 

evaluated 

18,065 18,065 4,184 
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5.5. Discussion 

5.5.1. Summary 

The growing interest and investment in human genomics to inform drug development 

demands solid evidence of the potential value of GWAS and GWAS-based approaches for 

target identification and validation. In the previous chapter it was shown that, despite the 

increasing evidence from the published literature on the usefulness of human genetic data in 

drug target discovery, prioritisation and validation, a large proportion of human diseases have 

not yet been studied by GWAS and still an enormous sample space of genes – human diseases 

can be interrogated through GWAS to generate evidence on novel drug target gene – indication 

pairs, repurposing opportunities and expansion of new indications for drugs already approved. 

The analysis presented in this chapter further supports previous statements on the potential of 

genetic evidence in drug development by providing a revised estimate of the likelihood of 

progression in the drug development pipeline and a detailed analysis of the characteristics of 

the approved drug target-indication pairs rediscovered by GWAS. 

In this chapter I investigated the number of drug target gene - indications pairs 

rediscovered by genetics by interrogating publicly available GWAS data from studies based 

research-based case ascertainment (GWAS Catalog) and routine electronic health records (UK 

Biobank). The findings show that, as the flanking region expanded, the number of target-

indications rediscovered increased at the cost of increasing the median number of protein-

coding genes between the target gene and the genetic association. Using a stringent p value 

threshold to select significant associations may lead to an oversight of true genetic associations, 

and relaxing the p value threshold to 5´10-6 increased the percent of rediscoveries by 32% on 

average. Moreover, in 21% of the associations-target-indications pairs explored the closest 

protein-coding gene was the target gene, which represents 32% of the total drug target genes 



 135 

available to be rediscovered. Further, in up to 43% of the genetic association – drug target gene  

- indication combinations the target gene was within the five closest genes.  

Using a ‘truth’ set of drug target-indication pairings, I provided further evidence that 

pairings with genetic support are twice more likely to get approved than those without genetic 

support (2.18; 95%CI: 1.86; 2.51). I found that the probability of progression given genetic 

support increases along the clinical phases (Table 5.3) and that the lack of genetic support had 

the greatest impact from phase II to phase III (P(S-|G-) / P(S-|G+) = 1.40, 95%CI: 1.28; 1.56), 

where drugs are typically tested for clinical efficacy. 

 

5.5.2. Research in context 

The results presented here are compared to existing knowledge in this area.  Similar to 

the findings presented here, a study by Mountjoy et al., 20217 and funded by OpenTargets 

which evaluated different genomic features in a model to predict causal protein-coding genes 

at GWAS loci reported that the mean distance was the most predictive feature, where the 

distance relative to other genes is more important than the absolute distance. The present study 

also showed that the relative distance (gene distance rank = 1) rediscovered more drug target-

indication pairs than the use of the absolute distance (i.e., absolute distance). In addition, it was 

found that in 27% of the drug target gene – indication pairs, genetic associations with the 

indication were within 1 Mbp from the drug target gene, and that increasing the genomic 

distance led to a change in the curve from exponential to logarithmic (Fig. 5.1) suggesting that 

expanding the region around the drug target gene would not substantially increase the number 

of rediscoveries but rather increase the median number of protein-coding genes between the 

target gene and the genetic association. In fact, in a recent publication Fauman et al.,20225 have 

estimated a distance cut-off of 944 kbp (95%CI 767-1,161) separating the cis and trans 
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regimes, which in line with the results from this chapter, suggests that approaches for mapping 

genetic associations to genes based on distance should be restricted to a maximum of 1 Mbp.  

Previous work by Nelson et al., 20152 and King et al., 20193 showed that targets with 

genetic evidence were more likely to be successful in clinical development. Here, using two 

approaches for genetic evidence and a larger dataset (18,065 drug target-indications pairs), I 

further confirmed that the probability of a target-indication pair with genetic support 

progressing from phase I to approval to the probability of progressing without genetic evidence 

is greater than two-fold.  

 

5.5.3. Strengths and limitations 

This study has several strengths. First, the ‘truth’ dataset included 32,022 drug target-

indications pairs as the initial set to estimate the value of genetic support in phase progression. 

This presents almost 10,000 more pairings compared to the target-indication pairs reported by 

King et al., 20193 (21,934) and that used by Nelson et al., 20152 (19,085). Second, it focused 

not only on GWAS data from studies based on research-based case ascertainment, but also 

included genetic associations from electronic health records (UK Biobank). Third, two metrics 

based on absolute distance were used to define genetic evidence, where assigning the closest 

gene as the causal gene has been previously described as the simplest and, in many cases, the 

most accurate way to assign genetic association to causal genes. Fourth, different probabilities, 

odds and ratios often used to evaluate the performance of diagnostic tests, such as the positive 

predictive value and the false discovery rate, were computed to provide multiple metrics of the 

value of genetic support by clinical phase.  
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Some limitations of this study are noteworthy. First, while this study covered the largest 

dataset of drug target gene - indication pairs to date, there were limitations due to i) the genetic 

mapping, as the ability to identify causal genes was based on proximity-based rather than co-

localisation approaches ; and ii) the indication mapping, as it may exclude drug target gene -

indication pairs where the intended indication has not been studied by GWAS but has available 

data on clinically-validated biomarkers. However, the latter issue should have been captured 

to some extent by the annotation of related terms in the GWAS Catalog. Moreover, certain 

indications may have been studied by GWAS but could not be included in this study because 

the summary statistics were not deposited in the GWAS Catalog. Even for those studies 

included in the analysis, genetic associations may have been missed due to sample sizes not 

being large enough to detect all the responsible genes; or due to incomplete genomic coverage 

by the genotyping array. There are several reasons for drug discontinuation besides lack of 

efficacy, including safety concerns, strategic decisions or the compound failing to show extra 

benefits compared to another treatment. The limited data in the public domain on drug failures 

and their reason for discontinuation makes it difficult to account for this variable in the current 

analysis. However, it is expected that the inclusion of such drug candidates will not inflate the 

inference made on the value of genetic support on phase progression. A 1:1 relationship was 

assumed between the gene and the encoded protein that is targeted by a drug. Such assumption 

may not always prevail as some genes encode multiple proteins due to, for example, post-

transcriptional modifications. Lastly, another potential source of bias is that genetic evidence 

from GWAS may already be used to inform drug development. However, in line with the 

argument presented by Nelson et al., 20152 and due to the long timelines in drug development 

(on average 10 years), the impact of this bias would not inflate the estimate but rather 

underestimate the value of genetic support as it would increase the number of drugs with 

genetic support in the early phases of the development process.  
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5.6. Conclusion 

As described in Chapter 4, only a small fraction of drug indications have been 

investigated by GWAS. However, the analysis performed in this chapter provides further 

evidence that drug target – indications pairings with genetic support from GWAS are more 

likely to progress in the drug development pipeline. In the next chapter, I will investigate how 

GWAS data can be leveraged using drug target Mendelian Randomisation to further support 

target validation by inferring the correct mechanism of action for a new drug.  
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5.8. Appendices 

Appendix 5.A. Indications of approved drugs studied by GWAS. 

UMLS concept UMLS 
concept ID 

 UMLS concept UMLS 
concept ID 

Carcinoma, Non-Small-Cell Lung C0007131  Melanoma C0025202 
Depressive Disorder C0011581  Epilepsies, Partial C0014547 
Acute Pain C0184567  Osteoporosis C0029456 
Schizophrenia C0036341  Osteoporosis, Postmenopausal C0029458 
Bipolar Disorder C0005586  Multiple Myeloma C0026764 
Aggression C0001807  Tobacco Use Disorder C0040336 
Tendinopathy C1568272  Primary Ovarian Insufficiency C0085215 
Rhinitis, Allergic, Seasonal C0018621  Osteoporotic Fractures C0521170 
Asthma C0004096  Osteitis Deformans C0029401 
Rhinitis, Allergic C2607914  Acne Vulgaris C0001144 
Urticaria C0042109  Arthritis, Juvenile C3495559 
Cardiovascular Diseases C0007222  Prostatic Hyperplasia C2937421 
Migraine Disorders C0149931  Arthritis, Rheumatoid C0003873 
Hodgkin Disease C0019829  Colitis, Ulcerative C0009324 
Psychotic Disorders C0033975  Depression C0011570 
Autistic Disorder C0004352  Epilepsy C0014544 
Depressive Disorder, Major C1269683  Neuroendocrine Tumors C0206754 
Anxiety C0003467  Neoplasm Metastasis C0027627 
Back Pain C0004604  Thyroid Neoplasms C0040136 
Hypertension C0020538  Diarrhea C0011991 
Arrhythmias, Cardiac C0003811  Cystic Fibrosis C0010674 
Nephrotic Syndrome C0027726  Waldenstrom Macroglobulinemia C0024419 
Stroke C0038454  Multiple Sclerosis, Chronic 

Progressive 
C0393665 

Heart Failure C0018801  Granulomatosis with Polyangiitis C3495801 
Liver Cirrhosis C0023890  Microscopic Polyangiitis C2347126 
Dyslipidemias C0242339  Multiple Sclerosis C0026769 
Venous Thromboembolism C1861172  Psoriasis C0033860 
Atrial Fibrillation C0004238  Precursor Cell Lymphoblastic 

Leukemia-Lymphoma 
C1961102 

Thrombosis C0040053  Crohn Disease C0010346 
Venous Thrombosis C0042487  Leukemia, Myeloid, Acute C0023467 
Pulmonary Embolism C0034065  Prostatic Neoplasms, Castration-

Resistant 
C3658267 

Immune System Diseases C0021053  Melanosis C0025209 
Polycythemia Vera C0032463  Lentigo C0023321 
Neoplasms C0027651  Arthritis, Psoriatic C0003872 
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UMLS concept UMLS 
concept ID 

 UMLS concept UMLS 
concept ID 

Leukemia, Myelogenous, Chronic, 
BCR-ABL Positive 

C0023473  Peritoneal Neoplasms C0031149 

Prostatic Neoplasms C0033578  Ovarian Neoplasms C0919267 
Carcinoma, Renal Cell C0007134  Familial Primary Pulmonary 

Hypertension 
C0340543 

Gastroesophageal Reflux C0017168  Virus Diseases C0042769 
Lymphoma, Non-Hodgkin C0024305  Hepatitis B C0019163 
Leukemia, Lymphocytic, Chronic, B-
Cell 

C0023434  Ventricular Dysfunction, Left C0242698 

Lymphoma, Follicular C0024301  Parkinson Disease, Secondary C0030569 
Parkinson Disease C0030567  Erectile Dysfunction C0242350 
Myelodysplastic Syndromes C3463824  Diabetic Nephropathies C0011881 
Pruritus C0033774  Dementia C0497327 
Sinusitis C0037199  Diabetic Retinopathy C0011884 
Sepsis C0243026  Pancreatic Neoplasms C0030297 
Restless Legs Syndrome C0035258  Precursor B-Cell Lymphoblastic 

Leukemia-Lymphoma 
C0023485 

Tourette Syndrome C0040517  Anemia C0002871 
Diabetes Mellitus, Type 2 C0011860  Kidney Diseases C0022658 
Conduct Disorder C0149654  Wet Macular Degeneration C2237660 
Angioedema C0002994  Postpartum Hemorrhage C0032797 
Heart Arrest C0018790  Alzheimer Disease C0002395 
Glaucoma C0017601  Myasthenia Gravis C0026896 
Hemorrhage C0019080  Macular Edema C0271051 
Pain C0030193  Retinal Neovascularization C0035320 
Liver Cirrhosis, Biliary C0023892  Colorectal Neoplasms C0009404 
Infection C3714514  Ventricular Fibrillation C0042510 
HIV Infections C0019693  Inflammation C0021368 
Turner Syndrome C0041408  Leukemia C0023418 
Renal Insufficiency, Chronic C0403447  Gout C0018099 
Diabetes Mellitus C0011849  Hyperuricemia C0740394 
Coronary Artery Disease C1956346  Common Cold C0009443 
Angina Pectoris C0002962  Familial Mediterranean Fever C0031069 
Hyperlipidemias C0020473  Epilepsy, Absence C0014553 
Myocardial Infarction C0027051  Acute Coronary Syndrome C0948089 
Hypercholesterolemia C0020443  Pulmonary Disease, Chronic 

Obstructive 
C0024117 

Nausea C0027497  Peripheral Arterial Disease C1704436 
Varicose Veins C0042345  Bronchitis, Chronic C0008677 
Glaucoma, Open-Angle C0017612  Urinary Bladder Neoplasms C0005695 
Ocular Hypertension C0028840  Intraocular Pressure C0021888 
Hepatitis C, Chronic C0524910  Rosacea C0035854 
Kidney Failure, Chronic C0022661  Pharyngitis C0031350 
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UMLS concept UMLS 
concept ID 

 UMLS concept UMLS 
concept ID 

Breast Neoplasms C1458155  Idiopathic Pulmonary Fibrosis C1800706 
Sleep Initiation and Maintenance 
Disorders 

C0021603  Attention Deficit Disorder with 
Hyperactivity 

C1263846 

Osteoarthritis C0029408  Influenza, Human C0021400 
Anxiety Disorders C0003469  Dysmenorrhea C0013390 
Panic Disorder C0030319  Stomach Ulcer C0038358 
Dupuytren Contracture C0013312  Spondylitis, Ankylosing C0038013 
Obesity C0028754  Esophagitis C0014868 
Dermatitis, Atopic C0011615  Heartburn C0018834 
Rheumatic Diseases C0035435  Duodenal Ulcer C0013295 
Polymyositis C0085655  Anemia, Iron-Deficiency C0162316 
Pemphigus C0030807  Lupus Erythematosus, Systemic C0024141 
Stevens-Johnson Syndrome C0038325  Narcolepsy C0027404 
Chronic Pain C0150055  Seasonal Affective Disorder C0085159 
Sarcoidosis C0036202  Sleep Wake Disorders C4042891 
Dermatomyositis C0011633  Thrombocytopenia C0040034 
Gaucher Disease C0017205  Glioblastoma C0017636 
Irritable Bowel Syndrome C0022104  Huntington Disease C0020179 
Vomiting C0042963  Dermatitis Herpetiformis C0011608 
Skin Diseases C0037274  Substance-Related Disorders C0236969 
Hypersensitivity C0020517  Lipodystrophy C0023787 
Glaucoma, Angle-Closure C0017605  Cough C0010200 
Tachycardia, Paroxysmal C0039236  Tuberculosis, Pulmonary C0041327 
Chorioretinitis C0008513  Hypertension, Pulmonary C0020542 
Intracranial Arteriosclerosis C0007771  Pneumonia C0032285 
Anemia, Hemolytic C0002878  Muscular Dystrophy, Duchenne C0013264 
Neuralgia C0027796  Uveitis, Anterior C0042165 
Alcoholism C0001973  Dermatitis, Seborrheic C0036508 
Uterine Cervical Neoplasms C0007873  Neurotic Disorders C0027932 
Adrenal Insufficiency C0001623  Eye Diseases C0015397 
Keratitis C0022568  Diabetes Mellitus, Type 1 C0011854 
Tuberculosis, Meningeal C0041318  Colonic Neoplasms C0009375 
Otitis Externa C0029878  Thrombocythemia, Essential C0040028 
Herpes Labialis C0019345  Urinary Tract Infections C0042029 
Hypothyroidism C0020676  Shock, Septic C0036983 
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Appendix 5.B. Contingency tables to estimate the impact of genetic evidence on progressing 

in the drug development pipeline, for drug target gene - indication pairs where the indication 

had at least 5 genetic associations reaching genome-wide significance. 

 Absolute distance1 Relative distance2 

 
Success (S+) No success (S-) Success (S+) No success (S-) 

Phase I to phase II     
Genetic support (G+) 444 69 562 95 
No genetic support (G-) 14328 3224 14210 3198 
 
Phase II to phase III     

Genetic support (G+) 270 174 335 227 
No genetic support (G-) 6223 8105 6158 8052 
 
Phase III to Approval     

Genetic support (G+) 123 147 150 185 
No genetic support (G-) 1846 4377 1819 4339 
 
Phase I to Approval     

Genetic support (G+) 123 390 150 507 
No genetic support (G-) 1846 15706 1819 15589 

 

1Absolute distance: genetic association with the intended indication present within the gene boundaries plus or 

minus 5 kbp 

2Relative distance: target gene is the closest protein-coding gene according to their base pair distance (i.e., 

gene distance rank = 1)
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Appendix 5.C. Probabilities, likelihoods and odds ratios to estimate the rate of success and phase progression given genetic support based on the 

2x2 tables in Appendix 5.B. 

 Genetic support based on the absolute distance Genetic support based on the relative distance (distance rank = 1) 

 Phase I to II Phase II to III Phase III to 
approval 

Phase I to 
approval Phase I to II Phase II to III Phase III to 

approval 
Phase I to 
approval 

P(S+|G+) =Positive predictive value 0.87 (0.83; 0.89) 0.61 (0.56; 0.65) 0.46 (0.40; 0.52) 0.24 (0.20; 0.28) 0.86 (0.83; 0.88) 0.60 (0.56; 0.64) 0.45 (0.39; 0.50) 0.23 (0.20; 0.26) 

P(S+|G-) = False omission rate 0.82 (0.81; 0.82) 0.43 (0.43; 0.44) 0.30 (0.29; 0.32) 0.11 (0.10; 0.11) 0.82 (0.81; 0.82) 0.43 (0.43; 0.44) 0.30 (0.29; 0.31) 0.10 (0.10; 0.11) 

P(S-|G-) = Negative predictive value 0.18 (0.18; 0.19) 0.57 (0.56; 0.57) 0.70 (0.69; 0.71) 0.89 (0.89; 0.90) 0.18 (0.18; 0.19) 0.57 (0.56; 0.57) 0.70 (0.69; 0.72) 0.90 (0.89; 0.90) 

P(S-|G+) = False discovery rate 0.13 (0.11; 0.17) 0.39 (0.35; 0.44) 0.54 (0.48; 0.60) 0.76 (0.72; 0.80) 0.14 (0.12; 0.17) 0.40 (0.36; 0.45) 0.55 (0.50; 0.61) 0.77 (0.74; 0.80) 

P(G+|S+) = Recall rate 0.03 (0.03; 0.03) 0.04 (0.04; 0.05) 0.06 (0.05; 0.07) 0.06 (0.05; 0.07) 0.04 (0.04; 0.04) 0.05 (0.05; 0.06) 0.08 (0.06; 0.09) 0.08 (0.06; 0.09) 

P(G+|S-) = False positive rate 0.02 (0.02; 0.03) 0.02 (0.02; 0.02) 0.03 (0.01; 0.05) 0.02 (0.02; 0.03) 0.03 (0.02; 0.04) 0.03 (0.02; 0.03) 0.04 (0.02; 0.05) 0.03 (0.03; 0.03) 

P(G-|S+) = False negative rate 0.97 (0.97; 0.97) 0.96 (0.95; 0.96) 0.94 (0.93; 0.95) 0.94 (0.93; 0.95) 0.96 (0.96; 0.97) 0.95 (0.94; 0.95) 0.92 (0.91; 0.94) 0.92 (0.91; 0.94) 

P(G-|S-) = True negative rate 0.98 (0.97; 0.98) 0.98 (0.97; 0.98) 0.97 (0.96; 0.97) 0.98 (0.97; 0.98) 0.97 (0.96; 0.98) 0.97 (0.97; 0.98) 0.96 (0.95; 0.98) 0.97 (0.97; 0.97) 

odds(S+|G+) 6.43 (6.18; 6.69) 1.55 (1.36; 1.74) 0.84 (0.59; 1.08) 0.32 (0.11; 0.52)  5.92 (5.70; 6.13)  1.48 (1.33; 1.65) 0.81 (0.60; 1.03) 0.30 (0.11; 0.48) 

odds(S+|G-) 4.44 (4.40; 4.48) 0.77 (0.73; 0.80) 0.42 (0.37; 0.48) 0.12 (0.07; 0.17) 4.44 (4.41; 4.48) 0.76 (0.73; 0.80) 0.42 (0.36; 0.47) 0.12 (0.07; 0.16) 

P(S+|G+)/P(S+|G-)  1.06 (1.02; 1.1) 1.40 (1.29; 1.51) 1.54 (1.33; 1.75) 2.28 (1.91; 2.65) 1.05 (1.01; 1.08) 1.38 (1.28; 1.47) 1.52 (1.33; 1.70) 2.18 (1.86; 2.51) 

P(S-|G-)/P(S-|G+) 1.37 (1.11; 1.74) 1.44 (1.29; 1.64) 1.29 (1.16; 1.45) 1.18 (1.12; 1.24) 1.27 (1.07; 1.56) 1.40 (1.28; 1.56) 1.28 (1.16; 1.41) 1.16 (1.11; 1.21) 

Positive likelihood ratio 1.43 (1.11; 1.84) 1.98 (1.64; 2.39) 1.92 (1.52; 2.43) 2.58 (2.11; 3.14) 1.32 (1.06; 1.66) 1.88 (1.60; 2.22) 1.86 (1.51; 2.29) 2.42 (2.03; 2.88) 

Negative likelihood ratio 0.99 (0.99; 1.00) 0.98 (0.97; 0.98) 0.97 (0.96; 0.98)  0.96 (0.95; 0.97) 0.99 (0.98; 0.99) 0.98 (0.97; 0.98) 0.96 (0.95; 0.96) 0.95 (0.94; 0.97) 

Odds ratio 1.45 (1.12; 1.87) 2.02 (1.67; 2.45) 1.98 (1.55; 2.54) 2.68 (2.18; 3.30) 1.33 (1.07; 1.66) 1.93 (1.63; 2.29) 1.93 (1.54; 2.41) 2.54 (2.10; 3.10) 
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6 |  The support of genetic evidence from drug target 

Mendelian Randomisation for approved drug targets 

 

6.1. Abstract 

This chapter describes the application of the drug target MR to a set of approved drug 

target gene - indication pairs to evaluate if the framework recapitulates the known mechanism 

of action in terms of effect direction and significance. The analysis focuses on approved drugs 

where protein quantitative trait locus (pQTL) data could be used to instrument the effect on the 

drug target. A ‘truth’ set of 160 licensed drug target gene-indication pairs with an available 

pQTL genome-wide association study (GWAS) as well as an available GWAS on the intended 

indication was defined. The pQTL GWAS data was based on the SomaLogic assay which 

utilises short single-stranded oligonucleotides (‘SOMAmers’) that bind with high affinity and 

specificity to a variety of proteins and enable the quantification of protein levels. A total of 320 

drug target gene – SOMAmer – GWAS trait combinations was obtained after mapping 

SOMAmers binding drug target proteins to the encoding genes and to the GWAS trait 

corresponding to the approved indication. The application of the drug target MR approach 

consistently (p value £ 0.05 in over 50% of the models) rediscovered the mechanism of action 

of only a small proportion (16 out of 121 in the most conservative analysis) of the drug target 

gene – SOMAmer – trait combinations explored using the standard set of drug target MR 

parameters. While most of the pairings could not be evaluated due to lack of genetic 

associations with the exposure that meet the requirements to be in the genetic instrument, 11% 

(14 out of 121 in the most conservative analysis) were in the unanticipated direction of effect 
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based on the known drug mechanism. Such pairings  are also discussed in the chapter to help 

inform future pQTL-weighted drug target MR. The findings suggest that a set of gold standard 

parameters for the optimal performance of drug target MR cannot be defined yet, and the 

selection of exposure data and MR parameters should be tailored to the drug target-indication 

of interest. Situations where there is a discordance between the drug target tissue, protein effect 

tissue and assay tissue could yield misleading results. Therefore, given the large proportion of 

results in the unanticipated direction of effect, expert knowledge is essential to interpret 

findings and minimise the risk of naïve interpretations, particularly when using the pQTL-

weighted drug target MR approach for discovery of novel drug target mechanisms or prediction 

of adverse events.  
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6.2. Introduction 

Genome-wide association studies (GWAS) can potentially inform drug target 

prioritisation through the identification of genetic variants in drug target genes that also impact 

disease risk. However, deciding whether to design an inhibitor or activator (blocker or agonist 

for receptor targets) of the potential drug target cannot be readily inferred simply from 

identification of the locus. The cis-Mendelian Randomisation (MR) approach (‘drug target 

MR’)1 has been proposed to help infer the correct mechanism of action for a new drug. In an 

ideal scenario, a drug target MR analysis would assess the effect of modulating protein activity 

or function with respect to disease risk using genetic instruments in the encoding gene. This is 

because the vast majority of successful drugs achieve their effect by binding to and modifying 

the activity of a protein2. For example, small-molecule inhibitors inhibit catalytic sites of 

enzymes and antagonists bind in well-defined pockets that block receptor function, while 

agonists or activators, which are often more challenging to develop, increase enzyme activity 

or activate receptors. Therefore, the inference from a drug target MR analysis using such data 

would determine whether and by how much an increase or decrease in the protein function or 

activity impacts disease risk, suggesting a plausible mechanism of action for the drug. 

However, GWAS on protein activity are limited, expensive and unscalable. Recently, 

GWAS of circulating protein concentration (pQTLs) have become available such as the 

INTERVAL study3 (~3,000 proteins) and the SCALLOP Consortium4 (~1,000 proteins). These 

data provide estimates for a substantial proportion of the human proteome, with the latest 

assays from SomaLogic covering ~7,000 proteins (SomaLogic v4.1 panel). If protein 

expression (pQTL) acts as a potential proxy for protein function or activity, then the new 

technologies for large-scale proteomics analysis could be used to inform drug target validation 

using drug target MR. 
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Even under the assumption that pQTLs are a valid proxy for protein function or activity, 

the performance of drug target MR is influenced by multiple parameters, some of them intrinsic 

to the MR methodology (e.g., modelling of the correlation between genetic instruments due to 

the linkage disequilibrium or the strength of the genetic associations used to instrument the 

exposure), and others specific to each drug target gene – outcome pairing, for example, 

expected protein abundance in plasma, number of protein-coding variants in the gene or protein 

subunits. 

In this chapter, I evaluate the drug target MR framework using pQTL data by: 

1. Generating pQTL data of 4,911 circulating protein levels in 2,253 participants from the 

UCLEB Consortium5, to contribute to a meta-analysis through an established 

collaboration with Claudia Langenberg’s group at the MRC Epidemiology Unit in 

Cambridge, who had access to a further 10,708 samples assayed on the SomaLogic 5k 

panel6. 

2. Comparing genetic associations with circulating levels (pQTL) and activity data for the 

same protein for two use cases to illustrate the potential of pQTL-weighted drug target 

MR approach when GWAS data on protein activity or function is not available.  

3. Assessing the performance of the drug target MR framework as a GWAS-based 

approach to predict the effect of modulating a target in a particular disease using a 

‘truth’ set  of licensed drug target-indication pairs with available GWAS data on pQTL 

and the intended indication. 

4. Lastly, for the drug target gene – indication pairings with results consistently in the 

unanticipated direction of effect to the expected, investigating potential reasons why 
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the drug target MR framework using pQTL data did not recapitulate the known 

mechanism of action.  
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6.3. Methods 

6.3.1. pQTL data 

To improve on the publicly available data (Aim 1) I performed a discovery GWAS of the 

SomaLogic v4 platform within a subset of the UCLEB Consortium (2,253 European samples) 

against the variants on the human DrugDev array6. This genotyping array combines a genome-

wide variant backbone with enriched variant coverage in genes encoding druggable proteins. 

The design ensures capture of variation in the druggable genome therefore, it is an ideal 

platform to conduct association studies for drug target selection and validation. The SomaLogic 

assay utilises short single-stranded oligonucleotides (‘SOMAmers’) that bind with high affinity 

and specificity to a variety of proteins and enable the quantification of protein levels. The 

SomaLogic v4 platform included 5,284 SOMAmers. Following the company advice, 373 

SOMAmers were excluded due to lack of specificity or incorrect mapping, leading to a reduced 

set of 4,911 SOMAmers. SomaLogic provided a mapping file between the SomaLogic 

sequence identifier (SOMAmer) and the target identifier using UniProt identifiers (ID). Such 

Uniprot IDs were mapped to the gene encoding the protein using Ensembl version 95 

(GRCh37), which also returned gene identifiers. Of note, the same protein could be targeted 

by different SOMAmers because they target different isoforms of the same protein or because 

they bind to different epitopes, therefore, a 1:1 relationship between SOMAmer:Protein-Gene 

was not always observed in the dataset. Information on whether the measured proteins were 

located outside the cell membrane or were not secreted proteins (i.e., not present in secretion 

pathways or do not contain signal sequencies) was sourced, as the latter were not anticipated 

to be functionally circulating unless the carrying cell or a product breakdown could be found 

in blood. 
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The GWAS was performed on the rank inverse normalised residuals derived from the 

regression of the relative SOMAmers abundances on age, sex and the first ten principal 

components to account for inter and intra-sample variability. The genetic data excluded 

multiallelic variants, poorly imputed variants, and variants with minor allele count (MAC) less 

than 2. Then, a univariable linear regression model on all autosomes using an additive genetic 

model was performed using SNPTEST v2.5.47. 

The GWAS was intended to contribute to a larger meta-analysis of several cohorts 

measured by SomaLogic v4 panel, including 10,708 samples who were participants in the 

Fenland study. However, due to delays in data analysis in other cohorts, the results from the 

meta-analysis were not available at the time of the drug target MR analysis (Aim 3). Instead, 

the genetic associations identified in the Fenland study were used as they were estimated in a 

larger sample size compared to the UCLEB study, and represents the largest pQTL discovery 

GWAS at the time of analysis. Access to such data was possible thanks to an established 

collaboration with Claudia Langenberg’s group at the MRC Epidemiology Unit in Cambridge. 

 

6.3.2. GWAS data on protein activity 

To compare genetic associations with circulating protein levels (pQTL) to genetic 

associations with activity data and illustrate the potential of pQTL-weighted drug target MR 

approach when GWAS data on protein activity or function is not available (Aim 2), genetic 

associations with protein activity for two proteins were used. Genetic associations (p value £ 

5´10-8) with Butyrylcholinesterase (BCHE) were sourced from a published GWAS of 8,971 

individuals8. Genetic associations with coagulation factor VII activity data (p value £ 5´10-8) 
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were obtained from the UCLEB Consortium (8,700 participants). Variants in cis - were 

extracted based on the gene boundaries (GRCh37) plus a flanking region of 1 Mbp.  

 

6.3.3. GWAS data on drug indication 

To assess the performance of the drug target MR framework using a ‘truth’ set of licensed 

drug target-indications pairs (Aim 3), genetic associations with the intended indications were 

obtained from the public central repository (GWAS Catalog v1.0.2) and from UK Biobank 

through Neale data (GWAS Round 2, Results shared 1st August 2018). Genetic associations 

from UK Biobank were filtered for a p value £ 1´10-5 to match the minimum significance 

threshold required by the GWAS Catalog9. The GWAS Catalog included 6,021 MeSH terms 

from 3,374 publications that were mapped to UMLS concepts. The UK Biobank Neale dataset 

covered 633 ICD10 main diagnosis that were mapped to 633 UMLS concepts. The list of traits 

was expanded and manually curated by a clinical expert to include GWAS data on clinically-

relevant disease biomarkers based on quantitative traits measured in UK Biobank, UCLEB or 

available through the GWAS Catalog. A summary of the traits and data sources used as the 

outcome in the drug target MR analyses is shown in Appendix 6.A. 

 

6.3.4. Drug data 

To assess the performance of the drug target MR framework using a ‘truth’ set of licensed 

drug target-indications pairs, drug data were extracted from ChEMBL version 25 (v25)10. 

Information in ChEMBL is itself based on several resources including United States Adopted 

Name (USAN) applications, ClinicalTrials.gov; the FDA Orange Book database, the British 

National Formulary, and the ATC classification, with their intended indications sourced from 
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DailyMed and the ATC classification. The UniProt identifiers for the corresponding drug 

targets available through ChEMBL v25 were mapped to gene identifiers in Ensembl version 

95 (GRCh37) through the updated druggable genome6. Of note, some drug target multiple 

single proteins, protein families or complexes, therefore a 1:1 relationship between a 

target:protein-gene is not always observed. The standardised indications in Medical Subject 

Headings (MeSH) used in ChEMBL v25 were mapped to Unified Medical Language System 

(UMLS) concepts to facilitate further mappings (see Chapter 3.1.1). Compounds flagged as 

withdrawn, not intended for human use or whose target is encoded by a gene in the extended 

major histocompatibility complex (xMHC) region (chr6: 28477797- 33448354, GRCh37), 

were excluded from the analysis. For each drug target gene – indication pairs, the latest phase 

in development was selected for any drug and those pairs with a maximum phase of 

development equal to 4 (licensed) were selected. This yielded in 665 unique drug target genes 

and 371 unique indications. 

 

6.3.5. Drug target Mendelian Randomisation 

Drug target MR analyses were performed using different parameter combinations for 

each SOMAmer - drug target gene - trait (768 tests/pair): p value threshold (1´10-8, 1´10-6, 

1´10-4, 1´10-2), LD pruning (r2: 0.2, 0.4, 0.6, 0.8), flanking region (bp: 2500, 10000, 50000, 

100000), flanking region location (upstream, downstream or both) and minor allele frequencies 

(0.01, 0.05). To account for residual correlation between variants in the MR analyses, a 

generalised least squares framework with a LD reference dataset derived from UK Biobank 

was applied. LD reference matrices were created by extracting a random subset of 5,000 

unrelated individuals of European ancestry from UK Biobank11 using the same random seed of 

1. Variants with a MAF < 0.001, and imputation quality < 0.3 were excluded. To ensure that 
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SNPs with lower MAF have higher confidence, variants were removed if MAF < 0.005 and 

genotype probability < 0.9; MAF < 0.01 and genotype probability < 0.8; MAF < 0.03 and 

genotype probability < 0.6. A model-selection framework was used to decide between 

competing inverse-variance weighted (IVW) fixed-effects, IVW random-effects, MR-Egger 

fixed effects or MR-Egger random-effects models14. While IVW models assume an absence of 

directional horizontal pleiotropy, Egger models allow for possible directional pleiotropy at the 

cost of power. After removing variants with large heterogeneity (p value < 0.001 for Cochran’s 

Q test) or leverage, this model selection framework was re-applied and used the final model. 

Results were presented as mean difference (MD) or odds ratio (OR) with 95% confidence 

interval (95% CI). 
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6.4. Results 

6.4.1. GWAS on plasma protein circulating levels (pQTL) 

To improve on the publicly available data, a discovery GWAS of the SomaLogic v4 

platform (4,911 SOMAmers, 4,631 UniProt identifiers) was performed within a subset of the 

UCLEB Consortium (2,253 participants) against the contents of the human DrugDev array6. 

As a quality control step, for those SOMAmers also included in the INTERVAL study, the 

Pearson’s correlation between the effect sizes was calculated for those variants reported as 

‘sentinel variants’ (variants with the lowest p value in the region) by Sun et al.,3. A total of 

1,128 SOMAmers were included in the comparison exercise (382 with genetic associations in 

cis-, 841 with genetic associations in trans-). A strong correlation (ρ) was observed between 

the effect sizes (Fig. 6.1), which was higher for cis- signals (ρ = 0.96), compared to trans- 

signals (ρ = 0.75). 
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Figure 6.1. Scatterplot of pQTL effect size estimates from INTERVAL versus UCLEB subset, 

showing genetic associations in cis- (top panel) and trans- (bottom panel). ρ is Pearson’s 

correlation coefficient. The x-axis shows the per allele effect on pQTL expressed as mean 

difference (MD). 

 

6.4.2. Correlation between protein activity and circulating protein levels 

In drug target MR, genetic associations with the activity or function of the protein target 

represent the ideal exposure to instrument the therapeutic effect of modulating such target in a 

particular disease since most drugs impact protein activity or function. However, GWAS on 

protein activity or function are only available to very few proteins, and thus genetic associations 

with protein levels (known as pQTL) have been proposed instead to evaluate drug targets, under 

the assumption that the protein levels are a proxy of activity or function. Several examples 

cis- (ρ= 0.96)

trans- (ρ= 0.75)



 158 

support this, such as the drug target Mendelian randomisation of CETP or PCSK9 protein 

concentration which replicated on-target effects previously reported in clinical trials1,12. To 

evaluate this, a comparison was performed using two proteins where genetic associations were 

available for both activity and protein level. The analysis was restricted to genetic associations 

in cis-  since the aim of this comparison was to evaluate the utility of genetic variants associated 

with protein levels in drug target MR analyses, which utilises genetic instruments in-and-

around the gene encoding the protein of interest (see Chapter 2.4.1. for details). Genetic 

associations for the butyrylcholinesterase (BCHE) and coagulation factor VII protein levels 

were measured by the SomaLogic v4 platform in the Fenland cohort (10,708 participants). 

Genetic associations with protein activity for BCHE were sourced from a published GWAS of 

8,971 individuals8, and for the coagulation factor VII from the UCLEB Consortium (8,700 

participants).  

For both BCHE and coagulation factor VII there was a strong correlation between genetic 

associations with activity and level for variants acting in cis-. The Pearson’s correlation 

coefficient for the BCHE using genetic variants in cis- (n variants = 373) was ρ = 0.99 (Fig. 

6.2A). The correlation for, coagulation factor VII, was slightly lower (ρ  = 0.96, n cis- variants 

= 56), as shown in Figure 6.2B.  
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Figure 6.2. Scatterplot of effect size estimates of genetic associations with protein activity 

versus genetic associations with protein levels for butyrylcholinesterase BCHE (A) and 

coagulation factor VII (B). ρ is Pearson’s correlation coefficient. The x-axis shows the per 

allele effect on protein activity and the y-axis the per allele effect on pQTL expressed as mean 

difference (MD). 

 

6.4.3. Drug target MR rediscoveries of approved mechanism of actions 

In the previous section it has been described that, in two examples where comparisons 

were possible, genetic associations with protein level and activity were highly correlated for 

variants acting in cis-. Although only two proteins were investigated due to the lack of available 

data, such observations provided further evidence to that already in the literature12–15 that 

supports the use of genetic associations in or near a gene encoding a drug target protein that 

alter the protein’s expression as a tool to anticipate the phenotypic effect of drug action on the 

same target. Based on the literature and as described in the previous section, variation in 

circulating plasma protein concentration (pQTL) was used as a proxy for protein activity to 

instrument the effect of perturbing a particular drug target. The aim was to investigate if the 

drug target MR framework rediscovered the mechanism of action of licensed drugs where 

A B

ρ= 0.99

BCHE

ρ= 0.96

Factor VII
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pQTL associations were available for the target protein and the intended indication or a 

clinically-relevant disease biomarker had been studied in GWAS.  

Of the 665 genes that encode a human proteins targeted via a licensed drug (Fig. 6.3), 

205 had pQTL data available for the encoded protein. The SomaLogic assay utilises short 

single-stranded oligonucleotides (‘SOMAmers’) that bind with high affinity and specificity to 

a variety of proteins and enable the quantification of protein levels. The SOMAmer were 

mapped to target identifiers by the company using UniProt identifiers (ID). Such Uniprot IDs 

were mapped to the gene encoding the protein using Ensembl version 95 (GRCh37). Of note, 

the same protein could be targeted by different SOMAmers because they target different 

isoforms of the same protein or because they bind to different epitopes, therefore, a 1:1 

relationship between SOMAmer:Protein-Gene was not always observed in the dataset. 

After curating the overlap between drug indications and genetic studies with available 

summary statistics in the GWAS Catalog, the final dataset comprised 320 SOMAmer-drug 

target gene-trait pairs (188 SOMAmer-drug target gene-indication pairs) for 48 indications, 71 

drug target genes and 112 drugs (Fig. 6.3). Data was aggregated to account for targets measured 

by multiple SOMAmers. This was done because the protein encoded by a drug target gene 

could be measured by more than one SOMAmer through different aptamers (i.e., binding to 

different domains). By aggregating the data at the SOMAmer-drug target gene-trait, protein 

differences in binding across SOMAmers could be taken into account in the analysis. Of the 

71 target genes, 24 (34%) encoded proteins located outside the cell membrane, while 47 (66%) 

encoded proteins not secreted (i.e. are not present in secretion pathways or do not contain signal 

sequencies, and thus not anticipated to be functionally circulating unless the carrying cell or a 

product breakdown could be found in blood).  
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Figure 6.3.  Summary of data sources and mappings between them. Summary of each data 

source and the key filtering and processing steps applied to create the final set of gene-trait and 

drug target–indication combinations investigated in this study. GWAS Catalog sources 

correspond to unique PubMed ID.  

Phase Compounds Target Genes Indications

1 1,196 955 516

2 1,413 993 816

3 975 797 689

4 898 665 371

Drug data
(ChEMBL version 25)

2,675 compounds
1,253 indications (UMLS concepts)

2,275 compounds
1,113 unique target genes

1,143 unique indications (UMLS concepts)

2,288 compounds
1,125 unique target genes

1,143 unique indications (UMLS concepts)

1. Map to drug target 
genes

2. Exclusion of HLA region

• Approved target-indications
• Indications with publicly available GWAS 

summary statistics
• Manual curation of quantitative biomarkers
• Manual curation of drug indications

GWAS data

GWAS catalogue (December 2019) 
:
• 6,021 traits 
• 3,373 sources

UKBB - Neale data: 
• 633 ICD10 diagnosis

pQTL data 
(SomaScan v4 platform)

4,911 SOMAmers

Drug target MR
rediscoveries

• 67 GWAS traits (48 indications):
• 31 binary traits
• 36 quantitative traits

• 71 drug target genes
• 287 drug target gene-traits pairs (160 drug target 

gene-indication pairs)
• 320 SOMAmer-drug target gene-traits pairs (188 

SOMAmer-drug target gene-indications pairs)

Non-human targets 
(e.g., tumoral, antimicrobial…)

12 target genes in or near 
the HLA region

3. Stratification by 
development phase

Analysis set
234 SOMAmer-drug target gene-

traits pairs 

• 86 combinations excluded due to lack of 
GWAS coverage of the region, or the 
variants failing to meet the pre-specified 
significance threshold 
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Drug target MR analyses were performed using different parameter combinations for 

each SOMAmer-drug target gene-trait (768 tests/pair): p value threshold for inclusion of 

variants (1´10-8, 1´10-6, 1´10-4, 1´10-2), LD clumping threshold r2 (0.2, 0.4, 0.6, 0.8), flanking 

region size (bp: 2500, 10000, 50000, 100000), flanking region location (upstream, downstream 

or both) minor allele frequencies (0.01, 0.05), and automatic removal of potential pleiotropic 

variants based on leverage and Q-statistics (see Methods). Eighty-six out of the 320 

SOMAmer-drug target gene-trait combinations could not be analysed in any of the models due 

to lack of GWAS coverage of the region, or the variants failing to meet the pre-specified 

significance threshold. The results of the drug target MR analyses are presented based on four 

different scenarios: i) all the parameter combinations are taken into account even if a particular 

parameter combination could not run (main analysis), ii) only parameter combinations that 

yield results are considered (sensitivity analysis 1), iii) only credible parameter combinations 

(p value £ 1´10-4; r2 £ 0.4; flanking region £ 50 kbp both upstream and downstream, with 

automatic outlier removal) that increase the accuracy of the results while holding the MR 

assumptions based on previous studies1,16,17 are taken into account (sensitivity analysis 2), iv) 

only credible parameter combinations that yield results are considered (sensitivity analysis 3). 

The percentage of non-significant estimates and significant estimates in the expected or 

unexpected direction of effect (depending on the drug target mechanism) for each of the 

SOMAmer-drug target genes-trait pairs for the sensitivity analysis 3 is shown in Figures 6.4 

and 6.5 for binary and quantitative traits respectively, where binary traits represent the intended 

indication and qualitative traits a clinically relevant biomarker of the disease. The percentages 

for the main, sensitivity analysis 1 and 2 are shown with similar figures in Appendix 6.B. In 

addition, Appendix 6.C includes a qualitative evaluation of three cases where both expected 

and unexpected results were observed in the sensitivity analysis 3. 
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Figure 6.4. Results of the sensitivity analysis 3 (only credible parameter combinations that 

yielded results). Percentage of significant MR estimates in the expected (green), unexpected 

(red) direction of effect or non-significant estimates (grey) for SOMAmer-drug target gene-

trait pairs where binary traits were used as the outcome.  



 164 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. Results of the sensitivity analysis 3 (only credible parameter combinations that 

yielded results). Percentage of significant MR estimates in the expected (green), unexpected 

(red) direction of effect or non-significant estimates (grey) for SOMAmer-drug target gene-

trait pairs where quantitative traits were used as the outcome. 
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The number of SOMAmer-drug target gene-trait pairs consistently (p value £ 0.05 in 

over 50% of the models) in the expected or unexpected of direction of effect under the different 

scenarios are shown in Table 6.1. The SOMAmer-drug target gene-trait pairs with more 

significant results in the anticipated direction of effect vs unanticipated were 82 in the main 

analysis and in the sensitivity analysis 1, 49 in the sensitivity analysis 2 and 46 in the sensitivity 

analysis 3, however the number of significant results in the anticipated direction of effect did 

not reach the 50%. For example, for the 768 tests performed for the drug target IL6R and the 

GWAS trait rheumatoid factor (biomarker for the intended indication rheumatoid arthritis), 255 

were significant in the anticipated direction of effect and 513 were not significant, although 

467 of the 513 were in the anticipated direction of effect. Seventy seven SOMAmer-drug target 

gene-trait pairs were more times in the unexpected direction of effect vs expected in the main 

analysis and sensitivity analysis 1, which decreased to 49 in the sensitivity analysis 2 and 40 in 

the sensitivity analysis 3.  

Table 6.1. SOMAmer-drug target gene-trait pairs consistently in the expected or unexpected 

direction of effect under different parameter combinations.  

SOMAmer-drug 
target gene-trait 

pairs 
Main analysis Sensitivity 

Analysis 1 
Sensitivity 
Analysis 2 

Sensitivity 
Analysis 3 

Consistently in the 
expected direction 
of effect (>50%) 

19 27 15 16 

Consistently in the 
unexpected 

direction of effect 
(>50%) 

12 26 9 14 

Total 234 234 234 121 

Main analysis: all the parameter combinations are taken into account even if a particular parameter 
combination could not run; Sensitivity analysis 1: only parameter combinations that yield results are 
considered; Sensitivity analysis 2: only credible parameter combinations (p value £ 1´10-4; r2 £ 0.4; flanking 
region £ 50kbp both upstream and downstream, with automatic outlier removal) that increase the accuracy 
of the results while holding the MR assumptions based on previous studies1,16,17 are taken into account; 
Sensitivity analysis 3: only credible parameter combinations that yield results are considered. 
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Independent pQTL data was sourced from Ahola-Olli et al. 201718, Yao et al. 201819, 

and Folkersen et al. 202020 to replicate the findings based on SomaLogic v4 platform. Out of 

the 71 drug target proteins, only IL6R, DPP4 and TNF were available in the replication 

datasets. However, only genetic associations with TNF could be analysed (Appendix 6.C) due 

to the lack of GWAS coverage of the region or the variants failing to meet the pre-specified 

significance threshold for IL6R and DPP4. The discovery analysis of TNF and its intended 

indications did not return significant results using the SomaLogic v4 platform, and thus, the 

results across platforms could not be compared.  

 

6.4.4. Case review of drug target gene-indications pairs in the unexpected direction of 

effect 

The results presented in the previous section included several SOMAmer-drug target 

gene-trait pairs that were in the unexpected direction of effect in >50% of the scenarios 

explored. In an attempt to better understand the reasons and the potential limitations and inform 

future drug target MR analyses with pQTL data as the exposure, this section provides a review 

of drug target gene-indications pairs consistently in the unexpected direction of effect. Many 

reasons exist that may explain why a drug target MR analysis does not recapitulate the 

mechanism of action of a known drug target in a particular disease indication, and, instead, 

returns results in the opposite direction to the known drug targeting mechanism. These include 

technical errors, inaccuracies in disease definitions or biological mechanisms. In the previous 

section, between 9 and 26 SOMAmer-drug target gene-trait pair had MR associations in the 

opposite direction to that expected in 50% or more of the analyses, where 14 were consistently 

in the unexpected direction of effect in the most stringent scenario (sensitivity analysis 3: only 

credible parameter combinations that yield results are considered). After ensuring that these 
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findings were not due to a technical error such as using the wrong effect allele in the MR 

analysis, each drug target – indication pair was reviewed and compared with observations 

across GWAS traits to determine plausible explanation for the unexpected results. Based on 

the review, three distinct groups could be identified (groups 1, 2, 3) which are presented below, 

and the remaining pairs that did not fall under such categories are discussed in Appendix 6.C. 

The groups were defined as follows: group 1 includes examples of pairings where the effect in 

the target tissue may not be captured by plasma levels of the circulatory protein, group 2 

includes examples of drugs targeting a protein family rather than a single protein, and group 3 

includes examples of drug target proteins with both secreted or membrane bond forms for 

which the measured circulating protein might not reflect the level of the membrane bound form 

due to extracellular components. 

The effect in the target tissue is not captured by plasma levels 

In addition to the assumption described in Chapter 6.4.2. regarding the use of pQTL as a 

proxy for protein activity, the analysis presented in this chapter also assumed that the protein 

levels observed in plasma are representative of the protein levels in the effector tissue (i.e., 

where the drug exerts its action). This assumption is robust when the protein of interest is 

secreted and exerts its action within the circulation or at the cell surface. However, many 

proteins present in the circulation and measured using the SomaLogic platform are likely 

present due to the cell turnover or damage and thus may not be representative of their status in 

the effector tissue. The following example illustrates this possibility. 

Moxonidine, an agonist of nischarin (NISCH; Imidazoline-1 receptor), is used to treat 

hypertension. Diastolic, systolic and pulse blood pressure were used as the outcomes in the 

drug target MR analysis as clinically relevant biomarkers. If the drug target MR framework 

recapitulated the agonist mechanism of action, one would have anticipated a negative 
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association between levels of NISCH and blood pressure. However, the MR estimates for 

diastolic and systolic blood pressure were consistently opposite direction to the anticipated 

direction of effect, from the known blood pressure lowering effect of monoxidine. One 

potential explanation could be that the effect allele was not correctly defined in the blood 

pressure GWAS, however this option was discarded as the drug target MR of another 

antihypertensive target, ACE, rediscovered consistently the mechanism of action of the drug 

for both systolic and diastolic blood pressure. Then, under the assumption that there are no 

technical errors in the SOMAmer measurements, the next potential explanation of the 

unexpected results could be that, since moxonidine acts primarily as an antihypertensive drug 

in the central nervous system21, circulating NISCH may not adequately reflect the drug effect 

in the intended tissue.  

Drugs targeting a protein family 

While most drugs target single proteins, some perturb multiple proteins of a complex, or 

the target is indicated as a protein complex or family because the actual effector protein in the 

family is not known. This section describes two examples of drug target gene-indications pairs 

involving a protein family or complex where the drug target MR framework did not estimate 

the direction anticipated based on the mechanism of action of the drug. 

Peginterferon beta-1a is a drug used to treat multiple sclerosis by activating the type I 

interferon receptor (IFNAR), composed of IFNAR1 and IFNAR2. The ligand type 1 interferon 

is thought to bind first to the high-affinity IFNAR2 subunit, and the ligand binding to the low-

affinity IFNAR1 subunit induces signal transduction22. In this chapter, the drug target MR 

approach was applied only to IFNAR1 since the other component of the receptor IFNAR2 was 

not measured in the SomaLogic v4 panel. Since the drug activates the IFNAR receptor, in a 

drug target MR analysis one would expect a negative association between circulating levels of 
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IFNAR1 and disease status, where lower levels of the protein are associated with higher disease 

risk. However, the results of the analysis presented in this chapter were consistently in the 

unexpected direction of effect (effect size > 0). This may indicate that the mechanism of action 

of Peginterferon beta-1a acts primarily through IFNAR2 which binds with high affinity, and 

that levels of IFNAR1 are increased to compensate the low quantities or activity of IFNAR2 in 

the membrane. This hypothesis could be tested when pQTL data on IFNAR2 become available.  

Dipyridamole and pentoxifylline are non-selective inhibitors of the phosphodiesterase 

protein family (PDEs) used to prevent and treat thrombosis and coronary artery disease. The 

phosphodiesterase protein family includes 21 members23 of which PDE1A, PDE2A, PDE4A, 

PDE4D, PDE5A, PDE7A and PDE9 circulating levels were measured by the SomaLogic v4 

platform. In addition to the non-specific drugs, avanafil and tadalafil are inhibitors of the PDE5 

protein in particular and are used to treat erectile dysfunction for their vasodilator effect. The 

example illustrated in this paragraph is centred on PDE5A, which was measured by two 

independent SOMAmers (X5256_86 and X16805_5). A discordant direction of effect was 

observed consistently (p value £ 0.05 in over 50% of the models) in three independent traits 

(coronary artery disease, erectile dysfunction, vWF levels) out of the ten traits evaluated 

(coronary artery disease, stroke, vWF level, factor VII levels, factor VIII levels, prothrombin 

levels, carotid plaque, carotid intima media thickness, activated partial thromboplastin time, 

erectile dysfunction). Further, for coronary artery disease and vWF levels both PDE5A 

SOMAmers yielded the same conclusion (Fig. 6.6) which suggests that the mechanism 

underlying this unexpected behaviour may be related to the drug target itself or the pQTL rather 

than due to technical oversights or errors in the outcome source data. One hypothesis may be 

that the therapeutic effect of PDE5A inhibitors occurs at a tissue level and not in circulating 

plasma, where the target is found as it is not secreted to the circulatory system (likely scenario 

in erectile dysfunction in particular). Regarding thrombosis and coronary artery disease where 
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the inhibitors are non-selective, an alternative hypothesis could be that PDE5A is not one of 

the effective target of PDE inhibitors, and that the therapeutic action is driven by another 

member in the protein family. PDE1A, PDE2A, PDE4A, PDE4D, PDE7A and PDE9 were also 

studied in the context of coronary artery disease and thrombosis. However, the analysis of 

PDE1A, PDE2A, PDE4D, PDE7A and PDE9A could not be conducted due to the lack of strong 

genetic associations with the pQTL levels, while the sensitivity analysis 3 of PDE4A returned 

more significant results in the unexpected direction of effect than in the expected for traits 

related to thrombosis and cardiovascular disease (439 non-significant tests, 62 in the 

unexpected direction of effect and 3 in the expected direction of effect), although not robustly 

(i.e., p value > 0.05 in more than 50% of the models). 
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Figure 6.6. Distribution of MR estimates for PDE5A (exposure) by SOMAmer and outcome 

investigated. The intended indications (erectile dysfunction, thrombosis, and stroke) were 

instrumented using genetic associations with the binary trait as well as a clinically relevant 

biomarker (carotid media thickness and carotid plaque for coronary artery disease, and 

activated partial thromboplastin time, factor VII, factor VIII, prothrombin and vWF levels for 

stroke). Results from the drug target MR analysis are presented as mean difference (MD) for 

quantitative outcomes or log odds ratio (OR) for binary outcomes. 
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Intracellular vs extracellular proteins 

Proteins with both secreted or membrane bond forms pose an additional challenge since 

the level of the measured circulating protein might not reflect the level of the membrane bound 

form. In fact, higher abundancies in plasma might indicate lower abundance in the plasma 

membrane. If the membrane bound form is critical for the biological function, this might 

explain the opposite direction of effect as illustrated in the following examples.  

Tocilizumab is an anti-IL6-receptor antibody used to treat rheumatoid arthritis. IL-6 is 

highly expressed in patients with rheumatoid arthritis and plays a critical role in perpetuating 

inflammation. Its receptor (IL-6R) can either be membrane bound, which promotes the 

‘classical’ IL6 signalling, or in soluble form in plasma (sIL-6R) which increases the circulating 

half-life of IL-6 and therefore, negatively regulates classical IL-6 signalling24. To treat 

rheumatoid arthritis, tocilizumab blocks the ‘classical’ IL6 signalling, which leads to an 

increase of circulating IL6 and the soluble form of the receptor (sIL6R). In this chapter, a drug 

target MR analysis was performed using as the exposure genetic associations with the IL6R 

and juvenile idiopathic arthritis (oligoarticular or rheumatoid factor-negative polyarticular) as 

the outcome. Based on the mechanism of action of the drug (blocker) one would expect a 

positive relationship between IL6R levels and the disease outcome, however, the results were 

consistently in the unanticipated direction of effect (effect size < 0 and p value £ 0.05). One 

hypothesis could be that the pQTL measured by the SomaLogic platform corresponded to sIL-

6R, whose circulating levels show an inverse relationship with the membrane bound form. In 

fact, such hypothesis would be supported by evidence from a previously published cis-MR 

analysis, which also showed an inverse association between sIL-6R and rheumatoid arthritis25. 
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Somatropin is a growth hormone (GH) replacement therapy used to treat growth hormone 

deficiency, also known as pituitary dwarfism. Genetic associations with the receptor of the 

growth hormone (GHR) was used to instrument the exposure and height was used as a 

biomarker of the intended indication. Therefore, assuming that the levels of the GHR correlate 

positively with the levels of the GH, a negative association was anticipated for the drug-target 

MR analysis. However, the estimates were consistently in the unexpected direction of effect. 

One explanation could be that the lack of growth hormone in such disease may lead to a 

negative feedback loop where GHR production is increased to compensate for the low GH 

levels. If high GHR levels are observed in pituitary dwarfism, then the relationship would not 

be negative, but instead positive. An alternative hypothesis may involve the growth hormone 

binding protein (GHBP), which in humans is derived from the cleavage of the extracellular 

domain of the GHR26. Soluble GHBP might compete for growth hormone binding and thus is 

a negative regulator of growth hormone signalling. If the SOMAmer measured by the 

proteomics platform corresponded to soluble GHBP rather than membrane GHR, a positive 

association would be expected since high levels of GHBP could indicate low levels of GHR.  
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6.5. Discussion 

6.5.1. Summary 

This chapter described the results of a discovery GWAS of 4,631 circulating protein 

levels measured by the SomaLogic v4 platform for 2,253 individuals of the UCLEB 

Consortium. The quality of the GWAS was assessed by comparing the effect sizes for a set of 

variants previously reported by Sun et al3, which showed a strong correlation measured by the 

Pearson’s correlation coefficient (ρ) for both cis- (ρ = 0.96) and trans- signals (ρ = 0.75). 

Subsequently, the work in this chapter evaluated the correlation between protein activity and 

circulating protein levels. This analysis was performed to evaluate the common assumption of 

pQTL-weighted drug target MR which states that protein levels are a proxy of activity or 

function and therefore can be used to instrument the therapeutic effect of modulating a drug 

target in a particular disease. At the time of the analysis, genetic associations with protein 

activity were only available for the butyrylcholinesterase (BCHE) and coagulation factor VII, 

whose protein levels had been also measured by the SomaLogic v4 platform in the Fenland 

cohort (10,708 participants). A strong correlation measured by the Pearson’s correlation 

coefficient was observed for variants in cis- for both BCHE (ρ = 0.99) and coagulation factor 

VII, was slightly lower (ρ  = 0.96).  

After illustrating the potential of genetic associations with pQTL as a proxy of protein 

activity for two case studies, a ‘truth’ set of 160 licensed drug target gene-indication pairs with 

available GWAS data on pQTL and the intended indication was analysed to investigate if the 

pQTL-weighted drug target MR framework recapitulated the known mechanism of action in 

terms of effect direction and significance.  
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It was found that out of the 665 genes that encode the protein targeted by an approved 

drug, 71 had available pQTL data (measured by high-affinity and specific oligonucleotides 

called ‘SOMAmers’) and GWAS data on the intended indication, which allowed for the 

evaluation of the drug target MR methodology on a set of 160 drug target gene - indication 

pairs. Such pairs were mapped to GWAS phenotypes related to the intended indication and to 

the measured protein target through the SOMAmers, which returned a total of 320 SOMAmer-

drug target gene-traits pairs. The application of the drug target MR framework recapitulated 

the mechanism of action of several drug target gene – indication pairings (range: 15-27 drug 

target gene-SOMAmer-trait) under different models, which ranged from all possible parameter 

combinations to those combinations with a credible set of parameters in terms of strength of 

the association with the exposure, degree of linkage disequilibrium and the extent of the 

flanking region around the target gene. The set of validated drug targets that consistently 

showed the expected direction of effect in the drug target MR approach, could be explored 

against other outcomes beyond the intended indication to identify opportunities for indication 

expansion and validate (or anticipate) on-target adverse effects through a drug target MR - 

phenome-wide association study (PheWAS).  

On the other hand, it was found that between 38- 50% of the drug target gene-SOMAmer-

trait combinations analysed that returned significant MR estimates were consistently in the 

unexpected direction of effect based on their reported mechanism of action (range 9/24-26/53 

drug target gene-SOMAmer-trait). Although potential explanations for this were already 

discussed in section 6.4.4., this analysis relied on the accuracy of the proteomic platform and 

the summary statistics of the intended indication. This potential source of bias together with 

biologically plausible mechanisms may explain some of the unanticipated findings, however, 

further research is needed to validate the results using additional data sources. Nevertheless, 
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these findings suggest that results from drug target MR should be interpreted cautiously and 

informed by biological knowledge.  

Noticeably, the drug target MR analysis of multiple drug target gene - SOMAmer - trait 

combinations did not return significant results in the main or sensitivity analyses, and even in 

some cases, the analyses could not be performed due to the lack of instruments. While there 

may be many reasons for this, the low affinity of the SOMAmer with the target protein and the 

lack of power in the indication GWAS may explain a fraction of the non-conclusive results.  

 

6.5.2. Research in context 

Drug target MR analyses that utilise genetic associations with circulating protein levels 

to study the effects of perturbing drug targets assume that protein levels are a proxy of protein 

activity or function. To formally evaluate this, a comparison was performed using two proteins 

where genetic associations were available for both activity and protein level. Due to the lack 

of available GWAS data on protein activity, a more extensive evaluation including more 

proteins could not be conducted. However, the correlation observed for BCHE and coagulation 

factor VII, together with previous studies of pQTL-weighted drug target MR1,12, suggested that 

drug target MR using pQTL could be a valid alternative approach when GWAS data on activity 

or function is not available. 

Under such assumption, the analysis presented in this chapter evaluated for the first time 

at the time of analysis the performance of the drug target MR framework using a ‘truth’ set of 

drug target gene-indication pairings, where circulating levels of the target protein have been 

measured by a high-throughput proteomic platform and the indication has been studied by 

GWAS.  
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Previously, a Mendelian randomisation study on 1,002 proteins and 225 phenotypes 

identified four drug target gene – approved indication pairs for which the MR recapitulated the 

mechanism of action and two drug target gene – approved indication pairs for which the MR 

approach returned results in the unexpected direction of effect out of 73 pairs with potential to 

be rediscovered27. The analysis described in this chapter used a larger set of pQTL data which 

allowed for the evaluation of more drug target gene – approved indication pairs. Such increase 

in the sample size showed an increase in the number of pairs ‘rediscovered’ by the drug target 

MR framework which ranged between 11-13% (i.e., 27/234 in the sensitivity analysis 1 and 

16/121 in the sensitivity analysis 3) in the current analysis compared to the 5% ‘rediscovered’ 

by Zheng et al.,27. The target gene – indication pairs in the expected direction of effect 

identified by Zheng et al.,27, included the PCSK9 for hypercholesterolemia and 

hyperlipidaemia, ACE for hypertension, IL12B for psoriatic arthritis and psoriasis, and 

TNFRSF11A for osteoporosis. In the analysis presented in this chapter, PCSK9 and ACE 

consistently showed a concordant and significant direction of effect under all the models 

explored, while TNFRSF11A showed a concordant direction of effect when using heel bone 

mineral density as the outcome, however the association was not statistically significant. In this 

chapter, the association between IL12B and psoriasis was in the unexpected direction of effect 

in some of the scenarios, although most of the combinations analysed did not yield significant 

results. Out of the two drug target gene - indication pairs found by Zheng et al.,27, in the 

unexpected direction of effect, IL6R was also identified in the current analysis while PROC 

was not analysed as it is not recorded as the target of an approved drug in ChEMBL v25. In 

their work, Zheng et al.,27, in line with the observations outlined in the case study section above, 

indicated that for IL6R the alleles associated with higher soluble protein levels have been 

shown to also lead to lower intracellular pathway activation28, suggesting consistency of 

direction with the therapeutic approach. 
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In addition to PCKS9 and ACE, the analysis in this chapter further identified nine targets 

that consistently showed a concordant direction of effect under all the models: AMY2A and 

type 2 diabetes Mellitus; ATP1B2 and atrial fibrillation; COMT and Parkinson's disease; F2 

and prothrombin levels; IL1R1 and rheumatoid factor; IMPA1 and bipolar disorder; PDE4A 

and forced expiratory volume in the first second (FEV1); PDE5A and prothrombin levels; PLG 

and activated partial thromboplastin time. The findings for IL1R1 and PLG are in line with a 

previous study which presented the drug target MR framework using a set of selected positive 

controls, which also included PCSK91. In addition to the findings from Zheng et al.27, described 

in the previous paragraph, genetic associations with ACE pQTL data have been used to 

instrument the effect of modifying ACE circulating levels on different outcomes29, including 

susceptibility to SARS-CoV-2 infection or COVID-19 severity30, and drug target MR analyses 

on the intended indication have been conducted using expression QTL (eQTL)31. The genetic 

validation performed in this chapter of ACE as a drug target for hypertension provides 

supportive evidence of the validity of pQTL data to instrument the effect of the drug in past 

and future drug target MR studies. For approved drug targets, such as ACE, such genetic 

validation on the intended indication should be always conducted, where possible, before 

exploring new outcomes. Similarly, phosphodiesterases have been previously studied using 

both eQTL and pQTL data on different outcomes32, however, so far, these have not included 

the intended indication. Previous mendelian randomisation studies on coagulation factors and 

the intended indication (venous thrombosis) have been published using intermediate traits such 

as activated thromboplastin time as the exposure33, however, drug target MR analyses using 

F2 pQTL data have not previously been reported. Moreover, to my knowledge, AMY2A, 

COMT, ATP1B2 have not been previously studied in drug target MR analyses of the intended 

indication using pQTL or eQTL data. 
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The application of the drug target MR approach in a systematic manner requires further 

evaluation as suggested by the large proportion of drug target-indication pairs with results in 

the unanticipated direction of effect based on their mechanism of action. Complementary 

techniques such as co-localization34 could be used to source additional evidence by exploring 

if the association observed in the drug target MR analysis is not attributable to genetic 

confounding through a variant in linkage disequilibrium35.   

This analysis also showed that many combinations of drug target gene - SOMAmer - 

traits could not be evaluated because of the lack of genetic instruments which could be 

explained by the sample size and the limited power to detect significant associations. This 

situation is likely to improve thanks to the commercialisation of cost-effective high-throughput 

technologies for protein measurement and the linkage of biobank data to electronic health 

records. For example, the genetic associations identified by deCODE genetics using the 

SomaLogic 5K platform in 35,559 Icelanders36, or the promising UK Biobank Pharma 

Proteomics Project37 which aims to measure circulating concentrations of up to 1,500 plasma 

proteins in approximately 53,000 UK Biobank participants using the Olink technology. In 

addition, the number of proteins covered by the proteomics platform is increasing, with the 

latest SomaLogic and Olink assays measuring up to 7,00038 and approximately 3,000 

proteins39, respectively. 

 

6.5.3. Strengths and limitations 

The results presented in this chapter represent the first (at the time of analysis) systematic 

evaluation of the drug target MR framework using a ‘truth’ set of licensed drug target-

indications pairs. One of the strengths of this analysis was the large number of approved drug 

targets for which measured protein levels and GWAS on the intended indication were available. 
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While only 11% (71/665) of all the genes that encode an approved drug target could be 

evaluated due to the lack of exposure or outcome GWAS data, this analysis could recapitulate 

the mechanism of action of approved drug target-indication pairs and inform the future 

direction of MR analysis for drug target identification and validation, as based on the findings 

presented in this chapter, a set of optimised parameters have not been identified yet and the 

performance of the drug target MR framework is defined by each drug target gene – SOMAmer 

– trait combination. This study also benefited from several sensitivity analyses which returned 

a set of well-validated target-indications. However, some drug target gene – SOMAmer –  trait 

combinations which had their mechanism of action rediscovered in the sensitivity analysis 1 

may have not reached significance in the more stringent analysis (sensitivity analyses 2 and 3) 

because the genetic associations with the exposure did not meet the criteria of ‘strong genetic 

instruments’. Lastly, an extensive review of the drug target gene – SOMAmer – trait 

combinations was performed to hypothesize about potential explanations of the unexpected 

findings of the drug target MR analyses.  

Some limitations of this analysis are noteworthy. First, certain indications may have been 

studied by GWAS but were not included in this study because the summary statistics were not 

deposited in the GWAS Catalog. Even for those traits available through the GWAS Catalog, 

the summary statistics may be incomplete and lack essential information for the MR analyses, 

such as effect sizes or effect/reference alleles. Secondly, it was assumed that protein expression 

levels (pQTL) can be used as a proxy of protein function. While two examples are provided at 

the beginning of the chapter which support such assumption, this has not been studied in detail 

due to the lack of GWAS data on protein activity. Moreover, protein levels corresponded to 

circulating protein in plasma, however, many proteins are not secreted or circulating in plasma, 

and therefore, their presence in the blood tissue could rather indicate physiological conditions. 

Since the function of these proteins should take place in a different tissue, it is unclear if the 
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levels in plasma recapitulate those in the drug effector tissue, or, on the contrary, they are 

unrelated to their function and should not be used to infer the effect of modifying such protein 

by a drug. For example, a membrane-bound protein detached from the plasma membrane or a 

protein inactivated by a post-translation process could still be detected by the proteomics 

platform if the part of the protein that is detected by the SOMAmer remains unchanged. Lastly, 

the lack of units for the pQTL, which is a major limitation of aptamer-based technologies, did 

not allow for a comparison with the effect size observed with the drug treatment, or limited the 

comparison across targets that for instance are targeted by drugs for the same indication. While 

this limitation does not have an impact on the current analysis, it may when applying the drug 

target MR framework with pQTL data as the one used here for target discovery.  
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6.6. Conclusion 

The analysis presented in this chapter showed that the ability of the drug target MR 

framework to rediscover the mechanism of action of approved drug target-indication varies on 

a case-by-case basis. Only between 11-13% (i.e., 27/234 in the sensitivity analysis 1 and 16/121 

in the sensitivity analysis 3) of the drug target gene – SOMAmer – trait combinations analysed 

rediscovered the mechanism of action of the drug. Therefore, the findings suggest that a set of 

gold standard parameters for the optimal performance of drug target MR cannot be defined yet, 

and the selection of parameters should be tailored to the drug target-indication of interest. 

Nonetheless, this analysis identified a set of targets genetically validated for the intended 

indication that could be investigated using a drug target MR - PheWAS approach. One of the 

major limitations of the drug target MR framework using pQTL data for systematic drug target 

identification and validation is the lack of the exposure data (e.g., only 11% of the targets for 

an approved drug had pQTL data available). In the next chapter, an application of the 

biomarker-weighted drug target MR approach will be presented as an alternative to pQTL-

weighted drug target MR when pQTL data is not available to investigate the research question. 
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Appendix 6.A. Data sources 

GWAS trait GWAS trait (CUI) Drug indication Drug indication 
(CUI) 

N 
cases 

N 
controls 

Pubmed 
ID 

Diastolic blood pressure C0428883 Hypertension C0020538 29136 - 19430479 

Systolic blood pressure C0488055 Hypertension C0020538 29136 - 19430479 

Pulse pressure C0232108 Hypertension C0020538 146562 - 27618448 

Primary biliary cholangitis C0023892 Liver Cirrhosis, Biliary C0023892 64164 561055 26394269 

Psoriasis C0033860 Psoriasis C0033860 10588 22806 23143594 

Stroke C0038454 Stroke C0038454 40585 406111 29531354 

Factor VIII levels C0015506 Thrombosis C0040053 8700 - UCLEB 

Factor VII levels C0015502 Thrombosis C0040053 8700 - UCLEB 

vWF levels C0042971 Thrombosis C0040053 9007 - UCLEB 

Prothrombin levels C0033706 Thrombosis C0040053 10000 - Fenland 

Activated partial thromboplastin time C1318441 Thrombosis C0040053 2406 - UCLEB 

Coronary Artery Disease C1956346 Cardiovascular Diseases C0007222 60801 123504 26343387 

Coronary Artery Disease C1956346 Coronary Artery Disease C0010054 60801 123504 26343387 

Coronary Artery Disease C1956346 Coronary Artery Disease C1956346 60801 123504 26343387 

Carotid intima media thickness C1960466 Cardiovascular Diseases C0007222 60000 - UCLEB 

Carotid intima media thickness C1960466 Coronary Artery Disease C0010054 60000 - UCLEB 

Carotid intima media thickness C1960466 Coronary Artery Disease C1956346 60000 - UCLEB 

Carotid plaque Plaque Cardiovascular Diseases C0007222 48434 - UCLEB 

Carotid plaque Plaque Coronary Artery Disease C0010054 48434 - UCLEB 
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GWAS trait GWAS trait (CUI) Drug indication Drug indication 
(CUI) 

N 
cases 

N 
controls 

Pubmed 
ID 

Carotid plaque Plaque Coronary Artery Disease C1956346 48434 - UCLEB 

FEV1 C0429706 Asthma C0004096 321047 - 30804560 

FEV1 C0429706 Pulmonary Disease, Chronic 
Obstructive 

C0024117 321047 - 30804560 

Lung function (FEV1/FVC) C0429745 Asthma C0004096 321047 - 30804560 

Lung function (FEV1/FVC) C0429745 Pulmonary Disease, Chronic 
Obstructive 

C0024117 321047 - 30804560 

Lung function (FVC) C0580371 Asthma C0004096 321047 - 30804560 

Lung function (FVC) C0580371 Pulmonary Disease, Chronic 
Obstructive 

C0024117 321047 - 30804560 

Peak expiratory flow C0030735 Asthma C0004096 321047 - 30804560 

Peak expiratory flow C0030735 Pulmonary Disease, Chronic 
Obstructive 

C0024117 321047 - 30804560 

Asthma (moderate or severe) C0004096 Asthma C0004096 88486 447859 30552067 

Heart Failure C0018801 Heart Failure C0018801 47309 930014 31919418 

Atrial Fibrillation C0004238 Atrial Fibrillation C0004238 60620 970216 30061737 

Dermatitis, Atopic C0011615 Dermatitis, Atopic C0011615 21399 95464 26482879 

Multiple Sclerosis C0026769 Multiple Sclerosis C0026769 14498 24091 24076602 

Alzheimers disease (late onset) C0002395 Alzheimer Disease C0002395 24087 55058 30617256 

Parkinsons disease C0030567 Parkinson Disease C0030567 15056 12637 31701892 

Bipolar Disorder C0005586 Bipolar Disorder C0005586 7647 27303 27329760 

Schizophrenia C0036341 Schizophrenia C0036341 35476 46839 25056061 

Lupus Erythematosus, Systemic C0024141 Lupus Erythematosus, Systemic C0024141 6748 11516 28714469 
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GWAS trait GWAS trait (CUI) Drug indication Drug indication 
(CUI) 

N 
cases 

N 
controls 

Pubmed 
ID 

Alcohol Consumption C0001948 Alcoholism C0001973 480842 - 31358974 

Fractures C0016658 Osteoporosis C0029456 53184 373611 30598549 

Heel bone mineral density C0005938 Osteoporosis C0029456 426824 - 30598549 

Ferritin levels C0015879 Anemia, Iron-Deficiency C0162316 4948 - UCLEB 

Chronic Kidney Insufficiency C0403447 Kidney Failure, Chronic C0022661 12315 227987 31152163 

Chronic Kidney Insufficiency C0403447 Renal Insufficiency, Chronic C0403447 12315 227987 31152163 

Blood urea nitrogen levels C0005845 Renal Insufficiency, Chronic C0403447 416178 - 31152163 

Estimated glomerular filtration rate C3811844 Renal Insufficiency, Chronic C0403447 567460 - 31152163 

Epilepsy C0014544 Epilepsy C0014544 15212 29677 30531953 

LDL cholesterol C0023824 Hypercholesterolemia C0020443 188577 - 24097068 

LDL cholesterol C0023824 Hyperlipidemias C0020473 188577 - 24097068 

LDL cholesterol C0023824 Dyslipidemias C0242339 188577 - 24097068 

LDL cholesterol C0023824 Cardiovascular Diseases C0007222 188577 - 24097068 

LDL cholesterol C0023824 Coronary Artery Disease C0010054 188577 - 24097068 

LDL cholesterol C0023824 Coronary Artery Disease C1956346 188577 - 24097068 

Diabetes Mellitus, Type 2 C0011860 Diabetes Mellitus, Type 2 C0011860 74124 898130 30297969 

Proinsulin levels C0033362 Diabetes Mellitus, Type 2 C0011860 10701 - 21873549 

Fasting blood glucose C0428568 Diabetes Mellitus, Type 2 C0011860 58074 - 22581228 

Fasting blood insulin C2676369 Diabetes Mellitus, Type 2 C0011860 51750 - 22581228 

Myocardial Infarction C0027051 Myocardial Infarction C0027051 40149 126310 26343387 

Rheumatoid arthritis C0003873 Arthritis, Rheumatoid C0003873 19234 60565 24390342 
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GWAS trait GWAS trait (CUI) Drug indication Drug indication 
(CUI) 

N 
cases 

N 
controls 

Pubmed 
ID 

Juvenile idiopathic arthritis (Oligoarticular juvenile 
idiopathic arthritis) 

C3495559 Arthritis, Juvenile C3495559 2816 13056 23603761 

Factor VIII levels C0015506 Venous Thrombosis C0042487 8700 - UCLEB 

Factor VII levels C0015502 Venous Thrombosis C0042487 8700 - UCLEB 

vWF levels C0042971 Venous Thrombosis C0042487 9007 - UCLEB 

Prothrombin levels C0033706 Venous Thrombosis C0042487 10000 - Fenland 

Activated partial thromboplastin time C1318441 Venous Thrombosis C0042487 2406 - UCLEB 

Diabetes Mellitus, Type 2 C0011860 Diabetes Mellitus C0011849 74124 898130 30297969 

Erectile Dysfunction C0242350 Erectile Dysfunction C0242350 6175 217630 30583798 

Gout C0018099 Gout C0018099 13179 750634 31578528 

Urate levels C0455272 Gout C0018099 288649 - 31578528 

Urate levels C0455272 Hyperuricemia C0740394 288649 - 31578528 

Diabetic Nephropathies C0011881 Diabetic Nephropathies C0011881 5447 4717 29703844 

Triglycerides C0041004 Coronary Artery Disease C0010054 188577 - 24097068 

Triglycerides C0041004 Coronary Artery Disease C1956346 188577 - 24097068 

Proinsulin levels C0033362 Diabetes Mellitus C0011849 10701 - 21873549 

Fasting blood glucose C0428568 Diabetes Mellitus C0011849 58074 - 22581228 

Fasting blood insulin C2676369 Diabetes Mellitus C0011849 51750 - 22581228 

Diabetes Mellitus, Type 1 C0011854 Diabetes Mellitus, Type 1 C0011854 6683 12173 25751624 

Obesity C0028754 Obesity C0028754 32858 65840 23563607 

Body mass index C0005893 Obesity C0028754 806834 - 30239722 
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GWAS trait GWAS trait (CUI) Drug indication Drug indication 
(CUI) 

N 
cases 

N 
controls 

Pubmed 
ID 

Waist-to-hip ratio C0205682 Obesity C0028754 694649 - 30239722 

Tumor necrosis factor alpha levels C1168005 Inflammation C0021368 3454 - 27989323 

Tumor necrosis factor beta levels C0024320 Inflammation C0021368 1559 - 27989323 

Vascular endothelial growth factor levels C0078058 Inflammation C0021368 7118 - 27989323 

Spondylitis, Ankylosing C0038013 Spondylitis, Ankylosing C0038013 10619 15145 23749187 

Colitis, Ulcerative C0009324 Colitis, Ulcerative C0009324 6968 20464 26192919 

Crohn Disease C0010346 Crohn Disease C0010346 5956 14927 26192919 

Height C0005890 Deficiency of growth hormone C0013338 347086 - 30124842 



 193 

Appendix 6.B. Drug target MR analyses 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.B1. Results of the main analysis (all parameter combinations): Percentage of 

significant MR estimates in the expected (green), unexpected (red) direction of effect, non-

significant estimates (light grey) or non-feasible tests (dark grey) for SOMAmer-drug target 

gene-trait pairs where binary traits were used as the outcome.  
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Figure 6.B2. Results of the sensitivity analysis 1 (only parameter combinations that yield 

results): Percentage of significant MR estimates in the expected (green), unexpected (red) 

direction of effect or non-significant estimates (grey) for SOMAmer-drug target gene-trait pairs 

where binary traits were used as the outcome.  
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Figure 6.B3. Results of the sensitivity analysis 2 (only credible parameter combinations):  

Percentage of significant MR estimates in the expected (green), unexpected (red) direction of 

effect, non-significant estimates (light grey) or non-feasible tests (dark grey) for SOMAmer-

drug target gene-trait pairs where binary traits were used as the outcome.  
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Figure 6.B4. Results of the main analysis (all parameter combinations): Percentage of 

significant MR estimates in the expected (green), unexpected (red) direction of effect, non-

significant estimates (light grey) or non-feasible tests (dark grey) for SOMAmer - drug target 

gene - trait pairs where quantitative traits were used as the outcome.  
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Figure 6.B5. Results of the sensitivity analysis 1 (only parameter combinations that yield 

results). Percentage of significant MR estimates in the expected (green), unexpected (red) 

direction of effect or non-significant estimates (grey) for SOMAmer-drug target gene-trait pairs 

where quantitative traits were used as the outcome.  
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Figure 6.B6. Results of the sensitivity analysis 2 (only credible parameter combinations). 

Percentage of significant MR estimates in the expected (green), unexpected (red) direction of 

effect, non-significant estimates (light grey) or non-feasible tests (dark grey) for SOMAmer-

drug target gene-trait pairs where quantitative traits were used as the outcome.  
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Appendix 6.C. Case review 

Combinations with results both in the expected and unexpected direction of effect 

Some drug target gene – SOMAmer – trait combinations showed both the expected and 

the unexpected direction of effect in the analysis with the most stringent parameters (sensitivity 

analysis 3). This section includes a qualitative evaluation of three cases were the modification 

of one or more parameter led to a change in the direction of effect.  

The first example is AMY2A, the drug target of ACARBOSE and used to treat Type 2 

Diabetes. In the sensitivity analysis 3, all the results were significant, with 24 in the expected 

direction of effect and 12 in the unexpected direction of effect (Figure 6.4). To explore the 

nature of the change, a plot was built to visualise each of the MR tests performed and to identify 

common characteristics for those that were in the unexpected direction of effect. When using 

a minor allele frequency (MAF) threshold of 0.01 to select genetic instruments, all the MR 

estimates were in the expected direction of effect (Fig. 6.B7.A). When the MAF was increased 

to 0.05, fewer variants were selected resulting in MR tests of a single variant or only 2 variants 

in the unexpected direction of effect (Fig. 6.B7.B). In fact, the shift in the direction of effect 

was caused by the genetic variant 1:104158889 (GRCh 37), which is located 1.1kbp upstream 

of the encoding gene in a non-coding region. Literature or database references of the variant 

were not found. This example illustrates how building a genetic instrument with a single variant 

can lead to spurious findings, particularly, if the genetic variant has not been documented 

before for its effect on the nearby gene. Therefore, leveraging multiple genetic variants in and 

around the gene reduces the potential bias due to invalid instrumental variables. 
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Figure 6.B7. Mendelian Randomisation tests performed under sensitivity analysis 3 for the 

drug target AMY2A and the indication Type 2 Diabetes. Panel A shows the approach for 

instrument selection for variants with a MAF > 0.01, and panel B the approach for variants 

with MAF > 0.05. 
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The second example involves PDE4A, the drug target of THEOPHYLLINE, 

AMINOPHYLLINE and ROFLUMILAST for the treatment of asthma. In the sensitivity 

analysis 3, 16 tests were significant in the expected direction of effect, 3 were significant in the 

unexpected direction of effect and 17 were not significant (Figure 6.4). The visualisation of 

each of the MR tests for the drug target-indication pair showed that increasing the MAF from 

0.01 to 0.05 leads to the exclusion of a genetic variant (19_10568883_C_G) that forced the 

slope of the association to go in the opposite direction of effect (Fig. 6.B8). This is illustrated 

further in Figure 6.B9, where the estimates from two MR tests, with or without 

19_10568883_C_G, showed that its inclusion in the genetic instrument led to the selection of 

the MR Egger over the IVW method. Although this genetic variant (rs145530718) is described 

as intron variant in Ensembl, the large effect size on both the exposure and outcome and the 

opposite direction compared to the other variants in the instrument suggest a potential 

pleiotropic effect through a different pathway.  
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Figure 6.B8. Mendelian Randomisation tests performed under the sensitivity analysis 3 for the 

drug target PDE4A and the indication Asthma. Panel A shows the approach for instrument 

selection for variants with a MAF > 0.01, and panel B the approach for variants with MAF > 

0.05. 
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Figure 6.B9. Illustration of the impact of including heterogeneous variants in the genetic 

instrument. This is a real example of one of the MR tests performed for the drug target PDE4A 

and asthma. 

The third example involves COMT, the drug target of ENTACAPONE and 

TOLCAPONE, used to treat the symptoms of Parkinson’s disease. This example is particularly 

interesting as the drug is intended to treat the symptoms of the disease but the analysis in the 

current chapter also showed a significant association with the disease. It also illustrates the 

importance of selecting strong genetic associations to build the genetic instrument and to ensure 

that the first assumption of the MR framework (‘Relevance assumption’) holds. In the 

sensitivity analysis 3, 26 tests were significant in the expected direction of effect, and 10 were 

not significant (Figure 6.4). Figure 6.B10 shows that the power of the MR analysis to detect a 

causal association decreases when the p value threshold for selecting genetic variants is relaxed 

from 1´10-6 to 1´10-4.  
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Figure 6.B10. Mendelian Randomisation tests performed under the sensitivity analysis 3 for 

the drug target COMT and the indication Parkinson.  

 

Combinations consistently in the unexpected direction of effect 

Drug target gene – SOMAmer – trait combinations consistently in the unexpected 

direction of effect in the analysis with the most stringent parameters (sensitivity analysis 3), 

for which a plausible mechanism to explain the discordant association could not be found or if 

suggested, did not fall within the three categories presented in the results section.  

Argatroban and bivalirudin are direct thrombin (factor II) inhibitors used to treat or 

prevent thrombosis. vWF is a carrier protein of factor VIII and once activated, generates a 

complex with factor IXa and activates factor X, which in a complex with FVa converts 

prothrombin (factor II) to thrombin (factor IIa). Fibrinogen is then converted to a fibrin clot by 

thrombin, which can lead to thrombosis. High prothrombin levels inhibit the inactivation of 

factor VIIIa, while thrombin downregulates factor VIIIa levels through the Protein C 

anticoagulant pathway40. Thus, one of the potential explanations for the unexpected direction 

of effect observed for vWF and factor VIII levels may be that the measurement by the 
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SomaLogic platform did not only capture inactivated factor II (prothrombin) but also factor IIa 

(thrombin), and the association observed in the MR analysis recapitulated the negative 

feedback between thrombin and factor VIII/vWF levels.  

Dalteparin sodium, danaparoid sodium, enoxaparin sodium and tinzaparin sodium are 

activators of SERPINC1 (antithrombin III). Antithrombin inactivates thrombin, factor IXa and 

factor Xa to impede clot formation. Eight parameter combinations were explored in the drug 

target MR analyses (sensitivity analysis 2), which always returned a single variant intronic to 

construct the instrument (GChr37: 1_173910084_C_T; rs146832357). The lack of coverage in 

the exposure together with the lack of information on the only available variant challenge the 

interpretation of the results in the unexpected direction of effect.  

 

The aldehyde dehydrogenase 2 (ALDH2) is the drug target of disulfiram, a single protein 

inhibitor used to treat alcoholism. The drug target MR analysis of blood circulating ALDH2 

levels on alcohol consumption showed a discordant direction of effect in >50% of the scenarios 

explored. Although ALDH2 is detected in all tissues, it is not actively secreted, and its presence 

in plasma may not be a results of the normal homeostasis of the protein lifecycle, and therefore 

the effector tissue of disulfiram. In fact, brain ethanol metabolism by the ALDH2 in astrocytes 

has recently been suggested as the contributor to the behavioural effects associated with ethanol 

intoxication41. 
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7 | Biomarker-weighted drug target Mendelian 

Randomisation: applications in cardiovascular disease 

treatment and prevention 

The work from this chapter has been published in Nature Communications1 

7.1. Abstract 

Biomarker-weighted drug target Mendelian randomisation (MR) studies use DNA 

sequence variants in or near a gene encoding a drug target, that alter the target’s expression or 

function, as a tool to anticipate the effect of drug action on the same target through the 

association with a downstream biomarker. Here I applied biomarker-weighted drug target MR 

to prioritise drug targets for their causal relevance for coronary heart disease (CHD). The 

targets were further prioritised using independent replication and by sourcing data from the 

British National Formulary and clinicaltrials.gov. Out of the 341 drug targets identified through 

their association with blood lipids (HDL-C, LDL-C and triglycerides), 30 targets that might 

elicit beneficial effects in the prevention or treatment of CHD were robustly prioritised, 

including NPC1L1 and PCSK9, the targets of drugs used in CHD prevention. In this chapter I 

also discuss how this approach can be generalised to other targets, disease biomarkers and 

endpoints to help prioritise and validate targets during the drug development process.  
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7.2. Introduction 

A well-established role of Mendelian randomisation (MR) analysis is to use genetic 

variants (mostly identified from GWAS) as instrumental variables to identify which disease 

biomarkers (e.g. blood lipids such as low- and high-density lipoprotein cholesterol and 

triglycerides) may be causally related to disease endpoints (e.g. coronary heart disease; 

CHD)2,3. It has also been shown that variants in a gene encoding a specific drug target (acting 

in cis), that alter the target’s expression or function, can be used as a tool to anticipate the effect 

of drug action on the same target, which is known as ‘drug target MR’4 and has extensively 

been described in the previous chapters. Both ‘genome-wide biomarker’ and ‘drug target MR’ 

approaches were described in Chapter 1.4, with the main conceptual differences detailed in 

Table 1.4. In summary, whereas ‘genome-wide biomarker MR’ helps infer the causal relevance 

of a biomarker for a disease, a ‘drug target MR’ helps infer whether and, in certain cases in 

what direction, a drug that acts on the encoded protein, whether an antagonist, agonist, activator 

or inhibitor, will alter disease risk.  

Different subtypes of ‘drug target MR’ analyses are used based on the exposure data, 

each with their unique strengths and limitations. In Chapter 6, the ‘pQTL-weighted drug target 

MR’ framework was applied and evaluated using genetic associations with circulating protein 

levels to instrument the effect of perturbing the drug target on the approved indication. Such 

approach uses the most accurate exposure, in principle, for drug target characterisation, because 

the vast majority of successful drugs achieve their activity by binding to and modifying the 

level, function or activity of a protein5. However, genetic associations with circulating protein 

levels have not become available until recently, and only include a subset of the proteome, and 

its usefulness and systematic application in drug development is still under investigation. On 

the other hand, ‘biomarker-weighted drug target MR’ has been extensively used as described 
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in the Chapter 1 using CETP and coronary heart disease for illustration, with references to 

studies showing that a drug target MR of CETP on CHD, using variants in the CETP gene 

weighted by their effect on HDL-C, indicates protection from disease (odds ratio (OR): 0.87; 

95%CI: 0.84, 0.90)4, which is consistent with the effect of allocation to the CETP-inhibitor 

anacetrapib in a placebo-controlled trial (OR:0.93; 95%CI: 0.86, 0.99) and compatible with the 

view that targeting CETP is an effective therapeutic approach to prevent CHD6. Importantly, 

as discussed in detail by Schmidt et al.,4, drug target MR analyses which use genetic 

associations with biomarkers downstream to the protein such as HDL-C, use this effect as a 

proxy for protein concentration or activity (where this has not been measured directly), and do 

not provide evidence on whether the biomarker used for the weighting itself mediates disease. 

Rather, they inform on the validity of the drug target for a disease, regardless of the mediating 

pathway. Biomarker-weighted drug target MR analyses are particularly relevant when genetic 

associations with the drug target protein levels or activity have not been measured directly, or 

if available, do not represent strong instruments. Instead, genetic associations with a 

downstream biomarker in or near the gene encoding the drug target could be used as a proxy 

for protein concentration or activity.  

The already published ‘biomarker-weighted drug target MR’ analyses suggest that 

unexploited drug targets might exist for the prevention or treatment of CHD that could be 

identified through their association with blood lipids even though such analyses do not presume 

that the effect on CHD is mediated through these lipids. 

In this chapter, I applied drug target MR on a set of druggable proteins identified through 

genetic associations with circulating blood lipids and assessed their causal relevance for CHD. 

Summary statistics from GWAS of blood lipids and CHD were used to select genes associated 

with blood lipids that encode druggable targets and the effects of these drug targets on CHD 
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were tested using ‘drug target MR’ in two independent datasets. Subsequently, data from 

clinicaltrials.gov and the British National Formulary (BNF) was sourced for drugs in clinical 

phase development and licensed medicines, respectively, to identify agents that might be 

pursued rapidly in clinical phase testing for treatment or prevention of CHD. Because of 

interest in this area, though not the focus of the work, I also evaluated potential mediators of 

these effects using multivariable MR (MVMR). Finally, I discussed how this approach might 

be generalised to other drug targets and clinical endpoints, providing a route to translating 

findings from GWAS into new drug development. 
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7.3. Methods 

7.3.1. Data sources 

To determine the causal role and replicate previously reported results on the causal effect 

of LDL-C, HDL-C and TG on CHD, summary-level genetic estimates were obtained from the 

Global Lipids Genetics Consortium (188,577 individuals)7 and from CardiogramPlusC4D 

(60,801 cases and 123,504 controls)8. 

Independent replication data were sourced using lipids exposure data from a GWAS 

meta-analysis of metabolic measures by the University College London–Edinburgh-Bristol 

(UCLEB) Consortium9 and Kettunen et al.,10 utilizing NMR spectroscopy measured lipids 

(joint sample size up to 33,029). Independent CHD data was obtained from a publicly available 

GWAS of 34,541 cases and 261,984 controls in UK Biobank11. 

Individual-level data from a random subset of 5,000 unrelated individuals of European 

ancestry from UK Biobank was used to generate the LD reference matrices as described in the 

Instrument selection section. 

 

7.3.2. Drug target gene selection 

To estimate the causal effect of modulating the level of each lipid sub-fraction via a 

druggable gene on CHD, genetic variants associated with LDL-C, HDL-C and/or TG with a p 

value ≤ 1x10-6 were selected. Druggable genes overlapping a 50 kbp region around the selected 

variants were extracted, resulting in 341 associated drug target genes (149 for LDL-C, 180 for 

HDL-C and 154 for TG). The set of genes in the ‘druggable genome’ were identified12  (see 

Chapter 3.2), and identifiers were updated to Ensembl version 95 (GRCh37), used in this 
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analysis. All of these IDs were also present in Ensembl 95 (GRCh37), used in this analysis. 

Because only genetic associations with the druggable genome were scanned for, protein-coding 

genes that were the ‘true’ causal gene but not yet druggable would be missed and the 

association mis-assigned. To mitigate this and provide information about potential effects 

through non-druggable genes, the minimum distance from the variant to the druggable gene is 

provided in Appendix 7.A, where variants located within a gene were given a distance of 0bp, 

together with a gene distance rank value according to their base pair distance (including all 

protein-coding genes), and a column indicating if the druggable gene had been prioritised by 

GLGC in previous studies7.  

 

7.3.3. Instrument selection 

For the biomarker or genome-wide MR analyses, a p value threshold of 1x10-6 was used 

to select exposure variants associated with LDL-C, HDL-C and/or TG. For cis- or drug target 

MR analyses, variants within the 341 selected genes (±50 kbp) were selected based on a p value 

≤  1x10-4 . In both settings, variants were filtered on a MAF > 0.01 and LD clumped to an r2 < 

0.4. These parameters showed the most consistent estimates in a grid-search in the discovery 

data using the positive control examples: PCSK9, NPC1L1, HMGCR and CETP (Fig. 7.1). To 

account for residual correlation between variants in the MR analyses, a generalised least 

squares framework with a LD reference dataset derived from UK Biobank was applied13 (see 

Chapter 2.3. for details on the framework). LD reference matrices were created by extracting a 

random subset of 5,000 unrelated individuals of European ancestry from UK Biobank. Variants 

with a MAF < 0.001, and imputation quality < 0.3 were excluded. To ensure that SNPs with 

lower MAF have higher confidence, variants were removed if MAF < 0.005 and genotype 



 212 

probability < 0.9; MAF < 0.01 and genotype probability < 0.8; MAF < 0.03 and genotype 

probability < 0.6. 

 

 

 

 

 

 

 

 

Figure 7.1. Drug target MR of positive control examples. Grid search of LD threshold and 

region around the gene encoding a druggable target using genetic associations with LDL-C and 

HDL-C from the Global Lipid Genetic Consortium (GLGC) with CHD events from the 

CardiogramPlusC4D Consortium. MR estimates (A) and preferred model (B) for three licensed 

LDL-lowering drug targets and HDL-lowering CETP using lipid data from GLGC and CHD 

data from CardiogramPlusC4D in the discovery analysis. Models explored: MR Egger-RE 

(random effects), MR Egger-RE (fixed effects), inverse variance weighted (IVW)-RE (random 

effects), IVW-FE (fixed effects), Wald ratio. In panel A, blue indicates a beneficial effect on 

CHD risk, and red a detrimental effect per SD difference with respect to the indicated lipid sub-

fraction. Significant estimates are indicated with an asterisk (*). 

 

 

 

A 

B 
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7.3.4. Mendelian Randomisation analysis 

A model-selection framework was used to decide between competing inverse-variance 

weighted (IVW) fixed-effects, IVW random-effects, MR-Egger fixed effects or MR-Egger 

random-effects models14. While IVW models assume an absence of directional horizontal 

pleiotropy, Egger models allow for possible directional pleiotropy at the cost of power. See 

Chapter 2.3 for details on the model-selection framework, IVW and Egger models. After 

removing variants with large heterogeneity (p value < 0.001 for Cochran’s Q test) or leverage, 

this model selection framework was re-applied and the final model used. The influence of 

parameter selection in the drug target MR performance was explored in a grid-search of several 

r2 and gene boundaries combinations using the positive control examples PCSK9, NPC1L1, 

HMGCR and CETP, where the lipid perturbation is the intended indication. To assess the 

possibility of false positive results, the empirical p value distribution of the discovery MR 

findings was compared against the continuous uniform distribution using the Kolmogorov-

Smirnov goodness-of-fit test (two-sided). Under the null hypothesis of no association, p values 

follow a continuous uniform distribution between 0 and 115. 

Additionally, a drug target multivariable MR analysis was conducted using genetic 

associations with the three lipid sub-fractions and CHD risk in a single regression model, to 

identify likely mediating lipids in the causal pathway of CHD. For details on multivariable MR 

analysis, see Chapter 2.2.4.4. 

Results were presented as mean difference (MD) or odds ratio (OR) with 95% confidence 

interval (95%CI) coded towards the canonical drug target effect direction; i.e., towards lower 

LDL-C and triglyceride concentration, and higher HDL-C concentration. 
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7.3.5. Drug indications and adverse effects 

To evaluate if the drug target MR analyses rediscovered known drug indications, adverse 

effects or predicted repurposing opportunities, drug information and clinical trial data was 

extracted for the set of 341 druggable targets. Drug target genes were mapped to UniProt 

identifiers and indications and clinical phase for compounds that bind the target were extracted 

from the ChEMBL database (version 25)16. Drug indications and lipid adverse effects data for 

licensed drugs were extracted from the British National Formulary (BNF) website in July, 

2019. 

To further examine the effects of the drugs and clinical candidates that are known to act 

through binding to the 341 druggable targets, relevant clinical trial data were downloaded from 

the clinicaltrials.gov registry. Compound name and synonyms were extracted from ChEMBL 

database (version 25)16 and used to identify clinical trials with matching interventions. In case 

of non-exact matches, the results were inspected manually to ensure that only relevant trial 

records were used in the analysis. Lipid-related trial outcomes and adverse events were 

identified by searching the relevant fields within the trial records with the keywords: lipo*, 

lipid*, ldl*, hdl*,  cholest* and triglyceride*. For adverse events, the search was limited to the 

trial arm in which the drug of interest was administered (as opposed to placebo or active control 

used in the study) and only adverse events that affected at least one study participant were 

included. 
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7.4. Results 

7.4.1. Biomarker-weighted univariable drug target Mendelian Randomisation 

Drug target MR was used to determine the effect on CHD of perturbing druggable 

proteins that influence one or more of the three lipid fractions. First, genes previously shown 

to encode druggable proteins were selected in regions around variants associated with one or 

more of the major circulating lipid subfractions applying a p value ≤ 1x10-6. This identified 

341 genes; 149 for an association with LDL-C, 180 for HDL-C and 154 for TG12. One hundred 

forty genes (41%) were associated with a single lipid subfraction, 171 (50%) were associated 

with two subfractions and 30 (9%) were associated with all three subfractions (Fig. 7.2, 

Appendix 7.A). Subsequently, a drug target MR analysis was performed on CHD accounting 

for genetic correlation between variants. In the absence of direct measures of the encoded 

protein, the effect of genetic drug target perturbation was proxied through the downstream 

effect on one or more of the three lipid sub-fractions. Here genetic associations with LDL-C, 

HDL-C, and TG were used as a proxy for drug target effects on CHD, which does not provide 

direct evidence on whether the drug target itself affects CHD through the leveraged lipid 

weight; this mediation question is subsequently explored using multivariable MR. 
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Figure 7.2. Overlap between genes encoding druggable targets associated with the major lipid 

subfractions. The Venn diagram shows genes exhibiting overlapping or exclusive associations 

with LDL-C, HDL-C and/or TG.  

 

Of the 341 drug targets, 165 could be associated with CHD, with 131 of these estimates 

being consistent with a protective effect when instrumented for a reduction in LDL-C or TG 

and/or elevation in HDL-C (Fig. 7.3, Appendix 7.B). When weighted by LDL-C, eighty-seven 

targets showed a significant effect on CHD after orientating towards an increasing LDL-C 

direction, with the first and third quartiles (Q) of the CHD OR of 1.93 and 3.32. Similarly, the 

Q1 and Q3 after orientating the OR towards an increasing HDL-C direction were 0.22 and 0.53 

for the 49 significant HDL-C instrumented targets, and for the 49 significant TG instrumented 

targets these were 1.95 and 4.35, respectively. 
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Figure 7.3. Discovery drug target MR estimates on CHD. Analyses were performed using 

genetic associations with LDL-C, HDL-C and TG from the Global Lipid Genetic Consortium 

(GLGC) with CHD events from the CardiogramPlusC4D Consortium. Drug targets are 

grouped by maximum clinical phase according to ChEMBL v25 database. Blue indicates a 

beneficial effect on CHD risk, and red a detrimental effect per SD difference with respect to 

the indicated lipid sub-fraction. Significant estimates are indicated with an asterisk (*).  

 

To assess the potential for false positive results, the distribution of the exposure-specific 

p values was tested against the uniform distribution expected under the null hypothesis15. The 

Kolmogorov-Smirnov (KS) goodness-of-fit test was not consistent with the hypothesis that the 

observed findings could be readily explained by multiple testing (Fig. 7.4). 
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Figure 7.4. Density distribution of the p values in the discovery analysis by exposure. 

Kolmogorov-Smirnov (KS) goodness-of-fit test (two-sided) against the continuous uniform 

distribution of p values (black dashed line) expected under the null-hypothesis of no association 

between any of the targets and coronary heart disease, when the effect is instrument via LDL-

C, HDL-C and TG effects. 

 

7.4.2. Rediscoveries of indications and on-target adverse effects 

To investigate if the drug target MR analysis rediscovered the mechanism of action of 

drugs with a license for lipid modification or compounds with a different indication but with 

reported lipid-related effects, compounds with reported lipid indications or adverse effects 

were extracted from the BNF website, which comprises prescribing information for all UK 

licensed drugs. Out of the 341 druggable genes included in the analysis, five encoded the targets 

of drugs with a lipid-modifying indication (PCSK9, PPARG, PPARA, NPC1L1, HMGCR) of 

which NPC1L1, HMGCR and PCSK9 are targets of drugs used in CHD prevention; and 6 

encoded a protein target of a drug with reported lipid-related adverse effects (ADRB1, TNF, 

ESR1, FRK, BLK and DHODH) (Appendix 7.C). To include outcome and side effect data of 

candidates in clinical phase development, the 341 drug targets were mapped to compound data 

available in the clinicaltrials.gov database. This database differentiates between endpoints 

monitored throughout the trial (‘outcomes’), and unanticipated harmful episodes during the 

KS p value: 1.34 · 10-49 KS p value: 2.49 · 10-26 
KS p value: 7.07 · 10-18 
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study that may be on-target or off-target effects of the trial agent (‘adverse events’). Of the 341 

drug targets, 23 had reported lipid related outcomes and 40 had reported lipid-related adverse 

events (Appendix 7.C).  

The pool of druggable targets that were modelled using higher LDL-C as a proxy for the 

pharmacological action on a drug target included 14 targets of clinically used drugs, three of 

which were licensed for CHD treatment by lowering LDL-C (HMGCR, PCSK9 and NPC1L1). 

The non-CHD indications of clinically used drugs included dyslipidemias (PPARA), type 2 

diabetes (PPARG and NDUFA13), autoimmune diseases (TNF), neoplasms (RAF1 and 

PSMA5), circulatory disorders (ABCA1, PLG, ITGB3 and F2) and alcohol-dependency 

(ALDH2) (Table 7.1). With the exception of F2, instrumenting the target action through a 

higher LDL-C effect was associated with a higher CHD risk. Two drug targets were for 

compounds already in phase 3 trials for CHD prevention (ANGPTL3 and CETP). Lastly, three 

targets were in phase 2 trials of compounds developed for other indications (CYP26A1, LTA 

and LTB). The remaining 82 of the 101 targets had not yet been drugged by compounds in 

clinical phase development. 

When using higher HDL-C as a proxy for pharmacological action, MR of four drug 

targets with compounds approved for non-CHD indications showed a directionally beneficial 

effect on CHD (VEGFA, PSMA5, CACNB1 and NISCH), suggesting potential for indication 

expansion (Table 7.1). Three were targets for drugs approved for non-CHD indications but 

which showed a potentially detrimental effect direction on CHD when instrumented through 

increasing HDL-C concentration (ESR1, ALOX5, TUBB). Both CYP26A1 and CETP were 

associated with lower CHD risk when the effect on CHD was instrumented through an 

elevation of HDL-C. The remaining 65 of the 74 targets have not yet been drugged by 

compounds in clinical phase development.  
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Lastly, the set of druggable targets with compounds developed for non-CHD indications 

that were modelled using higher TG as a proxy for the pharmacological action on the target 

included PPARG, DHODH, VEGFA, TOP1, TUBB, NDUFA13, ABCA1, BLK, and F2 (Table 

7.1). Of these, instrumenting the CHD effect through higher TG via drug action on BLK or F2 

increased CHD risk. For the remaining targets, which included CETP, ANGPTL3 and 

CYP26A1, instrumenting the target effect through lowering TG levels decreased the risk of 

CHD, while the remaining 52 of the 64 targets have not been drugged by licensed compounds 

or clinical candidates yet. 
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Table 7.1. Univariable drug target MR estimates for drug targets approved for indications other 

than lipid-lowering. 
Drug 

target gene 

LDLC 

(OR, 95% CI) 

HDL -C 

(OR, 95% CI) 

Triglycerides 

(OR, 95% CI) 
Mechanism of action and indication 

ESR1 - 2.11 (1.13, 3.93)* - 

AGONIST: Neoplasms, Hypogonadism, 
Menorrhagia, Primary Ovarian Insufficiency, Acne 
Vulgaris, Postmenopausal Osteoporosis 
ANTAGONIST: Breast Neoplasms, Neoplasms 
MODULATOR: Infertility, Dyspareunia, Breast 
Neoplasms, Postmenopausal  Osteoporosis 

TNF 2.03 (1.05, 3.93)* - 1.21 (0.78, 1.9) 

INHIBITOR: Ankylosing Spondylitis, Crohn 
Disease, Psoriasis, Rheumatoid Arthritis, Colitis, 
Ulcerative, Psoriatic Arthritis, Immune System 
Diseases, Juvenile Arthritis 

BLK - - 0.46 (0.31, 0.7)* 
INHIBITOR: Precursor Cell Lymphoblastic 
Leukemia-Lymphoma, Neoplasms 

DHODH 0.66 (0.44, 1.0) - 7.42 (2.32, 23.71)* 
INHIBITOR: Rheumatoid Arthritis, Immune 
System Diseases, Multiple Sclerosis 

PPARG 1.67 (1.04, 2.68)* 0.71 (0.35, 1.48) 2.18 (1.14, 4.15)* 
AGONIST: Type 2 Diabetes Mellitus, Diabetes 
Mellitus, Colitis, Ulcerative, Cardiovascular 
Diseases 

PPARA 3.77 (1.44, 9.85)* - - 
AGONIST: Cardiovascular Diseases, 
Hypercholesterolemia, Dyslipidemias 

NDUFA13 1.63 (1.13, 2.35)* - 1.18 (1.0, 1.39)*† 
INHIBITOR: Diabetes Mellitus, Type 2 Diabetes 
Mellitus 

ALDH2 0.14 (0.07, 0.29)* - - 
INHIBITOR: Ectoparasitic Infestations, 
Alcoholism 

NISCH - 0.57 (0.35, 0.93)* 1.16 (0.31, 4.34) AGONIST: Hypertension 

ABCA1 2.05 (1.34, 3.15)* 1.41 (0.66, 3.0) 2.4 (1.29, 4.49)* INHIBITOR: Cardiovascular Diseases 

F2 0.17 (0.05, 0.59)* 0.57 (0.13, 2.43) 0.35 (0.13, 0.94)* 
INHIBITOR: Venous Thrombosis, Thrombosis, 
Unstable Angina, Thrombocytopenia, Atrial 
Fibrillation, Embolism, Stroke  

TUBB - 7.56 (1.18, 48.38)* 4.46 (2.13, 9.36)* 

INHIBITOR: Breast Neoplasms, Neoplasms, 
Hodgkin Disease, Large-Cell Anaplastic 
Lymphoma, Non-Small-Cell Lung Carcinoma, 
Gout, Familial Mediterranean Fever 

VEGFA - 0.22 (0.15, 0.3)* 4.16 (2.45, 7.08)*† 

ANTAGONIST: Retinal Neovascularization 
INHIBITOR: Diabetic Retinopathy, Retinal 
Neovascularization, Wet Macular Degeneration, 
Macular Edema, Colorectal Neoplasms, 
Neoplasms, Glioblastoma, Renal Cell Carcinoma, 
Non-Small-Cell Lung Carcinoma, Uterine Cervical 
Neoplasms 

RAF1 2.06 (1.48, 2.86)* - 2.63 (0.79, 8.83) INHIBITOR: Neoplasms 

PSMA5 2.47 (1.8, 3.39)*† 0.08 (0.02, 0.29)* - 
INHIBITOR: Multiple Myeloma, Neoplasms, 
Mantle-Cell Lymphoma 

ALOX5 - 1.74 (1.18, 2.58)* - 
INHIBITOR: Asthma, Ulcerative Colitis, 
Rheumatoid Arthritis, Juvenile Arthritis 

CACNB1 - 0.38 (0.2, 0.72)* - 

BLOCKER: Cardiovascular Diseases 
MODULATOR: Fibromyalgia, Seizures, Epilepsy, 
Neuralgia, Restless Legs Syndrome, Postherpetic 
Neuralgia 

PLG 18.35 (5.47, 61.6)* 5.48 (0.07, 456.86) 0.75 (0.18, 3.14) 

ACTIVATOR: Thrombosis, Pulmonary Embolism, 
Stroke, Myocardial Infarction, Heart Failure, 
Hepatic Veno-Occlusive Disease 
INHIBITOR: Hemorrhage, Menorrhagia 

ITGB3 1.64 (1.06, 2.52)* 2.79 (0.81, 9.62) - INHIBITOR: Thrombosis, Unstable Angina 

TOP1 2.3 (0.15, 35.62) - 16.72 (4.19, 66.8)* INHIBITOR: Neoplasms 

These drug targets showed lipid records in clinicaltrials.gov and/or the British National Formulary (BNF). * indicates 
significance in the discovery analysis; † indicates significance in both original and validation study and concordant 
direction of effect. OR = odds ratio of CHD per 1-standard deviation increase in LDL-C, HDL-C or triglycerides; CI = 
confidence interval. 
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7.4.3. Independent validation of the drug target MR estimates 

To help verify the MR findings and reduce the multiple testing burden, an independent 

two sample drug target MR analysis was conducted using summary statistics from a GWAS of 

blood lipids measured using an NMR spectroscopy platform10,17, and genetic associations with 

CHD risk derived from UK Biobank11. The validation analysis identified 47 significant MR 

estimates (p value < 0.05), of which 39/47 (83%) showed a concordant direction of effect with 

the initial analysis (Table 7.2) corresponding to 30 drug targets. Replicated targets included the 

licensed LDL-lowering drug targets PCSK9 and NPC1L1 (Appendix 7.C). While the majority 

of the replicated drug targets were anticipated to decrease CHD risk when instrumenting their 

effect through LDL-C concentration based on the univariable results, 9 of the drug targets 

analysed were significantly associated with lower CHD when the drug target effects were 

modelled through HDL-C and/or TG (Fig. 7.5). 

 

 

 

 

 

 

 

 

 



 223 

Table 7.2. Replication of drug target MR findings.  

 

The discovery and replication analyses used different data sources for both exposure and 
outcome. 145 replication MR analyses were performed in which the gene boundaries included 
genetic associations exceeding the pre-specified significance threshold (p value ≤ 1x10-4). 

 

 

 

 

 

 

 

 

Source of data 
 Lipids measures Disease endpoints 

Discovery 

Clinical chemistry 
 
(GLGC, 
N= 188,578) 

Research-based case ascertainment 
 
(CardiogramPlusC4D, 
N= 184,305 cases) 

Replication 

Nuclear magnetic resonance 
(NMR)  spectroscopy 
 
(Kettunen et al, 2016, 
UCLEB Meta-analysis, 
N=33,029) 

Routine Electronic Health Records 
 
(UK Biobank, 
N=34,541 cases) 

Direction of effect 

 LDL-C HDL-C Triglycerides Overall 

Concordant 21 6 12 39 

Discordant 4 0 4 8 
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Figure 7.5. The sets of assigned genes associated with LDL-C, HDL-C, TG that encode 

druggable targets. Genes encoding druggable targets were included if they demonstrated 

concordant direction of effect in the discovery and validation studies on CHD showing a causal 

effect of one or more lipid sub-fractions. 

 

7.4.4. Discriminating independent lipid effects using MVMR 

After considering each lipid sub-fraction as a single measure on disease risk in the 

univariable drug target MR analyses, a multivariable drug target MR (MVMR) analysis was 

performed including LDL-C, HDL-C and TG in a single model to account for potential 

pleiotropic effects of target perturbation via the other lipid sub-fractions and, in contrast to the 

previous univariable drug target MR, attempt to directly identify any potential lipid mediating 

pathway. Twenty-six of the replicated targets had sufficient data (3 or more variants) for the 

multivariable analysis. This analysis identified a single likely lipid fraction for 12 targets 

(SLC12A3, APOB, APOA1, PVRL2, APOE, APOC1, CELSR2, GPR61, PCSK9 and 
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CEACAM16 through LDL-C; LPL through HDL-C; and ALDH1A2 through TG) (Appendix 

7.D). It was found that SMARCA4 and APOA5 likely affected CHD through LDL-C and TG, 

and that RPL7A likely affected CHD through LDL-C and HDL-C pathways. Due to the limited 

number of variants in VEGFA, CILP2, NDUFA13 and ANGPTL4, multivariable MR analysis 

could not distinguish the lipid fraction through which CHD was likely affected. Additionally, 

the presence of horizontal pleiotropy in the MVMR analysis based on heterogeneity tests 

suggested that PCSK9, LPL, APOC1, APOE, PVRL2, APOB, APOC3, CETP, APOA1 and 

CELSR2 may affect CHD through additional pathways beyond the lipid sub-fractions LDL-C, 

HDL-C and TG included in the current model. 
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7.5. Discussion 

7.5.1. Summary 

In this chapter, ‘biomarker-weighted drug target MR’ was used to evaluate the effect of 

perturbing targets encoded by druggable genes in CHD prevention. By combining publicly 

available GWAS datasets on blood lipids and coronary heart disease and applying MR 

approaches with drug information and clinical data, I have genetically validated and prioritised 

drug targets for CHD prevention. While, as introduced in Chapter 1 and later investigated in 

Chapter 6, the ideal exposure in a MR analysis for drug target validation are protein activity or 

levels, restricting the study to those targets with available protein data would have led to a 

significant reduction in the number of drug targets evaluated. In fact, only 39% (i.e., 133/341) 

of the 341 druggable genes identified in this analysis had the levels of the encoded protein 

measured by the largest proteomic platform available (SomaLogic v4). Furthermore, as 

discussed in Chapter 6, pQTL-weighted drug target MR may be inaccurate in some scenarios, 

and well-studied alternatives such as ‘biomarker-weighted drug target MR’ represent an 

opportunity to evaluate drug targets on a large scale. Therefore, one of the aims of the analysis 

presented in this chapter was to illustrate that the lack of pQTL data should not be a limitation 

to perform drug target MR analyses when genetic associations with a downstream biomarker 

are available. 

One hundred thirty one drug target genes associated with CHD risk were identified from 

a set of 341 druggable genes overlapping associations with one or more of the major blood 

lipid fractions. The set of targets included NPC1L1, HMGCR and PCSK9, which are known 

targets of LDL-lowering drugs whose efficacy in CHD prevention has been proven in clinical 

trials. An independent replication study was performed both to corroborate the targets and the 

direction of the effects. The findings were replicated in independent datasets (UCLEB 
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Consortium and UK Biobank) in which lipids were measured using a different platform (NMR 

spectroscopy in UCLEB) and the disease endpoints ascertained by linkage to routinely 

recorded health data (UK Biobank). The validation study replicated 83% (39/47) of the initial 

estimates, including the mechanism of action of current lipid-modifying drug targets PCSK9 

and NPC1L1 and the suggested mechanism of action of compounds under investigation for 

lipid modification through TG or HDL-C, such as CETP inhibitors18,19.  

It is essential to highlight that, while the drug target analysis uses genetic associations 

with these lipid sub-fractions as weights, the inference throughout has been on the therapeutic 

relevance of perturbing the proteins encoded by the corresponding genes which are the main 

category of molecular target for drug action. The genetic associations with the corresponding 

lipids are merely used as a proxy for protein activity and/or concentration, serving to orientate 

the MR effects in the direction of a therapeutic effect. They do not provide comprehensive 

evidence on the pathway through which perturbation of such targets causally affects CHD. 

Nevertheless, multivariable MR does provide insight on the potential relevance of lipid 

pathways in mediating the effects of drug target perturbation. In general, results that do not 

meet the significance threshold should not be over-interpreted as proof of absence of effect20. 

This may be exacerbated here by potential weak instrument bias, which will be expected to 

attenuate results towards the no-effect direction.  

 

7.5.2. Research in context 

In addition to the known lipid-modifying drug targets PCSK9 and NPC1L1, the set of 30 

replicated drug targets also included lipoprotein lipase (LPL), a target that could potentially 

decrease CHD risk based on the univariable MR findings, with an effect through HDL-C 

further endorsed by the multivariable MR analyses (Fig. 7.6). In contrast to current lipid-
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lowering drug targets which are specifically expressed in the liver, LPL shows highest specific 

expression in adipose tissue which suggests tissues beyond the liver may be relevant to target 

lipid metabolism. Several pharmacological attempts have been pursued to target LPL21,22, and 

gene therapy has also been applied to treat LPL deficiency by introducing extra copies of the 

functional enzyme in patients with hypertriglyceridemia23. The approval of gene therapy 

interventions and the known indirect activation of LPL by drugs targeting other proteins, such 

as fibrates24 and metformin25, suggest that the previous failure of compounds targeting LPL in 

initial trials may have been idiosyncratic. LPL activity is also modulated by another protein in 

the replicated dataset, apolipoprotein A5 (ApoA5), which is exclusively expressed in liver 

tissue. The multivariable MR suggest that ApoA5 (partially) affects CHD through LDL-C and 

TG-mediated pathways. Regardless of the mediating lipid or lipids, the genetic findings in 

relation to both LPL and ApoA5 are consistent and point to this as an important potentially 

targetable pathway in atherosclerosis, supporting prior work26.   
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Figure 7.6. Prioritised target: lipoprotein lipase (LPL). a. Genetic associations at the locus (± 

50 kbp) in black vs genome-wide associations (grey, p value < 1x10-6 based on two-sided z-

tests). The x-axis shows the per allele effect on the corresponding lipid expressed as mean 

difference (MD) from GLGC and the y-axis indicates the per allele effect on CHD expressed 

as log odds ratios (OR) from CardiogramPlusC4D. The marker size indicates the significance 

of the association with the lipid sub-fraction (p value). b. Univariable and multivariable (drug 

target) cis-MR results presented as OR and 95% confidence intervals with lipid exposure 

(n=188,577 individuals) and CHD outcome (n= 60,801 cases and 123,504 controls). An 

asterisk (*) indicates the MR estimates as being replicated. 
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This chapter describes and applies an approach to move from GWAS signals to drug 

targets and disease indications through ‘biomarker-weighted drug target MR’. Its potential has 

been illustrated using genetic association data on lipids and CHD data, but the approach could 

also be applied in other settings where there are GWAS of diseases and biomarkers thought to 

be potentially affected by the drug target.  

 

7.5.3. Strengths and limitations 

Some limitations of this study are noteworthy. First, only genes regarded as encoding 

druggable proteins were included, which currently comprise approximately 25% of all protein 

coding genes12. As knowledge advances, additional proteins will become druggable, and 

alternative therapeutic strategies such as antisense oligonucleotides and gene therapy may 

extend the range of mechanisms that can be targeted. The approach described here is in fact 

agnostic to therapeutic modality and could be adapted accordingly. Second, variants were 

assigned to druggable genes based on genomic proximity, which may be as reliable as other 

approaches in mapping causal genes33–35. However, simple genomic proximity might result in 

misleading assignment of the causal gene in a region containing multiple genes in high LD 

(e.g. PVRL2, APOC1 and APOE are all located in a region of LD in Chr19:45349432-

45422606, GRCh37). In an effort to account for this, all the druggable genes (± 50 kbp) that 

overlap one of the genetic variants associated with LDL-C, HDL-C or TG were included in the 

analysis, and information on proximity of the variant to the gene, a gene distance rank value 

(in base pairs), and previous gene prioritisation data by the Global Lipids Genetics Consortium 

(GLGC)7 is also provided to inform scenarios in which the causal gene may be a non-druggable 

gene but reside in the same region (Appendix 7.A). 
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Cis-MR was used to evaluate the relevance of each drug target to CHD, which is less 

prone to violation of the horizontal pleiotropy assumption than MR analyses with trans 

instruments4, which also require direct measurement of the protein of interest. However, cis-

MR also requires some decisions to be made regarding instrument selection: defining the locus 

of interest, the significance threshold for the association with the exposure and the LD threshold 

to prune correlated instruments. Since an agreement on the choice of a general LD threshold 

and flanking region has yet to be reached, a window of 50 kbp and LD threshold of 0.4 were 

used, which showed the most consistent estimates in a grid-search in the discovery data using 

the four positive control examples: PCSK9, NPC1L1, HMGCR and CETP. Based on previous 

studies showing that using less stringent p value thresholds often results in improved 

performance in cis-MR settings, the threshold below genome-wide significance was relaxed to 

select the genetic associations to instrument the exposure; and accounted for LD correlation by 

pruning and LD modelling during the MR analysis4,36.  

Multiple testing in the MR analyses was addressed in a number of complementary ways. 

To assess the potential for false positive results, the distribution of the exposure-specific p 

values was tested against the uniform distribution expected under the null hypothesis15. The 

Kolmogorov-Smirnov (KS) goodness-of-fit test indicated that the number of extreme p values 

obtained would be highly unlikely under the null hypothesis, suggesting that they are unlikely 

to represent false positives. Subsequently, the findings were validated with independent data 

sources and a second drug target MR was conducted, although several drug target genes could 

not be evaluated in the validation analysis because the gene boundaries did not include genetic 

associations exceeding the pre-specified significance threshold (p value ≤ 1x10-4), likely 

related to the ‘modest’ sample size of the NMR replication data (N=33,029). By drawing 

inference on replicated data, the multiple testing burden was considerably reduced 
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(0.052=0.0025), which when applied to 98 drug targets retained after replication would suggest 

up to one result being a false positive. 

Beyond univariable MR analyses, I attempted to further validate the findings with a 

multivariable extension of the inverse-variance weighted (IVW) and MR Egger methods, 

however, in some cases imprecise estimates were obtained in line with previous studies which 

attributed this to the inclusion of highly correlated exposures in the model37.  

The effect directions of the replicated drug targets were compared to results from clinical 

trials using data from the clinicaltrials.gov registry. However, the lack of precision in 

annotation of events associated with lipid perturbations (e.g. hyperlipidaemia) in this dataset 

hinders the assignment of reported lipid abnormalities to a particular lipid sub-fraction. 

Moreover, the proportion of clinical trials with reported results in clinicaltrials.gov is less than 

54.2%38, suggesting that additional drug candidates with lipid effects might have been 

investigated but were not included in this analysis because of the lack of accessible data. 

Furthermore, the analysis relied on mapping clinical trial interventions to compounds known 

to act through binding to the targets of interest, which could potentially miss clinical trials of 

compounds annotated with less synonyms (such as research codes for compounds used by 

individual trial sponsors).  
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7.6. Conclusion 

In Chapter 6, genetic variants in or near a drug target gene that have been associated with 

the circulating levels of the encoded protein were used to evaluate the performance of the drug 

target MR framework. Such analysis showed that measured levels are yet not available for 

several drug target proteins, and even when these have been measured, the genetic associations 

do not represent valid instruments or the drug target MR framework does not yield the 

anticipated result. As an alternative to the pQTL-weighted drug target MR, the drug target MR 

using genetic variants in and around the gene encoding the target protein associated with a 

downstream biomarker could be used as a proxy for protein concentration or activity, without 

implying a mediation effect between the biomarker and the disease. As an example, biomarker-

weighted drug target MR was applied to a set of 341 drug targets identified through their 

association with blood lipids (HDL-C, LDL-C and triglycerides), to evaluate their causal 

relevance for coronary heart disease (CHD). Thirty of these targets were further prioritised 

including NPC1L1 and PCSK9, the targets of drugs used in CHD prevention. When used as a 

screening tool, the biomarker-weighted drug target MR could help reduce the high failure rate 

problem in drug discovery by genetically validating targets in the earlier phases of the drug 

development pipeline.   
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7.8. Appendices 

Appendix 7.A. Proximity to GWAS SNP, protein-coding distance rank and previous evidence 

of druggable genes near genetic associations with LDL-C, HDL-C and TG from GLGC.  

Druggable 

gene 

Genomic coordinates 

(GRCh37) 
Min distance (pb) to 

LDL-C assoc. 

(distance rank) 

Min distance (pb) 

to HDL-C assoc. 

(distance rank) 

Min distance (pb) to 

TG assoc. (distance 

rank) 

Prioritised 

by GLGC 

RHD 1:25598884-25656936 31340 (4) - - No 
RHCE 1:25688740-25756683 0 (1) - - No 

RPS6KA1 1:26856252-26901521 - 0 (1) - No 
SFN 1:27189633-27190947 - 45265 (6) 45265 (6) No 

NR0B2 1:27237980-27240457 44738 (4) 44738 (4) 44738 (4) No 
SLC9A1 1:27425306-27493472 -27702 (1) - - No 
BMP8A 1:39957318-39991607 - -7238 (2) -7238 (2) No 
PCSK9 1:55505221-55530525 0 (1) - - Yes 

ANGPTL3 1:63063158-63071830 -49762 (2) - -7878 (2) Yes 
ATG4C 1:63249806-63331184 0 (1) - 0 (1) No 

RPL5 1:93297582-93307481 -27758 (2) - - No 
CELSR2 1:109792641-109818372 0 (1) 0 (1) - No 
PSMA5 1:109941653-109969062 -19276 (2) - - No 
GPR61 1:110082494-110091028 -20869 (3) - - No 

AMPD2 1:110158726-110174673 -49687 (4) - - No 
GSTM4 1:110198703-110208118 -29513 (3) - - No 
GSTM2 1:110210644-110252171 44118 (4) - - No 
GSTM1 1:110230436-110251661 44628 (5) - - No 
GSTM5 1:110254864-110318050 0 (2) - - No 
GSTM3 1:110276554-110284384 11905 (3) - - No 

CSF1 1:110452864-110473614 - 5297 (1) - No 
HDGF 1:156711899-156736717 - -11248 (4) - No 

GALNT2 1:230193536-230417870 - 0 (1) 0 (1) Yes 
GDF7 2:20866424-20873418 13808 (2) - - No 
APOB 2:21224301-21266945 29601 (1) -28051 (1) -28051 (1) Yes 

EMILIN1 2:27301435-27309271 - - 33623 (7) No 
KHK 2:27309615-27323640 - - 19254 (5) No 

CGREF1 2:27321757-27341995 - - 899 (1) No 
SLC5A6 2:27422455-27435826 - - 7370 (3) No 
ATRAID 2:27434895-27440046 - - 3150 (2) No 

CAD 2:27440258-27466811 - - 30737 (4) No 
UCN 2:27530268-27531313 - - -32720 (5) No 

NRBP1 2:27650657-27665126 - - -10332 (2) No 
GCKR 2:27719709-27746554 0 (1) - 32018 (4) Yes 

MAP3K19 2:135722061-135805038 0 (1) - - No 
LCT 2:136545410-136594750 0 (1) - - No 

ABCB11 2:169779448-169887832 0 (1) - - Yes 
CPS1 2:211342406-211543831 - 0 (1) - Yes 
FN1 2:216225163-216300895 0 (1) - - Yes 

UGT1A8 2:234526291-234681956 0 (9) - - No 
UGT1A10 2:234545100-234681951 0 (8) - - No 

UGT1A9 2:234580499-234681946 0 (7) - - No 
UGT1A7 2:234590584-234681945 0 (4) - - No 
UGT1A6 2:234600253-234681946 0 (6) - - No 
UGT1A5 2:234621638-234681945 0 (5) - - No 
UGT1A4 2:234627424-234681945 0 (3) - - No 
UGT1A3 2:234637754-234681945 0 (2) - - No 
UGT1A1 2:234668894-234681945 0 (1) - - Yes 
PPARG 3:12328867-12475855 0 (1) 0 (1) 13487 (1) No 

RAF1 3:12625100-12705725 0 (1) - - Yes 
CAMKV 3:49895421-49907655 - 0 (1) - No 
MST1R 3:49924435-49941299 - 30215 (4) - No 

SEMA3F 3:50192478-50226508 - -20081 (2) - No 
SEMA3G 3:52467069-52479101 - -35398 (4) - No 

TNNC1 3:52485118-52488086 - 4621 (2) - No 
NISCH 3:52489134-52527087 - 0 (1) - No 
PBRM1 3:52579368-52719933 - 0 (1) - No 

NEK4 3:52744800-52804965 - 39569 (8) - No 
ITIH1 3:52811603-52826078 - 18456 (4) - No 
ITIH3 3:52828784-52843025 - 1509 (1) - No 
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Druggable 

gene 

Genomic coordinates 

(GRCh37) 
Min distance (pb) to 

LDL-C assoc. 

(distance rank) 

Min distance (pb) 

to HDL-C assoc. 

(distance rank) 

Min distance (pb) to 

TG assoc. (distance 

rank) 

Prioritised 

by GLGC 

ITIH4 3:52846991-52865495 - -2457 (2) - No 
ABHD6 3:58223233-58281420 12447 (3) - - No 

NR1I2 3:119499331-119537332 - 4965 (2) - No 
GSK3B 3:119540170-119813264 - 0 (1) - Yes 
RGS12 4:3294755-3441640 0 (1) - 31499 (3) No 

HGFAC 4:3443614-3451211 -8729 (2) - 21928 (2) No 
LRPAP1 4:3508103-3534286 -34964 (4) - -34964 (4) Yes 
MAPK10 4:86936276-87515284 - - 0 (1) No 
PTPN13 4:87515468-87736324 - 32193 (3) -41692 (2) No 
KLHL8 4:88081255-88161466 - -28170 (2) 49590 (3) Yes 

HSD17B11 4:88257762-88312538 - - -46706 (2) No 
METAP1 4:99916771-99983964 - 30841 (3) - No 

ADH5 4:99992132-100009952 - 4853 (1) - Yes 
ADH4 4:100044808-100078949 - -30003 (2) - No 

NFKB1 4:103422486-103538459 - -49200 (2) - No 
PDGFC 4:157681606-157892546 - 0 (1) - No 

HMGCR 5:74632154-74657929 -49992 (2) - - Yes 
CSNK1G3 5:122847793-122952739 0 (1) - - Yes 

HIST1H1C 6:26055968-26056699 36442 (6) - - No 
HFE 6:26087509-26098571 0 (1) - - Yes 

HIST1H4C 6:26104104-26104518 -10963 (2) - - No 
OR11A1 6:29393281-29424848 - - 17853 (3) No 
OR2H1 6:29424958-29432105 - - 10596 (1) No 
MAS1L 6:29454474-29455738 - - -11773 (2) No 
HLA-G 6:29794744-29798902 - - 21684 (1) No 
TUBB 6:30687978-30693203 - - 15752 (3) No 
DDR1 6:30844198-30867933 - - -45501 (1) No 

SFTA2 6:30899130-30899952 - - 20172 (2) No 
C6orf15 6:31079000-31080336 49371 (8) 25077 (6) 32878 (7) No 
HLA-C 6:31236526-31239907 32354 (1) - 25632 (1) No 
HLA-B 6:31321649-31324965 29139 (2) 29139 (2) -49933 (2) No 

LTA 6:31539831-31542101 -27032 (6) - 930 (2) No 
TNF 6:31543344-31546113 -30545 (7) - -313 (1) No 
LTB 6:31548302-31550299 -35503 (9) - 45839 (12) No 

NCR3 6:31556672-31560762 -43873 (11) 41081 (10) 35376 (7) No 
APOM 6:31620193-31625987 - -18350 (4) 39207 (17) No 

ABHD16A 6:31654726-31671221 - -35150 (11) 0 (1) No 
C6orf25 6:31686371-31694491 - - -21177 (8) No 

HSPA1A 6:31783291-31785723 - - 22713 (5) No 
HSPA1B 6:31795512-31798031 48981 (9) - 39246 (7) No 

NEU1 6:31825436-31830683 17537 (4) - 20671 (5) No 
SLC44A4 6:31830969-31846823 1397 (2) - 4531 (2) No 

EHMT2 6:31847536-31865464 0 (1) - 0 (1) No 
C2 6:31865562-31913449 15565 (7) - -14208 (3) No 

CFB 6:31895475-31919861 9153 (4) - -44121 (8) No 
C4A 6:31949801-31970458 -20787 (8) - -20787 (8) No 
C4B 6:31982539-32003195 -35079 (10) - 4264 (3) No 

CYP21A2 6:32006042-32009447 36828 (3) - 0 (1) No 
TNXB 6:32008931-32083111 0 (1) - -1472 (2) No 

EGFL8 6:32132360-32136058 - - 48287 (8) No 
AGER 6:32148745-32152101 - 37740 (4) 32244 (4) No 

NOTCH4 6:32162620-32191844 - 0 (1) 0 (1) No 
HLA-DRA 6:32407619-32412823 -48188 (3) -44404 (3) 0 (1) No 

HLA-DRB5 6:32485120-32498064 - -40922 (2) - No 
HLA-DRB1 6:32546546-32557625 42432 (3) 18358 (1) 42432 (3) No 
HLA-DQA2 6:32709119-32714992 -37979 (2) -39746 (2) -24862 (1) No 

HLA-DOB 6:32780540-32784825 0 (1) - -25250 (2) No 
PSMB8 6:32808494-32812480 -23874 (4) - - No 
PSMB9 6:32811913-32827362 -27293 (5) - - No 

SCUBE3 6:35182190-35220856 -49116 (2) -20049 (1) - No 
KCNK17 6:39266777-39282329 -15940 (1) - - Yes 
KCNK16 6:39282474-39290744 -31637 (2) - - No 
VEGFA 6:43737921-43754224 - 10327 (1) 10327 (1) Yes 

FRK 6:116252312-116381921 0 (1) - - Yes 
RSPO3 6:127439749-127518910 - 2217 (1) -47328 (1) Yes 

L3MBTL3 6:130334844-130462594 - - 0 (1) No 
ESR1 6:151977826-152450754 - 0 (1) - No 

IGF2R 6:160390131-160534539 8609 (2) - - No 
SLC22A1 6:160542821-160579750 0 (1) - - No 
SLC22A2 6:160592093-160698670 19974 (1) 69 (1) - No 
SLC22A3 6:160769300-160876014 -46295 (2) -32178 (1) 0 (1) No 

LPA 6:160952515-161087407 0 (1) 0 (1) -45381 (2) Yes 



 240 

Druggable 

gene 

Genomic coordinates 

(GRCh37) 
Min distance (pb) to 

LDL-C assoc. 

(distance rank) 

Min distance (pb) 

to HDL-C assoc. 

(distance rank) 

Min distance (pb) to 

TG assoc. (distance 

rank) 

Prioritised 

by GLGC 

PLG 6:161123270-161174347 -40471 (2) -40809 (2) - No 
MAP3K4 6:161412759-161538417 -21972 (1) - - No 
GPR146 7:1084212-1098897 - -435 (2) - Yes 
GPER1 7:1121844-1133451 - -38067 (3) - No 
DAGLB 7:6448757-6523821 - -13853 (2) - Yes 
NPC1L1 7:44552134-44580914 41372 (4) - - Yes 

FKBP6 7:72742167-72772634 - - 0 (1) No 
FZD9 7:72848109-72850450 - 5980 (2) 32656 (2) No 

STX1A 7:73113536-73134002 - - -53 (2) No 
MET 7:116312444-116438440 - - 0 (1) Yes 

AOC1 7:150521715-150558592 - 0 (1) - No 
TNKS 8:9413424-9639856 - - 0 (1) No 

BLK 8:11351510-11422113 - - 0 (1) No 
FDFT1 8:11653082-11696818 - - -36672 (4) No 

CTSB 8:11700033-11726957 - - -10805 (2) No 
NAT2 8:18248755-18258728 13710 (1) - 9752 (1) Yes 

LPL 8:19759228-19824769 - 46744 (1) 46744 (1) Yes 
SLC18A 8:20002366-20040717 - -46760 (1) -41092 (1) Yes 
CYP7A1 8:59402737-59412795 -4276 (1) - -49203 (2) Yes 

GPIHBP1 8:144295068-144299044 - -49193 (2) - Yes 
ABCA1 9:107543283-107690518 0 (1) 0 (1) 0 (1) Yes 
OBP2B 9:136080664-136084630 47720 (1) - - No 
RPL7A 9:136215069-136218281 -24059 (3) - - No 

C9orf96 9:136243117-136271220 0 (1) - - No 
ADAMTS13 9:136279478-136324508 1740 (2) - - No 

AKR1C3 10:5077546-5149878 - - 46395 (3) No 
VIM 10:17270258-17279592 -9968 (1) - - No 

ALOX5 10:45869661-45941561 - 0 (1) - No 
CYP26C1 10:94821021-94828454 - -15356 (2) -15356 (2) No 
CYP26A1 10:94833232-94837647 - -27567 (3) -27567 (3) Yes 

TECTB 10:114043493-114064793 - 0 (1) 0 (1) No 
ADRB1 10:115803806-115806667 - -11019 (1) - No 
AMPD3 11:10329860-10529126 - 0 (1) - Yes 
PSMA1 11:14515329-14665181 - -10866 (2) - No 

LGR4 11:27387508-27494322 - - 31783 (2) No 
CHST1 11:45670427-45687172 - 47215 (1) - No 

CRY2 11:45868669-45904798 - -28960 (2) - No 
F2 11:46740730-46761056 - 42729 (2) -18509 (3) No 

ACP2 11:47260853-47270457 - 40910 (3) -34365 (4) No 
NR1H3 11:47269851-47290396 - 20971 (2) -43363 (6) No 
PSMC3 11:47440320-47447993 - 1551 (1) - No 

NDUFS3 11:47586888-47606114 - -3767 (2) - No 
PTPRJ 11:48002113-48189670 - 0 (1) - No 

FOLH1 11:49168187-49230222 - 0 (1) - No 
OR4A16 11:55110627-55111707 - 12013 (2) - No 
OR4C16 11:55339604-55340536 - -15296 (2) - No 
DAGLA 11:61447905-61514473 49826 (6) 49826 (6) 49826 (6) No 

FEN1 11:61560109-61564716 15044 (3) 15044 (3) 15044 (3) No 
KCNK7 11:65360326-65363467 - 27850 (4) - No 

MAP3K11 11:65365226-65382853 - 8464 (2) - No 
RELA 11:65421067-65430565 - -29750 (5) - No 

MOGAT2 11:75428864-75444003 - 11018 (1) - No 
APOA5 11:116660083-116663136 -4483 (2) -4483 (2) -43681 (3) No 
APOA4 11:116691419-116694022 -35819 (4) -35819 (4) -35819 (4) No 
APOC3 11:116700422-116703788 -44822 (5) -44822 (5) -44822 (5) No 
APOA1 11:116706467-116708666 -42616 (6) -38922 (6) -42616 (6) Yes 

SIK3 11:116714118-116969153 0 (1) 0 (1) -46573 (7) No 
SIDT2 11:117049449-117068160 7406 (3) -3252 (2) -23075 (2) No 
PCSK7 11:117075053-117103241 0 (1) -28856 (4) -48679 (4) No 
BACE1 11:117156402-117186975 - 0 (1) -4990 (2) No 

DCPS 11:126173647-126215644 26052 (2) 12356 (2) - No 
ST3GAL4 11:126225535-126310239 0 (1) 0 (1) - Yes 

PDE3A 12:20522179-20837315 - -48421 (1) - Yes 
SLCO1B1 12:21284136-21392180 - - 0 (1) No 

BAZ2A 12:56989380-57030600 - - -38161 (2) No 
INHBC 12:57828543-57844611 - 0 (1) 0 (1) No 
INHBE 12:57846106-57853063 - -2057 (2) -2057 (2) No 
MARS 12:57869228-57911352 - -25179 (6) -25179 (6) No 

PIP4K2C 12:57984957-57997198 - 15035 (5) - No 
ALDH2 12:112204691-112247782 37809 (2) - - No 

MAPKAPK5 12:112279782-112334343 5500 (1) - - No 
ERP29 12:112451120-112461255 -10389 (2) 25563 (2) - No 
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(distance rank) 
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Prioritised 

by GLGC 

RPL6 12:112842994-112856642 -29579 (2) 49773 (2) - No 
PTPN11 12:112856155-112947717 0 (1) 0 (1) - No 

HPD 12:122277433-122301502 - - -28342 (4) No 
HCAR1 12:123104824-123215390 - 0 (2) - No 
HCAR2 12:123185840-123187890 - 12878 (3) - No 
HCAR3 12:123199303-123201439 - 0 (1) - No 

SCARB1 12:125261402-125367214 - 0 (1) - Yes 
CBLN3 14:24895738-24900160 -12108 (2) - - No 

SERPINA10 14:94749650-94759608 35884 (2) - - No 
SERPINA6 14:94770585-94789731 5761 (1) - - No 
SERPINA1 14:94843084-94857030 -47592 (3) - - No 

AKT1 14:105235686-105262088 - 15121 (2) - No 
LTK 15:41795836-41806085 - 23145 (3) - No 

TYRO3 15:41849873-41871536 - -20643 (2) - No 
GANC 15:42565431-42645864 - 37923 (3) 37923 (3) No 

CATSPER2 15:43920701-43960316 - - -26883 (4) No 
PDIA3 15:44038590-44065477 - - -22173 (2) No 

MFAP1 15:44096690-44117000 - - 35817 (3) No 
ALDH1A2 15:58245622-58790065 - 0 (1) 0 (1) No 

LIPC 15:58702768-58861151 - -21963 (2) -22125 (2) Yes 
ADAM10 15:58887403-59042177 - -34294 (2) - No 
LACTB† 15:63413999-63434260 - -498 (1) -498 (1) Yes 

PKM 15:72491370-72524164 - - 42451 (4) No 
HSD3B7 16:30996519-31000473 - - 47606 (8) No 
PRSS53 16:31094746-31100949 - - 41044 (7) No 

VKORC1 16:31102163-31107301 - - 34692 (5) No 
PRSS8 16:31142756-31147083 - - -763 (2) No 

PRSS36 16:31150246-31161415 - - -8253 (3) No 
SLC12A3 16:56899119-56949762 43263 (4) 43263 (4) 37253 (4) No 

CETP 16:56995762-57017757 -2737 (1) -2737 (1) -8747 (1) Yes 
CCL22 16:57392684-57400102 - -38750 (2) - No 

CES3 16:66995140-67009051 - 42996 (3) - No 
CES4A 16:67022492-67043661 - 8386 (1) - No 

HSD11B2 16:67464555-67471456 - -45403 (4) - No 
AGRP 16:67516474-67517716 - 37623 (2) - No 

GFOD2 16:67708434-67753324 - 5454 (2) - No 
PSKH1 16:67927175-67963581 - -42556 (7) - No 

CTRL 16:67961543-67966317 - 27326 (6) - No 
PSMB10 16:67968405-67970990 - 22653 (4) - No 

LCAT 16:67973653-67978034 - 46961 (6) - Yes 
SLC12A4 16:67977377-68003504 - 21491 (4) - No 

DPEP3 16:68009566-68014732 - 10263 (3) - No 
DPEP2 16:68021297-68034489 - 0 (2) - No 

PLA2G15 16:68279207-68294961 - 0 (1) - No 
DHODH 16:72042487-72058954 -34262 (1) - 49139 (6) No 

HP 16:72088491-72094954 0 (2) - 13139 (3) No 
ASGR1 17:7076750-7082883 6040 (2) - - No 

AURKB 17:8108056-8113918 47231 (5) - - No 
CACNB1 17:37329709-37353956 - 35453 (4) - No 

RPL19 17:37356536-37360980 - 28429 (3) - No 
CDK12 17:37617764-37721160 - 18114 (1) - No 
PNMT 17:37824234-37826728 - 31950 (4) - No 

ERBB2 17:37844167-37886679 - 0 (1) - No 
PSMD3 17:38137050-38154213 - -15057 (2) - No 

CSF3 17:38171614-38174066 - -49621 (6) - No 
SOST 17:41831099-41836156 - - 42010 (4) No 

DUSP3 17:41843489-41856356 - - 21810 (3) No 
CD300LG 17:41924516-41940997 - 0 (1) 0 (1) No 

PPY 17:42018172-42019836 - -39416 (5) - No 
WNT9B 17:44910567-44964096 - 46625 (4) - No 

MYL4 17:45277812-45301045 12133 (1) - - No 
ITGB3 17:45331212-45421658 3457 (2) - - No 

NPEPPS 17:45600308-45700642 49954 (3) - 49954 (3) No 
APOH 17:64208151-64252643 0 (1) - - No 
ITGB4 17:73717408-73753899 28292 (4) - - No 

GALK1 17:73747675-73761792 20399 (3) - - No 
H3F3B 17:73772515-73781974 217 (2) - - No 
RPL17 18:47014851-47018906 - 10670 (1) - No 

LIPG 18:47087069-47119272 37732 (1) 40585 (1) - Yes 
INSR 19:7112266-7294045 - - 0 (1) Yes 

MAP2K7 19:7968728-7979363 - 0 (1) - No 
NDUFA7 19:8373490-8386280 - 46916 (6) - No 
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RPS28 19:8386042-8388224 - 44972 (5) - No 
ANGPTL4 19:8428173-8439257 - 2522 (1) - Yes 

ADAMTS10 19:8645126-8675620 - -34232 (3) -34232 (3) No 
TMED1 19:10943114-10946994 44833 (4) - - No 
CARM1 19:10982189-11033453 0 (1) - - No 

SMARCA4 19:11071598-11176071 0 (1) - - No 
LDLR 19:11200038-11244492 0 (1) - - Yes 
NCAN 19:19322782-19363042 20713 (4) - 20713 (4) No 

HAPLN4 19:19366450-19373605 10150 (3) - 10150 (3) No 
TSSK6 19:19623227-19626838 30794 (6) - 30794 (6) No 

NDUFA13 19:19626545-19644285 13347 (4) - 13347 (4) No 
CILP2 19:19649057-19657468 164 (1) - 164 (1) Yes 

LPAR2 19:19734477-19739739 -12501 (2) - -12501 (2) No 
PEPD 19:33877856-34012700 - 0 (1) 0 (1) Yes 

SCN1B 19:35521588-35531352 - - 25392 (2) No 
HPN 19:35531410-35557475 - - 0 (1) No 
PVR 19:45147098-45166850 28463 (3) - - No 

CEACAM16 19:45202421-45213986 -7108 (1) 33641 (3) 33641 (3) No 
BCAM 19:45312328-45324673 4541 (1) 4541 (1) 46165 (4) No 
PVRL2 19:45349432-45392485 3134 (2) 3134 (2) 3134 (2) No 
APOE 19:45409011-45412650 -13392 (3) -13392 (3) -13392 (3) Yes 

APOC1 19:45417504-45422606 -21885 (4) -21885 (4) -21885 (4) No 
APOC4-
APOC2 

19:45445495-45452822 -49876 (5) -49876 (5) -49876 (5) No 

APOC2 19:45449243-45452822 -47577 (7) -49899 (7) 37606 (5) No 
MARK4 19:45582546-45808541 0 (2) - - No 

GIPR 19:46171502-46186982 20828 (4) - - No 
DMPK 19:46272975-46285810 -31643 (4) - - No 

SAE1 19:47616531-47713886 - -26636 (2) -26636 (2) No 
FGF21 19:49258816-49261587 -44542 (7) - - No 
BCAT2 19:49298319-49314286 -48080 (7) - - No 

FLT3LG 19:49977464-49989488 - - 38675 (7) No 
RPL13A 19:49990811-49995565 - - 32598 (6) No 

RPS11 19:49999622-50002946 - - 25217 (4) No 
FCGRT 19:50010073-50029590 - - 0 (1) No 

FPR1 19:52248425-52307363 - 15725 (2) - No 
FPR2 19:52255279-52273779 - 49309 (4) - No 
FPR3 19:52298416-52329442 - 0 (1) - No 
RPS9 19:54704610-54752862 - 39907 (5) - No 

LILRA6 19:54720737-54746649 - 46120 (6) - No 
LILRB5 19:54754263-54761164 - 31605 (4) - No 
LILRB2 19:54777675-54785039 - 42441 (5) - No 
LILRA3 19:54799854-54809952 - 17528 (3) - Yes 
LILRA5 19:54818353-54824409 - 3071 (1) - No 
LILRA4 19:54844456-54850421 - -16976 (2) - No 

LAIR1 19:54865362-54882165 - -37882 (4) - No 
GGT7 20:33432523-33460663 - -23173 (2) - No 

GSS 20:33516236-33543620 - 0 (1) 0 (1) No 
MYH7B 20:33563206-33590240 - -33440 (3) -37799 (3) No 
EDEM2 20:33703167-33865928 - 0 (1) - No 
PROCR 20:33759876-33765165 - 12818 (2) - No 
MMP24 20:33814457-33864801 - -36474 (3) - No 

GDF5 20:34021145-34042568 3933 (2) - - No 
TOP1 20:39657458-39753127 0 (1) - - Yes 

EMILIN3 20:39988606-39995467 -20655 (2) - - No 
HNF4A 20:42984340-43061485 0 (1) 0 (1) - Yes 
TNNC2 20:44451853-44462384 - -24435 (4) -24435 (4) No 

CTSA 20:44518783-44527459 - 4796 (2) 20734 (3) No 
PLTP 20:44527399-44540794 - 0 (1) 7399 (1) Yes 

MMP9 20:44637547-44645200 - 0 (1) 0 (1) No 
SLC12A5 20:44650356-44688784 - -5391 (2) -5391 (2) No 

CD40 20:44746911-44758502 - -12540 (1) - No 
PPIL2 22:22006559-22054304 - -23667 (5) - No 

PLA2G6 22:38507502-38601697 - - 0 (1) Yes 
KCNJ4 22:38822332-38851205 - - 46846 (4) No 
PPARA 22:46546424-46639653 0 (1) - - Yes 

For each druggable gene included in the analysis, the minimum distance from the gene to the variant (variants located 
within a gene were given a distance of 0bp and distance to variants upstream the gene are indicated with a negative value), 
a gene distance rank value according to their base pair distance, and indicated the druggable genes prioritized by GLGC 
are provided. OR = odds ratio per 1-SD increase in LDL-C/HDL-C or triglycerides; CI = confidence interval. 
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Appendix 7.B. Univariable drug target MR estimates in the discovery analysis.  

Druggable 

gene 
Genomic coordinates 

LDL-C 

(OR, 95% CI) 
HDL-C 

 (OR, 95% CI) 
Triglycerides  

(OR, 95% CI) 
ABCA1 chr9:107543283-107690518 2.05 (1.34, 3.15)* 1.41 (0.66, 3.0) 2.4 (1.29, 4.49)* 
ABCB11 chr2:169779448-169887832 1.51 (0.7, 3.25) - - 
ABHD16A chr6:31654726-31671221 0.7 (0.14, 3.54) 1.06 (0.21, 5.4) 0.94 (0.33, 2.68) 
ABHD6 chr3:58223233-58281420 2.25 (0.87, 5.87) - - 
ACP2 chr11:47260853-47270457 - 1.1 (1.0, 1.2)* 0.86 (0.58, 1.26) 
ADAM10 chr15:58887403-59042177 - 1.87 (0.94, 3.75) - 
ADAMTS10 chr19:8645126-8675620 - 0.43 (0.16, 1.17) 3.1 (1.21, 7.98)* 
ADAMTS13 chr9:136279478-136324508 11.18 (4.37, 28.59)*† - - 
ADH4 chr4:100044808-100078949 - 1.05 (0.39, 2.85) - 
ADH5 chr4:99992132-100009952 - 1.05 (0.39, 2.85) - 
ADRB1 chr10:115803806-115806667 - 1.67 (0.58, 4.8) - 
AGER chr6:32148745-32152101 1.47 (0.71, 3.06) 1.82 (1.08, 3.04)* 1.07 (0.15, 7.64) 
AGRP chr16:67516474-67517716 - 0.98 (0.66, 1.45) - 
AKR1C3 chr10:5077546-5149878 - - 1.05 (0.49, 2.25) 
AKT1 chr14:105235686-105262088 - 0.49 (0.18, 1.36) - 
ALDH1A2 chr15:58245622-58790065 - 0.89 (0.81, 0.99)* 1.28 (1.07, 1.54)*† 
ALDH2 chr12:112204691-112247782 0.14 (0.07, 0.29)* - - 
ALOX5 chr10:45869661-45941561 - 1.74 (1.18, 2.58)* - 
AMPD2 chr1:110158726-110174673 2.51 (1.53, 4.11)* 2.97 (0.88, 10.06) - 
AMPD3 chr11:10329860-10529126 - 0.5 (0.27, 0.92)* - 
ANGPTL3 chr1:63063158-63071830 1.21 (1.11, 1.33)* 1.61 (0.52, 5.01) 1.16 (1.08, 1.25)* 
ANGPTL4 chr19:8428173-8439257 - 0.48 (0.28, 0.83)*† 3.38 (1.02, 11.22)*† 
AOC1 chr7:150521715-150558592 - 0.81 (0.46, 1.41) - 
APOA1 chr11:116706467-116708666 1.88 (1.49, 2.36)*† 0.84 (0.63, 1.11) 1.25 (1.12, 1.4)*† 
APOA4 chr11:116691419-116694022 1.51 (1.23, 1.86)*† 0.53 (0.38, 0.74)* 1.27 (1.14, 1.43)*† 
APOA5 chr11:116660083-116663136 2.05 (1.4, 3.02)*† 0.72 (0.6, 0.87)*† 1.21 (1.12, 1.31)*† 
APOB chr2:21224301-21266945 1.5 (1.18, 1.9)*† 1.23 (0.72, 2.12) 0.53 (0.29, 0.98)*† 
APOC1 chr19:45417504-45422606 1.31 (1.22, 1.41)*† 0.39 (0.25, 0.59)* 0.51 (0.17, 1.47) 
APOC2 chr19:45449243-45452822 1.2 (0.87, 1.66) 0.55 (0.26, 1.14) 1.29 (0.31, 5.39) 
APOC3 chr11:116700422-116703788 2.04 (1.72, 2.42)*† 0.67 (0.58, 0.78)* 1.26 (1.12, 1.41)*† 
APOC4-
APOC2 chr19:45445495-45452822 1.18 (0.86, 1.63) 0.54 (0.26, 1.12) 1.66 (0.9, 3.07) 

APOE chr19:45409011-45412650 1.3 (1.2, 1.41)*† 0.39 (0.26, 0.59)* 0.5 (0.17, 1.45) 
APOH chr17:64208151-64252643 1.52 (0.76, 3.02) 0.66 (0.29, 1.53) - 
APOM chr6:31620193-31625987 2.32 (0.82, 6.58) 1.06 (0.21, 5.4) 0.96 (0.36, 2.6) 
ASGR1 chr17:7076750-7082883 1.39 (0.55, 3.49) - - 
ATG4C chr1:63249806-63331184 0.64 (0.31, 1.33) - 0.94 (0.55, 1.61) 
ATRAID chr2:27434895-27440046 - - 0.85 (0.71, 1.02) 
AURKB chr17:8108056-8113918 1.35 (0.64, 2.84) - - 
BACE1 chr11:117156402-117186975 - 2.72 (1.68, 4.39)* 0.82 (0.04, 16.33) 
BAZ2A chr12:56989380-57030600 - - 0.56 (0.2, 1.63) 
BCAM chr19:45312328-45324673 1.09 (0.71, 1.69) 0.4 (0.18, 0.87)* 0.63 (0.4, 0.97)* 
BCAT2 chr19:49298319-49314286 0.94 (0.48, 1.83) - - 
BLK chr8:11351510-11422113 - - 0.46 (0.31, 0.7)* 
BMP8A chr1:39957318-39991607 - 0.52 (0.4, 0.69)* 1.8 (0.6, 5.46) 
C2 chr6:31865562-31913449 1.62 (0.93, 2.8) 1.85 (0.66, 5.17) 0.21 (0.07, 0.6)* 
C4A chr6:31949801-31970458 2.26 (0.88, 5.85) 1.04 (0.21, 5.12) 0.22 (0.08, 0.65)* 
C4B chr6:31982539-32003195 2.41 (1.6, 3.63)* 1.23 (0.33, 4.63) 2.28 (1.11, 4.68)* 
C6orf15 chr6:31079000-31080336 1.62 (1.23, 2.14)* 1.08 (0.43, 2.72) 1.5 (1.0, 2.25)* 
C6orf25 chr6:31686371-31694491 0.7 (0.14, 3.54) - 1.26 (0.43, 3.69) 
C9orf96 chr9:136243117-136271220 5.77 (2.71, 12.31)*† - - 
CACNB1 chr17:37329709-37353956 - 0.38 (0.2, 0.72)* - 
CAD chr2:27440258-27466811 - - 1.01 (0.85, 1.19) 
CAMKV chr3:49895421-49907655 - 0.18 (0.1, 0.31)* - 
CARM1 chr19:10982189-11033453 2.27 (1.68, 3.05)*† - - 
CATSPER2 chr15:43920701-43960316 - - 1.05 (0.46, 2.37) 
CBLN3 chr14:24895738-24900160 1.25 (0.61, 2.54) - - 
CCL22 chr16:57392684-57400102 - 0.37 (0.11, 1.22) - 
CD300LG chr17:41924516-41940997 - 1.04 (0.57, 1.91) 1.58 (0.58, 4.35) 
CD40 chr20:44746911-44758502 - 1.32 (0.46, 3.77) 0.75 (0.2, 2.72) 
CDK12 chr17:37617764-37721160 - 0.19 (0.0, 37.54) - 
CEACAM16 chr19:45202421-45213986 1.66 (1.31, 2.11)*† 0.46 (0.27, 0.79)* 0.56 (0.25, 1.27) 
CELSR2 chr1:109792641-109818372 1.97 (1.78, 2.18)*† 0.06 (0.04, 0.09)* - 
CES3 chr16:66995140-67009051 - 1.15 (0.6, 2.18) - 
CES4A chr16:67022492-67043661 - 1.15 (0.6, 2.18) - 
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Druggable 

gene 
Genomic coordinates 

LDL-C 

(OR, 95% CI) 
HDL-C 

 (OR, 95% CI) 
Triglycerides  

(OR, 95% CI) 
CETP chr16:56995762-57017757 1.49 (1.29, 1.72)* 0.91 (0.87, 0.95)*† 1.98 (1.63, 2.4)*† 
CFB chr6:31895475-31919861 1.61 (0.94, 2.77) 1.85 (0.66, 5.16) 0.46 (0.24, 0.91)* 
CGREF1 chr2:27321757-27341995 - - 0.94 (0.66, 1.36) 
CHST1 chr11:45670427-45687172 - 1.15 (0.45, 2.94) - 
CILP2 chr19:19649057-19657468 1.19 (1.01, 1.39)* - 1.18 (1.0, 1.39)*† 
CPS1 chr2:211342406-211543831 - 2.05 (1.1, 3.82)* - 
CRY2 chr11:45868669-45904798 - 0.71 (0.48, 1.04) - 
CSF1 chr1:110452864-110473614 - 0.57 (0.28, 1.15) - 
CSF3 chr17:38171614-38174066 0.3 (0.12, 0.74)* 0.87 (0.4, 1.89) - 
CSNK1G3 chr5:122847793-122952739 0.33 (0.2, 0.55)* - - 
CTRL chr16:67961543-67966317 - 1.11 (0.91, 1.35) - 
CTSA chr20:44518783-44527459 - 1.89 (1.3, 2.75)* 0.12 (0.05, 0.28)* 
CTSB chr8:11700033-11726957 - - 0.65 (0.44, 0.98)* 
CYP21A2 chr6:32006042-32009447 2.34 (1.49, 3.66)* 1.23 (0.33, 4.63) 2.22 (1.03, 4.81)* 
CYP26A1 chr10:94833232-94837647 7.25 (4.25, 12.37)* 0.22 (0.09, 0.51)* 4.35 (2.79, 6.79)* 
CYP26C1 chr10:94821021-94828454 7.25 (4.23, 12.42)* 0.22 (0.09, 0.51)* 4.36 (2.79, 6.83)* 
CYP7A1 chr8:59402737-59412795 0.95 (0.47, 1.91) - 0.86 (0.33, 2.28) 
DAGLA chr11:61447905-61514473 1.67 (1.21, 2.29)* 0.49 (0.1, 2.47) 0.63 (0.53, 0.75)* 
DAGLB chr7:6448757-6523821 - 0.35 (0.22, 0.54)* - 
DCPS chr11:126173647-126215644 4.96 (1.89, 13.06)* 0.29 (0.13, 0.66)* - 
DDR1 chr6:30844198-30867933 0.95 (0.5, 1.8) 1.62 (0.42, 6.27) 0.99 (0.37, 2.67) 
DHODH chr16:72042487-72058954 0.66 (0.44, 1.0) - 7.42 (2.32, 23.71)* 
DMPK chr19:46272975-46285810 2.78 (1.64, 4.73)* 0.4 (0.11, 1.45) - 
DPEP2 chr16:68021297-68034489 - 1.36 (0.98, 1.89) - 
DPEP3 chr16:68009566-68014732 - 1.36 (0.98, 1.9) - 
DUSP3 chr17:41843489-41856356 - 0.93 (0.25, 3.55) 1.03 (0.39, 2.69) 
EDEM2 chr20:33703167-33865928 2.37 (0.76, 7.37) 0.0 (0.0, 0.0)* - 
EGFL8 chr6:32132360-32136058 1.47 (0.71, 3.06) - 1.96 (0.97, 3.97) 
EHMT2 chr6:31847536-31865464 3.32 (1.25, 8.83)* 2.66 (0.73, 9.69) 0.23 (0.03, 1.56) 
EMILIN1 chr2:27301435-27309271 - - 0.73 (0.34, 1.57) 
EMILIN3 chr20:39988606-39995467 2.51 (1.29, 4.86)* - - 
ERBB2 chr17:37844167-37886679 - 2.82 (0.25, 31.53) - 
ERP29 chr12:112451120-112461255 0.11 (0.06, 0.18)* 0.04 (0.02, 0.13)* - 
ESR1 chr6:151977826-152450754 - 2.11 (1.13, 3.93)* - 
F2 chr11:46740730-46761056 0.17 (0.05, 0.59)* 0.57 (0.13, 2.43) 0.35 (0.13, 0.94)* 
FCGRT chr19:50010073-50029590 - - 1.95 (0.75, 5.07) 
FDFT1 chr8:11653082-11696818 - - 0.88 (0.44, 1.73) 
FEN1 chr11:61560109-61564716 2.02 (0.99, 4.12) 0.54 (0.2, 1.47) 1.13 (0.71, 1.8) 
FGF21 chr19:49258816-49261587 1.06 (0.79, 1.43) - 1.62 (0.46, 5.78) 
FKBP6 chr7:72742167-72772634 - - 0.52 (0.2, 1.34) 
FLT3LG chr19:49977464-49989488 - - 1.95 (0.75, 5.07) 
FN1 chr2:216225163-216300895 0.04 (0.01, 0.22)* - - 
FOLH1 chr11:49168187-49230222 - 0.76 (0.36, 1.61) - 
FPR1 chr19:52248425-52307363 - 1.58 (1.11, 2.24)* - 
FPR2 chr19:52255279-52273779 - 1.89 (1.24, 2.87)* - 
FPR3 chr19:52298416-52329442 - 1.58 (1.1, 2.26)* - 
FRK chr6:116252312-116381921 0.76 (0.48, 1.21) 0.57 (0.17, 1.94) - 
FZD9 chr7:72848109-72850450 - 1.13 (0.52, 2.46) 1.08 (0.72, 1.61) 
GALK1 chr17:73747675-73761792 3.38 (1.46, 7.85)* - - 
GALNT2 chr1:230193536-230417870 - 0.56 (0.42, 0.74)* 2.19 (1.48, 3.25)* 
GANC chr15:42565431-42645864 - 0.72 (0.31, 1.67) 1.32 (0.65, 2.71) 
GCKR chr2:27719709-27746554 1.49 (0.88, 2.51) - 0.9 (0.45, 1.83) 
GDF5 chr20:34021145-34042568 2.71 (0.77, 9.5) - - 
GDF7 chr2:20866424-20873418 0.96 (0.6, 1.53) - 1.33 (0.63, 2.8) 
GFOD2 chr16:67708434-67753324 - 1.42 (1.01, 2.0)* - 
GGT7 chr20:33432523-33460663 - 0.43 (0.15, 1.23) 2.61 (1.1, 6.18)* 
GIPR chr19:46171502-46186982 2.72 (1.06, 7.02)* 0.89 (0.37, 2.12) 4.17 (1.16, 15.02)* 
GPER1 chr7:1121844-1133451 2.81 (0.85, 9.29) 2.12 (0.84, 5.34) - 
GPIHBP1 chr8:144295068-144299044 - 1.82 (1.23, 2.71)* - 
GPR146 chr7:1084212-1098897 2.81 (0.85, 9.29) 2.12 (0.85, 5.33) - 
GPR61 chr1:110082494-110091028 1.97 (1.56, 2.5)*† 3.02 (0.77, 11.91) 5.14 (1.43, 18.48)* 
GSK3B chr3:119540170-119813264 - 0.45 (0.16, 1.25) - 
GSK3B chr3:119540170-119813264 - 0.45 (0.16, 1.25) - 
GSS chr20:33516236-33543620 - 0.57 (0.2, 1.65) 2.25 (1.05, 4.85)* 
GSTM1 chr1:110230436-110251661 3.28 (1.83, 5.87)* - - 
GSTM2 chr1:110210644-110252171 3.28 (1.83, 5.89)* - - 
GSTM3 chr1:110276554-110284384 0.06 (0.0, 0.79)* - - 
GSTM4 chr1:110198703-110208118 3.41 (1.54, 7.53)* 2.97 (0.88, 10.06) - 
GSTM5 chr1:110254864-110318050 0.06 (0.0, 0.84)* - - 
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H3F3B chr17:73772515-73781974 3.38 (1.46, 7.85)* - - 
HAPLN4 chr19:19366450-19373605 1.06 (0.91, 1.22) - 1.07 (0.93, 1.25) 
HCAR1 chr12:123104824-123215390 - 0.99 (0.68, 1.44) - 
HCAR2 chr12:123185840-123187890 - 0.85 (0.52, 1.38) - 
HCAR3 chr12:123199303-123201439 - 0.85 (0.52, 1.39) - 
HDGF chr1:156711899-156736717 - 1.18 (0.44, 3.19) - 
HFE chr6:26087509-26098571 1.92 (0.77, 4.83) 0.81 (0.18, 3.61) - 
HGFAC chr4:3443614-3451211 2.07 (1.35, 3.16)* - 1.97 (1.34, 2.89)* 
HIST1H1C chr6:26055968-26056699 1.83 (0.79, 4.25) 0.84 (0.18, 4.01) - 
HIST1H4C chr6:26104104-26104518 1.92 (0.77, 4.83) 0.81 (0.18, 3.61) - 
HLA-B chr6:31321649-31324965 0.31 (0.08, 1.16) 1.81 (0.84, 3.88) 1.8 (1.46, 2.22)* 
HLA-C chr6:31236526-31239907 1.47 (0.06, 35.1) 1.73 (0.91, 3.28) 1.06 (0.8, 1.4) 
HLA-DOB chr6:32780540-32784825 3.57 (2.2, 5.78)* 1.06 (0.31, 3.59) 1.31 (0.81, 2.11) 
HLA-DQA2 chr6:32709119-32714992 2.95 (2.41, 3.6)* 2.23 (1.19, 4.19)* 1.17 (0.82, 1.68) 
HLA-DRA chr6:32407619-32412823 2.29 (1.55, 3.37)* 1.2 (0.78, 1.85) 2.34 (1.41, 3.86)* 
HLA-DRB1 chr6:32546546-32557625 1.37 (0.97, 1.93) 0.92 (0.6, 1.41) 1.44 (0.63, 3.32) 
HLA-DRB5 chr6:32485120-32498064 2.75 (1.13, 6.7)* 0.8 (0.12, 5.14) - 
HLA-G chr6:29794744-29798902 1.39 (0.44, 4.38) - 1.33 (0.41, 4.3) 
HMGCR chr5:74632154-74657929 1.22 (1.03, 1.45)* - - 
HNF4A chr20:42984340-43061485 1.51 (0.67, 3.38) 1.18 (0.87, 1.6) - 
HP chr16:72088491-72094954 1.1 (0.88, 1.38) - 7.42 (2.32, 23.71)* 
HPD chr12:122277433-122301502 - 1.81 (0.68, 4.83) 0.38 (0.12, 1.16) 
HPN chr19:35531410-35557475 - - 0.61 (0.24, 1.51) 
HSD11B2 chr16:67464555-67471456 - 0.58 (0.31, 1.1) - 
HSD17B11 chr4:88257762-88312538 - - 1.36 (0.9, 2.05) 
HSD3B7 chr16:30996519-31000473 - - 1.32 (0.63, 2.78) 
HSPA1A chr6:31783291-31785723 10.64 (2.34, 48.34)* - 1.5 (0.44, 5.09) 
HSPA1B chr6:31795512-31798031 4.6 (1.61, 13.1)* - 0.02 (0.0, 2.7) 

IGF2R chr6:160390131-160534539 4.56 (2.73, 7.61)* - 
224064.11 (5.34, 
9394669504.1)* 

INHBC chr12:57828543-57844611 - 0.64 (0.41, 1.0)* 1.95 (0.99, 3.84) 
INHBE chr12:57846106-57853063 - 0.58 (0.35, 0.97)* 1.95 (1.0, 3.81)* 
INSR chr19:7112266-7294045 - 0.69 (0.47, 1.04) 1.15 (0.83, 1.62) 
ITGB3 chr17:45331212-45421658 1.64 (1.06, 2.52)* 2.79 (0.81, 9.62) - 
ITGB4 chr17:73717408-73753899 3.38 (1.46, 7.85)* - - 
ITIH1 chr3:52811603-52826078 2.07 (0.59, 7.23) 3.11 (0.85, 11.31) - 
ITIH3 chr3:52828784-52843025 2.07 (0.59, 7.23) 2.75 (0.81, 9.38) - 
ITIH4 chr3:52846991-52865495 2.07 (0.59, 7.23) 2.75 (0.81, 9.38) - 
KCNJ4 chr22:38822332-38851205 - - 0.45 (0.16, 1.3) 
KCNK16 chr6:39282474-39290744 1.13 (0.42, 3.04) - - 
KCNK17 chr6:39266777-39282329 2.89 (1.46, 5.74)* - - 
KCNK7 chr11:65360326-65363467 - 0.09 (0.03, 0.3)* 16.79 (4.99, 56.51)* 
KHK chr2:27309615-27323640 - - 0.74 (0.41, 1.34) 
KLHL8 chr4:88081255-88161466 0.96 (0.31, 2.93) 0.98 (0.47, 2.05) 1.15 (0.95, 1.41) 
L3MBTL3 chr6:130334844-130462594 - - 1.54 (0.57, 4.14) 
LACTB chr15:63413999-63434260 - 0.64 (0.48, 0.86)* 1.43 (0.87, 2.36) 
LAIR1 chr19:54865362-54882165 - 1.53 (0.87, 2.69) - 
LCAT chr16:67973653-67978034 - 1.11 (0.92, 1.34) - 
LCT chr2:136545410-136594750 0.61 (0.23, 1.58) - - 
LDLR chr19:11200038-11244492 1.37 (0.98, 1.93) 0.04 (0.01, 0.34)* - 
LGR4 chr11:27387508-27494322 - - 4.07 (2.03, 8.16)* 
LILRA3 chr19:54799854-54809952 - 0.76 (0.44, 1.33) - 
LILRA4 chr19:54844456-54850421 - 0.87 (0.44, 1.69) - 
LILRA5 chr19:54818353-54824409 - 0.8 (0.45, 1.43) - 
LILRA6 chr19:54720737-54746649 - 0.96 (0.65, 1.41) - 
LILRB2 chr19:54777675-54785039 - 0.51 (0.27, 0.96)* - 
LILRB5 chr19:54754263-54761164 - 0.96 (0.65, 1.41) - 
LIPC chr15:58702768-58861151 - 0.99 (0.89, 1.11) 0.91 (0.44, 1.86) 
LIPG chr18:47087069-47119272 0.41 (0.25, 0.67)* 0.95 (0.82, 1.1) - 
LPA chr6:160952515-161087407 13.5 (7.17, 25.42)* 21.73 (4.69, 100.69)* 3.77 (1.78, 7.99)* 
LPAR2 chr19:19734477-19739739 1.48 (1.22, 1.8)* - 1.62 (1.39, 1.9)* 
LPL chr8:19759228-19824769 - 0.63 (0.49, 0.82)*† 1.68 (1.46, 1.92)*† 
LRPAP1 chr4:3508103-3534286 5.03 (1.74, 14.56)* - 2.59 (1.6, 4.2)* 
LTA chr6:31539831-31542101 2.03 (1.04, 3.97)* - 1.22 (0.78, 1.9) 
LTA chr6:31539831-31542101 2.03 (1.04, 3.97)* - 1.22 (0.78, 1.9) 
LTB chr6:31548302-31550299 2.01 (1.03, 3.93)* 1.2 (0.44, 3.25) 1.11 (0.76, 1.62) 
LTK chr15:41795836-41806085 - 0.8 (0.49, 1.29) - 
MAP2K7 chr19:7968728-7979363 - 1.24 (0.51, 3.02) 0.73 (0.2, 2.71) 
MAP3K11 chr11:65365226-65382853 - 0.09 (0.03, 0.3)* 16.79 (4.99, 56.51)* 
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MAP3K19 chr2:135722061-135805038 1.21 (0.53, 2.8) - - 
MAP3K4 chr6:161412759-161538417 2.89 (1.75, 4.78)* - - 
MAPK10 chr4:86936276-87515284 - 0.75 (0.47, 1.19) 1.22 (0.53, 2.77) 
MAPKAPK5 chr12:112279782-112334343 0.26 (0.12, 0.57)* - - 
MARK4 chr19:45582546-45808541 1.02 (0.73, 1.41) 0.72 (0.18, 2.87) - 
MARS chr12:57869228-57911352 - 0.63 (0.39, 1.03) 1.95 (1.0, 3.83) 
MAS1L chr6:29454474-29455738 - - 1.32 (0.62, 2.83) 
MET chr7:116312444-116438440 - 0.66 (0.43, 1.01) 1.09 (0.42, 2.87) 
METAP1 chr4:99916771-99983964 - 1.05 (0.39, 2.85) - 
MFAP1 chr15:44096690-44117000 - 0.72 (0.24, 2.17) 1.33 (0.56, 3.19) 
MMP24 chr20:33814457-33864801 2.37 (0.76, 7.37) 1.56 (0.93, 2.63) - 
MMP9 chr20:44637547-44645200 - 1.07 (0.14, 8.55) 0.46 (0.24, 0.85)* 
MOGAT2 chr11:75428864-75444003 - 0.96 (0.43, 2.14) - 
MST1R chr3:49924435-49941299 - 0.18 (0.11, 0.31)* - 
MYH7B chr20:33563206-33590240 - 0.5 (0.19, 1.3) 2.25 (1.05, 4.85)* 
MYL4 chr17:45277812-45301045 2.05 (0.77, 5.49) - - 
NAT2 chr8:18248755-18258728 3.37 (2.07, 5.49)* - 3.33 (1.94, 5.71)* 
NCAN chr19:19322782-19363042 1.04 (0.9, 1.2) - 1.1 (0.86, 1.39) 
NCR3 chr6:31556672-31560762 2.15 (1.09, 4.25)* 1.3 (0.46, 3.71) 1.03 (0.69, 1.55) 
NDUFA13 chr19:19626545-19644285 1.63 (1.13, 2.35)* - 1.18 (1.0, 1.39)*† 
NDUFA7 chr19:8373490-8386280 - 0.57 (0.3, 1.07) - 
NDUFS3 chr11:47586888-47606114 - 1.18 (0.83, 1.69) - 
NEK4 chr3:52744800-52804965 1.58 (0.48, 5.24) 1.28 (0.43, 3.77) - 
NEU1 chr6:31825436-31830683 3.32 (1.24, 8.84)* 2.66 (0.73, 9.69) 0.18 (0.02, 1.59) 
NFKB1 chr4:103422486-103538459 - 1.25 (0.5, 3.08) - 
NISCH chr3:52489134-52527087 - 0.57 (0.35, 0.93)* 1.16 (0.31, 4.34) 
NOTCH4 chr6:32162620-32191844 1.47 (0.7, 3.07) 1.9 (1.17, 3.1)* 0.87 (0.67, 1.13) 
NPC1L1 chr7:44552134-44580914 2.01 (1.48, 2.73)*† - 2.56 (0.75, 8.68) 
NPEPPS chr17:45600308-45700642 1.43 (0.67, 3.07) 3.28 (0.96, 11.23) 0.6 (0.22, 1.63) 
NR0B2 chr1:27237980-27240457 1.38 (0.6, 3.18) 0.67 (0.27, 1.64) 1.91 (0.71, 5.17) 
NR1H3 chr11:47269851-47290396 - 1.07 (0.97, 1.18) 0.86 (0.58, 1.27) 
NR1I2 chr3:119499331-119537332 - 0.43 (0.17, 1.08) - 
NRBP1 chr2:27650657-27665126 - - 0.89 (0.72, 1.1) 
OBP2B chr9:136080664-136084630 0.47 (0.06, 3.46) - - 
OR11A1 chr6:29393281-29424848 - - 2.42 (0.53, 11.09) 
OR2H1 chr6:29424958-29432105 - - 2.24 (0.55, 9.16) 
OR4A16 chr11:55110627-55111707 - 0.83 (0.36, 1.93) - 
OR4C16 chr11:55339604-55340536 - 0.76 (0.32, 1.84) - 
PBRM1 chr3:52579368-52719933 1.58 (0.48, 5.24) 0.77 (0.41, 1.44) 2.21 (0.66, 7.34) 
PCSK7 chr11:117075053-117103241 1.62 (0.85, 3.11) 0.78 (0.51, 1.21) 2.57 (0.09, 73.1) 
PCSK9 chr1:55505221-55530525 1.6 (1.45, 1.77)*† - - 
PDE3A chr12:20522179-20837315 - 0.79 (0.4, 1.58) - 
PDGFC chr4:157681606-157892546 - 0.52 (0.19, 1.39) - 
PDIA3 chr15:44038590-44065477 - - 1.33 (0.56, 3.19) 
PEPD chr19:33877856-34012700 - 0.36 (0.25, 0.51)* 3.41 (1.92, 6.08)* 
PIP4K2C chr12:57984957-57997198 - 1.14 (0.27, 4.85) - 
PKM chr15:72491370-72524164 - - 1.54 (0.59, 4.03) 
PLA2G15 chr16:68279207-68294961 - 1.45 (1.06, 1.97)* - 
PLA2G6 chr22:38507502-38601697 - 1.01 (0.57, 1.78) 1.09 (0.4, 3.0) 
PLG chr6:161123270-161174347 18.35 (5.47, 61.6)* 5.48 (0.07, 456.86) 0.75 (0.18, 3.14) 
PLTP chr20:44527399-44540794 - 0.67 (0.1, 4.53) 0.25 (0.02, 2.61) 
PNMT chr17:37824234-37826728 - 0.64 (0.36, 1.15) - 
PPARA chr22:46546424-46639653 3.77 (1.44, 9.85)* - - 
PPARG chr3:12328867-12475855 1.67 (1.04, 2.68)* 0.71 (0.35, 1.48) 2.18 (1.14, 4.15)* 
PPIL2 chr22:22006559-22054304 - 0.82 (0.47, 1.43) - 
PPY chr17:42018172-42019836 - 1.34 (0.73, 2.47) 0.48 (0.13, 1.75) 
PROCR chr20:33759876-33765165 - 0.0 (0.0, 0.0)* - 
PRSS36 chr16:31150246-31161415 1.52 (0.43, 5.39) - 1.16 (0.4, 3.32) 
PRSS53 chr16:31094746-31100949 1.62 (0.45, 5.86) - 1.32 (0.52, 3.35) 
PRSS8 chr16:31142756-31147083 1.52 (0.43, 5.39) - 1.32 (0.52, 3.36) 
PSKH1 chr16:67927175-67963581 - 1.18 (0.92, 1.52) - 
PSMA1 chr11:14515329-14665181 - 1.43 (0.5, 4.11) - 
PSMA5 chr1:109941653-109969062 2.47 (1.8, 3.39)*† 0.08 (0.02, 0.29)* - 
PSMB10 chr16:67968405-67970990 - 1.11 (0.91, 1.35) - 
PSMB8 chr6:32808494-32812480 2.23 (0.99, 4.98) 1.06 (0.31, 3.59) 1.09 (0.6, 1.97) 
PSMC3 chr11:47440320-47447993 - 1.12 (0.9, 1.4) 0.68 (0.18, 2.53) 
PSMD3 chr17:38137050-38154213 0.3 (0.12, 0.74)* 0.85 (0.55, 1.31) - 

PTPN11 chr12:112856155-112947717 
1259419.6 (0.0, 
4107788603997230.5) 

0.05 (0.02, 0.16)* - 
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PTPN13 chr4:87515468-87736324 - 1.03 (0.64, 1.65) 0.99 (0.7, 1.39) 
PTPRJ chr11:48002113-48189670 - 0.5 (0.35, 0.72)* - 
PVR chr19:45147098-45166850 1.31 (1.12, 1.54)*† 0.32 (0.11, 0.91)* - 
PVRL2 chr19:45349432-45392485 1.43 (1.27, 1.63)*† 0.35 (0.24, 0.51)* 0.51 (0.19, 1.37) 
RAF1 chr3:12625100-12705725 2.06 (1.48, 2.86)* - 2.63 (0.79, 8.83) 
RAF1 chr3:12625100-12705725 2.06 (1.48, 2.86)* - 2.63 (0.79, 8.83) 
RELA chr11:65421067-65430565 - 0.09 (0.03, 0.3)* 16.79 (4.99, 56.51)* 
RGS12 chr4:3294755-3441640 1.99 (1.31, 3.03)* - 1.98 (1.35, 2.89)* 
RHCE chr1:25688740-25756683 0.71 (0.4, 1.26) - - 
RHD chr1:25598884-25656936 0.27 (0.07, 1.07) - - 
RPL13A chr19:49990811-49995565 - - 1.95 (0.75, 5.07) 
RPL17 chr18:47014851-47018906 0.61 (0.21, 1.81) 0.75 (0.52, 1.08) - 
RPL19 chr17:37356536-37360980 - 0.45 (0.23, 0.9)* - 
RPL5 chr1:93297582-93307481 0.43 (0.27, 0.68)* - - 
RPL6 chr12:112842994-112856642 0.13 (0.06, 0.28)* 0.05 (0.02, 0.16)* - 
RPL7A chr9:136215069-136218281 2.29 (1.57, 3.36)*† - - 
RPS11 chr19:49999622-50002946 - - 1.95 (0.75, 5.07) 
RPS28 chr19:8386042-8388224 - 0.57 (0.3, 1.07) - 
RPS6KA1 chr1:26856252-26901521 - 1.7 (0.62, 4.68) - 
RPS9 chr19:54704610-54752862 - 0.95 (0.64, 1.41) - 
RSPO3 chr6:127439749-127518910 - 0.69 (0.45, 1.07) 1.1 (0.74, 1.65) 
SAE1 chr19:47616531-47713886 - 0.23 (0.08, 0.65)* 3.19 (1.82, 5.58)* 
SCARB1 chr12:125261402-125367214 5.16 (1.85, 14.39)* 0.42 (0.14, 1.26) 8.0 (2.41, 26.56)* 
SCN1B chr19:35521588-35531352 - - 0.61 (0.24, 1.51) 
SCUBE3 chr6:35182190-35220856 0.2 (0.06, 0.66)* 0.0 (0.0, 0.13)* - 
SEMA3F chr3:50192478-50226508 - 0.4 (0.18, 0.89)* - 
SEMA3G chr3:52467069-52479101 - 1.07 (0.45, 2.55) 1.16 (0.31, 4.34) 
SERPINA1 chr14:94843084-94857030 0.65 (0.22, 1.9) - - 
SERPINA10 chr14:94749650-94759608 0.73 (0.26, 2.1) - - 
SERPINA6 chr14:94770585-94789731 0.65 (0.22, 1.9) - - 
SFN chr1:27189633-27190947 1.51 (0.67, 3.41) 0.49 (0.25, 0.97)* 1.91 (0.71, 5.17) 
SFTA2 chr6:30899130-30899952 0.85 (0.4, 1.78) 1.97 (0.61, 6.41) 0.69 (0.25, 1.9) 
SIDT2 chr11:117049449-117068160 1.62 (0.85, 3.11) 0.79 (0.51, 1.21) 1.03 (0.19, 5.6) 
SIK3 chr11:116714118-116969153 1.15 (0.57, 2.31) 0.46 (0.29, 0.73)*† 1.08 (0.98, 1.18) 
SLC12A3 chr16:56899119-56949762 1.94 (1.43, 2.63)* 0.89 (0.86, 0.93)*† 0.75 (0.24, 2.33) 
SLC12A4 chr16:67977377-68003504 - 1.11 (0.92, 1.33) - 
SLC12A5 chr20:44650356-44688784 - 2.06 (0.18, 22.96) 0.4 (0.21, 0.76)* 
SLC18A1 chr8:20002366-20040717 - 0.22 (0.08, 0.61)* 2.41 (1.66, 3.5)* 

SLC22A1 chr6:160542821-160579750 4.39 (2.62, 7.36)* - 
224064.11 (5.16, 
9728155751.75)* 

SLC22A2 chr6:160592093-160698670 2.48 (1.85, 3.32)* 2.55 (1.16, 5.63)* 6.47 (2.56, 16.37)* 
SLC22A3 chr6:160769300-160876014 5.13 (3.44, 7.66)* 2.4 (1.27, 4.53)* 4.42 (2.62, 7.45)* 
SLC44A4 chr6:31830969-31846823 3.32 (1.25, 8.83)* 2.66 (0.73, 9.69) 0.23 (0.03, 1.59) 
SLC5A6 chr2:27422455-27435826 - - 0.86 (0.71, 1.05) 
SLC9A1 chr1:27425306-27493472 1.03 (0.43, 2.46) 0.96 (0.22, 4.13) - 
SLCO1B1 chr12:21284136-21392180 - - 0.22 (0.07, 0.65)* 
SMARCA4 chr19:11071598-11176071 2.22 (1.98, 2.49)*† 0.01 (0.0, 0.02)* - 
SOST chr17:41831099-41836156 - 0.93 (0.25, 3.55) 1.03 (0.39, 2.69) 
ST3GAL4 chr11:126225535-126310239 2.25 (1.16, 4.39)* 0.03 (0.0, 0.17)* - 
STX1A chr7:73113536-73134002 - - 0.89 (0.62, 1.28) 
TECTB chr10:114043493-114064793 0.88 (0.3, 2.64) 0.63 (0.27, 1.5) 1.49 (0.9, 2.49) 
TMED1 chr19:10943114-10946994 2.06 (1.5, 2.83)*† - - 
TNF chr6:31543344-31546113 2.03 (1.05, 3.93)* - 1.21 (0.78, 1.9) 
TNKS chr8:9413424-9639856 - - 0.79 (0.54, 1.16) 
TNNC1 chr3:52485118-52488086 - 0.57 (0.36, 0.93)* 1.73 (0.56, 5.36) 
TNNC2 chr20:44451853-44462384 - 1.21 (0.69, 2.12) 0.81 (0.43, 1.52) 
TNXB chr6:32008931-32083111 2.15 (1.55, 2.97)* 0.98 (0.21, 4.67) 1.64 (0.95, 2.82) 
TOP1 chr20:39657458-39753127 2.3 (0.15, 35.62) - 16.72 (4.19, 66.8)* 
TSSK6 chr19:19623227-19626838 1.64 (1.14, 2.37)* - 1.17 (0.99, 1.39) 
TUBB chr6:30687978-30693203 - 7.56 (1.18, 48.38)* 4.46 (2.13, 9.36)* 
TYRO3 chr15:41849873-41871536 - 0.8 (0.49, 1.29) - 
UCN chr2:27530268-27531313 - - 1.35 (0.53, 3.44) 
UGT1A1 chr2:234668894-234681945 1.33 (0.74, 2.39) - - 
UGT1A10 chr2:234545100-234681951 1.95 (1.25, 3.05)* - - 
UGT1A3 chr2:234637754-234681945 2.04 (1.27, 3.25)* - - 
UGT1A4 chr2:234627424-234681945 2.03 (1.27, 3.23)* - - 
UGT1A5 chr2:234621638-234681945 2.03 (1.27, 3.25)* - - 
UGT1A6 chr2:234600253-234681946 1.91 (1.22, 3.0)* - - 
UGT1A7 chr2:234590584-234681945 1.94 (1.22, 3.07)* - - 
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Druggable 

gene 
Genomic coordinates 

LDL-C 

(OR, 95% CI) 
HDL-C 

 (OR, 95% CI) 
Triglycerides  

(OR, 95% CI) 
UGT1A8 chr2:234526291-234681956 1.95 (1.23, 3.08)* - - 
UGT1A9 chr2:234580499-234681946 1.94 (1.24, 3.05)* - - 
VEGFA chr6:43737921-43754224 - 0.22 (0.15, 0.3)* 4.16 (2.45, 7.08)*† 
VIM chr10:17270258-17279592 1.02 (0.34, 3.06) 0.77 (0.21, 2.78) - 
VKORC1 chr16:31102163-31107301 1.62 (0.45, 5.86) - 1.32 (0.52, 3.35) 
WNT9B chr17:44910567-44964096 - 6.95 (2.1, 23.05)*  

 

* - significant in the discovery analysis; †- significant in both original and validation study and concordant 
direction of effect. OR = odds ratio per 1-SD increase in LDL-C/HDL-C or triglycerides; CI = confidence 
interval. 

 

 

 



 249 

Appendix 7.C. Univariable MR estimates of drug targets with lipid records in clinicaltrials.gov and/or the British National Formulary (BNF).  

Gene 
LDL-C  

(OR, 95% CI) 
HDL -C 

 (OR, 95% CI) 
Triglycerides  
(OR, 95% CI) 

Clinical trial 
(Record type) 

BNF 
(Record 

type) 
Phase 

Mechanism of 
action 

Indication 

ADRB1 - 1.67 (0.58, 4.8) - Outcome Side effect 4 AGONIST 

Pain, Asthma, Nasal Obstruction, Glaucoma, 

Obstructive Lung Diseases, Hemorrhage, 

Cardiovascular Diseases, Serum Sickness, 

Bronchial Spasm, Rhinitis, Seasonal Allergic, 

Urticaria, Heart Arrest, Angioedema, Sinusitis, 

Sepsis, Hypotension, Orthostatic 

ADRB1 - 1.67 (0.58, 4.8) - Outcome Side effect 4 ANTAGONIST 

Angina Pectoris, Hypertension, Myocardial 

Infarction, Cardiovascular Diseases, Arrhythmias, 

Cardiac, Migraine Disorders, Open-Angle 

Glaucoma, Ocular Hypertension, Glaucoma, 

Heart Failure, Left Ventricular Dysfunction 

ADRB1 - 1.67 (0.58, 4.8) - Outcome Side effect 4 
PARTIAL 

AGONIST 
Cardiovascular Diseases 

ESR1 - 2.11 (1.13, 3.93)* - Outcome Side effect 4 AGONIST 

Neoplasms, Hypogonadism, Menorrhagia, 

Primary Ovarian Insufficiency, Acne Vulgaris, 

Osteoporosis, Postmenopausal 

ESR1 - 2.11 (1.13, 3.93)* - Outcome Side effect 4 ANTAGONIST Breast Neoplasms, Neoplasms 

ESR1 - 2.11 (1.13, 3.93)* - Outcome Side effect 4 MODULATOR 
Infertility, Dyspareunia, Breast Neoplasms, 

Osteoporosis, Postmenopausal 

TNF 2.03 (1.05, 3.93)* - 1.21 (0.78, 1.9) Outcome Side effect 4 INHIBITOR 

Ankylosing Spondylitis, Crohn Disease, Psoriasis, 

Rheumatoid Arthritis, Colitis, Ulcerative, 

Psoriatic Arthritis, Immune System Diseases, 

Juvenile  Arthritis 

FRK 0.76 (0.48, 1.21) 0.57 (0.17, 1.94) - Outcome Side effect 4 INHIBITOR 
Neoplasms, Precursor Cell Lymphoblastic 

Leukemia-Lymphoma 

BLK - - 0.46 (0.31, 0.7)* Outcome Side effect 4 INHIBITOR 
Precursor Cell Lymphoblastic Leukemia-

Lymphoma, Neoplasms 

DHODH 0.66 (0.44, 1.0) - 7.42 (2.32, 23.71)* Adverse event Side effect 4 INHIBITOR 
Rheumatoid Arthritis, Immune System Diseases, 

Multiple Sclerosis 
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Gene 
LDL-C  

(OR, 95% CI) 
HDL -C 

 (OR, 95% CI) 
Triglycerides  
(OR, 95% CI) 

Clinical trial 
(Record type) 

BNF 
(Record 

type) 
Phase 

Mechanism of 
action 

Indication 

HMGCR 1.22 (1.03, 1.45)* - - Outcome Indication 4 INHIBITOR 

Cardiovascular Diseases, Hypercholesterolemia, 

Dyslipidemias, Hyperlipidemias, Coronary Artery 

Disease, Hyperlipoproteinemia Type II, 

Myocardial Infarction, Heart Failure, 

Hypertension, Stroke, Stable Angina, Angina 

Pectoris, Type 2 Diabetes Mellitus 

NPC1L1 2.01 (1.48, 2.73)*† - 2.56 (0.75, 8.68) Outcome Indication 4 INHIBITOR 
Hypercholesterolemia, Hyperlipidemias, 

Cardiovascular Diseases 

PPARG 1.67 (1.04, 2.68)* 0.71 (0.35, 1.48) 2.18 (1.14, 4.15)* Outcome Indication 4 AGONIST 
Type 2 Diabetes Mellitus, Diabetes Mellitus, 

Colitis, Ulcerative, Cardiovascular Diseases 

PPARA 3.77 (1.44, 9.85)* - - Outcome Indication 4 AGONIST 
Cardiovascular Diseases, Hypercholesterolemia, 

Dyslipidemias 

PCSK9 1.6 (1.45, 1.77)*† - - Outcome Indication 4 INHIBITOR 
Hyperlipoproteinemia Type II, Coronary Artery 

Disease, Cardiovascular Diseases 

INSR - 0.69 (0.47, 1.04) 1.15 (0.83, 1.62) Outcome - 4 AGONIST 
Diabetes Mellitus, Type 2 Diabetes Mellitus, 

Type 1 Diabetes Mellitus 

NDUFS3 - 1.18 (0.83, 1.69) - Outcome - 4 INHIBITOR Diabetes Mellitus, Type 2 Diabetes Mellitus 

NDUFA7 - 0.57 (0.3, 1.07) - Outcome - 4 INHIBITOR Diabetes Mellitus, Type 2 Diabetes Mellitus 

NDUFA13 1.63 (1.13, 2.35)* - 1.18 (1.0, 1.39)*† Outcome - 4 INHIBITOR Diabetes Mellitus, Type 2 Diabetes Mellitus 

ALDH2 0.14 (0.07, 0.29)* - - Outcome - 4 INHIBITOR Ectoparasitic Infestations, Alcoholism 

NISCH - 0.57 (0.35, 0.93)* 1.16 (0.31, 4.34) Outcome - 4 AGONIST Hypertension 

ABCA1 2.05 (1.34, 3.15)* 1.41 (0.66, 3.0) 2.4 (1.29, 4.49)* Outcome - 4 INHIBITOR Cardiovascular Diseases 

PDE3A - 0.79 (0.4, 1.58) - Outcome - 4 INHIBITOR 

Thrombosis, Obstructive Lung Diseases, Essential 

Thrombocythemia, Asthma, Cardiovascular 

Diseases, Coronary Artery Disease, Stroke 

F2 0.17 (0.05, 0.59)* 0.57 (0.13, 2.43) 0.35 (0.13, 0.94)* Outcome - 4 INHIBITOR 

Venous Thrombosis, Thrombosis, Unstable 

Angina, Thrombocytopenia, Atrial Fibrillation, 

Embolism, Stroke 

TUBB - 7.56 (1.18, 48.38)* 4.46 (2.13, 9.36)* Adverse event - 4 INHIBITOR 

Breast Neoplasms, Neoplasms, Hodgkin Disease, 

Large-Cell Anaplastic Lymphoma, Non-Small-

Cell Lung Carcinoma, Gout, Familial 

Mediterranean Fever 

VEGFA - 0.22 (0.15, 0.3)* 4.16 (2.45, 7.08)*† Adverse event - 4 ANTAGONIST Retinal Neovascularization 
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Gene 
LDL-C  

(OR, 95% CI) 
HDL -C 

 (OR, 95% CI) 
Triglycerides  
(OR, 95% CI) 

Clinical trial 
(Record type) 

BNF 
(Record 

type) 
Phase 

Mechanism of 
action 

Indication 

VEGFA - 0.22 (0.15, 0.3)* 4.16 (2.45, 7.08)*† Adverse event - 4 INHIBITOR 

Diabetic Retinopathy, Retinal Neovascularization, 

Wet Macular Degeneration, Macular Edema, 

Colorectal Neoplasms, Neoplasms, Glioblastoma, 

Renal Cell Carcinoma, Non-Small-Cell Lung 

Carcinoma, Uterine Cervical Neoplasms 

ERBB2 - 2.82 (0.25, 31.53) - Adverse event - 4 INHIBITOR 
Breast Neoplasms, Neoplasms, Non-Small-Cell 

Lung Carcinoma, Thyroid Neoplasms 

RAF1 2.06 (1.48, 2.86)* - 2.63 (0.79, 8.83) Adverse event - 4 INHIBITOR Neoplasms 

PSMC3 - 1.12 (0.9, 1.4) 0.68 (0.18, 2.53) Adverse event - 4 INHIBITOR 
Multiple Myeloma, Neoplasms, Mantle-Cell 

Lymphoma  

PSMA1 - 1.43 (0.5, 4.11) - Adverse event - 4 INHIBITOR 
Multiple Myeloma, Neoplasms, Mantle-Cell 

Lymphoma 

PSMB8 2.23 (0.99, 4.98) 1.06 (0.31, 3.59) 1.09 (0.6, 1.97) Adverse event - 4 INHIBITOR 
Multiple Myeloma, Neoplasms, Mantle-Cell 

Lymphoma 

PSMB9 2.23 (0.99, 4.98) 1.06 (0.31, 3.59) 1.1 (0.6, 1.99) Adverse event - 4 INHIBITOR 
Multiple Myeloma, Neoplasms, Mantle-Cell 

Lymphoma 

PSMA5 2.47 (1.8, 3.39)*† 0.08 (0.02, 0.29)* - Adverse event - 4 INHIBITOR 
Multiple Myeloma, Neoplasms, Mantle-Cell 

Lymphoma 

PSMB10 - 1.11 (0.91, 1.35) - Adverse event - 4 INHIBITOR 
Multiple Myeloma, Neoplasms, Mantle-Cell 

Lymphoma 

ALOX5 - 1.74 (1.18, 2.58)* - Adverse event - 4 INHIBITOR 
Asthma, Ulcerative Colitis, Rheumatoid Arthritis, 

Juvenile Arthritis 

CACNB1 - 0.38 (0.2, 0.72)* - Adverse event - 4 BLOCKER Cardiovascular Diseases 

CACNB1 - 0.38 (0.2, 0.72)* - Adverse event - 4 MODULATOR 
Fibromyalgia, Seizures, Epilepsy, Neuralgia, 

Restless Legs Syndrome, Postherpetic Neuralgia 

PLG 18.35 (5.47, 61.6)* 5.48 (0.07, 456.86) 0.75 (0.18, 3.14) Adverse event - 4 ACTIVATOR 

Thrombosis, Pulmonary Embolism, Stroke, 

Myocardial Infarction, Heart Failure, Hepatic 

Veno-Occlusive Disease 

PLG 18.35 (5.47, 61.6)* 5.48 (0.07, 456.86) 0.75 (0.18, 3.14) Adverse event - 4 INHIBITOR Hemorrhage, Menorrhagia 

ITGB3 1.64 (1.06, 2.52)* 2.79 (0.81, 9.62) - Adverse event - 4 INHIBITOR Thrombosis, Unstable Angina 

MET - 0.66 (0.43, 1.01) 1.09 (0.42, 2.87) Adverse event - 4 INHIBITOR 
Thyroid Neoplasms, Non-Small-Cell Lung 

Carcinoma, Neoplasms 

GSK3B - 0.45 (0.16, 1.25) - Adverse event - 4 INHIBITOR Bipolar Disorder, Psychotic Disorders 
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Gene 
LDL-C  

(OR, 95% CI) 
HDL -C 

 (OR, 95% CI) 
Triglycerides  
(OR, 95% CI) 

Clinical trial 
(Record type) 

BNF 
(Record 

type) 
Phase 

Mechanism of 
action 

Indication 

FDFT1 - - 0.88 (0.44, 1.73) Outcome - 3 INHIBITOR 
Hypercholesterolemia, Lipid Metabolism 

Disorders, Type 2 Diabetes Mellitus  

CETP 1.49 (1.29, 1.72)* 0.91 (0.87, 0.95)*† 1.98 (1.63, 2.4)*† Outcome - 3 INHIBITOR 

Hypercholesterolemia, Lipid Metabolism 

Disorders, Hyperlipoproteinemia Type II, 

Coronary Disease, Cardiovascular Diseases, 

Acute Coronary Syndrome, Hyperlipidemias 

ANGPTL3 1.21 (1.11, 1.33)* 1.61 (0.52, 5.01) 1.16 (1.08, 1.25)* Outcome - 3 INHIBITOR Hyperlipoproteinemia Type II 

AKT1 - 0.49 (0.18, 1.36) - Adverse event - 3 INHIBITOR Prostatic Neoplasms 

SOST - 0.93 (0.25, 3.55) 1.03 (0.39, 2.69) Adverse event - 3 INHIBITOR 
Osteoporosis, Postmenopausal, Osteoporosis, 

Bone Diseases 

CYP26A1 7.25 (4.25, 12.37)* 0.22 (0.09, 0.51)* 4.35 (2.79, 6.79)* Adverse event - 2 INHIBITOR Psoriasis, Acne Vulgaris 

LTA 2.03 (1.04, 3.97)* - 1.22 (0.78, 1.9) Adverse event - 2 INHIBITOR Rheumatoid Arthritis, Sjogren's Syndrome 

LTB 2.01 (1.03, 3.93)* 1.2 (0.44, 3.25) 1.11 (0.76, 1.62) Adverse event - 2 INHIBITOR Sjogren's Syndrome, Rheumatoid Arthritis  

NR1H3 - 1.07 (0.97, 1.18) 0.86 (0.58, 1.27) Outcome - 1 AGONIST Hypercholesterolemia 

NR1H3 - 1.07 (0.97, 1.18) 0.86 (0.58, 1.27) Outcome - 1 MODULATOR Hypercholesterolemia 

TOP1 2.3 (0.15, 35.62) - 16.72 (4.19, 66.8)* Adverse event - 4 INHIBITOR Neoplasms 

 

* indicates significance in the discovery analysis; † indicates significance in both original and validation study and concordant direction of effect. OR = CHD odds 
ratio per 1-SD increase in LDL-C/HDL-C or triglycerides; CI = confidence interval.
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Appendix 7.D. Multivariable drug target MR estimates. OR = CHD odds ratio per 1-SD 

increase in LDL-C/HDL-C or triglycerides; CI = confidence interval. An asterisk (*) indicates 

significant estimates. 

Drug target 
gene 

No. 
variants 

Heterogeneity p 
value 

LDL-C  
(OR, 95% CI) 

HDL-C   
(OR, 95% CI) 

Triglycerides  
(OR, 95% CI) 

MARK4 6 7.47e-01 1.08 (0.82, 1.42) 1.01 (0.33, 3.12) 0.82 (0.18, 3.65) 
GIPR 4 3.61e-01 2.49 (1.2, 5.19)* 0.45 (0.1, 2.07) 1.91 (0.32, 11.34) 
NPC1L1 6 3.40e-01 1.5 (0.76, 2.96) 0.76 (0.11, 5.15) 1.11 (0.21, 5.92) 
NR1H3 8 8.01e-01 1.4 (0.45, 4.34) 0.88 (0.73, 1.05) 0.51 (0.37, 0.7)* 
SLC18A1 7 2.32e-01 5.31 (0.45, 62.01) 0.21 (0.01, 3.79) 0.37 (0.02, 9.01) 
LPAR2 5 2.93e-01 0.07 (0.0, 25.72) 4.89 (0.02, 957.6) 16.68 (0.07, 4147.03) 
CTSA 5 7.66e-01 0.09 (0.02, 0.48)* 77.68 (6.48, 931.29)* 117.3 (7.26, 1896.01)* 
SLC12A3 19 4.16-01 4.02 (2.34, 6.93)* 1.16 (0.96, 1.4) 0.88 (0.34, 2.25) 
PVR 10 2.15e-01 1.41 (0.93, 2.14) 1.71 (0.54, 5.41) 1.18 (0.3, 4.68) 
SCARB1 10 2.48e-03 25.58 (1.06, 614.7)* 0.79 (0.47, 1.33) 0.06 (0.0, 1.2) 
FDFT1 5 9.72e-01 1.87 (0.3, 11.58) 0.94 (0.1, 8.91) 0.93 (0.57, 1.5) 
APOB 16 5.48e-04 1.54 (1.02, 2.33)* 2.48 (0.66, 9.29) 2.37 (0.78, 7.19) 
GCKR 10 3.45e-01 3.11 (0.8, 12.13) 1.79 (0.24, 13.49) 0.84 (0.58, 1.24) 
CAD 11 7.56e-01 4.64 (0.9, 24.08) 1.26 (0.26, 6.07) 0.8 (0.66, 0.97)* 
CETP 36 3.00e-02 1.89 (0.83, 4.3) 1.0 (0.84, 1.19) 0.96 (0.46, 2.0) 
PLTP 5 6.02e-01 0.18 (0.04, 0.8)* 24.18 (4.51, 129.56)* 28.65 (4.7, 174.74)* 
MMP9 5 1.01e-01 0.01 (0.0, 0.06)* 5.65 (0.72, 44.19) 17.38 (1.99, 152.02)* 
LIPG 20 8.64e-02 0.24 (0.13, 0.47)* 0.9 (0.74, 1.09) 5.09 (3.36, 7.7)* 
DHODH 11 8.39e-01 2.18 (1.61, 2.95)* 2.08 (0.94, 4.59) 0.44 (0.16, 1.22) 
LACTB 6 7.157e-01 0.21 (0.0, 14.0) 1.35 (0.11, 16.87) 1.61 (0.06, 43.74) 
LILRB5 6 8.18e-01 1.63 (0.13, 20.4) 0.82 (0.5, 1.36) 1.1 (0.12, 10.51) 
STX1A 5 7.75e-01 0.51 (0.13, 2.04) 0.34 (0.03, 3.29) 0.7 (0.26, 1.87) 
HGFAC 7 9.98e-01 1.19 (0.13, 10.74) 0.15 (0.01, 2.31) 0.9 (0.07, 11.59) 
DCPS 9 2.46e-01 0.72 (0.41, 1.23) 0.33 (0.16, 0.69)* 6.7 (1.54, 29.28)* 
ST3GAL4 10 5.14e-03 1.46 (0.32, 6.8) 1.03 (0.15, 6.97) 6.72 (0.29, 156.11) 
APOA5 14 6.87e-01 10.23 (6.21, 16.84)* 1.23 (0.93, 1.62) 0.73 (0.61, 0.88)* 
APOA4 15 5.17e-01 1.53 (0.74, 3.14) 1.0 (0.74, 1.37) 1.11 (0.82, 1.5) 
APOC3 18 1.86e-03 2.24 (1.18, 4.27)* 0.75 (0.62, 0.91)* 0.81 (0.69, 0.95)* 
SLC22A2 16 2.07e-04 2.73 (1.66, 4.47)* 1.26 (0.4, 3.93) 1.38 (0.34, 5.63) 
VEGFA 4 4.39e-01 0.27 (0.04, 1.67) 0.39 (0.0, 346.13) 2.39 (0.01, 1013.57) 
HMGCR 7 4.30e-01 1.79 (1.28, 2.5)* 0.13 (0.01, 1.38) 0.31 (0.02, 4.26) 
NRBP1 10 8.43e-01 0.68 (0.06, 7.53) 1.39 (0.09, 21.94) 0.91 (0.47, 1.76) 
AMPD2 4 4.22e-01 2.43 (1.01, 5.81)* 0.05 (0.0, 15.18) 0.01 (0.0, 70.8) 
APOA1 17 1.76e-02 2.21 (1.26, 3.87)* 0.84 (0.67, 1.04) 0.97 (0.74, 1.29) 
PLG 5 5.49e-01 21.26 (12.83, 35.23)* 0.17 (0.04, 0.7)* 0.15 (0.03, 0.86)* 
SLC12A5 4 9.71e-01 0.0 (0.0, 0.16)* 15.94 (0.81, 312.7) 73.81 (1.12, 4881.0)* 
PEPD 6 8.91e-01 2.24 (0.66, 7.57) 0.48 (0.21, 1.09) 1.74 (0.72, 4.22) 
ATG4C 8 6.51e-01 0.42 (0.12, 1.47) 4.32 (1.24, 15.04)* 0.96 (0.41, 2.25) 
SMARCA4 15 8.61e-02 1.95 (1.8, 2.11)* 0.97 (0.49, 1.92) 0.13 (0.04, 0.44)* 
ALDH1A2 42 4.49e-01 1.29 (0.75, 2.22) 1.1 (0.95, 1.28) 1.63 (1.03, 2.57)* 
LDLR 18 6.01e-04 1.37 (1.15, 1.62)* 0.23 (0.05, 1.11) 0.12 (0.01, 1.03) 
PVRL2 15 3.29e-02 1.29 (1.08, 1.54)* 1.12 (0.49, 2.53) 1.03 (0.72, 1.46) 
APOE 14 6.96e-03 1.28 (1.16, 1.42)* 0.9 (0.56, 1.46) 0.87 (0.65, 1.17) 
APOC1 14 2.86e-03 1.3 (1.17, 1.46)* 0.9 (0.52, 1.58) 0.81 (0.6, 1.08) 
NCAN 6 4.55e-01 1.32 (0.2, 8.87) 0.42 (0.06, 2.82) 0.9 (0.14, 6.02) 
LILRB2 8 7.81e-01 0.87 (0.18, 4.19) 1.02 (0.7, 1.49) 0.91 (0.13, 6.51) 
PPARG 14 1.20e-02 2.77 (0.99, 7.76) 0.38 (0.15, 0.96)* 0.54 (0.15, 1.87) 
ANGPTL3 5 6.85e-01 7.52 (0.07, 826.16) 0.43 (0.09, 1.97) 0.35 (0.01, 10.44) 
AMPD3 5 7.32e-01 0.02 (0.0, 0.21)* 1.52 (0.55, 4.22) 5.21 (0.4, 67.63) 
ACP2 9 6.75e-01 0.77 (0.38, 1.54) 0.84 (0.71, 0.98)* 0.56 (0.43, 0.73)* 
DAGLA 9 4.84e-01 0.95 (0.67, 1.35) 1.48 (0.51, 4.3) 0.92 (0.43, 1.98) 
BLK 4 2.53e-01 0.04 (0.0, 0.61)* 0.8 (0.01, 91.76) 0.35 (0.15, 0.84)* 
CGREF1 5 5.99e-01 0.59 (0.1, 3.58) 1.68 (0.11, 26.04) 1.1 (0.87, 1.38) 
SLC5A6 11 7.23e-01 2.7 (0.54, 13.63) 1.77 (0.36, 8.66) 0.83 (0.69, 1.0) 
ATRAID 11 4.64e-01 2.49 (0.39, 15.91) 1.62 (0.27, 9.53) 0.86 (0.62, 1.18) 
CBLN3 4 9.61e-02 0.71 (0.27, 1.91) 4.05 (0.08, 211.75) 51.45 (0.28, 9606.89) 
PSMA5 4 7.79e-01 1.46 (0.66, 3.21) 0.12 (0.0, 5.13) 0.13 (0.0, 56.08) 
CELSR2 23 2.91e-02 1.88 (1.5, 2.34)* 0.86 (0.25, 2.88) 1.84 (0.52, 6.56) 
GALNT2 17 6.60e-03 0.98 (0.16, 6.02) 0.61 (0.12, 3.13) 0.94 (0.14, 6.14) 
GDF7 4 1.89e-01 0.87 (0.39, 1.98) 1.16 (0.04, 37.71) 2.44 (0.05, 127.94) 
KLHL8 8 9.95e-01 0.5 (0.07, 3.56) 1.51 (0.28, 8.02) 1.95 (1.08, 3.54)* 
RSPO3 5 5.57e-01 0.02 (0.0, 0.7)* 11.04 (0.44, 279.24) 100.3 (0.84, 11945.38) 
SLC22A3 11 9.02e-02 4.7 (3.44, 6.43)* 2.64 (1.45, 4.81)* 3.5 (1.96, 6.24)* 
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Drug target 
gene 

No. 
variants 

Heterogeneity p 
value 

LDL-C  
(OR, 95% CI) 

HDL-C   
(OR, 95% CI) 

Triglycerides  
(OR, 95% CI) 

RPL7A 6 5.17e-01 2.39 (1.44, 3.99)* 5.41 (2.64, 11.1)* 2.09 (0.09, 46.73) 
PTPRJ 4 8.41e-02 12.48 (1.22, 127.5)* 0.51 (0.28, 0.92)* 0.04 (0.0, 0.58)* 
SIDT2 10 1.41e-05 5.26 (0.2, 139.08) 1.34 (0.52, 3.46) 1.08 (0.34, 3.41) 
NAT2 9 6.67e-01 1.46 (0.2, 10.91) 3.77 (1.16, 12.22)* 1.39 (0.4, 4.86) 
GPR61 8 9.57e-01 2.05 (1.62, 2.6)* 0.82 (0.32, 2.05) 0.47 (0.18, 1.19) 
RGS12 8 9.93e-01 0.7 (0.2, 2.44) 0.3 (0.07, 1.26) 1.76 (0.56, 5.6) 
CILP2 4 7.39e-01 55.61 (0.0, 15957345.62) 10.05 (0.02, 5027.9) 0.04 (0.0, 3522.79) 
SIK3 17 1.57e-01 3.68 (2.02, 6.69)* 0.76 (0.65, 0.88)* 0.69 (0.59, 0.8)* 
PCSK7 10 1.17e-03 22.24 (2.45, 201.73)* 0.96 (0.46, 2.02) 0.53 (0.25, 1.11) 
PTPN13 5 1.26e-01 2.62 (0.34, 20.08) 3.67 (0.15, 91.55) 2.38 (0.19, 30.33) 
UCN 8 7.82e-01 10.72 (1.76, 65.49)* 0.36 (0.03, 4.02) 0.57 (0.41, 0.78)* 
CTSB 4 9.44e-01 1.68 (0.06, 47.93) 1.9 (0.01, 327.35) 0.9 (0.36, 2.26) 
ABCA1 21 1.11e-02 2.09 (0.59, 7.36) 0.83 (0.58, 1.19) 3.33 (1.39, 7.96)* 
LIPC 26 4.95e-01 1.45 (0.76, 2.76) 1.09 (0.93, 1.29) 1.72 (1.05, 2.81)* 
C2 5 1.34e-01 0.05 (0.0, 22.82) 1.16 (0.4, 3.36) 0.41 (0.07, 2.33) 
ANGPTL4 5 8.41e-01 2.8 (0.63, 12.39) 0.43 (0.05, 4.09) 0.94 (0.01, 122.83) 
TNXB 5 7.22e-01 2.54 (1.45, 4.43)* 0.53 (0.07, 3.85) 1.05 (0.28, 3.92) 
FEN1 11 6.08e-01 0.94 (0.69, 1.28) 1.81 (0.81, 4.06) 1.06 (0.62, 1.81) 
GSTM4 4 6.94e-01 3.46 (2.01, 5.94)* 0.28 (0.07, 1.09) 0.14 (0.01, 3.47) 
PCSK9 20 5.21e-03 2.39 (1.45, 3.96)* 1.01 (0.28, 3.6) 0.78 (0.24, 2.49) 
LILRA3 9 5.22e-01 0.07 (0.01, 0.81)* 1.01 (0.65, 1.56) 0.87 (0.12, 6.31) 
RPS9 6 8.20e-01 1.67 (0.17, 16.86) 0.83 (0.46, 1.47) 1.24 (0.1, 14.84) 
FPR1 5 3.47e-01 0.65 (0.2, 2.12) 1.6 (0.31, 8.36) 0.66 (0.01, 32.0) 
OBP2B 9 9.50e-01 1.25 (0.87, 1.8) 2.13 (0.75, 6.1) 0.07 (0.01, 0.62)* 
INSR 6 7.00e-01 6.78 (0.6, 76.86) 19.37 (0.94, 400.01) 16.08 (1.15, 224.46)* 
TNKS 4 2.69e-01 1.16 (0.05, 24.78) 0.25 (0.0, 14.36) 0.44 (0.12, 1.56) 
SLC22A1 13 5.143e-05 2.73 (1.53, 4.9)* 1.16 (0.16, 8.61) 0.3 (0.04, 2.2) 
LPL 27 6.78e-03 0.17 (0.03, 1.07) 0.28 (0.1, 0.78)* 0.48 (0.17, 1.35) 
TSSK6 4 7.39e-01 55.37 (0.0, 16133127.76) 10.04 (0.02, 5084.4) 0.04 (0.0, 3586.37) 
EMILIN3 7 7.29e-02 1.28 (0.69, 2.36) 0.4 (0.02, 7.21) 4.03 (0.18, 90.18) 
NDUFA13 4 7.39e-01 55.95 (0.0, 16832999.76) 10.07 (0.02, 5139.88) 0.04 (0.0, 3654.32) 
BACE1 6 4.52e-02 5.17 (0.34, 79.25) 1.7 (0.78, 3.73) 0.43 (0.17, 1.07) 
LILRA5 9 7.70e-01 0.08 (0.01, 0.59)* 0.92 (0.59, 1.44) 0.58 (0.08, 4.38) 
BCAM 12 1.28e-01 1.23 (0.99, 1.53) 1.42 (0.62, 3.28) 0.68 (0.49, 0.95)* 
FPR3 5 3.56e-01 0.66 (0.2, 2.15) 1.58 (0.31, 7.93) 0.63 (0.01, 28.98) 
HAPLN4 4 6.89e-02 4.0 (0.2, 80.12) 46.52 (0.79, 2724.55) 0.48 (0.03, 8.07) 
HLA-DRB1 8 4.04e-02 1.01 (0.47, 2.17) 1.0 (0.57, 1.75) 1.3 (0.51, 3.3) 
SFTA2 4 8.37e-02 0.62 (0.24, 1.63) 1.36 (0.35, 5.34) 1.92 (0.25, 14.86) 
IGF2R 16 1.23e-04 3.75 (2.25, 6.25)* 0.35 (0.07, 1.73) 0.24 (0.07, 0.8)* 
HSD17B11 4 4.23e-01 0.4 (0.02, 6.55) 0.61 (0.08, 4.8) 1.57 (0.33, 7.53) 
LPA 9 1.47e-02 4.44 (2.43, 8.13)* 1.01 (0.47, 2.21) 1.03 (0.37, 2.91) 
TOP1 7 6.86e-01 1.32 (0.81, 2.14) 0.47 (0.09, 2.45) 4.61 (0.49, 43.81) 
PSMB8 7 8.47e-01 3.36 (1.76, 6.4)* 0.85 (0.21, 3.41) 0.73 (0.39, 1.38) 
HLA-DRA 6 3.49e-01 1.06 (0.57, 1.95) 0.86 (0.39, 1.91) 7.48 (3.04, 18.39)* 
NOTCH4 15 3.53e-02 1.1 (0.46, 2.67) 2.03 (1.5, 2.75)* 0.99 (0.54, 1.8) 
AGER 11 6.88e-03 2.73 (0.8, 9.29) 3.13 (1.89, 5.19)* 2.27 (0.71, 7.25) 
EHMT2 5 1.05=e-01 328.24 (7.85, 13716.69)* 0.53 (0.2, 1.39) 0.04 (0.0, 0.38)* 
SLC44A4 5 1.07e-01 322.41 (7.63, 13629.22)* 0.53 (0.2, 1.4) 0.04 (0.0, 0.39)* 
NEU1 4 NA 1.18 (0.0, 690.62) 0.91 (0.31, 2.68) 0.09 (0.01, 0.91)* 

HSPA1B 4 NA 615016.56 (120.95, 
3127274364.99)* 0.21 (0.01, 3.43) 0.11 (0.01, 1.23) 

HSPA1A 4 NA 224722364.93 (797.77, 
63301607264984.07)* 0.0 (0.0, 0.09)* 48.9 (1.62, 1472.63)* 

C6orf25 4 NA 0.0 (0.0, 1.05) 194.1 (0.82, 45848.5) 0.3 (0.07, 1.29) 

ABHD16A 4 NA 641.94 (13.43, 
30693.48)* 0.04 (0.0, 0.39)* 2.54 (0.53, 12.2) 

APOM 4 NA 292.41 (8.42, 10153.82)* 0.6 (0.19, 1.96) 0.26 (0.05, 1.23) 
NCR3 4 4.22e-01 5.55 (0.71, 43.25) 0.21 (0.04, 0.97)* 0.63 (0.15, 2.66) 
HLA-C 15 4.35e-04 1.31 (0.77, 2.22) 2.72 (1.09, 6.79)* 0.93 (0.7, 1.24) 
C6orf15 11 8.77e-01 5.24 (2.57, 10.65)* 0.66 (0.45, 0.96)* 0.37 (0.21, 0.64)* 
DDR1 4 1.52e-01 0.74 (0.25, 2.2) 7.09 (0.34, 146.43) 0.67 (0.06, 8.05) 
GSTM2 4 7.11e-01 4.4 (0.99, 19.64) 0.28 (0.07, 1.13) 0.03 (0.0, 8312.8) 
CEACAM16 13 3.85e-01 1.34 (1.01, 1.79)* 2.29 (0.72, 7.3) 1.21 (0.69, 2.11) 
C4B 5 9.04e-01 2.29 (1.25, 4.18)* 0.34 (0.06, 1.97) 1.35 (0.77, 2.39) 
APOC4-
APOC2 11 1.35e-02 1.37 (1.21, 1.56)* 0.62 (0.39, 0.98)* 0.58 (0.44, 0.77)* 

LTA 4 3.72e-01 7.6 (1.01, 57.24)* 0.26 (0.06, 1.12) 0.44 (0.11, 1.74) 
LTB 4 3.76e-01 7.61 (1.04, 55.69)* 0.26 (0.06, 1.11) 0.44 (0.11, 1.69) 
CYP21A2 4 6.71e-01 2.22 (1.09, 4.55)* 0.32 (0.05, 2.06) 1.47 (0.44, 4.93) 
TNF 4 3.73e-01 7.69 (1.03, 57.64)* 0.26 (0.06, 1.11) 0.44 (0.11, 1.71) 
HLA-B 10 2.98e-02 1.85 (1.2, 2.84)* 1.36 (0.65, 2.84) 1.1 (0.85, 1.42) 
APOC2 12 4.74e-14 1.14 (0.71, 1.82) 0.48 (0.14, 1.67) 0.66 (0.32, 1.36) 
HLA-DQA2 13 2.58e-01 1.06 (0.77, 1.44) 3.59 (2.12, 6.09)* 1.82 (1.22, 2.72)* 
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Drug target 
gene 

No. 
variants 

Heterogeneity p 
value 

LDL-C  
(OR, 95% CI) 

HDL-C   
(OR, 95% CI) 

Triglycerides  
(OR, 95% CI) 

LILRA4 6 8.07e-01 0.06 (0.0, 0.73)* 0.83 (0.49, 1.41) 0.53 (0.05, 5.16) 
PSMB9 7 8.47e-01 3.35 (1.75, 6.41)* 0.85 (0.22, 3.38) 0.73 (0.38, 1.39) 
HLA-DOB 8 9.52e-01 3.27 (1.97, 5.45)* 1.02 (0.41, 2.49) 0.75 (0.49, 1.15) 
EGFL8 6 5.22e-04 1.49 (0.02, 110.15) 8.25 (0.57, 118.64) 0.72 (0.02, 24.37) 
CFB 5 1.33e-01 0.05 (0.0, 20.51) 1.14 (0.39, 3.31) 0.4 (0.07, 2.29) 
LILRA6 5 5.37e-01 1.63 (0.07, 39.37) 0.72 (0.19, 2.73) 0.46 (0.0, 112.3) 
HP 11 8.77e-02 1.82 (1.15, 2.88)* 4.88 (1.89, 12.6)* 0.58 (0.13, 2.64) 
ITGB3 4 7.49e-01 2.65 (0.34, 20.42) 0.64 (0.01, 61.4) 1.59 (0.17, 15.05) 
RPL17 4 5.36e-01 0.86 (0.09, 8.06) 1.0 (0.47, 2.12) 8.34 (0.45, 155.7) 
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8 | Summary and Future research  

I have used human genetic data linked to medical records, clinical biomarkers and 

molecular traits to investigate the added value of GWAS and drug target Mendelian 

randomisation to generate genetic evidence and inform genetically guided pharmaceutical 

research. This final chapter provides a summary of the findings from the work described in 

Chapters 4 to 7 and contextualises their contribution to genomic research in drug development.  
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8.1. Summary 

Previous research has shown that human genomics could support drug development by 

generating evidence for target identification and validation1–4. In particular, genome-wide 

association studies (GWAS) have the potential to systematically and accurately identify 

disease-specific drug targets across the spectrum of human diseases which addresses one of the 

key productivity limiting steps in drug development.  

In Chapter 4, I described the extent to which the causes of human disease have been 

addressed by genetic analyses, or by drug development, and the degree to which these efforts 

overlap. I found that only a small fraction of the 10,901 diseases curated in the human disease 

ontology has been investigated in drug development (13%; 1,370 out of 10,901) or GWAS 

(9%; 953 out of 10,901). For those diseases being pursued in clinical phase drug development, 

only 27% (369 out of 1,370) have been the subject of a GWAS. Furthermore, even for the 349 

diseases that are the subject of ongoing clinical phase drug development and have been covered 

by GWAS, it remains uncertain how many specific target-indication pairings have genetic 

support. These findings showed poor alignment between the diseases studied by GWAS and 

those pursued in clinical phase drug development. 

To help generate insights into how the GWAS and drug development efforts can be 

utilised in concert, a sample space of disease and targets was constructed in Chapter 4. The 

sample space included subsets of target-disease pairings that have been covered by clinical 

phase drug development and by GWAS which interrogate all possible targets by design. The 

aim of creating the sample space was to illustrate how some areas can be further exploited. For 

example, the intersection between targets of approved drugs and diseases studied by GWAS 

can help identify new indications for existing approved drugs. Similarly, the intersection 

between targets of drugs under clinical investigation and diseases studied by GWAS can lead 
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to potential repurposing opportunities of drugs that proved safe but lacked efficacy for their 

originally intended indication, or for indication expansion of approved drugs.  

To increase the interest and investment in human genomics, robust evidence of the value 

of GWAS and GWAS-based approaches for drug target identification and validation is needed. 

In Chapter 5, I built on the previous findings described by Nelson et al.,3 and King et al.,2 and 

calculated an updated estimate of the probability of success in the drug development pipeline 

of drug target – indication pairings with genetic support. Using a ‘truth’ set of drug target-

indication pairings, I provided further evidence that pairings with genetic support are twice 

more likely to get approved than those without genetic support (2.18; 95%CI: 1.86; 2.51).  

Determining if an approved drug target-indication pair has been rediscovered by genetic 

associations with the intended indication is directly influenced by the definition of genetic 

evidence. In Chapter 5, I investigated a ‘truth’ set of drug target-indication pairings of approved 

drugs and found that using a stringent p value threshold to select significant associations may 

lead to an oversight of true genetic associations and relaxing the p value threshold to 5´10-6 

increased the percent of rediscoveries by 32% on average. Moreover, in 21% of the genetic 

association - drug target gene - indication combinations explored the closest protein-coding 

gene was the target gene, and the target gene was in the top five closest genes in 43% of the 

cases. 

Whilst the work described in Chapter 5 supports drug target identification by help map 

drug targets, the information that can be derived from a GWAS alone cannot be directly used 

to inform drug target validation as one cannot readily infer simply from the identification of 

the locus the mechanism of action of the drug (i.e., an inhibitor or activator for enzymes, or 

blocker or antagonist for receptor targets). To develop a drug targeting hypothesis for a new 

drug, the cis-Mendelian Randomization (MR) approach (also refer to as drug target MR)5 has 



 259 

been proposed. Several examples exist that describe the application of drug target MR using 

circulating protein levels to instrument the on target drug effect. However, the vast majority of 

successful drugs achieve their effect by binding to and modifying the activity or function of a 

protein6. Therefore, the drug target MR analyses that use as exposure circulating protein levels 

(pQTL) make the assumption that pQTL are a valid proxy of protein activity. In Chapter 6, I 

identified two proteins (BCHE and coagulation factor VII) for which genetic associations for 

protein levels and activity was available and showed that a strong correlation between genetic 

associations with activity and level for variants acting in cis- exist (Pearson’s correlation 

coefficient for the BCHE was ρ = 0.99 and for coagulation factor VII ρ  = 0.96). 

Although only two proteins could be included in the comparison due to the lack of 

GWAS on protein activity, previous drug target MR studies that used pQTL data were able to 

recapitulate the mechanism of action of known drugs. Therefore, under the assumption that 

protein levels are a valid proxy for protein activity, I evaluated in Chapter 6 the performance 

of the drug target MR framework using a ‘truth’ set of drug target gene-indication pairings, 

where circulating levels of the target protein have been measured by a high-throughput 

proteomic platform and the indication has been studied by GWAS. After integrating 

information from GWAS on disease and clinical endpoints, and genetic associations on 

circulating protein levels measured by SOMAmers (i.e., short single-stranded oligonucleotides 

that bind with high affinity and specificity to a protein and enable the quantification of its 

levels), I identified a ‘truth’ set of 320 SOMAmer-drug target gene-traits pairs. The application 

of the drug target MR framework recapitulated the mechanism of action of several drug target 

gene – indication pairings under different models: PCSK9 and Coronary Artery Disease, 

Carotid intima media thickness, Carotid plaque, LDL cholesterol; ACE for Systolic and 

Diastolic blood pressure; AMY2A and type 2 diabetes Mellitus; ATP1B2 and atrial fibrillation; 

COMT and Parkinson's disease; F2 and prothrombin levels; IL1R1 and rheumatoid factor; 
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IMPA1 and bipolar disorder; PDE4A and forced expiratory volume in the first second (FEV1); 

PDE5A and prothrombin levels; PLG and activated partial thromboplastin time. In contrast, of 

the drug target gene-SOMAmer-trait combinations that returned significant MR results, 38- 

50% of the results were consistently in the unexpected direction of effect based on their 

reported mechanism of action (range 9-26 drug target gene - SOMAmer - trait). Several reasons 

that could explain the results were presented in Chapter 6, which included assay ambiguity or 

biological mechanism. However, the findings from the work in this thesis indicate that further 

research and validation are required before the pQTL-weighted drug target MR approach can 

be applied systematically for drug target validation. 

While protein level exposures are potentially useful for drug target validation and 

defining a drug targeting hypothesis, if they are unavailable, genetic associations in cis- with 

well-established clinical biomarkers could be used in drug target MR analyses (‘biomarker-

weighted drug target MR’) to inform drug target validation. Here the causal inference remains 

on the gene product at the target loci, however, the exposure trait may not necessarily be the 

mediator of the effect, so the drug targeting hypothesis cannot be directly established from the 

MR estimate direction. Whilst this may seem like a limitation, many GWAS of biomarkers are 

available allowing for the possibility of independent replication of MR associations. In Chapter 

7, I combined publicly available GWAS datasets on blood lipids and coronary heart disease 

and to genetically validate and prioritise drug targets for CHD prevention. The aim was to 

illustrate the utility of biomarker-weighted drug target MR in high power settings with 

independent replication data to prioritise drug targets for CHD prevention. Out of the 341 drug 

targets identified through their association with blood lipids (HDL-C, LDL-C and 

triglycerides), 30 targets that might elicit beneficial effects in the prevention or treatment of 

CHD were robustly prioritized, including NPC1L1 and PCSK9, the targets of existing drugs 

used in CHD prevention. 
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8.2. Research in context 

The success of GWAS as a method is multi factorial from the completion of the Human 

Genome Project in 20037, the rapid declining cost of genotyping, and the increasing number of 

international consortia and joint-pharma partnerships. This coupled with the accessibility of 

public data repositories has given the opportunity to screen multiple drug targets against 

multiple diseases. However, despite the growing interest of the pharmaceutical industry in 

using human genomic data to help prioritise drug development programmes and reduce the risk 

of clinical-stage failure, genetic studies of human diseases and pharmaceutical research and 

development have largely proceeded independently.  

Therefore, the analysis presented in Chapter 4, where the extent to which the causes of 

human disease have been addressed by genetic analyses, or by drug development, and the 

degree to which these efforts overlap was investigated, could have several applications. First, 

it could be used to inform future drug development programmes direction if they are seeking 

to exploit existing genetic evidence. Secondly, it identified diseases without effective 

treatments that could be prioritised in large-scale GWAS or sequencing studies to help 

stimulate drug development in the disease area. Third, the sample space of human targets and 

diseases could help identify opportunities to expand the indications for approved drugs or 

discover repurposing opportunities for the many safe drugs that failed in clinical trials because 

of lack of efficacy in the originally intended indication. 

In addition, the sample space of human targets and diseases could also inform de novo 

drug development for druggable targets and disease indication pairings that have yet to be 

investigated. In particular, soluble or secreted protein targets could especially benefit from 

having genetic support for a particular disease since such proteins are readily targeted by 

monoclonal antibodies or peptides, which typically exhibit higher selectivity and reduced 
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development timelines compared to small molecules8. Information on the set of human secreted 

proteins (the human ‘secretome’9) is available in the public domain, and researchers and the 

pharmaceutical industry could use these resources to identify high priority putative circulating 

protein targets.  

Part of the analysis in Chapter 4 was restricted to the genes encoding druggable protein 

targets (the ‘druggable genome’4), which is currently defined as the set of proteins with 

potential to be modulated by a drug-like small molecule or monoclonal antibody. However, 

novel therapeutic modalities, such as RNA silencing or gene editing, are likely to expand the 

range of potential druggable targets10–12. In addition, artificial intelligence and the application 

of data-driven approaches and computer modelling have revealed protein motifs unknown 

before, turning undruggable protein targets into druggable ones13. 

The increasing interest of the pharmaceutical industry in human genomics has been 

driven by several retrospective studies showing that selecting genetically supported drug 

targets could double the success rate in clinical development. In Chapter 5, it was shown that  

898 drugs exist with a license for 371 therapeutic indications. Out of 371 therapeutic 

indications, 144 have been well-studied by GWAS, and thus, offered an unique opportunity to 

retrospectively investigate how many of the 1,969 drug target gene – indication pairings had 

been rediscovered by GWAS. Previous work by Nelson et al., 20153 and King et al.,  20192 

that used a similar approach and study design showed that targets with genetic evidence from 

GWAS were more likely to be successful in clinical development as indicated by the ratios of 

the probability of progressing in the drug development pipeline given genetic support to the 

probability of progressing without genetic support of 1.8 (95% CI: 1.3; 2.3) and 1.4 (95% CI: 

1.1; 1.7), respectively. The findings from Chapter 5, which were based on two approaches for 

genetic evidence and the larger dataset of target-indication pairings to date, confirmed that the 
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probability of a target-indication pair with genetic support progressing from phase I to approval 

to the probability of progressing without genetic evidence is greater than two-fold (2.18; 

95%CI: 1.86; 2.51). In line with previous observations, I also found that the probability of 

progression given genetic support increases along the clinical phases and that the lack of 

genetic support had the greatest impact from phase II to phase III (P(S-|G-) / P(S-|G+) = 1.40, 

95%CI: 1.28; 1.56), where drugs are typically tested for clinical efficacy. Notably, variability 

was found among the proportion of approved target-indications pairs by indication area. Such 

stratification was also performed by Nelson et al.,3  however, the rank of disease areas by 

genetic support presented in this thesis differed from the previous publication. For example, 

while Nelson et al.,3 showed that target – indication pairs in the musculoskeletal disease area 

had the highest degree of genetic support, the analysis in Chapter 5 identified target - 

cardiovascular indication pairings as the ones with the highest support. The differences 

observed could be explained by the larger dataset used in Chapter 5, which, for instance, 

included 115 approved target – musculoskeletal indication pairings in contrast to the 11 

identified by Nelson et al.3. 

Of note, these studies rely on assigning genetic associations from GWAS data to a causal 

gene, which remains a challenge because association signals from variants in high linkage 

disequilibrium (LD) may span multiple genes. Several approaches have been proposed to 

assign GWAS signals to genes (e.g., co-localisation using eQTL data14), however, physical 

proximity remains the simplest and most widely used approach to map association signals to 

causal genes15,16. While the closest gene may not always be the putative causal gene17,18, there 

are several studies of ‘truth’ sets of genes with well validated causal relationships to disease 

that have shown that the closest gene to a GWAS signal is the causal gene in about two-thirds 

of cases15. Furthermore, in Chapter 5, I used a ‘truth’ set of approved drug target-indication 

pairings where the indication has been studied by GWAS4,19 and showed that relative distance 
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(i.e., distance rank of the druggable gene from the GWAS SNP) to the gene rediscovered more 

drug target-indication pairs than the use of the absolute distance. Similarly, a study by 

Mountjoy et al., 202119 and funded by OpenTargets which evaluated different genomic features 

to assign GWAS signals to causal genes reported that, the ‘mean distance’ feature was the most 

predictive (which combined a distance and Bayes factor approach20), where the distance 

relative to other genes was more important than the absolute distance. In addition, the use of 

absolute distance to map association signals to genes is challenged by the lack of consensus on 

how much the genomic region should extend around the potential causal gene. In Chapter 5, I 

found that in 27% of the drug target gene – indication pairs, genetic associations with the 

indication were within 1 Mega base pair (Mbp) from the drug target gene, and that increasing 

the genomic distance beyond 1 Mbp led to a change in the curve from exponential to 

logarithmic suggesting that further increasing the region would lead to rediscoveries, however, 

at the cost of increasing the median number of protein-coding genes between the target gene 

and the genetic association. In fact, in a recent publication Fauman et al.21 estimated a distance 

cut-off of 944 kbp (95%CI 767-1,161) separating the cis (i.e., the QTL is acting through the 

cognate gene) and trans (i.e., assumes that the QTL is acting through an intermediate gene) 

regimes, which in line with the findings in Chapter 5, suggests that approaches for mapping 

genetic associations to genes based on distance should be restricted to a maximum of 1 Mbp.  

While genetic associations obtained through GWAS can support target identification, 

they cannot be readily used to infer the mechanism of action of a drug targeting the protein 

encoded by the associated gene. One would have identified a potential target for a particular 

disease, but how to perturb the target to obtain the intended effect cannot be drawn from a 

GWAS association, even if the causal gene can be inferred with certainty. To inform the design 

of an inhibitor or activator (blocker or antagonist for receptor targets), the cis-Mendelian 

Randomization (MR) approach (‘drug target MR’)5 has been proposed. Since the vast majority 
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of successful drugs achieve their effect by binding to and modifying the activity of a protein6, 

an ideal drug target MR analysis would assess the effect of modulating protein activity or 

function with respect to disease risk using genetic instruments in the encoding gene. This would 

determine whether and by how much an increase or decrease in the protein function or activity 

impacts disease risk, suggesting a plausible mechanism of action for the drug. However, 

GWAS data on protein activity is scarce and there are not examples in the literature of MR 

analysis where the exposure has been instrumented using genetic associations with protein 

activity. Recently, genetic associations with circulating protein levels have been used instead 

as a proxy for protein function or activity.  

To explore such assumption, in Chapter 6 I identified two proteins (BCHE and 

coagulation factor VII) for which genetic associations with protein levels and activity was 

available and found a strong correlation between genetic variants acting in cis- (Pearson’s 

correlation coefficient for the BCHE was ρ = 0.99 and for coagulation factor VII ρ  = 0.96). 

Several examples support this, such as the drug target Mendelian randomization of CETP or 

PCSK9 protein concentration which replicated on-target effects previously reported in clinical 

trials5,22.  

To test the generalisability of the drug target MR framework described by Schmidt et al., 

20205 to multiple targets and diseases, I performed a systematic evaluation of the performance 

of pQTL-weighted drug target MR analyses using a ‘truth’ set of 160 licensed drug target – 

indication pairings for which pQTL associations were available for the target protein and the 

intended indication or a clinically-relevant disease biomarker had been studied in GWAS. Only 

11-13% of the combinations explored across all possible parameters (i.e., 27/234 in the 

sensitivity analysis 1 and 16/121 in the sensitivity analysis 3) recapitulated the known 

mechanism of action of the approved drug. Nonetheless, this represents a 2-fold increase 
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compared to a previous study by Zheng et al.23, in which MR was applied to 1,002 proteins 

and 225 phenotypes, and identified four drug target gene – approved indication pairs for which 

the MR recapitulated the mechanism of action out of 73 pairs with potential to be rediscovered. 

Two of the four drug target gene – approved indication pairs were also rediscovered by the 

analysis presented in Chapter 6: PCSK9 for hypercholesterolemia and hyperlipidaemia; and 

ACE for hypertension. The other two rediscoveries of Zheng et al.,23 were TNFRSF11A and 

osteoporosis; and IL12B for psoriatic arthritis and psoriasis. In the work described in Chapter 

6, TNFRSF11A showed a concordant direction of effect when using heel bone mineral density 

as the outcome, however the association did not reach the significance threshold. On the other 

hand, the association between IL12B and psoriasis was in the unanticipated direction of effect 

in some of the scenarios, although most of the combinations analysed did not yield significant 

results. Out of the two drug target gene – indication pairs found by Zheng et al., 23 in the 

unexpected direction of effect, IL6R was also in the unanticipated direction of effect in the 

analysis described in Chapter 6, while PROC was not analysed because it is not recorded as 

the target of an approved drug in ChEMBL. In their work, Zheng et al.,23 in line with the 

discussion in Chapter 6, indicated that for IL6R the alleles associated with higher soluble 

protein levels have been shown to also lead to lower intracellular pathway activation24, 

suggesting consistency of direction with the therapeutic approach.  

In addition to PCKS9 and ACE, the analysis in Chapter 6 further identified nine target-

indication pairs that consistently showed a concordant direction of effect under all the models. 

The rediscovery of IL1R1 and rheumatoid factor and PLG and activated partial thromboplastin 

was in line with the afore mentioned study by Schmidt et al.5,  which used a set of selected 

positive controls to illustrate the drug target MR framework. Another pair, ACE and 

hypertension, was rediscovered by  Zheng et al.23 using pQTL data and such genetic 

associations have also been used to instrument the effect of modifying ACE circulating levels 
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on different outcomes25, including susceptibility to SARS-CoV-2 infection or COVID-19 

severity26. Two of the drug targets rediscovered were phosphodiesterases (PDE4A and FEV1,  

PDE5A and prothrombin levels), and although MR studies have been performed on different 

outcomes27, these have not included the intended indication. Similarly for coagulation factor 

II, as MR studies on coagulation factors and the intended indication (venous thrombosis) have 

been published using intermediate traits such as activated thromboplastin time as the 

exposure28, however, drug target MR analyses using F2 pQTL data have not previously been 

reported. The remaining pairs (AMY2A and type 2 diabetes Mellitus; ATP1B2 and atrial 

fibrillation; COMT and Parkinson's disease) have not been previously studied in drug target 

MR analyses of the intended indication using pQTL data. 

On the other hand, 38-50% of the pairs with significant MR estimates were consistently 

in the unexpected direction of effect based on their reported mechanism of action (range 9/24-

26/53 drug target gene-SOMAmer-trait under the different scenarios). These findings highlight 

that additional evaluation and refinement of the pQTL-weighted drug target MR methodology 

is required. Other techniques such as co-localization29 could be used to source additional 

evidence by investigating if the estimate obtained in the drug target MR analysis is not 

attributable to genetic confounding through a variant in linkage disequilibrium30.   

Another issue of the pQTL-weighted drug target MR analysis described in Chapter 6 was 

the lack of significant genetic associations that could be used to instrument the drug effect, an 

issue that affected 86 of the 320 SOMAmer-drug target gene-trait combinations in the dataset. 

The commercialisation of cost-effective high-throughput technologies for protein measurement 

and the linkage of national biobank to electronic health records would enable larger sample 

sizes, and thus increase the power to detect significant associations. That is the promise of the 

genetic associations identified by deCODE genetics using the SomaLogic 5K platform in 
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35,559 Icelanders31, or the UK Biobank Pharma Proteomics Project32 which aims to measure 

circulating concentrations of up to 1,500 plasma proteins in approximately 53,000 UK Biobank 

participants using the Olink technology. Furthermore, the number of proteins covered by the 

proteomics platform is increasing, with the latest SomaLogic and Olink assays measuring up 

to 7,00033 and approximately 3,000 proteins34, respectively, which will allow for an increase 

coverage of the sample space of target and human diseases in drug target MR analyses.  

While opportunities for pQTL data in drug target MR analysis continue being evaluated, 

drug target MR analyses using genetic associations with ‘biomarkers’ downstream to the target 

protein could be used to prioritise drug targets. Biomarker-weighted drug target MR analyses 

do not provide evidence on whether the biomarker used for the weighting itself mediates 

disease, but they inform on the validity of the drug target for a disease, regardless of the 

mediating pathway. This approach was used in Chapter 7 to systematically prioritise drug 

targets for CHD prevention. Out of the 341 drug targets identified through their association 

with blood lipids (HDL-C, LDL-C and triglycerides), 30 targets that might elicit beneficial 

effects in the prevention or treatment of CHD were robustly prioritized, including NPC1L1 and 

PCSK9, the targets of licensed drugs used in CHD prevention. Of note, the mechanism of 

action of PCSK9 through LDL-cholesterol was also rediscovered by the pQTL-weighted drug 

target MR in Chapter 6 which supports the assumption that the effect on a clinically-validated 

biomarkers could be a valid proxy for protein concentration or activity. The same analysis 

prioritised other potential targets such as the lipoprotein lipase (LPL), a target that could 

potentially decrease CHD risk based on the univariable MR findings, with an effect potentially 

mediated by HDL-C, or another non-LDL-C pathway. Several pharmacological attempts have 

been pursued to target LPL35,36, and the approval of gene therapy interventions and the known 

indirect activation of LPL by drugs targeting other proteins, such as fibrates37 and metformin38, 
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suggest that the previous failure of compounds targeting LPL in initial trials may have been 

idiosyncratic.  

The potential of ‘biomarker-weighted drug target MR’ was illustrated in Chapter 7 using 

genetic association data on blood lipids and CHD data, however, the approach could also be 

extended to other areas where GWAS of diseases and biomarkers thought to be potentially 

affected by the drug target are available. For example, ‘biomarker-weighted drug target MR’ 

could leverage the increasing available data on cardiovascular biomarkers to evaluate the 

causal role of drug targets, such as carotid artery intima media thickness and carotid plaque, in 

atherosclerosis, following up on associations described in several studies39,40, to identify 

potential new indications for anti-inflammatory agents established in the treatment of 

autoimmune conditions.  
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8.3. Thesis strengths and weaknesses 

The work described in this thesis have a series of strengths and limitations that were 

discussed at length within each results chapters. Here I summarise those that were present 

throughout all the analyses.  

One of the strengths of the analyses is that most of the data used were available in the 

public domain which facilitates the revisiting of the estimates if needed, reproducibility and 

look up of canonical examples. These datasets included repositories of genetic associations, 

databases of drug information and clinical trial data, and published lists of druggable genes. 

Information from these disparate sources was integrated in the thesis using different 

anchoring ontologies or coding systems. For example, human diseases, drug indications and 

phenotypes investigated by GWAS were connected using the UMLS system. By using the 

UMLS as an anchoring ontology to standardise the diseases across data sources and including 

a step of manual curation of the disease terms and areas, the error due to inaccurate mapping 

cross-databases was reduced. The effort of harmonising the disease nomenclature facilitated 

the stratification of the analyses in Chapter 4 and 5 by disease area. This represents an 

additional strength of the work presented as allowed for the identification of disease areas 

with unmet clinical need (Chapter 4), or disease areas where targets had the greater genetic 

support. 

In addition, I created a dataset of 32,022 drug target-indication pairs using data from 

ChEMBL v25 and the druggable genome to estimate the value of genetic support in phase 

progression and to derive a ‘truth’ set of approved drug target-indication pairs. The dataset 

included 10,000 more pairings compared to the target-indication pairs reported by King et al., 

20192 (21,934) and that used by Nelson et al.3, 2015 (19,085). When filtering for those 

indications that had been studied by GWAS, the dataset included 18,065 drug target-indication 
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pairs in contrast to the 820 investigated by Nelson et al., (precise numbers from the King et al., 

were not provided in the publication). One of the potential reasons for the increased sample 

size may be that the analysis performed in this thesis included not only GWAS data from 

studies based on research-based case ascertainment, but also genetic associations from 

electronic health records (UK Biobank). Also in terms of sample size, the analysis presented 

in Chapter 5 utilised genetic associations with the levels of almost 5,000 circulating proteins 

measured in a large cohort (10,708 participants). The high number of targets of approved drugs 

with available pQTL allowed for a large scale evaluation of the drug target MR framework 

using 160 drug target-indication pairings. The only similar systematic analysis used a 

proteomic platform for 1,000 proteins and thus, could only evaluate 73 approved drug target - 

indication pairings. 

Lastly, multiple testing in the MR analyses was addressed in a number of complementary 

ways throughout the thesis. In Chapter 6, several sensitivity analyses were performed using 

different conditions for the parameters. In Chapter 7, multiple sources of evidence were 

combined to prioritise drug targets. For example, to assess the potential for false positive 

results, the distribution of the exposure-specific p values was tested against the uniform 

distribution expected under the null hypothesis41. In addition, the findings were validated with 

independent data sources and a second drug target MR was conducted. Also, a multivariable 

extension of the inverse-variance weighted (IVW) and MR Egger methods was applied in 

Chapter 7 to further validate the findings, although in some cases imprecise estimates were 

obtained in line with previous studies which attributed this to the inclusion of highly correlated 

exposures in the model42.  

There are some general limitations to the analyses presented in the preceding chapters. 

First, information on drugs in preclinical or clinical development may be incomplete or not 
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available in the public domain, which may lead to an underestimation of the number of diseases 

studied in drug development, particularly for the preclinical candidates which did not progress 

to clinical trials. Second, there are several reasons for drug discontinuation besides lack of 

efficacy, including safety concerns, strategic decisions or the compound failing to show extra 

benefits compared to another treatment. This could affect the estimates derived in Chapter 5 as 

it was assumed that drug target-indication pairs not progressing in the development pipeline 

were primarily due to lack of efficacy. Another potential source of bias is that genetic evidence 

from GWAS may already be used to inform drug development. However, in line with the 

argument presented by Nelson et al., 20153 and due to the long timelines in drug development 

(on average 10 years), the impact of this bias would not inflate the estimate but rather 

underestimate the value of genetic support as it would increase the number of drugs with 

genetic support in the early phases of the development process. 

From Chapter 4 to 6, diseases and indications studied by GWAS were identified using 

information in the GWAS Catalog. However, the set of diseases/indications may not include 

certain indications that may have been studied by GWAS but whose summary statistics had 

not been not deposited in the GWAS Catalog. Even for those GWAS traits included in the 

analysis, genetic associations may have been missed due to sample sizes not being large enough 

to detect all the responsible genes; or due to incomplete genomic coverage by the genotyping 

array. Furthermore, summary statistics deposited in the GWAS Catalog may be incomplete and 

lack essential information for the MR analyses, such as effect sizes or effect/reference alleles. 

In the pQTL-weighted drug target MR analyses described in Chapter 6, it was assumed 

that protein expression levels (pQTL) can be used as a proxy of protein activity or function. 

While two examples are provided at the beginning of the chapter which supports such 

assumption, this has not been studied in detail due to the lack of GWAS data on protein activity. 
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Moreover, protein levels corresponded to circulating protein in plasma, although some proteins 

are not secreted or circulating in plasma, and therefore, their presence in the blood tissue rather 

than indicate physiological conditions. Since the function of these proteins should take place 

in a different tissue, it is unclear if the levels in plasma recapitulate those in the drug effector 

tissue, or, on the contrary, they are unrelated to their function and should not be used to infer 

the effect of modifying such protein by a drug.  

The drug target MR approach used in Chapter 6 and 7, which utilised genetic variants in 

cis- to construct the genetic instrument. As described in Chapter 2, this approach is less prone 

to violation of the horizontal pleiotropy assumption than MR analyses with trans instruments5. 

However, cis-MR also requires some decisions to be made regarding instrument selection: 

defining the locus of interest, the significance threshold for the association with the exposure 

and the LD threshold to prune correlated instruments. The evaluation of the drug target MR 

framework in Chapter 6 suggested that the choice of parameters should be made on a case-by-

case basis. Therefore a window of 50 kbp and LD threshold of 0.4 were used, which showed 

the most consistent estimates in a grid-search in the discovery data using the four positive 

control examples: PCSK9, NPC1L1, HMGCR and CETP. Based on previous studies showing 

that using less stringent p value thresholds often results in improved performance in cis-MR 

settings (i.e., effect in the anticipated direction), the threshold below genome-wide significance 

was relaxed to select the genetic associations to instrument the exposure; and accounted for LD 

correlation by pruning and LD modelling during the MR analysis5,43.  

Lastly, some of the analyses presented in this thesis only included genes regarded as 

encoding druggable proteins which currently comprise approximately 25% of all protein 

coding genes4. As knowledge advances, additional proteins will become druggable, and 
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alternative therapeutic strategies such as antisense oligonucleotides and gene therapy may 

extend the range of mechanisms that can be targeted. 
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8.4. Concluding comments  

The findings from this thesis have the potential to inform prioritisation strategies in drug 

development and future research so the investment and impact of human genetic studies can 

be maximised. It provides an overall picture of the drugs, targets and indications where genetic 

data exist and could be harnessed to genetically validate approved drugs or identify 

opportunities for indication expansion, repurposing or de novo drug development. It also 

demonstrates through retrospective analyses of drug target-indication pairings that those with 

genetic support are enriched among successful drug development programmes. Several 

molecular traits, including proteomics and other clinically relevant biomarkers, are now being 

measured and linked to medical records and genetic data in large cohort studies and national 

biobanks. Therefore, it is possible to optimise traditional approaches in genetic epidemiology, 

such as Mendelian randomisation, to harness genome-wide association studies and provide 

robust evidence of target efficacy in early stages of the drug development process. The drug 

target MR framework using genetic associations with protein levels holds the promise of  

genetically validating drug target – indication pairs by the systematic interrogation of every 

potential drug target with available pQTL data against all the potential indications studied by 

GWAS. Further work is still needed to fully understand and validate the approach before it can 

be applied systematically, but several case studies have been described in this thesis which 

illustrate its potential and support future research on the topic. 
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8.5. Future research 

The findings from this thesis have the potential to generate future research in several 

directions.  

The points of convergence or divergence between genomic research and drug 

development efforts identified in the sample space of all the human drug targets and diseases 

could have multiple applications: to inform future drug development programmes direction if 

they are seeking to exploit existing genetic evidence; to promote large-scale GWAS or 

sequencing studies to help stimulate drug development in diseases without an approved 

treatment; to identify opportunities to expand the indications for approved drugs or repurposing 

opportunities for the many safe drugs that failed in clinical trials due to lack of efficacy in the 

originally intended indication.  

The declining cost of high-throughput technologies for protein quantification and the 

linkage of molecular measures to genetic data and electronic health records offer opportunities 

to conduct GWAS in a large number of patients and also on quantitative traits in healthy 

subjects to identify genetic associations that may explain differences, for example in protein 

levels. At the end of 2021, deCODE made available to the public genetic associations for 

almost 5,000 proteins measured in 35,559 Icelanders using the SomaLogic v4 platform31. These 

data could be meta-analysed with other pQTL GWAS to increase the sample size and increase 

the power to detect significant associations. It could also be leveraged in drug target MR studies 

to replicate the findings described in Chapter 6 or to identify opportunities for expansion of 

indications for those drug targets-approved indications that were consistently in the anticipated 

direction of effect. Similar work could be conducted using the genetic associations with 1,500 

plasma proteins measured in approximately 53,000 UK Biobank participants using the Olink 
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technology. That resource, which has not been released at the time of this thesis, would also 

allow for cross-platform comparison. 

Measurements of circulating levels will soon be available for a wider range of proteins 

based on the latest assays announced by SomaLogic v4.1 (7,000 proteins33) and Olink (3,000 

proteins)34. Such data will increase the coverage of the sample space of target and human 

diseases in drug target MR analyses.  

Future research should also focus on the methodological aspects of GWAS and MR 

approaches. Twenty years after the publication of the first GWAS44, it remains unclear what is 

the most optimal method to map association signals to causal genes and several gold-standard 

datasets have been used to explore the different methodologies. These ‘truth’ sets include genes 

whose perturbation causes a Mendelian form of a common disease45, the set of expression and 

protein QTLs21, curated metabolite QTLs15, manually curated examples from the literature19, 

and approved drug target-indication pairings where the indication has been studied by 

GWAS4,19. As more data become available, these datasets are likely to expand and thus offer a 

larger sample size to test different methods. In addition, novel approaches may emerge that 

outperform the current mapping methods which are mostly based on the relative distance to the 

gene. Research on MR techniques will also benefit from the enhanced mapping between 

genetic association – causal gene, as it will ensure that valid genetic variants are selected to 

construct the genetic instrument. Similar ‘truth’ sets could be used in future work to evaluate 

the performance of the drug target MR framework and inform the design, parameter selection 

and interpretation of the findings. 

The full integration of genome-wide association studies and related applications in the 

drug development pipeline is still very much a work-in-progress. This thesis anticipates that 
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the mining of data from genome-wide association studies will help address the efficiency and 

productivity problem in the pharmaceutical industry. 
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