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Abstract

Background

Attrition is a major issue in drug development with less than 5% of drug development
programmes yielding licensed drugs. Retrospective studies have suggested that human
genomic data could be used to help prioritise drug development programmes and reduce the
risk of clinical-stage failure. The investment of pharmaceutical companies in healthcare
genomic initiatives has been incentivised largely by studies showing that genetically-supported
targets would succeed twice as often as those without genetic support, and comparative studies
revealing that the effect of licensed drugs on biomarkers and disease endpoints coincide with
the observed associations of variants in the genes encoding the corresponding target. However,
historically, genome-wide association studies (GWAS) of human diseases and pharmaceutical
research and development have largely proceeded independently. Knowledge of the overlap
between existing GWAS and current or historical drug development programmes is important
to maximise the utility of existing data for repurposing opportunities and mechanism-based
adverse effect prediction. Additionally, for novel target identification, questions remain about
what type of genomic data is most informative and what methods are most robust. Mendelian
randomisation (MR), a genetic epidemiology approach for causal inference, has been used to
assess the causal nature of exposures on outcomes. Its application has recently been extended
to the evaluation of drug targets against disease (‘drug target MR’). However, very limited
validation of the parameters used in drug target MR studies exists across multiple target loci

and diseases.



Aim

To investigate the extent to which the spectrum of human diseases has been addressed by
genetic analyses, or by drug development, and the degree to which these efforts overlap. To
evaluate the genetic support for approved drug target-indication pairs from GWAS and drug

target MR applications.

Methods

Human disease information from the Disease Ontology and drug data from ChEMBL
version 25 were used. Genetic associations with diseases and clinical endpoints were sourced
from the GWAS Catalog and UK Biobank (through Neale Lab), and genetic associations for
circulating protein levels measured by the Somal.ogic v4 proteomic platform from the Fenland

study and UCLEB Consortium.

I calculated the disease coverage, overlap and divergence of human genetic studies and
pharmaceutical research and development. I provided a revised estimate of the value of genetic
evidence for drug target-indication pairs in progressing in clinical-phase drug development,
and investigated different approaches to assign genetic associations identified by GWAS to
causal genes. I evaluated the drug target MR framework with a curated ‘truth’ set of drug target-
indication pairs for which genetic associations with the circulating levels of the protein target
and the intended indication were available. I applied the drug target MR framework using
genetic associations with blood lipids (LDL-cholesterol, HDL-cholesterol and triglycerides) to

prioritise drug targets for the treatment and prevention of coronary heart disease.

Results

Only 9% (953 out of 10,901) of human diseases have been studied by GWAS. Of these,

only 369 correspond to diseases with an approved treatment and/or a treatment under clinical



or preclinical development, leaving 584 diseases that have been the subject of investigation in
GWAS, but which have yet to be investigated in drug development. For those indications that
are or have been the subject of clinical phase drug development and have been studied by
GWAS, I found that drug target-indication pairings with genetic support are twice more likely
to get approved than those without genetic support (2.18; 95%CI: 1.86; 2.51). The evaluation
of the drug target MR framework with the subset of target-indication pairings of approved
drugs with available genetic associations with the circulating protein levels recapitulated the
mechanism of action of up to 13% (16 out of 121) of the drug target gene — indication pairings
and returned results in the unanticipated direction of effect for 11% (14 out of 121) of the
pairings explored. The systematic application of the biomarker-weighted drug target MR using
blood lipid levels robustly identified 30 targets that should be prioritised for the prevention or

treatment of coronary heart disease.

Conclusion

I identified points of convergence or divergence between genomic research and drug
development efforts in the sample space of all the human drug targets and diseases, and
demonstrated the utility of GWAS data for drug target identification and validation through the
mapping of genetic associations to causal genes and the application of the drug target MR
framework. The work of this thesis informs prioritisation strategies in drug development and

future research so the investment and impact of human genetic studies can be maximised.



Impact statement

It has been suggested that human genomics may help increase the efficiency of drug
development by generating evidence for drug target identification and validation.
Pharmaceutical companies have shown growing interest in the use of human genomic data,
however, the detailed analysis of disease coverage, overlap and divergence of human genetic
studies and pharmaceutical research and development in Chapter 4, shows that less than 10%
of human diseases have been studied by genome-wide association studies (GWAS), indicating
that further efforts are needed to explore the genetic predisposition of the remaining diseases,
and more importantly, the genetic contribution for those >9,000 diseases without an approved
or investigational drug. In addition, the analysis described in Chapter 5 provides further
evidence of the additional value of genetic evidence for drug target-indication pairings in
progressing in the drug development pipeline. Genetic support could help prioritise medicines
for cardiovascular disease or repurposing approved drugs. The findings from this chapter
encourage the research community and pharmaceutical industry to align efforts and perform
genetic studies in cardiovascular diseases or other therapeutic areas without an approved or

investigational drug.

Large population-based cohort studies, and particularly biobanks, have emerged as a
powerful resource to advance biomedical research. The linkage of human genetic data to
medical records, clinical biomarkers and molecular traits, such as circulating protein levels,
represents an unique opportunity to exploit genomic data and inform drug target identification
and validation. Different techniques in genetic epidemiology are used to infer the effect of a
drug on a target in a particular disease. This thesis evaluated in Chapter 6 the use of drug target
Mendelian Randomisation using circulating protein levels to estimate the effect of perturbating

a target in a particular disease using a set of licensed drug target — indication pairings. The



methods and findings from the work in Chapter 6 are intended in large part to pave the way for
further studies exploring the application of drug target Mendelian randomisation with protein

level data for drug target validation and identification.

While Mendelian randomisation methods using molecular traits become better
understood, traditional clinically-validated biomarkers are used to infer the effect of perturbing
a drug target in a particular disease. Chapter 7 prioritises a set of 30 targets that might elicit
beneficial effects in the prevention or treatment of coronary heart disease using blood lipid data

as the exposure.

The full integration of genome-wide association studies in the drug development pipeline
is still very much a work-in-progress. There are several drugs that have been prioritised based
on population-level genetic data showing promising therapeutic benefit. Academic research
and clinical trials of these candidates are ongoing at the time of writing this thesis. This thesis
anticipates that the mining of data from genome-wide association studies will help address the

attrition problem in the pharmaceutical industry.
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1 | Introduction

This introductory chapter will provide an overview of the current state of drug
development, the potential of human genetic studies to address the high attrition rates and
increase efficacy in clinical development, and the application of Mendelian randomisation for

drug target identification, validation and prioritisation.
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1.1. The current state of drug development

Most successful medicines target proteins. Therefore, the challenge in drug development
1s to identify disease relevant proteins and design compounds that can modify their function to
treat disease. However, less than 5% of drug development programmes yield licensed drugs'?2.
Reasons for failure include the compound failing to show benefits compared to another
treatment or placebo (lack of therapeutic efficacy, ~60% of failures), safety concerns (~17% of
failures), or strategic reasons, for example, when a pharmaceutical company ceases the

development due to market competition or financial constraints (~20% of failures)’.

The vast majority of failures arising due to lack of efficacy occur at a late stage in the
development pipeline, in phase II or phase III randomised clinical trials®>#. Many of these drugs
may have been strong pre-clinical candidates indicating that early experiments in cells and
animals are poor predictors of human efficacy. In addition, early-phase clinical trials (phase 1),
which evaluate dose safety and tolerability, are not designed to determine if the drug target
plays a relevant role in a disease. Phase I studies are usually performed in small cohorts of
healthy volunteers over a short period of time to help evaluate pharmacokinetics and dose
range, as well as to measure any commonly observed adverse effects rather than to confirm or

test target validity®.

Late-phase failures raise ethical concerns (e.g. thousands of patients being exposed to
ineffective or potential harmful drugs) and have financial implications, because a phase I1I trial
requires an enormous investment in addition to costs already incurred to progress a compound
to that stage. The average cost of introducing a drug into the market is estimated in $985.3
million® and in some cases even several billion dollars’. Clearly, the current situation is not
sustainable and demands improved methodologies that can provide robust evidence of target

efficacy in early stages of the drug development process. A key requirement of any new method
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would be to enable early, reliable insight on the likelihood of success of any target and disease
indication combination to remove those pairings unlikely to be successful from the drug

development pipeline prior to clinical phase trials, thus reducing overall development cost.

1.2. The potential of genome-wide association studies in drug

development

Genome-wide association studies (GWAS) in patients and populations test relationships
between natural sequence variation (genotype) and disease risk factors, biomarkers and clinical
endpoints using population-based cohort and case-control designs®. In the last 13 years, over
5,687 GWAS have been completed in approximately 4,083 traits®. The rise of genome-wide
association studies has been enabled by the significant reduction of genotyping costs and the
substantial investment in sequencing, genotyping or molecular phenotyping of large cohort
studies (e.g., University College London-Edinburgh-Bristol Consortium; UCLEB!®) and
national biobanks which are connected to routinely collected primary and secondary care health
records (e.g., UK Biobank!! and FinGenn'?). Many of these comprise molecular traits such as
proteomics and metabolomics measures in addition to genetic data. Some examples of the
largest biobanks with ‘omic-> data are shown in Table 1.1. Future initiatives that will
incorporate genomic data linked to medical history include the All of Us program in the USA'3

or the planned Three Million African Genomes'4.

Several public repositories exist that systematically catalogue, curate and store GWAS
summary statistics. For example, the latest update of the European Molecular Biology
Laboratory, European Bioinformatics Institute (EMBL-EBI) GWAS catalog® contains over

5,000 publications of published GWAS done in different human populations, and almost
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400,000 associations between SNP and traits. Another GWAS repository is the GWAS
database (GWASdb), developed at the University of Hong Kong, and combines GWAS results
with functional annotations!®. Similarly, the Genome-Wide Repository of Associations
Between SNPs and Phenotypes (GRASP) collects information about significant associations
in genetic studies, including methylation and expression quantitative trait loci (eQTL)
analysis'®. Other relevant resource is provided by Neale Lab!” which has released to the public
summary statistics from genome-wide association studies for approximately 2,000 phenotypes

measured in ~337,000 participants of the UK Biobank.

Table 1.1. Examples of the population-based biobanks

Study (Location) Study type Number of  Omic data available (samples)

participants
Genotype data (500,000)
e  Whole exome sequencing data
(200,000)
e Whole genome sequencing data
. 1" . (200,000)
UK Biobank™" (UK)  Biobank 500,000 Proteomics (53,000)
e Metabolomics — 249 molecules
measured by Nuclear magnetic
resonance (120,000)
e 34 clinical biomarkers (500,000)
FinnGen'? (Finland) ~ Biobank 476,400 e Genotype data (365,000)
e Genotype data (200,000)
e  Whole exome sequencing data
(2,500)
e  Whole genome sequencing data
The Estonian . (3,000)
Biobank (Estonia)'® ol 200,000 e Metabolomics NMR - 120
molecules (11,000)
e 42 Clinical biomarkers (2,700)
Proteomics (~1,000)
e Transcriptomics (~1,000)
e Genotype data (~220,000)
e  Whole genome sequencing data
. ~218,000)
BioBank Japan'®* , (~218,
(Jla(;aaillr)l P Biobank 260,000 e Metabolomics - 39 molecules

measured by capillary
electrophoresis mass spectrometry
(500)
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The design of genome-wide association studies has shown potential as a novel resource
for drug development. Retrospective analyses of successful drugs whose indications have been
studied by GWAS have shown that selecting drugs targets where genetic associations have
been found near or in the gene encoding the target could double the success rate in clinical
development?!?2, Further, several analyses have been completed that demonstrate GWAS have
rediscovered 39 drug targets, including 8 targets for cardiovascular drugs (Table 1.2).
Moreover, GWAS have potentially uncovered numerous repurposing opportunities (Fig. 1.1).
In an effort to streamline drug development from GWAS data, Finan et al., 2017 defined the
druggable genome??, the set of genes whose protein products are already drugged or have a
greater probability of encoding a protein amenable to targeting with a pharmaceutical. The
most recent definition comprises 4,863 genes and incorporates potential targets for monoclonal
antibodies.

Digestive ¢
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| [/ /T
/
/
/

Figure 1.1 Potential repurposing opportunities uncovered by GWAS. The disease categories
on the circumference are MeSH root disease terms. The directional chords represent a
connection from an indication class of drug to a GWAS phenotype. This connection is
determined by a drug target gene occurring within 50 kilo base pair (kbp) of a GWAS
association. The width of the chords is proportional to the number of genes connecting two

therapeutic classes. Figure adapted from Finan et al., 2017%.
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As described by Hingorani ef al., 2019%*, GWAS overcome many design flaws inherent
in preclinical experiments in isolated systems (cells, tissues, isolated organs) and animal
models as they are performed in the organism of interest (the human), have a low false
discovery rate and have the capability to interrogate every potential drug target in the condition
of interest. Yet, the main challenge in GWAS interpretation is the identification of the true
‘causal’ gene driving the association, given that the majority of genetic associations found
through GWAS are located in non-coding regions and that may include several genes.
Recently, several statistical tools have been developed, including coloc?’, moloc?%, CaMMEL?’
and SMR?®, that aim to co-localise genetic associations with mRNA (or protein) expression
and disease endpoints to help assign the responsible gene in an linkage disequilibrium (LD)
interval. Despite all the proposed methodologies, assigning variants to genes based on genomic
proximity has been described as the most reliable approach to map causal genes?*-°. Still, very
few discovery GWAS have identified the gene(s) driving the association so at present, it is not

clear which method is optimal.

Nevertheless, while GWAS alone can potentially inform drug target identification and
validation, deciding whether to design an inhibitor or activator of the target cannot be readily

inferred simply from identification of the locus.
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Table 1.2. Examples of GWAS ‘rediscoveries’ of licensed drug targets

GWAS Phenotype  Associated Gene Compound
Total/LDL 3-hydroxy-3-methylglutaryl-CoA reductase Iﬁ:;]a;:?;;’
cholesterol (HMGCR) Simvasta tiI;
Diastolic blood CACNAI1D calcium voltage-gated channel Amlodipine
pressure subunit alphal D (CACNA1D) p
Large artery stroke Plasminogen (PLG) Alteplase
Heart rate Acetylcholinesterase (ACHE) Il:I/Iee(‘z}SlzzlgsTllgie
Cholinergic receptor muscarinic 2 (CHRM?2) ?23:;?:1116
Glimepiride,
Potassium inwardly-rectifying channel Glipizide,
LSO Gl subammily Jimember 11 (KCHLT) gz:;lriﬁz’e
Repaglinide
Glimepiride,
ATP binding cassette subfamily C member 8 gi;%ﬁfgé
(4BCCE) Nateglinide,
Repaglinide
Peroxisome proliferator-activated receptor opsfinzane

gamma (PPARG)
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1.3. Nature’s randomised trials: Mendelian randomisation

Mendel’s second law (the ‘law of independent assortment’) states that the segregation of
alleles at a locus during conception is mutually independent and independent of other factors,
and thus, genotypes of individuals are obtained by the random allocation of alleles during
meiosis when DNA is passed from parents to offspring (Mendelian randomisation; MR). If an
allele of a genetic variant results in an increase or decrease in disease risk or biomarker level,
then Mendel’s second law is analogous to the randomisation of an active drug or placebo in a
randomised controlled trial. Therefore, genetic variation can be used to mimic randomised
clinical trials without requiring the time-consuming and costly development of a drug

compound?! (Fig. 1.2).

Randomised control triat Mendelian randomisation trial

(Phase Ill)
Patients Population
Randomization Random allocation of alleles
Intervention Placebo Target genotype aa Target genotype AA

| | |

Target expression or
Target affected Target unaffected activity modified

|

Target expression or
activity unchanged

| | | |

Outcome QOutcome Outcome Outcome

Figure 1.2. Mendelian randomisation trials as a nature phase III randomised clinical trial.
Expected outcome from hypothetical randomised control trial and from Mendelian
randomisation analysis, if the target is causal in the development of the disease. ‘AA’ and ‘aa’
refer to alleles of the gene encoding the target of a drug (only homozygous individuals are
shown). In this example, genotypes are also associated with low or high risk of developing the

particular disease. Figure adapted from Hingorani & Humphries, 20053'.
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Where the variable of interest in an MR analysis is a disease biomarker, rather than a
specific drug target, established MR approaches have utilised selected variants in or near
multiple genes that have been identified in GWAS of biomarker levels from throughout the
genome. Collectively, these variants are known as a genetic instrument. An MR analysis will
assess the effects of the genetic instrument on a biomarker level and the effects of the genetic
instrument with respect to the disease risk to determine if the biomarker exposure is causal in
the disease outcome. The resulting estimate will determine how much an increase or decrease
in the biomarker impacts the increase or decrease in disease risk. This is referred to as MR

analysis for biomarker validation or ‘genome-wide biomarker MR 32,

For illustration, genome-wide biomarker MR studies have further validated the causal
role of low-density lipoprotein cholesterol (LDL-C) on coronary heart disease (CHD), which
was first established in observational studies and eventually confirmed as causal by
randomised controlled trials of LDL-C lowering statin drugs**** PCSK9 inhibitors®> and

ezetimibe, which targets NPC1L 13637 (Table 1.3).
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Table 1.3. Causal odds ratios (95% CI) for coronary heart disease per standard deviation
increase in each lipid fraction. All the studies used variants from the Global Lipid Genetic
Consortium (GLGC) to instrument causal effects of the three lipid subfractions on CHD from

the CardiogramPlusC4D Consortium. (*) Derived from Table 3 of Do et al., 201338,

LDL-C HDL-C Triglycerides
Ref.

Method OR (95%CI) OR (95%CI) OR (95%¢CI)
Regression-based 146 (137, 157)  0.96(089,1.03) 143128, 1.61)

method* Nyariants = 185 Nyariants = 185 Nyariants = 185

Multivariable  1.48 (1.36, 1.61)  0.93 (0.85,1.02)  1.16(1.04, 1.29)

39

IVW MR Nyariants = 185 Nvariants = 185 Nyariants = 185
Restricted allelele 192 (1:68,2.19)  091(042,198)  1.61(100,259)

SCore

Nyariants = 19 Nyariants = 19 Nvariants = 19

Genome-wide biomarker MR has also been applied to non-LDL lipid subfractions such
as high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG), for which a causal role
in CHD risk remains controversial. Non-randomised observational studies have reported a risk
increasing association between TG and CHD*, an association that has recently been suggested
to be causal by genome-wide biomarker MR studies (Table 1.3). The role of TG in CHD is
currently under investigation in clinical trials of evinacumab, an ANGPTL3 inhibitor predicted
to reduce CHD risk by lowering TG levels*!. In contrast, and despite suggestive but
inconclusive MR estimates (Table 1.3), causality of the HDL-C and CHD association remains
controversial. Despite several attempts to raise HDL-C by inhibiting CETP, a key enzyme in
HDL-C metabolism, none of the CETP inhibitors**#¢ have been approved yet, questioning

HDL-C role in CHD and leading to confusion as to therapeutic targeting of HDL-C metabolism

27



is likely to be fruitful. Furthermore, only the CETP inhibitor anacetrapib showed a reduction
in cardiovascular events in phase III clinical trials*®, suggesting between-compound
heterogeneity. Therefore, the anticipated CHD effect may depend on the method of intervening
on downstream lipid biomarkers (i.e. which proteins are targeted by drugs). To explore this
situation in which the therapeutic response varies between different interventions on a
biomarker and to comprehensively evaluate a drug effect on a specific target protein regardless
of heterogeneity in downstream pathways, Schmidt et al., 202032 proposed a drug target MR

approach.

1.4. Mendelian randomisation for drug target validation

It has been shown that variants in a gene encoding a specific drug target, that alter the
target’s expression or function, can be used as a tool to anticipate the effect of drug action on
the same target. This application of Mendelian randomisation is known as ‘drug target MR*%7.
In contrast to a genome-wide biomarker MR, where the variants comprising the genetic
instrument are selected from across the genome, in a drug target MR analysis, variants are
selected from the gene of interest or neighbouring genomic region because these variants are
most likely to associate with the expression or function of the encoded protein (acting in cis).
Whereas genome-wide biomarker MR helps infer the causal relevance of a biomarker for a
disease, a drug target MR helps infer whether and, in certain cases in what direction, a drug
that acts on the encoded protein, whether an antagonist, agonist, activator or inhibitor, will alter

disease risk (Table 1.4).

28



Table 1.4. Main conceptual differences between genome-wide biomarker and drug target MR

approaches.
Biomarker MR Drug target MR
. Causal effect Causal relevance
Aim .
of a biomarker of a drug target
SNP selection Genome-wide Locus specific
mRNA or protein

Clinically relevant

Ideal exposure L7 )
xposu quantitative trait

expression of
the encoded gene

Methods accounting for
residual genetic correlation
to maximise power

IVW, MR-Egger and other

MR methods (see later section)

Further evidence on the validity of this approach is that the licensed LDL-C lowering
targets have also been rediscovered by drug target MR approaches. Polymorphisms in
NPCILI, the gene that encodes the target of ezetimibe, are associated both with lower LDL-C
levels and decreased CHD risk (OR: 0.95, 95% CI: 0.92,0.99)*. The effect of instrumenting
LDL-C on CHD using LDL-lowering variants in HMGCR 1s 0.81 (95% CI: 0.72, 0.90) and
0.81 (95% CI: 0.74, 0.89) when using variants in PCSK9*, consistent with the effect of statins
and PCSK9 inhibitors in clinical trials**-°, Furthermore, a drug target MR of CETP on CHD,
using variants in the CETP gene weighted by their effect on HDL-C, indicates protection from
disease (odds ratio: 0.87; 95%CI: 0.84, 0.90)*2. The finding is consistent with the effect of
allocation to the CETP-inhibitor anacetrapib in a placebo-controlled trial (0.93; 95%CI: 0.86,
0.99) and is compatible with the view that targeting CETP is an effective therapeutic approach

to prevent CHD (Fig. 1.3)*.
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CHD GWAS Clinical trial

Treatment Placebo OR (95% CI) of CHD for intervention or per 1-
Study Events/Total Events/Total Events/Total SD increase in HDL-C
HDL-C
genetic variants 60801/184305 - - =l 0.93 (0.85, 1.02)
(genome-wide)
CETP . . 60801/184305 - - - 0.87 (0.84, 0.90)
genetic variants
ATEECITE(pID 1640/15225  1803/15224 - 0.93 (0.86, 0.99)
(CETP inhibitor) ’ R

[ T T T 1
0.5 1.0 2.0

Figure 1.3. HDL-C, CETP inhibitor and CHD: genome-wide biomarker vs drug target MR.
Forest plot of the HDL-C biomarker MR estimate (Holmes et al., 2015%°), drug target MR
estimate of CETP level and function using HDL-C as a proxy (Schmidt et al., 2020?) and odds
ratio of anacetrapib clinical trial (HPS3/TIMI55-REVEAL Collaborative Group, 201746). OR

= odds ratio; CI = confidence interval; SD = standard deviation.

In addition to drug target validation, drug target Mendelian randomisation has also been
employed to anticipate the outcome of a phase II/III randomised clinical trial*® and identify
potential drug repurposing opportunities. For example, it has been demonstrated that the
increased risk of type 2 diabetes associated with statin treatment is an effect of HMG-CoA
inhibition*®, whereas the blood pressure raising effect of torcetrapib, a CETP inhibitor, was an
off- target effect and unrelated to CETP inhibition®. Further applications include drug
repositioning. For instance, tocilizumab, a monoclonal antibody that blocks the interleukin-6
receptor originally licensed to treat rheumatoid arthritis, was later suggested as a potential
therapeutic agent for the treatment of coronary heart diseases based on the causal role of the
target in the development of the disease’!. Inhibition of the same target may also be effective
in abdominal aortic aneurysms>2, atrial fibrillation®, and inflammatory bowel disease>* but
might increase the risk of asthma®. This illustrates the concept that drugs targeting a single

protein may affect multiple disease outcomes.
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1.5. Aim and objectives

As introduced earlier in the chapter, mapping disease loci identified by genome-wide
association studies (GWAS) to the genes encoding the protein targets of licensed drugs has
suggested that i) GWAS could provide a useful tool for systematic identification of new drug
targets for human disease, ii) drug targets genetically-validated by GWAS are more likely to
succeed. However, the extent to which GWAS are exploited and used to inform drug
development is unknown. Furthermore, deciding whether to design an inhibitor or activator
(agonist or antagonist for receptor targets) of the target cannot be readily inferred simply from
identification of the locus. To help infer the correct mechanism of action for a new drug, I
propose the cis-Mendelian Randomisation (MR) approach (‘drug target MR”). By using protein
expression levels (protein quantitative trait loci; pQTL) as a potential proxy for protein
function, a drug target MR analysis assesses the effects of variants in a single gene on its pQTL
with respect to disease risk. The inference determines whether and by how much an increase
or decrease in the protein impacts disease risk, suggesting a plausible mechanism of action for
the drug. However, as discussed in the following chapter, multiple parameters determine MR
performance including linkage disequilibrium (LD) or strength of the association with the

exposure.

I hypothesise that by using publicly available GWAS data combined with drug
information and in-house genetic and proteomic data, I will be able to investigate the
performance of large scale drug target MR analysis. By using these parameters I could (a) better
predict the efficacy of preclinical candidates (b) uncover repurposing opportunities (c¢) predict
mechanism-based side effects of licensed and drugs in development and (d) evaluate the

therapeutic potential of novel druggable genes in cardiovascular, among other disease
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outcomes. The hypothesis outlined here will be accomplished by working on the following

aims:

1.

Investigating the extent to which the spectrum of human diseases has been addressed by
genome-wide association studies, or by drug development, and the degree to which these

efforts overlap to inform genetically guided pharmaceutical research.

Evaluating the genetic evidence from GWAS on drug target-indication progression along
the drug development process and providing an updated estimate of the probability of

success for drug target-indication pairing given genetic support.

Validating the drug-target MR approach using a ‘truth’ set of approved drugs for which
available GWAS data on circulating protein levels (pQTL) of the target are available and
the intended indication has also been studied by GWAS to investigate if the ‘pQTL-

weighted drug target MR’ framework recapitulates their mechanism of action.

Consolidating a ‘biomarker-weighted drug target MR’ approach to systematically
prioritise and validate drug targets where circulating protein levels have not been measured
directly, and genetic associations with a clinical biomarker downstream to the protein are

available and could be used as a proxy for protein concentration or activity.
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2 | Review of Mendelian Randomisation methods,

considerations and applications

Several Mendelian randomisation (MR) methods have been developed to assess causality
using data from genetic studies, each of them with distinct strengths and limitations. In this
chapter, I will describe the standard Mendelian randomisation model, discuss the instrumental
variables assumptions and review the Mendelian randomisation approaches commonly used in
the field of genetic epidemiology, and frequently applied in genome-wide biomarker MR. In a

subsequent section, I describe methods relevant to drug target MR.
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2.1. Canonical Mendelian randomisation model and assumptions

The canonical Mendelian randomisation model assumes that for each individual i (i =
1,..., N), J genetic variants Gij (j =1, . . ., J), a modifiable exposure (X;), an outcome variable
(Y3), and unknown confounders (U; ). Suppose the exposure is defined as a linear function of J
genetic variants, the unknown confounders and an independent error term (&7 ), with the

coefficient fx; representing the effects of each genetic variant j on the exposure:

J
— X
X; =2 Pxj Gy + U +¢ (D
j=1
Suppose the outcome is defined as a linear function of J genetic variants, the exposure,
the confounders and an independent error term (& ¥). The coefficient a; represents the direct
effect of each genetic variant on the outcome, and pfx; the indirect effect via the exposure:
J
— Y
;=% aG,;+uX;+ U +¢ 2)

J=1

To be a valid instrumental variable (IV), the genetic variant G; must hold to the following

assumptions:

i) ‘Relevance’ assumption. The genetic variants must be associated with the exposure of

interest (X ). This assumption implies fx;# 0.
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ii) ‘Exchangeability’ assumption. There should be no unmeasured confounders of the
associations between the genetic variant (G;) and outcome (Y ). This assumption could
be violated in the presence of genetic confounding such as population stratification, when
there is a systematic difference in allele frequencies between subpopulations in a sample
due to different ancestry, and cryptic relatedness when there is unknown or
undocumented familial relationships among individuals in the sample'?. Both scenarios
should have been controlled for during the genetic association study stage, and thus, they

should not impact the MR inference.

iii) ‘Exclusion restriction’ assumption. The variants should affect the outcome only through
their effect on the risk factor of interest. This assumption implies a; = 0. It is also known
as the ‘no-horizontal pleiotropy’ assumption, where pleiotropy is defined as a situation
in which a genetic variant influences multiple traits. If the variant influences multiple
traits in the same biological pathway as the exposure it is referred to as ‘vertical
pleiotropy’, if it influences multiple traits in independent pathways it is referred to as
‘horizontal pleiotropy’. Whereas horizontal pleiotropy compromises causal inference in

a MR analysis, vertical pleiotropy does not.

The model described above, including the instrumental variable assumptions and

coefficients from equations (1) and (2) are illustrated in Figure 2.1.
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Figure 2.1. Canonical Mendelian randomisation model. Diagram of the model assumed for
genetic variant G;, showing the effect on the exposure X (fx), the indirect effect on the outcome
Y through confounders (¢,), the direct effect on the outcome Y (a;) and the causal effect of
exposure X on the outcome Y ( u ). Solid lines indicate instrumental variable assumptions and

dashed lines ways these assumptions could be violated.

2.2. Comparison of Mendelian randomisation methods

Based on the data source, two different Mendelian randomisation settings can be defined:
one-sample and two-sample MR. One-sample MR is performed when the genetic associations
with the exposure and the outcome are from the same population and requires access to
individual participant data. This scenario is sensitive to ‘winner's curse’ bias which can
overestimate true causal effects in overlapping samples®. Furthermore, it is also subject to
‘weak instrument’ bias which depends on the strength of the genetic instrument, and arises if
the chance difference in confounders explains more of the variation in the outcome than the
association of the genetic instrument with the exposure*. The increasing availability of genetic
summary data allows the evaluation of causality using genetic associations from independent
studies (two-sample MR) under the assumption that the associations are derived from the same
underlying population and adjusted for the same covariates®. By using separate studies, the
statistical power in the two-sample MR scenario increases due to the possibility of obtaining

more precise estimates of the genetic associations with the outcome®. Several Mendelian
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randomisation methods have been developed to evaluate causality in both settings, the most

commonly used will be briefly described in the following section and summarised in Table 2.1.

2.2.1. Wald method

The simplest Mendelian randomisation method is the Wald method or ratio estimator
method in which a single variant is used in the genetic instrument’. In this case, the outcome is

defined as:
Y = (& +upy;) G +e 3)

The Wald ratio is estimated as the coefficient from regressing the outcome (3) on the
genetic variant (fy; ) divided by the coefficient from regression of the exposure on the variant
(Bxj)

ﬁ Yj (4)

IB Wald ~
Pxj

If the genetic variant is a valid instrumental variable, then a; = 0 and the casual effect of
the exposure on the outcome (@, + u fx;)/ fx; = u . This estimate can be interpreted as a u

change in the outcome for one unit increase in the exposure.
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2.2.2. Inverse-variance weighted (IVW) method

When multiple uncorrelated genetic variants satisfy the IV assumptions, an optimisation
of the Wald ratio allows to include all of them in a single analysis to maximise the power to
detect a causal effect’. The estimate is a weighted average of the ratio estimates for J genetic

variants (inverse-variance weighted estimate):

J
; w; BWaIdj
= ! (5)

J
.Z @y
J=i

IB IVW uncorr

where the weights (w; ) are derived from the first-order term of the delta expansion of the

variance’ and represent the inverse-variance of the ratio estimates:

%

w = ———— (6)

If the association of the genetic variant G; with the exposure is Sx; with standard error se
( BX./ ), and with the outcome is ,Ex 7 with standard error se ( B)’j ), then the causal estimate derived

from expanding the formula for the weights (6) into the equation (5) is:

= = (7)

IB IVW uncorr
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The IVW estimate is equivalent to the two-stage least square estimate with summary
data, where the exposure is regressed on the genetic instrument in a first stage regression and
the outcome is regressed on the fitted values'®. When the genetic variants are correlated, the
method can be extended to account for their correlation using a weighting matrix ( £ ) where

pjij2 is the correlation coefficient between variants j/ and j2!! :
‘Qj]jZ - se (ﬁYﬂ) se (,Bsz) Pj1 ;2 (8)

with Sy and By as the genetic associations vectors for the exposure and outcome respectively,

and 7 the transpose vector, the [IVW estimate accounting for correlation is defined as:

R Q Bx" By
ﬂ VW corr  — (9)
Q1 pyT By

If all the genetic variants are valid IVs, the IVW estimator provides the most precise

estimates across all the MR methods.

2.2.3. Principal component analysis - IVW method

If too many correlated variants are included in the IVW model, even accounting for the
correlation can lead to numerical instabilities and inflated Type 1 error rates'?. These issues
can occur due to inconsistencies in the data (i.e. rounding of association estimates) and near-
singular correlation matrices, which result in the model failing, misleading estimates and/or

over-precision in the causal estimates.
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A method based on principal component analysis has been developed to allow the
inclusion of multiple correlated variants under the assumption that all the variants are estimated
in the same sample size'?. In this situation, the IVW model uses a weighted version of the

genetic correlation matrix,
Wiij2 = Pt Prjz se (Brir) ' se (Bri2)™! pije (10)

Then, the first principal component is a linear combination of the variants explaining the
largest proportion of variance in the exposure. This method implies the choice of a threshold
of variance to define the number of principal components in the weighting correlation matrix.
The causal effect is estimated using the IVW method with the transformed vectors of genetic
associations and the transformed correlation matrix as indicated in the following expression,

where Wk is the matrix constructed for the first K principal components:

(WKT Q WK) (WKT BXT) (WKT BY)

,B PCAIVW (11)

_~ -7 ~ T
(WKT IBX) (WKT Q W) (WKT ﬁX )
This method is suitable for highly correlated variants (e.g. fine-mapped genetic data),

and results in estimates more robust than the ones derived from methods that LD prune instead,

however these are less precise!?.
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2.2.4. Methods with invalid genetic instruments

The methods described in the subsequent sections aim to estimate the causal effect when

genetic variants are ‘invalid’ instruments due to the presence of horizontal pleiotropy.

2.24.1. Median-based method

The median-based method provides a consistent estimate of the causal effect even if up
to 50% of the variants in the instrument are invalid (‘majority valid’ assumption)'3. There are
three different modalities: the simple, the weighted and the penalized weighted median
estimator. The simple median estimator is the median of the Wald ratio of the variants. To
account for variability in the precision of the individual estimates, the weighted median
estimator uses the inverse of the variances of the ratio estimates as the weights. Being w; the
weight for the j-th ordered ratio, the weighted-median estimator is the median of a distribution
having estimate f3; as its p;— th percentile:

J

k=1

The penalized weighted median estimator down-weights the contribution of genetic
variants with outlying Wald ratios. The Cochran’s Q statistics (Q) is used to quantify the

heterogeneity':

J

0 =X Qj:;wj(ﬁ/_lglVW) (13)

47



Cochran’s Q statistics follows a chi-squared distribution with J — 1 degrees of freedom
under the assumption that all variants are valid [Vs and show the same causal effect (i.e., the j-
th contribution to Q, O, is approximately chi-squared distributed on 1 degree of freedom). In
the penalized method, outlying variants are down-weighted by multiplying the inverse-
variance weights by the one-sided upper p value on a chi-squared distribution corresponding

to O; , multiplied by 20 (or by 1 if the p value > 0.05).

This method is robust to outliers, as the median of the distribution is not affected by the
magnitude of the ratio estimates. However, it is sensitive to changes in the selection of variants

when constructing the genetic instrument.

2.2.4.2. Mode-based method

The mode-based method obtains the mode of the ratio estimates if the true causal effect
is the value taken for the largest number of genetic variants (‘plurality valid’ assumption)'>.
Since in finite samples the mode does not exist, this method generates a normal density for
each genetic variant centred around the ratio estimate. The spread of the density depends on a
bandwidth parameter and, in the case of the weighted mode estimator, the precision of the ratio
estimate. The causal estimate is the maximum point of a smoothed density function constructed

by adding the normal densities of all variants.

Similar to the median-based method, the mode-based estimator is robust to pleiotropic
outliers, however the causal estimates are influenced by the selection of variants. In addition,

the mode-based estimator requires the choice of a value for the bandwidth parameter.
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2.24.3. MR-Egger regression method

MR-Egger regression provides consistent causal estimates even in the presence of invalid
instruments under the assumption that the association of each variant with the exposure is
independent of the strength of the pleiotropic effects a; (‘Instrument Strength Independent of
Direct Effect (InSIDE)’ assumption)!®!7. This model requires all the genetic associations with
the exposure orientated in the positive direction and uses the inverse-variance of the ratio
estimates as the weights in the regression. A non-zero intercept term ( Sor ) is allowed in the
linear regression which can be interpreted as the average pleiotropic effect of all J genetic

variants.

By= ﬂ0E+IB1EBXj + &' (14)

If the average pleiotropic effect is zero, referred to as ‘balanced horizontal pleiotropy’,
then the MR Egger estimate ;£ will equal the IVW estimate. If there is directional horizontal
pleiotropy or the InSIDE assumption is violated, the intercept term will differ from zero
indicating that the IVW estimate is biased. As this estimator is a modification of the IVW
method, it can also be extended to account for the correlation between genetic variants using a

weighting correlation matrix.

Under the InSIDE assumption, the MR Egger method estimates a consistent causal effect
even when all the genetic variants are invalid IVs. However, it is sensitive to outliers and
provides less precise causal estimates due to the variability between the genetic associations

with the exposure.
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2.2.44. Multivariable Mendelian randomisation method

The multivariable Mendelian randomisation method (MVMR) is an extension of the
IVW and MR-Egger estimators that uses genetic variants associated with multiple exposures
to estimate the causal relevance of each exposure in a single model (Fig. 2.2)!*!8, To be

included in the instrument, a genetic variant must adhere to the following rules:

1. Itis associated with at least one of the exposures.

ii. It is not associated with a confounder of any of the exposure—outcome

associations.

iii. It 1s conditionally independent of the outcome given the exposure and

confounders.

Figure 2.2. Diagram of the multivariable model. Model assumed for genetic variant Gj,
showing the effect on three exposures X; (Bx:;), Xo (Bx2;), X; (Px3 ), the direct effect on the
outcome Y (a’;) and the three causal effect of exposures on the outcome Y (u;, w2, u3). Solid
lines indicate instrumental variable assumptions and dashed lines ways these assumptions

could be violated.
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In a three exposure scenario, the multivariable IVW method estimates the causal effects
using a multivariable weighted linear regression of the genetic association estimates, with the

intercept set to zero and the inverse variance weights se [ By ,) 2

By= i Pxij+ tovr Pxzj + Msma Pxsj t € (15)

It can also be extended to multivariable MR Egger by allowing for a intercept term (uome):

~

By = tove ™t tame Bxij+ tove Bxzj + e By i+ Ev (16)

Since these methods are based on the univariable IVW estimator, they can account for

correlation between genetic variants using a weighting correlation matrix.

The multivariable MR method accounts for measured pleiotropy (and unmeasured
pleiotropy in the case of MVMR MR Egger) by evaluating the causal effect of multiple
exposures in a single regression analysis even if none of the genetic variants are uniquely
associated with one of the exposures. The multivariable extension of the IVW and MR Egger
methods is sensitive to ‘weak instrument bias’ due to the inclusion of multiple variants not
strongly associated with the exposures in the model, and the precision in the estimates is

affected when using highly correlated exposures.
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Table 2.1. Commonly used Mendelian Randomisation approaches with large number of genetic

variants using summary data.

Method Assumption Potentials Limitations Ref.
Inverse- All variants are *Allows for * Biased in the 811
variance valid [Vs correlated variants presence of
weighted « Provides precise directional
(IVW) estimates pleiotropy
PCA IVW Associations are Allows for highly * Biased in the 12
estimated in the correlated variants presence of
same sample « Robust to variable directional
size selection pleiotropy
* Less precise than
IVW
MR Egger InSIDE * Allows for * Sensitive to 16,17
assumption correlated variants outliers
* Reliable when all * Imprecise
variants are invaild estimates
IVs
Median-based  ‘Majority valid>  * Robust to outliers * Sensitive to the 13
assumption choice of genetic
variants
Mode-based ‘Plurality valid’ * Robust to outliers * Sensitive to the 15
assumption choice of genetic
variants and
bandwidth
parameter
* Generally
conservative
Multivariable ~ Any association ~ * Allows for « Susceptible to 18
IVw with the correlated variants ‘weak instrument’
outcome is via « Accounts for bias
the measured measured pleiotropy ~ * Sensitive to
exposures highly correlated
exposures
Multivariable  InSIDE * Allows for * Susceptible to 18
MR Egger assumption correlated variants ‘weak instrument’

must hold for
all measured
exposures

* Accounts for
measured and
unmeasured
pleiotropy
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* Sensitive to
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* Imprecise
estimates



2.2.5. Other methods

Several additional Mendelian randomisation approaches have been developed to
overcome some of the limitations of the methods described in the previous section. However,
most of them have not been as commonly used in applied examples as the methods described

earlier.

For instance, the contamination mixture method provides a consistent estimates under
the ‘plurality valid’ assumption by constructing a likelihood function based on the ratio
estimates and assuming that the values estimated by invalid instruments are normally
distributed around zero with a large standard deviation'®. While apparently robust to outliers,

this method is particularly sensitive to the choice of the standard deviation parameter.

The MR-Pleiotropy Residual Sum and Outlier (MR-PRESSO) performs in a IVW
framework by removing genetic variants based on a heterogeneity measurement until all the
variants have similar estimates?’. It inherits the precision of the IVW method but it is more

time-consuming than other methods and unstable when multiple variants are pleiotropic.

One of the most recent methods is the multivariable MR approach based on Bayesian
model averaging (MR-BMA) which is optimised for analyses with high-dimensional sets of
potential risk factors?!. It performs a Bayesian variable selection step before the weighted
regression model and computes the marginal inclusion probability for each exposure (i.e. the
sum of the posterior probabilities over all models where the exposure is present). While it
allows the selection of causal risk factors from a large set of variables, it is influenced by the
choice of parameters and assumes that the proportion of true causal exposures compared with
all potential exposures is small. The developers also highlighted that the causal estimates
should not be interpreted absolutely and rather be used to compare exposures or to interpret

direction of effects.
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2.3. Detecting and accounting for heterogeneity in Mendelian

randomisation

In section 2.2.4.1, the Cochran’s Q statistic was introduced to assess heterogeneity and
detect pleiotropy based on the assumption that valid I'Vs should follow, asymptotically, a chi-
squared distribution, with degrees of freedom (df) equal to the number of genetic variants
minus 1'4%2, If a genetic variant shows excessive heterogeneity, this could indicate the violation
of the ‘no-horizontal pleiotropy’ assumption. For example, genetic variants in or near APOE
gene are associated with LDL-C as well as very strongly associated with Alzheimer’s disease
(AD). In MR studies using variants across the genome to estimate the lipid effect on AD risk,
SNPs in this locus showed large heterogeneity and they were excluded based on their
established pleiotropic effect on AD risk?}. However, if there is heterogeneity due to pleiotropy
but the InSIDE assumption holds and the pleiotropy is balanced, then the IVW estimator under
a random-effects model instead of the fixed-effects model can be used to account for the
additional uncertainty due to pleiotropy??. When the InSIDE assumption holds, but there is
directional pleiotropy, the MR Egger method can be used to estimate the mean pleiotropic

effect and provide a reliable causal estimate, as described in section 2.2.4.3.

It is possible to test for residual heterogeneity in the MR-Egger model using an extended
version of the Cochran’s Q statistic, known as Riicker’s Q’ statistic>*?°. The Riicker model-
selection framework (Fig. 2.3) uses both statistical values to inform the selection of fixed-effect
IVW, random-effects IVW , fixed-effect MR-Egger, random-effects MR-Egger models based

on their goodness of fit. This hierarchical framework involves the following steps:
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i) An initial [IVW analysis under a fixed-effect model is performed and the Cochran’s Q

statistic (Q) calculated.

ii) A random-effects IVW model is preferred over the fixed-effect model if Q reveals
sufficient heterogeneity at significance level o (e.g. 0.05) with respect to a chi-squared

distribution with degrees of freedom equal to the number of genetic variants minus 1.

iii) A fixed-effect MR-Egger analysis is performed and the Riicker’s Q’ statistic (Q’)
calculated. If the difference Q-Q’ is significant at level & with respect to a chi-squared
distribution with degrees of freedom equal to the number of genetic variants minus 2,

this model is selected.

iv) A random-effects MR-Egger model is selected if Q’ still reveals sufficient
heterogeneity at significance level 6 with respect to a chi-squared distribution with

degrees of freedom equal to the number of genetic variants minus 2.

Random effects
MR Egger

Fixed effect | —

Fixed effect MR-Egger
VW~ 99
-
-
-
-
-

2
Xi-s,L-1
Figure 2.3. [llustration of the Riicker model-selection framework. The two dimensional space

1s defined by Q, Q’, L genetic variants and a significance threshold for detecting pleiotropy 0.

From Bowden et al., 20182,
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The Riicker model-selection framework is an automatic statistical method that favours
the IVW model and recommends the MR—Egger model only when there is an improvement of
the goodness of fit of the data when this approach is used. While it is a systematic and fast
approach to choose between competing MR models, the uncertainty about the optimal model
still remains. A Bayesian model averaging framework has been developed to account for model
uncertainty in posterior causal estimates®®, however, it is sensitive to the choice of priors and
more computationally expensive. Another suggested approach is the mixture-of-experts
machine learning framework?’ (MR-MOoE 1.0) which is trained using random forest decision
trees, however, it can lead to high type 1 error rates as has been observed in other data driven

approaches?®,

Other statistical measurements besides Cochran’s Q statistic and Riicker’s Q’ statistic
have been suggested to detect outliers in regression models?’, and their rationale is that variants
with excessive contribution to the model can be identified based on their effect on the
regression (‘leverage’). Variants with high leverage can influence the regression model and

provide misleading causal estimates.
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2.4. Molecular traits in drug target Mendelian randomisation

Many of the traits studied by GWAS are diseases, clinically relevant biomarkers and
quantitative phenotypes such as expression quantitative trait loci (eQTL), metabolite-levels
quantitative trait loci (mQTL) or protein-levels quantitative trait loci (pQTL). Numerous
publicly available GWAS summary estimates of eQTLs are available, for example, GTEX3?
with a total of 11,688 samples and 53 tissues across 714 donors, or eQTLGen?' with 31,684
blood samples from healthy individuals. Recently, GWAS of circulating proteins (pQTLs)
have become available such as the Interval study (~3,000 proteins)*? and the SCALLOP
Consortium (~1,000 proteins)**. These data provide estimates for a substantial proportion of
the encoded human proteome, the latest assays from SomaLogic** cover ~7,000 proteins

(SomaLogic 7k panel) including some potential cardiovascular targets such as CETP.

Crucially, the summary estimates from many of these studies are publicly available, with
novel MR techniques able to use these summary level data as inputs for analysis. While the
increase in GWAS sample sizes has boosted the power of MR studies in binary traits, genetic
associations with molecular quantitative trait loci, particularly pQTLs, provide a valuable
resource for drug target MR analyses as proteins are the targets of most drugs. In the absence
of pQTL or protein activity data, eQTL associations can be used to weight instruments in a
drug target MR analysis, where the major caveat is deciding on the relevant tissue for a
particular disease. Therefore, the raw material now exists for large scale drug target validation

analyses.
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2.4.1. Additional considerations for defining genetic instrumental variables using

molecular exposures

In addition to the assumptions discussed in section 2.1, each Mendelian randomisation
setting requires careful selection of the parameters that define the genetic instrument. Since
Mendelian randomisation for drug target validation is framed as a cis-focused analysis (i.e. the
exposure of interest is the protein encoded by a specific gene or a proxy of the protein’s
function or level), and explores the effect of modifying a particular protein target
pharmacologically, the instrument selection is different from MR for validating the causal
relevance of other exposures (e.g. disease biomarkers such as blood lipids). Furthermore, it
comprises additional challenges and choices, for instance, defining the locus of interest;
selecting and accounting for linkage disequilibrium between genetic variants; and selecting the

exposure used to weight the effect of the genetic instruments on the disease risk?>.

One consideration that applies to both genome-wide biomarker and drug target MR
settings is the p value threshold for genetic associations used to identify potential instruments.
Yet, there is no consensus concerning the optimal threshold. The thresholds employed vary
from very conservative cut-offs (e.g. p value <5 x 10®) to less stringent thresholds (e.g. p value
< 107). The latter often results in improved performance, particularly in the cis-MR setting3%33,
and could be justified if there are strong priors and/or the burden of multiple testing is reduced
compared to a GWAS where the p value threshold is typically 5 x 108, While the statistical
power is maximised using methods that include multiple genetic instruments, they usually
involve a first LD clumping step to remove highly correlated variants. Despite some evidence

showing that high LD thresholds lead to numerical instabilities?>!2

, an agreement on the choice
of'a general LD threshold has also not been reached yet. An extra complexity arises when using

multiple correlated variants, since the modelling of the remaining pairwise LD requires the
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selection of a LD-reference panel. Resources such as UK Biobank where individual level data
is available for thousands of samples, are likely to improve the accuracy of the modelling
compared to previous studies based on 1000 genomes populations’’. Such resources also
provide more precise allele frequencies, where a minor allele frequency (MAF) threshold of

0.01 is usually used to define common variants.

Several intermediate traits, such as lipid blood levels, have been previously used to
inform drug target validation. However, since over 90% of drug targets are proteins’®,
weighting by protein levels or activity in a disease-relevant tissue would provide the most
informative cis-MR analysis for drug target validation. Since some drugs are designed to target
circulating proteins (e.g. PCSK9 inhibitors), and these can now be measured by high
throughput proteomics technologies, opportunities for cis-MR analysis are increasing. Figure

2.4 illustrates the protein-weighted MR model.

Figure 2.4. Protein weighted MR model. Diagram of the model assumed for genetic variant G,
showing the direct effect on the protein P, the indirect effect on X (y), the indirect effect on
the outcome Y through confounders (¢), the direct effect on the outcome Y (a) and the causal
effect of exposure X on the outcome Y (). Solid lines indicate instrumental variable
assumptions and dashed lines ways these assumptions could be violated. Adapted from

Schmidt et al., 2020%.
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By selecting genetic variants in-and-around the gene encoding the protein of interest, the
cis-MR analysis of proteins is less prone to violation of the horizontal pleiotropy assumption.
The rationale for this was presented by Schmidt et al., 20203° and illustrated in Figure 2.5. In
the first scenario (Fig. 2.5a), the protein of interest is instrumented by using genetic variants in
its encoding gene (cis-). In this example, the genetic variants associate with multiple proteins
on the same biological pathway, where the protein instrumented is upstream of all of the other
proteins in the causal pathway. It illustrates how valid instruments for cis-MR can also have,
and indeed would oftentimes be expected to also have, trans- effects. In the second scenario
(Fig. 2.5b), the protein of interest is instrumented by using genetic variants in the other genes
that are associated with the level of the protein of interest (frans-). The genetic variants
associate with multiple proteins on the same biological pathway, where the protein
instrumented is in the causal pathway. The effect on the outcome is still through the
instrumented protein and thus, the trans-MR analysis provides the correct inference. In the
third scenario (Fig. 2.5¢), the protein of interested is also instrumented by using genetic variants
in the other genes (frans-). However, the genetic variants associate with multiple proteins on
different biological pathways, where the protein instrumented is not in the causal pathway.
Here, the association of the trans-variants with the instrumented protein is due to horizontal
pleiotropy and any inference about a causal association of the protein of interest with the

disease outcome is erroneous.

While a cis-MR approach reduces the potential for misleading inferences due to
horizontal pleiotropy, defining the locus of interest and the size of the surrounding cis-genetic
region are additional challenges that can impact MR performance, as neighbouring genes can
lead to pleiotropy effects due to LD. Again, defining a standard region that is generalisable to

all the genes in the genome and is able to capture accurately all variants involved in expression,
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regulation and function is not possible, and pairwise grid-searches for each exposure and

outcome have been proposed to select the optimal region size for each gene’”.

While tissue-relevant protein QTL (pQTL) data is not currently available, many of the
circulating proteins measured by existing proteomics platforms are the actual targets for many
approved or developmental therapeutics (e.g. from ~ 2036 druggable proteins in SomalLogic
v4 or 973 in O-link®3). Previous drug target MR analyses weighting blood protein levels of
F10, of interleukin-12 subunit beta (IL12B) and plasminogen (PLG) have shown that MR with
proteomics data has potential for genetic target validation through direct assay of the efficacy
target. For example, the drug target MR analysis of circulating F10 recapitulated the
mechanism of action of F10 inhibitors in stroke prevention in patients with atrial
fibrillation®>-°, Similarly, higher circulating concentration of IL12B and PLG were associated
with higher risk of Crohn’s disease and lower risk of ischaemic stroke, respectively®>. Both
drug target MR analyses rediscovered the mechanism of action of the approved drugs for these

indications*%#!,
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a. Vertical pleiotropy scenario when using cis-genetic variants

Bystander
protein
Variants in gene Protein of Mediating __ Intermediate _ , Disease
of interest (cis-) interest protein trait outcome

b. Vertical pleiotropy scenario when using trans-genetic variants

Bystander
protein
Variants in other Other Protein of Mediating Intermediate Disease
genes (trans-) protein interest protein trait outcome

c. Horizontal pleiotropy scenario when using trans-genetic variants

Variants in other Other Intermediate Disease
genes (trans-) protein trait outcome

Protein of
interest

Figure 2.5. Paradoxical scenarios in protein Mendelian Randomisation. a. An example of
protein MR using genetic variants in the encoding gene (cis-). The genetic variants associate
with multiple proteins on the same biological pathway, where the protein instrumented is
upstream of all of the other proteins in the causal pathway. b. An example of protein MR using
genetic variants in another gene (frans-). The genetic variants associate with multiple proteins
on the same biological pathway, and the protein instrumented is in the causal pathway. The
effect on the outcome is still through the instrumented protein and thus, the trans-MR analysis
provides the correct inference. c. An example of protein MR using genetic variants in another
gene (trans-). The genetic variants associate with multiple proteins on different biological
pathways, but the protein instrumented is not in the causal pathway. Here, the association of

the frans variants with the instrumented protein is due to horizontal pleiotropy and any
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inference that there is a causal association of the protein of interest with the disease outcome

is erroneous. Figure adapted from Schmidt ez al., 2020,

Even in the absence of relevant pQTL data, a protein can remain the inferential target in
a cis-MR setting by weighting the analysis using an intermediate trait positioned downstream
between the protein and the disease. In such circumstances, the intermediate biomarker is
known to be altered by the perturbation of the protein of interest. For example, GWAS on blood
lipids levels have been used to genetically validate drug targets such as PCSK9* for CHD
prevention. Later, the causal effect anticipated by the cis-MR analysis using LDL-C as an
intermediate phenotype was confirmed using PCSK9 pQTL measurements when protein level

data became available®’.

All the parameters discussed in this section, in addition to the general MR and method-
specific assumptions, should be carefully scrutinised before constructing the genetic
instrument. The setting (i.e. biomarker or drug target MR) as well as the exposure type (i.e.

pQTL, eQTL or intermediate traits) should guide the choice of these parameters.
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3 | Methods: An overview

This chapter provides an overview of the datasets, exposure and outcome phenotype
measures used throughout this thesis. Detailed methods are discussed further in the relevant

results chapters.
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3.1. Data sources

3.1.1. Human diseases

To estimate the disease coverage, overlap and divergence of human genetic studies and
pharmaceutical research and development (Chapter 4), the total number of human diseases was
estimated using information from the following disease classification systems and ontologies
as of the 30" November 2021: ICD-10, ICD-11, Human Disease Ontology (DO)', Medical
Subject Headings (MeSH)?, Human Phenotype Ontology?, Clinical Classification Software*,
PheWAS Catalog’, SNOMED CT?®. For the MeSH terminology, MeSH terms falling within the
categories C (diseases) or F (Psychiatry and Psychology) were selected. Since the number of
terms in the DO is updated regularly, the rationale described in previous studies’ was followed
and a figure of 10,901 (i.e., disease terms in the DO as of 30 November 2021) was proposed
as a reasonable estimate of the number of common human diseases with genetic susceptibility.
To facilitate further mappings to estimate the overlap between all human diseases, disease
studied by genome-wide association studies (GWAS) and diseases investigated in
pharmaceutical research and development, disease terms were mapped to Unified Medical
Language System (UMLS)? concepts using the UMLS2020AA. The UMLS was selected as
the anchoring coding system as it integrates several medical vocabularies to enable
interoperability between data sources and facilitate the link between terms from different
ontologies. Further details on the UMLS system are provided in section 3.3 and in the

succeeding results chapters.
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3.1.2. Genetic association data

Data from GWAS were used throughout the thesis to estimate the disease coverage,
overlap and divergence of human genetic studies and pharmaceutical research and development
(Chapter 4), to estimate the genetic support of approved drug target-indication pairings
(Chapter 5) and as the exposure and outcome data in Mendelian Randomisation analyses

(Chapter 6 and 7).

Several public repositories exist that systematically catalogue, curate and store GWAS
summary statistics. In this thesis, the European Bioinformatics Institute (EMBL-EBI) GWAS
Catalog v1.0.2° was used to extract diseases studied by GWAS and download summary
statistics for biomarkers and diseases used in the drug target MR analyses. The collection of
traits in the GWAS Catalog was enriched by adding summary statistics of GWAS performed
in the UK Biobank and available through Neale data (GWAS Round 2, Results shared 1st
August 2018'%), and summary statistics from the University College London-Edinburgh-

Bristol (UCLEB) Consortium!!,

Genetic associations with protein quantitative trait locus (pQTL) were used as the
exposure data in the drug target MR analyses performed in Chapter 6. GWAS data on pQTL
was accessed through an established collaboration with Claudia Langenberg’s group at the
Medical Research Council (MRC) Epidemiology Unit in Cambridge, and included 10,078
samples who were participants in the Fenland study assayed using the Somal.ogic proteomic
platform (SomalLogic v4 panel). This technology utilises short single-stranded oligonucleotides
(‘SOMAmers’) that bind with high affinity and specificity to a variety of proteins and enable
the quantification of their levels. The Somalogic v4 platform included 5,284 SOMAmers.
Following the company advice, 373 SOMAmers were excluded due to lack of specificity or

incorrect SOMAmer— protein mapping.
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In. addition, genetic associations with protein activity was correlated to pQTL data in
Chapter 6 to illustrate the potential of pQTL-weighted drug target MR approach when GWAS
data on protein activity or function is not available. Genetic associations with
Butyrylcholinesterase (BCHE) were sourced from a published GWAS'? and those with

coagulation factor VII activity data were obtained from the UCLEB Consortium.

Lastly, in Chapter 7, genetic associations with lipid subfractions were sourced from a
meta-analysis of GWAS summary statistics of metabolic measures by the UCLEB Consortium

and Kettunen et al.,'3 utilizing Nuclear magnetic resonance (NMR) spectroscopy.

3.1.3. Drug, target and indication data

ChEMBL! is a manually curated database that compiles data about drugs or drug-like
small molecules, their targets and associated indications, and provides detailed information
about their molecular structure, mechanism of action and bioactivity profile. Compound, target
and drug indication data (where relevant) were extracted from ChEMBL version. 25 (v25)'4.
ChEMBL includes compounds under both preclinical (phase 0) and clinical development
(phases 1-3), and licenced (phase 4). Information in ChEMBL is itself based on several
resources including United States Adopted Name (USAN) applications, ClinicalTrials.gov; the
FDA Orange Book database, the British National Formulary, and the ATC classification for
compounds with a license. Additional information on intended indications is sourced from

DailyMed and the ATC classification.

Since proteins are the major category of drug targets (the main focus of this thesis), drug
targets were mapped to their corresponding UniProt identifiers, and thence to gene identifiers

in Ensembl version 95 (GRCh37) (see section 3.2). Compounds flagged as withdrawn (n=239)
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or non-human targets (n=262) were excluded from all the analyses performed throughout this

thesis.

From the drug repurposing perspective, the development and improvement of databases
that integrate data from clinical trials is crucial. Not only do successful trials provide valuable
information, but also studies that fail due to safety reasons or inadequate efficacy can be
relevant for clinical practice, drug discovery or repositioning. The clinicaltrials.gov database
compiles information from interventional studies and displays a summary of the study,
including the number of participants, outcomes measured and adverse effects. This database
was used in Chapter 7 to examine if known lipid-related trial outcomes and adverse events

were identified via biomarker-weighted drug target MR for drugs and clinical candidates.

3.2. The druggable genome

The set of genes encoding proteins that are already drugged or have a greater probability
of being amenable to targeting with a pharmaceutical druggable genome is known as the
druggable genome. It was first described in 2002 by Hopkins and Groom'’ and updated by
Finan ef al., in 2017'¢. At the time of this thesis, the definition comprises 4,729 human genes

and encompasses potential targets for monoclonal antibodies.

In this thesis, the druggable genome was used to generate a sample space bounded by all
druggable genes and all human diseases, diseases in clinical and preclinical development
(Chapter 4). In addition, it was used to map drug targets to the encoding gene in Ensembl
version 95 (GRCh37), which facilitated the extraction of genomic coordinates for the
investigation of the support of genetic evidence from genome-wide association studies for

approved drug targets (Chapter 5) and drug target MR analyses (Chapter 6 and 7).
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3.3. Standardisation of GWAS and indication data

Ontologies are increasingly used in research and clinical settings. Essentially, they are
repositories of standardised vocabulary that provide standard terms and identifiers for
conditions and relations to enable data integration across multiple systems'”. Several databases
incorporate terms from a variety of ontologies to index the different phenotypes, diseases,
molecules and pathways associated to an entry. The Medical Subject Headings (MeSH)'® and
the Unified Medical Language System (UMLS)? are biomedical ontologies and organise the
knowledge in hierarchies with the purpose of generating a standard terminology for use in
healthcare systems and research. The Experimental Factor Ontology (EFO) provides a
systematic description of diseases, chemical compounds and other experimental variables
available in EBI databases, and it is currently being used to unify the phenotypes of association

studies collected in the GWAS Catalog'®.

In this thesis, the UMLS version 2020A A, which contained approximately 4.28 million
concepts (CUIs) and 15.5 million unique concept names (AUIs), was used as the anchoring
coding system for existing diseases, traits studied by GWAS and drug indications. This system
was selected because it integrates several medical vocabularies and enables interoperability
between data sources by facilitating the link between terms from different ontologies, which
are not consistently used across GWAS and drug databases. The phenotypes available in the
GWAS Catalog were mapped to UMLS terms through a combination of several approaches
including manual curation (details provided in Chapter 4). The set of traits sourced from the
UK Biobank were provided using International Classification of Diseases 10" revision (ICD-
10) codes, which allowed for a direct mapping to the UMLS as the ICD-10 system is one of
the multiple vocabularies included. Similarly, MeSH terms are provided for drug indications

in ChEMBL v25, which were latter mapped to UMLS terms.
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3.4. Statistical analysis methods

3.4.1. Mendelian Randomisation analyses

Drug target Mendelian Randomisation (MR) analyses were performed using different
strategies for drug target gene and instrument selection based on the specific research question.
Specific MR methods are described in detail in the succeeding results chapters in the respective

methods sections.

As an overview, in Chapter 6 and Chapter 7, the Riicker model-selection framework was
used to decide between competing inverse-variance weighted (IVW) fixed-effects, IVW
random-effects, MR-Egger fixed effects or MR-Egger random-effects models?’. While IVW
models assume an absence of directional horizontal pleiotropy, Egger models allow for
possible directional pleiotropy at the cost of power. The Riicker model-selection framework
was chosen as it provides a systematic, fast and data-driven approach to choose between
competing MR models. Details and differences between models were described in Chapter 2.2.
In addition, genetic variants with large heterogeneity or leverage were removed to avoid
outliers to influence the regression model and result in misleading causal estimates. See
Chapter 2.3 for approaches to detecting and accounting for heterogeneity in Mendelian

randomisation.

In addition, all the Mendelian randomisation analyses performed accounted for residual
correlation between variants by using a linkage disequilibrium (LD) reference dataset derived
from UK Biobank. LD reference matrices were created by extracting a random subset of 5,000
unrelated individuals of European ancestry from UK Biobank. Details on the quality control

steps performed can be found in the succeeding results chapters.
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Additionally, a drug target multivariable MR analysis was conducted in Chapter 7 to
account for potential pleiotropic effects of target perturbation via other pathways. Further

details on the MVMR are provided in the section 2.2.4.4 and 7.3 .4.

3.4.2. Other statistical analyses

Chapter 5 estimates a series of probabilities related to the added value of genetic support
in the probability of success or failure of a drug target-indication pair in drug development.
Information on the proportion of successful and unsuccessful drug target gene -indication pairs
and the proportion of drug development programmes with and without genetic support was
sourced and 2x2 tables generated for each phase of development progression and overall.

Details can be found in the succeeding results chapters.

In addition, to assess the possibility of false positive results during the biomarker-
weighted drug target MR analyses (Chapter 7), the empirical p value distribution of the MR
findings was compared against the continuous uniform distribution using the Kolmogorov-
Smirnov goodness-of-fit test (two-sided). Under the null hypothesis of no association, p values

follow a continuous uniform distribution between 0 and 12!.

All the analysis were performed in Python 3.7.6 and 3.7.7, R Studio 3.6.1., locally or in
High Performance Computing (HPC) environments (e.g., Myriad, CS Cluster and

eMedlab?>?%). Visualisations were generated using Python 3.7.7. The code used is available in

GitLab (https://gitlab.com/mgordi).
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4 | Disease coverage, overlap and divergence of human

genetic studies and pharmaceutical research and development

4.1. Abstract

Human genomics may help increase the efficiency of drug development by generating
evidence for drug target identification and validation. However, the extent to which the
spectrum of human diseases has been addressed by genetic analyses, or by drug development,
and the degree to which these efforts overlap remains unclear. In this chapter different data
sources are harmonised and integrated to create a sample space of all the human drug targets
and diseases and identify points of convergence or divergence of genomics and drug
development efforts. Approximately 9% (953 out of 10,901) of human diseases have been
studied by genome-wide association studies (GWAS). Of these, only 369 correspond to
diseases with an approved treatment and/or a treatment under clinical or preclinical
development, leaving 584 diseases that have been the subject of investigation in GWAS, but
which have yet to be investigated in drug development. This chapter illustrates how different
regions of the drug target-disease space can be used to identify opportunities for genetic studies,
either to help prioritise conditions with unmet clinical need, to expand the indications for
licensed drugs or to identify repurposing opportunities for clinical candidates that failed in their

originally intended indication.
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4.2. Introduction

Pre-clinical, cell and animal model-based approaches for drug target identification and
validation have been poorly predictive of human efficacy, contributing to the high failure rate
in clinical phase drug development'= due to lack of therapeutic efficacy or unanticipated

mechanism-based adverse effects*>.

Human genomics may help improve drug development efficiency by helping to map drug
targets to diseases more accurately and systematically through genome-wide association
studies (GWAS) (target identification); and by using DNA sequence variants in a gene
encoding a drug target, that influence its expression or function, to anticipate the full range of
beneficial and harmful mechanism-based effects of a drug acting on the encoded protein (target
validation), using drug target Mendelian randomisation®'°, Several lines of empirical evidence
support this concept: (1) Many GWAS have rediscovered established drug targets for the
corresponding diseases!'™!3; (2) Target-disease pairings with genetic support are enriched
among successful drug development programmes'4'6; (3) Comparative studies have shown
that the effect of licensed drugs on biomarkers and disease endpoints coincide with the
observed associations of variants in the genes encoding the corresponding target!’”"'?; and (4)
Several drugs have now been successfully developed or repurposed on the basis of human
genetic evidence (e.g., maraviroc for treatment of HIV infection®*?!; PCSK9 inhibitors for

18,22

hypercholesterolaemia and coronary disease prevention and tocilizumab for treatment of

SARS-CoV-2 infection?*?4),

For this reason, the pharmaceutical industry has shown growing interest in the use of
human genomic data to help prioritise drug development programmes and reduce the risk of
clinical-stage failure. For example, joint-pharma partnerships have provided substantial

investment for sequencing, genotyping or molecular phenotyping of large national biobanks
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which are connected to routinely collected primary and secondary care health records (e.g., in
the UK?’ and Finland?®®). Some have engaged in partnerships with healthcare providers (e.g.,
Regeneron with Geisinger Healthcare in the US). Others with consumer genetic testing
companies (e.g., GSK with 23andMe?”). Several pharmaceutical companies have also invested
in Open Targets, a partnership with the European Bioinformatics Institute and the Welcome
Trust Sanger Institute that seeks to harness summary level genetic association data from GWAS

to inform therapeutic hypotheses!>.

However, until recently, genetic studies of human diseases and pharmaceutical research
and development have largely proceeded independently. Thus, the extent to which the causes
of human disease have been addressed by genetic analyses, or by drug development, and the
degree to which these efforts overlap, has not been investigated systematically. Filling this gap
in knowledge will have several applications. First, a survey of this type would help understand
where future drug development programmes could be directed if they are seeking to exploit
existing genetic evidence. Conversely, such an effort could help prioritise new, large-scale
GWAS or sequencing studies to help stimulate drug development for diseases currently without
effective treatments. Third, it could help quantify opportunities to expand the indications for
licensed drugs or identify repurposing opportunities for the many safe drugs that failed in
clinical trials because of lack of efficacy in the originally intended indication. To address this
gap, disparate sources of data were connected to evaluate disease coverage and overlap of

genomic and pharmaceutical research and development.
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4.3. Methods

4.3.1. Human diseases

To estimate the total number of human diseases, information from the following disease
classification systems and ontologies was retrieved on the 30" November 2021: ICD-10, ICD-
11, Human Disease Ontology (DO)?®, Medical Subject Headings (MeSH)**-°, Human
Phenotype Ontology?!, Clinical Classification Software®’, PheWAS Catalog?’, SNOMED
CT>*. The websites from where these data were sourced are specified in Table 4.1. MeSH terms
falling within the categories C (diseases) or F (Psychiatry and Psychology) were selected. As
of 30 November 2021, the DO had 10,901 disease terms. Since the number of terms in the DO
is updated regularly, the rationale described in previous studies®> was followed and a figure of
10,901 was proposed as a reasonable estimate of the number of common human diseases with
genetic susceptibility. Diseases with an approved treatment and/or a treatment under clinical
or preclinical development were sourced from ChEMBL version 25 (v25)*¢, which provided
standardised indication terms based on MeSH. To facilitate further mappings and estimate the
coverage, overlap and divergence of human genetic studies and diseases investigated in
pharmaceutical research and development, disease terms from DO and ChEMBL v25 were
mapped to Unified Medical Language System (UMLS)?’ concepts using the UMLS2020AA.
The UMLS was selected as the anchoring coding system as it integrates several medical
vocabularies to enable interoperability between data sources and facilitate the link between

terms from different ontologies.
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Table 4.1. The number of disease terms within widely used classification systems and

ontologies as of 30 November 2021.

Coding Scheme | Type Number Data source
of terms
ICD-10 Disease 8,196 https://www.nlm.nih.gov/research/u
classification mls/licensedcontent/umlsknowledg
esources.html
ICD-11 Disease 12,096 https://icd.who.int/dev11/download
classification s/
Human Disease | Ontology 10,901 https://github.com/DiseaseOntolog
Ontology y/HumanDiseaseOntology/blob/ma
in/RELEASES.md#2021-releases
Medical Ontology 5,785 https://www.nlm.nih.gov/research/u
Subject mls/licensedcontent/umlsknowledg
Headings esources.html
Human Ontology 14,547 https://www.nlm.nih.gov/research/u
Phenotype mls/licensedcontent/umlsknowledg
Ontology esources.html
Clinical Disease 259 http://www.ahrq.gov/research/data/
Classification groups hcup/icd10usrgd.html
Software
PheWAS Disease 1,670 https://phewascatalog.org/
Catalog groups
SNOMED CT | Clinical 349,385 https://www.nlm.nih.gov/research/u
terminology mls/licensedcontent/umlsknowledg
esources.html

4.3.2. Drug and target data

Compound, target and drug indication data were extracted from ChEMBL version 25
(v25)*¢. ChEMBL includes compounds under both preclinical and clinical development.
Information in ChEMBL is itself based on several resources including United States Adopted
Name (USAN) applications, ClinicalTrials.gov; the FDA Orange Book database, the British
National Formulary, and the ATC classification for compounds with a license. Additional
information on intended indications was sourced from DailyMed and the ATC classification.
Since proteins are the major category of drug targets, drug targets were mapped to the

corresponding UniProt identifiers, and thence to gene identifiers in Ensembl version 95
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(GRCh37) through the updated druggable genome!'. Compounds flagged as withdrawn

(n=239) or directed to non-human targets (n=262) were excluded from the analysis.

4.3.3. GWAS data

The collection of traits studied by GWAS were obtained from a public central repository
(GWAS Catalog v1.0.2%%) and from UK Biobank through Neale data (GWAS Round 2, Results
shared 1st August 2018%%). These included 2,452 unique traits and 633 clinical diagnoses,
respectively. To filter human diseases from the 2,452 traits in the GWAS Catalog, terms were
mapped to UMLS concepts using several complementary approaches. One thousand eight traits
were mapped to 1,364 UMLS concepts using MetaMap®®, 225 traits were mapped to 227
UMLS concepts using direct string matching, 14 traits were mapped to 16 UMLS concepts
using the UMLS and 35 traits were mapped to 75 UMLS concepts using cross-mapping
between ontologies in DisGeNET*!, and 1,099 traits were manually mapped to 967 terms using
the UMLS Methasaurus. The 633 ICD-10 diagnosis in Neale data were automatically mapped
to UMLS concepts using the UMLS2020AA. In total, 983 unique diseases were identified and
manually curated. The diseases were mapped to disease areas according to ICD10 chapters.
Diseases classified in the chapters: ‘Animal diseases’, ‘Findings, not elsewhere classified” and
‘Pregnancy, childbirth and the puerperium’ were excluded, resulting in a total of 953 unique

disease terms.
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4.4. Results

4.4.1. Protein-coding genes and genes encoding drug targets

To generate a sample space bounded by all human protein-coding genes and all human
diseases, estimates of the total number of protein-coding genes were obtained. From this, the
subset of protein coding genes considered to be most amenable to targeting by drugs, a subset
of the protein-coding genome known as the ‘druggable genome’!!, was identified. At the time
of analysis, the total number of protein-coding genes in the human genome was estimated in
19,955%; of which 4,729 were estimated to be amenable to targeting by small molecule drugs
or bio-therapeutics. Of all human genes encoding druggable targets, 672 (14.2%) are already
the gene targets of approved drugs, 1,113 (23.5%) are the targets of drugs in clinical
development, 278 (5.8%) are gene targets of drugs in preclinical development and 3,604
(76.2%) are currently ‘undrugged’ (Fig. 4.1). Data on drugs in preclinical development may be

incomplete as information on many withdrawn targets is not publicly available.
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Figure 4.1. Total count of genes encoding druggable targets, with subsets and overlaps of genes

encoding the targets of approved drugs, and drugs in clinical or preclinical development.

4.4.2. Human diseases evaluated in drug development and in GWAS

Producing a stable, exact figure for the total number of human diseases (the ‘disease-
ome’) is challenging due to the hierarchical nature of biomedical vocabularies, duplications
and descriptive terms beyond diagnoses present in clinical terminologies and disease
classification systems. In 2019, a figure of 10,000 was proposed as a reasonable estimate of the
number of common human diseases with genetic susceptibility®>. In this analysis, an updated
figure of 10,901 diseases was used which corresponded to number of terms in the DO as of 30
November 2021. The DO was selected as it is updated regularly and would provide the most

up-to-date figure. Separate estimates could be derived for monogenic diseases (~7,000%), for
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which loss-of-function variants have correctly predicted the safety and phenotypic effect of
pharmacological inhibition**. However, the analysis of predicted loss-of-function variants
requires very large sample sizes due to their low frequency in the population, and thus, a figure

of the common polygenic human diseases (which are the ones subjected to GWAS) was used.

By sourcing data from the open-access drug database ChEMBL v253, it was found that
only 1,370 diseases (12.6% of the total number of human diseases listed in DO) have an
approved treatment and/or a treatment under clinical or preclinical development. This
comprises 463 diseases that are the indication of approved drugs, 1,242 diseases that are or
have been the indication of drugs in clinical development and 217 diseases that are or have

been indications for drugs in preclinical development.

Equally, estimating the proportion of diseases covered by genome-wide association
studies is difficult because some diseases could have been studied through a validated clinical
biomarker (e.g., LDL cholesterol for coronary heart disease) as well as directly with the disease
endpoint. There may also be inconsistencies in annotation of clinical end points to a coding
system (e.g., non-small cell lung cancer and non-small cell lung carcinoma have different codes
in the unified medical language system, UMLS). Nevertheless, with these caveats, 953 diseases
covered by GWAS (8.7% of the total number of common human diseases) were identified
based on the mapping and manual curation of phenotype terms in the GWAS Catalog®® and
UK Biobank through Neale data** to UMLS concepts. However, it was found that only 369 of
the 1,370 diseases with an approved treatment and/or a treatment under clinical or preclinical
development had also been investigated by GWAS (Fig. 4.2a and Fig. 4.3) leaving 584 diseases
that have been the subject of investigation in GWAS, but which have yet to be investigated in
drug development. However, this intersection of GWAS and drug development efforts varied

by disease area (Fig. 4.4). For example, 48 (34.0%; confidence interval: 26.2 - 41.9%) out of
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the 141 diseases of the circulatory system with an approved treatment and/or with a treatment
under clinical or preclinical development had been studied in a GWAS, while for endocrine,
nutritional or metabolic diseases this figure was 14.4% (27 out of 188; confidence interval: 9.3

- 19.4%).
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Figure 4.2. Illustration of the sample space and subsets of human proteins and diseases. The complete sample set (A) is bounded by the total
number of protein coding genes and the sum total of common, complex human diseases. The subset of all potentially druggable target-disease
indication pairings is indicated by subset B, the drug target-disease indication pairings studied in clinical phase drug development by subset C,
and the target-disease indication pairings of approved drugs by subset D. The vertical lines represent diseases studied by GWAS on the
assumption that GWAS interrogate all genes in the human genome (subset E and F). The presence of two GWAS subsets is to illustrate the point

that only a subset of diseases studied in GWAS have also been the subject of drug development (E). See text for further explanation.
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Proportion of diseases approved
or under development
studied by GWAS (95% CI)

Nervous system, mental and behavioural 27.6 (22.5-32.6)

Neoplasms 16.2 (11.4-21.0)

Congenital malformations and chromosomal abnormalities 14.1 (9.2-19.1)

Infectious and parasitic 20.0 (14.4-25.6)

Endocrine, nutritional and metabolic 14.4 (9.3-19.4)

Blood and immune 30.8 (23.9-37.7)

Digestive system 35.4 (27.6-43.2)

Pathological conditions, signs and symptoms 28.8 (21.7-36.0)

Circulatory system 34.0 (26.2-41.9)

Skin and subcutaneous tissue 29.0 (21.2-36.8)

Disease area

mMMﬂﬁml

Genitourinary system 26.2 (18.4-34.0)

Musculoskeletal and connective tissue 30.0 (20.5-39.5)

Respiratory system 27.4 (17.8-36.9)

Eye and adnexa 29.3 (19.4-39.1)

Ear and mastoid process 24.3 (10.5-38.1)

Chemically-Induced Disorders 18.2 (2.1-34.3)

1A

status
Injury, poisoning and certain other consequences of external causes El Under development 19.0 (2.3-35.8)
3 Approved
Occupational Diseases /1 GWAS 0.0 (0.0-0.0)
50 100 150 200 250

Disease (UMLS concept) counts

Figure 4.4. Diseases with an approved treatment, a treatment under investigation and studied by GWAS by disease area (ICD-10 chapter). Total
numbers: 463 diseases that are the indication for an approved drug, 1,248 diseases with a drug investigated in clinical or preclinical studies and

953 diseases studied by GWAS.

93



4.4.3. Important subcategories of drug target-disease indication pairings

Based on the previous mappings, sample spaces based on different sub-categories of drug
target-disease indication pairings were generated to help inform future genomic and drug

development efforts.

Sample space bounded by all protein coding genes and diseases

As a denominator, a sample space bounded by 19,955 protein coding genes and 10,901
diseases was generated, which produces ~217 million protein-disease indication pairings

(217,529,455; labelled A in Fig. 4.2a).

Sample space bounded by the druggable genome and all human diseases

Since not all proteins are readily targeted by small molecule drugs or monoclonal
antibody or peptide therapeutics, the sample space more relevant to drug development is
bounded by 4,729 genes encoding druggable targets'' and the 10,901 human diseases, which
produces ~52 million (51,550,829) drug target-disease indication pairings that might be the

subject of drug development. This space is labelled B in Figure 4.2a.

Sample space bounded by target-indication pairings under clinical investigation

Having defined these key denominator values, the number of drug target-disease
indication pairs that are or have been the subject of clinical phase drug development was
investigated. This space, labelled ‘C’ in Figure 4.2a, is bounded by 1,113 genes encoding the
targets of drugs (Fig. 4.1) and 1,242 diseases that have been the investigated in clinical phase
drug development (Fig. 4.3), giving around 1.4 million (1,382,346) target-indication parings.
It should be noted that although this sample space encompasses ~1.4 million drug target-

disease indication pairings, it represents only about 2.5% of the ~52 million drug target-
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indication pairings that could be studied (sample space B), and 0.6% of the ~217 million
protein-disease pairings (sample space A). Moreover, of the ~1.3 million the number of drug
target-disease indication pairings, only 29,326 (2.1%) have actually been explored. Further,
coverage of targets and disease areas is uneven with some disease and targets being intensively

investigated and others less so or not at all (Fig. 4.5).
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in clinical phase drug development. (b) The Y-axis includes the 672 druggable genes of approved drugs and the X-axis the 463 disease indications. The colours

in the X-axis indicate five major group of diseases: neoplasms (blue), nervous system diseases (purple), cardiovascular diseases (green), endocrine, nutritional

and metabolic (orange), psychiatry and psychology disorders (pink), and others (grey).
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Sample space bounded by target-indication pairings for approved drugs

I identified 672 targets of approved drugs (Fig. 4.1) for 463 disease indications (Fig. 4.3),
giving a sample space (labelled D in Fig. 4.2a) of just under 312,000 target indication pairs
(312,261). Again, the number drug target-disease indication hypotheses that have actually been
explored and led to approval within this bounded space is ~ 1% (n=3,154) of the maximum
space available at the time of analysis. As for target-indication pairings investigated in clinical
development, the coverage of targets and indications of approved drugs is uneven. Some
diseases (e.g., hypertension) have a large number of targets for approved drugs (e.g., there are
24 approved drug targets for the treatment of hypertension), whereas others (e.g., [ridocyclitis)
have treatments directed at a single target (Fig. 4.6). The median number of drug targets per
approved indication is two. Similarly, several drug targets have been approved for multiple
indications, including different disease areas. For example the glucocorticoid receptor is
employed for the treatment of up to 87 diseases, including disorders of the blood, immune,
circulatory, respiratory systems and different cancers (Fig. 4.7). Others have only been licensed

for a single disease (e.g., Fig. 4.7).
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Figure 4.6. Number of drug targets by disease (top 10 diseases).
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Diseases and targets evaluated in GWAS and drug development

I identified 672 targets of currently approved drugs (14% of all druggable targets)
employed in the treatment of 463 diseases (4% of all 10,901 diseases). Of these diseases, 173
have also been studied in GWAS. It is through this intersection that it has been possible to
show that GWAS have frequently rediscovered established drug targets for the corresponding

diseases'!-13

. The 1,125 targets of drugs that are or have been the subject of clinical
investigation (which includes the targets of approved drugs), have been or are being evaluated
for the treatment of 1,370 diseases. Prior research has shown that drugs which the target-
indication pairing has genetic support have higher rates of approval. However, of the 1,242
disease indications being evaluated in clinical development, only 349 has been the subject of a
GWAS. High failure rates in clinical phase drug development have heightened interest in
therapeutic repurposing of drugs that failed in their originally intended indication for lack of
efficacy. Previous modelling studies have suggested that any given drug target might be useful
in the treatment of multiple diseases®>. There are well-established examples of this. Beta-
adrenoceptor antagonists are used in the treatment of hypertension, coronary heart disease,
heart failure, portal hypertension and migraine. SGLT2-inhibitors developed for diabetes also
reduce risk of heart failure with preserved ejection fraction, coronary and renal disease and can
also treat obesity. Since GWAS can be used as a source of evidence for drug target
identification, one route to expanding the indications of licensed drugs or those in development,
or to repurpose investigational drugs that fail in their intended indication, would be to
systematically interrogate the association of variants in the genes encoding the targets of these
drugs in GWAS data. Since GWAS have already investigated 953 diseases there is already a
large dataset that could be utilised for this purpose. For example, the interleukin-6 receptor is

the target of an approved drug (tocilizumab) used in the treatment of rheumatoid arthritis.

However, the gene encoding this receptor has also been identified using GWAS of coronary
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heart disease, abdominal aortic aneurysm and atrial fibrillation, suggesting a number of
indication expansion opportunities!**>%6, Another example is the interleukin-23 receptor
inhibitor ustekinumab, which was originally intended to treat psoriasis, and after identifying a
GWAS signal for Crohn’s disease was investigated for such indication and eventually approved

in 2017474,

Creating new opportunities for genetic drug target validation

The development of a sample space of druggable targets and disease indications

illustrates how new opportunities for genetic drug target validation can be exploited.

One way would be by increasing the range of druggable targets (space B in Fig 2a). This
1s becoming possible through technological developments. These include: 1) the growing use
of monoclonal antibodies and the development of cyclic peptides as therapeutics for protein
targets that lack a binding pocket amenable to targeting by conventional small molecule
therapeutics*’!, 2) the targeting of RN As rather than proteins using RNA silencing approaches
and the emergence of CRISPR-Case 9 based gene editing in cases for proteins that remain

difficult to drug>?->4,

A complementary approach, necessary to map the expanded range of druggable targets
to the correct diseases is to increase the range of diseases that have been studies in GWAS.
This is becoming possible by the greater deployment of genetic studies within large national

biobanks linked to health care data>>->>7, and even in healthcare systems>8->°,
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4.5. Discussion

4.5.1. Summary

Previous research has shown that human genetic evidence could support drug
development' 141535 However, the extent to which the genomic efforts, specifically GWAS,
align with ongoing drug development efforts and unmet need has not been explored in detail.
The current analysis shows: 1) Only a small fraction of the 10,901 diseases curated in the
human DO have been investigated in drug development (13%; 1,370 out of 10,901) or GWAS
(9%; 953 out of 10,901); 2) of disease being pursued in clinical phase drug development, only
27% (369 out of 1,370) has been the subject of a GWAS; 3) even for the 349 diseases that are
the subject of ongoing clinical phase drug development and have been covered by GWAS, it
remains uncertain how many specific target-indication pairings have genetic support. The
construction of a sample space of disease and targets including subsets of target-disease
pairings that have been covered by GWAS (which interrogate all possible targets by design)
and clinical phase drug development can help generate insights into how these efforts can be

utilised in concert.

For example, the intersection between targets of approved drugs and diseases studied by
GWAS can help identifying new indications for existing approved drugs. On the other hand,
the intersection between targets of drugs under clinical investigation and diseases studied by
GWAS can lead to potential repurposing opportunities of drugs that proved safe but lacked
efficacy for the originally intended indication, or for indication expansion of approved drugs.
Both indication expansion and repurposing are attractive alternatives to the de novo drug
development, mainly because such compounds have been proven to engage well-characterised
targets and the medicines have proven safe in clinical trials, which leads to a reduction of the

costs and development timelines®. In addition, the sample space of human targets and diseases
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could also inform de novo drug development for druggable targets and disease indication

pairings that have yet to be investigated.

4.5.2. Research in context

There are groups of targets that could especially benefit from having genetic support. For
example, identifying soluble or secreted protein targets with genetic evidence for a particular
disease represent an attractive venture since such proteins are readily targeted by monoclonal
antibodies or peptides, which typically exhibit higher selectivity and reduced development
timelines compared to small molecules®'. Information on the set of human secreted proteins
(the human ‘secretome’”) is available in the public domain, and researchers and the
pharmaceutical industry could use these resources to identify high priority putative circulating
protein targets. In addition to therapeutics that exert their action at the protein level, novel
therapies based on RNA silencing or interference provide a solution to downregulate protein
targets that are resistant to small or large molecule therapeutics®>. While this technique is
challenged by the effective delivery of the RNA into the target tissue, existing technologies
support efficient targeting of the liver with RNA-based therapeutics®?. Therefore, genetically-
supported targets with an elevated gene expression in liver may be prioritised for RNA

silencing therapy.

Furthermore, the sample space of human protein targets and diseases can be used to
inform new drug development programmes and research (Fig. 2¢). For example, only 9% of
the human diseases have been investigated in a GWAS, and over 8,000 diseases exist without
an approved treatment or under clinical investigation. Prioritising diseases for genomic analysis
with a view to generating critical evidence for drug development is one of the numerous

applications of the current analysis. Large biobanks with genetic data linked to routinely
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collected primary and secondary care health records provide an opportunity to investigate
targets with genetic support in conditions with unmet medical needs or to increase the power
in diseases where a GWAS is available but the number of cases were not sufficient to reliably
identify genetic associations. Furthermore, increasing population representativeness in genetic
studies may also be important (since approximately 86% of the genetic studies have been
performed in Europeans®) to evaluate if the findings are transferable across ancestries and to

ensure fairness in the application of human genomics.

Part of this analysis was based on the druggable genome but this concept is an evolving
entity. While it is currently defined as the set of proteins with potential to be modulated by a
drug-like small molecule or monoclonal antibody, novel therapeutic modalities, such as RNA
silencing or gene editing, hold the promise of modifying the function of any protein targeting
any gene in the genome. This is likely to expand the range of potential druggable targets®4-6°,
Lastly, in addition to the advances in molecular therapeutics, several companies have shown
growing interest in the use of artificial intelligence for target identification and drug discovery.
The application of data-driven approaches and computer modelling have solved protein

structures and revealed previously unknown protein motifs, turning undruggable protein targets

into druggable ones®’.

4.5.3. Strengths and limitations

The results presented in this chapter represent the first systematic survey of the coverage,
overlap and divergence of human genetic studies and diseases investigated in pharmaceutical
research and development. One of the strengths of this analysis is that the data used were
available in the public domain which facilitates the revisiting of the estimates in the future.

Another is that the analysis was stratified to show how the overlap between diseases with an
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approved treatment, a treatment under clinical development and studied by GWAS differs also
at the level of individual disease. Moreover, standardisation of terms across data sources was
challenged by the use of different coding systems in the drug and GWAS databases and the
lack of a direct mapping across terminologies. By using the UMLS as an anchoring ontology
to standardise the diseases across data sources and including a step of manual curation of the

disease terms and areas, the error due to inaccurate mapping cross-databases was reduced.

There are several limitations to the analysis described. First, information on drugs in
preclinical or clinical development may be incomplete or not available in the public domain,
which may lead to an underestimation of the number of diseases studied in drug development,
particularly for the preclinical candidates which did not progress to clinical trials. Regarding
the number of diseases investigated by GWAS, some diseases could have been studied through
a validated clinical biomarker which may not have been captured by this approach. To
minimise this error, where possible, GWAS of biomarkers in the GWAS Catalog were

manually curated and linked to diseases.
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4.6. Conclusion

The analysis described in this chapter shows the divergence between diseases studied by
GWAS and those investigated by the pharmaceutical industry. Only 369 of the 1,370 diseases
with an approved treatment and/or a treatment under clinical or preclinical development have
also been investigated by GWAS. Further efforts are needed to explore the genetic
predisposition of the remaining diseases, and more importantly, the genetic contribution for
those >9,000 diseases without an approved or investigational drug, based on ChEMBL v25
database. Nevertheless, almost 1,000 diseases have been investigated by GWAS which
provides opportunities to investigate the additional value of genetic support in drug
development and evaluate the genetic evidence of drug target-indication pairings using genetic
epidemiology methodologies such as Mendelian Randomisation. These two applications of

GWAS will be described in the following chapters.
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5 | The support of genetic evidence from genome-wide

association studies for approved drug targets

5.1. Abstract

In the previous chapter it was shown that only 27% of the diseases with an approved drug
or a drug under clinical investigation have been studied by genome-wide association studies
(GWADNS). Despite the limited GWAS data on existing indications, previous studies that mapped
genetic associations identified by GWAS to the genes encoding the protein targets of approved
drugs have suggested that GWAS could provide a useful tool for systematic identification of
new drug targets for human disease. In this chapter, I use a ‘truth’ set of approved drug target
gene — indication pairings to investigate how different p value thresholds and physical
proximity of the causal gene to the association signal, identified in a GWAS of the intended
indication, influence genetic rediscoveries of known drug targets. By expanding the set to
compounds in clinical development, I provide an updated estimate of the probability of phase
progression for drug target gene - indication pairings given genetic support. The findings
showed that the use of stringent p value threshold to select significant associations may lead to
an oversight of true genetic associations, and relaxing the p value threshold to 5x10 increased
the percent of rediscoveries by 32% on average. Moreover, in up to 43% of the genetic
association - drug target gene - indication combinations, the target gene was within the five
closest genes. Lastly, I provide additional evidence on the value of GWAS for target
identification, by showing that the odds to get approved for a target-indication pairing with
genetic support is almost three times greater than the odds for a pairing without genetic support,

an increase over previous estimates.
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5.2. Introduction

Previously, mapping disease loci identified by genome-wide association studies (GWAS)
to the genes encoding the protein targets of approved drugs has suggested that GWAS could
provide a useful tool for systematic identification of new drug targets for human disease'. In
fact, after mapping genetic variants to potential causal genes, Nelson et al.?, showed that
selecting genetically supported targets could double the success rate in clinical development.
This result was then replicated by King et al’. These studies rely on assigning genetic
associations from GWAS data to a causal gene, which remains a challenge in GWAS
interpretation because association signals from variants in high linkage disequilibrium (LD)
may span multiple genes. Several gold-standard datasets have been used to explore the best
approach to assign GWAS signals to genes. These ‘truth’ sets include genes whose perturbation
causes a Mendelian form of a common disease?, the set of expression and protein QTLs,
curated metabolite QTLs®, manually curated examples from the literature’, and approved drug
target-indication pairings where the indication has been studied by GWAS'’. Numerous
approaches have been suggested to assign GWAS signals to genes, such as co-localisation®, or
machine-learning techniques’. Yet, physical proximity remains the simplest and most widely
used proxy to map association signals to genes®’. Although examples exist where the closest

gene is not the putative causal gene!®!!

, several studies using set of genes with well validated
causal relationships to disease have revealed the closest gene to a GWAS signal to be the causal

gene in about two-thirds of cases®, and have shown that the relative distance to the gene is the

best single predictor of causal genes’.

In this chapter, I evaluate the genetic support from GWAS on drug target -indication
progression along the drug development process and investigate how often the closest gene is

the causal gene when evaluating genetic associations using different threshold p values. To do
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so, I first create a ‘truth’ set of approved drug target gene - indication pairs available for
rediscovery by GWAS of the corresponding diseases, under the assumption that there is a 1:1
relationship between the drug target gene and its encoded protein. Such dataset was anticipated
to include a larger number of drug target gene-indication pairs compared to previous datasets
generated by Nelson et al., (19,085 target-indication pairs)? and King et al. (21,934 target-
indication pairs)’. Second, I evaluate the utility of different p value thresholds and physical
proximity of the causal gene to the association signal for target identification. Third, I provide
an updated estimate of the probability of success for drug target-indication pairings given
genetic support. Lastly, I discuss strengths and limitations of using GWAS data to reduce the

high attrition rate in drug development due to lack of efficacy.
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5.3. Methods

5.3.1. Drug data

Drug data were extracted from ChEMBL version 25 (v25)'2, which included compounds
under preclinical (phase 0) or clinical development (phase 1-3), and licensed (phase 4).
Information in ChEMBL is itself based on several resources including United States Adopted
Name (USAN) applications, ClinicalTrials.gov; the FDA Orange Book database, the British
National Formulary, and the ATC classification for compounds with a license. Additional
information on intended indications is sourced from DailyMed and the ATC classification. The
corresponding drug targets were mapped to UniProt identifiers, and to gene identifiers in
Ensembl version 95 (GRCh37) through the updated druggable genome'(see Chapter 3.2), and
the standardised indications in Medical Subject Headings (MeSH) used in ChEMBL v25 were
mapped to Unified Medical Language System (UMLS)'3 concepts using the UMLS2020AA to
facilitate further mappings (see Chapter 3.1.1.). Compounds flagged as withdrawn, not
intended for human use or whose target is encoded by a gene in the extended major
histocompatibility complex (xMHC) region (chr6: 28477797- 33448354, GRCh37), were
excluded from the analysis. For each drug target gene-indication pairs, the maximum

development phase was selected for any drug.

5.3.2. GWAS data

Genetic associations were obtained from the public central repository (GWAS Catalog
v1.0.2) and from UK Biobank through Neale data (GWAS Round 2, Results shared 1st August
2018). Genetic associations from UK Biobank were filtered for a p value < 1x10- to match the

minimum significance threshold required by the GWAS Catalog'*. The GWAS Catalog
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included 6,021 MeSH terms from 3,374 publications that were mapped to UMLS concepts.
The UK Biobank Neale dataset covered 633 ICD10 main diagnosis that were mapped to 633
UMLS concepts to facilitate the mapping to drug indications. Because one of the aims of this
analysis was to compared the updated to previous estimates, the approach described by Nelson
et al., 2015% was used, which restricted the GWAS data to those indications that have been
reasonably well studied by genetic approaches. Therefore, the initial GWAS dataset was further
restricted to indications with at least five genetic associations reported and to genetic
associations reaching genome-wide significance for the analysis of the probability of success
and phase progression given genetic support. In addition to the argument provided by Nelson
et al.?, such restriction of the data would also imply that the sample size used in the GWAS
was large enough to detect significant association. Disease categories were mapped using a
standard list based on the MeSH subcategories (Category C — diseases and Category F - F —
Psychiatry and Psychology) and ICD10 chapters. A list of the GWAS traits evaluated is shown

in Appendix 5.A.

5.3.3. Linking GWAS associations to drug targets

Two approaches were used to map association signals to drug target genes: absolute
distance and relative distance. Using absolute distance, a drug target gene-indication pair was
considered to have genetic support if a genetic association with the intended indication was
present within the gene boundaries plus or minus 5 kbp. Using the relative distance, a drug
target gene-indication pair was considered to have genetic support if the target gene was the
closest protein-coding gene to the association signal according to their base pair distance. For
each approved drug target-indication pair, genetic associations that overlap within a 1 Mega

base pair (Mbp) window upstream and downstream the target gene were extracted. Such
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distance has been recently suggested as the cut-off for cis- vs trans- signals based on empirical
evidence from molecular traits, under the assumption that cis- signals are acting through the
gene in closest proximity”. Variants located within the gene were given a distance of 0 bp. For
each genetic association - drug target gene - indication combination, the relative distance
according to base pair distance from the target gene to the GWAS significant SNP was
calculated, using all the genes in the genome excluding the xMHC region (57,392 genes) or

limiting the ranking to protein-coding genes excluding the xXMHC region (20,147 genes).

5.3.4. Estimating P(S*|G") from P(G*|S")

While the interest in drug development is on the probability of success given genetic
support P(S + |G +), I only had access to the inverse (i.c., the probability of genetic support
given approval P(G + |S +)). However, it is possible to derive P(S + |G +) from P(G + |S +)
using Bayes’ Rule together with information on the proportion of successful and unsuccessful
drug target gene - indication pairs and the proportion of drug development programmes with
and without genetic support. To do so, information on the number of drug target gene -
indication pairs per maximum phase of indication (‘no success’, S-) was extracted, and the
successful pairs (S+) derived by subtracting unsuccessful pairs to the total number of pairs. For
drug target-indication pairs with genetic support, the two metrics described in the previous
section 5.3.3. were used to define genetic evidence. This information was then used to generate
2x2 tables as follows for each phase of development progression and overall. An example with

real data is shown below:
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Phase I to phase I1

Success (S+)

No success (S-)

Total

Genetic support (G+)

No genetic support (G-)

Total

444

14,328

14,772

69

3,204

3,293

513

17,552

18,065

The probability of genetic support given success P(G + |S +) is given by:

P(G+|S+)= G

P(G+n S+)

=>P(G+NS+)=P(S+)- P(G+|S+)

The probability of success given genetic support P(S + |G +) is given by:

P(S+n G +)

P(S+|G+) = PG D)

Since P(G+NS+) = P(S+ NG +):

Thus,

From the example table, values for P(S +),P(G + |S +) and P(G +) are (

and( 513

18,065

=>PS+NG+H)=P(G+H) - P(S+|G+)

PS+)-P(G+|S+) =P(G+):- P(S+|G+)

P(S+|G+) =

) respectively, thus

PS+|G+) =

119

P(G+)

(14,772) ( 444
18,065

14,772
513
18,065

)

P(S+)- P(G+|S+)

= 0.87

14,772
18,065

)-(

444
14,772

)



This process was repeated for all phases of progression using data summarised in the 2 x2

tables in Appendix 5.B.

The following probabilities were also estimated based on the contingency tables:
P(S*|G") (Positive predictive value), P(S*|G) (False omission rate), P(S|G) (Negative
predictive value), P(SG") (False discovery rate), P(G'| S¥) (Recall rate), P(G'|S") (False
positive rate), P(G'| S¥) (False negative rate), P(G| S°) (True negative rate), and the following
odds: odds(ST|G"), odds(S|G). Subsequently, the following ratios were estimated:
P(STIG")/P(S*|G), P(S| G)/P(S|G"), positive likelihood ratio, negative likelihood ratio, and
the diagnostic odds ratio. The calculations are illustrated in Figure 5.1. Confidence intervals
were computed using the ‘riskratio.boot’ function in the ‘epitools’ R package, and the

‘epi.tests’ function in the ‘epiR’ R package.
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Total target-indication pairs Success (S+) No success (S-)

Genetic support (G+) a b
No genetic support (G-) c d
Probabilities Likelihood ratios Odds ratio
P(S+|G+) = | Positive predictive value = a/a+b P(S+|G+)
_ e _ P(S+|G-)
P(S+|G-) = | False omission rate = c/c+d
P(S-|G-) = | Negative predictive value = P(S-|G-)
d/c+d P(S-|G+)
P(S-|G+) = | False discovery rate = b/a+b
P(G+|S+) = | Recall rate = a/a+c P(G+[S+) Positive likelihood ratio
P(G+|S-) = | False positive rate = b/b+d P(G+S-) Negative likelihood ratio
(Positive likelihood ratio) (Diagnostic odds ratio)
P(G-|S+) = | False negative rate = c/c+d P(G-|S+)
P(G-[S-)

P(G-|S-) = | True negative rate = d/b+d
(Negative likelihood ratio)

Figure 5.1. Probabilities, likelihoods and odds ratios estimated to evaluate the impact of genetic

support in drug target gene-indication progression.
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5.4. Results

5.4.1. GWAS rediscoveries of approved drug target-indication pairs

Determining if an approved drug target-indication pair has been rediscovered by genetic
associations with the intended indication is directly influenced by the definition of genetic
evidence. Therefore, I first evaluated the impact of defining genetic evidence using different p
value thresholds and physical proximity to map genetic associations to causal genes. To do so,
a ‘truth’ set of approved drug target-indication pairs was created by sourcing data on approved
drugs, their targets and intended indications from ChEMBL v25'2. Following the approach of
Nelson et al. 20152, drugs with nonhuman (e.g., antimicrobial drugs which target a protein in
the pathogen) or extended major histocompatibility complex (xMHC) targets were excluded.
In total, ChEMBL included 371 indications (UMLS concepts) and 898 approved drugs which
target proteins encoded by 665 drug target genes (Fig. 5.2). The total number of unique drug

target gene-indications pairs was 3,118.

Genetic associations were obtained from a public central repository (GWAS Catalog
v1.0.2) and from UK Biobank through Neale dataset. Overall, 213 approved indications were
covered in genetic studies (GWAS Catalog plus UK Biobank, Appendix 5.A), which

represented 2,338 unique target-indication pairs (Fig. 5.2).
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-

GWAS catalogue (December 2019)

GWAS data

- 6,021 traits
« 3,373 sources

UKBB - Neale data:
K 633 ICD10 diagnosis

/

Drug data
(ChEMBL 25)

2,675 compounds
1,253 indications (UMLS concepts)

—~ Non-human targets

1. Map to drug target (e.g., tumoral, antimicrobial...)

genes
2,288 compounds
1,125 unique target genes
1,143 unique indications (UMLS concepts)
2. Exclusion of HLA region [—> 12 target genes in or near
the xMHC region
2,275 compounds

1,113 unique target genes
1,143 unique indications (UMLS concepts)

3. Stratification by
development phase

Phase Compounds Targets Indications
1 1,196 955 516
2 1,413 993 816
3 975 797 689
4 898 665 371

» Well-studied indications (> 5 genetic

associations)

* P-value < 5x108

GWAS
survey

309 indications (UMLS concepts)
1,078 target genes
18,065 indications-target genes

o

~

GWAS
rediscoveries

Well-studied indications:

144 approved indications (UMLS concepts)
639 target genes
1,969 indications-target genes

All:

213 approved indications (UMLS concepts)

647 target genes
2,338 indications-target genes

/

Figure 5.2. Summary of data sources and mappings between them. Summary of each data

source and the key filtering and processing steps applied to create the final set of gene-trait and

drug target—indication combinations investigated in this study. GWAS Catalog sources

correspond to unique PubMed ID.
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To explore if the absolute distance could help identifying the causal gene responsible for
an association signal, and under the assumption that the drug target gene should be the causal
gene in the region, the distance from the associated variant to the gene of interest was
calculated. It was found that, as the flanking region expanded, the number of drug target gene-
indications rediscovered increased at the cost of increasing the median number of protein-
coding genes between the target gene and the genetic association (Fig. 5.3). For example,
genetic associations could be found within 1Mbp for 27% of the drug target gene — indication
pairs (p value < 1x107), being the drug target gene within the closest six genes for most drug
target gene — indication pairs explored. Noticeably, the percentage of drug target gene —
indication pairs rediscovered did not reach 100%. This is explained by genetic associations
located in a chromosome other than the chromosome containing the gene encoding the drug

target.

Drug target gene - indication pairs rediscovered
Median distance rank (pairs)
all genes 1 (85) 2(292) 5 (445) 14 (637) 83 (1176) 171 (1424) 390 (1632) 763 (1864) 1212 (1973)
protein-coding genes 1 (85) 1(292) 3 (445) 6 (637) 32 (1176) 62 (1424) 148 (1632) 270 (1864) 435 (1973)

100 -
pvalue - 1200
® 5e-08
® 5e-06 s
le-05 H - 1000

o @
=] S
)

pairs rediscovered
I
8
.

.
2
8
Median distance rank

% Drug target gene - indication
S

10 200 500 1000 5000 10000 20000 50000 100000 242708

Flanking size (kpb)
Figure 5.3. Analyses of drug target genes-indications pairs rediscovered by GWAS
associations. SNP associations with the intended indication were mapped to the gene encoding
the drug target allowing for different flanking regions: 242Mbp (whole chromosome 2, largest
chromosome), 100Mbp, 50 Mbp, 20 Mbp, 10Mbp, 5SMbp,1 Mbp and 500kbp, 100kbp, 200kbp
and 10kbp, for three significance thresholds: 5x10%, 5x107, 1x10-. Total: 2,338 approved drug
target gene — indication pairings, of which 2,023 had associations in the same chromosome as

the drug target gene.

124



Subsequently, the gene distance rank (or relative distance) was defined using all or
protein-coding genes in the region to investigate how often the closest gene is the causal gene
when a significant genetic association with the intended indication lies in or near the gene of
interest. Table 5.1 shows the percentage of drug target gene - indication pairs rediscovered by
the relative distance using different p value thresholds, with an illustration of the calculation of
the different measures in Figure 5.4. It was found that when filtering for genome-wide
significant associations, the closest protein-coding gene was the drug target gene in 20.5%
(95% CI: 18.9; 22.1) of the 2,441 genetic association - drug target gene - indication
combinations explored (31.6% of the target genes rediscovered), with an enrichment of GWAS
signals within 250 kbp upstream the target gene (Fig. 5.5). Moreover, in 42.8% of cases the
drug target gene was within the five closest protein-coding genes. The percentage decreases
when including all the genes in the region, as shown by the decrease to 16.4% (95% CI: 14.9;
17.9) of rediscoveries for the total genetic association - drug target gene - indication
combinations when filtering for genome-wide significant associations. Lastly, it was also
observed that relaxing the p value threshold used to filter significant genetic association did

not have a substantial impact on the number of drug target gene -indication pairs rediscovered.

Indication 1

o

Indication 2

= c

Total genetic variant-drug target gene-indication = 6
Total drug target gene-indication = 3
Total drug target gene = 2

Figure 5.4. Illustration of the calculation of the measures genetic variant-drug target gene-
indication, drug target gene-indication and drug target gene used for the rediscoveries
estimation. The boxes represent drug target genes B and C. Genetic variants are represented

with lollipops.
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Figure 5.5. Absolute and relative distance of drugged target genes to GWAS SNPs (p value <
5x10®). Each point in the scatterplot represents a GWAS signal located within 1Mbp of a
drugged gene, where the GWAS trait represents the intended indication. The position on the x
axis indicates the absolute distance of the SNP to the drugged target gene. Position in the y axis
indicates the number of protein-coding genes in the interval that are closer to the signal than
the drugged target gene, excluding those in the xMHC region. The top panel indicates the signal
density for all such SNPs, and the side panel provides the counts of drug target gene-indication
pairs rediscovered using a gene distance rank = 1. Total number of drug target gene-indication

pairs overlapping genetic associations (p value < 5x10°®) with the intended indication: 425.
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Table 5.1. Rediscoveries by relative distance. Percentage and 95% CI of rediscoveries at the level of genetic variant (i.e., the denominator is the
total genetic variant-drug target gene-indication combinations), drug target gene-indication pair (i.e., the denominator is the total drug target

gene-indication pairs), and drug target gene (i.e., the denominator is the total drug target gene investigated, regardless of the indication).

Gene distance rank

Gene distance rank including all the genes

Gene distance rank including protein-coding genes

Percentage of
rediscoveries at the
level of genetic
variant (%)

Percentage of

rediscoveries at the level
of drug target gene-

indication pair (%)

Percentage of
rediscoveries at
the level of drug
target gene (%)

Percentage of
rediscoveries at the
level of genetic
variant (%)

Percentage of

rediscoveries at the level

of drug target gene-
indication pair (%)

Percentage of
rediscoveries at
the level of drug
target gene (%)

SNPs with p value < 1x105

1

15.3 (14.1; 16.5)

20.7 (17.68; 23.8)

26.3 (21.7; 30.9)

19.2 (17.8; 20.6)

25.8 (22.4;29.2)

31.5 (26.7; 36.3)

2 3.8(3.1;4.5) 105 (8.1; 12.9) | 14.3(10.7; 17.9) 8.4 (7.4,9.4) 142 (11.5;16.9) | 183 (14.3;22.3)
3-5 10.0 (9.0; 11.0) 16.8 (13.9;19.7) | 20.7(16.5; 24.9) 13.3 (12.1; 14.5) 27.0 (23.6;30.4) | 33.7(28.8;38.6)
6-10 8.2(7.3;9.1) 18.7 (15.7; 21.7) 24.9 (20.4; 29.4) 18.4 (17.1; 19.7) 32.9(29.3;36.5) | 42.4(37.3;47.5)
>10 62.8 (61.1; 64.5) 81.3(78.3; 84.3) 86.5 (83.0; 90.0) 40.7 (39.0; 42.4) 56.1(52.2;60.0) | 63.2 (58.2; 68.2)
Total 3265 637 357 3265 637 357
SNPs with p value < 5x10¢
1 15.4 (14.1; 16.7) 20.8 (17.5; 24.1) 25.2 (20.6; 29.8) 19.4 (18.0; 20.8) 25.9(22.3;29.5) | 30.2(25.4;35.0)
2 3.9 (3.2; 4.6) 1.1 (8.6; 13.6) | 14.5(10.8; 18.2) 8.6 (7.6; 9.6) 14.9 (12.0; 17.8) | 183 (14.2;22.4)
3-5 10.1 (9.0; 11.2) 172 (14.1;20.3) | 19.7(15.5; 23.9) 13.3 (12.1; 14.5) 27.5(23.9:31.1) | 32.8(27.8;37.8)
6-10 8.2(7.2;8.2) 19.2 (16.0; 22.4) 24.3 (19.8; 28.8) 18.3 (16.9; 19.7) 33.2(29.4;37.0) | 40.7 (35.5;45.9)
>10 62.4 (60.7; 64.1) 82.0 (78.9; 85.1) 86.4 (82.8; 90.0) 40.5 (38.8;42.2) 56.2 (52.2;60.2) | 63.1(58.0; 68.2)
Total 3118 583 345 3118 583 345
SNPs with p value < 5x108

(Genome-wide significant)

1

16.4 (14.9; 17.9)

24.5 (20.4; 28.6)

28.9 (23.5; 34.3)

20.5 (18.9; 22.1)

28.2(23.9; 32.5)

31.6 (26.0; 37.2)

2 3.9(3.1;4.7) 12.0(8.9; 15.1) | 15.0 (10.7; 19.3) 9.0 (7.9; 10.1) 17.6 (14.0; 21.2) | 20.7 (15.8; 25.6)
3-5 10.8 (9.6; 12.0) 19.8 (16.0;23.6) | 21.1 (16.2;26.0) 13.3 (12.0; 14.6) 26.6 (22.4;30.8) | 29.7 (24.2;35.2)
6-10 8.0 (6.9;9.1) 20.5(16.7;24.3) | 24.4(19.2;29.6) 17.5 (16.0; 19.0) 33.9(29.4;38.4) | 41.4(35.5;47.3)
>10 60.9 (59.0; 62.8) 80.2 (76.4;84.0) |  86.5(82.4; 90.6) 39.7 (37.8; 41.6) 55.3(50.6; 60.0) | 62.8 (57.0; 68.6)
Total 2441 425 266 2441 425 266
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5.4.2. Probability of success and phase progression given genetic support

To provide a revised estimate of the probability of drug development progression given
the drug target has genetic support in the intended indication, the dataset was expanded to drugs

in clinical development (phase I, II, III clinical trials).

Compounds at various stages of clinical development, their indications, maximum
development phase and targets were extracted from ChEMBL v25. Of a total of 2,675
compounds, 2,275 were known to modulate the target encoded by 1,113 non-xMHC genes for
1,143 UMLS indications. Of the 1,113 non-xMHC genes, 604 encoded single protein targets,
668 encoded a protein belonging to a protein family or protein complex, eight encoded proteins
involved in a selectivity group (i.e. pair of proteins for which selectivity has been assessed),
two encoded a part of a chimeric protein, and four encoded proteins involved in protein-protein
interactions. Data were aggregated at drug target gene-indication level to avoid duplications
due to shared mechanism of action between compounds and to account for multiple genes
involved in a single target scenario (i.e. protein complex). This yielded a total of 32,022 drug

target gene-indication pairs.

To allow comparisons with previous estimates, the approach described by Nelson et al.,
20152 was followed and the summary results were filtered for those GWAS traits that contained
at least 5 genome-wide significant associations (p value < 5x10%), yielding 3,403 traits that

had been reasonably investigated by GWAS.

To investigate the association of genetic support for progression or approval of drug
target-indications, the overlap between the 3,403 GWAS traits and the 1,143 indications
(UMLS concepts) reported in ChEMBL v25 was used (Fig. 5.2). This returned a total of 309

unique indications for 1,078 unique drug target genes (18,065 target genes-indications pairs, in
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contrast to 4,184 pairs by Nelson et al. 2015%), of which 1,969 target gene-indication pairs
corresponded to 144 unique indications and 639 unique targets encoding genes for approved
drugs. To determine genetic support, two previously published definitions of genetic evidence
were used and compared: 1) if a genetic association with the intended indication was present
within the gene boundaries plus or minus 5 kbp? or ii) if the target gene was the closest protein-

coding gene according to their base pair distance (relative distance or gene distance rank)'.

Of the 1,969 approved target gene-indication pairs that overlapped genetic associations
with the intended indication, 123 (6.2%; 95% CI: 5.2; 7.3) and 150 (7.6%; 95%CI: 6.4; 8.8)
approved drug target-indications pairs were supported by one or more genetic associations,
when defining genetic support based on absolute distance or relative distance, respectively.
Moreover, variability was found among indication areas, with chemically-induced disorders
(e.g. alcoholism) and circulatory system diseases showing the highest degree of genetic support
(Fig. 5.6), and neoplasms and diseases of the genitourinary system the lowest evidence. Such
low genetic support for drug targets in neoplasms could be explained by cancer drugs targeting
proteins that are overexpressed in the tumour due to somatic mutations, and therefore, genetic
associations from GWAS which are based on germline variation may not be as useful in these
diseases. As expected, the percentage of drug target gene - indication pairs with genetic
evidence increased with phase progression (Table 5.2). For instance, when using the relative
distance (gene distance rank = 1) to define genetic evidence, 2.9% of drug target gene —

indication pairs had genetic support at phase I compared to the 7.6% at approved phase.
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Table 5.2. Drug target gene - indication pairs with genetic support by maximum phase of

indication and source of genetic evidence

Maximum Number of drug Number of drug Percentage Source of genetic
phase of target gene — target gene — evidence

indication indication pairs indication pairs

with genetic

support
Phase | 3293 69 2.10 absolute distance
Phase 11 8279 174 2.10 absolute distance
Phase 111 4524 147 3.25 absolute distance
Approved 1969 123 6.25 absolute distance
Total 18065 513 2.84 absolute distance
Phase | 3293 95 2.88 relative distance
Phase 11 8279 227 2.74 relative distance
Phase 11 4524 185 4.09 relative distance
Approved 1969 150 7.62 relative distance
Total 18065 657 3.64 relative distance
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Figure 5.6. Proportion of approved target-indications pairs by disease area with genetic support.
Genetic support defined as a genetic association is present within Skbp window from the gene
(a) or the target gene being the closest gene to a genetic association with the intended indication

(b). Disease are is defined by ICD10 chapter.
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Subsequently, I calculated the probabilities, likelihoods and odds ratios as described in
Figure 5.1 to estimate the rate of success and phase progression given genetic support using
contingency tables (Appendix 5.C). It was found that the probability of a drug target gene -
indication pair with genetic support (gene distance rank = 1) progressing from phase I to
approval was 2.18 (95%CI: 1.86; 2.51) times the probability of progressing without genetic
evidence. For drug target gene — indication pairs that did not progress in the pipeline, it was
found that the lack of genetic support, estimated as the probability of no progression without
genetic support P(S-|G-) divided by the probability of no progression with genetic support P(S-
|G+), had the greatest impact from phase II to phase III (1.40, 95%CI: 1.28; 1.56; Appendix
5.C), as expected since phase Il trials aim to evaluate clinical efficacy. Lastly, the ratio of the
probability of a drug target gene — indication pair progressing in the drug development pipeline
with genetic support P(S+|G+) was compared to the probability of the drug progressing without
genetic support P(S+/G-) to that previously reported by Nelson ef al., 2015% (Table 5.3). These
findings suggest that selecting genetically supported targets could increase the success rate in
clinical development and, after the comparison with previous studies, the estimates in the
current analysis which are based on a larger dataset indicate that the increase may be greater

than two-fold.
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Table 5.3. Comparison of the relative value of genetic support for the probability that a target

indication-pair progresses along the drug development pipeline with estimates by Nelson et al.

20152,

P(S+|G+)
P(S+|G-)

Data source for genetic
associations: GWAS
Catalog
(Genetic support based

on absolute distance)

Data source for genetic
associations: GWAS
Catalog
(Genetic support based

on relative distance)

Data source for
genetic associations:
GWASdb
(Nelson et al. 2015)

Phase I to approval 2.3(1.9;2.7) 2.2(1.9;2.5) 1.8 (1.3; 2.3)
Phase III to approval 1.5(1.3; 1.8) 1.5(1.3; 1.7) 1.0 (0.8; 1.2)
Phase II to Phase III 1.4 (1.3; 1.5) 1.4 (1.3; 1.5) 1.4 (1.2; 1.7)

Phase I to Phase 11 1.1(1.0; 1.1) 1.0 (1.0; 1.1) 1.2 (1.1; 1.3)

Total number of target-
indication pairings 18,065 18,065 4,184

evaluated
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5.5. Discussion

5.5.1. Summary

The growing interest and investment in human genomics to inform drug development
demands solid evidence of the potential value of GWAS and GWAS-based approaches for
target identification and validation. In the previous chapter it was shown that, despite the
increasing evidence from the published literature on the usefulness of human genetic data in
drug target discovery, prioritisation and validation, a large proportion of human diseases have
not yet been studied by GWAS and still an enormous sample space of genes — human diseases
can be interrogated through GWAS to generate evidence on novel drug target gene — indication
pairs, repurposing opportunities and expansion of new indications for drugs already approved.
The analysis presented in this chapter further supports previous statements on the potential of
genetic evidence in drug development by providing a revised estimate of the likelihood of
progression in the drug development pipeline and a detailed analysis of the characteristics of

the approved drug target-indication pairs rediscovered by GWAS.

In this chapter I investigated the number of drug target gene - indications pairs
rediscovered by genetics by interrogating publicly available GWAS data from studies based
research-based case ascertainment (GWAS Catalog) and routine electronic health records (UK
Biobank). The findings show that, as the flanking region expanded, the number of target-
indications rediscovered increased at the cost of increasing the median number of protein-
coding genes between the target gene and the genetic association. Using a stringent p value
threshold to select significant associations may lead to an oversight of true genetic associations,
and relaxing the p value threshold to 5x107 increased the percent of rediscoveries by 32% on
average. Moreover, in 21% of the associations-target-indications pairs explored the closest

protein-coding gene was the target gene, which represents 32% of the total drug target genes
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available to be rediscovered. Further, in up to 43% of the genetic association — drug target gene

- indication combinations the target gene was within the five closest genes.

Using a ‘truth’ set of drug target-indication pairings, I provided further evidence that
pairings with genetic support are twice more likely to get approved than those without genetic
support (2.18; 95%CI: 1.86; 2.51). I found that the probability of progression given genetic
support increases along the clinical phases (Table 5.3) and that the lack of genetic support had
the greatest impact from phase II to phase I1I (P(S-|G-) / P(S-|G+) = 1.40, 95%CI: 1.28; 1.56),

where drugs are typically tested for clinical efficacy.

5.5.2. Research in context

The results presented here are compared to existing knowledge in this area. Similar to
the findings presented here, a study by Mountjoy et al., 20217 and funded by OpenTargets
which evaluated different genomic features in a model to predict causal protein-coding genes
at GWAS loci reported that the mean distance was the most predictive feature, where the
distance relative to other genes is more important than the absolute distance. The present study
also showed that the relative distance (gene distance rank = 1) rediscovered more drug target-
indication pairs than the use of the absolute distance (i.e., absolute distance). In addition, it was
found that in 27% of the drug target gene — indication pairs, genetic associations with the
indication were within 1 Mbp from the drug target gene, and that increasing the genomic
distance led to a change in the curve from exponential to logarithmic (Fig. 5.1) suggesting that
expanding the region around the drug target gene would not substantially increase the number
of rediscoveries but rather increase the median number of protein-coding genes between the
target gene and the genetic association. In fact, in a recent publication Fauman et al.,2022° have

estimated a distance cut-off of 944 kbp (95%CI 767-1,161) separating the cis and trans
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regimes, which in line with the results from this chapter, suggests that approaches for mapping

genetic associations to genes based on distance should be restricted to a maximum of 1 Mbp.

Previous work by Nelson et al., 2015% and King et al., 2019 showed that targets with
genetic evidence were more likely to be successful in clinical development. Here, using two
approaches for genetic evidence and a larger dataset (18,065 drug target-indications pairs), I
further confirmed that the probability of a target-indication pair with genetic support
progressing from phase I to approval to the probability of progressing without genetic evidence

is greater than two-fold.

5.5.3. Strengths and limitations

This study has several strengths. First, the ‘truth’ dataset included 32,022 drug target-
indications pairs as the initial set to estimate the value of genetic support in phase progression.
This presents almost 10,000 more pairings compared to the target-indication pairs reported by
King et al., 20193 (21,934) and that used by Nelson ef al., 20152 (19,085). Second, it focused
not only on GWAS data from studies based on research-based case ascertainment, but also
included genetic associations from electronic health records (UK Biobank). Third, two metrics
based on absolute distance were used to define genetic evidence, where assigning the closest
gene as the causal gene has been previously described as the simplest and, in many cases, the
most accurate way to assign genetic association to causal genes. Fourth, different probabilities,
odds and ratios often used to evaluate the performance of diagnostic tests, such as the positive
predictive value and the false discovery rate, were computed to provide multiple metrics of the

value of genetic support by clinical phase.
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Some limitations of this study are noteworthy. First, while this study covered the largest
dataset of drug target gene - indication pairs to date, there were limitations due to 1) the genetic
mapping, as the ability to identify causal genes was based on proximity-based rather than co-
localisation approaches ; and ii) the indication mapping, as it may exclude drug target gene -
indication pairs where the intended indication has not been studied by GWAS but has available
data on clinically-validated biomarkers. However, the latter issue should have been captured
to some extent by the annotation of related terms in the GWAS Catalog. Moreover, certain
indications may have been studied by GWAS but could not be included in this study because
the summary statistics were not deposited in the GWAS Catalog. Even for those studies
included in the analysis, genetic associations may have been missed due to sample sizes not
being large enough to detect all the responsible genes; or due to incomplete genomic coverage
by the genotyping array. There are several reasons for drug discontinuation besides lack of
efficacy, including safety concerns, strategic decisions or the compound failing to show extra
benefits compared to another treatment. The limited data in the public domain on drug failures
and their reason for discontinuation makes it difficult to account for this variable in the current
analysis. However, it is expected that the inclusion of such drug candidates will not inflate the
inference made on the value of genetic support on phase progression. A 1:1 relationship was
assumed between the gene and the encoded protein that is targeted by a drug. Such assumption
may not always prevail as some genes encode multiple proteins due to, for example, post-
transcriptional modifications. Lastly, another potential source of bias is that genetic evidence
from GWAS may already be used to inform drug development. However, in line with the
argument presented by Nelson et al., 2015? and due to the long timelines in drug development
(on average 10 years), the impact of this bias would not inflate the estimate but rather
underestimate the value of genetic support as it would increase the number of drugs with

genetic support in the early phases of the development process.
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5.6. Conclusion

As described in Chapter 4, only a small fraction of drug indications have been
investigated by GWAS. However, the analysis performed in this chapter provides further
evidence that drug target — indications pairings with genetic support from GWAS are more
likely to progress in the drug development pipeline. In the next chapter, I will investigate how
GWAS data can be leveraged using drug target Mendelian Randomisation to further support

target validation by inferring the correct mechanism of action for a new drug.
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5.8. Appendices

Appendix 5.A. Indications of approved drugs studied by GWAS.

UMLS concept UMLS UMLS concept UMLS
concept ID concept ID
Carcinoma, Non-Small-Cell Lung C0007131 Melanoma C0025202
Depressive Disorder C0011581 Epilepsies, Partial C0014547
Acute Pain C0184567 Osteoporosis C0029456
Schizophrenia C0036341 Osteoporosis, Postmenopausal C0029458
Bipolar Disorder C0005586 Multiple Myeloma C0026764
Aggression C0001807 Tobacco Use Disorder C0040336
Tendinopathy C1568272 Primary Ovarian Insufficiency C0085215
Rhinitis, Allergic, Seasonal C0018621 Osteoporotic Fractures C0521170
Asthma C0004096 Osteitis Deformans C0029401
Rhinitis, Allergic C2607914 Acne Vulgaris C0001144
Urticaria C0042109 Arthritis, Juvenile C3495559
Cardiovascular Diseases C0007222 Prostatic Hyperplasia C2937421
Migraine Disorders C0149931 Arthritis, Rheumatoid C0003873
Hodgkin Disease C0019829 Colitis, Ulcerative C0009324
Psychotic Disorders C0033975 Depression C0011570
Autistic Disorder C0004352 Epilepsy C0014544
Depressive Disorder, Major C1269683 Neuroendocrine Tumors C0206754
Anxiety C0003467 Neoplasm Metastasis C0027627
Back Pain C0004604 Thyroid Neoplasms C0040136
Hypertension C0020538 Diarrhea C0011991
Arrhythmias, Cardiac C0003811 Cystic Fibrosis C0010674
Nephrotic Syndrome C0027726 Waldenstrom Macroglobulinemia | C0024419
Stroke C0038454 Multiple Sclerosis, Chronic C0393665
Progressive
Heart Failure C0018801 Granulomatosis with Polyangiitis | C3495801
Liver Cirrhosis C0023890 Microscopic Polyangiitis C2347126
Dyslipidemias C0242339 Multiple Sclerosis C0026769
Venous Thromboembolism C1861172 Psoriasis C0033860
Atrial Fibrillation C0004238 Precursor Cell Lymphoblastic C1961102
Leukemia-Lymphoma
Thrombosis C0040053 Crohn Disease C0010346
Venous Thrombosis C0042487 Leukemia, Myeloid, Acute C0023467
Pulmonary Embolism C0034065 Prostatic Neoplasms, Castration- | C3658267
Resistant
Immune System Diseases C0021053 Melanosis C0025209
Polycythemia Vera C0032463 Lentigo C0023321
Neoplasms C0027651 Arthritis, Psoriatic C0003872
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UMLS concept UMLS UMLS concept UMLS
concept ID concept ID
Leukemia, Myelogenous, Chronic, C0023473 Peritoneal Neoplasms C0031149
BCR-ABL Positive
Prostatic Neoplasms C0033578 Ovarian Neoplasms C0919267
Carcinoma, Renal Cell C0007134 Familial Primary Pulmonary C0340543
Hypertension
Gastroesophageal Reflux C0017168 Virus Diseases C0042769
Lymphoma, Non-Hodgkin C0024305 Hepatitis B C0019163
Leukemia, Lymphocytic, Chronic, B- | C0023434 Ventricular Dysfunction, Left C0242698
E;:Lphoma, Follicular C0024301 Parkinson Disease, Secondary C0030569
Parkinson Disease C0030567 Erectile Dysfunction C0242350
Myelodysplastic Syndromes C3463824 Diabetic Nephropathies C0011881
Pruritus C0033774 Dementia C0497327
Sinusitis C0037199 Diabetic Retinopathy C0011884
Sepsis C0243026 Pancreatic Neoplasms C0030297
Restless Legs Syndrome C0035258 Precursor B-Cell Lymphoblastic C0023485
Leukemia-Lymphoma
Tourette Syndrome C0040517 Anemia C0002871
Diabetes Mellitus, Type 2 C0011860 Kidney Diseases C0022658
Conduct Disorder C0149654 Wet Macular Degeneration C2237660
Angioedema C0002994 Postpartum Hemorrhage C0032797
Heart Arrest C0018790 Alzheimer Disease C0002395
Glaucoma C0017601 Myasthenia Gravis C0026896
Hemorrhage C0019080 Macular Edema C0271051
Pain C0030193 Retinal Neovascularization C0035320
Liver Cirrhosis, Biliary C0023892 Colorectal Neoplasms C0009404
Infection C3714514 Ventricular Fibrillation C0042510
HIV Infections C0019693 Inflammation C0021368
Turner Syndrome C0041408 Leukemia C0023418
Renal Insufficiency, Chronic C0403447 Gout C0018099
Diabetes Mellitus C0011849 Hyperuricemia C0740394
Coronary Artery Disease C1956346 Common Cold C0009443
Angina Pectoris C0002962 Familial Mediterranean Fever C0031069
Hyperlipidemias C0020473 Epilepsy, Absence C0014553
Myocardial Infarction C0027051 Acute Coronary Syndrome C0948089
Hypercholesterolemia C0020443 Pulmonary Disease, Chronic C0024117
Obstructive
Nausea C0027497 Peripheral Arterial Disease C1704436
Varicose Veins C0042345 Bronchitis, Chronic C0008677
Glaucoma, Open-Angle C0017612 Urinary Bladder Neoplasms C0005695
Ocular Hypertension C0028840 Intraocular Pressure C0021888
Hepatitis C, Chronic C0524910 Rosacea C0035854
Kidney Failure, Chronic C0022661 Pharyngitis C0031350
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UMLS concept UMLS UMLS concept UMLS
concept ID concept ID

Breast Neoplasms C1458155 Idiopathic Pulmonary Fibrosis C1800706
Sleep Initiation and Maintenance C0021603 Attention Deficit Disorder with C1263846
Disorders Hyperactivity

Osteoarthritis C0029408 Influenza, Human C0021400
Anxiety Disorders C0003469 Dysmenorrhea C0013390
Panic Disorder C0030319 Stomach Ulcer C0038358
Dupuytren Contracture C0013312 Spondylitis, Ankylosing C0038013
Obesity C0028754 Esophagitis C0014868
Dermatitis, Atopic Co0011615 Heartburn C0018834
Rheumatic Diseases C0035435 Duodenal Ulcer C0013295
Polymyositis C0085655 Anemia, Iron-Deficiency C0162316
Pemphigus C0030807 Lupus Erythematosus, Systemic C0024141
Stevens-Johnson Syndrome C0038325 Narcolepsy C0027404
Chronic Pain C0150055 Seasonal Affective Disorder C0085159
Sarcoidosis C0036202 Sleep Wake Disorders C4042891
Dermatomyositis C0011633 Thrombocytopenia C0040034
Gaucher Disease C0017205 Glioblastoma C0017636
Irritable Bowel Syndrome C0022104 Huntington Disease C0020179
Vomiting C0042963 Dermatitis Herpetiformis C0011608
Skin Diseases C0037274 Substance-Related Disorders C0236969
Hypersensitivity C0020517 Lipodystrophy C0023787
Glaucoma, Angle-Closure C0017605 Cough C0010200
Tachycardia, Paroxysmal C0039236 Tuberculosis, Pulmonary C0041327
Chorioretinitis C0008513 Hypertension, Pulmonary C0020542
Intracranial Arteriosclerosis C0007771 Pneumonia C0032285
Anemia, Hemolytic C0002878 Muscular Dystrophy, Duchenne C0013264
Neuralgia C0027796 Uveitis, Anterior C0042165
Alcoholism C0001973 Dermatitis, Seborrheic C0036508
Uterine Cervical Neoplasms C0007873 Neurotic Disorders C0027932
Adrenal Insufficiency C0001623 Eye Diseases C0015397
Keratitis C0022568 Diabetes Mellitus, Type 1 C0011854
Tuberculosis, Meningeal C0041318 Colonic Neoplasms C0009375
Otitis Externa C0029878 Thrombocythemia, Essential C0040028
Herpes Labialis C0019345 Urinary Tract Infections C0042029
Hypothyroidism C0020676 Shock, Septic C0036983




Appendix 5.B. Contingency tables to estimate the impact of genetic evidence on progressing
in the drug development pipeline, for drug target gene - indication pairs where the indication

had at least 5 genetic associations reaching genome-wide significance.

Absolute distance! Relative distance?

Success (S+) No success (S-) Success (S+) No success (S-)
Phase I to phase I1
Genetic support (G+) 444 69 562 95
No genetic support (G-) 14328 3224 14210 3198
Phase II to phase IT1
Genetic support (G+) 270 174 335 227
No genetic support (G-) 6223 8105 6158 8052
Phase III to Approval
Genetic support (G+) 123 147 150 185
No genetic support (G-) 1846 4377 1819 4339
Phase I to Approval
Genetic support (G+) 123 390 150 507
No genetic support (G-) 1846 15706 1819 15589

!4bsolute distance: genetic association with the intended indication present within the gene boundaries plus or

minus 5 kbp

’Relative distance: target gene is the closest protein-coding gene according to their base pair distance (i.e.,

gene distance rank = 1)
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Appendix 5.C. Probabilities, likelihoods and odds ratios to estimate the rate of success and phase progression given genetic support based on the

2x2 tables in Appendix 5.B.

Genetic support based on the absolute distance

Genetic support based on the relative distance (distance rank = 1)

Phase I to 11

Phase II to IIT

Phase III to
approval

Phase I to
approval

Phase I to 11

Phase II to IIT

Phase III to
approval

Phase I to
approval

IP(S+|G+) =Positive predictive value

0.87 (0.83; 0.89)

0.61 (0.56; 0.65)

0.46 (0.40; 0.52)

0.24 (0.20; 0.28)

0.86 (0.83; 0.88)

0.60 (0.56; 0.64)

0.45 (0.39; 0.50)

0.23 (0.20; 0.26)

IP(S+|G-) = False omission rate

0.82 (0.81; 0.82)

0.43 (0.43; 0.44)

0.30 (0.29; 0.32)

0.11 (0.10; 0.11)

0.82 (0.81; 0.82)

0.43 (0.43; 0.44)

0.30 (0.29; 0.31)

0.10 (0.10; 0.11)

P(S-|G-) = Negative predictive value 0.18 (0.18;0.19)|  0.57(0.56;0.57)| 0.70(0.69; 0.71)|  0.89 (0.89;0.90)| 0.18 (0.18;0.19)| 0.57 (0.56; 0.57)|  0.70 (0.69; 0.72) |  0.90 (0.89; 0.90)
P(S-|G+) = False discovery rate 0.13(0.11;0.17)|  0.39(0.35;0.44)|  0.54 (0.48; 0.60)|  0.76(0.72; 0.80)|  0.14 (0.12;0.17)|  0.40 (0.36; 0.45)|  0.55 (0.50; 0.61)|  0.77 (0.74; 0.80)
P(G+[S+) = Recall rate 0.03 (0.03;0.03)|  0.04 (0.04; 0.05)|  0.06 (0.05; 0.07)| 0.06 (0.05;0.07)| 0.04 (0.04; 0.04)| 0.05 (0.05; 0.06)| 0.08 (0.06; 0.09)| 0.08 (0.06; 0.09)
P(G+|S-) = False positive rate 0.02 (0.02; 0.03)|  0.02(0.02;0.02)|  0.03 (0.01;0.05)| 0.02 (0.02; 0.03)| 0.03 (0.02;0.04)| 0.03 (0.02;0.03)| 0.04 (0.02; 0.05)| 0.03 (0.03; 0.03)
P(G-|S+) = False negative rate 0.97 (0.97;0.97)|  0.96 (0.95;0.96)|  0.94(0.93;0.95)| 0.94(0.93;0.95)| 0.96 (0.96;0.97)| 0.95(0.94;0.95)| 0.92(0.91;0.94)| 0.92 (0.91; 0.94)
P(G-|S-) = True negative rate 0.98 (0.97;0.98)| 0.98 (0.97;0.98)| 0.97 (0.96;0.97)| 0.98 (0.97;0.98)| 0.97 (0.96;0.98)| 0.97 (0.97;0.98)| 0.96 (0.95;0.98)| 0.97 (0.97; 0.97)
odds(S+/G+) 6.43 (6.18;6.69)| 1.55(1.36; 1.74)| 0.84(0.59; 1.08)| 0.32(0.11;0.52)| 5.92(5.70;6.13)| 1.48(1.33;1.65)| 0.81 (0.60; 1.03)| 0.30 (0.11; 0.48)
0dds(S+G-) 4.44 (4.40;4.48)|  0.77(0.73;0.80)|  0.42(0.37;0.48)| 0.12(0.07;0.17)| 4.44 (4.41;4.48)| 0.76 (0.73;0.80) | 0.42 (0.36;0.47)| 0.12 (0.07; 0.16)

P(S+|G+)/P(S+|G-)

1.06 (1.02; 1.1)

1.40 (1.29; 1.51)

1.54 (1.33; 1.75)

2.28 (1.91; 2.65)

1.05 (1.01; 1.08)

1.38 (1.28; 1.47)

1.52 (1.33; 1.70)

2.18 (1.86; 2.51)

P(S-|G-)/P(S-|G+)

1.37 (1.11; 1.74)

1.44 (1.29; 1.64)

1.29 (1.16; 1.45)

1.18 (1.12; 1.24)

1.27 (1.07; 1.56)

1.40 (1.28; 1.56)

1.28 (1.16; 1.41)

1.16 (1.11; 1.21)

IPositive likelihood ratio

1.43 (1.11; 1.84)

1.98 (1.64; 2.39)

1.92 (1.52;2.43)

2.58 (2.11; 3.14)

1.32 (1.06; 1.66)

1.88 (1.60; 2.22)

1.86 (1.51;2.29)

2.42 (2.03;2.88)

Negative likelihood ratio

0.99 (0.99; 1.00)

0.98 (0.97; 0.98)

0.97 (0.96; 0.98)

0.96 (0.95; 0.97)

0.99 (0.98; 0.99)

0.98 (0.97; 0.98)

0.96 (0.95; 0.96)

0.95 (0.94; 0.97)

Odds ratio

1.45 (1.12; 1.87)

2.02 (1.67; 2.45)

1.98 (1.55; 2.54)

2.68 (2.18; 3.30)

1.33 (1.07; 1.66)

1.93 (1.63; 2.29)

1.93 (1.54; 2.41)

2.54 (2.10; 3.10)
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6 | The support of genetic evidence from drug target

Mendelian Randomisation for approved drug targets

6.1. Abstract

This chapter describes the application of the drug target MR to a set of approved drug
target gene - indication pairs to evaluate if the framework recapitulates the known mechanism
of action in terms of effect direction and significance. The analysis focuses on approved drugs
where protein quantitative trait locus (pQTL) data could be used to instrument the effect on the
drug target. A ‘truth’ set of 160 licensed drug target gene-indication pairs with an available
pQTL genome-wide association study (GWAS) as well as an available GWAS on the intended
indication was defined. The pQTL GWAS data was based on the Somal.ogic assay which
utilises short single-stranded oligonucleotides (‘SOMAmers’) that bind with high affinity and
specificity to a variety of proteins and enable the quantification of protein levels. A total of 320
drug target gene — SOMAmer — GWAS trait combinations was obtained after mapping
SOMAmers binding drug target proteins to the encoding genes and to the GWAS trait
corresponding to the approved indication. The application of the drug target MR approach
consistently (p value < 0.05 in over 50% of the models) rediscovered the mechanism of action
of only a small proportion (16 out of 121 in the most conservative analysis) of the drug target
gene — SOMAmer — trait combinations explored using the standard set of drug target MR
parameters. While most of the pairings could not be evaluated due to lack of genetic
associations with the exposure that meet the requirements to be in the genetic instrument, 11%

(14 out of 121 in the most conservative analysis) were in the unanticipated direction of effect
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based on the known drug mechanism. Such pairings are also discussed in the chapter to help
inform future pQTL-weighted drug target MR. The findings suggest that a set of gold standard
parameters for the optimal performance of drug target MR cannot be defined yet, and the
selection of exposure data and MR parameters should be tailored to the drug target-indication
of interest. Situations where there is a discordance between the drug target tissue, protein effect
tissue and assay tissue could yield misleading results. Therefore, given the large proportion of
results in the unanticipated direction of effect, expert knowledge is essential to interpret
findings and minimise the risk of naive interpretations, particularly when using the pQTL-
weighted drug target MR approach for discovery of novel drug target mechanisms or prediction

of adverse events.
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6.2. Introduction

Genome-wide association studies (GWAS) can potentially inform drug target
prioritisation through the identification of genetic variants in drug target genes that also impact
disease risk. However, deciding whether to design an inhibitor or activator (blocker or agonist
for receptor targets) of the potential drug target cannot be readily inferred simply from
identification of the locus. The cis-Mendelian Randomisation (MR) approach (‘drug target
MR”)! has been proposed to help infer the correct mechanism of action for a new drug. In an
ideal scenario, a drug target MR analysis would assess the effect of modulating protein activity
or function with respect to disease risk using genetic instruments in the encoding gene. This is
because the vast majority of successful drugs achieve their effect by binding to and modifying
the activity of a protein?. For example, small-molecule inhibitors inhibit catalytic sites of
enzymes and antagonists bind in well-defined pockets that block receptor function, while
agonists or activators, which are often more challenging to develop, increase enzyme activity
or activate receptors. Therefore, the inference from a drug target MR analysis using such data
would determine whether and by how much an increase or decrease in the protein function or

activity impacts disease risk, suggesting a plausible mechanism of action for the drug.

However, GWAS on protein activity are limited, expensive and unscalable. Recently,
GWAS of circulating protein concentration (pQTLs) have become available such as the
INTERVAL study? (~3,000 proteins) and the SCALLOP Consortium* (~1,000 proteins). These
data provide estimates for a substantial proportion of the human proteome, with the latest
assays from Somalogic covering ~7,000 proteins (Somalogic v4.1 panel). If protein
expression (pQTL) acts as a potential proxy for protein function or activity, then the new
technologies for large-scale proteomics analysis could be used to inform drug target validation

using drug target MR.
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Even under the assumption that pQTLs are a valid proxy for protein function or activity,
the performance of drug target MR is influenced by multiple parameters, some of them intrinsic
to the MR methodology (e.g., modelling of the correlation between genetic instruments due to
the linkage disequilibrium or the strength of the genetic associations used to instrument the
exposure), and others specific to each drug target gene — outcome pairing, for example,
expected protein abundance in plasma, number of protein-coding variants in the gene or protein

subunits.

In this chapter, I evaluate the drug target MR framework using pQTL data by:

1. Generating pQTL data 0of 4,911 circulating protein levels in 2,253 participants from the
UCLEB Consortium®, to contribute to a meta-analysis through an established
collaboration with Claudia Langenberg’s group at the MRC Epidemiology Unit in
Cambridge, who had access to a further 10,708 samples assayed on the Somalogic 5k

panel.

2. Comparing genetic associations with circulating levels (pQTL) and activity data for the
same protein for two use cases to illustrate the potential of pQTL-weighted drug target

MR approach when GWAS data on protein activity or function is not available.

3. Assessing the performance of the drug target MR framework as a GWAS-based
approach to predict the effect of modulating a target in a particular disease using a
‘truth’ set of licensed drug target-indication pairs with available GWAS data on pQTL

and the intended indication.

4. Lastly, for the drug target gene — indication pairings with results consistently in the

unanticipated direction of effect to the expected, investigating potential reasons why
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the drug target MR framework using pQTL data did not recapitulate the known

mechanism of action.
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6.3. Methods

6.3.1. pQTL data

To improve on the publicly available data (Aim 1) I performed a discovery GWAS of the
SomaLogic v4 platform within a subset of the UCLEB Consortium (2,253 European samples)
against the variants on the human DrugDeyv array®. This genotyping array combines a genome-
wide variant backbone with enriched variant coverage in genes encoding druggable proteins.
The design ensures capture of variation in the druggable genome therefore, it is an ideal
platform to conduct association studies for drug target selection and validation. The SomaLogic
assay utilises short single-stranded oligonucleotides (‘SOMAmers’) that bind with high affinity
and specificity to a variety of proteins and enable the quantification of protein levels. The
Somalogic v4 platform included 5,284 SOMAmers. Following the company advice, 373
SOMAmers were excluded due to lack of specificity or incorrect mapping, leading to a reduced
set of 4,911 SOMAmers. Somalogic provided a mapping file between the Somalogic
sequence identifier (SOMAmer) and the target identifier using UniProt identifiers (ID). Such
Uniprot IDs were mapped to the gene encoding the protein using Ensembl version 95
(GRCh37), which also returned gene identifiers. Of note, the same protein could be targeted
by different SOMAmers because they target different isoforms of the same protein or because
they bind to different epitopes, therefore, a 1:1 relationship between SOMAmer:Protein-Gene
was not always observed in the dataset. Information on whether the measured proteins were
located outside the cell membrane or were not secreted proteins (i.e., not present in secretion
pathways or do not contain signal sequencies) was sourced, as the latter were not anticipated
to be functionally circulating unless the carrying cell or a product breakdown could be found

in blood.
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The GWAS was performed on the rank inverse normalised residuals derived from the
regression of the relative SOMAmers abundances on age, sex and the first ten principal
components to account for inter and intra-sample variability. The genetic data excluded
multiallelic variants, poorly imputed variants, and variants with minor allele count (MAC) less
than 2. Then, a univariable linear regression model on all autosomes using an additive genetic

model was performed using SNPTEST v2.5.47.

The GWAS was intended to contribute to a larger meta-analysis of several cohorts
measured by Somalogic v4 panel, including 10,708 samples who were participants in the
Fenland study. However, due to delays in data analysis in other cohorts, the results from the
meta-analysis were not available at the time of the drug target MR analysis (Aim 3). Instead,
the genetic associations identified in the Fenland study were used as they were estimated in a
larger sample size compared to the UCLEB study, and represents the largest pQTL discovery
GWAS at the time of analysis. Access to such data was possible thanks to an established

collaboration with Claudia Langenberg’s group at the MRC Epidemiology Unit in Cambridge.

6.3.2. GWAS data on protein activity

To compare genetic associations with circulating protein levels (pQTL) to genetic
associations with activity data and illustrate the potential of pQTL-weighted drug target MR
approach when GWAS data on protein activity or function is not available (Aim 2), genetic
associations with protein activity for two proteins were used. Genetic associations (p value <
5x10®) with Butyrylcholinesterase (BCHE) were sourced from a published GWAS of 8,971

individuals®. Genetic associations with coagulation factor VII activity data (p value < 5x10%)
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were obtained from the UCLEB Consortium (8,700 participants). Variants in cis - were

extracted based on the gene boundaries (GRCh37) plus a flanking region of 1 Mbp.

6.3.3. GWAS data on drug indication

To assess the performance of the drug target MR framework using a ‘truth’ set of licensed
drug target-indications pairs (Aim 3), genetic associations with the intended indications were
obtained from the public central repository (GWAS Catalog v1.0.2) and from UK Biobank
through Neale data (GWAS Round 2, Results shared 1st August 2018). Genetic associations
from UK Biobank were filtered for a p value < 1x107 to match the minimum significance
threshold required by the GWAS Catalog’. The GWAS Catalog included 6,021 MeSH terms
from 3,374 publications that were mapped to UMLS concepts. The UK Biobank Neale dataset
covered 633 ICD10 main diagnosis that were mapped to 633 UMLS concepts. The list of traits
was expanded and manually curated by a clinical expert to include GWAS data on clinically-
relevant disease biomarkers based on quantitative traits measured in UK Biobank, UCLEB or
available through the GWAS Catalog. A summary of the traits and data sources used as the

outcome in the drug target MR analyses is shown in Appendix 6.A.

6.3.4. Drug data

To assess the performance of the drug target MR framework using a ‘truth’ set of licensed
drug target-indications pairs, drug data were extracted from ChEMBL version 25 (v25)'°,
Information in ChEMBL is itself based on several resources including United States Adopted
Name (USAN) applications, ClinicalTrials.gov; the FDA Orange Book database, the British

National Formulary, and the ATC classification, with their intended indications sourced from
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DailyMed and the ATC classification. The UniProt identifiers for the corresponding drug
targets available through ChEMBL v25 were mapped to gene identifiers in Ensembl version
95 (GRCh37) through the updated druggable genome®. Of note, some drug target multiple
single proteins, protein families or complexes, therefore a 1:1 relationship between a
target:protein-gene is not always observed. The standardised indications in Medical Subject
Headings (MeSH) used in ChEMBL v25 were mapped to Unified Medical Language System
(UMLS) concepts to facilitate further mappings (see Chapter 3.1.1). Compounds flagged as
withdrawn, not intended for human use or whose target is encoded by a gene in the extended
major histocompatibility complex (xMHC) region (chr6: 28477797- 33448354, GRCh37),
were excluded from the analysis. For each drug target gene — indication pairs, the latest phase
in development was selected for any drug and those pairs with a maximum phase of
development equal to 4 (licensed) were selected. This yielded in 665 unique drug target genes

and 371 unique indications.

6.3.5. Drug target Mendelian Randomisation

Drug target MR analyses were performed using different parameter combinations for
each SOMAmer - drug target gene - trait (768 tests/pair): p value threshold (1x10%, 1x10,
1x104, 1x10%), LD pruning (7*: 0.2, 0.4, 0.6, 0.8), flanking region (bp: 2500, 10000, 50000,
100000), flanking region location (upstream, downstream or both) and minor allele frequencies
(0.01, 0.05). To account for residual correlation between variants in the MR analyses, a
generalised least squares framework with a LD reference dataset derived from UK Biobank
was applied. LD reference matrices were created by extracting a random subset of 5,000
unrelated individuals of European ancestry from UK Biobank!'! using the same random seed of

1. Variants with a MAF < 0.001, and imputation quality < 0.3 were excluded. To ensure that
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SNPs with lower MAF have higher confidence, variants were removed if MAF < 0.005 and
genotype probability < 0.9; MAF < 0.01 and genotype probability < 0.8; MAF < 0.03 and
genotype probability < 0.6. A model-selection framework was used to decide between
competing inverse-variance weighted (IVW) fixed-effects, IVW random-effects, MR-Egger
fixed effects or MR-Egger random-effects models'*. While IVW models assume an absence of
directional horizontal pleiotropy, Egger models allow for possible directional pleiotropy at the
cost of power. After removing variants with large heterogeneity (p value <0.001 for Cochran’s
Q test) or leverage, this model selection framework was re-applied and used the final model.
Results were presented as mean difference (MD) or odds ratio (OR) with 95% confidence

interval (95% CI).

155



6.4. Results

6.4.1. GWAS on plasma protein circulating levels (pQTL)

To improve on the publicly available data, a discovery GWAS of the Somalogic v4
platform (4,911 SOMAmers, 4,631 UniProt identifiers) was performed within a subset of the
UCLEB Consortium (2,253 participants) against the contents of the human DrugDev array®.
As a quality control step, for those SOMAmers also included in the INTERVAL study, the
Pearson’s correlation between the effect sizes was calculated for those variants reported as
‘sentinel variants’ (variants with the lowest p value in the region) by Sun et al.,’. A total of
1,128 SOMAmers were included in the comparison exercise (382 with genetic associations in
cis-, 841 with genetic associations in trans-). A strong correlation (p) was observed between
the effect sizes (Fig. 6.1), which was higher for cis- signals (p = 0.96), compared to trans-

signals (p = 0.75).
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Figure 6.1. Scatterplot of pQTL effect size estimates from INTERVAL versus UCLEB subset,
showing genetic associations in cis- (top panel) and trans- (bottom panel). p is Pearson’s
correlation coefficient. The x-axis shows the per allele effect on pQTL expressed as mean

difference (MD).

6.4.2. Correlation between protein activity and circulating protein levels

In drug target MR, genetic associations with the activity or function of the protein target
represent the ideal exposure to instrument the therapeutic effect of modulating such target in a
particular disease since most drugs impact protein activity or function. However, GWAS on
protein activity or function are only available to very few proteins, and thus genetic associations
with protein levels (known as pQTL) have been proposed instead to evaluate drug targets, under

the assumption that the protein levels are a proxy of activity or function. Several examples
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support this, such as the drug target Mendelian randomisation of CETP or PCSK9 protein
concentration which replicated on-target effects previously reported in clinical trials''?. To
evaluate this, a comparison was performed using two proteins where genetic associations were
available for both activity and protein level. The analysis was restricted to genetic associations
in cis- since the aim of this comparison was to evaluate the utility of genetic variants associated
with protein levels in drug target MR analyses, which utilises genetic instruments in-and-
around the gene encoding the protein of interest (see Chapter 2.4.1. for details). Genetic
associations for the butyrylcholinesterase (BCHE) and coagulation factor VII protein levels
were measured by the SomalLogic v4 platform in the Fenland cohort (10,708 participants).
Genetic associations with protein activity tor BCHE were sourced from a published GWAS of
8,971 individuals®, and for the coagulation factor VII from the UCLEB Consortium (8,700

participants).

For both BCHE and coagulation factor VII there was a strong correlation between genetic
associations with activity and level for variants acting in cis-. The Pearson’s correlation
coefficient for the BCHE using genetic variants in cis- (n variants = 373) was p = 0.99 (Fig.
6.2A). The correlation for, coagulation factor VII, was slightly lower (p = 0.96, n cis- variants

= 56), as shown in Figure 6.2B.
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Figure 6.2. Scatterplot of effect size estimates of genetic associations with protein activity
versus genetic associations with protein levels for butyrylcholinesterase BCHE (A) and
coagulation factor VII (B). p is Pearson’s correlation coefficient. The x-axis shows the per
allele effect on protein activity and the y-axis the per allele effect on pQTL expressed as mean

difference (MD).

6.4.3. Drug target MR rediscoveries of approved mechanism of actions

In the previous section it has been described that, in two examples where comparisons
were possible, genetic associations with protein level and activity were highly correlated for
variants acting in cis-. Although only two proteins were investigated due to the lack of available
data, such observations provided further evidence to that already in the literature!>™' that
supports the use of genetic associations in or near a gene encoding a drug target protein that
alter the protein’s expression as a tool to anticipate the phenotypic effect of drug action on the
same target. Based on the literature and as described in the previous section, variation in
circulating plasma protein concentration (pQTL) was used as a proxy for protein activity to
instrument the effect of perturbing a particular drug target. The aim was to investigate if the

drug target MR framework rediscovered the mechanism of action of licensed drugs where
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pQTL associations were available for the target protein and the intended indication or a

clinically-relevant disease biomarker had been studied in GWAS.

Of the 665 genes that encode a human proteins targeted via a licensed drug (Fig. 6.3),
205 had pQTL data available for the encoded protein. The Somalogic assay utilises short
single-stranded oligonucleotides (‘SOMAmers’) that bind with high affinity and specificity to
a variety of proteins and enable the quantification of protein levels. The SOMAmer were
mapped to target identifiers by the company using UniProt identifiers (ID). Such Uniprot IDs
were mapped to the gene encoding the protein using Ensembl version 95 (GRCh37). Of note,
the same protein could be targeted by different SOMAmers because they target different
isoforms of the same protein or because they bind to different epitopes, therefore, a 1:1

relationship between SOMAmer:Protein-Gene was not always observed in the dataset.

After curating the overlap between drug indications and genetic studies with available
summary statistics in the GWAS Catalog, the final dataset comprised 320 SOMAmer-drug
target gene-trait pairs (188 SOMAmer-drug target gene-indication pairs) for 48 indications, 71
drug target genes and 112 drugs (Fig. 6.3). Data was aggregated to account for targets measured
by multiple SOMAmers. This was done because the protein encoded by a drug target gene
could be measured by more than one SOMAmer through different aptamers (i.e., binding to
different domains). By aggregating the data at the SOMAmer-drug target gene-trait, protein
differences in binding across SOMAmers could be taken into account in the analysis. Of the
71 target genes, 24 (34%) encoded proteins located outside the cell membrane, while 47 (66%)
encoded proteins not secreted (i.e. are not present in secretion pathways or do not contain signal
sequencies, and thus not anticipated to be functionally circulating unless the carrying cell or a

product breakdown could be found in blood).
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Figure 6.3. Summary of data sources and mappings between them. Summary of each data

source and the key filtering and processing steps applied to create the final set of gene-trait and

drug target—indication combinations investigated in this study. GWAS Catalog sources

correspond to unique PubMed ID.
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Drug target MR analyses were performed using different parameter combinations for
each SOMAmer-drug target gene-trait (768 tests/pair): p value threshold for inclusion of
variants (1x108, 1x10°, 1x10*, 1x10-2), LD clumping threshold * (0.2, 0.4, 0.6, 0.8), flanking
region size (bp: 2500, 10000, 50000, 100000), flanking region location (upstream, downstream
or both) minor allele frequencies (0.01, 0.05), and automatic removal of potential pleiotropic
variants based on leverage and Q-statistics (see Methods). Eighty-six out of the 320
SOMAmer-drug target gene-trait combinations could not be analysed in any of the models due
to lack of GWAS coverage of the region, or the variants failing to meet the pre-specified
significance threshold. The results of the drug target MR analyses are presented based on four
different scenarios: 1) all the parameter combinations are taken into account even if a particular
parameter combination could not run (main analysis), ii) only parameter combinations that
yield results are considered (sensitivity analysis 1), ii1) only credible parameter combinations
(p value < 1x10*4; #° < 0.4; flanking region < 50 kbp both upstream and downstream, with
automatic outlier removal) that increase the accuracy of the results while holding the MR

1,16,17

assumptions based on previous studies are taken into account (sensitivity analysis 2), iv)

only credible parameter combinations that yield results are considered (sensitivity analysis 3).

The percentage of non-significant estimates and significant estimates in the expected or
unexpected direction of effect (depending on the drug target mechanism) for each of the
SOMAmer-drug target genes-trait pairs for the sensitivity analysis 3 is shown in Figures 6.4
and 6.5 for binary and quantitative traits respectively, where binary traits represent the intended
indication and qualitative traits a clinically relevant biomarker of the disease. The percentages
for the main, sensitivity analysis 1 and 2 are shown with similar figures in Appendix 6.B. In
addition, Appendix 6.C includes a qualitative evaluation of three cases where both expected

and unexpected results were observed in the sensitivity analysis 3.
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trait pairs where binary traits were used as the outcome.
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Figure 6.4. Results of the sensitivity analysis 3 (only credible parameter combinations that
yielded results). Percentage of significant MR estimates in the expected (green), unexpected

(red) direction of effect or non-significant estimates (grey) for SOMAmer-drug target gene-
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Figure 6.5. Results of the sensitivity analysis 3 (only credible parameter combinations that

8

yielded results). Percentage of significant MR estimates in the expected (green), unexpected
(red) direction of effect or non-significant estimates (grey) for SOMAmer-drug target gene-

trait pairs where quantitative traits were used as the outcome.

164



The number of SOMAmer-drug target gene-trait pairs consistently (p value < 0.05 in
over 50% of the models) in the expected or unexpected of direction of effect under the different
scenarios are shown in Table 6.1. The SOMAmer-drug target gene-trait pairs with more
significant results in the anticipated direction of effect vs unanticipated were 82 in the main
analysis and in the sensitivity analysis 1, 49 in the sensitivity analysis 2 and 46 in the sensitivity
analysis 3, however the number of significant results in the anticipated direction of effect did
not reach the 50%. For example, for the 768 tests performed for the drug target IL6R and the
GWAS trait theumatoid factor (biomarker for the intended indication rheumatoid arthritis), 255
were significant in the anticipated direction of effect and 513 were not significant, although
467 of the 513 were in the anticipated direction of effect. Seventy seven SOMAmer-drug target
gene-trait pairs were more times in the unexpected direction of effect vs expected in the main
analysis and sensitivity analysis 1, which decreased to 49 in the sensitivity analysis 2 and 40 in

the sensitivity analysis 3.

Table 6.1. SOMAmer-drug target gene-trait pairs consistently in the expected or unexpected

direction of effect under different parameter combinations.

SOMAmer-drug . . Sensitivity Sensitivity Sensitivity
target gene-trait Main analysis Analysis 1 Analysis 2 Analysis 3
pairs
Consistently in the
expected direction 19 27 15 16
of effect (>50%)
Consistently in the
unexpected
direction of effect 12 26 ? 14
(>50%)
Total 234 234 234 121

Main analysis: all the parameter combinations are taken into account even if a particular parameter
combination could not run, Sensitivity analysis 1: only parameter combinations that yield results are
considered; Sensitivity analysis 2: only credible parameter combinations (p value <1x107*; * <0.4, flanking
region < 50kbp both upstream and downstream, with automatic outlier removal) that increase the accuracy

1,16,17

of the results while holding the MR assumptions based on previous studies are taken into account;

Sensitivity analysis 3: only credible parameter combinations that yield results are considered.
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Independent pQTL data was sourced from Ahola-Olli et al. 2017'8, Yao et al. 2018'°,
and Folkersen ef al. 2020%° to replicate the findings based on SomaLogic v4 platform. Out of
the 71 drug target proteins, only IL6R, DPP4 and TNF were available in the replication
datasets. However, only genetic associations with TNF could be analysed (Appendix 6.C) due
to the lack of GWAS coverage of the region or the variants failing to meet the pre-specified
significance threshold for IL6R and DPP4. The discovery analysis of TNF and its intended
indications did not return significant results using the Somalogic v4 platform, and thus, the

results across platforms could not be compared.

6.4.4. Case review of drug target gene-indications pairs in the unexpected direction of

effect

The results presented in the previous section included several SOMAmer-drug target
gene-trait pairs that were in the unexpected direction of effect in >50% of the scenarios
explored. In an attempt to better understand the reasons and the potential limitations and inform
future drug target MR analyses with pQTL data as the exposure, this section provides a review
of drug target gene-indications pairs consistently in the unexpected direction of effect. Many
reasons exist that may explain why a drug target MR analysis does not recapitulate the
mechanism of action of a known drug target in a particular disease indication, and, instead,
returns results in the opposite direction to the known drug targeting mechanism. These include
technical errors, inaccuracies in disease definitions or biological mechanisms. In the previous
section, between 9 and 26 SOMAmer-drug target gene-trait pair had MR associations in the
opposite direction to that expected in 50% or more of the analyses, where 14 were consistently
in the unexpected direction of effect in the most stringent scenario (sensitivity analysis 3: only

credible parameter combinations that yield results are considered). After ensuring that these
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findings were not due to a technical error such as using the wrong effect allele in the MR
analysis, each drug target — indication pair was reviewed and compared with observations
across GWAS traits to determine plausible explanation for the unexpected results. Based on
the review, three distinct groups could be identified (groups 1, 2, 3) which are presented below,
and the remaining pairs that did not fall under such categories are discussed in Appendix 6.C.
The groups were defined as follows: group 1 includes examples of pairings where the effect in
the target tissue may not be captured by plasma levels of the circulatory protein, group 2
includes examples of drugs targeting a protein family rather than a single protein, and group 3
includes examples of drug target proteins with both secreted or membrane bond forms for
which the measured circulating protein might not reflect the level of the membrane bound form

due to extracellular components.

The effect in the target tissue is not captured by plasma levels

In addition to the assumption described in Chapter 6.4.2. regarding the use of pQTL as a
proxy for protein activity, the analysis presented in this chapter also assumed that the protein
levels observed in plasma are representative of the protein levels in the effector tissue (i.e.,
where the drug exerts its action). This assumption is robust when the protein of interest is
secreted and exerts its action within the circulation or at the cell surface. However, many
proteins present in the circulation and measured using the Somalogic platform are likely
present due to the cell turnover or damage and thus may not be representative of their status in

the effector tissue. The following example illustrates this possibility.

Moxonidine, an agonist of nischarin (NISCH; Imidazoline-1 receptor), is used to treat
hypertension. Diastolic, systolic and pulse blood pressure were used as the outcomes in the
drug target MR analysis as clinically relevant biomarkers. If the drug target MR framework

recapitulated the agonist mechanism of action, one would have anticipated a negative
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association between levels of NISCH and blood pressure. However, the MR estimates for
diastolic and systolic blood pressure were consistently opposite direction to the anticipated
direction of effect, from the known blood pressure lowering effect of monoxidine. One
potential explanation could be that the effect allele was not correctly defined in the blood
pressure GWAS, however this option was discarded as the drug target MR of another
antihypertensive target, ACE, rediscovered consistently the mechanism of action of the drug
for both systolic and diastolic blood pressure. Then, under the assumption that there are no
technical errors in the SOMAmer measurements, the next potential explanation of the
unexpected results could be that, since moxonidine acts primarily as an antihypertensive drug
in the central nervous system?!, circulating NISCH may not adequately reflect the drug effect

in the intended tissue.

Drugs targeting a protein family

While most drugs target single proteins, some perturb multiple proteins of a complex, or
the target is indicated as a protein complex or family because the actual effector protein in the
family is not known. This section describes two examples of drug target gene-indications pairs
involving a protein family or complex where the drug target MR framework did not estimate

the direction anticipated based on the mechanism of action of the drug.

Peginterferon beta-1a is a drug used to treat multiple sclerosis by activating the type |
interferon receptor (IFNAR), composed of IFNAR1 and IFNAR?2. The ligand type 1 interferon
is thought to bind first to the high-affinity IFNAR2 subunit, and the ligand binding to the low-
affinity IFNARI subunit induces signal transduction??. In this chapter, the drug target MR
approach was applied only to IFNARI1 since the other component of the receptor IFNAR2 was
not measured in the Somalogic v4 panel. Since the drug activates the IFNAR receptor, in a

drug target MR analysis one would expect a negative association between circulating levels of
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IFNARI and disease status, where lower levels of the protein are associated with higher disease
risk. However, the results of the analysis presented in this chapter were consistently in the
unexpected direction of effect (effect size > 0). This may indicate that the mechanism of action
of Peginterferon beta-1a acts primarily through IFNAR2 which binds with high affinity, and
that levels of IFNARI are increased to compensate the low quantities or activity of IFNAR2 in

the membrane. This hypothesis could be tested when pQTL data on IFNAR?2 become available.

Dipyridamole and pentoxifylline are non-selective inhibitors of the phosphodiesterase
protein family (PDEs) used to prevent and treat thrombosis and coronary artery disease. The
phosphodiesterase protein family includes 21 members?® of which PDE1A, PDE2A, PDE4A,
PDE4D, PDESA, PDE7A and PDED9 circulating levels were measured by the SomalLogic v4
platform. In addition to the non-specific drugs, avanafil and tadalafil are inhibitors of the PDES
protein in particular and are used to treat erectile dysfunction for their vasodilator effect. The
example illustrated in this paragraph is centred on PDESA, which was measured by two
independent SOMAmers (X5256 86 and X16805 5). A discordant direction of effect was
observed consistently (p value < 0.05 in over 50% of the models) in three independent traits
(coronary artery disease, erectile dysfunction, vVWF levels) out of the ten traits evaluated
(coronary artery disease, stroke, vVWF level, factor VII levels, factor VIII levels, prothrombin
levels, carotid plaque, carotid intima media thickness, activated partial thromboplastin time,
erectile dysfunction). Further, for coronary artery disease and vWF levels both PDESA
SOMAmers yielded the same conclusion (Fig. 6.6) which suggests that the mechanism
underlying this unexpected behaviour may be related to the drug target itself or the pQTL rather
than due to technical oversights or errors in the outcome source data. One hypothesis may be
that the therapeutic effect of PDESA inhibitors occurs at a tissue level and not in circulating
plasma, where the target is found as it is not secreted to the circulatory system (likely scenario

in erectile dysfunction in particular). Regarding thrombosis and coronary artery disease where
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the inhibitors are non-selective, an alternative hypothesis could be that PDESA is not one of
the effective target of PDE inhibitors, and that the therapeutic action is driven by another
member in the protein family. PDE1A, PDE2A, PDE4A, PDE4D, PDE7A and PDE9 were also
studied in the context of coronary artery disease and thrombosis. However, the analysis of
PDE1A, PDE2A, PDE4D, PDE7A and PDE9A could not be conducted due to the lack of strong
genetic associations with the pQTL levels, while the sensitivity analysis 3 of PDE4A returned
more significant results in the unexpected direction of effect than in the expected for traits
related to thrombosis and cardiovascular disease (439 non-significant tests, 62 in the
unexpected direction of effect and 3 in the expected direction of effect), although not robustly

(i.e., p value > 0.05 in more than 50% of the models).
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Figure 6.6. Distribution of MR estimates for PDESA (exposure) by SOMAmer and outcome
investigated. The intended indications (erectile dysfunction, thrombosis, and stroke) were
instrumented using genetic associations with the binary trait as well as a clinically relevant
biomarker (carotid media thickness and carotid plaque for coronary artery disease, and
activated partial thromboplastin time, factor VII, factor VIII, prothrombin and vWF levels for

stroke). Results from the drug target MR analysis are presented as mean difference (MD) for



Intracellular vs extracellular proteins

Proteins with both secreted or membrane bond forms pose an additional challenge since
the level of the measured circulating protein might not reflect the level of the membrane bound
form. In fact, higher abundancies in plasma might indicate lower abundance in the plasma
membrane. If the membrane bound form is critical for the biological function, this might

explain the opposite direction of effect as illustrated in the following examples.

Tocilizumab is an anti-IL6-receptor antibody used to treat rheumatoid arthritis. IL-6 is
highly expressed in patients with rheumatoid arthritis and plays a critical role in perpetuating
inflammation. Its receptor (IL-6R) can either be membrane bound, which promotes the
‘classical’ IL6 signalling, or in soluble form in plasma (sIL-6R) which increases the circulating
half-life of IL-6 and therefore, negatively regulates classical IL-6 signalling?*. To treat
rheumatoid arthritis, tocilizumab blocks the ‘classical’ IL6 signalling, which leads to an
increase of circulating IL6 and the soluble form of the receptor (sIL6R). In this chapter, a drug
target MR analysis was performed using as the exposure genetic associations with the IL6R
and juvenile idiopathic arthritis (oligoarticular or rheumatoid factor-negative polyarticular) as
the outcome. Based on the mechanism of action of the drug (blocker) one would expect a
positive relationship between IL6R levels and the disease outcome, however, the results were
consistently in the unanticipated direction of effect (effect size < 0 and p value < 0.05). One
hypothesis could be that the pQTL measured by the SomalLogic platform corresponded to sIL-
6R, whose circulating levels show an inverse relationship with the membrane bound form. In
fact, such hypothesis would be supported by evidence from a previously published cis-MR

analysis, which also showed an inverse association between sIL-6R and rheumatoid arthritis?>.
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Somatropin is a growth hormone (GH) replacement therapy used to treat growth hormone
deficiency, also known as pituitary dwarfism. Genetic associations with the receptor of the
growth hormone (GHR) was used to instrument the exposure and height was used as a
biomarker of the intended indication. Therefore, assuming that the levels of the GHR correlate
positively with the levels of the GH, a negative association was anticipated for the drug-target
MR analysis. However, the estimates were consistently in the unexpected direction of effect.
One explanation could be that the lack of growth hormone in such disease may lead to a
negative feedback loop where GHR production is increased to compensate for the low GH
levels. If high GHR levels are observed in pituitary dwarfism, then the relationship would not
be negative, but instead positive. An alternative hypothesis may involve the growth hormone
binding protein (GHBP), which in humans is derived from the cleavage of the extracellular
domain of the GHR?%. Soluble GHBP might compete for growth hormone binding and thus is
a negative regulator of growth hormone signalling. If the SOMAmer measured by the
proteomics platform corresponded to soluble GHBP rather than membrane GHR, a positive

association would be expected since high levels of GHBP could indicate low levels of GHR.
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6.5. Discussion

6.5.1. Summary

This chapter described the results of a discovery GWAS of 4,631 circulating protein
levels measured by the Somalogic v4 platform for 2,253 individuals of the UCLEB
Consortium. The quality of the GWAS was assessed by comparing the effect sizes for a set of
variants previously reported by Sun et al?, which showed a strong correlation measured by the
Pearson’s correlation coefficient (p) for both cis- (p = 0.96) and frans- signals (p = 0.75).
Subsequently, the work in this chapter evaluated the correlation between protein activity and
circulating protein levels. This analysis was performed to evaluate the common assumption of
pQTL-weighted drug target MR which states that protein levels are a proxy of activity or
function and therefore can be used to instrument the therapeutic effect of modulating a drug
target in a particular disease. At the time of the analysis, genetic associations with protein
activity were only available for the butyrylcholinesterase (BCHE) and coagulation factor VII,
whose protein levels had been also measured by the Somalogic v4 platform in the Fenland
cohort (10,708 participants). A strong correlation measured by the Pearson’s correlation
coefficient was observed for variants in cis- for both BCHE (p = 0.99) and coagulation factor

VII, was slightly lower (p = 0.96).

After illustrating the potential of genetic associations with pQTL as a proxy of protein
activity for two case studies, a ‘truth’ set of 160 licensed drug target gene-indication pairs with
available GWAS data on pQTL and the intended indication was analysed to investigate if the
pQTL-weighted drug target MR framework recapitulated the known mechanism of action in

terms of effect direction and significance.
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It was found that out of the 665 genes that encode the protein targeted by an approved
drug, 71 had available pQTL data (measured by high-affinity and specific oligonucleotides
called ‘SOMAmers’) and GWAS data on the intended indication, which allowed for the
evaluation of the drug target MR methodology on a set of 160 drug target gene - indication
pairs. Such pairs were mapped to GWAS phenotypes related to the intended indication and to
the measured protein target through the SOM Amers, which returned a total of 320 SOMAmer-
drug target gene-traits pairs. The application of the drug target MR framework recapitulated
the mechanism of action of several drug target gene — indication pairings (range: 15-27 drug
target gene-SOM Amer-trait) under different models, which ranged from all possible parameter
combinations to those combinations with a credible set of parameters in terms of strength of
the association with the exposure, degree of linkage disequilibrium and the extent of the
flanking region around the target gene. The set of validated drug targets that consistently
showed the expected direction of effect in the drug target MR approach, could be explored
against other outcomes beyond the intended indication to identify opportunities for indication
expansion and validate (or anticipate) on-target adverse effects through a drug target MR -

phenome-wide association study (Phe WAS).

On the other hand, it was found that between 38- 50% of the drug target gene-SOMAmer-
trait combinations analysed that returned significant MR estimates were consistently in the
unexpected direction of effect based on their reported mechanism of action (range 9/24-26/53
drug target gene-SOMAmer-trait). Although potential explanations for this were already
discussed in section 6.4.4., this analysis relied on the accuracy of the proteomic platform and
the summary statistics of the intended indication. This potential source of bias together with
biologically plausible mechanisms may explain some of the unanticipated findings, however,

further research is needed to validate the results using additional data sources. Nevertheless,
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these findings suggest that results from drug target MR should be interpreted cautiously and

informed by biological knowledge.

Noticeably, the drug target MR analysis of multiple drug target gene - SOMAmer - trait
combinations did not return significant results in the main or sensitivity analyses, and even in
some cases, the analyses could not be performed due to the lack of instruments. While there
may be many reasons for this, the low affinity of the SOMAmer with the target protein and the

lack of power in the indication GWAS may explain a fraction of the non-conclusive results.

6.5.2. Research in context

Drug target MR analyses that utilise genetic associations with circulating protein levels
to study the effects of perturbing drug targets assume that protein levels are a proxy of protein
activity or function. To formally evaluate this, a comparison was performed using two proteins
where genetic associations were available for both activity and protein level. Due to the lack
of available GWAS data on protein activity, a more extensive evaluation including more
proteins could not be conducted. However, the correlation observed for BCHE and coagulation
factor VII, together with previous studies of pQTL-weighted drug target MR'-12, suggested that
drug target MR using pQTL could be a valid alternative approach when GWAS data on activity

or function is not available.

Under such assumption, the analysis presented in this chapter evaluated for the first time
at the time of analysis the performance of the drug target MR framework using a ‘truth’ set of
drug target gene-indication pairings, where circulating levels of the target protein have been
measured by a high-throughput proteomic platform and the indication has been studied by

GWAS.
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Previously, a Mendelian randomisation study on 1,002 proteins and 225 phenotypes
identified four drug target gene — approved indication pairs for which the MR recapitulated the
mechanism of action and two drug target gene — approved indication pairs for which the MR
approach returned results in the unexpected direction of effect out of 73 pairs with potential to
be rediscovered?’. The analysis described in this chapter used a larger set of pQTL data which
allowed for the evaluation of more drug target gene — approved indication pairs. Such increase
in the sample size showed an increase in the number of pairs ‘rediscovered’ by the drug target
MR framework which ranged between 11-13% (i.e., 27/234 in the sensitivity analysis 1 and
16/121 in the sensitivity analysis 3) in the current analysis compared to the 5% ‘rediscovered’
by Zheng et al.,’’. The target gene — indication pairs in the expected direction of effect
identified by Zheng et al.,?’, included the PCSK9 for hypercholesterolemia and
hyperlipidaemia, ACE for hypertension, IL12B for psoriatic arthritis and psoriasis, and
TNFRSF11A for osteoporosis. In the analysis presented in this chapter, PCSK9 and ACE
consistently showed a concordant and significant direction of effect under all the models
explored, while TNFRSF11A showed a concordant direction of effect when using heel bone
mineral density as the outcome, however the association was not statistically significant. In this
chapter, the association between IL12B and psoriasis was in the unexpected direction of effect
in some of the scenarios, although most of the combinations analysed did not yield significant
results. Out of the two drug target gene - indication pairs found by Zheng et al.,’, in the
unexpected direction of effect, IL6R was also identified in the current analysis while PROC
was not analysed as it is not recorded as the target of an approved drug in ChEMBL v25. In
their work, Zheng et al.,?’, in line with the observations outlined in the case study section above,
indicated that for IL6R the alleles associated with higher soluble protein levels have been

28

shown to also lead to lower intracellular pathway activation*®, suggesting consistency of

direction with the therapeutic approach.
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In addition to PCKS9 and ACE, the analysis in this chapter further identified nine targets
that consistently showed a concordant direction of effect under all the models: AMY2A and
type 2 diabetes Mellitus; ATP1B2 and atrial fibrillation, COMT and Parkinson's disease; F2
and prothrombin levels; IL1R1 and rheumatoid factor; IMPAT and bipolar disorder; PDE4A
and forced expiratory volume in the first second (FEV1); PDE5SA and prothrombin levels; PLG
and activated partial thromboplastin time. The findings for ILIR1 and PLG are in line with a
previous study which presented the drug target MR framework using a set of selected positive
controls, which also included PCSK9'. In addition to the findings from Zheng et al.?’, described
in the previous paragraph, genetic associations with ACE pQTL data have been used to
instrument the effect of modifying ACE circulating levels on different outcomes?’, including
susceptibility to SARS-CoV-2 infection or COVID-19 severity*’, and drug target MR analyses
on the intended indication have been conducted using expression QTL (eQTL)?*'. The genetic
validation performed in this chapter of ACE as a drug target for hypertension provides
supportive evidence of the validity of pQTL data to instrument the effect of the drug in past
and future drug target MR studies. For approved drug targets, such as ACE, such genetic
validation on the intended indication should be always conducted, where possible, before
exploring new outcomes. Similarly, phosphodiesterases have been previously studied using
both eQTL and pQTL data on different outcomes??, however, so far, these have not included
the intended indication. Previous mendelian randomisation studies on coagulation factors and
the intended indication (venous thrombosis) have been published using intermediate traits such
as activated thromboplastin time as the exposure®?, however, drug target MR analyses using
F2 pQTL data have not previously been reported. Moreover, to my knowledge, AMY?2A,
COMT, ATP1B2 have not been previously studied in drug target MR analyses of the intended

indication using pQTL or eQTL data.
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The application of the drug target MR approach in a systematic manner requires further
evaluation as suggested by the large proportion of drug target-indication pairs with results in
the unanticipated direction of effect based on their mechanism of action. Complementary
techniques such as co-localization** could be used to source additional evidence by exploring
if the association observed in the drug target MR analysis is not attributable to genetic

confounding through a variant in linkage disequilibrium.

This analysis also showed that many combinations of drug target gene - SOMAmer -
traits could not be evaluated because of the lack of genetic instruments which could be
explained by the sample size and the limited power to detect significant associations. This
situation is likely to improve thanks to the commercialisation of cost-effective high-throughput
technologies for protein measurement and the linkage of biobank data to electronic health
records. For example, the genetic associations identified by deCODE genetics using the
SomaLogic 5K platform in 35,559 Icelanders®, or the promising UK Biobank Pharma
Proteomics Project?’” which aims to measure circulating concentrations of up to 1,500 plasma
proteins in approximately 53,000 UK Biobank participants using the Olink technology. In
addition, the number of proteins covered by the proteomics platform is increasing, with the
latest SomaLogic and Olink assays measuring up to 7,000%® and approximately 3,000

proteins*, respectively.

6.5.3. Strengths and limitations

The results presented in this chapter represent the first (at the time of analysis) systematic
evaluation of the drug target MR framework using a ‘truth’ set of licensed drug target-
indications pairs. One of the strengths of this analysis was the large number of approved drug

targets for which measured protein levels and GWAS on the intended indication were available.
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While only 11% (71/665) of all the genes that encode an approved drug target could be
evaluated due to the lack of exposure or outcome GWAS data, this analysis could recapitulate
the mechanism of action of approved drug target-indication pairs and inform the future
direction of MR analysis for drug target identification and validation, as based on the findings
presented in this chapter, a set of optimised parameters have not been identified yet and the
performance of the drug target MR framework is defined by each drug target gene — SOMAmer
— trait combination. This study also benefited from several sensitivity analyses which returned
a set of well-validated target-indications. However, some drug target gene — SOMAmer — trait
combinations which had their mechanism of action rediscovered in the sensitivity analysis 1
may have not reached significance in the more stringent analysis (sensitivity analyses 2 and 3)
because the genetic associations with the exposure did not meet the criteria of ‘strong genetic
instruments’. Lastly, an extensive review of the drug target gene — SOMAmer — trait
combinations was performed to hypothesize about potential explanations of the unexpected

findings of the drug target MR analyses.

Some limitations of this analysis are noteworthy. First, certain indications may have been
studied by GWAS but were not included in this study because the summary statistics were not
deposited in the GWAS Catalog. Even for those traits available through the GWAS Catalog,
the summary statistics may be incomplete and lack essential information for the MR analyses,
such as effect sizes or effect/reference alleles. Secondly, it was assumed that protein expression
levels (pQTL) can be used as a proxy of protein function. While two examples are provided at
the beginning of the chapter which support such assumption, this has not been studied in detail
due to the lack of GWAS data on protein activity. Moreover, protein levels corresponded to
circulating protein in plasma, however, many proteins are not secreted or circulating in plasma,
and therefore, their presence in the blood tissue could rather indicate physiological conditions.

Since the function of these proteins should take place in a different tissue, it is unclear if the
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levels in plasma recapitulate those in the drug effector tissue, or, on the contrary, they are
unrelated to their function and should not be used to infer the effect of modifying such protein
by a drug. For example, a membrane-bound protein detached from the plasma membrane or a
protein inactivated by a post-translation process could still be detected by the proteomics
platform if the part of the protein that is detected by the SOM Amer remains unchanged. Lastly,
the lack of units for the pQTL, which is a major limitation of aptamer-based technologies, did
not allow for a comparison with the effect size observed with the drug treatment, or limited the
comparison across targets that for instance are targeted by drugs for the same indication. While
this limitation does not have an impact on the current analysis, it may when applying the drug

target MR framework with pQTL data as the one used here for target discovery.
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6.6. Conclusion

The analysis presented in this chapter showed that the ability of the drug target MR
framework to rediscover the mechanism of action of approved drug target-indication varies on
a case-by-case basis. Only between 11-13% (i.e., 27/234 in the sensitivity analysis 1 and 16/121
in the sensitivity analysis 3) of the drug target gene — SOMAmer — trait combinations analysed
rediscovered the mechanism of action of the drug. Therefore, the findings suggest that a set of
gold standard parameters for the optimal performance of drug target MR cannot be defined yet,
and the selection of parameters should be tailored to the drug target-indication of interest.
Nonetheless, this analysis identified a set of targets genetically validated for the intended
indication that could be investigated using a drug target MR - Phe WAS approach. One of the
major limitations of the drug target MR framework using pQTL data for systematic drug target
identification and validation is the lack of the exposure data (e.g., only 11% of the targets for
an approved drug had pQTL data available). In the next chapter, an application of the
biomarker-weighted drug target MR approach will be presented as an alternative to pQTL-

weighted drug target MR when pQTL data is not available to investigate the research question.
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Appendix 6.A. Data sources

GWAS trait GWAS trait (CUI) Drug indication Drug indication N N Pubmed

(CUI) cases controls ID

Diastolic blood pressure C0428883 Hypertension C0020538 29136 - 19430479
Systolic blood pressure C0488055 Hypertension C0020538 29136 - 19430479

Pulse pressure C0232108 Hypertension C0020538 | 146562 - 27618448

Primary biliary cholangitis C0023892 Liver Cirrhosis, Biliary C0023892 64164 561055 26394269
Psoriasis C0033860 Psoriasis C0033860 10588 22806 23143594

Stroke C0038454 Stroke C0038454 | 40585 406111 29531354

Factor VIII levels C0015506 Thrombosis C0040053 8700 - UCLEB

Factor VII levels C0015502 Thrombosis C0040053 8700 - UCLEB

VWF levels C0042971 Thrombosis C0040053 9007 - UCLEB

Prothrombin levels C0033706 Thrombosis C0040053 10000 - Fenland

Activated partial thromboplastin time C1318441 Thrombosis C0040053 2406 - UCLEB
Coronary Artery Disease C1956346 Cardiovascular Diseases C0007222 60801 123504 26343387
Coronary Artery Disease C1956346 Coronary Artery Disease C0010054 60801 123504 26343387
Coronary Artery Disease C1956346 Coronary Artery Disease C1956346 60801 123504 26343387
Carotid intima media thickness C1960466 Cardiovascular Diseases C0007222 60000 - UCLEB
Carotid intima media thickness C1960466 Coronary Artery Disease C0010054 60000 - UCLEB
Carotid intima media thickness C1960466 Coronary Artery Disease C1956346 60000 - UCLEB
Carotid plaque Plaque Cardiovascular Diseases C0007222 48434 - UCLEB

Carotid plaque Plaque Coronary Artery Disease C0010054 48434 - UCLEB
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GWAS trait GWAS trait (CUI) Drug indication Drug indication N N Pubmed

(CUI) cases controls ID

Carotid plaque Plaque Coronary Artery Disease C1956346 48434 - UCLEB

FEV1 C0429706 Asthma C0004096 | 321047 - 30804560

FEV1 C0429706 Pulmonary Disease, Chronic C0024117 | 321047 - 30804560
Obstructive

Lung function (FEV1/FVC) C0429745 Asthma C0004096 | 321047 - 30804560

Lung function (FEV1/FVC) C0429745 Pulmonary Disease, Chronic C0024117 | 321047 - 30804560
Obstructive

Lung function (FVC) C0580371 Asthma C0004096 | 321047 - 30804560

Lung function (FVC) C0580371 Pulmonary Disease, Chronic C0024117 | 321047 - 30804560
Obstructive

Peak expiratory flow C0030735 Asthma C0004096 | 321047 - 30804560

Peak expiratory flow C0030735 Pulmonary Disease, Chronic C0024117 | 321047 - 30804560
Obstructive

Asthma (moderate or severe) C0004096 Asthma C0004096 88486 447859 30552067

Heart Failure C0018801 Heart Failure C0018801 47309 930014 31919418

Atrial Fibrillation C0004238 Atrial Fibrillation C0004238 60620 970216 30061737

Dermatitis, Atopic C0011615 Dermatitis, Atopic C0011615 | 21399 95464 26482879

Multiple Sclerosis C0026769 Multiple Sclerosis C0026769 14498 24091 24076602

Alzheimers disease (late onset) C0002395 Alzheimer Disease C0002395 24087 55058 30617256

Parkinsons disease C0030567 Parkinson Disease C0030567 15056 12637 31701892

Bipolar Disorder C0005586 Bipolar Disorder C0005586 7647 27303 27329760

Schizophrenia C0036341 Schizophrenia C0036341 35476 46839 25056061

Lupus Erythematosus, Systemic C0024141 Lupus Erythematosus, Systemic C0024141 6748 11516 28714469
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GWAS trait GWAS trait (CUI) Drug indication Drug indication N N Pubmed

(CUI) cases controls ID

Alcohol Consumption C0001948 Alcoholism C0001973 | 480842 - 31358974
Fractures C0016658 Osteoporosis C0029456 53184 373611 30598549

Heel bone mineral density C0005938 Osteoporosis C0029456 | 426824 - 30598549
Ferritin levels C0015879 Anemia, Iron-Deficiency C0162316 4948 - UCLEB

Chronic Kidney Insufficiency C0403447 Kidney Failure, Chronic C0022661 12315 227987 31152163
Chronic Kidney Insufficiency C0403447 Renal Insufficiency, Chronic C0403447 12315 227987 31152163
Blood urea nitrogen levels C0005845 Renal Insufficiency, Chronic C0403447 | 416178 - 31152163
Estimated glomerular filtration rate C3811844 Renal Insufficiency, Chronic C0403447 | 567460 - 31152163
Epilepsy C0014544 Epilepsy C0014544 15212 29677 30531953

LDL cholesterol C0023824 Hypercholesterolemia C0020443 | 188577 - 24097068

LDL cholesterol C0023824 Hyperlipidemias C0020473 | 188577 - 24097068

LDL cholesterol C0023824 Dyslipidemias C0242339 | 188577 - 24097068

LDL cholesterol C0023824 Cardiovascular Diseases C0007222 | 188577 - 24097068

LDL cholesterol C0023824 Coronary Artery Disease C0010054 | 188577 - 24097068

LDL cholesterol C0023824 Coronary Artery Disease C1956346 | 188577 - 24097068

Diabetes Mellitus, Type 2 C0011860 Diabetes Mellitus, Type 2 C0011860 | 74124 898130 30297969
Proinsulin levels C0033362 Diabetes Mellitus, Type 2 C0011860 10701 - 21873549

Fasting blood glucose C0428568 Diabetes Mellitus, Type 2 C0011860 58074 - 22581228
Fasting blood insulin C2676369 Diabetes Mellitus, Type 2 C0011860 51750 - 22581228
Myocardial Infarction C0027051 Myocardial Infarction C0027051 40149 126310 26343387
Rheumatoid arthritis C0003873 Arthritis, Rheumatoid C0003873 19234 60565 24390342
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GWAS trait GWAS trait (CUI) Drug indication Drug indication N N Pubmed

(CUI) cases controls ID

Juvenile idiopathic arthritis (Oligoarticular juvenile C3495559 Arthritis, Juvenile C3495559 2816 13056 23603761
idiopathic arthritis)

Factor VIII levels C0015506 Venous Thrombosis C0042487 8700 - UCLEB

Factor VII levels C0015502 Venous Thrombosis C0042487 8700 - UCLEB

VWF levels C0042971 Venous Thrombosis C0042487 9007 - UCLEB

Prothrombin levels C0033706 Venous Thrombosis C0042487 10000 - Fenland

Activated partial thromboplastin time C1318441 Venous Thrombosis C0042487 2406 - UCLEB

Diabetes Mellitus, Type 2 C0011860 Diabetes Mellitus C0011849 | 74124 898130 30297969

Erectile Dysfunction C0242350 Erectile Dysfunction C0242350 6175 217630 30583798

Gout C0018099 Gout C0018099 13179 750634 31578528

Urate levels C0455272 Gout C0018099 | 288649 - 31578528

Urate levels C0455272 Hyperuricemia C0740394 | 288649 - 31578528

Diabetic Nephropathies C0011881 Diabetic Nephropathies C0011881 5447 4717 29703844

Triglycerides C0041004 Coronary Artery Disease C0010054 | 188577 - 24097068

Triglycerides C0041004 Coronary Artery Disease C1956346 | 188577 - 24097068

Proinsulin levels C0033362 Diabetes Mellitus C0011849 10701 - 21873549

Fasting blood glucose C0428568 Diabetes Mellitus C0011849 58074 - 22581228

Fasting blood insulin C2676369 Diabetes Mellitus C0011849 51750 - 22581228

Diabetes Mellitus, Type 1 C0011854 Diabetes Mellitus, Type 1 C0011854 6683 12173 25751624

Obesity C0028754 Obesity C0028754 | 32858 65840 23563607

Body mass index C0005893 Obesity C0028754 | 806834 - 30239722
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GWAS trait GWAS trait (CUI) Drug indication Drug indication N N Pubmed

(CUI) cases controls ID

Waist-to-hip ratio C0205682 Obesity C0028754 | 694649 - 30239722

Tumor necrosis factor alpha levels C1168005 Inflammation C0021368 3454 - 27989323
Tumor necrosis factor beta levels C0024320 Inflammation C0021368 1559 - 27989323
Vascular endothelial growth factor levels C0078058 Inflammation C0021368 7118 - 27989323
Spondylitis, Ankylosing C0038013 Spondylitis, Ankylosing C0038013 10619 15145 23749187

Colitis, Ulcerative C0009324 Colitis, Ulcerative C0009324 6968 20464 26192919

Crohn Disease C0010346 Crohn Disease C0010346 5956 14927 26192919

Height C0005890 Deficiency of growth hormone C0013338 | 347086 - 30124842
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Appendix 6.B. Drug target MR analyses

€D86_X5337_64 Juvenile idiopathic arthritis

TNF_X5036_53 Juvenile idiopathic arthritis

Drug target - Somamer - Indication

IL6R_X15602_43_juvenile idiopathic arthritis

Figure 6.B1. Results of the main analysis (all parameter combinations): Percentage of
significant MR estimates in the expected (green), unexpected (red) direction of effect, non-

significant estimates (light grey) or non-feasible tests (dark grey) for SOMAmer-drug target
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gene-trait pairs where binary traits were used as the outcome.
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Drug target - Somamer - Indication
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PDE4A _X18918_86 Stroke
PCSKa_X5231_79_Coronary Artery Disease
COMT_X18382_109_Parkinson's disease
IMPAL_X17796_15_Bipolar Disorder
ATP1B2_X7218_87_Atrial Fibrillation

THNF_X5036_53. Ankylosing
AMY2A_X18917_53 Diabetes Mellitus, Type 2

XDH_X11264_33_Gout 1
TNFSF138_X3059_50_Lupus Erythematosus, Systemic 1

TNF_X5936_53 Juvenile idiopathic arthritis or factor-neg

PDEA_X18918_86_Asthma (moderate or severe) 1
TNF_X5036_53_Crohn Disease 1

CD86_X5337_64 Juvenile idiopathic arthritis

or id factor-negati

ACE_X10718_7_Heart Failure
ACE_X10714_7_Myocardial Infarction {
INSR_X3448_13 Diabetes Melitus, Type 2

ACE_X10714_7_Coronary Artery Disease

ALDHSA1_X17792_158 Epilepsy 1
VDR _X10023_32_Chronic Kidney Insufficiency 1
TNF_X5036_53_Psoriasis ]
ALDHSA1_X17792_158 Bipolar Disorder 1

PLG_X4151_6_Myocardial Infarction
PDEAA_X18918_86_Psoriasis
F10_%3077_66_Atrial Fibrillation
TNF_X5936_53_Colitis, Ulcerative
PDEAA_X18918_86_Coronary Artery Disease
DDC_X3538_26_Parkinson's disease

1128 X13733_5_Psoriasis
CACNA2D3_X8885_6_Epilepsy
PLG_X3710_49_Myocardial Infarction
PLG_X4151_6_Heart Failure
SERPINC1_X3344_60_Myocardial Infarction
TNF_X5936_53_Rheumatoid arthritis
PDESA_X5256_86_Erectile Dysfunction
PLG_X3710_49_Heart Failure
L17RA_X2992_50_Psoriasis
PDESA_X16805_5_Erectile Dysfunction
ACE_X10714_7_Diabetic Nephropathies
PLG_X3710_49_Stroke
ILSRA_X13686_2_Asthma (moderate or severe)
ATP1B2_X7218_87_Heart Failure
ILIR1_X2991_9_Rheumatoid arthritis
(CD86_X5337_64_Rheumatoid arthritis
F10_X3077_66_Stroke
PDEAD_X5255_22_Asthma (moderate or severe)
PDEAD_X5255_22_Coronary Artery Disease
VDR_X10023_32_Fractures
PDEGA_X5201_50_Coronary Artery Disease
ATP1B1_X13392_13_Atrial Fibrillation
VDR_X10023_32_Psoriasis
DPP4_X15460_0_Diabetes Mellitus, Type 2
NR1H4_X8946_38_Primary biliary cholangitis
ATP1B1_X13392_13_Heart Failure
HTR2A_X13556_28_Bipolar Disorder
HTR2A_X13556_28_Schizophrenia
INSR_X3448_13_Diabetes Mellitus, Type 1
PLG_X4150_75_Stroke
PDE2A_X5246_64_Coronary Artery Disease
PDE1A_X5253_1_Coronary Artery Disease
PTHIR_X13470_43_Fractures
PNLIP_X15613_16_Obesity
HMGCR_X5230_99_Coronary Artery Disease
NDUFS4_X10584_7_Diabetes Mellitus, Type 2
NR3C2_X12931_16_Myocardial Infarction
HMGCR_X5230_99_Diabetes Mellitus, Type 2
HMGCR_X5230_99_Myocardial Infarction
GSK3A_X3441_64_Bipolar Disorder
ATP183_X8990_42_Heart Failure
KEAP1_X12568_14_Multiple Sclerosis
ATP1B3_X8990_42_Atrial Fibrillation
DHFR_X0823_2_Rheumatoid arthritis
NDUFAS5_X19200_16_Diabetes Mellitus, Type 2
PPARA_X12054_71_Coronary Artery Disease
(CD80_X13726_4_Rheumatoid arthritis
PDETA_X5178_5_Coronary Artery Disease
IL&R_X3055_54_Dermatitis, Atopic
IL6R_X15602_43_Rheumatoid arthritis
PLG_X4151_6_Stroke
PDESA_X5256_86_Stroke
TNFSF11_X14061 48 Fractures
PLG_X4150_75_Myocardial Infarction
PDESA_X16805_5_Stroke

igoarticular or factor-neg:
PLG_X4150_75_Heart Failure
IFNAR1_X9183_7_Multiple Sclerosis
PDESA_X16805_5_Coronary Artery Disease
PDESA_X5256_86_Coronary Artery Disease

IL6R_X15602_43 Juvenile idiopathic arthritis

W expected direction

W unexpected direction

label

no significant

0 2

40

60 80

5

0

% MR estimates

Figure 6.B2. Results of the sensitivity analysis 1 (only parameter combinations that yield

results): Percentage of significant MR estimates in the expected (green), unexpected (red)

direction of effect or non-significant estimates (grey) for SOMAmer-drug target gene-trait pairs

where binary traits were used as the outcome.
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CD86_X5337_64_Juvenile idiopathic arthritis

Drug target - Somamer - Indication

TNF_X5936_53 Juvenile idiopathic arthritis

IL6R_X15602_43 Juvenile idiopathic arthritis

ATP1B2_X7218_87_Atrial Fibrillation

COMT_X18382_109 disease
PCSKQ_X5231_79_Coronary Artery Disease
1MPAL_X17796_15_Bipolar Disorder
AMY24_X18917_53 Diabetes Melltus, Type 2

PDE4A_X18918_86_Asthma (moderate or severe) 1
TNFSF138_X3059_50_Lupus Erythematosus, Systemic |
ACE_X10714_7_Heart Failure {
PDEAA_X18918_86_Psoriasis |
ACE_X10714_7_Coronary Artery Disease 1

F10_X3077_66_Atrial Fibrillation
ACE_X10714_7_Myocardial Infarction
PLG_X3710_49_Myocardial Infarction

PLG_X4151_6_Myocardial Infarction
DDC_X3538_26_Parkinson's disease
ACE_X10714_7_Diabetic Nephropathies
PDE4A_X18918_86_Coronary Artery Disease
PLG_X3710_49_Heart Failure
PDESA_X5256_86_Erectile Dysfunction
INSR_X3448_13_Diabetes Mellitus, Type 2
CD86_X5337_64_Rheumatoid arthritis
ALDHSA1_X17792_158 Bipolar Disorder
ALDHSA1_X17792_158 Epilepsy
F10_X3077_66_Stroke
ATP1B3_XB990_42_Atrial Fibrillation
ATP1B3_X8990_42_Heart Failure

SERPINCL_X3344_60_My Infarction
RLG_X4150_75_Stroke
PLG_X4150_75_Myocardial Infarction
VDR_X10023 32 Fractures
PDEAD_X5255_22_Coronary Artery Disease
GSK3A_X3441_6¢_Bipolar Disorder
PLG_X4150_75_Heart Failure
NDUFS4_X10584_7_Diabetes Mellitus, Type 2
INSR_X3448_13_Diabetes Mellitus, Type 1
PLG_X3710_49_Stroke
VDR_X10023_32_Psoriasis
HMGCR_X5230_99_Diabetes Mellitus, Type 2
PDETA_X5178_5_Coronary Artery Disease

HTR2A_X13556_26_
ATP1B1_X13392_13 Heart Failure
HMGCR_X5230_99 ) al Infarction

HMGCR_X5230_99_Coronary Artery Disease 1
HTR2A_X13556_28_Bipolar Disorder 1

ILIR1_X2991_8_Rheumatoid arthritis
ACHE_X15553_22_Alzheimer's disease (late onset)
IL4R_X3055_54_Dermatitis, Atopic
ATP1B1_X13392_13 _Atrial Fibrillation
L17RA_X2992_59_Psoriasis
PDE9A_X5201_50_Coronary Artery Disease

label
expected direction
no significant
no feasible
unexpected directi

on

or factor-negati )
POEAD_X5255_22_Asthma (moderate or severe)
IL6R_X15602_43_Rheumatoid arthritis
TNF_X5936_53_Colitis, Ulcerative
TNFSF11_X14061 48 Fractures
PTHIR_X13470_43 Fractures
PPARA_X12054_71_Coronary Artery Disease
PNLIP_X15613_16_Obesity

PLG_X4151 6 Stroke

TNF_X5936_53_Crohn Disease

THNF_X5936_53 arthitis
THF_X5936_53. is, Ankylosi
DHFR_X0823 2 | id arthritis

DPP4_X15460_9_Diabetes Melitus, Type 2

CDB0_X13726.4 § id arthritis
CACNA2D3_X8385_6_Epilepsy
XDH_X11264_33_Gout

FDE4A_X18918_86 Stroke
TNF_X5936_53_Psoriasis
PDE2A_X5246_64_Coronary Artery Disease
PDE1A_X5253_1_Coronary Artery Disease
NR3C2_X12931_16 Myocardial Infarction
NRIH4_X8946_38 Primary biliary cholangitis

VDR_X10023_32_Chronic Kidney
NDUFAS_X19200_16_Diabetes Mellitus, Type 2
KEAP1_X12568_14_Muitiple Sclerosis

or id factor-negative
1128_X13733_5 Psoriasis
ATP182_X7218_87_Heart Failure
PDESA_X5256_86_Stroke
ILSRA_X13686_2_Asthma (moderate or severe)
PDESA_X16805_5_Stroke
PDESA_X16805_5_Erectile Dysfunction
PLG_X4151_6_Heart Failure
IFNAR1_X9183_7_Multiple Sclerosis

or 9
PDESA_X5256_86_Coronary Artery Disease
PDESA_X16805_5_Coronary Artery Disease

% MR estimates

f—
——
—
—
e —
—
—
0 20 2 0 @ 100

Figure 6.B3. Results of the sensitivity analysis 2 (only credible parameter combinations):

Percentage of significant MR estimates in the expected (green), unexpected (red) direction of

effect, non-significant estimates (light grey) or non-feasible tests (dark grey) for SOMAmer-

drug target gene-trait pairs where binary traits were used as the outcome.
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ILIRL X2991 9| id factor
PCSRE 152517 0L choleters label
rombin levels 1%y irecti
55318 54 Prthrombin levee expected direction
A iso1o o0 vl My 1 gnificant
X5256_86,_ Prothrombin Tevels = " no feasible

—
PDESA X5256.85 Actwated partal romboplastn bme ¢ WM unexpected direction “"

1256_86, Canmd lnhma medla lhl(lmess
PLG x3710 29 _Activated partial thromboplastin time
\_X16805_5 Canmd |nhma media thickness
'ACE XT0714_7_Systolic blood pressure
PCSK9_X5231_79_Carotid intima media thicknes:
X 5_Prothrombin levels
44 X18918_88 Tung function (FVC)
PDESA_X16805_ 5 N:llvated parﬁal& boplastin time
CE_X10714 7 Diastolic blood sure
I \ X1 2 Peak expiratory llw
PLG_X4151_6_Activated parfial't
ACE_X10714 7 Carotid intima medi
POESA_X5256_86 Fxhor VII Ievels
F10-X3077_66_Factor Vil levels
ACE_X10714 7 ¥ Pulse pressure
F2X4157 2 Factor VIl levels
ILGR X15602_43 Rheumatoid factor
A7 X18918 gb_Peak expiratory flow
ﬁA X13686_7_Lung function (FVC)
PDESA _X16805 5_Factor Vil levels
F2-X5316_54 Factor Vil levels
K X5256 i

\CEX
F2_X4157 2 A:tlvatedag | thromboplastin time
PDEAA) 5_Lung function (FEVL/FVC)
77_66_Factor VIl levels
INSR_X3448_13 Fasfing blood insulin
L5RA_X13686_2_FEV1
F2_X5316_54_Activated pirbal thromboplastifi time
X4 Drothmmbln levels
_5_Carotid plaque
SERPINC1_X3344_60_Factor VIl levels
PLG X4151 levs

_6_VWVF levels -
IA_X5201_50_Factor Vil levels
SERPINC[ X3342 60 vWF levels
_X3710_497WF levels -
PDEAA_X18918_86_Activated partial thro rﬁboplastm time -
L 0_49_Prothrombin levels —

INSR_X3448_13_Fasting blood glucose
VDR_X10023_32_Creatinine levels
PDEQA_X5201_50_Activated partialthromboplastin ime
"SERPINCL XBZM 50_f Fﬂ:!ot Vil levels

ral density

TNFSF11) deoﬁl 46 _Heel
NR3T2X1293. l_lﬁ_mlse pressure
F10_X3077_66_Activated partial thromboplastin time
PDESA_X5256_86 _Factor VIl levels
PLG_X3710_49_Factor Vil levels
PLG_X4151 6 Factor VIl levels
PLG_X4151 3 Factor Vil levels —
PDEYA X5201 50 Carotid intima medla thlclm&
PI'HIR_XBJW 43_Heel bone mineral density
ILSRA_X 2 “? furlc!lnn (FEVL/FVC)
2_C-reactive protein
PI.G %3710_49 Factor Vil levels

\_X2048 58 Helght
AMY2A_X18917_53_Fasting blood insulin
PDE4A_X18918 86 Prothrombin levels -
TF2_X5316_54_Factor VIl levels S—

F2 X4T57 2 wWIF levels
ALDH2_X18381_16_AlcoholConsumption
PDETA X5178 5 Prothrombin levels

5 5 WVE levels
56_Bo_WiF levels

BBk KTt o4, Caratl posis

PDEAD X5255_22_Carofid intima media thickness
PDEAD _X5255_22_Adtivated partial thromboplastin fime
HMGCR, X5230 99 Proinsulin levels

HMGCR_X5230_99, F‘mng bioad lucose
HMGCR_X5230 99 Caroti

~ "HMGCRZX5230_¢

NR3C2 XLZ3L 16 8

I( 52

ima
Fzsnng odinniin

Drug target - Somamer - Indication

ic blood pressure

99 Corot plaque
4D_X5255_22_WWF leyels
PDEAD XSZSS )_22_Peak expiratory flow
X5255_ ,22_Factor VIl levels

PDE2A_X5246_ 6‘ camm intima media thickness
PPARA_X12054_71 Carotid plaque
PDE2A X5246 64 Prothrombin levels
POE1A_X5253_1_Carotid plaque

PDEIA _X5253 l CaMId intima media thickness

lic

PDEJA X5201_50_Factor Vill levels

'VDR_X10023_3Z_Blood uréa nitrogen levels

PRIA) XBMA 2 Tumor necrosis factor beta levels

"~ DHFR_X9823_2_Rheumatoid factor

PDEAD,_X5255 22 Fi(mr Vil levels

PDEGD_X13401 40 Prothrombin levels

POEAD_X5255_22_( Car\md plague

PPARA_X12954 ] 71 Carotld intima media thickness

ng 4 N\eumatold factor

PLG_X4150_75_/ Actlvated_ rtial thromboplastin time

IP_X15613_16_ Bodymass index

PlG X4150 75 Prothrombin IE‘vEIs
POE9A_X520I_50_Carotid plaqy

PDE9A ¥5201_ SO_VWF Ievals

PDEGA X5201 50 _Profhrombin levels

DW‘ XlSlW? rasilna blood lnsulm

I’D(GD X13491 AU Carohd intima media th <kness

IATX3844 7 Tumor necrosis factor alpha levels

1 917 53_Fasting hlood glucose

G_X4150_75 Factor Vil levels

VDR X10023 32, Eﬂlmated glomerular ﬁltnnon rate
44 scular endotheial gmwﬂ\lb {actof

smmu xsau so Prothrombin levels
'VDR_X10023732_Heél bone mineral density
DPP4_X15460 9. Fastlng blrmd glucose

PLG_XA15 Il levels

SERPINC1_X3344_60_/ tha&d famal'f mmbuplastm time
613_16_Waist-to-hip ratio

VDR X10023 32 Fs ' s

PDESA Xl6805 5| Fxmr V|II Ievels

PDEJA X vWF l'evels

INSR_ XWB 13 ﬁolnsulm levels
PDEAATX18918 85 _Carotid plaque

PDEAD_X5255_22 Prothrombin levels

CD86_X5337 64 | Rheumatmd factor

'5_vWF levels

PL 50_7"
PDEAD_X5255_72_Lung furiction (FVC)
PDEIA_X18318_86_Factor VIll levels
PDEAA_X18918 86 Carotid intima media thickne:
T NISCH_X127738_43, Systnll( blood pressure
F2 X5316 54 vWFIevels
NISCH_X12738_43 Diastolic blodd pressi

0 20 40 ] 0
% MR estimates

Figure 6.B4. Results of the main analysis (all parameter combinations): Percentage of

=3
8

significant MR estimates in the expected (green), unexpected (red) direction of effect, non-
significant estimates (light grey) or non-feasible tests (dark grey) for SOMAmer - drug target

gene - trait pairs where quantitative traits were used as the outcome.
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NR3C2_X12031 16 Pulse pressure
R
rothrombin levels et
ILIRIX29919_Rheumatoid fact expecied durction
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PCSK9_X5231 79 Cambd muma edia dn(kness
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label

A

TNFSF11_X14061_48_Fieel bone minera
IL6R_X15502_43 Rheumatoid factor 1
PDEAA_X18318 65 Peak expiratory fiow 1
F2_X5315_54_Factor Vil levels
IL5RA_X13685_2 Lung function [FVC) |
PTHIR X13470_43_Heel bone mineral density 1
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Figure 6.B5. Results of the sensitivity analysis 1 (only parameter combinations that yield

8
5
8

results). Percentage of significant MR estimates in the expected (green), unexpected (red)
direction of effect or non-significant estimates (grey) for SOMAmer-drug target gene-trait pairs

where quantitative traits were used as the outcome.
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Figure 6.B6. Results of the sensitivity analysis 2 (only credible parameter combinations).
Percentage of significant MR estimates in the expected (green), unexpected (red) direction of
effect, non-significant estimates (light grey) or non-feasible tests (dark grey) for SOMAmer-

drug target gene-trait pairs where quantitative traits were used as the outcome.



Appendix 6.C. Case review

Combinations with results both in the expected and unexpected direction of effect

Some drug target gene — SOMAmer — trait combinations showed both the expected and
the unexpected direction of effect in the analysis with the most stringent parameters (sensitivity
analysis 3). This section includes a qualitative evaluation of three cases were the modification

of one or more parameter led to a change in the direction of effect.

The first example is AMY2A, the drug target of ACARBOSE and used to treat Type 2
Diabetes. In the sensitivity analysis 3, all the results were significant, with 24 in the expected
direction of effect and 12 in the unexpected direction of effect (Figure 6.4). To explore the
nature of the change, a plot was built to visualise each of the MR tests performed and to identify
common characteristics for those that were in the unexpected direction of effect. When using
a minor allele frequency (MAF) threshold of 0.01 to select genetic instruments, all the MR
estimates were in the expected direction of effect (Fig. 6.B7.A). When the MAF was increased
to 0.05, fewer variants were selected resulting in MR tests of a single variant or only 2 variants
in the unexpected direction of effect (Fig. 6.B7.B). In fact, the shift in the direction of effect
was caused by the genetic variant 1:104158889 (GRCh 37), which is located 1.1kbp upstream
of the encoding gene in a non-coding region. Literature or database references of the variant
were not found. This example illustrates how building a genetic instrument with a single variant
can lead to spurious findings, particularly, if the genetic variant has not been documented
before for its effect on the nearby gene. Therefore, leveraging multiple genetic variants in and

around the gene reduces the potential bias due to invalid instrumental variables.
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Drug target gene: AMY2A (outcome: Type 2 Diabetes; MAF > 0.01)
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Figure 6.B7. Mendelian Randomisation tests performed under sensitivity analysis 3 for the
drug target AMY2A and the indication Type 2 Diabetes. Panel A shows the approach for

instrument selection for variants with a MAF > 0.01, and panel B the approach for variants

with MAF > 0.05.
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The second example involves PDE4A, the drug target of THEOPHYLLINE,
AMINOPHYLLINE and ROFLUMILAST for the treatment of asthma. In the sensitivity
analysis 3, 16 tests were significant in the expected direction of effect, 3 were significant in the
unexpected direction of effect and 17 were not significant (Figure 6.4). The visualisation of
each of the MR tests for the drug target-indication pair showed that increasing the MAF from
0.01 to 0.05 leads to the exclusion of a genetic variant (19 10568883 C Q) that forced the
slope of the association to go in the opposite direction of effect (Fig. 6.B8). This is illustrated
further in Figure 6.B9, where the estimates from two MR tests, with or without
19 10568883 C_ @G, showed that its inclusion in the genetic instrument led to the selection of
the MR Egger over the IVW method. Although this genetic variant (rs145530718) is described
as intron variant in Ensembl, the large effect size on both the exposure and outcome and the
opposite direction compared to the other variants in the instrument suggest a potential

pleiotropic effect through a different pathway.
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Figure 6.B8. Mendelian Randomisation tests performed under the sensitivity analysis 3 for the

drug target PDE4A and the indication Asthma. Panel A shows the approach for instrument

selection for variants with a MAF > 0.01, and panel B the approach for variants with MAF >

0.05.
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Figure 6.B9. Illustration of the impact of including heterogeneous variants in the genetic
instrument. This is a real example of one of the MR tests performed for the drug target PDE4A

and asthma.

The third example involves COMT, the drug target of ENTACAPONE and
TOLCAPONE, used to treat the symptoms of Parkinson’s disease. This example is particularly
interesting as the drug is intended to treat the symptoms of the disease but the analysis in the
current chapter also showed a significant association with the disease. It also illustrates the
importance of selecting strong genetic associations to build the genetic instrument and to ensure
that the first assumption of the MR framework (‘Relevance assumption’) holds. In the
sensitivity analysis 3, 26 tests were significant in the expected direction of effect, and 10 were
not significant (Figure 6.4). Figure 6.B10 shows that the power of the MR analysis to detect a
causal association decreases when the p value threshold for selecting genetic variants is relaxed

from 1x10°° to 1x10™*.
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Figure 6.B10. Mendelian Randomisation tests performed under the sensitivity analysis 3 for

the drug target COMT and the indication Parkinson.

Combinations consistently in the unexpected direction of effect

Drug target gene — SOMAmer — trait combinations consistently in the unexpected
direction of effect in the analysis with the most stringent parameters (sensitivity analysis 3),
for which a plausible mechanism to explain the discordant association could not be found or if

suggested, did not fall within the three categories presented in the results section.

Argatroban and bivalirudin are direct thrombin (factor II) inhibitors used to treat or
prevent thrombosis. vVWF is a carrier protein of factor VIII and once activated, generates a
complex with factor IXa and activates factor X, which in a complex with FVa converts
prothrombin (factor II) to thrombin (factor IIa). Fibrinogen is then converted to a fibrin clot by
thrombin, which can lead to thrombosis. High prothrombin levels inhibit the inactivation of
factor VIlla, while thrombin downregulates factor VIlla levels through the Protein C
anticoagulant pathway*’. Thus, one of the potential explanations for the unexpected direction

of effect observed for vWF and factor VIII levels may be that the measurement by the
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SomaLogic platform did not only capture inactivated factor II (prothrombin) but also factor I1a
(thrombin), and the association observed in the MR analysis recapitulated the negative

feedback between thrombin and factor VIII/VWF levels.

Dalteparin sodium, danaparoid sodium, enoxaparin sodium and tinzaparin sodium are
activators of SERPINCI1 (antithrombin III). Antithrombin inactivates thrombin, factor [Xa and
factor Xa to impede clot formation. Eight parameter combinations were explored in the drug
target MR analyses (sensitivity analysis 2), which always returned a single variant intronic to
construct the instrument (GChr37: 1 173910084 C T; rs146832357). The lack of coverage in
the exposure together with the lack of information on the only available variant challenge the

interpretation of the results in the unexpected direction of effect.

The aldehyde dehydrogenase 2 (ALDH?2) is the drug target of disulfiram, a single protein
inhibitor used to treat alcoholism. The drug target MR analysis of blood circulating ALDH?2
levels on alcohol consumption showed a discordant direction of effect in >50% of the scenarios
explored. Although ALDH?2 is detected in all tissues, it is not actively secreted, and its presence
in plasma may not be a results of the normal homeostasis of the protein lifecycle, and therefore
the effector tissue of disulfiram. In fact, brain ethanol metabolism by the ALDH2 in astrocytes
has recently been suggested as the contributor to the behavioural effects associated with ethanol

intoxication*!.
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7 | Biomarker-weighted drug target Mendelian
Randomisation: applications in cardiovascular disease

treatment and prevention

The work from this chapter has been published in Nature Communications’

7.1. Abstract

Biomarker-weighted drug target Mendelian randomisation (MR) studies use DNA
sequence variants in or near a gene encoding a drug target, that alter the target’s expression or
function, as a tool to anticipate the effect of drug action on the same target through the
association with a downstream biomarker. Here I applied biomarker-weighted drug target MR
to prioritise drug targets for their causal relevance for coronary heart disease (CHD). The
targets were further prioritised using independent replication and by sourcing data from the
British National Formulary and clinicaltrials.gov. Out of the 341 drug targets identified through
their association with blood lipids (HDL-C, LDL-C and triglycerides), 30 targets that might
elicit beneficial effects in the prevention or treatment of CHD were robustly prioritised,
including NPC1L1 and PCSKD9, the targets of drugs used in CHD prevention. In this chapter I
also discuss how this approach can be generalised to other targets, disease biomarkers and

endpoints to help prioritise and validate targets during the drug development process.
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7.2. Introduction

A well-established role of Mendelian randomisation (MR) analysis is to use genetic
variants (mostly identified from GWAS) as instrumental variables to identify which disease
biomarkers (e.g. blood lipids such as low- and high-density lipoprotein cholesterol and
triglycerides) may be causally related to disease endpoints (e.g. coronary heart disease;
CHD)?3. It has also been shown that variants in a gene encoding a specific drug target (acting
in cis), that alter the target’s expression or function, can be used as a tool to anticipate the effect
of drug action on the same target, which is known as ‘drug target MR # and has extensively
been described in the previous chapters. Both ‘genome-wide biomarker’ and ‘drug target MR’
approaches were described in Chapter 1.4, with the main conceptual differences detailed in
Table 1.4. In summary, whereas ‘genome-wide biomarker MR’ helps infer the causal relevance
of a biomarker for a disease, a ‘drug target MR’ helps infer whether and, in certain cases in
what direction, a drug that acts on the encoded protein, whether an antagonist, agonist, activator

or inhibitor, will alter disease risk.

Different subtypes of ‘drug target MR’ analyses are used based on the exposure data,
each with their unique strengths and limitations. In Chapter 6, the ‘pQTL-weighted drug target
MR’ framework was applied and evaluated using genetic associations with circulating protein
levels to instrument the effect of perturbing the drug target on the approved indication. Such
approach uses the most accurate exposure, in principle, for drug target characterisation, because
the vast majority of successful drugs achieve their activity by binding to and modifying the
level, function or activity of a protein®. However, genetic associations with circulating protein
levels have not become available until recently, and only include a subset of the proteome, and
its usefulness and systematic application in drug development is still under investigation. On

the other hand, ‘biomarker-weighted drug target MR’ has been extensively used as described
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in the Chapter 1 using CETP and coronary heart disease for illustration, with references to
studies showing that a drug target MR of CETP on CHD, using variants in the CETP gene
weighted by their effect on HDL-C, indicates protection from disease (odds ratio (OR): 0.87;
95%CI: 0.84, 0.90)*, which is consistent with the effect of allocation to the CETP-inhibitor
anacetrapib in a placebo-controlled trial (OR:0.93; 95%CI: 0.86, 0.99) and compatible with the
view that targeting CETP is an effective therapeutic approach to prevent CHD®. Importantly,
as discussed in detail by Schmidt et al,*, drug target MR analyses which use genetic
associations with biomarkers downstream to the protein such as HDL-C, use this effect as a
proxy for protein concentration or activity (where this has not been measured directly), and do
not provide evidence on whether the biomarker used for the weighting itself mediates disease.
Rather, they inform on the validity of the drug target for a disease, regardless of the mediating
pathway. Biomarker-weighted drug target MR analyses are particularly relevant when genetic
associations with the drug target protein levels or activity have not been measured directly, or
if available, do not represent strong instruments. Instead, genetic associations with a
downstream biomarker in or near the gene encoding the drug target could be used as a proxy

for protein concentration or activity.

The already published ‘biomarker-weighted drug target MR’ analyses suggest that
unexploited drug targets might exist for the prevention or treatment of CHD that could be
identified through their association with blood lipids even though such analyses do not presume

that the effect on CHD is mediated through these lipids.

In this chapter, I applied drug target MR on a set of druggable proteins identified through
genetic associations with circulating blood lipids and assessed their causal relevance for CHD.
Summary statistics from GWAS of blood lipids and CHD were used to select genes associated

with blood lipids that encode druggable targets and the effects of these drug targets on CHD
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were tested using ‘drug target MR’ in two independent datasets. Subsequently, data from
clinicaltrials.gov and the British National Formulary (BNF) was sourced for drugs in clinical
phase development and licensed medicines, respectively, to identify agents that might be
pursued rapidly in clinical phase testing for treatment or prevention of CHD. Because of
interest in this area, though not the focus of the work, I also evaluated potential mediators of
these effects using multivariable MR (MVMR). Finally, I discussed how this approach might
be generalised to other drug targets and clinical endpoints, providing a route to translating

findings from GWAS into new drug development.
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7.3. Methods

7.3.1. Data sources

To determine the causal role and replicate previously reported results on the causal effect
of LDL-C, HDL-C and TG on CHD, summary-level genetic estimates were obtained from the
Global Lipids Genetics Consortium (188,577 individuals)” and from CardiogramPlusC4D

(60,801 cases and 123,504 controls)®.

Independent replication data were sourced using lipids exposure data from a GWAS
meta-analysis of metabolic measures by the University College London—Edinburgh-Bristol
(UCLEB) Consortium’ and Kettunen et al.,'° utilizing NMR spectroscopy measured lipids
(joint sample size up to 33,029). Independent CHD data was obtained from a publicly available

GWAS of 34,541 cases and 261,984 controls in UK Biobank!!.

Individual-level data from a random subset of 5,000 unrelated individuals of European
ancestry from UK Biobank was used to generate the LD reference matrices as described in the

Instrument selection section.

7.3.2. Drug target gene selection

To estimate the causal effect of modulating the level of each lipid sub-fraction via a
druggable gene on CHD, genetic variants associated with LDL-C, HDL-C and/or TG with a p
value < 1x10°% were selected. Druggable genes overlapping a 50 kbp region around the selected
variants were extracted, resulting in 341 associated drug target genes (149 for LDL-C, 180 for
HDL-C and 154 for TG). The set of genes in the ‘druggable genome’ were identified'? (see

Chapter 3.2), and identifiers were updated to Ensembl version 95 (GRCh37), used in this
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analysis. All of these IDs were also present in Ensembl 95 (GRCh37), used in this analysis.
Because only genetic associations with the druggable genome were scanned for, protein-coding
genes that were the ‘true’ causal gene but not yet druggable would be missed and the
association mis-assigned. To mitigate this and provide information about potential effects
through non-druggable genes, the minimum distance from the variant to the druggable gene is
provided in Appendix 7.A, where variants located within a gene were given a distance of Obp,
together with a gene distance rank value according to their base pair distance (including all
protein-coding genes), and a column indicating if the druggable gene had been prioritised by

GLGC in previous studies’.

7.3.3. Instrument selection

For the biomarker or genome-wide MR analyses, a p value threshold of 1x10° was used
to select exposure variants associated with LDL-C, HDL-C and/or TG. For cis- or drug target
MR analyses, variants within the 341 selected genes (£50 kbp) were selected based on a p value
< 1x10*. In both settings, variants were filtered on a MAF > 0.01 and LD clumped to an 7% <
0.4. These parameters showed the most consistent estimates in a grid-search in the discovery
data using the positive control examples: PCSK9, NPC1L1, HMGCR and CETP (Fig. 7.1). To
account for residual correlation between variants in the MR analyses, a generalised least
squares framework with a LD reference dataset derived from UK Biobank was applied'? (see
Chapter 2.3. for details on the framework). LD reference matrices were created by extracting a
random subset of 5,000 unrelated individuals of European ancestry from UK Biobank. Variants
with a MAF < 0.001, and imputation quality < 0.3 were excluded. To ensure that SNPs with

lower MAF have higher confidence, variants were removed if MAF < 0.005 and genotype
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probability < 0.9; MAF < 0.01 and genotype probability < 0.8; MAF < 0.03 and genotype

probability < 0.6.
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Figure 7.1. Drug target MR of positive control examples. Grid search of LD threshold and
region around the gene encoding a druggable target using genetic associations with LDL-C and
HDL-C from the Global Lipid Genetic Consortium (GLGC) with CHD events from the
CardiogramPlusC4D Consortium. MR estimates (A) and preferred model (B) for three licensed
LDL-lowering drug targets and HDL-lowering CETP using lipid data from GLGC and CHD
data from CardiogramPlusC4D in the discovery analysis. Models explored: MR Egger-RE
(random effects), MR Egger-RE (fixed effects), inverse variance weighted (IVW)-RE (random
effects), IVW-FE (fixed effects), Wald ratio. In panel A, blue indicates a beneficial effect on
CHD risk, and red a detrimental effect per SD difference with respect to the indicated lipid sub-

fraction. Significant estimates are indicated with an asterisk (*).

212



7.3.4. Mendelian Randomisation analysis

A model-selection framework was used to decide between competing inverse-variance
weighted (IVW) fixed-effects, IVW random-effects, MR-Egger fixed effects or MR-Egger
random-effects models'*. While IVW models assume an absence of directional horizontal
pleiotropy, Egger models allow for possible directional pleiotropy at the cost of power. See
Chapter 2.3 for details on the model-selection framework, IVW and Egger models. After
removing variants with large heterogeneity (p value < 0.001 for Cochran’s Q test) or leverage,
this model selection framework was re-applied and the final model used. The influence of
parameter selection in the drug target MR performance was explored in a grid-search of several
r’ and gene boundaries combinations using the positive control examples PCSK9, NPC1L1,
HMGCR and CETP, where the lipid perturbation is the intended indication. To assess the
possibility of false positive results, the empirical p value distribution of the discovery MR
findings was compared against the continuous uniform distribution using the Kolmogorov-
Smirnov goodness-of-fit test (two-sided). Under the null hypothesis of no association, p values

follow a continuous uniform distribution between 0 and 1.

Additionally, a drug target multivariable MR analysis was conducted using genetic
associations with the three lipid sub-fractions and CHD risk in a single regression model, to
identify likely mediating lipids in the causal pathway of CHD. For details on multivariable MR

analysis, see Chapter 2.2.4.4.

Results were presented as mean difference (MD) or odds ratio (OR) with 95% confidence
interval (95%CI) coded towards the canonical drug target effect direction; i.e., towards lower

LDL-C and triglyceride concentration, and higher HDL-C concentration.
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7.3.5. Drug indications and adverse effects

To evaluate if the drug target MR analyses rediscovered known drug indications, adverse
effects or predicted repurposing opportunities, drug information and clinical trial data was
extracted for the set of 341 druggable targets. Drug target genes were mapped to UniProt
identifiers and indications and clinical phase for compounds that bind the target were extracted
from the ChEMBL database (version 25)'®. Drug indications and lipid adverse effects data for
licensed drugs were extracted from the British National Formulary (BNF) website in July,

2019.

To further examine the effects of the drugs and clinical candidates that are known to act
through binding to the 341 druggable targets, relevant clinical trial data were downloaded from
the clinicaltrials.gov registry. Compound name and synonyms were extracted from ChEMBL
database (version 25)'¢ and used to identify clinical trials with matching interventions. In case
of non-exact matches, the results were inspected manually to ensure that only relevant trial
records were used in the analysis. Lipid-related trial outcomes and adverse events were
identified by searching the relevant fields within the trial records with the keywords: lipo*,
lipid*, 1d1*, hdl*, cholest* and triglyceride*. For adverse events, the search was limited to the
trial arm in which the drug of interest was administered (as opposed to placebo or active control
used in the study) and only adverse events that affected at least one study participant were

included.
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7.4. Results

7.4.1. Biomarker-weighted univariable drug target Mendelian Randomisation

Drug target MR was used to determine the effect on CHD of perturbing druggable
proteins that influence one or more of the three lipid fractions. First, genes previously shown
to encode druggable proteins were selected in regions around variants associated with one or
more of the major circulating lipid subfractions applying a p value < 1x1076. This identified
341 genes; 149 for an association with LDL-C, 180 for HDL-C and 154 for TG'2. One hundred
forty genes (41%) were associated with a single lipid subfraction, 171 (50%) were associated
with two subfractions and 30 (9%) were associated with all three subfractions (Fig. 7.2,
Appendix 7.A). Subsequently, a drug target MR analysis was performed on CHD accounting
for genetic correlation between variants. In the absence of direct measures of the encoded
protein, the effect of genetic drug target perturbation was proxied through the downstream
effect on one or more of the three lipid sub-fractions. Here genetic associations with LDL-C,
HDL-C, and TG were used as a proxy for drug target effects on CHD, which does not provide
direct evidence on whether the drug target itself affects CHD through the leveraged lipid

weight; this mediation question is subsequently explored using multivariable MR.
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Figure 7.2. Overlap between genes encoding druggable targets associated with the major lipid
subfractions. The Venn diagram shows genes exhibiting overlapping or exclusive associations

with LDL-C, HDL-C and/or TG.

Of the 341 drug targets, 165 could be associated with CHD, with 131 of these estimates
being consistent with a protective effect when instrumented for a reduction in LDL-C or TG
and/or elevation in HDL-C (Fig. 7.3, Appendix 7.B). When weighted by LDL-C, eighty-seven
targets showed a significant effect on CHD after orientating towards an increasing LDL-C
direction, with the first and third quartiles (Q) of the CHD OR of 1.93 and 3.32. Similarly, the
Q1 and Q3 after orientating the OR towards an increasing HDL-C direction were 0.22 and 0.53
for the 49 significant HDL-C instrumented targets, and for the 49 significant TG instrumented

targets these were 1.95 and 4.35, respectively.
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Figure 7.3. Discovery drug target MR estimates on CHD. Analyses were performed using
genetic associations with LDL-C, HDL-C and TG from the Global Lipid Genetic Consortium
(GLGC) with CHD events from the CardiogramPlusC4D Consortium. Drug targets are
grouped by maximum clinical phase according to ChREMBL v25 database. Blue indicates a
beneficial effect on CHD risk, and red a detrimental effect per SD difference with respect to

To assess the potential for false positive results, the distribution of the exposure-specific

the indicated lipid sub-fraction. Significant estimates are indicated with an asterisk (*).
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p values was tested against the uniform distribution expected under the null hypothesis'>. The

Kolmogorov-Smirnov (KS) goodness-of-fit test was not consistent with the hypothesis that the
217

observed findings could be readily explained by multiple testing (Fig. 7.4).



LDL-C HDL-C Triglycerides

KS pvalue: 1.34- 10 7 KS pvalue: 2.49- 102 KS p value: 7.07 - 10

v oo - ®

Density
Density

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
p-value p-value p-value

Figure 7.4. Density distribution of the p values in the discovery analysis by exposure.
Kolmogorov-Smirnov (KS) goodness-of-fit test (two-sided) against the continuous uniform
distribution of p values (black dashed line) expected under the null-hypothesis of no association
between any of the targets and coronary heart disease, when the effect is instrument via LDL-

C, HDL-C and TG effects.

7.4.2. Rediscoveries of indications and on-target adverse effects

To investigate if the drug target MR analysis rediscovered the mechanism of action of
drugs with a license for lipid modification or compounds with a different indication but with
reported lipid-related effects, compounds with reported lipid indications or adverse effects
were extracted from the BNF website, which comprises prescribing information for all UK
licensed drugs. Out of the 341 druggable genes included in the analysis, five encoded the targets
of drugs with a lipid-modifying indication (PCSK9, PPARG, PPARA, NPC1L1, HMGCR) of
which NPCIL1, HMGCR and PCSK9 are targets of drugs used in CHD prevention; and 6
encoded a protein target of a drug with reported lipid-related adverse effects (ADRBI1, TNF,
ESR1, FRK, BLK and DHODH) (Appendix 7.C). To include outcome and side effect data of
candidates in clinical phase development, the 341 drug targets were mapped to compound data
available in the clinicaltrials.gov database. This database differentiates between endpoints

monitored throughout the trial (‘outcomes’), and unanticipated harmful episodes during the
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study that may be on-target or off-target effects of the trial agent (‘adverse events’). Of the 341
drug targets, 23 had reported lipid related outcomes and 40 had reported lipid-related adverse

events (Appendix 7.C).

The pool of druggable targets that were modelled using higher LDL-C as a proxy for the
pharmacological action on a drug target included 14 targets of clinically used drugs, three of
which were licensed for CHD treatment by lowering LDL-C (HMGCR, PCSK9 and NPC1L1).
The non-CHD indications of clinically used drugs included dyslipidemias (PPARA), type 2
diabetes (PPARG and NDUFAI13), autoimmune diseases (TNF), neoplasms (RAF1 and
PSMAS), circulatory disorders (ABCA1, PLG, ITGB3 and F2) and alcohol-dependency
(ALDH2) (Table 7.1). With the exception of F2, instrumenting the target action through a
higher LDL-C effect was associated with a higher CHD risk. Two drug targets were for
compounds already in phase 3 trials for CHD prevention (ANGPTL3 and CETP). Lastly, three
targets were in phase 2 trials of compounds developed for other indications (CYP26A1, LTA
and LTB). The remaining 82 of the 101 targets had not yet been drugged by compounds in

clinical phase development.

When using higher HDL-C as a proxy for pharmacological action, MR of four drug
targets with compounds approved for non-CHD indications showed a directionally beneficial
effect on CHD (VEGFA, PSMAS, CACNBI and NISCH), suggesting potential for indication
expansion (Table 7.1). Three were targets for drugs approved for non-CHD indications but
which showed a potentially detrimental effect direction on CHD when instrumented through
increasing HDL-C concentration (ESR1, ALOXS, TUBB). Both CYP26A1 and CETP were
associated with lower CHD risk when the effect on CHD was instrumented through an
elevation of HDL-C. The remaining 65 of the 74 targets have not yet been drugged by

compounds in clinical phase development.
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Lastly, the set of druggable targets with compounds developed for non-CHD indications
that were modelled using higher TG as a proxy for the pharmacological action on the target
included PPARG, DHODH, VEGFA, TOP1, TUBB, NDUFA13, ABCA1, BLK, and F2 (Table
7.1). Of these, instrumenting the CHD effect through higher TG via drug action on BLK or F2
increased CHD risk. For the remaining targets, which included CETP, ANGPTL3 and
CYP26A1, instrumenting the target effect through lowering TG levels decreased the risk of
CHD, while the remaining 52 of the 64 targets have not been drugged by licensed compounds

or clinical candidates yet.
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Table 7.1. Univariable drug target MR estimates for drug targets approved for indications other

than lipid-lowering.

Drug
target gene

LDLC
(OR, 95% CI)

HDL -C
(OR, 95% CI)

Triglycerides
(OR, 95% CI)

Mechanism of action and indication

ESRI1

2.11(1.13,3.93)

AGONIST: Neoplasms, Hypogonadism,
Menorrhagia, Primary Ovarian Insufficiency, Acne
Vulgaris, Postmenopausal Osteoporosis
ANTAGONIST: Breast Neoplasms, Neoplasms
MODULATOR: Infertility, Dyspareunia, Breast
Neoplasms, Postmenopausal Osteoporosis

TNF

2.03 (1.05, 3.93)*

1.21 (0.78, 1.9)

INHIBITOR: Ankylosing Spondylitis, Crohn
Disease, Psoriasis, Rheumatoid Arthritis, Colitis,
Ulcerative, Psoriatic Arthritis, Immune System
Diseases, Juvenile Arthritis

BLK

0.46 (0.31, 0.7)*

INHIBITOR: Precursor Cell Lymphoblastic
Leukemia-Lymphoma, Neoplasms

DHODH

0.66 (0.44, 1.0)

7.42 (2.32,23.71)*

INHIBITOR: Rheumatoid Arthritis, Immune
System Diseases, Multiple Sclerosis

PPARG

1.67 (1.04, 2.68)*

0.71 (0.35, 1.48)

2.18 (1.14, 4.15)*

AGONIST: Type 2 Diabetes Mellitus, Diabetes
Mellitus, Colitis, Ulcerative, Cardiovascular
Diseases

PPARA

3.77(1.44, 9.85)*

AGONIST: Cardiovascular Diseases,
Hypercholesterolemia, Dyslipidemias

NDUFAI3

1.63 (1.13,2.35)*

1.18 (1.0, 1.39)**

INHIBITOR: Diabetes Mellitus, Type 2 Diabetes
Mellitus

ALDH?2

0.14 (0.07, 0.29)*

INHIBITOR: Ectoparasitic Infestations,
Alcoholism

NISCH

0.57 (0.35, 0.93)*

1.16 (0.31, 4.34)

AGONIST: Hypertension

ABCAl1

2.05(1.34,3.15)*

1.41 (0.66, 3.0)

2.4(1.29, 4.49)*

INHIBITOR: Cardiovascular Diseases

F2

0.17 (0.05, 0.59)*

0.57(0.13,2.43)

0.35(0.13, 0.94)*

INHIBITOR: Venous Thrombosis, Thrombosis,
Unstable Angina, Thrombocytopenia, Atrial
Fibrillation, Embolism, Stroke

TUBB

7.56 (1.18, 48.38)*

4.46 (2.13,9.36)*

INHIBITOR: Breast Neoplasms, Neoplasms,
Hodgkin Disease, Large-Cell Anaplastic
Lymphoma, Non-Small-Cell Lung Carcinoma,
Gout, Familial Mediterranean Fever

VEGFA

0.22(0.15,0.3)*

4.16 (2.45, 7.08)*"

ANTAGONIST: Retinal Neovascularization
INHIBITOR: Diabetic Retinopathy, Retinal
Neovascularization, Wet Macular Degeneration,
Macular Edema, Colorectal Neoplasms,
Neoplasms, Glioblastoma, Renal Cell Carcinoma,
Non-Small-Cell Lung Carcinoma, Uterine Cervical
Neoplasms

RAF1

2.06 (1.48,2.86)*

2.63(0.79, 8.83)

INHIBITOR: Neoplasms

PSMAS

2.47 (1.8, 3.39)*+

0.08 (0.02, 0.29)*

INHIBITOR: Multiple Myeloma, Neoplasms,
Mantle-Cell Lymphoma

ALOXS

1.74 (1.18, 2.58)*

INHIBITOR: Asthma, Ulcerative Colitis,
Rheumatoid Arthritis, Juvenile Arthritis

CACNBI

0.38(0.2,0.72)*

BLOCKER: Cardiovascular Diseases
MODULATOR: Fibromyalgia, Seizures, Epilepsy,
Neuralgia, Restless Legs Syndrome, Postherpetic
Neuralgia

PLG

18.35 (5.47, 61.6)*

5.48 (0.07, 456.86)

0.75 (0.18, 3.14)

ACTIVATOR: Thrombosis, Pulmonary Embolism,
Stroke, Myocardial Infarction, Heart Failure,
Hepatic Veno-Occlusive Disease

INHIBITOR: Hemorrhage, Menorrhagia

ITGB3

1.64 (1.06, 2.52)*

2.79 (0.81,9.62)

INHIBITOR: Thrombosis, Unstable Angina

TOPI

2.3(0.15, 35.62)

16.72 (4.19, 66.8)*

INHIBITOR: Neoplasms

These drug targets showed lipid records in clinicaltrials.gov and/or the British National Formulary (BNF). * indicates
significance in the discovery analysis; 1 indicates significance in both original and validation study and concordant
direction of effect. OR = odds ratio of CHD per I-standard deviation increase in LDL-C, HDL-C or triglycerides; CI =
confidence interval.

221



7.4.3. Independent validation of the drug target MR estimates

To help verify the MR findings and reduce the multiple testing burden, an independent
two sample drug target MR analysis was conducted using summary statistics from a GWAS of

blood lipids measured using an NMR spectroscopy platform!®!?

, and genetic associations with
CHD risk derived from UK Biobank'!. The validation analysis identified 47 significant MR
estimates (p value < 0.05), of which 39/47 (83%) showed a concordant direction of effect with
the initial analysis (Table 7.2) corresponding to 30 drug targets. Replicated targets included the
licensed LDL-lowering drug targets PCSK9 and NPC1L1 (Appendix 7.C). While the majority
of the replicated drug targets were anticipated to decrease CHD risk when instrumenting their
effect through LDL-C concentration based on the univariable results, 9 of the drug targets

analysed were significantly associated with lower CHD when the drug target effects were

modelled through HDL-C and/or TG (Fig. 7.5).

222



Table 7.2. Replication of drug target MR findings.

Source of data

Lipids measures Disease endpoints

Clinical chemistry Research-based case ascertainment

Discovery

(GLGC, (CardiogramPlusC4D,

N=188,578) N= 184,305 cases)

Nuclear magnetic resonance

(NMR) spectroscopy Routine Electronic Health Records
Replication (Kettunen et al, 2016, (UK Biobank,

UCLEB Meta-analysis, N=34,541 cases)

N=33,029)
Direction of effect

LDL-C HDL-C Triglycerides Overall

Concordant 21 6 12 39
Discordant 4 0 4 8

The discovery and replication analyses used different data sources for both exposure and
outcome. 145 replication MR analyses were performed in which the gene boundaries included
genetic associations exceeding the pre-specified significance threshold (p value < Ix107).
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Figure 7.5. The sets of assigned genes associated with LDL-C, HDL-C, TG that encode
druggable targets. Genes encoding druggable targets were included if they demonstrated
concordant direction of effect in the discovery and validation studies on CHD showing a causal

effect of one or more lipid sub-fractions.

7.4.4. Discriminating independent lipid effects using MVMR

After considering each lipid sub-fraction as a single measure on disease risk in the
univariable drug target MR analyses, a multivariable drug target MR (MVMR) analysis was
performed including LDL-C, HDL-C and TG in a single model to account for potential
pleiotropic effects of target perturbation via the other lipid sub-fractions and, in contrast to the
previous univariable drug target MR, attempt to directly identify any potential lipid mediating
pathway. Twenty-six of the replicated targets had sufficient data (3 or more variants) for the
multivariable analysis. This analysis identified a single likely lipid fraction for 12 targets

(SLC12A3, APOB, APOAI1, PVRL2, APOE, APOCI1, CELSR2, GPR61, PCSK9 and
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CEACAMI16 through LDL-C; LPL through HDL-C; and ALDH1A2 through TG) (Appendix
7.D). It was found that SMARCA4 and APOAS likely affected CHD through LDL-C and TG,
and that RPL7A likely affected CHD through LDL-C and HDL-C pathways. Due to the limited
number of variants in VEGFA, CILP2, NDUFA13 and ANGPTL4, multivariable MR analysis
could not distinguish the lipid fraction through which CHD was likely affected. Additionally,
the presence of horizontal pleiotropy in the MVMR analysis based on heterogeneity tests
suggested that PCSK9, LPL, APOCI1, APOE, PVRL2, APOB, APOC3, CETP, APOAI and
CELSR2 may affect CHD through additional pathways beyond the lipid sub-fractions LDL-C,

HDL-C and TG included in the current model.
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7.5. Discussion

7.5.1. Summary

In this chapter, ‘biomarker-weighted drug target MR’ was used to evaluate the effect of
perturbing targets encoded by druggable genes in CHD prevention. By combining publicly
available GWAS datasets on blood lipids and coronary heart disease and applying MR
approaches with drug information and clinical data, | have genetically validated and prioritised
drug targets for CHD prevention. While, as introduced in Chapter 1 and later investigated in
Chapter 6, the ideal exposure in a MR analysis for drug target validation are protein activity or
levels, restricting the study to those targets with available protein data would have led to a
significant reduction in the number of drug targets evaluated. In fact, only 39% (i.e., 133/341)
of the 341 druggable genes identified in this analysis had the levels of the encoded protein
measured by the largest proteomic platform available (Somalogic v4). Furthermore, as
discussed in Chapter 6, pQTL-weighted drug target MR may be inaccurate in some scenarios,
and well-studied alternatives such as ‘biomarker-weighted drug target MR’ represent an
opportunity to evaluate drug targets on a large scale. Therefore, one of the aims of the analysis
presented in this chapter was to illustrate that the lack of pQTL data should not be a limitation
to perform drug target MR analyses when genetic associations with a downstream biomarker

are available.

One hundred thirty one drug target genes associated with CHD risk were identified from
a set of 341 druggable genes overlapping associations with one or more of the major blood
lipid fractions. The set of targets included NPC1L1, HMGCR and PCSK9, which are known
targets of LDL-lowering drugs whose efficacy in CHD prevention has been proven in clinical
trials. An independent replication study was performed both to corroborate the targets and the

direction of the effects. The findings were replicated in independent datasets (UCLEB
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Consortium and UK Biobank) in which lipids were measured using a different platform (NMR
spectroscopy in UCLEB) and the disease endpoints ascertained by linkage to routinely
recorded health data (UK Biobank). The validation study replicated 83% (39/47) of the initial
estimates, including the mechanism of action of current lipid-modifying drug targets PCSK9
and NPCIL1 and the suggested mechanism of action of compounds under investigation for

lipid modification through TG or HDL-C, such as CETP inhibitors!®!°.

It is essential to highlight that, while the drug target analysis uses genetic associations
with these lipid sub-fractions as weights, the inference throughout has been on the therapeutic
relevance of perturbing the proteins encoded by the corresponding genes which are the main
category of molecular target for drug action. The genetic associations with the corresponding
lipids are merely used as a proxy for protein activity and/or concentration, serving to orientate
the MR effects in the direction of a therapeutic effect. They do not provide comprehensive
evidence on the pathway through which perturbation of such targets causally affects CHD.
Nevertheless, multivariable MR does provide insight on the potential relevance of lipid
pathways in mediating the effects of drug target perturbation. In general, results that do not
meet the significance threshold should not be over-interpreted as proof of absence of effect?’.
This may be exacerbated here by potential weak instrument bias, which will be expected to

attenuate results towards the no-effect direction.

7.5.2. Research in context

In addition to the known lipid-modifying drug targets PCSK9 and NPCI1L1, the set of 30
replicated drug targets also included lipoprotein lipase (LPL), a target that could potentially
decrease CHD risk based on the univariable MR findings, with an effect through HDL-C

further endorsed by the multivariable MR analyses (Fig. 7.6). In contrast to current lipid-
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lowering drug targets which are specifically expressed in the liver, LPL shows highest specific
expression in adipose tissue which suggests tissues beyond the liver may be relevant to target
lipid metabolism. Several pharmacological attempts have been pursued to target LPL?"?2, and
gene therapy has also been applied to treat LPL deficiency by introducing extra copies of the
functional enzyme in patients with hypertriglyceridemia®>. The approval of gene therapy
interventions and the known indirect activation of LPL by drugs targeting other proteins, such
as fibrates?* and metformin?®, suggest that the previous failure of compounds targeting LPL in
initial trials may have been idiosyncratic. LPL activity is also modulated by another protein in
the replicated dataset, apolipoprotein AS (ApoAS), which is exclusively expressed in liver
tissue. The multivariable MR suggest that ApoAS5 (partially) affects CHD through LDL-C and
TG-mediated pathways. Regardless of the mediating lipid or lipids, the genetic findings in
relation to both LPL and ApoAS5 are consistent and point to this as an important potentially

targetable pathway in atherosclerosis, supporting prior work?S.
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Figure 7.6. Prioritised target: lipoprotein lipase (LPL). a. Genetic associations at the locus (+
50 kbp) in black vs genome-wide associations (grey, p value < 1x10° based on two-sided z-
tests). The x-axis shows the per allele effect on the corresponding lipid expressed as mean
difference (MD) from GLGC and the y-axis indicates the per allele effect on CHD expressed
as log odds ratios (OR) from CardiogramPlusC4D. The marker size indicates the significance
of the association with the lipid sub-fraction (p value). b. Univariable and multivariable (drug
target) cis-MR results presented as OR and 95% confidence intervals with lipid exposure
(n=188,577 individuals) and CHD outcome (n= 60,801 cases and 123,504 controls). An

asterisk (*) indicates the MR estimates as being replicated.
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This chapter describes and applies an approach to move from GWAS signals to drug
targets and disease indications through ‘biomarker-weighted drug target MR’. Its potential has
been illustrated using genetic association data on lipids and CHD data, but the approach could
also be applied in other settings where there are GWAS of diseases and biomarkers thought to

be potentially affected by the drug target.

7.5.3. Strengths and limitations

Some limitations of this study are noteworthy. First, only genes regarded as encoding
druggable proteins were included, which currently comprise approximately 25% of all protein
coding genes'?. As knowledge advances, additional proteins will become druggable, and
alternative therapeutic strategies such as antisense oligonucleotides and gene therapy may
extend the range of mechanisms that can be targeted. The approach described here is in fact
agnostic to therapeutic modality and could be adapted accordingly. Second, variants were
assigned to druggable genes based on genomic proximity, which may be as reliable as other
approaches in mapping causal genes®>*3. However, simple genomic proximity might result in
misleading assignment of the causal gene in a region containing multiple genes in high LD
(e.g. PVRL2, APOCI and APOE are all located in a region of LD in Chr19:45349432-
45422606, GRCh37). In an effort to account for this, all the druggable genes (+ 50 kbp) that
overlap one of the genetic variants associated with LDL-C, HDL-C or TG were included in the
analysis, and information on proximity of the variant to the gene, a gene distance rank value
(in base pairs), and previous gene prioritisation data by the Global Lipids Genetics Consortium
(GLGC)’ is also provided to inform scenarios in which the causal gene may be a non-druggable

gene but reside in the same region (Appendix 7.A).
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Cis-MR was used to evaluate the relevance of each drug target to CHD, which is less
prone to violation of the horizontal pleiotropy assumption than MR analyses with trans
instruments*, which also require direct measurement of the protein of interest. However, cis-
MR also requires some decisions to be made regarding instrument selection: defining the locus
of interest, the significance threshold for the association with the exposure and the LD threshold
to prune correlated instruments. Since an agreement on the choice of a general LD threshold
and flanking region has yet to be reached, a window of 50 kbp and LD threshold of 0.4 were
used, which showed the most consistent estimates in a grid-search in the discovery data using
the four positive control examples: PCSK9, NPC1L1, HMGCR and CETP. Based on previous
studies showing that using less stringent p value thresholds often results in improved
performance in cis-MR settings, the threshold below genome-wide significance was relaxed to
select the genetic associations to instrument the exposure; and accounted for LD correlation by

pruning and LD modelling during the MR analysis*?°.

Multiple testing in the MR analyses was addressed in a number of complementary ways.
To assess the potential for false positive results, the distribution of the exposure-specific p
values was tested against the uniform distribution expected under the null hypothesis'>. The
Kolmogorov-Smirnov (KS) goodness-of-fit test indicated that the number of extreme p values
obtained would be highly unlikely under the null hypothesis, suggesting that they are unlikely
to represent false positives. Subsequently, the findings were validated with independent data
sources and a second drug target MR was conducted, although several drug target genes could
not be evaluated in the validation analysis because the gene boundaries did not include genetic
associations exceeding the pre-specified significance threshold (p value < 1x10%), likely
related to the ‘modest’ sample size of the NMR replication data (N=33,029). By drawing

inference on replicated data, the multiple testing burden was considerably reduced

231



(0.052=0.0025), which when applied to 98 drug targets retained after replication would suggest

up to one result being a false positive.

Beyond univariable MR analyses, I attempted to further validate the findings with a
multivariable extension of the inverse-variance weighted (IVW) and MR Egger methods,
however, in some cases imprecise estimates were obtained in line with previous studies which

attributed this to the inclusion of highly correlated exposures in the model®”.

The effect directions of the replicated drug targets were compared to results from clinical
trials using data from the clinicaltrials.gov registry. However, the lack of precision in
annotation of events associated with lipid perturbations (e.g. hyperlipidaemia) in this dataset
hinders the assignment of reported lipid abnormalities to a particular lipid sub-fraction.
Moreover, the proportion of clinical trials with reported results in clinicaltrials.gov is less than
54.2%3, suggesting that additional drug candidates with lipid effects might have been
investigated but were not included in this analysis because of the lack of accessible data.
Furthermore, the analysis relied on mapping clinical trial interventions to compounds known
to act through binding to the targets of interest, which could potentially miss clinical trials of
compounds annotated with less synonyms (such as research codes for compounds used by

individual trial sponsors).
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7.6. Conclusion

In Chapter 6, genetic variants in or near a drug target gene that have been associated with
the circulating levels of the encoded protein were used to evaluate the performance of the drug
target MR framework. Such analysis showed that measured levels are yet not available for
several drug target proteins, and even when these have been measured, the genetic associations
do not represent valid instruments or the drug target MR framework does not yield the
anticipated result. As an alternative to the pQTL-weighted drug target MR, the drug target MR
using genetic variants in and around the gene encoding the target protein associated with a
downstream biomarker could be used as a proxy for protein concentration or activity, without
implying a mediation effect between the biomarker and the disease. As an example, biomarker-
weighted drug target MR was applied to a set of 341 drug targets identified through their
association with blood lipids (HDL-C, LDL-C and triglycerides), to evaluate their causal
relevance for coronary heart disease (CHD). Thirty of these targets were further prioritised
including NPC1L1 and PCSKD9, the targets of drugs used in CHD prevention. When used as a
screening tool, the biomarker-weighted drug target MR could help reduce the high failure rate
problem in drug discovery by genetically validating targets in the earlier phases of the drug

development pipeline.
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7.8. Appendices

Appendix 7.A. Proximity to GWAS SNP, protein-coding distance rank and previous evidence

of druggable genes near genetic associations with LDL-C, HDL-C and TG from GLGC.

Druggable Genomic coordinates  Min distance (pb) to  Min distance (pb)  Min distance (pb) to Prioritised
gene (GRCh37) LDL-C assoc. to HDL-C assoc. TG assoc. (distance by GLGC
(distance rank) (distance rank) rank)
RHD 1:25598884-25656936 31340 (4) - - No
RHCE 1:25688740-25756683 0(1) - - No
RPS6KA1 1:26856252-26901521 - 0(1) - No
SFN 1:27189633-27190947 - 45265 (6) 45265 (6) No
NROB2 1:27237980-27240457 44738 (4) 44738 (4) 44738 (4) No
SLCY941 1:27425306-27493472 -27702 (1) - - No
BMP8A 1:39957318-39991607 - -7238 (2) -7238 (2) No
PCSK9 1:55505221-55530525 0(1) - - Yes
ANGPTL3 1:63063158-63071830 -49762 (2) - -7878 (2) Yes
ATG4C 1:63249806-63331184 0(1) - 0(1) No
RPL5 1:93297582-93307481 -27758 (2) - - No
CELSR2 1:109792641-109818372 0(1) 0(1) - No
PSMAS 1:109941653-109969062 -19276 (2) - - No
GPR61 1:110082494-110091028 -20869 (3) - - No
AMPD2 1:110158726-110174673 -49687 (4) - - No
GSTM4 1:110198703-110208118 -29513 (3) - - No
GSTM2 1:110210644-110252171 44118 (4) - - No
GSTM1 1:110230436-110251661 44628 (5) - - No
GSTM5 1:110254864-110318050 0(2) - - No
GSTM3 1:110276554-110284384 11905 (3) - - No
CSFI 1:110452864-110473614 - 5297 (1) - No
HDGF 1:156711899-156736717 - -11248 (4) - No
GALNT?2 1:230193536-230417870 - 0(1) 0(1) Yes
GDF7 2:20866424-20873418 13808 (2) - - No
APOB 2:21224301-21266945 29601 (1) -28051 (1) -28051 (1) Yes
EMILIN1 2:27301435-27309271 - - 33623 (7) No
KHK 2:27309615-27323640 - - 19254 (5) No
CGREFI1 2:27321757-27341995 - - 899 (1) No
SLC546 2:27422455-27435826 - - 7370 (3) No
ATRAID 2:27434895-27440046 - - 3150 (2) No
CAD 2:27440258-27466811 - - 30737 (4) No
UCN 2:27530268-27531313 - - -32720 (5) No
NRBPI1 2:27650657-27665126 - - -10332 (2) No
GCKR 2:27719709-27746554 0(1) - 32018 (4) Yes
MAP3KI19 2:135722061-135805038 0(1) - - No
LCT 2:136545410-136594750 0(1) - - No
ABCBI11 2:169779448-169887832 0(1) - - Yes
CPS1 2:211342406-211543831 - 0(1) - Yes
FNI1 2:216225163-216300895 0(1) - - Yes
UGTIAS 2:234526291-234681956 009 - - No
UGTIA10 2:234545100-234681951 0(8) - - No
UGTIA9 2:234580499-234681946 0(7) - - No
UGTIA7 2:234590584-234681945 0(4) - - No
UGTIA6 2:234600253-234681946 0(6) - - No
UGTIAS 2:234621638-234681945 0(5 - - No
UGTI1A44 2:234627424-234681945 0(3) - - No
UGTI1A43 2:234637754-234681945 0(2) - - No
UGTIAI 2:234668894-234681945 0(1) - - Yes
PPARG 3:12328867-12475855 0(1) 0(1) 13487 (1) No
RAF1 3:12625100-12705725 0(1) - - Yes
CAMKV 3:49895421-49907655 - 0(1) - No
MSTIR 3:49924435-49941299 - 30215 (4) - No
SEMA3F 3:50192478-50226508 - -20081 (2) - No
SEMA3G 3:52467069-52479101 - -35398 (4) - No
TNNCI1 3:52485118-52488086 - 4621 (2) - No
NISCH 3:52489134-52527087 - 0(1) - No
PBRM1 3:52579368-52719933 - 0(1) - No
NEK4 3:52744800-52804965 - 39569 (8) - No
ITIHI 3:52811603-52826078 - 18456 (4) - No
ITIH3 3:52828784-52843025 - 1509 (1) - No
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Druggable Genomic coordinates  Min distance (pb) to  Min distance (pb)  Min distance (pb) to Prioritised
gene (GRCh37) LDL-C assoc. to HDL-C assoc. TG assoc. (distance by GLGC
(distance rank) (distance rank) rank)
ITIH4 3:52846991-52865495 - -2457 (2) - No
ABHD6 3:58223233-58281420 12447 (3) - - No
NRII2 3:119499331-119537332 - 4965 (2) - No
GSK3B 3:119540170-119813264 - 0(1) - Yes
RGS12 4:3294755-3441640 0(1) - 31499 (3) No
HGFAC 4:3443614-3451211 -8729 (2) - 21928 (2) No
LRPAPI 4:3508103-3534286 -34964 (4) - -34964 (4) Yes
MAPKI10 4:86936276-87515284 - - 0(1) No
PTPNI3 4:87515468-87736324 - 32193 (3) -41692 (2) No
KLHLS 4:88081255-88161466 - -28170 (2) 49590 (3) Yes
HSDI7B11 4:88257762-88312538 - - -46706 (2) No
METAPI 4:99916771-99983964 - 30841 (3) - No
ADHS 4:99992132-100009952 - 4853 (1) - Yes
ADH4 4:100044808-100078949 - -30003 (2) - No
NFKBI 4:103422486-103538459 - -49200 (2) - No
PDGFC 4:157681606-157892546 - 0(1) - No
HMGCR 5:74632154-74657929 -49992 (2) - - Yes
CSNK1G3 5:122847793-122952739 0(1) - - Yes
HISTIHIC 6:26055968-26056699 36442 (6) - - No
HFE 6:26087509-26098571 0(1) - - Yes
HISTIH4C 6:26104104-26104518 -10963 (2) - - No
ORI11A1 6:29393281-29424848 - - 17853 (3) No
OR2H1 6:29424958-29432105 - - 10596 (1) No
MASIL 6:29454474-29455738 - - -11773 (2) No
HLA-G 6:29794744-29798902 - - 21684 (1) No
TUBB 6:30687978-30693203 - - 15752 (3) No
DDRI1 6:30844198-30867933 - - -45501 (1) No
SFTA2 6:30899130-30899952 - - 20172 (2) No
Céorfl5 6:31079000-31080336 49371 (8) 25077 (6) 32878 (7) No
HLA-C 6:31236526-31239907 32354 (1) - 25632 (1) No
HLA-B 6:31321649-31324965 29139 (2) 29139 (2) -49933 (2) No
LTA 6:31539831-31542101 -27032 (6) - 930 (2) No
TNF 6:31543344-31546113 -30545 (7) - =313 (1) No
LTB 6:31548302-31550299 -35503 (9) - 45839 (12) No
NCR3 6:31556672-31560762 -43873 (11) 41081 (10) 35376 (7) No
APOM 6:31620193-31625987 - -18350 (4) 39207 (17) No
ABHD16A 6:31654726-31671221 - -35150 (11) 0(1) No
Céorf25 6:31686371-31694491 - - -21177 (8) No
HSPAIA 6:31783291-31785723 - - 22713 (5) No
HSPAIB 6:31795512-31798031 48981 (9) - 39246 (7) No
NEU1 6:31825436-31830683 17537 (4) - 20671 (5) No
SLC44A44 6:31830969-31846823 1397 (2) - 4531 (2) No
EHMT2 6:31847536-31865464 0(1) - 0(1) No
C2 6:31865562-31913449 15565 (7) - -14208 (3) No
CFB 6:31895475-31919861 9153 (4) - -44121 (8) No
C4A4 6:31949801-31970458 -20787 (8) - -20787 (8) No
C4B 6:31982539-32003195 -35079 (10) - 4264 (3) No
CYP2142 6:32006042-32009447 36828 (3) - 0(1) No
TNXB 6:32008931-32083111 0(1) - -1472 (2) No
EGFLS 6:32132360-32136058 - - 48287 (8) No
AGER 6:32148745-32152101 - 37740 (4) 32244 (4) No
NOTCH4 6:32162620-32191844 - 0(1) 0(1) No
HLA-DRA 6:32407619-32412823 -48188 (3) -44404 (3) 0(1) No
HLA-DRBS5 6:32485120-32498064 - -40922 (2) - No
HLA-DRBI1 6:32546546-32557625 42432 (3) 18358 (1) 42432 (3) No
HLA-DQA2 6:32709119-32714992 -37979 (2) -39746 (2) -24862 (1) No
HLA-DOB 6:32780540-32784825 0(1) - -25250 (2) No
PSMBS8 6:32808494-32812480 -23874 (4) - - No
PSMB9 6:32811913-32827362 -27293 (5) - - No
SCUBE3 6:35182190-35220856 -49116 (2) -20049 (1) - No
KCNK17 6:39266777-39282329 -15940 (1) - - Yes
KCNK16 6:39282474-39290744 -31637 (2) - - No
VEGFA 6:43737921-43754224 - 10327 (1) 10327 (1) Yes
FRK 6:116252312-116381921 0(1) - - Yes
RSPO3 6:127439749-127518910 - 2217 (1) -47328 (1) Yes
L3MBTL3 6:130334844-130462594 - - 0(1) No
ESRI1 6:151977826-152450754 - 0(1) - No
IGF2R 6:160390131-160534539 8609 (2) - - No
SLC2241 6:160542821-160579750 0(1) - - No
SLC2242 6:160592093-160698670 19974 (1) 69 (1) - No
SLC2243 6:160769300-160876014 -46295 (2) -32178 (1) 0(1) No
LPA 6:160952515-161087407 0(1) 0(1) -45381 (2) Yes
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Druggable Genomic coordinates  Min distance (pb) to  Min distance (pb)  Min distance (pb) to Prioritised
gene (GRCh37) LDL-C assoc. to HDL-C assoc. TG assoc. (distance by GLGC
(distance rank) (distance rank) rank)
PLG 6:161123270-161174347 -40471 (2) -40809 (2) - No
MAP3K4 6:161412759-161538417 -21972 (1) - - No
GPRI146 7:1084212-1098897 - -435(2) - Yes
GPERI 7:1121844-1133451 - -38067 (3) - No
DAGLB 7:6448757-6523821 - -13853 (2) - Yes
NPCILI 7:44552134-44580914 41372 (4) - - Yes
FKBP6 7:72742167-72772634 - - 0(1) No
FZDY 7:72848109-72850450 - 5980 (2) 32656 (2) No
STXIA 7:73113536-73134002 - - -53(2) No
MET 7:116312444-116438440 - - 0(1) Yes
A0C1 7:150521715-150558592 - 0(1) - No
TNKS 8:9413424-9639856 - - 0(1) No
BLK 8:11351510-11422113 - - 0(1) No
FDFTI 8:11653082-11696818 - - -36672 (4) No
CTSB 8:11700033-11726957 - - -10805 (2) No
NAT2 8:18248755-18258728 13710 (1) - 9752 (1) Yes
LPL 8:19759228-19824769 - 46744 (1) 46744 (1) Yes
SLCI184 8:20002366-20040717 - -46760 (1) -41092 (1) Yes
CYP7A1 8:59402737-59412795 -4276 (1) - -49203 (2) Yes
GPIHBPI1 8:144295068-144299044 - -49193 (2) - Yes
ABCAl 9:107543283-107690518 0(1) 0(1) 0(1) Yes
OBP2B 9:136080664-136084630 47720 (1) - - No
RPL7A 9:136215069-136218281 -24059 (3) - - No
C90rf96 9:136243117-136271220 0(1) - - No
ADAMTS13 9:136279478-136324508 1740 (2) - - No
AKRIC3 10:5077546-5149878 - - 46395 (3) No
VIM 10:17270258-17279592 -9968 (1) - - No
ALOXS 10:45869661-45941561 - 0(1) - No
CYP26C1 10:94821021-94828454 - -15356 (2) -15356 (2) No
CYP26A1 10:94833232-94837647 - -27567 (3) -27567 (3) Yes
TECTB 10:114043493-114064793 - 0(1) 0(1) No
ADRBI 10:115803806-115806667 - -11019 (1) - No
AMPD3 11:10329860-10529126 - 0(1) - Yes
PSMAI 11:14515329-14665181 - -10866 (2) - No
LGR4 11:27387508-27494322 - - 31783 (2) No
CHSTI1 11:45670427-45687172 - 47215 (1) - No
CRY2 11:45868669-45904798 - -28960 (2) - No
F2 11:46740730-46761056 - 42729 (2) -18509 (3) No
ACP2 11:47260853-47270457 - 40910 (3) -34365 (4) No
NRIH3 11:47269851-47290396 - 20971 (2) -43363 (6) No
PSMC3 11:47440320-47447993 - 1551 (1) - No
NDUFS3 11:47586888-47606114 - -3767 (2) - No
PTPRJ 11:48002113-48189670 - 0(1) - No
FOLHI 11:49168187-49230222 - 0(1) - No
OR4A416 11:55110627-55111707 - 12013 (2) - No
OR4C16 11:55339604-55340536 - -15296 (2) - No
DAGLA 11:61447905-61514473 49826 (6) 49826 (6) 49826 (6) No
FENI1 11:61560109-61564716 15044 (3) 15044 (3) 15044 (3) No
KCNK7 11:65360326-65363467 - 27850 (4) - No
MAP3KI11 11:65365226-65382853 - 8464 (2) - No
RELA 11:65421067-65430565 - -29750 (5) - No
MOGAT2 11:75428864-75444003 - 11018 (1) - No
APOAS 11:116660083-116663136 -4483 (2) -4483 (2) -43681 (3) No
APOA4 11:116691419-116694022 -35819 (4) -35819 (4) -35819 (4) No
APOC3 11:116700422-116703788 -44822 (5) -44822 (5) -44822 (5) No
APOA1 11:116706467-116708666 -42616 (6) -38922 (6) -42616 (6) Yes
SIK3 11:116714118-116969153 0(1) 0(1) -46573 (7) No
SIDT?2 11:117049449-117068160 7406 (3) -3252(2) -23075 (2) No
PCSK7 11:117075053-117103241 0(1) -28856 (4) -48679 (4) No
BACEI 11:117156402-117186975 - 0(1) -4990 (2) No
DCPS 11:126173647-126215644 26052 (2) 12356 (2) - No
ST3GAL4 11:126225535-126310239 0(1) 0(1) - Yes
PDE3A 12:20522179-20837315 - -48421 (1) - Yes
SLCO1B1 12:21284136-21392180 - - 0(1) No
BAZ2A4 12:56989380-57030600 - - -38161 (2) No
INHBC 12:57828543-57844611 - 0(1) 0(1) No
INHBE 12:57846106-57853063 - -2057 (2) -2057 (2) No
MARS 12:57869228-57911352 - -25179 (6) -25179 (6) No
PIP4K2C 12:57984957-57997198 - 15035 (5) - No
ALDH?2 12:112204691-112247782 37809 (2) - - No
MAPKAPKS 12:112279782-112334343 5500 (1) - - No
ERP29 12:112451120-112461255 -10389 (2) 25563 (2) - No
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Druggable Genomic coordinates  Min distance (pb) to  Min distance (pb)  Min distance (pb) to Prioritised
gene (GRCh37) LDL-C assoc. to HDL-C assoc. TG assoc. (distance by GLGC
(distance rank) (distance rank) rank)
RPL6 12:112842994-112856642 -29579 (2) 49773 (2) - No
PTPNI1 12:112856155-112947717 0(1) 0(1) - No
HPD 12:122277433-122301502 - - -28342 (4) No
HCARI 12:123104824-123215390 - 0(2) - No
HCAR2 12:123185840-123187890 - 12878 (3) - No
HCAR3 12:123199303-123201439 - 0(1) - No
SCARBI1 12:125261402-125367214 - 0(1) - Yes
CBLN3 14:24895738-24900160 -12108 (2) - - No
SERPINA10 14:94749650-94759608 35884 (2) - - No
SERPINAG6 14:94770585-94789731 5761 (1) - - No
SERPINA1 14:94843084-94857030 -47592 (3) - - No
AKTI 14:105235686-105262088 - 15121 (2) - No
LTK 15:41795836-41806085 - 23145 (3) - No
TYRO3 15:41849873-41871536 - -20643 (2) - No
GANC 15:42565431-42645864 - 37923 (3) 37923 (3) No
CATSPER?2 15:43920701-43960316 - - -26883 (4) No
PDIA3 15:44038590-44065477 - - -22173 (2) No
MFAPI 15:44096690-44117000 - - 35817 (3) No
ALDHI1A2 15:58245622-58790065 - 0(1) 0(1) No
LIPC 15:58702768-58861151 - -21963 (2) -22125 (2) Yes
ADAM10 15:58887403-59042177 - -34294 (2) - No
LACTBY? 15:63413999-63434260 - -498 (1) -498 (1) Yes
PKM 15:72491370-72524164 - - 42451 (4) No
HSD3B7 16:30996519-31000473 - - 47606 (8) No
PRSS53 16:31094746-31100949 - - 41044 (7) No
VKORC1 16:31102163-31107301 - - 34692 (5) No
PRSS8 16:31142756-31147083 - - =763 (2) No
PRSS36 16:31150246-31161415 - - -8253 (3) No
SLCI1243 16:56899119-56949762 43263 (4) 43263 (4) 37253 (4) No
CETP 16:56995762-57017757 -2737 (1) -2737 (1) -8747 (1) Yes
CCL22 16:57392684-57400102 - -38750 (2) - No
CES3 16:66995140-67009051 - 42996 (3) - No
CES44 16:67022492-67043661 - 8386 (1) - No
HSDI11B2 16:67464555-67471456 - -45403 (4) - No
AGRP 16:67516474-67517716 - 37623 (2) - No
GFOD2 16:67708434-67753324 - 5454 (2) - No
PSKH1 16:67927175-67963581 - -42556 (7) - No
CTRL 16:67961543-67966317 - 27326 (6) - No
PSMBI10 16:67968405-67970990 - 22653 (4) - No
LCAT 16:67973653-67978034 - 46961 (6) - Yes
SLCI1244 16:67977377-68003504 - 21491 (4) - No
DPEP3 16:68009566-68014732 - 10263 (3) - No
DPEP2 16:68021297-68034489 - 0(2) - No
PLA2G15 16:68279207-68294961 - 0(1) - No
DHODH 16:72042487-72058954 -34262 (1) - 49139 (6) No
HP 16:72088491-72094954 0(2) - 13139 (3) No
ASGRI1 17:7076750-7082883 6040 (2) - - No
AURKB 17:8108056-8113918 47231 (5) - - No
CACNBI 17:37329709-37353956 - 35453 (4) - No
RPLI19 17:37356536-37360980 - 28429 (3) - No
CDKI2 17:37617764-37721160 - 18114 (1) - No
PNMT 17:37824234-37826728 - 31950 (4) - No
ERBB2 17:37844167-37886679 - 0(1) - No
PSMD3 17:38137050-38154213 - -15057 (2) - No
CSF3 17:38171614-38174066 - -49621 (6) - No
SOST 17:41831099-41836156 - - 42010 (4) No
DUSP3 17:41843489-41856356 - - 21810 (3) No
CD300LG 17:41924516-41940997 - 0(1) 0(1) No
PPY 17:42018172-42019836 - -39416 (5) - No
WNT9B 17:44910567-44964096 - 46625 (4) - No
MYL4 17:45277812-45301045 12133 (1) - - No
ITGB3 17:45331212-45421658 3457 (2) - - No
NPEPPS 17:45600308-45700642 49954 (3) - 49954 (3) No
APOH 17:64208151-64252643 0(1) - - No
ITGB4 17:73717408-73753899 28292 (4) - - No
GALKI 17:73747675-73761792 20399 (3) - - No
H3F3B 17:73772515-73781974 217 (2) - - No
RPL17 18:47014851-47018906 - 10670 (1) - No
LIPG 18:47087069-47119272 37732 (1) 40585 (1) - Yes
INSR 19:7112266-7294045 - - 0(1) Yes
MAP2K7 19:7968728-7979363 - 0(1) - No
NDUFA7 19:8373490-8386280 - 46916 (6) - No
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Druggable Genomic coordinates  Min distance (pb) to  Min distance (pb)  Min distance (pb) to Prioritised
gene (GRCh37) LDL-C assoc. to HDL-C assoc. TG assoc. (distance by GLGC
(distance rank) (distance rank) rank)
RPS28 19:8386042-8388224 - 44972 (5) - No
ANGPTL4 19:8428173-8439257 - 2522 (1) - Yes
ADAMTS10 19:8645126-8675620 - -34232 (3) -34232 (3) No
TMEDI1 19:10943114-10946994 44833 (4) - - No
CARM1 19:10982189-11033453 0(1) - - No
SMARCA4 19:11071598-11176071 0(1) - - No
LDLR 19:11200038-11244492 0(1) - - Yes
NCAN 19:19322782-19363042 20713 (4) - 20713 (4) No
HAPLN4 19:19366450-19373605 10150 (3) - 10150 (3) No
TSSK6 19:19623227-19626838 30794 (6) - 30794 (6) No
NDUFAI3 19:19626545-19644285 13347 (4) - 13347 (4) No
CILP2 19:19649057-19657468 164 (1) - 164 (1) Yes
LPAR2 19:19734477-19739739 -12501 (2) - -12501 (2) No
PEPD 19:33877856-34012700 - 0(1) 0(1) Yes
SCNIB 19:35521588-35531352 - - 25392 (2) No
HPN 19:35531410-35557475 - - 0(1) No
PVR 19:45147098-45166850 28463 (3) - - No
CEACAM16 19:45202421-45213986 -7108 (1) 33641 (3) 33641 (3) No
BCAM 19:45312328-45324673 4541 (1) 4541 (1) 46165 (4) No
PVRL2 19:45349432-45392485 3134 (2) 3134 (2) 3134 (2) No
APOE 19:45409011-45412650 -13392 (3) -13392 (3) -13392 (3) Yes
APOC1 19:45417504-45422606 -21885 (4) -21885 (4) -21885 (4) No
APOC4- 19:45445495-45452822 -49876 (5) -49876 (5) -49876 (5) No
APOC2
APOC2 19:45449243-45452822 -47577 (7) -49899 (7) 37606 (5) No
MARK4 19:45582546-45808541 0(2) - - No
GIPR 19:46171502-46186982 20828 (4) - - No
DMPK 19:46272975-46285810 -31643 (4) - - No
SAE1 19:47616531-47713886 - -26636 (2) -26636 (2) No
FGF21 19:49258816-49261587 -44542 (7) - - No
BCAT?2 19:49298319-49314286 -48080 (7) - - No
FLT3LG 19:49977464-49989488 - - 38675 (7) No
RPL13A 19:49990811-49995565 - - 32598 (6) No
RPS11 19:49999622-50002946 - - 25217 (4) No
FCGRT 19:50010073-50029590 - - 0(1) No
FPR1 19:52248425-52307363 - 15725 (2) - No
FPR2 19:52255279-52273779 - 49309 (4) - No
FPR3 19:52298416-52329442 - 0(1) - No
RPS9 19:54704610-54752862 - 39907 (5) - No
LILRAG6 19:54720737-54746649 - 46120 (6) - No
LILRBS5 19:54754263-54761164 - 31605 (4) - No
LILRB2 19:54777675-54785039 - 42441 (5) - No
LILRA3 19:54799854-54809952 - 17528 (3) - Yes
LILRAS 19:54818353-54824409 - 3071 (1) - No
LILRA4 19:54844456-54850421 - -16976 (2) - No
LAIRI 19:54865362-54882165 - -37882 (4) - No
GGT7 20:33432523-33460663 - -23173 (2) - No
GSS 20:33516236-33543620 - 0(1) 0(1) No
MYH7B 20:33563206-33590240 - -33440 (3) -37799 (3) No
EDEM?2 20:33703167-33865928 - 0(1) - No
PROCR 20:33759876-33765165 - 12818 (2) - No
MMP24 20:33814457-33864801 - -36474 (3) - No
GDF5 20:34021145-34042568 3933 (2) - - No
TOP1 20:39657458-39753127 0(1) - - Yes
EMILIN3 20:39988606-39995467 -20655 (2) - - No
HNF44 20:42984340-43061485 0(1) 0(1) - Yes
TNNC2 20:44451853-44462384 - -24435 (4) -24435 (4) No
CTSA 20:44518783-44527459 - 4796 (2) 20734 (3) No
PLTP 20:44527399-44540794 - 0(1) 7399 (1) Yes
MMP9 20:44637547-44645200 - 0(1) 0(1) No
SLCI245 20:44650356-44688784 - -5391 (2) -5391 (2) No
CD40 20:44746911-44758502 - -12540 (1) - No
PPIL2 22:22006559-22054304 - -23667 (5) - No
PLA2G6 22:38507502-38601697 - - 0(1) Yes
KCNJ4 22:38822332-38851205 - - 46846 (4) No
PPARA 22:46546424-46639653 0(1) - - Yes

For each druggable gene included in the analysis, the minimum distance from the gene to the variant (variants located
within a gene were given a distance of 0bp and distance to variants upstream the gene are indicated with a negative value),

a gene distance rank value according to their base pair distance, and indicated the druggable genes prioritized by GLGC

are provided. OR = odds ratio per 1-SD increase in LDL-C/HDL-C or triglycerides; CI = confidence interval.
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Appendix 7.B. Univariable drug target MR estimates in the discovery analysis.

Druggable Genomic coordinates LDL-C HDL-C Triglycerides
gene (OR, 95% CI) (OR, 95% CI) (OR, 95% CI)
ABCAI chr9:107543283-107690518 2.05 (1.34,3.15)* 1.41 (0.66, 3.0) 2.4 (1.29,4.49)*
ABCBI11 chr2:169779448-169887832 1.51 (0.7, 3.25) - -

ABHD16A4 chr6:31654726-31671221 0.7 (0.14, 3.54) 1.06 (0.21,5.4) 0.94 (0.33, 2.68)
ABHD6 chr3:58223233-58281420 2.25(0.87,5.87) - -

ACP2 chr11:47260853-47270457 - 1.1 (1.0, 1.2)* 0.86 (0.58, 1.26)
ADAMI10 chr15:58887403-59042177 - 1.87(0.94, 3.75) -

ADAMTS10 chr19:8645126-8675620 - 0.43 (0.16, 1.17) 3.1(1.21,7.98)*
ADAMTS13 chr9:136279478-136324508 11.18 (4.37, 28.59)*F - -

ADH4 chr4:100044808-100078949 - 1.05 (0.39, 2.85) -

ADHS5 chr4:99992132-100009952 - 1.05 (0.39, 2.85) -

ADRBI chr10:115803806-115806667 - 1.67 (0.58, 4.8) -

AGER chr6:32148745-32152101 1.47 (0.71, 3.06) 1.82 (1.08, 3.04)* 1.07 (0.15, 7.64)
AGRP chr16:67516474-67517716 - 0.98 (0.66, 1.45) -

AKRIC3 chr10:5077546-5149878 - - 1.05 (0.49, 2.25)
AKTI chr14:105235686-105262088 - 0.49 (0.18, 1.36) -

ALDHIA2 chr15:58245622-58790065 - 0.89 (0.81, 0.99)* 1.28 (1.07, 1.54)*f
ALDH?2 chr12:112204691-112247782 0.14 (0.07, 0.29)* - -

ALOXS chr10:45869661-45941561 - 1.74 (1.18, 2.58)* -

AMPD2 chrl:110158726-110174673 2.51(1.53,4.11)* 2.97 (0.88, 10.06) -

AMPD3 chr11:10329860-10529126 - 0.5(0.27,0.92)* -

ANGPTL3 chr1:63063158-63071830 1.21 (1.11, 1.33)* 1.61(0.52,5.01) 1.16 (1.08, 1.25)*
ANGPTL4 chr19:8428173-8439257 - 0.48 (0.28, 0.83)*f 3.38 (1.02, 11.22)*f
A0CI chr7:150521715-150558592 - 0.81(0.46, 1.41) -

APOAI chr11:116706467-116708666 1.88 (1.49, 2.36)*f 0.84 (0.63, 1.11) 1.25 (1.12, 1.4)*}
APOA4 chr11:116691419-116694022 1.51 (1.23, 1.86)*f 0.53 (0.38,0.74)* 1.27 (1.14, 1.43)*f
APOAS chr11:116660083-116663136 2.05 (1.4, 3.02)*f 0.72 (0.6, 0.87)*f 1.21 (1.12, 1.31)*f
APOB chr2:21224301-21266945 1.5 (1.18, 1.9)*f 1.23(0.72,2.12) 0.53 (0.29, 0.98)*f
APOCI1 chr19:45417504-45422606 1.31(1.22, 1.41)*f 0.39 (0.25, 0.59)* 0.51(0.17, 1.47)
APOC2 chr19:45449243-45452822 1.2 (0.87, 1.66) 0.55(0.26, 1.14) 1.29 (0.31, 5.39)
APOC3 chr11:116700422-116703788 2.04 (1.72, 2.42)*f 0.67 (0.58, 0.78)* 1.26 (1.12, 1.41)*f
jﬁgg‘; chr19:45445495-45452822 1.18 (0.86, 1.63) 0.54 (0.26, 1.12) 1.66 (0.9, 3.07)
APOE chr19:45409011-45412650 1.3 (1.2, 1.41)*f 0.39 (0.26, 0.59)* 0.5(0.17, 1.45)
APOH chr17:64208151-64252643 1.52 (0.76, 3.02) 0.66 (0.29, 1.53) -

APOM chr6:31620193-31625987 2.32(0.82, 6.58) 1.06 (0.21,5.4) 0.96 (0.36, 2.6)
ASGR1 chr17:7076750-7082883 1.39 (0.55, 3.49) - -

ATG4C chr1:63249806-63331184 0.64 (0.31,1.33) - 0.94 (0.55, 1.61)
ATRAID chr2:27434895-27440046 - - 0.85(0.71, 1.02)
AURKB chr17:8108056-8113918 1.35(0.64, 2.84) - -

BACEI1 chr11:117156402-117186975 - 2.72 (1.68, 4.39)* 0.82 (0.04, 16.33)
BAZ24 chr12:56989380-57030600 - - 0.56 (0.2, 1.63)
BCAM chr19:45312328-45324673 1.09 (0.71, 1.69) 0.4 (0.18, 0.87)* 0.63 (0.4, 0.97)*
BCAT2 chr19:49298319-49314286 0.94 (0.48, 1.83) - -

BLK chr8:11351510-11422113 - - 0.46 (0.31,0.7)*
BMP8A chr1:39957318-39991607 - 0.52 (0.4, 0.69)* 1.8 (0.6, 5.46)

c2 chr6:31865562-31913449 1.62 (0.93, 2.8) 1.85 (0.66, 5.17) 0.21 (0.07, 0.6)*
C44 chr6:31949801-31970458 2.26 (0.88, 5.85) 1.04 (0.21, 5.12) 0.22 (0.08, 0.65)*
C4B chr6:31982539-32003195 2.41 (1.6, 3.63)* 1.23(0.33,4.63) 2.28 (1.11, 4.68)*
Céorfl5 chr6:31079000-31080336 1.62 (1.23,2.14)* 1.08 (0.43,2.72) 1.5 (1.0, 2.25)*
Céorf25 chr6:31686371-31694491 0.7 (0.14, 3.54) - 1.26 (0.43, 3.69)
CYorf96 chr9:136243117-136271220 5.77 (2.71, 12.31)*F - -

CACNBI chr17:37329709-37353956 - 0.38 (0.2, 0.72)* -

CAD chr2:27440258-27466811 - - 1.01 (0.85, 1.19)
CAMKV chr3:49895421-49907655 - 0.18 (0.1, 0.31)* -

CARM1 chr19:10982189-11033453 2.27 (1.68, 3.05)*f - -

CATSPER2 chr15:43920701-43960316 - - 1.05 (0.46, 2.37)
CBLN3 chr14:24895738-24900160 1.25(0.61, 2.54) - -

CCL22 chr16:57392684-57400102 - 0.37(0.11, 1.22) -

CD300LG chr17:41924516-41940997 - 1.04 (0.57, 1.91) 1.58 (0.58, 4.35)
CD40 chr20:44746911-44758502 - 1.32 (0.46, 3.77) 0.75(0.2,2.72)
CDK12 chr17:37617764-37721160 - 0.19 (0.0, 37.54) -

CEACAMI16  chr19:45202421-45213986 1.66 (1.31, 2.11)*f 0.46 (0.27, 0.79)* 0.56 (0.25,1.27)
CELSR2 chr1:109792641-109818372 1.97 (1.78, 2.18)*f 0.06 (0.04, 0.09)* -

CES3 chr16:66995140-67009051 - 1.15 (0.6, 2.18) -

CES4A4 chr16:67022492-67043661 - 1.15 (0.6, 2.18) -
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Druggable Genomic coordinates LDL-C HDL-C Triglycerides
gene (OR, 95% CI) (OR, 95% CI) (OR, 95% CI)
CETP chr16:56995762-57017757 1.49 (1.29, 1.72)* 0.91 (0.87, 0.95)*f 1.98 (1.63, 2.4)*}
CFB chr6:31895475-31919861 1.61 (0.94,2.77) 1.85 (0.66, 5.16) 0.46 (0.24,0.91)*
CGREF1I1 chr2:27321757-27341995 - - 0.94 (0.66, 1.36)
CHSTI1 chr11:45670427-45687172 - 1.15(0.45,2.94) -

CILP2 chr19:19649057-19657468 1.19 (1.01, 1.39)* - 1.18 (1.0, 1.39)*f
CPS1 chr2:211342406-211543831 - 2.05 (1.1, 3.82)* -

CRY2 chr11:45868669-45904798 - 0.71 (0.48, 1.04) -

CSFI chr1:110452864-110473614 - 0.57(0.28, 1.15) -

CSF3 chr17:38171614-38174066 0.3(0.12,0.74)* 0.87 (0.4, 1.89) -

CSNK1G3 chr5:122847793-122952739 0.33 (0.2, 0.55)* - -

CTRL chr16:67961543-67966317 - 1.11 (0.91, 1.35) -

CTSA chr20:44518783-44527459 - 1.89 (1.3, 2.75)* 0.12 (0.05, 0.28)*
CTSB chr8:11700033-11726957 - - 0.65 (0.44, 0.98)*
CYP21A2 chr6:32006042-32009447 2.34 (1.49, 3.66)* 1.23(0.33,4.63) 2.22 (1.03,4.81)*
CYP26A1 chr10:94833232-94837647 7.25 (4.25,12.37)* 0.22 (0.09, 0.51)* 4.35(2.79, 6.79)*
CYP26C1 chr10:94821021-94828454 7.25 (4.23,12.42)* 0.22 (0.09, 0.51)* 4.36 (2.79, 6.83)*
CYP741 chr8:59402737-59412795 0.95(0.47,1.91) - 0.86 (0.33,2.28)
DAGLA chr11:61447905-61514473 1.67 (1.21, 2.29)* 0.49 (0.1, 2.47) 0.63 (0.53, 0.75)*
DAGLB chr7:6448757-6523821 - 0.35(0.22, 0.54)* -

DCPS chr11:126173647-126215644 4.96 (1.89, 13.06)* 0.29 (0.13, 0.66)* -

DDRI chr6:30844198-30867933 0.95 (0.5, 1.8) 1.62 (0.42, 6.27) 0.99 (0.37,2.67)
DHODH chr16:72042487-72058954 0.66 (0.44, 1.0) - 7.42 (2.32,23.71)*
DMPK chr19:46272975-46285810 2.78 (1.64,4.73)* 0.4 (0.11, 1.45) -

DPEP2 chr16:68021297-68034489 - 1.36 (0.98, 1.89) -

DPEP3 chr16:68009566-68014732 - 1.36 (0.98,1.9) -

buUsP3 chr17:41843489-41856356 - 0.93 (0.25, 3.55) 1.03 (0.39, 2.69)
EDEM?2 chr20:33703167-33865928 2.37(0.76,7.37) 0.0 (0.0, 0.0)* -

EGFLS chr6:32132360-32136058 1.47 (0.71, 3.06) - 1.96 (0.97, 3.97)
EHMT2 chr6:31847536-31865464 3.32(1.25,8.83)* 2.66 (0.73, 9.69) 0.23 (0.03, 1.56)
EMILINI chr2:27301435-27309271 - - 0.73 (0.34, 1.57)
EMILIN3 chr20:39988606-39995467 2.51(1.29,4.86)* - -

ERBB2 chr17:37844167-37886679 - 2.82(0.25,31.53) -

ERP29 chr12:112451120-112461255 0.11 (0.06, 0.18)* 0.04 (0.02, 0.13)* -

ESRI1 chr6:151977826-152450754 - 2.11(1.13,3.93)* -

F2 chr11:46740730-46761056 0.17 (0.05, 0.59)* 0.57(0.13,2.43) 0.35(0.13, 0.94)*
FCGRT chr19:50010073-50029590 - - 1.95(0.75, 5.07)
FDFTI chr8:11653082-11696818 - - 0.88 (0.44,1.73)
FENI chr11:61560109-61564716 2.02 (0.99, 4.12) 0.54 (0.2, 1.47) 1.13(0.71, 1.8)
FGF21 chr19:49258816-49261587 1.06 (0.79, 1.43) - 1.62 (0.46, 5.78)
FKBP6 chr7:72742167-72772634 - - 0.52 (0.2, 1.34)
FLT3LG chr19:49977464-49989488 - - 1.95(0.75, 5.07)
FNI chr2:216225163-216300895 0.04 (0.01, 0.22)* - -

FOLHI1 chr11:49168187-49230222 - 0.76 (0.36, 1.61) -

FPR1 chr19:52248425-52307363 - 1.58 (1.11, 2.24)* -

FPR2 chr19:52255279-52273779 - 1.89 (1.24,2.87)* -

FPR3 chr19:52298416-52329442 - 1.58 (1.1, 2.26)* -

FRK chr6:116252312-116381921 0.76 (0.48, 1.21) 0.57(0.17, 1.94) -

FZD9 chr7:72848109-72850450 - 1.13 (0.52, 2.46) 1.08 (0.72, 1.61)
GALKI chr17:73747675-73761792 3.38 (1.46, 7.85)* - -

GALNT2 chr1:230193536-230417870 - 0.56 (0.42, 0.74)* 2.19 (1.48,3.25)*
GANC chr15:42565431-42645864 - 0.72 (0.31, 1.67) 1.32 (0.65,2.71)
GCKR chr2:27719709-27746554 1.49 (0.88, 2.51) - 0.9 (0.45, 1.83)
GDF5 chr20:34021145-34042568 2.71(0.77,9.5) - -

GDF7 chr2:20866424-20873418 0.96 (0.6, 1.53) - 1.33(0.63,2.8)
GFOD2 chr16:67708434-67753324 - 1.42 (1.01, 2.0)* -

GGT7 chr20:33432523-33460663 - 0.43 (0.15,1.23) 2.61 (1.1, 6.18)*
GIPR chr19:46171502-46186982 2.72 (1.06, 7.02)* 0.89 (0.37,2.12) 4.17 (1.16, 15.02)*
GPERI chr7:1121844-1133451 2.81(0.85,9.29) 2.12 (0.84,5.34) -

GPIHBPI1 chr8:144295068-144299044 - 1.82(1.23,2.71)* -

GPRI146 chr7:1084212-1098897 2.81(0.85,9.29) 2.12 (0.85,5.33) -

GPR61 chr1:110082494-110091028 1.97 (1.56, 2.5)*F 3.02 (0.77, 11.91) 5.14 (1.43, 18.48)*
GSK3B chr3:119540170-119813264 - 0.45 (0.16, 1.25) -

GSK3B chr3:119540170-119813264 - 0.45 (0.16, 1.25) -

GSS chr20:33516236-33543620 - 0.57 (0.2, 1.65) 2.25(1.05, 4.85)*
GSTM1 chr1:110230436-110251661 3.28 (1.83,5.87)* - -

GSTM?2 chr1:110210644-110252171 3.28 (1.83, 5.89)* - -

GSTM3 chr1:110276554-110284384 0.06 (0.0, 0.79)* - -

GSTM4 chr1:110198703-110208118 3.41 (1.54,7.53)* 2.97 (0.88, 10.06) -

GSTM5 chr1:110254864-110318050 0.06 (0.0, 0.84)* - -
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Druggable Genomic coordinates LDL-C HDL-C Triglycerides
gene (OR, 95% CI) (OR, 95% CI) (OR, 95% CI)
H3F3B chr17:73772515-73781974 3.38 (1.46, 7.85)* - -

HAPLN4 chr19:19366450-19373605 1.06 (0.91, 1.22) - 1.07 (0.93, 1.25)
HCARI chr12:123104824-123215390 - 0.99 (0.68, 1.44) -

HCAR? chr12:123185840-123187890 - 0.85 (0.52, 1.38) -

HCAR3 chr12:123199303-123201439 - 0.85 (0.52, 1.39) -

HDGF chrl:156711899-156736717 - 1.18 (0.44, 3.19) -

HFE chr6:26087509-26098571 1.92 (0.77, 4.83) 0.81(0.18, 3.61) -

HGFAC chr4:3443614-3451211 2.07 (1.35,3.16)* - 1.97 (1.34, 2.89)*
HISTIHIC  chr6:26055968-26056699 1.83 (0.79, 4.25) 0.84 (0.18, 4.01) -

HISTIH4C  chr6:26104104-26104518 1.92 (0.77, 4.83) 0.81(0.18, 3.61) -

HLA-B chr6:31321649-31324965 0.31 (0.08, 1.16) 1.81(0.84, 3.88) 1.8 (1.46, 2.22)*
HLA-C chr6:31236526-31239907 1.47 (0.06, 35.1) 1.73 (0.91, 3.28) 1.06 (0.8, 1.4)
HLA-DOB chr6:32780540-32784825 3.57 (2.2, 5.78)* 1.06 (0.31, 3.59) 1.31(0.81,2.11)
HLA-DQA2  chr6:32709119-32714992 2.95 (2.41, 3.6)* 2.23(1.19, 4.19)* 1.17 (0.82, 1.68)
HLA-DRA chr6:32407619-32412823 2.29 (1.55,3.37)* 1.2 (0.78, 1.85) 2.34 (1.41, 3.86)*
HLA-DRBI  chr6:32546546-32557625 1.37(0.97, 1.93) 0.92 (0.6, 1.41) 1.44 (0.63, 3.32)
HLA-DRBS  chr6:32485120-32498064 2.75(1.13, 6.7)* 0.8 (0.12, 5.14) -

HLA-G chr6:29794744-29798902 1.39 (0.44, 4.38) - 1.33(0.41, 4.3)
HMGCR chr5:74632154-74657929 1.22 (1.03, 1.45)* - -

HNF4A chr20:42984340-43061485 1.51(0.67, 3.38) 1.18 (0.87, 1.6) -

HP chr16:72088491-72094954 1.1 (0.88, 1.38) - 7.42 (2.32,23.71)*
HPD chrl12:122277433-122301502 - 1.81 (0.68, 4.83) 0.38 (0.12, 1.16)
HPN chr19:35531410-35557475 - - 0.61 (0.24, 1.51)
HSD11B2 chr16:67464555-67471456 - 0.58 (0.31, 1.1) -

HSD17BI11 chr4:88257762-88312538 - - 1.36 (0.9, 2.05)
HSD3B7 chr16:30996519-31000473 - - 1.32(0.63, 2.78)
HSPAIA chr6:31783291-31785723 10.64 (2.34, 48.34)* - 1.5 (0.44, 5.09)
HSPAIB chr6:31795512-31798031 4.6 (1.61,13.1)* - 0.02 (0.0, 2.7)
IGF2R chr6:160390131-160534539 456 (2.73, 7.61)* - 553222;51025,33’
INHBC chr12:57828543-57844611 - 0.64 (0.41, 1.0)* 1.95 (0.99, 3.84)
INHBE chr12:57846106-57853063 - 0.58 (0.35, 0.97)* 1.95 (1.0, 3.81)*
INSR chr19:7112266-7294045 - 0.69 (0.47, 1.04) 1.15 (0.83, 1.62)
ITGB3 chr17:45331212-45421658 1.64 (1.06, 2.52)* 2.79 (0.81, 9.62) -

ITGB4 chr17:73717408-73753899 3.38 (1.46, 7.85)* - -

ITIHI chr3:52811603-52826078 2.07 (0.59, 7.23) 3.11(0.85, 11.31) -

ITIH3 chr3:52828784-52843025 2.07 (0.59, 7.23) 2.75(0.81, 9.38) -

ITIH4 chr3:52846991-52865495 2.07 (0.59, 7.23) 2.75(0.81, 9.38) -

KCNJ4 chr22:38822332-38851205 - - 0.45 (0.16, 1.3)
KCNK16 chr6:39282474-39290744 1.13 (0.42, 3.04) - -

KCNK17 chr6:39266777-39282329 2.89 (1.46, 5.74)* - -

KCNK7 chr11:65360326-65363467 - 0.09 (0.03, 0.3)* 16.79 (4.99, 56.51)*
KHK chr2:27309615-27323640 - - 0.74 (0.41, 1.34)
KLHLS chr4:88081255-88161466 0.96 (0.31,2.93) 0.98 (0.47, 2.05) 1.15 (0.95, 1.41)
L3MBTL3 chr6:130334844-130462594 - - 1.54 (0.57, 4.14)
LACTB chr15:63413999-63434260 - 0.64 (0.48, 0.86)* 1.43 (0.87, 2.36)
LAIRT chr19:54865362-54882165 - 1.53 (0.87, 2.69) -

LCAT chr16:67973653-67978034 - 1.11 (0.92, 1.34) -

LCT chr2:136545410-136594750 0.61 (0.23, 1.58) - -

LDLR chr19:11200038-11244492 1.37(0.98, 1.93) 0.04 (0.01, 0.34)* -

LGR4 chr11:27387508-27494322 - - 4.07 (2.03, 8.16)*
LILRA3 chr19:54799854-54809952 - 0.76 (0.44, 1.33) -

LILRA4 chr19:54844456-54850421 - 0.87 (0.44, 1.69) -

LILRAS chr19:54818353-54824409 - 0.8 (0.45, 1.43) -

LILRAG6 chr19:54720737-54746649 - 0.96 (0.65, 1.41) -

LILRB2 chr19:54777675-54785039 - 0.51 (0.27, 0.96)* -

LILRBS chr19:54754263-54761164 - 0.96 (0.65, 1.41) -

LIPC chr15:58702768-58861151 - 0.99 (0.89, 1.11) 0.91 (0.44, 1.86)
LIPG chr18:47087069-47119272 0.41 (0.25, 0.67)* 0.95 (0.82, 1.1) -

LPA chr6:160952515-161087407 13.5 (7.17, 25.42)* 21.73 (4.69, 100.69)* 3.77 (1.78, 7.99)*
LPAR2 chr19:19734477-19739739 1.48 (1.22, 1.8)* - 1.62 (139, 1.9)*
LPL chr8:19759228-19824769 - 0.63 (0.49, 0.82)* 1.68 (1.46, 1.92)*
LRPAPI chr4:3508103-3534286 5.03 (1.74, 14.56)* - 2.59 (1.6, 4.2)*
LTA chr6:31539831-31542101 2.03 (1.04, 3.97)* - 1.22 (0.78, 1.9)
LTA chr6:31539831-31542101 2.03 (1.04, 3.97)* - 1.22 (0.78, 1.9)
LTB chr6:31548302-31550299 2.01 (1.03, 3.93)* 1.2 (0.44, 3.25) 1.11 (0.76, 1.62)
LTK chr15:41795836-41806085 - 0.8 (0.49, 1.29) -

MAP2K7 chr19:7968728-7979363 - 1.24 (0.51, 3.02) 0.73 (0.2, 2.71)
MAP3K11 chr11:65365226-65382853 - 0.09 (0.03, 0.3)* 16.79 (4.99, 56.51)*
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Druggable Genomic coordinates LDL-C HDL-C Triglycerides
gene (OR, 95% CI) (OR, 95% CI) (OR, 95% CI)
MAP3KI19 chr2:135722061-135805038 1.21(0.53,2.8) - -

MAP3K4 chr6:161412759-161538417 2.89 (1.75, 4.78)* - -

MAPK10 chr4:86936276-87515284 - 0.75 (0.47, 1.19) 1.22 (0.53,2.77)
MAPKAPKS5  chr12:112279782-112334343 0.26 (0.12, 0.57)* - -

MARK4 chr19:45582546-45808541 1.02 (0.73, 1.41) 0.72 (0.18, 2.87) -

MARS chr12:57869228-57911352 - 0.63 (0.39,1.03) 1.95 (1.0, 3.83)
MASIL chr6:29454474-29455738 - - 1.32 (0.62, 2.83)
MET chr7:116312444-116438440 - 0.66 (0.43,1.01) 1.09 (0.42, 2.87)
METAPI chr4:99916771-99983964 - 1.05 (0.39, 2.85) -

MFAPI chr15:44096690-44117000 - 0.72 (0.24,2.17) 1.33(0.56, 3.19)
MMP24 chr20:33814457-33864801 2.37(0.76,7.37) 1.56 (0.93, 2.63) -

MMP9 chr20:44637547-44645200 - 1.07 (0.14, 8.55) 0.46 (0.24, 0.85)*
MOGAT2 chr11:75428864-75444003 - 0.96 (0.43,2.14) -

MSTIR chr3:49924435-49941299 - 0.18 (0.11,0.31)* -

MYH7B chr20:33563206-33590240 - 0.5(0.19, 1.3) 2.25(1.05, 4.85)*
MYL4 chr17:45277812-45301045 2.05(0.77, 5.49) - -

NAT2 chr8:18248755-18258728 3.37(2.07, 5.49)* - 3.33(1.94,5.71)*
NCAN chr19:19322782-19363042 1.04 (0.9, 1.2) - 1.1 (0.86, 1.39)
NCR3 chr6:31556672-31560762 2.15 (1.09, 4.25)* 1.3 (0.46, 3.71) 1.03 (0.69, 1.55)
NDUFAI3 chr19:19626545-19644285 1.63 (1.13, 2.35)* - 1.18 (1.0, 1.39)*f
NDUFA7 chr19:8373490-8386280 - 0.57 (0.3, 1.07) -

NDUFS3 chr11:47586888-47606114 - 1.18 (0.83, 1.69) -

NEK4 chr3:52744800-52804965 1.58 (0.48, 5.24) 1.28 (0.43,3.77) -

NEUI chr6:31825436-31830683 3.32(1.24, 8.84)* 2.66 (0.73, 9.69) 0.18 (0.02, 1.59)
NFKBI chr4:103422486-103538459 - 1.25 (0.5, 3.08) -

NISCH chr3:52489134-52527087 - 0.57 (0.35,0.93)* 1.16 (0.31, 4.34)
NOTCH4 chr6:32162620-32191844 1.47(0.7,3.07) 1.9 (1.17,3.1)* 0.87(0.67,1.13)
NPCILI chr7:44552134-44580914 2.01 (1.48,2.73)*f - 2.56 (0.75, 8.68)
NPEPPS chr17:45600308-45700642 1.43 (0.67, 3.07) 3.28 (0.96, 11.23) 0.6 (0.22, 1.63)
NROB2 chr1:27237980-27240457 1.38 (0.6, 3.18) 0.67 (0.27, 1.64) 1.91(0.71, 5.17)
NRIH3 chr11:47269851-47290396 - 1.07 (0.97, 1.18) 0.86 (0.58, 1.27)
NRI1I2 chr3:119499331-119537332 - 0.43 (0.17, 1.08) -

NRBPI1 chr2:27650657-27665126 - - 0.89 (0.72, 1.1)
OBP2B chr9:136080664-136084630 0.47 (0.06, 3.46) - -

ORI11A1 chr6:29393281-29424848 - - 2.42(0.53,11.09)
OR2HI1 chr6:29424958-29432105 - - 2.24 (0.55,9.16)
OR4A416 chr11:55110627-55111707 - 0.83 (0.36, 1.93) -

OR4C16 chr11:55339604-55340536 - 0.76 (0.32, 1.84) -

PBRM1 chr3:52579368-52719933 1.58 (0.48, 5.24) 0.77 (0.41, 1.44) 2.21(0.66, 7.34)
PCSK7 chr11:117075053-117103241 1.62 (0.85,3.11) 0.78 (0.51, 1.21) 2.57(0.09, 73.1)
PCSK9 chr1:55505221-55530525 1.6 (1.45, 1.77)*f - -

PDE3A chr12:20522179-20837315 - 0.79 (0.4, 1.58) -

PDGFC chr4:157681606-157892546 - 0.52 (0.19, 1.39) -

PDIA3 chr15:44038590-44065477 - - 1.33 (0.56, 3.19)
PEPD chr19:33877856-34012700 - 0.36 (0.25,0.51)* 3.41 (1.92, 6.08)*
PIP4K2C chr12:57984957-57997198 - 1.14 (0.27, 4.85) -

PKM chr15:72491370-72524164 - - 1.54 (0.59, 4.03)
PLA2G15 chr16:68279207-68294961 - 1.45 (1.06, 1.97)* -

PLA2G6 chr22:38507502-38601697 - 1.01 (0.57, 1.78) 1.09 (0.4, 3.0)
PLG chr6:161123270-161174347 18.35 (5.47, 61.6)* 5.48 (0.07, 456.86) 0.75 (0.18, 3.14)
PLTP chr20:44527399-44540794 - 0.67 (0.1, 4.53) 0.25 (0.02, 2.61)
PNMT chr17:37824234-37826728 - 0.64 (0.36, 1.15) -

PPARA chr22:46546424-46639653 3.77 (1.44, 9.85)* - -

PPARG chr3:12328867-12475855 1.67 (1.04, 2.68)* 0.71 (0.35, 1.48) 2.18 (1.14, 4.15)*
PPIL2 chr22:22006559-22054304 - 0.82(0.47,1.43) -

PPY chr17:42018172-42019836 - 1.34 (0.73, 2.47) 0.48 (0.13, 1.75)
PROCR chr20:33759876-33765165 - 0.0 (0.0, 0.0)* -

PRSS36 chr16:31150246-31161415 1.52 (0.43,5.39) - 1.16 (0.4, 3.32)
PRSS53 chr16:31094746-31100949 1.62 (0.45, 5.86) - 1.32(0.52, 3.35)
PRSSS chr16:31142756-31147083 1.52 (0.43,5.39) - 1.32(0.52, 3.36)
PSKH1 chr16:67927175-67963581 - 1.18 (0.92, 1.52) -

PSMAI chr11:14515329-14665181 - 1.43(0.5,4.11) -

PSMAS chr1:109941653-109969062 2.47 (1.8, 3.39)*F 0.08 (0.02, 0.29)* -

PSMBI10 chr16:67968405-67970990 - 1.11 (0.91, 1.35) -

PSMBS chr6:32808494-32812480 2.23 (0.99, 4.98) 1.06 (0.31, 3.59) 1.09 (0.6, 1.97)
PSMC3 chr11:47440320-47447993 - 1.12(0.9,1.4) 0.68 (0.18,2.53)
PSMD3 chr17:38137050-38154213 0.3(0.12,0.74)* 0.85(0.55,1.31) -

PTPNI11 chr12:112856155-112947717 3&%33?;36602%8’7230.5) 0.05 (0.02, 0.16)* -
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Druggable Genomic coordinates LDL-C HDL-C Triglycerides
gene (OR, 95% CI) (OR, 95% CI) (OR, 95% CI)
PTPNI13 chr4:87515468-87736324 - 1.03 (0.64, 1.65) 0.99 (0.7, 1.39)
PTPRJ chr11:48002113-48189670 - 0.5 (0.35,0.72)* -

PVR chr19:45147098-45166850 1.31 (1.12, 1.54)*f 0.32 (0.11,0.91)* -

PVRL2 chr19:45349432-45392485 1.43 (1.27, 1.63)*f 0.35(0.24,0.51)* 0.51(0.19,1.37)
RAF1 chr3:12625100-12705725 2.06 (1.48,2.86)* - 2.63 (0.79, 8.83)
RAF1 chr3:12625100-12705725 2.06 (1.48,2.86)* - 2.63 (0.79, 8.83)
RELA chr11:65421067-65430565 - 0.09 (0.03, 0.3)* 16.79 (4.99, 56.51)*
RGS12 chr4:3294755-3441640 1.99 (1.31, 3.03)* - 1.98 (1.35, 2.89)*
RHCE chr1:25688740-25756683 0.71 (0.4, 1.26) - -

RHD chr1:25598884-25656936 0.27 (0.07, 1.07) - -

RPL13A chr19:49990811-49995565 - - 1.95(0.75, 5.07)
RPL17 chr18:47014851-47018906 0.61(0.21, 1.81) 0.75 (0.52, 1.08) -

RPLI19 chr17:37356536-37360980 - 0.45 (0.23,0.9)* -

RPLS5 chr1:93297582-93307481 0.43 (0.27, 0.68)* - -

RPL6 chr12:112842994-112856642 0.13 (0.06, 0.28)* 0.05 (0.02, 0.16)* -

RPL7A chr9:136215069-136218281 2.29 (1.57,3.36)*f - -

RPS11 chr19:49999622-50002946 - - 1.95(0.75, 5.07)
RPS28 chr19:8386042-8388224 - 0.57 (0.3, 1.07) -

RPS6KA1 chr1:26856252-26901521 - 1.7 (0.62, 4.68) -

RPSY9 chr19:54704610-54752862 - 0.95 (0.64, 1.41) -

RSPO3 chr6:127439749-127518910 - 0.69 (0.45,1.07) 1.1 (0.74, 1.65)
SAEI chr19:47616531-47713886 - 0.23 (0.08, 0.65)* 3.19 (1.82, 5.58)*
SCARBI1 chr12:125261402-125367214 5.16 (1.85, 14.39)* 0.42 (0.14, 1.26) 8.0 (2.41,26.56)*
SCNI1B chr19:35521588-35531352 - - 0.61 (0.24, 1.51)
SCUBE3 chr6:35182190-35220856 0.2 (0.06, 0.66)* 0.0 (0.0, 0.13)* -

SEMA3F chr3:50192478-50226508 - 0.4 (0.18, 0.89)* -

SEMA3G chr3:52467069-52479101 - 1.07 (0.45, 2.55) 1.16 (0.31, 4.34)
SERPINAI chr14:94843084-94857030 0.65(0.22,1.9) - -

SERPINAIO  chr14:94749650-94759608 0.73 (0.26,2.1) - -

SERPINAG6 chr14:94770585-94789731 0.65(0.22,1.9) - -

SFN chr1:27189633-27190947 1.51 (0.67, 3.41) 0.49 (0.25,0.97)* 1.91(0.71, 5.17)
SFTA2 chr6:30899130-30899952 0.85 (0.4, 1.78) 1.97 (0.61, 6.41) 0.69 (0.25,1.9)
SIDT2 chr11:117049449-117068160 1.62 (0.85,3.11) 0.79 (0.51, 1.21) 1.03 (0.19, 5.6)
SIK3 chr11:116714118-116969153 1.15(0.57,2.31) 0.46 (0.29, 0.73)*f 1.08 (0.98, 1.18)
SLCI2A3 chr16:56899119-56949762 1.94 (1.43,2.63)* 0.89 (0.86, 0.93)*f 0.75 (0.24,2.33)
SLCI12A4 chr16:67977377-68003504 - 1.11(0.92, 1.33) -

SLCI2A5 chr20:44650356-44688784 - 2.06 (0.18, 22.96) 0.4 (0.21,0.76)*
SLCI18A1 chr8:20002366-20040717 - 0.22 (0.08,0.61)* 2.41 (1.66, 3.5)*
SLC2241 chr6:160542821-160579750 4.39 (2.62,7.36)* - 5?;2?25]715(157156);
SLC22A42 chr6:160592093-160698670 2.48 (1.85,3.32)* 2.55(1.16, 5.63)* 6.47 (2.56, 16.37)*
SLC22A43 chr6:160769300-160876014 5.13(3.44, 7.66)* 2.4(1.27,4.53)* 4.42 (2.62,7.45)*
SLC44A4 chr6:31830969-31846823 3.32(1.25,8.83)* 2.66 (0.73, 9.69) 0.23 (0.03, 1.59)
SLC546 chr2:27422455-27435826 - - 0.86 (0.71, 1.05)
SLCY941 chr1:27425306-27493472 1.03 (0.43, 2.46) 0.96 (0.22,4.13) -

SLCO1B1 chr12:21284136-21392180 - - 0.22 (0.07, 0.65)*
SMARCA4 chr19:11071598-11176071 2.22 (1.98,2.49)*f 0.01 (0.0, 0.02)* -

SOST chr17:41831099-41836156 - 0.93 (0.25, 3.55) 1.03 (0.39, 2.69)
ST3GAL4 chr11:126225535-126310239 2.25(1.16,4.39)* 0.03 (0.0, 0.17)* -

STXI1A chr7:73113536-73134002 - - 0.89 (0.62, 1.28)
TECTB chr10:114043493-114064793 0.88 (0.3, 2.64) 0.63 (0.27,1.5) 1.49 (0.9, 2.49)
TMEDI chr19:10943114-10946994 2.06 (1.5, 2.83)*F - -

TINF chr6:31543344-31546113 2.03 (1.05, 3.93)* - 1.21(0.78,1.9)
TNKS chr8:9413424-9639856 - - 0.79 (0.54, 1.16)
TNNCI chr3:52485118-52488086 - 0.57 (0.36, 0.93)* 1.73 (0.56, 5.36)
TNNC2 chr20:44451853-44462384 - 1.21 (0.69, 2.12) 0.81(0.43,1.52)
TNXB chr6:32008931-32083111 2.15(1.55,2.97)* 0.98 (0.21, 4.67) 1.64 (0.95, 2.82)
TOPI chr20:39657458-39753127 2.3(0.15, 35.62) - 16.72 (4.19, 66.8)*
TSSK6 chr19:19623227-19626838 1.64 (1.14,2.37)* - 1.17 (0.99, 1.39)
TUBB chr6:30687978-30693203 - 7.56 (1.18, 48.38)* 4.46 (2.13,9.36)*
TYRO3 chr15:41849873-41871536 - 0.8 (0.49, 1.29) -

UCN chr2:27530268-27531313 - - 1.35(0.53, 3.44)
UGTIAl chr2:234668894-234681945 1.33(0.74, 2.39) - -

UGTIAI10 chr2:234545100-234681951 1.95 (1.25, 3.05)* - -

UGTIA3 chr2:234637754-234681945 2.04 (1.27,3.25)* - -

UGTI144 chr2:234627424-234681945 2.03 (1.27,3.23)* - -

UGTIAS chr2:234621638-234681945 2.03 (1.27,3.25)* - -

UGTI1A6 chr2:234600253-234681946 1.91 (1.22, 3.0)* - -

UGTIA7 chr2:234590584-234681945 1.94 (1.22,3.07)* - -
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Druggable
gene

Genomic coordinates

LDL-C
(OR, 95% CI)

HDL-C
(OR, 95% CI)

Triglycerides
(OR, 95% CI)

UGTIAS8
UGTIA49
VEGFA
VIM
VKORC1
WNT9B

chr2:234526291-234681956
chr2:234580499-234681946
chr6:43737921-43754224
chr10:17270258-17279592
chr16:31102163-31107301
chr17:44910567-44964096

1.95 (1.23, 3.08)*
1.94 (1.24, 3.05)*
1.02 (0.34, 3.06)
1.62 (0.45, 5.86)

0.22(0.15, 0.3)*
0.77 (0.21, 2.78)

6.95(2.1,23.05)*

4.16 (2.45,7.08)*t

1.32(0.52, 3.35)

* - significant in the discovery analysis, 1- significant in both original and validation study and concordant
direction of effect. OR = odds ratio per 1-SD increase in LDL-C/HDL-C or triglycerides; CI = confidence

interval.
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Appendix 7.C. Univariable MR estimates of drug targets with lipid records in clinicaltrials.gov and/or the British National Formulary (BNF).

BNF
LDL-C HDL -C Triglycerides Clinical trial Mechanism of s
Gene (OR, 95% CI) (OR, 95% CI) (OR,95% CI)  (Record type) (l:;;‘gd Phase action Indication

Pain, Asthma, Nasal Obstruction, Glaucoma,
Obstructive Lung Diseases, Hemorrhage,
. Cardiovascular Diseases, Serum Sickness,
ADRBI1 - 1.67 (0.58, 4.8) - Outcome Side effect 4 AGONIST Eizameli] S e, Senman] Alllersls,
Urticaria, Heart Arrest, Angioedema, Sinusitis,
Sepsis, Hypotension, Orthostatic
Angina Pectoris, Hypertension, Myocardial
Infarction, Cardiovascular Diseases, Arrhythmias,
ADRBI1 - 1.67 (0.58, 4.8) - Outcome Side effect 4 ANTAGONIST Cardiac, Migraine Disorders, Open-Angle
Glaucoma, Ocular Hypertension, Glaucoma,
Heart Failure, Left Ventricular Dysfunction

. PARTIAL . .
ADRBI1 - 1.67 (0.58, 4.8) - Outcome Side effect 4 AGONIST Cardiovascular Diseases
Neoplasms, Hypogonadism, Menorrhagia,
ESR1 - 2.11(1.13,3.93)* - Outcome Side effect 4 AGONIST Primary Ovarian Insufficiency, Acne Vulgaris,
Osteoporosis, Postmenopausal
ESR1 - 2.11 (1.13,3.93)* - Outcome Side effect 4 ANTAGONIST Breast Neoplasms, Neoplasms
ESRI - 2.11 (1.13,3.93)* ; Outcome Side effect 4 MODULATOR Infertility, Dyspareunia, Breast Neoplasms,
Osteoporosis, Postmenopausal
Ankylosing Spondylitis, Crohn Disease, Psoriasis,
. Rheumatoid Arthritis, Colitis, Ulcerative
* _ B s s
TNF 2.03 (1.05, 3.93) 1.21(0.78, 1.9) Outcome Side effect 4 INHIBITOR Pt A i, T Sy Bieaas,
Juvenile Arthritis
FRK 0.76 (0.48, 1.21) 0.57 (0.17, 1.94) ; Outcome Side effect 4 INHIBITOR Neoplasms, Precursor Cell Lymphoblastic
Leukemia-Lymphoma
BLK - - 0.46 (031, 0.7)* Outcome Side effect 4 INHIBITOR LR S Bl LTS L0 B
Lymphoma, Neoplasms
DHODH 0.66 (0.44, 1.0) ; 742(232,2371)%  Adverscevent  Side effect 4 INHIBITOR Rheumatoid Arthritis, Immune System Diseases,
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BNF

Gene LDL-C HDL -C Triglycerides Clinical trial (Record Phase Mechanism of Indication
(OR, 95% CI) (OR, 95% CI) (OR, 95% CI) (Record type) type) action
Cardiovascular Diseases, Hypercholesterolemia,
Dyslipidemias, Hyperlipidemias, Coronary Artery
L Disease, Hyperlipoproteinemia Type II,
% _ -

HMGCR 1.22 (1.03, 1.45) Outcome Indication 4 INHIBITOR N ieaital Tt brsiton, 1St St
Hypertension, Stroke, Stable Angina, Angina
Pectoris, Type 2 Diabetes Mellitus
NPCILI 2.01 (1.48, 2.73)*" . 2.56 (0.75, 8.68) Outcome Indication 4 INHIBITOR Hypercholesterolemia, Hyperlipidemias,
Cardiovascular Diseases
PPARG 1.67 (1.04, 2.68)* 0.71 (0.35, 1.48) 2.18 (1.14, 4.15)* Cwmoe Irndbizsitor 4 AGONIST Ut 2 10elbsi s W i, Do i,
Colitis, Ulcerative, Cardiovascular Diseases
PPARA 3.77 (1.4, 9.85)* - . Outcome Indication 4 AGONIST Cardiovascular Diseases, Hypercholesterolemia,
Dyslipidemias
PCSK9 1.6 (1.45, 1.77)*" - ; Cwmoe Irndbizsitor 4 INHIBITOR Lt e tipeproizmE Uype L, Comom Ty Aoy
Disease, Cardiovascular Diseases
Diabetes Mellitus, Type 2 Diabetes Mellitus,
INSR - 0.69 (0.47, 1.04) 1.15(0.83, 1.62) Outcome - 4 AGONIST Type | Diabetes Mellitus
NDUFS3 - 1.18 (0.83, 1.69) - Outcome - 4 INHIBITOR Diabetes Mellitus, Type 2 Diabetes Mellitus
NDUFA7 - 0.57 (0.3, 1.07) - Outcome - 4 INHIBITOR Diabetes Mellitus, Type 2 Diabetes Mellitus
NDUFA13 1.63 (1.13,2.35)* - 1.18 (1.0, 1.39)*" Outcome - 4 INHIBITOR Diabetes Mellitus, Type 2 Diabetes Mellitus
ALDH2 0.14 (0.07, 0.29)* - - Outcome - 4 INHIBITOR Ectoparasitic Infestations, Alcoholism
NISCH - 0.57 (0.35, 0.93)* 1.16 (0.31, 4.34) Outcome - 4 AGONIST Hypertension
ABCA1 2.05(1.34,3.15)* 1.41 (0.66, 3.0) 2.4 (1.29, 4.49)* Outcome - 4 INHIBITOR Cardiovascular Diseases
Thrombosis, Obstructive Lung Diseases, Essential
PDE3A - 0.79 (0.4, 1.58) - Outcome - 4 INHIBITOR Thrombocythemia, Asthma, Cardiovascular
Diseases, Coronary Artery Disease, Stroke
Venous Thrombosis, Thrombosis, Unstable
F2 0.17 (0.05, 0.59)* 0.57 (0.13, 2.43) 0.35(0.13, 0.94)* Outcome - 4 INHIBITOR Angina, Thrombocytopenia, Atrial Fibrillation,
Embolism, Stroke
Breast Neoplasms, Neoplasms, Hodgkin Disease,
TUBB - 756 (1.18,48.38)* 446 (2.13,9.36)*  Adverse event ; 4 INHIBITOR Lerge=Cell Aneplesi Ly o, Moo -
Cell Lung Carcinoma, Gout, Familial
Mediterranean Fever
VEGFA - 0.22 (0.15, 0.3)* 4.16 (2.45, 7.08)*F Adverse event - 4 ANTAGONIST Retinal Neovascularization
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Gene

LDL-C
(OR, 95% CI)

HDL -C
(OR, 95% CI)

Triglycerides
(OR, 95% CI)

Clinical trial
(Record type)

BNF
(Record

type)

Phase

Mechanism of
action

Indication

VEGFA

ERBB2

RAF1

PSMC3

PSMA1

PSMBS8

PSMB9

PSMAS

PSMBI10

ALOX5

CACNBI1

CACNBI1

PLG

PLG

ITGB3

MET

GSK3B

2.06 (1.48, 2.86)*

2.23 (0.99, 4.98)

2.23(0.99, 4.98)

2.47 (1.8, 3.39)*+

18.35 (5.47, 61.6)*

18.35 (5.47, 61.6)*
1.64 (1.06, 2.52)*

0.22 (0.15, 0.3)*

2.82(0.25, 31.53)

1.12 (0.9, 1.4)

1.43 (0.5, 4.11)

1.06 (0.31, 3.59)

1.06 (0.31, 3.59)

0.08 (0.02, 0.29)*

1.11 (0.91, 1.35)

1.74 (1.18, 2.58)*
0.38 (0.2, 0.72)*

0.38 (0.2, 0.72)*

5.48 (0.07, 456.86)
5.48 (0.07, 456.86)
2.79 (0.81, 9.62)
0.66 (0.43, 1.01)

0.45 (0.16, 1.25)

4.16 (2.45, 7.08)*"

2.63 (0.79, 8.83)

0.68 (0.18, 2.53)

1.09 (0.6, 1.97)

1.1 (0.6, 1.99)

0.75 (0.18, 3.14)

0.75 (0.18, 3.14)

1.09 (0.42, 2.87)

Adverse event

Adverse event
Adverse event

Adverse event

Adverse event

Adverse event

Adverse event

Adverse event

Adverse event

Adverse event
Adverse event

Adverse event

Adverse event

Adverse event
Adverse event

Adverse event

Adverse event
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INHIBITOR

INHIBITOR

INHIBITOR

INHIBITOR

INHIBITOR

INHIBITOR

INHIBITOR

INHIBITOR

INHIBITOR

INHIBITOR

BLOCKER

MODULATOR

ACTIVATOR

INHIBITOR

INHIBITOR

INHIBITOR

INHIBITOR

Diabetic Retinopathy, Retinal Neovascularization,
Wet Macular Degeneration, Macular Edema,
Colorectal Neoplasms, Neoplasms, Glioblastoma,
Renal Cell Carcinoma, Non-Small-Cell Lung
Carcinoma, Uterine Cervical Neoplasms

Breast Neoplasms, Neoplasms, Non-Small-Cell
Lung Carcinoma, Thyroid Neoplasms

Neoplasms

Multiple Myeloma, Neoplasms, Mantle-Cell
Lymphoma

Multiple Myeloma, Neoplasms, Mantle-Cell
Lymphoma

Multiple Myeloma, Neoplasms, Mantle-Cell
Lymphoma

Multiple Myeloma, Neoplasms, Mantle-Cell
Lymphoma

Multiple Myeloma, Neoplasms, Mantle-Cell
Lymphoma

Multiple Myeloma, Neoplasms, Mantle-Cell
Lymphoma

Asthma, Ulcerative Colitis, Rheumatoid Arthritis,
Juvenile Arthritis

Cardiovascular Diseases

Fibromyalgia, Seizures, Epilepsy, Neuralgia,
Restless Legs Syndrome, Postherpetic Neuralgia

Thrombosis, Pulmonary Embolism, Stroke,
Myocardial Infarction, Heart Failure, Hepatic
Veno-Occlusive Disease

Hemorrhage, Menorrhagia
Thrombosis, Unstable Angina

Thyroid Neoplasms, Non-Small-Cell Lung
Carcinoma, Neoplasms

Bipolar Disorder, Psychotic Disorders



LDL-C

HDL -C

Triglycerides

Clinical trial

BNF

Mechanism of

Gene (OR, 95% CI) (OR, 95% CI) (OR,95% CI)  (Record type) (l:;;‘gd Phase action Indication
FDFTI ; ; 0.88 (0.44, 1.73) Cwmoe ; 3 INHIBITOR Hype]gcfs‘gizztr:rf’%ey?;aé gf;gelt\::ﬁ’;ﬁff;
Hypercholesterolemia, Lipid Metabolism
CETP 1.49 (1.29, 1.72)* 0.91 (0.87, 0.95)*" 1.98 (1.63, 2.4)*" Outcome - 3 INHIBITOR CO?;;:,‘;QBSISgﬁfgﬁ%ﬁ’;ﬁfgjﬁg;ﬁ eli
Acute Coronary Syndrome, Hyperlipidemias
ANGPTL3 1.21 (1.11, 1.33)* 1.61 (0.52, 5.01) 1.16 (1.08, 1.25)* Outcome - 3 INHIBITOR Hyperlipoproteinemia Type 11
AKTI1 - 0.49 (0.18, 1.36) - Adverse event - 3 INHIBITOR Prostatic Neoplasms
SOST - 0.93 (0.25, 3.55) 103 (0.39,2.69)  Adverse event - 3 INHIBITOR e
CYP26A1 7.25(4.25, 12.37)* 0.22 (0.09, 0.51)* 4.35(2.79, 6.79)* Adverse event - 2 INHIBITOR Psoriasis, Acne Vulgaris
LTA 2.03 (1.04,3.97)* - 1.22(0.78, 1.9) Adverse event - 2 INHIBITOR Rheumatoid Arthritis, Sjogren's Syndrome
LTB 2.01 (1.03,3.93)* 1.2 (0.44, 3.25) 1.11 (0.76, 1.62) Adverse event - 2 INHIBITOR Sjogren's Syndrome, Rheumatoid Arthritis
NR1H3 - 1.07 (0.97, 1.18) 0.86 (0.58, 1.27) Outcome - 1 AGONIST Hypercholesterolemia
NR1H3 - 1.07 (0.97, 1.18) 0.86 (0.58, 1.27) Outcome - 1 MODULATOR Hypercholesterolemia
TOP1 2.3 (0.15, 35.62) - 16.72 (4.19, 66.8)* Adverse event - 4 INHIBITOR Neoplasms

* indicates significance in the discovery analysis, 1 indicates significance in both original and validation study and concordant direction of effect. OR = CHD odds

ratio per 1-SD increase in LDL-C/HDL-C or triglycerides; CI = confidence interval.
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Appendix 7.D. Multivariable drug target MR estimates. OR = CHD odds ratio per 1-SD
increase in LDL-C/HDL-C or triglycerides; CI = confidence interval. An asterisk (*) indicates

significant estimates.

Drug target No. Heterogeneity p LDL-C HDL-C Triglycerides
gene variants value (OR, 95% CI) (OR, 95% CI) (OR, 95% CI)
MARK4 6 7.47e-01 1.08 (0.82, 1.42) 1.01 (0.33, 3.12) 0.82 (0.18, 3.65)
GIPR 4 3.61e-01 2.49 (1.2,5.19)* 0.45 (0.1, 2.07) 1.91(0.32, 11.34)
NPCILI 6 3.40e-01 1.5 (0.76, 2.96) 0.76 (0.11, 5.15) 1.11 (0.21, 5.92)
NRIH3 8 8.01e-01 1.4 (0.45,4.34) 0.88 (0.73, 1.05) 0.51(0.37,0.7)*
SLCI18A1 7 2.32e-01 5.31(0.45, 62.01) 0.21 (0.01, 3.79) 0.37 (0.02, 9.01)
LPAR2 5 2.93e-01 0.07 (0.0, 25.72) 4.89 (0.02, 957.6) 16.68 (0.07, 4147.03)
CTSA 5 7.66e-01 0.09 (0.02, 0.48)* 77.68 (6.48, 931.29)* 117.3 (7.26, 1896.01)*
SLCI2A3 19 4.16-01 4.02 (2.34, 6.93)* 1.16 (0.96, 1.4) 0.88 (0.34,2.25)
PVR 10 2.15¢-01 1.41 (0.93, 2.14) 1.71 (0.54, 5.41) 1.18 (0.3, 4.68)
SCARBI1 10 2.48¢-03 25.58 (1.06, 614.7)* 0.79 (0.47, 1.33) 0.06 (0.0, 1.2)
FDFTI1 5 9.72e-01 1.87 (0.3, 11.58) 0.94 (0.1, 8.91) 0.93 (0.57, 1.5)
APOB 16 5.48e-04 1.54 (1.02,2.33)* 2.48 (0.66, 9.29) 2.37(0.78,7.19)
GCKR 10 3.45e-01 3.11 (0.8, 12.13) 1.79 (0.24, 13.49) 0.84 (0.58, 1.24)
CAD 11 7.56e-01 4.64 (0.9, 24.08) 1.26 (0.26, 6.07) 0.8 (0.66, 0.97)*
CETP 36 3.00e-02 1.89 (0.83, 4.3) 1.0 (0.84, 1.19) 0.96 (0.46, 2.0)
PLTP 5 6.02e-01 0.18 (0.04, 0.8)* 24.18 (4.51, 129.56)* 28.65 (4.7, 174.74)*
MMPY 5 1.01e-01 0.01 (0.0, 0.06)* 5.65 (0.72, 44.19) 17.38 (1.99, 152.02)*
LIPG 20 8.64¢-02 0.24 (0.13, 0.47)* 0.9 (0.74, 1.09) 5.09 (3.36, 7.7)*
DHODH 11 8.39¢-01 2.18(1.61, 2.95)* 2.08 (0.94, 4.59) 0.44 (0.16, 1.22)
LACTB 6 7.157¢-01 0.21 (0.0, 14.0) 1.35(0.11, 16.87) 1.61 (0.06, 43.74)
LILRBS 6 8.18e-01 1.63 (0.13, 20.4) 0.82 (0.5, 1.36) 1.1(0.12, 10.51)
STXIA 5 7.75e-01 0.51(0.13, 2.04) 0.34 (0.03, 3.29) 0.7 (0.26, 1.87)
HGFAC 7 9.98e-01 1.19 (0.13, 10.74) 0.15(0.01, 2.31) 0.9 (0.07, 11.59)
DCPS 9 2.46e-01 0.72 (0.41, 1.23) 0.33 (0.16, 0.69)* 6.7 (1.54,29.28)*
ST3GAL4 10 5.14e-03 1.46 (0.32, 6.8) 1.03 (0.15, 6.97) 6.72 (0.29, 156.11)
APOAS 14 6.87e-01 10.23 (6.21, 16.84)* 1.23(0.93, 1.62) 0.73 (0.61, 0.88)*
APOA4 15 5.17e-01 1.53 (0.74, 3.14) 1.0 (0.74, 1.37) 1.11 (0.82, 1.5)
APOC3 18 1.86e-03 224 (1.18,4.27)* 0.75 (0.62, 0.91)* 0.81 (0.69, 0.95)*
SLC22A42 16 2.07e-04 2.73 (1.66, 4.47)* 1.26 (0.4, 3.93) 1.38 (0.34, 5.63)
VEGFA 4 4.39¢-01 0.27 (0.04, 1.67) 0.39 (0.0, 346.13) 2.39 (0.01, 1013.57)
HMGCR 7 4.30e-01 1.79 (1.28, 2.5)* 0.13 (0.01, 1.38) 0.31 (0.02, 4.26)
NRBPI 10 8.43e-01 0.68 (0.06, 7.53) 1.39(0.09, 21.94) 0.91 (0.47, 1.76)
AMPD2 4 4.22¢-01 2.43(1.01, 5.81)* 0.05 (0.0, 15.18) 0.01 (0.0, 70.8)
APOAI 17 1.76e-02 2.21(1.26, 3.87)* 0.84 (0.67, 1.04) 0.97 (0.74, 1.29)
PLG 5 5.49¢-01 21.26 (12.83, 35.23)* 0.17 (0.04, 0.7)* 0.15 (0.03, 0.86)*
SLCI2AS5 4 9.71e-01 0.0 (0.0, 0.16)* 15.94 (0.81, 312.7) 73.81 (1.12, 4881.0)*
PEPD 6 8.91e-01 2.24 (0.66, 7.57) 0.48 (0.21, 1.09) 1.74 (0.72, 4.22)
ATG4C 8 6.51e-01 0.42 (0.12, 1.47) 4.32(1.24, 15.04)* 0.96 (0.41, 2.25)
SMARCA4 15 8.61e-02 1.95 (1.8, 2.11)* 0.97 (0.49, 1.92) 0.13 (0.04, 0.44)*
ALDHIA2 42 4.49¢-01 1.29(0.75, 2.22) 1.1 (0.95, 1.28) 1.63 (1.03, 2.57)*
LDLR 18 6.01e-04 1.37 (1.15, 1.62)* 0.23 (0.05, 1.11) 0.12 (0.01, 1.03)
PVRL2 15 3.29¢-02 1.29 (1.08, 1.54)* 1.12 (0.49, 2.53) 1.03 (0.72, 1.46)
APOE 14 6.96e-03 1.28 (1.16, 1.42)* 0.9 (0.56, 1.46) 0.87 (0.65, 1.17)
APOCI 14 2.86e-03 1.3 (1.17, 1.46)* 0.9 (0.52, 1.58) 0.81 (0.6, 1.08)
NCAN 6 4.55¢-01 1.32 (0.2, 8.87) 0.42 (0.06, 2.82) 0.9 (0.14, 6.02)
LILRB2 8 7.81e-01 0.87(0.18, 4.19) 1.02 (0.7, 1.49) 0.91 (0.13, 6.51)
PPARG 14 1.20e-02 2.77(0.99, 7.76) 0.38 (0.15, 0.96)* 0.54 (0.15, 1.87)
ANGPTL3 5 6.85¢e-01 7.52 (0.07, 826.16) 0.43 (0.09, 1.97) 0.35(0.01, 10.44)
AMPD3 5 7.32e-01 0.02 (0.0, 0.21)* 1.52(0.55, 4.22) 5.21 (0.4, 67.63)
ACP2 9 6.75e-01 0.77 (0.38, 1.54) 0.84 (0.71, 0.98)* 0.56 (0.43, 0.73)*
DAGLA 9 4.84¢-01 0.95 (0.67, 1.35) 1.48 (0.51,4.3) 0.92 (0.43, 1.98)
BLK 4 2.53e-01 0.04 (0.0, 0.61)* 0.8 (0.01, 91.76) 0.35(0.15, 0.84)*
CGREF1 5 5.99¢-01 0.59 (0.1, 3.58) 1.68 (0.11, 26.04) 1.1(0.87, 1.38)
SLC5A46 11 7.23e-01 2.7 (0.54, 13.63) 1.77 (0.36, 8.66) 0.83(0.69, 1.0)
ATRAID 11 4.64¢-01 2.49 (0.39, 15.91) 1.62 (0.27, 9.53) 0.86 (0.62, 1.18)
CBLN3 4 9.61e-02 0.71 (0.27, 1.91) 4.05 (0.08, 211.75) 51.45 (0.28, 9606.89)
PSMAS 4 7.79¢-01 1.46 (0.66, 3.21) 0.12 (0.0, 5.13) 0.13 (0.0, 56.08)
CELSR2 23 2.91e-02 1.88 (1.5, 2.34)* 0.86 (0.25, 2.88) 1.84 (0.52, 6.56)
GALNT2 17 6.60e-03 0.98 (0.16, 6.02) 0.61(0.12, 3.13) 0.94 (0.14, 6.14)
GDF7 4 1.89¢-01 0.87 (0.39, 1.98) 1.16 (0.04, 37.71) 2.44 (0.05, 127.94)
KLHLS 8 9.95e-01 0.5 (0.07, 3.56) 1.51 (0.28, 8.02) 1.95 (1.08, 3.54)*
RSPO3 5 5.57e-01 0.02 (0.0, 0.7)* 11.04 (0.44, 279.24) 100.3 (0.84, 11945.38)
SLC22A43 11 9.02¢-02 4.7 (3.44,6.43)* 2.64 (1.45,4.81)* 3.5(1.96, 6.24)*
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Drug target No. Heterogeneity p LDL-C HDL-C Triglycerides
gene variants value (OR, 95% CI) (OR, 95% CI) (OR, 95% CI)
RPL7A 6 5.17e-01 2.39 (1.44,3.99)* 5.41(2.64, 11.1)* 2.09 (0.09, 46.73)
PTPRJ 4 8.41e-02 12.48 (1.22, 127.5)* 0.51 (0.28, 0.92)* 0.04 (0.0, 0.58)*
SIDT2 10 1.41e-05 5.26 (0.2, 139.08) 1.34 (0.52, 3.46) 1.08 (0.34, 3.41)
NAT2 9 6.67¢e-01 1.46 (0.2, 10.91) 3.77 (1.16, 12.22)* 1.39 (0.4, 4.86)
GPR61 8 9.57e-01 2.05 (1.62, 2.6)* 0.82 (0.32, 2.05) 0.47 (0.18, 1.19)
RGS12 8 9.93e-01 0.7 (0.2, 2.44) 0.3 (0.07, 1.26) 1.76 (0.56, 5.6)
CILP2 4 7.39¢-01 55.61 (0.0, 15957345.62) 10.05 (0.02, 5027.9) 0.04 (0.0, 3522.79)
SIK3 17 1.57¢-01 3.68 (2.02, 6.69)* 0.76 (0.65, 0.88)* 0.69 (0.59, 0.8)*
PCSK7 10 1.17e-03 22.24 (2.45,201.73)* 0.96 (0.46, 2.02) 0.53 (0.25,1.11)
PTPNI13 5 1.26e-01 2.62 (0.34,20.08) 3.67 (0.15, 91.55) 2.38(0.19, 30.33)
UCN 8 7.82e-01 10.72 (1.76, 65.49)* 0.36 (0.03, 4.02) 0.57 (0.41, 0.78)*
CTSB 4 9.44e-01 1.68 (0.06, 47.93) 1.9 (0.01, 327.35) 0.9 (0.36, 2.26)
ABCAl 21 1.11e-02 2.09 (0.59, 7.36) 0.83 (0.58, 1.19) 3.33(1.39, 7.96)*
LIPC 26 4.95e-01 1.45 (0.76, 2.76) 1.09 (0.93, 1.29) 1.72 (1.05, 2.81)*
c? 5 1.34¢-01 0.05 (0.0, 22.82) 1.16 (0.4, 3.36) 0.41 (0.07, 2.33)
ANGPTL4 5 8.41e-01 2.8 (0.63, 12.39) 0.43 (0.05, 4.09) 0.94 (0.01, 122.83)
TNXB 5 7.22e-01 2.54 (1.45,4.43)* 0.53 (0.07, 3.85) 1.05 (0.28, 3.92)
FENI1 11 6.08e-01 0.94 (0.69, 1.28) 1.81 (0.81, 4.06) 1.06 (0.62, 1.81)
GSTM4 4 6.94e-01 3.46 (2.01, 5.94)* 0.28 (0.07, 1.09) 0.14 (0.01, 3.47)
PCSK9 20 5.21e-03 2.39(1.45,3.96)* 1.01 (0.28, 3.6) 0.78 (0.24, 2.49)
LILRA3 9 5.22e-01 0.07 (0.01, 0.81)* 1.01 (0.65, 1.56) 0.87(0.12, 6.31)
RPS9 6 8.20e-01 1.67 (0.17, 16.86) 0.83 (0.46, 1.47) 1.24 (0.1, 14.84)
FPRI1 5 3.47e-01 0.65(0.2,2.12) 1.6 (0.31, 8.36) 0.66 (0.01, 32.0)
OBP2B 9 9.50e-01 1.25(0.87, 1.8) 2.13(0.75,6.1) 0.07 (0.01, 0.62)*
INSR 6 7.00e-01 6.78 (0.6, 76.86) 19.37 (0.94, 400.01) 16.08 (1.15, 224.46)*
TNKS 4 2.69¢-01 1.16 (0.05, 24.78) 0.25 (0.0, 14.36) 0.44 (0.12, 1.56)
SLC22A41 13 5.143e-05 2.73 (1.53,4.9)* 1.16 (0.16, 8.61) 0.3 (0.04,2.2)
LPL 27 6.78e-03 0.17 (0.03, 1.07) 0.28 (0.1, 0.78)* 0.48 (0.17, 1.35)
TSSK6 4 7.39¢-01 55.37 (0.0, 16133127.76) 10.04 (0.02, 5084.4) 0.04 (0.0, 3586.37)
EMILIN3 7 7.29¢e-02 1.28 (0.69, 2.36) 0.4 (0.02,7.21) 4.03 (0.18, 90.18)
NDUFAI3 4 7.39¢-01 55.95 (0.0, 16832999.76) 10.07 (0.02, 5139.88) 0.04 (0.0, 3654.32)
BACE1 6 4.52¢-02 5.17 (0.34, 79.25) 1.7 (0.78, 3.73) 0.43 (0.17, 1.07)
LILRAS 9 7.70e-01 0.08 (0.01, 0.59)* 0.92 (0.59, 1.44) 0.58 (0.08, 4.38)
BCAM 12 1.28e-01 1.23 (0.99, 1.53) 1.42 (0.62, 3.28) 0.68 (0.49, 0.95)*
FPR3 5 3.56e-01 0.66 (0.2, 2.15) 1.58 (0.31, 7.93) 0.63 (0.01, 28.98)
HAPLN4 4 6.89¢-02 4.0 (0.2, 80.12) 46.52 (0.79, 2724.55) 0.48 (0.03, 8.07)
HLA-DRBI 8 4.04e-02 1.01 (0.47,2.17) 1.0 (0.57, 1.75) 1.3 (0.51,3.3)
SFTA2 4 8.37e-02 0.62 (0.24, 1.63) 1.36 (0.35, 5.34) 1.92 (0.25, 14.86)
IGF2R 16 1.23e-04 3.75 (2.25, 6.25)* 0.35(0.07, 1.73) 0.24 (0.07, 0.8)*
HSDI17BI11 4 4.23e-01 0.4 (0.02, 6.55) 0.61 (0.08, 4.8) 1.57 (0.33,7.53)
LPA 9 1.47¢-02 4.44 (2.43,8.13)* 1.01 (0.47,2.21) 1.03 (0.37, 2.91)
TOPI 7 6.86e-01 1.32 (0.81, 2.14) 0.47 (0.09, 2.45) 4.61 (0.49, 43.81)
PSMBS8 7 8.47e-01 3.36 (1.76, 6.4)* 0.85(0.21, 3.41) 0.73 (0.39, 1.38)
HLA-DRA 6 3.49¢-01 1.06 (0.57, 1.95) 0.86 (0.39, 1.91) 7.48 (3.04, 18.39)*
NOTCH4 15 3.53e-02 1.1 (0.46, 2.67) 2.03 (1.5,2.75)* 0.99 (0.54, 1.8)
AGER 11 6.88e-03 2.73 (0.8, 9.29) 3.13(1.89, 5.19)* 2.27(0.71, 7.25)
EHMT2 5 1.05=¢-01 328.24 (7.85, 13716.69)* 0.53 (0.2, 1.39) 0.04 (0.0, 0.38)*
SLC44A44 5 1.07e-01 322.41(7.63, 13629.22)* 0.53(0.2,1.4) 0.04 (0.0, 0.39)*
NEUI 4 NA 1.18 (0.0, 690.62) 0.91 (0.31, 2.68) 0.09 (0.01, 0.91)*
615016.56 (120.95,
HSPAIB 4 NA 3127274364.99)* 0.21 (0.01, 3.43) 0.11 (0.01, 1.23)
224722364.93 (797.77, * %
HSPAIA 4 NA 63301607264984.07)* 0.0 (0.0, 0.09) 48.9 (1.62, 1472.63)
Céorf25 4 NA 0.0 (0.0, 1.05) 194.1 (0.82, 45848.5) 03 (0.07, 1.29)
ABHDI16A 4 NA 641.94 (13.43, 0.04 (0.0, 0.39)* 2.54 (0.53,12.2)
30693.48)* ’ o ’ T
APOM 4 NA  292.41(8.42,10153.82)* 0.6 (0.19, 1.96) 0.26 (0.05, 1.23)
NCR3 4 4.22e-01 5.55(0.71, 43.25) 0.21 (0.04, 0.97)* 0.63 (0.15, 2.66)
HLA-C 15 4.35¢-04 1.31(0.77,2.22) 2.72 (1.09, 6.79)* 0.93 (0.7, 1.24)
Céorfl5 11 8.77¢-01 5.24 (2.57,10.65)* 0.66 (0.45, 0.96)* 0.37 (0.21, 0.64)*
DDRI1 4 1.52e-01 0.74 (0.25,2.2) 7.09 (0.34, 146.43) 0.67 (0.06, 8.05)
GSTM2 4 7.11e-01 4.4 (0.99, 19.64) 0.28 (0.07, 1.13) 0.03 (0.0, 8312.8)
CEACAM16 13 3.85e-01 1.34 (1.01, 1.79)* 2.29(0.72,7.3) 1.21 (0.69, 2.11)
C4B 5 9.04e-01 229 (1.25, 4.18)* 0.34 (0.06, 1.97) 1.35(0.77, 2.39)
jﬁgg‘z" 1 1.35¢-02 137 (1.21, 1.56)* 0.62 (0.39, 0.98)* 0.58 (0.4, 0.77)*
LTA 4 3.72e-01 7.6 (1.01, 57.24)* 0.26 (0.06, 1.12) 0.44 (0.11, 1.74)
LTB 4 3.76e-01 7.61 (1.04, 55.69)* 0.26 (0.06, 1.11) 0.44 (0.11, 1.69)
CYP21A2 4 6.71e-01 2.22 (1.09, 4.55)* 0.32 (0.05, 2.06) 1.47 (0.44, 4.93)
TNF 4 3.73e-01 7.69 (1.03, 57.64)* 0.26 (0.06, 1.11) 0.44 (0.11, 1.71)
HLA-B 10 2.98e-02 1.85 (1.2, 2.84)% 1.36 (0.65, 2.84) 1.1 (0.85, 1.42)
APOC2 12 4.74e-14 1.14 (0.71, 1.82) 0.48 (0.14, 1.67) 0.66 (0.32, 1.36)
HLA-DOA2 13 2.58e-01 1.06 (0.77, 1.44) 3.59 (2.12, 6.09)* 1.82 (1.22, 2.72)*
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Drug target No. Heterogeneity p LDL-C HDL-C Triglycerides
gene variants value (OR, 95% CI) (OR, 95% CI) (OR, 95% CI)
LILRA4 6 8.07e-01 0.06 (0.0, 0.73)* 0.83 (0.49, 1.41) 0.53(0.05, 5.16)
PSMBY 7 8.47e-01 3.35(1.75, 6.41)* 0.85(0.22, 3.38) 0.73 (0.38, 1.39)
HLA-DOB 8 9.52e-01 3.27(1.97,5.45)* 1.02 (0.41, 2.49) 0.75 (0.49, 1.15)
EGFLS 6 5.22e-04 1.49 (0.02, 110.15) 8.25(0.57, 118.64) 0.72 (0.02, 24.37)
CFB 5 1.33¢-01 0.05 (0.0, 20.51) 1.14 (0.39, 3.31) 0.4 (0.07,2.29)
LILRAG6 5 5.37e-01 1.63 (0.07, 39.37) 0.72 (0.19, 2.73) 0.46 (0.0, 112.3)
HP 11 8.77e-02 1.82 (1.15, 2.88)* 4.88 (1.89, 12.6)* 0.58 (0.13, 2.64)
ITGB3 4 7.49¢-01 2.65(0.34, 20.42) 0.64 (0.01, 61.4) 1.59 (0.17, 15.05)
RPLI7 4 5.36e-01 0.86 (0.09, 8.06) 1.0 (0.47,2.12) 8.34 (0.45, 155.7)
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8 | Summary and Future research

I have used human genetic data linked to medical records, clinical biomarkers and
molecular traits to investigate the added value of GWAS and drug target Mendelian
randomisation to generate genetic evidence and inform genetically guided pharmaceutical
research. This final chapter provides a summary of the findings from the work described in

Chapters 4 to 7 and contextualises their contribution to genomic research in drug development.
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8.1. Summary

Previous research has shown that human genomics could support drug development by
generating evidence for target identification and validation'™. In particular, genome-wide
association studies (GWAS) have the potential to systematically and accurately identify
disease-specific drug targets across the spectrum of human diseases which addresses one of the

key productivity limiting steps in drug development.

In Chapter 4, I described the extent to which the causes of human disease have been
addressed by genetic analyses, or by drug development, and the degree to which these efforts
overlap. I found that only a small fraction of the 10,901 diseases curated in the human disease
ontology has been investigated in drug development (13%; 1,370 out of 10,901) or GWAS
(9%; 953 out of 10,901). For those diseases being pursued in clinical phase drug development,
only 27% (369 out of 1,370) have been the subject of a GWAS. Furthermore, even for the 349
diseases that are the subject of ongoing clinical phase drug development and have been covered
by GWAS, it remains uncertain how many specific target-indication pairings have genetic
support. These findings showed poor alignment between the diseases studied by GWAS and

those pursued in clinical phase drug development.

To help generate insights into how the GWAS and drug development efforts can be
utilised in concert, a sample space of disease and targets was constructed in Chapter 4. The
sample space included subsets of target-disease pairings that have been covered by clinical
phase drug development and by GWAS which interrogate all possible targets by design. The
aim of creating the sample space was to illustrate how some areas can be further exploited. For
example, the intersection between targets of approved drugs and diseases studied by GWAS
can help identify new indications for existing approved drugs. Similarly, the intersection

between targets of drugs under clinical investigation and diseases studied by GWAS can lead
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to potential repurposing opportunities of drugs that proved safe but lacked efficacy for their

originally intended indication, or for indication expansion of approved drugs.

To increase the interest and investment in human genomics, robust evidence of the value
of GWAS and GWAS-based approaches for drug target identification and validation is needed.
In Chapter 5, I built on the previous findings described by Nelson et al.,? and King et al.,?> and
calculated an updated estimate of the probability of success in the drug development pipeline
of drug target — indication pairings with genetic support. Using a ‘truth’ set of drug target-
indication pairings, | provided further evidence that pairings with genetic support are twice

more likely to get approved than those without genetic support (2.18; 95%CI: 1.86; 2.51).

Determining if an approved drug target-indication pair has been rediscovered by genetic
associations with the intended indication is directly influenced by the definition of genetic
evidence. In Chapter 5, I investigated a ‘truth’ set of drug target-indication pairings of approved
drugs and found that using a stringent p value threshold to select significant associations may
lead to an oversight of true genetic associations and relaxing the p value threshold to 5x10¢
increased the percent of rediscoveries by 32% on average. Moreover, in 21% of the genetic
association - drug target gene - indication combinations explored the closest protein-coding
gene was the target gene, and the target gene was in the top five closest genes in 43% of the

cases.

Whilst the work described in Chapter 5 supports drug target identification by help map
drug targets, the information that can be derived from a GWAS alone cannot be directly used
to inform drug target validation as one cannot readily infer simply from the identification of
the locus the mechanism of action of the drug (i.e., an inhibitor or activator for enzymes, or
blocker or antagonist for receptor targets). To develop a drug targeting hypothesis for a new

drug, the cis-Mendelian Randomization (MR) approach (also refer to as drug target MR)’ has
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been proposed. Several examples exist that describe the application of drug target MR using
circulating protein levels to instrument the on target drug effect. However, the vast majority of
successful drugs achieve their effect by binding to and modifying the activity or function of a
protein®. Therefore, the drug target MR analyses that use as exposure circulating protein levels
(pQTL) make the assumption that pQTL are a valid proxy of protein activity. In Chapter 6, |
identified two proteins (BCHE and coagulation factor VII) for which genetic associations for
protein levels and activity was available and showed that a strong correlation between genetic
associations with activity and level for variants acting in cis- exist (Pearson’s correlation

coefficient for the BCHE was p = 0.99 and for coagulation factor VII p = 0.96).

Although only two proteins could be included in the comparison due to the lack of
GWAS on protein activity, previous drug target MR studies that used pQTL data were able to
recapitulate the mechanism of action of known drugs. Therefore, under the assumption that
protein levels are a valid proxy for protein activity, I evaluated in Chapter 6 the performance
of the drug target MR framework using a ‘truth’ set of drug target gene-indication pairings,
where circulating levels of the target protein have been measured by a high-throughput
proteomic platform and the indication has been studied by GWAS. After integrating
information from GWAS on disease and clinical endpoints, and genetic associations on
circulating protein levels measured by SOMAmers (i.e., short single-stranded oligonucleotides
that bind with high affinity and specificity to a protein and enable the quantification of its
levels), I identified a ‘truth’ set of 320 SOM Amer-drug target gene-traits pairs. The application
of the drug target MR framework recapitulated the mechanism of action of several drug target
gene — indication pairings under different models: PCSK9 and Coronary Artery Disease,
Carotid intima media thickness, Carotid plaque, LDL cholesterol; ACE for Systolic and
Diastolic blood pressure; AMY2A and type 2 diabetes Mellitus; ATP1B2 and atrial fibrillation;

COMT and Parkinson's disease; F2 and prothrombin levels; IL1R1 and rheumatoid factor;
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IMPA1 and bipolar disorder; PDE4A and forced expiratory volume in the first second (FEV1);
PDESA and prothrombin levels; PLG and activated partial thromboplastin time. In contrast, of
the drug target gene-SOMAmer-trait combinations that returned significant MR results, 38-
50% of the results were consistently in the unexpected direction of effect based on their
reported mechanism of action (range 9-26 drug target gene - SOMAmer - trait). Several reasons
that could explain the results were presented in Chapter 6, which included assay ambiguity or
biological mechanism. However, the findings from the work in this thesis indicate that further
research and validation are required before the pQTL-weighted drug target MR approach can

be applied systematically for drug target validation.

While protein level exposures are potentially useful for drug target validation and
defining a drug targeting hypothesis, if they are unavailable, genetic associations in cis- with
well-established clinical biomarkers could be used in drug target MR analyses (‘biomarker-
weighted drug target MR’) to inform drug target validation. Here the causal inference remains
on the gene product at the target loci, however, the exposure trait may not necessarily be the
mediator of the effect, so the drug targeting hypothesis cannot be directly established from the
MR estimate direction. Whilst this may seem like a limitation, many GWAS of biomarkers are
available allowing for the possibility of independent replication of MR associations. In Chapter
7, I combined publicly available GWAS datasets on blood lipids and coronary heart disease
and to genetically validate and prioritise drug targets for CHD prevention. The aim was to
illustrate the utility of biomarker-weighted drug target MR in high power settings with
independent replication data to prioritise drug targets for CHD prevention. Out of the 341 drug
targets identified through their association with blood lipids (HDL-C, LDL-C and
triglycerides), 30 targets that might elicit beneficial effects in the prevention or treatment of
CHD were robustly prioritized, including NPC1L1 and PCSKO9, the targets of existing drugs

used in CHD prevention.
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8.2. Research in context

The success of GWAS as a method is multi factorial from the completion of the Human
Genome Project in 20037, the rapid declining cost of genotyping, and the increasing number of
international consortia and joint-pharma partnerships. This coupled with the accessibility of
public data repositories has given the opportunity to screen multiple drug targets against
multiple diseases. However, despite the growing interest of the pharmaceutical industry in
using human genomic data to help prioritise drug development programmes and reduce the risk
of clinical-stage failure, genetic studies of human diseases and pharmaceutical research and

development have largely proceeded independently.

Therefore, the analysis presented in Chapter 4, where the extent to which the causes of
human disease have been addressed by genetic analyses, or by drug development, and the
degree to which these efforts overlap was investigated, could have several applications. First,
it could be used to inform future drug development programmes direction if they are seeking
to exploit existing genetic evidence. Secondly, it identified diseases without effective
treatments that could be prioritised in large-scale GWAS or sequencing studies to help
stimulate drug development in the disease area. Third, the sample space of human targets and
diseases could help identify opportunities to expand the indications for approved drugs or
discover repurposing opportunities for the many safe drugs that failed in clinical trials because

of lack of efficacy in the originally intended indication.

In addition, the sample space of human targets and diseases could also inform de novo
drug development for druggable targets and disease indication pairings that have yet to be
investigated. In particular, soluble or secreted protein targets could especially benefit from
having genetic support for a particular disease since such proteins are readily targeted by

monoclonal antibodies or peptides, which typically exhibit higher selectivity and reduced
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development timelines compared to small molecules®. Information on the set of human secreted
proteins (the human ‘secretome’®) is available in the public domain, and researchers and the
pharmaceutical industry could use these resources to identify high priority putative circulating

protein targets.

Part of the analysis in Chapter 4 was restricted to the genes encoding druggable protein
targets (the ‘druggable genome’#), which is currently defined as the set of proteins with
potential to be modulated by a drug-like small molecule or monoclonal antibody. However,
novel therapeutic modalities, such as RNA silencing or gene editing, are likely to expand the

range of potential druggable targets'®'?

. In addition, artificial intelligence and the application
of data-driven approaches and computer modelling have revealed protein motifs unknown

before, turning undruggable protein targets into druggable ones'.

The increasing interest of the pharmaceutical industry in human genomics has been
driven by several retrospective studies showing that selecting genetically supported drug
targets could double the success rate in clinical development. In Chapter 5, it was shown that
898 drugs exist with a license for 371 therapeutic indications. Out of 371 therapeutic
indications, 144 have been well-studied by GWAS, and thus, offered an unique opportunity to
retrospectively investigate how many of the 1,969 drug target gene — indication pairings had
been rediscovered by GWAS. Previous work by Nelson et al., 2015% and King et al., 2019?
that used a similar approach and study design showed that targets with genetic evidence from
GWAS were more likely to be successful in clinical development as indicated by the ratios of
the probability of progressing in the drug development pipeline given genetic support to the
probability of progressing without genetic support of 1.8 (95% CI: 1.3; 2.3) and 1.4 (95% CI:
1.1; 1.7), respectively. The findings from Chapter 5, which were based on two approaches for

genetic evidence and the larger dataset of target-indication pairings to date, confirmed that the
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probability of a target-indication pair with genetic support progressing from phase I to approval
to the probability of progressing without genetic evidence is greater than two-fold (2.18;
95%CI: 1.86; 2.51). In line with previous observations, I also found that the probability of
progression given genetic support increases along the clinical phases and that the lack of
genetic support had the greatest impact from phase II to phase III (P(S-|G-) / P(S-|G+) = 1.40,
95%CI: 1.28; 1.56), where drugs are typically tested for clinical efficacy. Notably, variability
was found among the proportion of approved target-indications pairs by indication area. Such
stratification was also performed by Nelson et al.,> however, the rank of disease areas by
genetic support presented in this thesis differed from the previous publication. For example,
while Nelson ef al.,®> showed that target — indication pairs in the musculoskeletal disease area
had the highest degree of genetic support, the analysis in Chapter 5 identified target -
cardiovascular indication pairings as the ones with the highest support. The differences
observed could be explained by the larger dataset used in Chapter 5, which, for instance,
included 115 approved target — musculoskeletal indication pairings in contrast to the 11

identified by Nelson et al3.

Of note, these studies rely on assigning genetic associations from GWAS data to a causal
gene, which remains a challenge because association signals from variants in high linkage
disequilibrium (LD) may span multiple genes. Several approaches have been proposed to
assign GWAS signals to genes (e.g., co-localisation using eQTL data'%), however, physical
proximity remains the simplest and most widely used approach to map association signals to
causal genes'>'®, While the closest gene may not always be the putative causal gene!”-'® there
are several studies of ‘truth’ sets of genes with well validated causal relationships to disease
that have shown that the closest gene to a GWAS signal is the causal gene in about two-thirds
of cases!®. Furthermore, in Chapter 5, I used a ‘truth’ set of approved drug target-indication

pairings where the indication has been studied by GWAS*!? and showed that relative distance
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(i.e., distance rank of the druggable gene from the GWAS SNP) to the gene rediscovered more
drug target-indication pairs than the use of the absolute distance. Similarly, a study by
Mountjoy et al., 2021'° and funded by OpenTargets which evaluated different genomic features
to assign GWAS signals to causal genes reported that, the ‘mean distance’ feature was the most
predictive (which combined a distance and Bayes factor approach?’), where the distance
relative to other genes was more important than the absolute distance. In addition, the use of
absolute distance to map association signals to genes is challenged by the lack of consensus on
how much the genomic region should extend around the potential causal gene. In Chapter 5, |
found that in 27% of the drug target gene — indication pairs, genetic associations with the
indication were within 1 Mega base pair (Mbp) from the drug target gene, and that increasing
the genomic distance beyond 1 Mbp led to a change in the curve from exponential to
logarithmic suggesting that further increasing the region would lead to rediscoveries, however,
at the cost of increasing the median number of protein-coding genes between the target gene
and the genetic association. In fact, in a recent publication Fauman et al.?' estimated a distance
cut-off of 944 kbp (95%CI 767-1,161) separating the cis (i.e., the QTL is acting through the
cognate gene) and frans (i.e., assumes that the QTL is acting through an intermediate gene)
regimes, which in line with the findings in Chapter 5, suggests that approaches for mapping

genetic associations to genes based on distance should be restricted to a maximum of 1 Mbp.

While genetic associations obtained through GWAS can support target identification,
they cannot be readily used to infer the mechanism of action of a drug targeting the protein
encoded by the associated gene. One would have identified a potential target for a particular
disease, but how to perturb the target to obtain the intended effect cannot be drawn from a
GWAS association, even if the causal gene can be inferred with certainty. To inform the design
of an inhibitor or activator (blocker or antagonist for receptor targets), the cis-Mendelian

Randomization (MR) approach (‘drug target MR )’ has been proposed. Since the vast majority
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of successful drugs achieve their effect by binding to and modifying the activity of a protein®,
an ideal drug target MR analysis would assess the effect of modulating protein activity or
function with respect to disease risk using genetic instruments in the encoding gene. This would
determine whether and by how much an increase or decrease in the protein function or activity
impacts disease risk, suggesting a plausible mechanism of action for the drug. However,
GWAS data on protein activity is scarce and there are not examples in the literature of MR
analysis where the exposure has been instrumented using genetic associations with protein
activity. Recently, genetic associations with circulating protein levels have been used instead

as a proxy for protein function or activity.

To explore such assumption, in Chapter 6 I identified two proteins (BCHE and
coagulation factor VII) for which genetic associations with protein levels and activity was
available and found a strong correlation between genetic variants acting in cis- (Pearson’s
correlation coefficient for the BCHE was p = 0.99 and for coagulation factor VII p = 0.96).
Several examples support this, such as the drug target Mendelian randomization of CETP or
PCSKO protein concentration which replicated on-target effects previously reported in clinical

trials>-22.

To test the generalisability of the drug target MR framework described by Schmidt et al.,
2020° to multiple targets and diseases, I performed a systematic evaluation of the performance
of pQTL-weighted drug target MR analyses using a ‘truth’ set of 160 licensed drug target —
indication pairings for which pQTL associations were available for the target protein and the
intended indication or a clinically-relevant disease biomarker had been studied in GWAS. Only
11-13% of the combinations explored across all possible parameters (i.e., 27/234 in the
sensitivity analysis 1 and 16/121 in the sensitivity analysis 3) recapitulated the known

mechanism of action of the approved drug. Nonetheless, this represents a 2-fold increase
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compared to a previous study by Zheng et al.?*, in which MR was applied to 1,002 proteins
and 225 phenotypes, and identified four drug target gene — approved indication pairs for which
the MR recapitulated the mechanism of action out of 73 pairs with potential to be rediscovered.
Two of the four drug target gene — approved indication pairs were also rediscovered by the
analysis presented in Chapter 6: PCSK9 for hypercholesterolemia and hyperlipidaemia; and
ACE for hypertension. The other two rediscoveries of Zheng et al.,”> were TNFRSF11A and
osteoporosis; and IL12B for psoriatic arthritis and psoriasis. In the work described in Chapter
6, TNFRSF11A showed a concordant direction of effect when using heel bone mineral density
as the outcome, however the association did not reach the significance threshold. On the other
hand, the association between IL12B and psoriasis was in the unanticipated direction of effect
in some of the scenarios, although most of the combinations analysed did not yield significant
results. Out of the two drug target gene — indication pairs found by Zheng et al., > in the
unexpected direction of effect, ILOR was also in the unanticipated direction of effect in the
analysis described in Chapter 6, while PROC was not analysed because it is not recorded as
the target of an approved drug in ChEMBL. In their work, Zheng et al.,”* in line with the
discussion in Chapter 6, indicated that for IL6R the alleles associated with higher soluble
protein levels have been shown to also lead to lower intracellular pathway activation®*,

suggesting consistency of direction with the therapeutic approach.

In addition to PCKS9 and ACE, the analysis in Chapter 6 further identified nine target-
indication pairs that consistently showed a concordant direction of effect under all the models.
The rediscovery of ILIR1 and rheumatoid factor and PLG and activated partial thromboplastin
was in line with the afore mentioned study by Schmidt et al.°>, which used a set of selected
positive controls to illustrate the drug target MR framework. Another pair, ACE and
hypertension, was rediscovered by Zheng et al.?® using pQTL data and such genetic

associations have also been used to instrument the effect of modifying ACE circulating levels
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on different outcomes®, including susceptibility to SARS-CoV-2 infection or COVID-19
severity?®. Two of the drug targets rediscovered were phosphodiesterases (PDE4A and FEV1,
PDESA and prothrombin levels), and although MR studies have been performed on different
outcomes?’, these have not included the intended indication. Similarly for coagulation factor
I1, as MR studies on coagulation factors and the intended indication (venous thrombosis) have
been published using intermediate traits such as activated thromboplastin time as the
exposure?®, however, drug target MR analyses using F2 pQTL data have not previously been
reported. The remaining pairs (AMY2A and type 2 diabetes Mellitus; ATP1B2 and atrial
fibrillation; COMT and Parkinson's disease) have not been previously studied in drug target

MR analyses of the intended indication using pQTL data.

On the other hand, 38-50% of the pairs with significant MR estimates were consistently
in the unexpected direction of effect based on their reported mechanism of action (range 9/24-
26/53 drug target gene-SOM Amer-trait under the different scenarios). These findings highlight
that additional evaluation and refinement of the pQTL-weighted drug target MR methodology

29 could be used to source additional

is required. Other techniques such as co-localization
evidence by investigating if the estimate obtained in the drug target MR analysis is not

attributable to genetic confounding through a variant in linkage disequilibrium?°.

Another issue of the pQTL-weighted drug target MR analysis described in Chapter 6 was
the lack of significant genetic associations that could be used to instrument the drug effect, an
issue that affected 86 of the 320 SOMAmer-drug target gene-trait combinations in the dataset.
The commercialisation of cost-effective high-throughput technologies for protein measurement
and the linkage of national biobank to electronic health records would enable larger sample
sizes, and thus increase the power to detect significant associations. That is the promise of the

genetic associations identified by deCODE genetics using the SomaLogic 5K platform in
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35,559 Icelanders?!, or the UK Biobank Pharma Proteomics Project?? which aims to measure
circulating concentrations of up to 1,500 plasma proteins in approximately 53,000 UK Biobank
participants using the Olink technology. Furthermore, the number of proteins covered by the
proteomics platform is increasing, with the latest Somalogic and Olink assays measuring up
to 7,0003* and approximately 3,000 proteins®*, respectively, which will allow for an increase

coverage of the sample space of target and human diseases in drug target MR analyses.

While opportunities for pQTL data in drug target MR analysis continue being evaluated,
drug target MR analyses using genetic associations with ‘biomarkers’ downstream to the target
protein could be used to prioritise drug targets. Biomarker-weighted drug target MR analyses
do not provide evidence on whether the biomarker used for the weighting itself mediates
disease, but they inform on the validity of the drug target for a disease, regardless of the
mediating pathway. This approach was used in Chapter 7 to systematically prioritise drug
targets for CHD prevention. Out of the 341 drug targets identified through their association
with blood lipids (HDL-C, LDL-C and triglycerides), 30 targets that might elicit beneficial
effects in the prevention or treatment of CHD were robustly prioritized, including NPC1L1 and
PCSKD9, the targets of licensed drugs used in CHD prevention. Of note, the mechanism of
action of PCSK9 through LDL-cholesterol was also rediscovered by the pQTL-weighted drug
target MR in Chapter 6 which supports the assumption that the effect on a clinically-validated
biomarkers could be a valid proxy for protein concentration or activity. The same analysis
prioritised other potential targets such as the lipoprotein lipase (LPL), a target that could
potentially decrease CHD risk based on the univariable MR findings, with an effect potentially
mediated by HDL-C, or another non-LDL-C pathway. Several pharmacological attempts have
been pursued to target LPL3>3¢, and the approval of gene therapy interventions and the known

indirect activation of LPL by drugs targeting other proteins, such as fibrates’” and metformin3®,
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suggest that the previous failure of compounds targeting LPL in initial trials may have been

idiosyncratic.

The potential of ‘biomarker-weighted drug target MR’ was illustrated in Chapter 7 using
genetic association data on blood lipids and CHD data, however, the approach could also be
extended to other areas where GWAS of diseases and biomarkers thought to be potentially
affected by the drug target are available. For example, ‘biomarker-weighted drug target MR’
could leverage the increasing available data on cardiovascular biomarkers to evaluate the
causal role of drug targets, such as carotid artery intima media thickness and carotid plaque, in
atherosclerosis, following up on associations described in several studies’**’, to identify
potential new indications for anti-inflammatory agents established in the treatment of

autoimmune conditions.
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8.3. Thesis strengths and weaknesses

The work described in this thesis have a series of strengths and limitations that were
discussed at length within each results chapters. Here I summarise those that were present

throughout all the analyses.

One of the strengths of the analyses is that most of the data used were available in the
public domain which facilitates the revisiting of the estimates if needed, reproducibility and
look up of canonical examples. These datasets included repositories of genetic associations,
databases of drug information and clinical trial data, and published lists of druggable genes.
Information from these disparate sources was integrated in the thesis using different
anchoring ontologies or coding systems. For example, human diseases, drug indications and
phenotypes investigated by GWAS were connected using the UMLS system. By using the
UMLS as an anchoring ontology to standardise the diseases across data sources and including
a step of manual curation of the disease terms and areas, the error due to inaccurate mapping
cross-databases was reduced. The effort of harmonising the disease nomenclature facilitated
the stratification of the analyses in Chapter 4 and 5 by disease area. This represents an
additional strength of the work presented as allowed for the identification of disease areas
with unmet clinical need (Chapter 4), or disease areas where targets had the greater genetic

support.

In addition, I created a dataset of 32,022 drug target-indication pairs using data from
ChEMBL v25 and the druggable genome to estimate the value of genetic support in phase
progression and to derive a ‘truth’ set of approved drug target-indication pairs. The dataset
included 10,000 more pairings compared to the target-indication pairs reported by King et al.,
20192 (21,934) and that used by Nelson et al.?, 2015 (19,085). When filtering for those

indications that had been studied by GWAS, the dataset included 18,065 drug target-indication
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pairs in contrast to the 820 investigated by Nelson et al., (precise numbers from the King et al.,
were not provided in the publication). One of the potential reasons for the increased sample
size may be that the analysis performed in this thesis included not only GWAS data from
studies based on research-based case ascertainment, but also genetic associations from
electronic health records (UK Biobank). Also in terms of sample size, the analysis presented
in Chapter 5 utilised genetic associations with the levels of almost 5,000 circulating proteins
measured in a large cohort (10,708 participants). The high number of targets of approved drugs
with available pQTL allowed for a large scale evaluation of the drug target MR framework
using 160 drug target-indication pairings. The only similar systematic analysis used a
proteomic platform for 1,000 proteins and thus, could only evaluate 73 approved drug target -

indication pairings.

Lastly, multiple testing in the MR analyses was addressed in a number of complementary
ways throughout the thesis. In Chapter 6, several sensitivity analyses were performed using
different conditions for the parameters. In Chapter 7, multiple sources of evidence were
combined to prioritise drug targets. For example, to assess the potential for false positive
results, the distribution of the exposure-specific p values was tested against the uniform
distribution expected under the null hypothesis*'. In addition, the findings were validated with
independent data sources and a second drug target MR was conducted. Also, a multivariable
extension of the inverse-variance weighted (IVW) and MR Egger methods was applied in
Chapter 7 to further validate the findings, although in some cases imprecise estimates were
obtained in line with previous studies which attributed this to the inclusion of highly correlated

exposures in the model*2.

There are some general limitations to the analyses presented in the preceding chapters.

First, information on drugs in preclinical or clinical development may be incomplete or not
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available in the public domain, which may lead to an underestimation of the number of diseases
studied in drug development, particularly for the preclinical candidates which did not progress
to clinical trials. Second, there are several reasons for drug discontinuation besides lack of
efficacy, including safety concerns, strategic decisions or the compound failing to show extra
benefits compared to another treatment. This could affect the estimates derived in Chapter 5 as
it was assumed that drug target-indication pairs not progressing in the development pipeline
were primarily due to lack of efficacy. Another potential source of bias is that genetic evidence
from GWAS may already be used to inform drug development. However, in line with the
argument presented by Nelson et al., 2015° and due to the long timelines in drug development
(on average 10 years), the impact of this bias would not inflate the estimate but rather
underestimate the value of genetic support as it would increase the number of drugs with

genetic support in the early phases of the development process.

From Chapter 4 to 6, diseases and indications studied by GWAS were identified using
information in the GWAS Catalog. However, the set of diseases/indications may not include
certain indications that may have been studied by GWAS but whose summary statistics had
not been not deposited in the GWAS Catalog. Even for those GWAS traits included in the
analysis, genetic associations may have been missed due to sample sizes not being large enough
to detect all the responsible genes; or due to incomplete genomic coverage by the genotyping
array. Furthermore, summary statistics deposited in the GWAS Catalog may be incomplete and

lack essential information for the MR analyses, such as effect sizes or effect/reference alleles.

In the pQTL-weighted drug target MR analyses described in Chapter 6, it was assumed
that protein expression levels (pQTL) can be used as a proxy of protein activity or function.
While two examples are provided at the beginning of the chapter which supports such

assumption, this has not been studied in detail due to the lack of GWAS data on protein activity.
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Moreover, protein levels corresponded to circulating protein in plasma, although some proteins
are not secreted or circulating in plasma, and therefore, their presence in the blood tissue rather
than indicate physiological conditions. Since the function of these proteins should take place
in a different tissue, it is unclear if the levels in plasma recapitulate those in the drug effector
tissue, or, on the contrary, they are unrelated to their function and should not be used to infer

the effect of modifying such protein by a drug.

The drug target MR approach used in Chapter 6 and 7, which utilised genetic variants in
cis- to construct the genetic instrument. As described in Chapter 2, this approach is less prone
to violation of the horizontal pleiotropy assumption than MR analyses with frans instruments?>.
However, cis-MR also requires some decisions to be made regarding instrument selection:
defining the locus of interest, the significance threshold for the association with the exposure
and the LD threshold to prune correlated instruments. The evaluation of the drug target MR
framework in Chapter 6 suggested that the choice of parameters should be made on a case-by-
case basis. Therefore a window of 50 kbp and LD threshold of 0.4 were used, which showed
the most consistent estimates in a grid-search in the discovery data using the four positive
control examples: PCSK9, NPC1L1, HMGCR and CETP. Based on previous studies showing
that using less stringent p value thresholds often results in improved performance in cis-MR
settings (i.e., effect in the anticipated direction), the threshold below genome-wide significance
was relaxed to select the genetic associations to instrument the exposure; and accounted for LD

correlation by pruning and LD modelling during the MR analysis>*3.

Lastly, some of the analyses presented in this thesis only included genes regarded as
encoding druggable proteins which currently comprise approximately 25% of all protein

coding genes*. As knowledge advances, additional proteins will become druggable, and
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alternative therapeutic strategies such as antisense oligonucleotides and gene therapy may

extend the range of mechanisms that can be targeted.
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8.4. Concluding comments

The findings from this thesis have the potential to inform prioritisation strategies in drug
development and future research so the investment and impact of human genetic studies can
be maximised. It provides an overall picture of the drugs, targets and indications where genetic
data exist and could be harnessed to genetically validate approved drugs or identify
opportunities for indication expansion, repurposing or de novo drug development. It also
demonstrates through retrospective analyses of drug target-indication pairings that those with
genetic support are enriched among successful drug development programmes. Several
molecular traits, including proteomics and other clinically relevant biomarkers, are now being
measured and linked to medical records and genetic data in large cohort studies and national
biobanks. Therefore, it is possible to optimise traditional approaches in genetic epidemiology,
such as Mendelian randomisation, to harness genome-wide association studies and provide
robust evidence of target efficacy in early stages of the drug development process. The drug
target MR framework using genetic associations with protein levels holds the promise of
genetically validating drug target — indication pairs by the systematic interrogation of every
potential drug target with available pQTL data against all the potential indications studied by
GWAS. Further work is still needed to fully understand and validate the approach before it can
be applied systematically, but several case studies have been described in this thesis which

illustrate its potential and support future research on the topic.
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8.5. Future research

The findings from this thesis have the potential to generate future research in several

directions.

The points of convergence or divergence between genomic research and drug
development efforts identified in the sample space of all the human drug targets and diseases
could have multiple applications: to inform future drug development programmes direction if
they are seeking to exploit existing genetic evidence; to promote large-scale GWAS or
sequencing studies to help stimulate drug development in diseases without an approved
treatment; to identify opportunities to expand the indications for approved drugs or repurposing
opportunities for the many safe drugs that failed in clinical trials due to lack of efficacy in the

originally intended indication.

The declining cost of high-throughput technologies for protein quantification and the
linkage of molecular measures to genetic data and electronic health records offer opportunities
to conduct GWAS in a large number of patients and also on quantitative traits in healthy
subjects to identify genetic associations that may explain differences, for example in protein
levels. At the end of 2021, deCODE made available to the public genetic associations for
almost 5,000 proteins measured in 35,559 Icelanders using the SomaLogic v4 platform?'. These
data could be meta-analysed with other pQTL GWAS to increase the sample size and increase
the power to detect significant associations. It could also be leveraged in drug target MR studies
to replicate the findings described in Chapter 6 or to identify opportunities for expansion of
indications for those drug targets-approved indications that were consistently in the anticipated
direction of effect. Similar work could be conducted using the genetic associations with 1,500

plasma proteins measured in approximately 53,000 UK Biobank participants using the Olink
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technology. That resource, which has not been released at the time of this thesis, would also

allow for cross-platform comparison.

Measurements of circulating levels will soon be available for a wider range of proteins
based on the latest assays announced by SomaLogic v4.1 (7,000 proteins®®) and Olink (3,000
proteins)**. Such data will increase the coverage of the sample space of target and human

diseases in drug target MR analyses.

Future research should also focus on the methodological aspects of GWAS and MR
approaches. Twenty years after the publication of the first GWAS*, it remains unclear what is
the most optimal method to map association signals to causal genes and several gold-standard
datasets have been used to explore the different methodologies. These ‘truth’ sets include genes
whose perturbation causes a Mendelian form of a common disease®, the set of expression and
protein QTLs?!, curated metabolite QTLs'3, manually curated examples from the literature!®,
and approved drug target-indication pairings where the indication has been studied by
GWAS*!?, As more data become available, these datasets are likely to expand and thus offer a
larger sample size to test different methods. In addition, novel approaches may emerge that
outperform the current mapping methods which are mostly based on the relative distance to the
gene. Research on MR techniques will also benefit from the enhanced mapping between
genetic association — causal gene, as it will ensure that valid genetic variants are selected to
construct the genetic instrument. Similar ‘truth’ sets could be used in future work to evaluate
the performance of the drug target MR framework and inform the design, parameter selection

and interpretation of the findings.

The full integration of genome-wide association studies and related applications in the

drug development pipeline is still very much a work-in-progress. This thesis anticipates that
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the mining of data from genome-wide association studies will help address the efficiency and

productivity problem in the pharmaceutical industry.
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