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Abstract
One investigates the post-shut-in growth of a plane-strain hydraulic fracture in an impermeable medium while accounting 
for the possible presence of a fluid lag. After the stop of fluid injection, the fracture may present three distinct propagation 
patterns: an immediate arrest, a temporary arrest with delayed propagation, and a continuous fracture growth. These three 
patterns are all followed by a final fracture arrest yet the fracture behaviour prior to that results from the interplay between the 
dimensionless toughness K

m
 , the shut-in time t

s
∕t

om
 , and the propagation time t∕t

s
 . K

m
 characterizes the energy dissipation 

ratio between fracture surface creation and viscous fluid flow under constant rate injection. t
s
 and t

om
 represent respectively 

the timescale of shut-in and the coalescence of the fluid and fracture fronts. The immediate arrest occurs when the fracture 
toughness dominates the fracture growth at the stop of injection ( K

m
⪆ 4.3 ). It may also occur upon an early shut-in at low 

dimensionless toughness associated with an overshoot of fracture extension and a significant fluid lag. For intermediate 
values of K

m
 and t

s
∕t

om
 , the fracture may experience a temporary arrest followed by a restart of fracture propagation. The 

period of the temporary arrest becomes shorter with higher dimensionless toughness and later shut-in until it drops to zero. 
The fracture behaviour after shut-in then transitions from temporary arrest to continuous propagation. These propagation 
patterns result in different evolution of fracture dimensions which possibly explains the various emplacement scaling rela-
tions reported in magmatic dikes.

Highlights

•	 Transitional pulse solutions for plane-strain hydraulic fractures with zero lag
•	 Immediate fracture front arrest upon shut-in associated with an overshoot of fracture extension
•	 Temporary fracture arrest and step-wise fracture growth after shut-in in the presence of a fluid lag

Keywords  Shut-in · Fluid lag · Cavitation · Fracture arrest · Step-wise fracture propagation

List of Symbols
CL,C

′	� Fluid loss constant and its cor-
responding effective leak-off 
coefficient

�	� z-grid differentiation operator
E,E′	� Elastic modulus and plane-strain 

elastic modulus

F(sj),F	� Non-singular unknowns correspond-
ing to the s-grid

Ge , Gm , Gk , Go , Gl , Gv	� Dimensionless groups for elasticity, 
lubricated fluid flow, fracture tough-
ness, minimum confining stress, fluid 
extent and fluid mass conservation

ℍ	� Hilbert transform operator
KI	� Mode I stress intensity factor
KIc,K

′	� Fracture toughness and effective 
fracture toughness

Km,K
[V]
m

	� Dimensionless toughness for a con-
tinuous injection without shut-in and 
a pulse injection with shut-in
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�	� Fracture half-length
�f 	� Half length of the fluid extent
�s	� Fracture half-length at shut-in
�a	� Fracture half-length at arrest
L, Lf ,P,W 	� Characteristic scales for the fracture 

length, fluid extent, net pressure, and 
fracture opening

n	� Number of points for the s-grid
pf , p	� Fluid pressure and net pressure
pa	� Net pressure at fracture arrest
q	� Local fluid flux inside the fracture
Q	� Extrapolation operator at zi = 1

Qo	� Fluid injection rate
sj, s; zi, z	� Primary and complimentary set of 

spatial nodes in Gauss–Chebyshev 
quadrature

�A	� s-grid integration operator on [− 1, 1]

�	� s-grid integration operator on [− 1, zi]

tc	� Critical shut-in time at which the 
fracture length equals the theoretical 
arrest length �s∕�a = 1

t
[V]

mk
	� Timescale characterizing the transi-

tion from the shut-in to the final 
fracture arrest

tmm̃	� Timescale characterizing the transi-
tion from storage growth regimes to 
leak-off regimes

tom	� Timescale characterizing the coales-
cence of the fracture and fluid fronts

tr	� Restart time of fracture propagation 
after shut-in

ts	� Shut-in time
Tk	� Gauss–Chebyshev polynomials of 

the first kind
V	� Fracture volume
Vf 	� Injected fluid volume
Vs	� Fracture volume at shut-in
w	� Fracture opening
wa	� Fracture opening at fracture arrest
x, x′	� Fracture coordinate
�	� Dimensionless fracture half-length
�f 	� Dimensionless half-length of the 

fluid extent
�	� Dimensionless shut-in time ts∕tom
�	� State variable related to fluid 

cavitation
�,�′	� Fluid viscosity and effective 

viscosity
�	� Poisson’s ratio
�, �′	� Dimensionless fracture coordinate

𝜉	� Dimensionless fracture coordi-
nate with respect to the fluid front 
position

�f 	� Fluid fraction
�	� Dimensionless net pressure
�o	� Minimum confining stress perpen-

dicular to the fracture plane
� 	� Dimensionless local fluid flux inside 

the fracture
�	� Weight function of Gauss–Cheby-

shev quadratures
�	� Dimensionless fracture opening

1  Introduction

Hydraulic fractures are tensile fractures generated by vis-
cous fluid injection. They exist widely in nature, such as 
during the formation of magma dikes and sills and the drain-
age of glacier lakes, and industrial applications, such as oil 
and gas extraction, CO2 storage, and enhanced geothermal 
systems. During the propagation of hydraulic fractures, a 
fluid-less cavitation exists near the fracture tip and removes 
the pressure singularity inside the viscous fluid flow. This 
cavitation, denoted as the fluid lag, dominates the hydraulic 
fracture growth at early time and gradually vanishes as the 
fluid front catches up with the fracture front. The fluid lag 
is often neglected in the context of deep reservoirs due to 
large confinement, yet can be essential (i) in some labora-
tory hydraulic fracturing experiments (Bunger et al. 2013; 
Liu et al. 2020; Liu 2021; Liu and Lecampion 2023) and 
near-surface hydraulic fracture propagation (Bunger and 
Detournay 2007; Zhang et al. 2002, 2005; Lecampion and 
Detournay 2007; Gordeliy and Detournay 2011; Gordeliy 
et al. 2019; Chen et al. 2018; Wang and Detournay 2018, 
2021. (ii) It also plays an important role in the interplay with 
a rough process zone which deviates the viscous fluid flow 
from Poiseuille’s law and leads to additional energy dissipa-
tion (Liu and Lecampion 2019a, b, 2021). (iii) Moreover, it 
also presents during the formation of magma-driven geo-
logical structures, with magma being an extremely viscous 
intrusion fluid leading to a fluid-less cavitation (Rubin 1993, 
1995; Rivalta and Dahm 2006; Bunger and Cruden 2011).

These circumstances, especially the laboratory hydrau-
lic fracturing injection and the formation of magma dikes 
and sills, are often associated with a fluid shut-in or a pulse 
injection. However, few studies on the post-shut-in growth 
of hydraulic fractures have accounted for the possible pres-
ence of a fluid lag. Garagash (2006a) and Liu and Lu (2023) 
investigate the arrest dynamics of a plane-strain hydraulic 
fracture after shut-in in the limit of large toughness and zero-
toughness respectively. Furthermore, recent work (Möri and 
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Lecampion 2021; Peirce and Detournay 2022a, b; Peirce 
2022) studies the arrest and recession dynamics of a plane-
strain/semi-infinite/radial hydraulic fracture after shut-in 
allowing for fluid leak-off. All these studies assume zero 
fluid lag, and the post-shut-in fracture behaviour with a fluid 
lag remains unknown.

Previous studies (Möri and Lecampion 2021; Liu and Lu 
2023, for example) dealing with the stop of fluid injection 
often assume a constant injection rate before the shut-in. 
The same assumption is made in this study. As a result, the 
fracture growth before the shut-in follows the same way 
as the constant-rate-injection solutions. As discussed in 
Spence and Sharp (1985); Garagash (2006b); Lecampion 
and Detournay (2007), the growth of a plane-strain hydraulic 
fracture in an impermeable medium evolves from an early-
time solution where the fluid lag is maximum to a late-time 
solution where the fluid and fracture fronts coalesce (zero 
lag case) over a timescale

where E� = E∕(1 − �2) is the plane-strain modulus, � the 
Poisson’s ratio of the material, �� = 12� the effective fluid 
viscosity, and �o the minimum confining stress. As the fluid 
and fracture fronts coalesce at t∕tom → 1 , the fracture growth 
transitions to zero-lag solutions. These zero-lag solutions 
present self-similar characteristics and solely depend on a 
dimensionless toughness Km which describes the energy 
dissipation ratio between the creation of fracture surfaces 
and the viscous fluid flow (Garagash and Detournay 2005; 
Garagash 2006a).

where K� =
√

32∕�KIc indicates the effective fracture tough-
ness and Qo the constant fluid injection rate. As a result of 
the viscous fluid flow, the fluid lag can be significant for 

(1)tom =
E�2��

�3
o

(2)Km =
K�

E�

(

E�

��Qo

)1∕4

smaller values of the dimensionless toughness and dimen-
sionless time t∕tom . It can be however negligible at all times 
for high dimensionless toughness when toughness domi-
nates the fracture growth. One illustrates such propagation 
of a plane-strain hydraulic fracture in Fig. 1 via a triangu-
lar phase diagram. The O-, M-, and K-vertex correspond 
respectively to the limiting case of a significant lag/negli-
gible toughness, the viscosity-dominated propagation with 
zero fluid lag, and the toughness-dominated propagation 
where viscous effects are always negligible. These vertex 
analytical solutions are given in Garagash (2006b, 2006a) 
and Garagash and Detournay (2005).

In this paper, one tries to extend the analytical framework 
of the plane-strain hydraulic fracture growth with a fluid lag 
by focusing on the post-shut-in stage assuming zero leak-off. 
One shows that three possible post-shut-in propagation pat-
terns may occur after the shut-in depending on the dimen-
sionless toughness and shut-in time: an immediate arrest, a 
temporary arrest with a restart of propagation, and a con-
tinuous fracture extension. One investigates the evolution of 
fluid pressure, fracture dimensions, and emplacement scal-
ing relations throughout the shut-in process and discusses 
the possible boundaries between different propagation pat-
terns in the parametric space of the dimensionless toughness 
and shut-in time.

2 � Problem Formulation

This study assumes that the fracture propagates in an infinite 
linear elastic medium characterized by the elastic modulus 
E, Poisson’s ratio � , and fracture toughness KIc . The fracture 
grows subjected to uniform far-field stress �o . It is driven 
by a constant-rate Qo fluid injection until a shut-in occurs 
at t = ts . The fluid is incompressible and Newtonian with a 
dynamic viscosity of � . The leak-off of injection fluid into 
the surrounding medium/reservoir is neglected, and the 

Fig. 1   Illustration of the growth of a plane-strain hydraulic fracture with the possible presence of a fluid lag and propagation schemes for a con-
tinuous injection and a fluid shut-in. The superscript [V] is associated with a fluid shut-in/pulse injection
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pressure of the fluid cavitation is approximated as zero—the 
same as illustrated in Fig. 1.

For clarity, one keeps the same definitions of effective 
parameters as already introduced in the previous section and 
in Detournay (2016, and references therein) by setting

They correspond respectively to the plain-strain elastic 
modulus, the effective toughness, and the effective viscosity.

2.1 � Elastic Deformation

The quasi-static balance of momentum relates the fracture 
opening w(x, t) and the net pressure pf (x, t) − �o (the differ-
ence between the fluid pressure and the far field confining 
stress) via a boundary integral equation (see for example 
Hills et al. 1996). In view of the problem symmetry, it can 
be written on one wing of the fracture:

where � is the half-length of the plane-strain fracture.

2.2 � Propagation Criterion

The propagation mechanism is modulated by a constant frac-
ture toughness following the linear elastic fracture mechan-
ics by assuming a negligible non-linear process zone. The 
stress intensity factor KI must equal the fracture toughness 
KIc at any given time during the propagation and can only 
stay below the toughness when the fracture is at arrest. As 
a consequence, the following condition must be satisfied at 
all times.

KI = KIc can be alternatively expressed in the form of the 
classical square-root asymptote near the fracture tip (Rice 
1968).

2.3 � Continuity

Assuming zero compressibility, the fluid mass conservation 
in the elastic deformable fracture reduces to

(3)E� =
E

1 − �2
, K� =

√

32

�
KIc, �

� = 12�.

(4)
E�

4� ∫
�

0

(

1

x − x�
−

1

x� + x

)

�w(x�, t)

�x�
dx�

= pf (x, t) − �o, x, x
� ∈ [0,�]

(5)(KI − KIc)�̇ = 0, �̇ ≥ 0

(6)w ∼
K�

E�
(� − x)1∕2, � − x ≪ �

where �f (t) denotes the current fluid front position, and 
q(x, t) the local fluid flux inside the fracture. The fluid is 
injected at the fracture center under a constant injection rate 
Qo (in m2∕s under plane-strain conditions) until a shut-in 
occurs at t = ts . The flux entering one wing of the fracture 
thus writes:

which can be translated into the form of the global fluid 
volume balance by integrating the continuity Eq. (7) for the 
fluid:

with

2.4 � Poiseuille’s Law

Under the assumption of a Newtonian fluid and a laminar 
flow inside the fracture, the fluid flux can be approximated 
by Poiseuille’s law:

2.5 � Fluid Lag

The fluid front lags behind the fracture front with its veloc-
ity �̇f  equal to the mean fluid velocity q/w at x = �f  (Stefan 
condition):

The fluid is vaporized inside the fluid lag with a cavitation 
pressure pcav much smaller than the liquid pressure pf  in the 
fluid-filled part and the in-situ confining stress �o.

2.6 � Boundary Conditions

The fracture opening and fluid flux are zero at the fracture 
tip.

(7)�w

�t
+

�q

�x
= 0, x ∈ [0,�f ]

(8)q(x = 0+) =

{

Qo∕2, t < ts
0, t ≥ ts

(9)2∫
�f (t)

0

w(x, t)dx = Vf

(10)Vf =

{

Qot, t < ts
Qots, t ≥ ts.

(11)q = −
w3

𝜇�

𝜕pf

𝜕x
, 0 < x < �f

(12)�̇f = −
w2

𝜇�

𝜕pf

𝜕x
at x = �f

(13)pf (x, t) = pcav ≈ 0, x ∈ [�f (t),�(t)]
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2.7 � Initial Conditions

One models the fluid lag nucleation starting from a negligi-
bly small fracture. The initial conditions correspond to the 
linear elastic solutions of a uniformly pressurized static flaw 
with a fluid pressure slightly larger than the in-situ stress �o 
( (pf − 𝜎o)∕𝜎o ≪ 1).

3 � Structure of the Solution

One discusses in this section the post-shut-in growth of a 
plane-strain hydraulic fracture in light of dimensional analy-
sis. One notably highlights the difference brought by the 
fluid cavitation and the shut-in of fluid injection compared 
to the zero-lag continuous-injection solutions (Detournay 
2004; Garagash and Detournay 2005; Garagash 2006a, b). 
Following Liu and Lecampion (2021), one scales the flux 
q with the injection rate Qo , and scales the fracture width 
w, net pressure pf − �o , fracture length � , and the extent of 
the liquid-filled part of the fracture �f  by introducing cor-
responding width W, pressure P, fracture length L and fluid 
extent Lf  characteristic scales:

where � = x∕� is a dimensionless coordinate. The dimen-
sionless variables depend on one or more dimensionless 
numbers P (which may depend on time). Introducing such 
a scaling relation in the governing equations of the problem 
allows one to isolate different dimensionless groups associ-
ated with the different physical mechanisms at play (elas-
ticity, injected volume, viscosity, fracture toughness) and 
define relevant scalings.

Before going further, one briefly lists the dimensionless 
form of the governing equations where appear different 
dimensionless groups.

•	 Elasticity (4) 

•	 Propagation condition (6) 

(14)w(x = �, t) = 0, q(x = �, t) = 0

(15)
w(x, t) = W(t)� (�,P), pf (x, t) − �o = P(t)� (�,P)

q(x, t) = (Vf ∕t)� (�,P), �(t) = L(t)�(P), �f (t) = Lf (t)�f (P)

(16)
𝛱 = Ge

1

4𝜋

1

𝛾 ∫
1

0

𝜕𝛺

𝜕𝜉

(

1

𝜉 − 𝜉�
−

1

𝜉 + 𝜉�

)

d𝜉�,

0 < 𝜉, 𝜉� < 1

(17)𝛺 ∼ Gk𝛾
1∕2(1 − 𝜉)1∕2, 1 − 𝜉 ≪ 1

•	 Fluid continuity (7) and Poiseuille’s law (11) 

 with 𝜉 = x∕�f = 𝜉 × (𝛾∕𝛾f )∕Gl the spatial coordinate 
with respect to the fluid front position.

•	 Fluid lag (13) 

The solution of the problem thus depends on the following 
dimensionless groups.

One sets Ge = 1 and Gv = 1 by recognizing that elasticity is 
always important and that the fracture volume equals the 
injected volume at all times. Assuming a negligible fluid 
lag ( Gl = Lf∕L = 1 ), one obtains the viscosity and toughness 
scalings by setting respectively Gm ( M[V]/viscous scaling) 
and Gk ( K[V]/toughness scaling) to unity (The superscript 
[V] denotes the scaling commensurate with a fluid shut-in 
at time ts and an injection volume of Vf  ). The fluid lag dom-
inated scaling ( O[V]-vertex) is obtained by setting Gm = 1 

(18)t
𝜕𝛺

𝜕t
+ t

Ẇ

W
𝛺 + Gv

1

𝛾f

𝜕𝛹

𝜕𝜉
= 0

(19)𝛹 = −
1

Gm

𝛺3

𝛾f

𝜕𝛱

𝜕𝜉

(20)�(� ≥ �f = �f∕�) = −Go

(21)

Ge =
WE�

PL
, Gk =

K�L1∕2

E�W
, Gv =

Vf

WLf
, Gm =

��Vf Lf

PW3t
,

Go =
�o

P
, Gl =

Lf

L

Table 1   Characteristic scales and dimensionless numbers govern-
ing the evolution of a plane-strain hydraulic fracture after shut-in for 
different limiting regimes: O[V]—the lag/viscosity dominated regime, 
M

[V]—the fully filled/viscosity dominated regime, and K[V]—the fully 
filled/toughness dominated regime

The timescale t
om

 is defined in Eq. (1) and the dimensionless tough-
ness under a pulse injection K

[V]
m  is defined in Eq. (23)

O
[V]

M
[V]

K
[V]

L E
���1∕4

V
1∕2

f

�
5∕4
o

t1∕4

E
�1∕6

V
1∕2

f
t
1∕6

��1∕6

E
�2∕3

V
2∕3

f

K�2∕3

P �
o E

�2∕3��1∕3

t1∕3

K
�4∕3

E�1∕3V
1∕3

f

W ��1∕4
V
1∕2

f

�
1∕4
o

t1∕4

��1∕6
V
1∕2

f

E�1∕6t1∕6

K
�2∕3

V
1∕3

f

E�2∕3

L
f
∕L (t∕t

om
)1∕2 1 1

G
m

1 1 K
[V]−4
m

G
k K

[V]
m

(

t∕t
om

)−1∕8
K

[V]
m

1

G
o

1 (t∕t
om
)1∕3 (t∕t

om
)1∕3K[V]−4∕3

m
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and Go = 1 recognizing that viscous effects are necessary 
for cavitation to occur and that the lag covers a significant 
part of the fracture such that the pressure scale is given by 
the in-situ stress. One shows the scalings for these limiting 
propagation regimes in Table 1. When replacing Vf = Qot , 
one recovers the same scaling relations for a continuous 
injection (Detournay 2004; Garagash and Detournay 2005; 
Garagash 2006a, b).

Two timescales emerge from the scaling analysis: tom (1) 
as the time for the dimensionless in-situ stress Go to reach 
unity, which characterizes the disappearance of the fluid 
lag, and t[V]

mk
 characterizing the transition from the shut-in 

to the final fracture arrest.

One further obtains the dimensionless toughness corre-
sponding to a pulse injection:

which embeds Km (2) the dimensionless toughness describ-
ing the energy dissipation between fracture surface creation 
and viscous fluid flow at the time of shut-in, and the time 
t∕ts of fracture propagation following the stop of injection. 
For the post-shut-in stage ( t∕ts > 1 ), K[V]

m
 increases mono-

tonically from Km representing a transition to a fracture 
behaviour more dominated by the fracture toughness. This 
is consistent with the uniform pressure inside the fracture at 
final arrest, which implies negligible energy dissipation in 
the viscous fluid flow.

The complete evolution of the solution between differ-
ent regimes is then grasped by the dimensionless tough-
ness Km upon shut-in, the dimensionless time t∕tom , and 
the dimensionless shut-in moment.

� characterizes how far the fluid front lags behind the frac-
ture front at the time of shut-in: 𝜁 ≪ 1 represents a signifi-
cant fluid lag and 𝜁 ≫ 1 indicates the limit of zero fluid lag. 
Depending on the combinations of Km and � , different frac-
ture behaviour can be expected:

•	 When 𝜁 ≫ 1 , the fluid and fracture fronts coalesce with 
zero fluid lag. For Km ≪ 1 , the fracture growth fol-
lows the zero-toughness pulse-injection solutions ( M[V]

-solution) obtained by Liu and Lu (2023) where the 
propagation continues without arrest. For Km ≫ 1 , the 
fracture growth is dominated by fracture toughness at 

(22)t
[V]

mk
=

E�3��Vf

K�4

(23)K
[V]
m

=

(

t

t
[V]

mk

)1∕4

=
K�

E�

(

E�t

��Vf

)1∕4

= Km

(

t

ts

)1∕4

(24)� =
ts

tom
=

t
[V]

mk

tom
K

4
m

the time of shut-in and the pressure is uniform every-
where inside the fracture. This leads to an immediate 
arrest of the fracture growth upon shut-in ( K[V]-solu-
tion). For intermediate values of Km , the fracture con-
tinues to propagate until the final arrest.

•	 When 𝜁 ≪ 1 , the shut-in occurs at early time and a non-
negligible fluid lag exists regardless of the value of the 
dimensionless toughness Km . The fracture behaviour 
will result from the interplay between the dimension-
less toughness Km , the shut-in moment � = ts∕tom , and 
the dimensionless time t∕tom.

The zero-lag transitional solutions ( 𝜁 ≫ 1 ) with intermediate 
values of Km and the post-shut-in solutions in the presence 
of a fluid lag ( 𝜁 ≪ 1 ) will be now investigated numerically.

4 � Numerical Scheme

One adopts two different numerical schemes depending on 
whether there is a significant fluid lag during the fracture 
growth.

In absence of a fluid lag, one uses a spectral method 
based on the Gauss–Chebyshev quadrature and Barycen-
tric interpolation techniques (Viesca and Garagash 2018; 
Liu et al. 2019). This method turns the coupled fracture 
problem into a series of ordinary differential equations, 
with its initial conditions set as the self-similar solu-
tions of a plane-strain hydraulic fracture for a constant 
dimensionless toughness (Garagash and Detournay 2005; 
Garagash 2006a). The mathematical formulation for the 
zero-lag fracture problem remains the same as presented 
in Sect. 2 except for �f = � . One refers to Appendix 1 for 
their detailed discretization.

When accounting for a f luid lag, one uses an 
Elrod–Adams type scheme based on a fixed regular grid 
with a constant mesh size following Mollaali and Shen 
(2018) and Liu and Lecampion (2019a, 2019b, 2021). 
This scheme introduces a fluid state variable � ∈ [0, 1] (1 
for the liquid phase, 0 for the vapour phase) in a similar 
way to thin-film lubrication cavitation models (see Szeri 
2010, for example). It automatically captures the sponta-
neous nucleation of the fluid lag by imposing additional 
inequalities conditions ( pf ≥ 0, 0 ≤ � ≤ 1, pf (1 − �) = 0 ) 
in each element. The elasticity and fluid mass conserva-
tion is then discretized respectively using a displacement 
discontinuity method with piece-wise constant elements 
and finite difference. One uses an implicit time-integra-
tion scheme to solve iteratively for the fluid pressure and 
the associated opening. The solution is obtained using 
three nested iterative loops for a fixed increment of frac-
ture length before the shut-in: one starts from a trial 
time step and solves the fluid pressure for all elements 
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inside the fracture using a quasi-Newton method. Such a 
procedure is repeated until each element in the fracture 
reaches a consistent state: either fluid or vapor. The time 
step is finally adjusted in an outer loop using a bi-section 
and secant method to fulfill the propagation criterion. 
One refers the details of the numerical solver to Liu and 
Lecampion (2021) and discusses the model validation in 
Appendix 2.

One applies the fluid shut-in via the fracture length by con-
trolling the activated number of elements: when the fracture 
length goes beyond the shut-in length � ≥ �s = �(t = ts) , the 
injection is stopped. After shut-in, one solves the non-linear 
system with an assumed time step and checks afterwards 
whether the propagation condition is fulfilled at the fracture 
tip: the fracture front advances only when KI ≥ KIc . This 
allows for both a temporary and a permanent stop of the frac-
ture extent yet an exact solution for the final arrest time (or the 
restart propagation time) necessitates a small time step and a 
fine mesh.

5 � Results and Discussion

5.1 � Zero‑Lag Vertex Solutions

When the fracture toughness dominates the propagation at the 
time of shut-in ( Km ≫ 1 ), the fluid pressure is uniform inside 
the fracture with the stress intensity factor equal to the fracture 
toughness. Any further fracture extension will lead to a drop in 
the stress intensity factor and an immediate arrest. The fracture 
behaviour (the pulse toughness-dominated solution or the K[V]

-vertex solution) thus corresponds to the solution of a linear 
elastic fracture under uniform far-field load. The fracture half-
length �a , the fracture opening wa and the net pressure at arrest 
write as follows.

In absence of a fluid lag, the fracture propagates without 
arrest when the fracture toughness is zero KIc = 0 . The solu-
tion, denoted as the pulse viscosity dominated solution or the 
M[V]-vertex solution, is self-similar and has been obtained 
numerically using the Gauss–Chebyshev quadrature and 
Barycentric interpolation techniques in Liu and Lu (2023). 
One recalls here the expression for the fracture half-length.

The M[V]-vertex solution implies that the fracture half-length 
evolves with time in a way that � ∼ t1∕6 . Note that such a 
time evolution of the fracture length may also appear dur-
ing the transition to the final fracture arrest for KIc > 0 as 
shown in Fig. 2.

5.2 � Zero‑Lag Transitional Solutions

In absence of a fluid lag, the fracture with a finite non-zero 
toughness continues to grow after shut-in, with the elastic 
energy stored prior to the shut-in partially balanced by the 
creation of new fracture surfaces. Such post-shut-in fracture 
growth stops when the fracture length reaches the K[V]-solution 
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Fig. 2   Evolution of the fracture length ratio between the shut-in and final arrest in function of a the dimensionless toughness and b the dimen-
sionless time in absence of a fluid lag
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at � = �a . Approximating the fracture half-length �s at shut-in 
with the self-similar solutions (Garagash and Detournay 2005; 
Garagash 2006a) (by assuming that the plane-strain fracture 
is driven under a constant injection rate before shut-in), one 
defines 1 − �s∕�a as the potential fracture extension after the 
stop of fluid injection.

where �m is the self-similar solution for constant injec-
tion rate in the viscosity dominated scaling (Garagash and 
Detournay 2005; Garagash 2006a) and Lm the length scale 
in the viscosity scaling as shown in Table 1. This ratio of 
the fracture length �s∕�a is solely a function of the dimen-
sionless toughness Km . As illustrated in Fig.  2a, when 
Km ⪆ 2.596 , the fracture half-length �s is equal to or larger 
than 95% of the final arrest fracture half-length �a , and the 
fracture front could barely advance after the stop of fluid 
injection.

One further investigates numerically the post-shut-in 
growth of a plane-strain hydraulic fracture and its subse-
quent arrest employing a spectral solver. One displays in 
Fig. 2b the evolution of the fracture half-length as a function 
of t∕ts for different values of Km . For small values of Km , 
the hydraulic fracture is in the viscosity dominated regime 
when the shut-in occurs. One observes a transition from the 
small toughness solution (with � ∼ t2∕3 ) (Garagash 2006a) 
to the pulse viscosity dominated solution (28) (with � ∼ t1∕6 ) 
(Liu and Lu 2023). Such a transition is much shortened for 
larger values of Km , where more energy dissipation is owed 
to the creation of fracture surfaces. For Km ⪆ 4.3 (Gara-
gash 2006a), the fracture growth is dominated by fracture 
toughness at the time of shut-in, leading to an immediate 
arrest. A diagram describing such post-shut-in propagation 

(29)
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of a plane-strain hydraulic fracture with zero fluid lag is 
illustrated in Fig. 1 together with that of a continuous fluid 
injection.

5.3 � Non‑zero Fluid Lag Solutions with Shut‑In

In this section, one focuses on the post-shut-in growth 
accounting for the presence of a non-negligible fluid lag. 
The fluid lag can be significant for small and intermedi-
ate values of dimensionless toughness especially when 
the shut-in occurs at the early time of hydraulic fracture 
growth. To better describe the fracture behaviour after the 
shut-in, one defines the volume efficiency coefficient as 
the ratio between the total volume of the created fracture 
V and the injected fluid volume Vf .

One also defines the length efficiency coefficient �∕�a as 
the ratio between the fracture half-length � and the fracture 
half-length at arrest �a under the pulse injection.

The post-shut-in fracture behaviour is a function of 
both the dimensionless toughness and dimensionless 
shut-in time. One shows in Fig. 3 the volume and length 
efficiency parameters upon shut-in as a function of these 
two dimensionless parameters. Note that these results only 
describe the fracture growth at the shut-in time, neither 
before nor after.

The volume efficiency is always greater than one owing 
to a non-zero volume of the fluid cavitation. A more sig-
nificant effect of the viscous fluid flow or a larger dimen-
sionless toughness Km tends to lead to a more efficient 
injection with the fracture volume larger than the volume 
of injected fluid. The volume efficiency decreases towards 
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one as the shut-in occurs later, and the fluid front tends to 
catch up with the fracture front until the fracture is fully 
filled with fluid.

The fracture length efficiency also decreases as the 
shut-in occurs later (Fig. 3). When the effect of viscous 
fluid flow is more dominant during the fracture growth 
(smaller dimensionless toughness Km values), the decrease 
in length efficiency becomes more sensitive to the increase 
of the shut-in time ts∕tom . When the fluid lag vanishes at 
ts∕tom ≈ 1 , �s∕�a converges towards zero-lag solutions, and 
one obtains the same conclusion as shown in Fig. 2a: a 
smaller Km leads to a larger difference in fracture exten-
sion between upon shut-in and at arrest.

5.3.1 � Early‑Time Fracture Overshoot

It is interesting to notice from Fig. 3 that the fracture length 
can be even larger than the theoretical arrest dimension �a 
at early shut-in t∕tom ≪ 1 for Km ≪ 1 . Such an overshoot 
is associated with the strong pressure gradient inside the 
viscous fluid flow and a significant fluid lag. The fracture 
is probably not going to propagate any further after shut-
in with �s > �a , while the fluid front may advance towards 
and finally coalesce with the fracture front. If defining tc as 
the critical shut-in time at which the fracture length equals 
the theoretical arrest length �s∕�a = 1 , one obtains in Fig. 4 
the corresponding critical shut-in time for different dimen-
sionless toughness. tc∕tom is not a monotonic function of 
the dimensionless toughness and reaches its maximum 
around tc∕tom ≈ 5 × 10−7 at Km ≈ 0.12 . Within the range of 
ts∕tom ∈ (10−8, 1) investigated in this study, the fracture over-
shoot is unlikely to occur for Km ⪆ 0.3 . Note that such an 
immediate arrest was also expected in absence of a fluid lag 
when the fracture toughness dominates the fracture growth 
( Km ≫ 1 and �s∕�a → 1 , Fig. 2).

When the shut-in occurs later than the critical time ts > tc , 
the fracture length at shut-in again drops below the theoreti-
cal arrest extension �s < �a . The fracture probably propa-
gates further with an increasing fluid fraction until it reaches 
the arrest dimension � = �a.

5.3.2 � Temporary Arrest and Continuous Growth Upon 
Shut‑In

For later shut-in time or dimensionless toughness with inter-
mediate values, the fracture overshoot is less likely to occur, 
yet other propagation patterns may emerge depending on 
the interplay between Km , ts∕tom and t∕tom . In the following, 
one investigates numerically the fracture behaviour through-
out the shut-in process and focuses on the effect of dimen-
sionless shut-in time � = ts∕tom by fixing the dimensionless 
toughness Km = 0.232.

Figure 5 shows the time evolution of the fracture length, 
volume efficiency, and fluid fraction corresponding to differ-
ent shut-in moments. The volume efficiency decreases with 
time due to the increased fluid fraction inside the fracture. 
Moreover, the fracture presents three distinct propagation 
patterns after shut-in: an immediate arrest, a temporary 
arrest (characterized by a significant decrease in fracture 
front velocity upon shut-in and followed by a restart of the 
propagation), and direct post-shut-in propagation (with a 
negligible or zero delay in time after the stop of injection).

These different propagation patterns are also reflected in 
the evolution of width and fluid pressure profiles (Fig. 6). 
For the immediate fracture arrest at early shut-in time 
ts∕tom ≪ 1 , the fracture extension upon shut-in is larger than 
the arrest dimension (25) due to a strong viscosity effect and 
a significant fluid lag. The fluid front continues approach-
ing the fracture front after the stop of injection while the 
fracture tips stay at their original position. When the fluid 
and fracture fronts coalesce at large time, the pressure 
becomes uniform inside the fracture yet is not sufficiently 
large (resulting from the mass balance of fluid) to trigger the 
propagation due to a stress intensity factor smaller than the 
fracture toughness at the fracture tip.

At relatively larger shut-in time, the fracture extent upon 
shut-in is shorter than the final dimension at arrest (25). The 
fracture experiences a temporary arrest followed by a restart 
of propagation. Upon shut-in, the fluid front is far from the 
fracture front and the stress intensity factor is not sufficiently 
large to trigger the propagation. The fracture front thus stops 
growing while the fluid front keeps advancing towards the 
fracture tip (Fig. 6). When the fluid fraction is large enough 
such that the propagation condition is once again fulfilled, 
the fracture extent restarts to grow towards the final arrest 
dimension. Note that this step-wise feature of the hydrau-
lic fracture growth with a significant fluid lag has not been 
reported before. It is different from the piece-wise nature of 

Fig. 4   Dependence of the critical shut-in time t
c
 on the dimensionless 

toughness. At t
s
= t

c
 , the fracture length at shut-in equals the theoreti-

cal fracture dimension at arrest (25)
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the fracture dynamics (Cao et al. 2017; Peruzzo et al. 2019a, 
b) and the piece-wise quasi-static fracture growth related to 
material heterogeneity (Da Fies et al. 2022a, b, for example).

At late shut-in time, the fracture experiences a direct post-
shut-in propagation followed by the final fracture arrest. The 
fluid lag is small at the time of shut-in, which facilitates 
the transition of the fracture growth to zero-lag solutions 
(Fig. 6). Note that similar continuous propagation after the 
shut-in with the presence of a fluid lag has already been 
observed in laboratory hydraulic fracture experiments (Liu 
2021; Liu and Lecampion 2023).

For all these propagation patterns shown in Fig. 6, the elas-
tic energy stored prior to the shut-in is released through the 
deflation of the fracture opening. The fluid front continues to 
advance towards the fracture tip, which leads to an increase in 
the fluid fraction and a drop in the pressure gradient inside the 

fluid flow. As a result, the dominated width asymptote also 
evolves with time.

Linear hydraulic fracture mechanics (Detournay 2016, 
and references therein) point out that the fracture width may 
present k-, m- and o-asymptote characterized respectively by 
fracture toughness, viscous fluid flow, and fluid lag. All these 
asymptotes are present during the post-shut-in growth of the 
fracture as shown in Fig. 7. At early time of the shut-in, the 
o-asymptote dominates the width profile due to a significant 
fluid lag. As the fluid lag vanishes, the viscous fluid flow 
becomes the dominant mechanism at intermediate time, and 
the width is then better characterized by the m-asymptote. As 
the fracture approaches the final arrest, the spatial pressure 
gradient inside the fracture decreases with time and becomes 
nearly zero. The fracture width can be thus approximated by a 
uniformly pressurized linear elastic solution, which is associ-
ated with the k-asymptote.

Fig. 5   Time evolution of the fracture half-length, fluid fraction and volume efficiency parameter for K
m
 with different shut-in time � = t

s
∕t

om
 . 

The vertical dashed line indicates the shut-in time
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5.3.3 � Three Post‑shut‑in Propagation Patterns 
in the Parametric Space

The fracture propagation pattern after shut-in is a func-
tion of both the shut-in time ts∕tom (Fig. 5) and the dimen-
sionless toughness Km . How the three patterns locate in 
the ts∕tom −Km parametric space will be discussed in the 
following.

The immediate arrest is very likely to occur at early 
time ts∕tom ≪ 1 for Km ≪ 1 associated with an overshoot 
of the fracture extent due to a strong pressure gradient in 
the viscous fluid. This immediate arrest will disappear for 
later shut-in or larger dimensionless toughness and can 
be approximately constrained by the critical timescale tc 
(Fig. 4). In absence of a fluid lag, the immediate arrest also 
occurs at large dimensionless toughness with little vis-
cous fluid flow. Here one sets this immediate arrest limit 

(a) (b)

Fig. 6   Spatial profiles of a the dimensionless fracture opening and b 
fluid pressure for K

m
= 0.232 at different shut-in time � = t

s
∕t

om
 cor-

responding to fracture behaviour such as immediate arrest, temporary 
arrest, and direct propagation after the shut-in. The black curve indi-

cates the spatial profile at the time of shut-in t
s
 , while the red curve 

represents the profile at t = 1000t
s
 . The black dots on the width pro-

files indicate their fluid front position
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as Km = 4.3 , which represents the validity of the zero-
viscosity solutions for a plane-strain hydraulic fracture 
(Garagash 2006a).

The temporary arrest/delayed propagation most likely 
occurs for medium dimensionless toughness and medium 
range of the shut-in time ts∕tom . One defines tr as the restart 
time of fracture propagation and displays in Fig. 8 the time 
ratio tr∕ts and the fluid fraction �f (t = tr) for different dimen-
sionless toughness. This delayed propagation restarts later 
for an earlier shut-in and a lower dimensionless toughness 
Km . Moreover, the restart of propagation does not necessar-
ily require zero fluid lag.

When Km → 1 , tr∕ts approaches to one. The fracture is 
more likely to experience direct post-shut-in propagation 

followed by the final fracture arrest. This direct post-shut-in 
growth can be expected at ts∕tom → 1 for lower dimension-
less toughness, in which case the fluid fraction is almost one 
upon shut-in. The precise boundary between the temporary 
arrest and the direct propagation after shut-in is difficult to 
determine. Here one performs a series of numerical simula-
tions at different shut-in time to narrow the boundary zone. 
One summarizes in Fig. 9 the approximated boundaries in 
the plane of Km − ts∕tom for different propagation patterns.

5.3.4 � Emplacement Scaling Relation

In the following, one focuses on the evolution of emplace-
ment scaling which of course depends on the dimensionless 
toughness and shut-in time.

From Eq. (25), the emplacement of a fracture at arrest 
will follow the relation of wa(0) ∼

√

�a . However, such a 
square-root scaling relation is not guaranteed during the 
hydraulic fracture propagation before and after the shut-
in. As shown in Fig. 10a, the zero-lag solutions follow 
w(0)∕wa(0) ∼

√

�∕�a before the shut-in and then transi-
tions to w(0)∕wa(0) ∼ (�∕�a)

−1 due to the post-shut-in frac-
ture deflation. The deflation period is shorter for a more 
toughness dominated fracture propagation with a larger 
dimensionless toughness. During this process, the aspect 
ratio of the hydraulic fracture first increases, then decreases 
and eventually converges to (1,1) in the �∕�a − w(0)∕wa(0) 
plane, which indicates the theoretical fracture arrest.

Non-zero lag solutions however present a larger aspect 
ratio at the stop of injection compared with the zero-lag solu-
tions. As the shut-in occurs later (an increase in � = ts∕tom ), 
the fluid lag tends to vanish and the emplacement scaling 
relation tends to faster converge to the zero-lag shut-in 
asymptote (Fig. 10b). However, when the immediate arrest 

Fig. 7   Various width asymptotes corresponding to different time after 
the shut-in for K

m
= 0.232 and � = t

s
∕t

om
= 1.95 × 10−5 . The k-, m-, 

and o-asymptote represent respectively the width asymptote domi-
nated by fracture toughness, fluid viscosity, and fluid lag. The black 
dots indicate the fluid front positions of different width profiles

(a) (b)

Fig. 8   a Time t
r
∕t

s
 of the restart of propagation and b its correspond-

ing fluid fraction �
f
(t = t

r
) as a function of the dimensionless tough-

ness K
m
 and shut-in time � = t

s
∕t

om
 . In figure (b), the gray curves 

indicate the fluid fraction �
f
(t = t

s
) at the time of shut-in. The solid 

disks represent the fluid fraction at the restarting propagation time of 
the temporary arrest or at the shut-in time of the direct propagation. 
The empty disks represent the fluid fraction at the shut-in time char-
acterized by the immediate fracture arrest ( t

r
∕t

s
= ∞)
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occurs for an early shut-in with a small value of Km , the 
fracture extension is overshot and the fracture may present a 
smaller width and a longer length leading to a smaller aspect 
ratio at arrest with w(0)∕wa(0) < �∕�a.

6 � Discussion

6.1 � Implications for Hydraulic Fractures 
at Laboratory and Field Scales

To gauge the implications for real systems, one considers 
typical values relevant to the laboratory- and field-scale 
hydraulic fractures and report in Table 2 the corresponding 
characteristic scales and dimensionless numbers for different 
types of injection.

Laboratory hydraulic fracturing injection is often per-
formed in samples with limited dimensions under limited 
confinement. Assuming relatively low confinement applied 
on the rock samples, one considers here the injection of a 
highly viscous and a barely viscous fluid [with experimental 
conditions similar to those in Liu et al. (2020) and Liu and 
Lecampion (2021, 2023)] leading respectively to viscous 
flow/fluid lag dominated growth regime (Lab injection A) 
and fracture toughness dominated growth regime (Lab injec-
tion B). When the fracture toughness dominates the fracture 
propagation (Lab injection B), the fracture is uniformly pres-
surized and will immediately arrest upon shut-in. Otherwise, 
the fracture tends to present a temporary arrest then followed 
by a restart of the propagation. Note that the restart of the 
fracture propagation may occur quite late after the shut-
in. Direct observation of such temporary arrest has rarely 
been reported in the laboratory (Liu 2021; Liu and Lecam-
pion 2023) since it necessitates long-period monitoring of 
the fracture behaviour/dimensions after the fluid shut-in. 
Apart from the temporary arrest, an immediate arrest of the 
fracture front may also likely occur in lag/viscosity domi-
nated experiments like Lab injection A: for an early shut-in 

Fig. 9   Illustration of different fracture propagation patterns after 
shut-in as a function of the dimensionless toughness K

m
 and shut-in 

time t
s
∕t

om
 . The gray empty and filled disks represent respectively the 

numerical results indicating the pattern of temporary arrest and direct 
propagation after shut-in. The black filled disks represent the limit of 
the immediate arrest associated with the fracture overshoot at early 
time (Fig.  4). The black horizontal line K

m
= 4.3 (Garagash 2006a) 

indicates the limit of toughness dominated regime which leads to the 
immediate arrest upon shut-in

(a) (b)

Fig. 10   a Emplacement scaling relation upon shut-in for different 
dimensionless toughness K

m
 in the presence of a fluid lag (black 

curves). The shut-in time t
s
∕t

om
 increases from right to the left (for 

black curves). b Evolution of the emplacement scaling relation 
for K

m
= 0.232 with different shut-in time � = t

s
∕t

om
 (black solid 

curves). The black and gray dashed lines in a and b represent respec-
tively the evolution of the zero lag emplacement scaling relation 
before (with a scaling relation of 1/2) and after shut-in (with a scaling 
relation of − 1)
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ts∕tom ≪ 1 , the fracture front may stop growing immediately 
at the stop of injection, and the fluid front gradually evolves 
towards the fracture front until it catches up with the fracture 
tip or reaches the sample boundary.

Most in-situ industrial injections are performed at a depth 
from 1.5 km down to 4 km, corresponding to a minimum 
confining stress of around tens of MPa. Under such con-
finement, one evaluates the characteristic scales for two 
injection scenarios: a micro-HF test with the injection of 
a less-viscous type of slick water, and a well stimulation 
operation with the injection of a more-viscous type of slick 
water. As shown in Table 2, in both cases, the timescale tom 
is small and indicates the presence of a negligible fluid lag. 
The temporary arrest behaviour, which necessitates the pres-
ence of a fluid lag, is possibly excluded in typical industrial 
injections. For the micro-HF test, the injection is often per-
formed at a small injection rate, and the fracture growth is 
characterized by a dimensionless toughness Km of less than 
two. As a result, the fracture either continues to propagate 
after the shut-in or stops growing immediately when the 
fracture toughness dominates the propagation at the stop of 
injection (which happens under the conditions of a smaller 
injection rate, less viscous fluid, and rocks with larger frac-
ture toughness). Different from the micro-HF test, the well 
stimulation is characterized by a larger injection rate and 
a longer injection period. The viscosity likely governs the 
fracture growth upon shut-in, and the fracture may directly 
continue propagating afterwards. In terms of the injection 
efficiency (30), the fluid lag vanishes fast in both scenarios, 
and the fracture volume most likely equals to or becomes 
smaller than the volume of injected fluid due to a probable 

leak-off. The injection efficiency is thus probably smaller 
than one for most industrial injections.

When neglecting buoyancy, magma-driven geological 
structures, such as sills and dikes, can be approximated by 
a hydraulic fracture driven by a pulse fluid injection in the 
plane-strain state (Rubin 1993; Bunger and Cruden 2011). 
The formation of these geological structures is often char-
acterized by a significant cavitation between the magma 
front and the fracture front due to the large viscosity of 
magma and little leak-off (Rubin 1993). Previous stud-
ies point out that dikes present a wide range of distribu-
tion in the emplacement scaling relations and aspect ratios 
(Olson 2003; Scholz 2010; Olson and Schultz 2011; Rivalta 
et al. 2015). This has been attributed to the scale-related 
fracture apparent toughness of geological formations, the 
interplay between the process zone and roughness-induced 
fluid flow deviation (from Poiseuille’s law), and the mixed 
mode fracturing at small scales (Liu et al. 2019; Liu and 
Lecampion 2021, 2022; Arachchige et al. 2022). In the fol-
lowing, assuming constant fracture energy, one focuses on 
the influence of the fluid lag on the dike emplacement. As 
shown in Table 2, one considers two scenarios related to the 
magma dike formation under relatively low tectonic stresses. 
One scenario is characterized by a short-period injection of 
basaltic magma with a large flux (Magma dike A), and the 
other is characterized by a long-period injection of a low-
end viscous magma (similar to that of Kimberlite) with a 
small flux (Magma dike B) (Rivalta et al. 2015). For both 
scenarios, the growth of magma dikes at the shut-in is very 
likely dominated by the viscous fluid flow and the fluid lag 
can not be neglected at least during the pulse injection stage. 

Table 2   Examples of characteristic scales for laboratory- and field-scale hydraulic fracturing injections and their possible propagation patterns 
after shut-in

One takes E = 60 GPa, � = 0.3 , K
Ic
= 1.5MPam1∕2 for most cases except Lab injection A where one takes instead E = 100 GPa, � = 0.3 and 

K
Ic
= 0.6MPam1∕2

Fracturing fluid � (Pa s) Q
o
 (m3 s−1 m−1) �

o
 (MPa) Injection duration t

s

Lab injection A Silicone oil 1000 1.0 × 10−9 0.1 600–1800 s
Lab injection B Glycerol 0.6 1.0 × 10−9 5 30–1800 s
Micro-HF test Slick water 0.005 1.0 × 10−5 20 60–240 s
Well stimulation Slick water 1 1.0 × 10−3 20 1800–7200 s
Magma dike A Magma 300 2 20 0.5 h
Magma dike B Magma 0.1 0.02 20 30 d

K
m

t
om

 (s) t
s
∕t

om
Possible growth patterns after shut-in

Lab injection A 0.004 1.4 × 1011 ∼ 10−8 Immediate arrest or temporary arrest
Lab injection B 4.0 250 ∼ 0.1 − 10 Immediate arrest
Micro-HF test 1.32 0.03 ∼ 102 − 104 Direct propagation or immediate arrest
Well stimulation 0.11 6.5 ∼ 102 − 104 Direct propagation
Magma dike A 0.004 1.95 × 103 ∼ 0.1−1 Temporary arrest or direct propagation
Magma dike B 0.09 0.65 ∼ 106 Direct propagation



Early‑Time Shut‑In for Plane‑Strain Hydraulic Fractures﻿	

1 3

In the case of a very short injection with an extremely large 
flux, the dike may probably present a temporary arrest. Oth-
erwise, it tends to propagate continuously after the shut-in 
followed by a permanent arrest. Such a temporary arrest may 
last for quite a long time, and the magma may cool off and 
solidify before the restart of the propagation. It is thus very 
likely that the final geometry of the dikes deviates from the 
square-root emplacement scaling relation w(0) ∼

√

� and 
presents a different aspect ratio. This partly explains the 
wide range of dike emplacement/aspect ratio observed in 
nature. As a result, fracture toughness estimation based on 
linear elastic fracture mechanics and dikes’ emplacement 
may not be precise. Further investigation accounting for the 
injection/shut-in history and fluid lag is necessary to better 
decipher the relation between the emplacement scaling and 
fracture toughness.

6.2 � Effects of a Possible Fluid Leak‑Off

In this study, one assumes an impermeable medium and 
zero fluid leak. When accounting for a permeable medium, 
the fracture growth may present more complex behaviours 
due to fluid leak-off. Adachi and Detournay (2008), Hu 
and Garagash (2010) and Chen et al. (2018) account for 
the fluid leaking into the surrounding medium in the case 
of zero fluid shut-in for a plane-strain hydraulic fracture. 
They approximate the fluid leak-off using Carter’s law 
(Howard and Fast 1957; Lecampion et al. 2018), which is a 
1-D approximation of the fluid diffusion into the medium. 
The local fluid continuity equation thus writes as follows.

where t0 is the arrival time of the fluid front at the position 
x and C� = 2CL is the effective leak-off coefficient with CL 
the fluid loss constant which can be calibrated from hydrau-
lic fracture injection tests. Such fluid leak-off is a time-
dependent process and introduces another timescale tm̃m in 
the dimensional analysis (Adachi and Detournay 2008; Hu 
and Garagash 2010; Chen et al. 2018; Peirce and Detournay 
2022a):

This timescale characterizes the transition between stor-
age growth regimes (OMK) and leak-off regimes ( ̃OM̃K̃ ), 
where ÕM̃K̃ correspond to the leak-off regimes character-
ized respectively by a significant fluid lag and the dominant 
effects of viscous fluid flow and fracture surface creation. 
In the absence of fluid shut-in, the fracture growth transi-
tions between the six distinct growth regimes (OMK–ÕM̃K̃ ) 
depending on the interplay among Km , tom and tmm̃ . Detailed 

(31)
𝜕w

𝜕t
+

𝜕q

𝜕x
+

C�

√

t − t0(x)
= 0, x ∈ [0,�f ], t > t0(x)

(32)tmm̃ =
𝜇�Q3

o

E�C�6

information on these fracture growth transitions can be 
found in Adachi and Detournay (2008), Hu and Garagash 
(2010) and Chen et al. (2018).

In the presence of fluid shut-in, the fluid leak-off tends 
to favour an immediate fracture arrest upon shut-in, and 
may even result in the disappearance of the temporary 
arrest and the continuous propagation after the stop of 
fluid injection. In addition, as the stress intensity factor 
at the fracture tip drops from the fracture toughness KIc to 
zero, fracture deflation and recession may occur, as previ-
ously discussed in Peirce and Detournay (2022a) assuming 
zero fluid lag. The post-shut-in fracture behaviour thus 
results from the interplay among the dimensionless tough-
ness Km , the shut-in time ts , the timescale characterizing 
the coalescence of the fracture and fluid fronts tom , and the 
leak-off timescale tmm̃ . Only when the leak-off timescale 
is significantly greater than the other timescales ( tmm̃ ≫ ts , 
tmm̃ ≫ tom ) can the fracture growth be approximated by the 
zero leak-off solutions reported in this study.

7 � Conclusions

One has investigated the growth of a plane-strain hydraulic 
fracture after shut-in by accounting for the possible pres-
ence of a fluid lag. One assumes that the fracture propa-
gates in an impermeable medium and is driven under a 
constant injection rate before shut-in. After shut-in, the 
fracture presents a deflation of fracture opening and a con-
tinuous advancement of fluid front towards the fracture 
tip. Three propagation patterns emerge with respect to the 
fracture front: an immediate arrest, a temporary arrest fol-
lowed by a restart of fracture propagation, and a continu-
ous post-shut-in fracture growth. The fracture behaviour 
depends on three dimensionless parameters: the dimen-
sionless toughness Km which characterizes the energy dis-
sipation between the creation of fracture surfaces and the 
viscous fluid flow prior to the shut-in, the shut-in time 
ts∕tom which characterizes the relative position of the fluid 
front upon shut-in (for a given Km ), and the dimension-
less time t∕ts . The immediate fracture arrest occurs when 
toughness dominates the fracture growth ( Km > 4.3 ) and 
when the fracture front is overshot at early time due to a 
significant fluid lag and a strong viscous effect ( Km < 0.3 
with ts∕tom ⪅ 10−7 for ts∕tom ∈ [10−8, 1] ). For later shut-
in time and larger dimensionless toughness, the fracture 
may also experience a post-shut-in temporary arrest or a 
direct propagation before the final arrest. A smaller dimen-
sionless toughness Km or an earlier shut-in ts∕tom tends 
to favour the presence of a temporary arrest and extend 
the arrest period. Different propagation patterns result in 
various fracture dimensions and aspect ratios, which may 
possibly explain the wide range of emplacement scaling 
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relations and derived apparent toughness for magma-
driven dikes. The results reported in this study may also 
help guide the design and interpretation of laboratory 
hydraulic fracturing experiments in the presence of a non-
negligible fluid lag (Liu 2021; Liu and Lecampion 2023).

Appendix 1: Zero‑Lag Shut‑In Solutions 
in the State of Plane‑Strain

Gauss–Chebyshev quadrature combined with Barycentric 
interpolation techniques provides an efficient way to solve 
elastic boundary integral solutions arising in fracture prob-
lems (Viesca and Garagash 2018; Liu and Brantut 2023). 
It has been recently applied to semi-infinite (Garagash 
2019) and finite hydraulic fracture propagation problems 
(Liu et al. 2019; Kanin et al. 2021; Möri and Lecampion 
2021; Pereira and Lecampion 2021; Liu and Lu 2023), 
illustrating spectral accuracy and efficiency in large time-
span semi-analytical investigations. In this work, follow-
ing Liu et al. (2019) and Liu and Lu (2023) one uses the 
first type Gauss–Chebyshev quadrature Tk to discretize the 
fracture. It consists of two sets of nodes whose values are 
in the range of (−1, 1).

where n is the number of unknowns. These nodes naturally 
include the dislocation singularity appearing at the fracture 
tips in linear elastic fracture mechanics.

where F(s) is an non-singular unknown. Following Viesca 
and Garagash (2018) and Liu et al. (2019), one discretizes 
the governing equations as follows.

•	 Elasticity 

•	 Lubrication flow 

•	 Global continuity equation and shut-in condition 

(33)
sj = cos

(
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n
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, j = 1,… , n;

zi = cos
(
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, i = 1,… , n − 1,
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= −
E�
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 where Vf = Qot before the shut-in time ts . Such a con-
stant flux before shut-in and the zero flux condition after 
shut-in is applied via a smoothed step function f. 

h = 130 is a dimensionless parameter one sets to model 
the sudden shut-in of the fluid injection at t = ts.

•	 Propagation criterion 

ℍ is the Hilbert transform matrix. � and SA are integration 
operators, � is the differentiation operator, and Q is the 
extrapolation operator, see the expressions with the same 
notations in Liu et al. (2019) for more details.

The unknowns of these ordinary differential 
equations therefore become the unknown vector 
F = {F(sj)}, j = 1,… , n and the fracture dimension � . One 
uses n = 80 for all the zero-lag simulations presented in this 
work.

Appendix 2: Model Validation in the Case 
of Zero Fluid Shut‑In

Previous numerical work (Lecampion and Detournay 2007; 
Gordeliy and Detournay 2011) sets the early-time simi-
larity solutions (Garagash 2006b) as the initial condition 
when simulating the growth of a hydraulic fracture in the 
presence of a fluid lag. Shen (2014) and Mollaali and Shen 
(2018) argue that the hydraulic fracture growth is insensi-
tive to the pressure profile of the initial condition and use 
the elastic solution corresponding to a pressure profile with 
a constant gradient and a fluid lag. In this study, one adopts 
the static elastic solution of a uniformly pressurized fracture 
as the initial condition. It is a natural choice when there is 
not much prior knowledge available about the exact fracture 
growth, and it corresponds to the state of a small notch full 
of fluid prior to injection, which is often the case in labora-
tory hydraulic fracturing experiments (Liu and Lecampion 
2022). This initial condition introduces a small amount of 
fluid in addition to the injected fluid. As the fracture grows, 
the fluid mass introduced by the initial condition becomes 
negligible compared to the total injected fluid mass. Moreo-
ver, the numerical solver simulates the spontaneous nuclea-
tion of the fluid lag and makes the pressure profile inside the 
fracture quickly converge toward the exact solution of the 
problem with a non-zero pressure gradient and a fluid lag. 

(37)SA ⋅ (s F) +
Vf

𝓁
= 0

(38)
Vf = Qot(1 − f (t∕ts − 1)) + Qotsf (t∕ts − 1),

f (m) = 1∕(1 + exp(−2hm))

(39)Q ⋅ F = −
1
√

2
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However, the numerical results may deviate from the exact 
solutions in the first few time steps due to the initial condi-
tion and the relatively low mesh resolution inside the frac-
ture. To minimize this deviation, one assumes a very small 
flaw size with the fluid pressure pf  only slightly larger than 
the minimum confining stress �o at the initial state, which 
minimizes the fluid mass perturbation. One also removes the 
numerical results of the first several time steps, which are 
significantly influenced by the initial condition. Moreover, to 
simulate the fluid shut-in, fluid injection is halted only when 
the fluid mass introduced by the initial condition becomes 
negligible relative to the total injected fluid mass. These 
measures ensure that the initial condition has a negligible 
impact on the fracture behaviours.

One benchmarks the numerical scheme for the case of 
zero fluid shut-in and compares the results obtained in this 
study with those reported by Lecampion and Detournay 
(2007), who employ the early-time similarity solutions as 
the initial condition. As shown in Fig. 11, the numerical 
results agree very well with each other, indicating that the 
initial condition has a negligible influence on the reported 
fracture growth. It is worth noting that Fig. 3 is obtained by 
processing the same numerical results displayed in Fig. 11. 
This ensures that the early-time fracture overshoot ( �s > �a ) 
and the potential of post-shut-in fracture extension ( �s < �a ) 
as shown in Fig. 3 are not influenced by the initial condition, 
and these behaviours reflect the different growth patterns of 
hydraulic fractures after fluid shut-in.
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