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Abstract

One investigates the post-shut-in growth of a plane-strain hydraulic fracture in an impermeable medium while accounting
for the possible presence of a fluid lag. After the stop of fluid injection, the fracture may present three distinct propagation
patterns: an immediate arrest, a temporary arrest with delayed propagation, and a continuous fracture growth. These three
patterns are all followed by a final fracture arrest yet the fracture behaviour prior to that results from the interplay between the
dimensionless toughness /C,,, the shut-in time ¢, /¢ ,,,, and the propagation time #/z,. IC,, characterizes the energy dissipation
ratio between fracture surface creation and viscous fluid flow under constant rate injection. ¢, and ¢, represent respectively
the timescale of shut-in and the coalescence of the fluid and fracture fronts. The immediate arrest occurs when the fracture
toughness dominates the fracture growth at the stop of injection (/C,, % 4.3). It may also occur upon an early shut-in at low
dimensionless toughness associated with an overshoot of fracture extension and a significant fluid lag. For intermediate
values of KC,, and 7, /¢,,,, the fracture may experience a temporary arrest followed by a restart of fracture propagation. The
period of the temporary arrest becomes shorter with higher dimensionless toughness and later shut-in until it drops to zero.
The fracture behaviour after shut-in then transitions from temporary arrest to continuous propagation. These propagation
patterns result in different evolution of fracture dimensions which possibly explains the various emplacement scaling rela-
tions reported in magmatic dikes.

Highlights

e Transitional pulse solutions for plane-strain hydraulic fractures with zero lag
e Immediate fracture front arrest upon shut-in associated with an overshoot of fracture extension
e Temporary fracture arrest and step-wise fracture growth after shut-in in the presence of a fluid lag
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Fracture half-length

Half length of the fluid extent
Fracture half-length at shut-in
Fracture half-length at arrest
Characteristic scales for the fracture
length, fluid extent, net pressure, and
fracture opening

Number of points for the s-grid
Fluid pressure and net pressure

Net pressure at fracture arrest

Local fluid flux inside the fracture
Extrapolation operator at z; = 1
Fluid injection rate

Primary and complimentary set of
spatial nodes in Gauss—Chebyshev
quadrature

s-grid integration operator on [— 1, 1]
s-grid integration operator on [— 1, z;]
Critical shut-in time at which the
fracture length equals the theoretical
arrestlength 2, /¢, = 1

Timescale characterizing the transi-
tion from the shut-in to the final
fracture arrest

Timescale characterizing the transi-
tion from storage growth regimes to
leak-off regimes

Timescale characterizing the coales-
cence of the fracture and fluid fronts
Restart time of fracture propagation
after shut-in

Shut-in time

Gauss—Chebyshev polynomials of
the first kind

Fracture volume

Injected fluid volume

Fracture volume at shut-in

Fracture opening

Fracture opening at fracture arrest
Fracture coordinate

Dimensionless fracture half-length
Dimensionless half-length of the
fluid extent

Dimensionless shut-in time ¢, /¢,,,
State variable related to fluid
cavitation

Fluid viscosity and effective
viscosity

Poisson’s ratio

Dimensionless fracture coordinate

I3 Dimensionless fracture coordi-
nate with respect to the fluid front
position

& Fluid fraction

I Dimensionless net pressure

o, Minimum confining stress perpen-
dicular to the fracture plane

b 4 Dimensionless local fluid flux inside
the fracture

@ Weight function of Gauss—Cheby-
shev quadratures

Q Dimensionless fracture opening

1 Introduction

Hydraulic fractures are tensile fractures generated by vis-
cous fluid injection. They exist widely in nature, such as
during the formation of magma dikes and sills and the drain-
age of glacier lakes, and industrial applications, such as oil
and gas extraction, CO, storage, and enhanced geothermal
systems. During the propagation of hydraulic fractures, a
fluid-less cavitation exists near the fracture tip and removes
the pressure singularity inside the viscous fluid flow. This
cavitation, denoted as the fluid lag, dominates the hydraulic
fracture growth at early time and gradually vanishes as the
fluid front catches up with the fracture front. The fluid lag
is often neglected in the context of deep reservoirs due to
large confinement, yet can be essential (i) in some labora-
tory hydraulic fracturing experiments (Bunger et al. 2013;
Liu et al. 2020; Liu 2021; Liu and Lecampion 2023) and
near-surface hydraulic fracture propagation (Bunger and
Detournay 2007; Zhang et al. 2002, 2005; Lecampion and
Detournay 2007; Gordeliy and Detournay 2011; Gordeliy
et al. 2019; Chen et al. 2018; Wang and Detournay 2018,
2021. (ii) It also plays an important role in the interplay with
a rough process zone which deviates the viscous fluid flow
from Poiseuille’s law and leads to additional energy dissipa-
tion (Liu and Lecampion 2019a, b, 2021). (iii) Moreover, it
also presents during the formation of magma-driven geo-
logical structures, with magma being an extremely viscous
intrusion fluid leading to a fluid-less cavitation (Rubin 1993,
1995; Rivalta and Dahm 2006; Bunger and Cruden 2011).
These circumstances, especially the laboratory hydrau-
lic fracturing injection and the formation of magma dikes
and sills, are often associated with a fluid shut-in or a pulse
injection. However, few studies on the post-shut-in growth
of hydraulic fractures have accounted for the possible pres-
ence of a fluid lag. Garagash (2006a) and Liu and Lu (2023)
investigate the arrest dynamics of a plane-strain hydraulic
fracture after shut-in in the limit of large toughness and zero-
toughness respectively. Furthermore, recent work (Mori and
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Fig. 1 Illustration of the growth of a plane-strain hydraulic fracture with the possible presence of a fluid lag and propagation schemes for a con-
tinuous injection and a fluid shut-in. The superscript [V] is associated with a fluid shut-in/pulse injection

Lecampion 2021; Peirce and Detournay 2022a, b; Peirce
2022) studies the arrest and recession dynamics of a plane-
strain/semi-infinite/radial hydraulic fracture after shut-in
allowing for fluid leak-off. All these studies assume zero
fluid lag, and the post-shut-in fracture behaviour with a fluid
lag remains unknown.

Previous studies (Mori and Lecampion 2021; Liu and Lu
2023, for example) dealing with the stop of fluid injection
often assume a constant injection rate before the shut-in.
The same assumption is made in this study. As a result, the
fracture growth before the shut-in follows the same way
as the constant-rate-injection solutions. As discussed in
Spence and Sharp (1985); Garagash (2006b); Lecampion
and Detournay (2007), the growth of a plane-strain hydraulic
fracture in an impermeable medium evolves from an early-
time solution where the fluid lag is maximum to a late-time
solution where the fluid and fracture fronts coalesce (zero
lag case) over a timescale

E/ZH/

om —
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o
where E' = E/(1 —v?) is the plane-strain modulus, v the
Poisson’s ratio of the material, y’ = 12y the effective fluid
viscosity, and ¢, the minimum confining stress. As the fluid
and fracture fronts coalesce at¢/7,,, — 1, the fracture growth
transitions to zero-lag solutions. These zero-lag solutions
present self-similar characteristics and solely depend on a
dimensionless toughness C,, which describes the energy
dissipation ratio between the creation of fracture surfaces
and the viscous fluid flow (Garagash and Detournay 2005;
Garagash 2006a).

K/ E, 1/4
m=5@@> @

where K’ = 1/32 /7K, indicates the effective fracture tough-
ness and Q, the constant fluid injection rate. As a result of
the viscous fluid flow, the fluid lag can be significant for

smaller values of the dimensionless toughness and dimen-
sionless time #/¢,,,. It can be however negligible at all times
for high dimensionless toughness when toughness domi-
nates the fracture growth. One illustrates such propagation
of a plane-strain hydraulic fracture in Fig. 1 via a triangu-
lar phase diagram. The O-, M-, and K-vertex correspond
respectively to the limiting case of a significant lag/negli-
gible toughness, the viscosity-dominated propagation with
zero fluid lag, and the toughness-dominated propagation
where viscous effects are always negligible. These vertex
analytical solutions are given in Garagash (2006b, 2006a)
and Garagash and Detournay (2005).

In this paper, one tries to extend the analytical framework
of the plane-strain hydraulic fracture growth with a fluid lag
by focusing on the post-shut-in stage assuming zero leak-off.
One shows that three possible post-shut-in propagation pat-
terns may occur after the shut-in depending on the dimen-
sionless toughness and shut-in time: an immediate arrest, a
temporary arrest with a restart of propagation, and a con-
tinuous fracture extension. One investigates the evolution of
fluid pressure, fracture dimensions, and emplacement scal-
ing relations throughout the shut-in process and discusses
the possible boundaries between different propagation pat-
terns in the parametric space of the dimensionless toughness
and shut-in time.

2 Problem Formulation

This study assumes that the fracture propagates in an infinite
linear elastic medium characterized by the elastic modulus
E, Poisson’s ratio v, and fracture toughness Kj.. The fracture
grows subjected to uniform far-field stress o,. It is driven
by a constant-rate O, fluid injection until a shut-in occurs
att = t,. The fluid is incompressible and Newtonian with a
dynamic viscosity of u. The leak-off of injection fluid into
the surrounding medium/reservoir is neglected, and the
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pressure of the fluid cavitation is approximated as zero—the
same as illustrated in Fig. 1.

For clarity, one keeps the same definitions of effective
parameters as already introduced in the previous section and
in Detournay (2016, and references therein) by setting

E 32
= 1o K=y T e s =12 3

E =

They correspond respectively to the plain-strain elastic
modulus, the effective toughness, and the effective viscosity.

2.1 Elastic Deformation

The quasi-static balance of momentum relates the fracture
opening w(x, f) and the net pressure pf(x, t) — o, (the differ-
ence between the fluid pressure and the far field confining
stress) via a boundary integral equation (see for example
Hills et al. 1996). In view of the problem symmetry, it can
be written on one wing of the fracture:

E [’ ( 1 1 >6W(X’,t) &
4r /o ox’ 4)
=p(x,1) = 0,, x,x' €[0,7]

x—x X +x

where ¢ is the half-length of the plane-strain fracture.
2.2 Propagation Criterion

The propagation mechanism is modulated by a constant frac-
ture toughness following the linear elastic fracture mechan-
ics by assuming a negligible non-linear process zone. The
stress intensity factor K; must equal the fracture toughness
K. at any given time during the propagation and can only
stay below the toughness when the fracture is at arrest. As
a consequence, the following condition must be satisfied at
all times.

(K, — K, )f =0, >0 5)
K| = K|, can be alternatively expressed in the form of the

classical square-root asymptote near the fracture tip (Rice
1968).

WNE/(f—X)l/Z L—x<t (6)
E ’

2.3 Continuity

Assuming zero compressibility, the fluid mass conservation
in the elastic deformable fracture reduces to
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where £;(r) denotes the current fluid front position, and
q(x, 1) the local fluid flux inside the fracture. The fluid is
injected at the fracture center under a constant injection rate
Q, (in m?/s under plane-strain conditions) until a shut-in
occurs at f = ¢,. The flux entering one wing of the fracture
thus writes:

_ 0,72, t<iu
qu—Oﬂ—{O’ i1 (8)

which can be translated into the form of the global fluid
volume balance by integrating the continuity Eq. (7) for the
fluid:

£y (1)
2/ W, i = V, ©)
0
with
_ Qot’ 1<t
Vi = { Oty 121, (10)

2.4 Poiseuille’s Law

Under the assumption of a Newtonian fluid and a laminar
flow inside the fracture, the fluid flux can be approximated
by Poiseuille’s law:

w? 9Py

qz—yg, O<x<ff (11)

2.5 Fluid Lag

The fluid front lags behind the fracture front with its veloc-
ity ff equal to the mean fluid velocity g/w at x = ¢, (Stefan
condition):

lp=———atx=¢, (12)

The fluid is vaporized inside the fluid lag with a cavitation
pressure p,,, much smaller than the liquid pressure p; in the
fluid-filled part and the in-situ confining stress o,

Pr 1) =Ppegy, 0, x € [£p(D),£(1)] (13)

2.6 Boundary Conditions

The fracture opening and fluid flux are zero at the fracture
tip.
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wx=72,0)=0,qgx=2¢,t)=0 (14)

2.7 Initial Conditions

One models the fluid lag nucleation starting from a negligi-
bly small fracture. The initial conditions correspond to the
linear elastic solutions of a uniformly pressurized static flaw
with a fluid pressure slightly larger than the in-situ stress o,

((py—0,)/0, < D).

3 Structure of the Solution

One discusses in this section the post-shut-in growth of a
plane-strain hydraulic fracture in light of dimensional analy-
sis. One notably highlights the difference brought by the
fluid cavitation and the shut-in of fluid injection compared
to the zero-lag continuous-injection solutions (Detournay
2004; Garagash and Detournay 2005; Garagash 2006a, b).
Following Liu and Lecampion (2021), one scales the flux
g with the injection rate Q,, and scales the fracture width
w, net pressure p, — o, fracture length , and the extent of
the liquid-filled part of the fracture £, by introducing cor-
responding width W, pressure P, fracture length L and fluid
extent L, characteristic scales:

wx, 1) = W) (&, P), pr(x,1) =0, = P() IT (£, P)

qoe1) = (Vi /D)W (& P), £(t) = Ly (P), £4(t) = Li(0)y,(P) (15

where & = x/7 is a dimensionless coordinate. The dimen-
sionless variables depend on one or more dimensionless
numbers P (which may depend on time). Introducing such
a scaling relation in the governing equations of the problem
allows one to isolate different dimensionless groups associ-
ated with the different physical mechanisms at play (elas-
ticity, injected volume, viscosity, fracture toughness) and
define relevant scalings.

Before going further, one briefly lists the dimensionless
form of the governing equations where appear different
dimensionless groups.

e Elasticity (4)

11 o/ 1 1
n=g—- | = - d¢,
g€4ﬂ7//o o¢ <<§—§’ §+é”> g (16)

0<é&E <1

e Propagation condition (6)

Q~Gy'Pa -9 1-fx1 17)

e Fluid continuity (7) and Poiseuille’s law (11)

0Q W 1 0¥

t—+t—024+G,——=0 1

ot w Yr 0& (18)
1 3017

V=———— 19
Gn vr 0 e

with & = x/€; =&X(r/v,)/9, the spatial coordinate
with respect to the fluid front position.
e Fluid lag (13)

nE=¢=2¢0/¢)=-9, (20)

The solution of the problem thus depends on the following
dimensionless groups.

g WE o _KkL2 oY _ KVl
cTpL’ TFTEWST O TVTOWL T PWA
o, Ly
g(; = F’ g[ = Z
an

One sets G, = 1 and G, = 1 by recognizing that elasticity is
always important and that the fracture volume equals the
injected volume at all times. Assuming a negligible fluid
lag (G, = L;/L = 1), one obtains the viscosity and toughness
scalings by setting respectively G, (M!Y/viscous scaling)
and G, (K!/toughness scaling) to unity (The superscript
[V] denotes the scaling commensurate with a fluid shut-in
at time 7, and an injection volume of V;). The fluid lag dom-
inated scaling (O!V)-vertex) is obtained by setting G, = 1

Table 1 Characteristic scales and dimensionless numbers govern-
ing the evolution of a plane-strain hydraulic fracture after shut-in for
different limiting regimes: O!Yl—the lag/viscosity dominated regime,
MUW1_the fully filled/viscosity dominated regime, and K1 —the fully
filled/toughness dominated regime

oW MV K
L E/M/1/4Vf1/2 E’l/év;/zt'/ﬁ E/2/3Vf2/3
0_2/4t1/4 ”/1/6 K2/3
P c, E/2/3M/1/3 K'4/3
11/3 E"/3Vfl/3
w M”/4Vf1/2 #/1/6vfl/Z K23 Vf1/3
a4 E'1/6¢1/6 E12/3
Le/L t/1,,)'? 1 1
G 1 1 }CEnVJ—“
Gy ’CEHV](’/fom)_l/s K’l’:/J 1
G, 1 t/t,)\? (t/tom)l/3ICEnV]—4/3

The timescale ¢,

ness under a pulse injection ’CEX : is defined in Eq. (23)

is defined in Eq. (1) and the dimensionless tough-
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and G, = 1 recognizing that viscous effects are necessary
for cavitation to occur and that the lag covers a significant
part of the fracture such that the pressure scale is given by
the in-situ stress. One shows the scalings for these limiting
propagation regimes in Table 1. When replacing V, = Q,1,
one recovers the same scaling relations for a continuous
injection (Detournay 2004; Garagash and Detournay 2005;
Garagash 2006a, b).

Two timescales emerge from the scaling analysis: 7,,, (1)
as the time for the dimensionless in-situ stress G, to reach
unity, which characterizes the disappearance of the fluid
lag, and t%] characterizing the transition from the shut-in
to the final fracture arrest.

13,1

mk K4 (22)

One further obtains the dimensionless toughness corre-
sponding to a pulse injection:

174 1/4 1/4
v] _ t _ K ( E't _ t
' = (m) = E( wv,) =\y) @
tmk HVy s

which embeds IC,, (2) the dimensionless toughness describ-
ing the energy dissipation between fracture surface creation
and viscous fluid flow at the time of shut-in, and the time
t/t, of fracture propagation following the stop of injection.
For the post-shut-in stage (¢/tf, > 1), ICLV] increases mono-
tonically from C,, representing a transition to a fracture
behaviour more dominated by the fracture toughness. This
is consistent with the uniform pressure inside the fracture at
final arrest, which implies negligible energy dissipation in
the viscous fluid flow.

The complete evolution of the solution between differ-
ent regimes is then grasped by the dimensionless tough-
ness /C,, upon shut-in, the dimensionless time ¢/7,,, and
the dimensionless shut-in moment.

¢ [V]
¢ = t_ = tm_"/cfn (24)

¢ characterizes how far the fluid front lags behind the frac-
ture front at the time of shut-in: { < 1 represents a signifi-
cant fluid lag and { > 1indicates the limit of zero fluid lag.
Depending on the combinations of K, and ¢, different frac-
ture behaviour can be expected:

m

e When ¢ > 1, the fluid and fracture fronts coalesce with
zero fluid lag. For K, < 1, the fracture growth fol-
lows the zero-toughness pulse-injection solutions (M)
-solution) obtained by Liu and Lu (2023) where the
propagation continues without arrest. For IC,, > 1, the
fracture growth is dominated by fracture toughness at

@ Springer

the time of shut-in and the pressure is uniform every-
where inside the fracture. This leads to an immediate
arrest of the fracture growth upon shut-in (KV-solu-
tion). For intermediate values of K,,, the fracture con-
tinues to propagate until the final arrest.

e When ¢ < 1, the shut-in occurs at early time and a non-
negligible fluid lag exists regardless of the value of the
dimensionless toughness /C,,. The fracture behaviour
will result from the interplay between the dimension-
less toughness /C,,, the shut-in moment { =7, /¢ ,,, and
the dimensionless time #/¢,,,,.

om?

The zero-lag transitional solutions (§ > 1) with intermediate
values of K, and the post-shut-in solutions in the presence
of a fluid lag ({ < 1) will be now investigated numerically.

4 Numerical Scheme

One adopts two different numerical schemes depending on
whether there is a significant fluid lag during the fracture
growth.

In absence of a fluid lag, one uses a spectral method
based on the Gauss—Chebyshev quadrature and Barycen-
tric interpolation techniques (Viesca and Garagash 2018;
Liu et al. 2019). This method turns the coupled fracture
problem into a series of ordinary differential equations,
with its initial conditions set as the self-similar solu-
tions of a plane-strain hydraulic fracture for a constant
dimensionless toughness (Garagash and Detournay 2005;
Garagash 2006a). The mathematical formulation for the
zero-lag fracture problem remains the same as presented
in Sect. 2 except for £, = £. One refers to Appendix 1 for
their detailed discretization.

When accounting for a fluid lag, one uses an
Elrod—Adams type scheme based on a fixed regular grid
with a constant mesh size following Mollaali and Shen
(2018) and Liu and Lecampion (2019a, 2019b, 2021).
This scheme introduces a fluid state variable 8 € [0, 1] (1
for the liquid phase, 0 for the vapour phase) in a similar
way to thin-film lubrication cavitation models (see Szeri
2010, for example). It automatically captures the sponta-
neous nucleation of the fluid lag by imposing additional
inequalities conditions (p; 2 0,0 <0 < 1, py(1 — 6) = 0)
in each element. The elasticity and fluid mass conserva-
tion is then discretized respectively using a displacement
discontinuity method with piece-wise constant elements
and finite difference. One uses an implicit time-integra-
tion scheme to solve iteratively for the fluid pressure and
the associated opening. The solution is obtained using
three nested iterative loops for a fixed increment of frac-
ture length before the shut-in: one starts from a trial
time step and solves the fluid pressure for all elements
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inside the fracture using a quasi-Newton method. Such a
procedure is repeated until each element in the fracture
reaches a consistent state: either fluid or vapor. The time
step is finally adjusted in an outer loop using a bi-section
and secant method to fulfill the propagation criterion.
One refers the details of the numerical solver to Liu and
Lecampion (2021) and discusses the model validation in
Appendix 2.

One applies the fluid shut-in via the fracture length by con-
trolling the activated number of elements: when the fracture
length goes beyond the shut-in length# > ¢, = £(¢t = t,), the
injection is stopped. After shut-in, one solves the non-linear
system with an assumed time step and checks afterwards
whether the propagation condition is fulfilled at the fracture
tip: the fracture front advances only when K; > K. This
allows for both a temporary and a permanent stop of the frac-
ture extent yet an exact solution for the final arrest time (or the
restart propagation time) necessitates a small time step and a
fine mesh.

5 Results and Discussion
5.1 Zero-Lag Vertex Solutions

When the fracture toughness dominates the propagation at the
time of shut-in (1C,, > 1), the fluid pressure is uniform inside
the fracture with the stress intensity factor equal to the fracture
toughness. Any further fracture extension will lead to a drop in
the stress intensity factor and an immediate arrest. The fracture
behaviour (the pulse toughness-dominated solution or the K]
-vertex solution) thus corresponds to the solution of a linear
elastic fracture under uniform far-field load. The fracture half-
length 7, the fracture opening w, and the net pressure at arrest
write as follows.

LoF : : : : : -
08 1
06T 4
<
[
<
3
04r 1
02F 1
0.0 Ev 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0
]Cm
(a)

2/3
2 (E'Y
¢, = W( - (25)
2 1/3
1 K/ Vf
w, = m £ \/1 - 52 (26)
2530 kAN
ba="3"\EV, @7

In absence of a fluid lag, the fracture propagates without
arrest when the fracture toughness is zero K, = 0. The solu-
tion, denoted as the pulse viscosity dominated solution or the
MUWlvertex solution, is self-similar and has been obtained
numerically using the Gauss—Chebyshev quadrature and
Barycentric interpolation techniques in Liu and Lu (2023).
One recalls here the expression for the fracture half-length.

E/6y1 /2476

N f
‘= 0.80267 (28)

The M!V1-vertex solution implies that the fracture half-length
evolves with time in a way that £ ~ '/°. Note that such a
time evolution of the fracture length may also appear dur-
ing the transition to the final fracture arrest for Kj. > 0 as
shown in Fig. 2.

5.2 Zero-Lag Transitional Solutions

In absence of a fluid lag, the fracture with a finite non-zero
toughness continues to grow after shut-in, with the elastic
energy stored prior to the shut-in partially balanced by the
creation of new fracture surfaces. Such post-shut-in fracture
growth stops when the fracture length reaches the K1"1-solution

Km = 0.232

m = 0.317

’/ Before shut-in After shut-in
/. €«— _—

0.1 1 10 100 1000
t/ts

(b)

Fig.2 Evolution of the fracture length ratio between the shut-in and final arrest in function of a the dimensionless toughness and b the dimen-

sionless time in absence of a fluid lag
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at? = ¢,. Approximating the fracture half-length £ at shut-in
with the self-similar solutions (Garagash and Detournay 2005;
Garagash 2006a) (by assuming that the plane-strain fracture
is driven under a constant injection rate before shut-in), one
defines 1 — /¢, as the potential fracture extension after the
stop of fluid injection.

I’ﬂv ymLm T 2/3

7 ==kl 29)

where y,, is the self-similar solution for constant injec-
tion rate in the viscosity dominated scaling (Garagash and
Detournay 2005; Garagash 2006a) and L,, the length scale
in the viscosity scaling as shown in Table 1. This ratio of
the fracture length £ /7, is solely a function of the dimen-
sionless toughness IC,,. As illustrated in Fig. 2a, when
K, % 2.596, the fracture half-length ¢ is equal to or larger
than 95% of the final arrest fracture half-length #,, and the
fracture front could barely advance after the stop of fluid
injection.

One further investigates numerically the post-shut-in
growth of a plane-strain hydraulic fracture and its subse-
quent arrest employing a spectral solver. One displays in
Fig. 2b the evolution of the fracture half-length as a function
of t/t, for different values of K,,. For small values of IC,,,
the hydraulic fracture is in the viscosity dominated regime
when the shut-in occurs. One observes a transition from the
small toughness solution (with Z ~ ¢>/3) (Garagash 2006a)
to the pulse viscosity dominated solution (28) (with £ ~ 1/6)
(Liu and Lu 2023). Such a transition is much shortened for
larger values of KC,,, where more energy dissipation is owed
to the creation of fracture surfaces. For K, Z 4.3 (Gara-
gash 2006a), the fracture growth is dominated by fracture
toughness at the time of shut-in, leading to an immediate
arrest. A diagram describing such post-shut-in propagation

Ve/Vy

s o, ."._
- i ]
J m— - . e %
1F ——— . AL o . A, —

ts/tam

of a plane-strain hydraulic fracture with zero fluid lag is
illustrated in Fig. 1 together with that of a continuous fluid
injection.

5.3 Non-zero Fluid Lag Solutions with Shut-In

In this section, one focuses on the post-shut-in growth
accounting for the presence of a non-negligible fluid lag.
The fluid lag can be significant for small and intermedi-
ate values of dimensionless toughness especially when
the shut-in occurs at the early time of hydraulic fracture
growth. To better describe the fracture behaviour after the
shut-in, one defines the volume efficiency coefficient as
the ratio between the total volume of the created fracture
V and the injected fluid volume V.

v _2 [
vf—va w(x)dx 30)

One also defines the length efficiency coefficient £ /£, as
the ratio between the fracture half-length # and the fracture
half-length at arrest £, under the pulse injection.

The post-shut-in fracture behaviour is a function of
both the dimensionless toughness and dimensionless
shut-in time. One shows in Fig. 3 the volume and length
efficiency parameters upon shut-in as a function of these
two dimensionless parameters. Note that these results only
describe the fracture growth at the shut-in time, neither
before nor after.

The volume efficiency is always greater than one owing
to a non-zero volume of the fluid cavitation. A more sig-
nificant effect of the viscous fluid flow or a larger dimen-
sionless toughness K, tends to lead to a more efficient
injection with the fracture volume larger than the volume
of injected fluid. The volume efficiency decreases towards

9
XD
~
>
<0
1.0 .
L Ko = 1.00925
050317 0495 T
Km = 0.045,0.147, 0.232, 0.317
0.0k ‘ ‘
10-9 10- 6 0.001 1
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Fig.3 Evolution of the volume V,/V; and length £/, efficiency coefficients at different shut-in time #,/%,,, accounting for the presence of a

fluid lag

@ Springer



Early-Time Shut-In for Plane-Strain Hydraulic Fractures

one as the shut-in occurs later, and the fluid front tends to
catch up with the fracture front until the fracture is fully
filled with fluid.

The fracture length efficiency also decreases as the
shut-in occurs later (Fig. 3). When the effect of viscous
fluid flow is more dominant during the fracture growth
(smaller dimensionless toughness /C,, values), the decrease
in length efficiency becomes more sensitive to the increase
of the shut-in time ¢,/¢,,,. When the fluid lag vanishes at
t/t,, = 1,7,/ converges towards zero-lag solutions, and
one obtains the same conclusion as shown in Fig. 2a: a
smaller /C,, leads to a larger difference in fracture exten-
sion between upon shut-in and at arrest.

5.3.1 Early-Time Fracture Overshoot

It is interesting to notice from Fig. 3 that the fracture length
can be even larger than the theoretical arrest dimension 2,
at early shut-in t/f,,, < 1 for K, <« 1. Such an overshoot
is associated with the strong pressure gradient inside the
viscous fluid flow and a significant fluid lag. The fracture
is probably not going to propagate any further after shut-
in with £ > £, while the fluid front may advance towards
and finally coalesce with the fracture front. If defining ¢, as
the critical shut-in time at which the fracture length equals
the theoretical arrest length /¢, = 1, one obtains in Fig. 4
the corresponding critical shut-in time for different dimen-
sionless toughness. t./7,,, is not a monotonic function of
the dimensionless toughness and reaches its maximum
around?,/t,, ~5x 107" at K,, ~ 0.12. Within the range of
t,/t,m € (1078, 1) investigated in this study, the fracture over-
shoot is unlikely to occur for IC,, % 0.3. Note that such an
immediate arrest was also expected in absence of a fluid lag
when the fracture toughness dominates the fracture growth
(K,,> land?,/¢, — 1, Fig. 2).

4.x10° 7}

1.x10-7 }

[0} =1 1 1 1 1 1
0.00 0.05 0.10 0.15 0.20 0.25

KTTI.

Fig.4 Dependence of the critical shut-in time . on the dimensionless
toughness. At ¢, = ¢, the fracture length at shut-in equals the theoreti-
cal fracture dimension at arrest (25)

When the shut-in occurs later than the critical time ¢, > ..,
the fracture length at shut-in again drops below the theoreti-
cal arrest extension Z; < Z,. The fracture probably propa-
gates further with an increasing fluid fraction until it reaches
the arrest dimensionZ = 7.

5.3.2 Temporary Arrest and Continuous Growth Upon
Shut-In

For later shut-in time or dimensionless toughness with inter-
mediate values, the fracture overshoot is less likely to occur,
yet other propagation patterns may emerge depending on
the interplay between KC,,, ¢, /¢, and t/¢,,.. In the following,
one investigates numerically the fracture behaviour through-
out the shut-in process and focuses on the effect of dimen-
sionless shut-in time ¢ = ¢/, by fixing the dimensionless
toughness /C,, = 0.232.

Figure 5 shows the time evolution of the fracture length,
volume efficiency, and fluid fraction corresponding to differ-
ent shut-in moments. The volume efficiency decreases with
time due to the increased fluid fraction inside the fracture.
Moreover, the fracture presents three distinct propagation
patterns after shut-in: an immediate arrest, a temporary
arrest (characterized by a significant decrease in fracture
front velocity upon shut-in and followed by a restart of the
propagation), and direct post-shut-in propagation (with a
negligible or zero delay in time after the stop of injection).

These different propagation patterns are also reflected in
the evolution of width and fluid pressure profiles (Fig. 6).
For the immediate fracture arrest at early shut-in time
t,/t,, < 1, the fracture extension upon shut-in is larger than
the arrest dimension (25) due to a strong viscosity effect and
a significant fluid lag. The fluid front continues approach-
ing the fracture front after the stop of injection while the
fracture tips stay at their original position. When the fluid
and fracture fronts coalesce at large time, the pressure
becomes uniform inside the fracture yet is not sufficiently
large (resulting from the mass balance of fluid) to trigger the
propagation due to a stress intensity factor smaller than the
fracture toughness at the fracture tip.

At relatively larger shut-in time, the fracture extent upon
shut-in is shorter than the final dimension at arrest (25). The
fracture experiences a temporary arrest followed by a restart
of propagation. Upon shut-in, the fluid front is far from the
fracture front and the stress intensity factor is not sufficiently
large to trigger the propagation. The fracture front thus stops
growing while the fluid front keeps advancing towards the
fracture tip (Fig. 6). When the fluid fraction is large enough
such that the propagation condition is once again fulfilled,
the fracture extent restarts to grow towards the final arrest
dimension. Note that this step-wise feature of the hydrau-
lic fracture growth with a significant fluid lag has not been
reported before. It is different from the piece-wise nature of
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Fig.5 Time evolution of the fracture half-length, fluid fraction and volume efficiency parameter for /C,, with different shut-in time ¢ = ¢./7,,,.

The vertical dashed line indicates the shut-in time

the fracture dynamics (Cao et al. 2017; Peruzzo et al. 2019a,
b) and the piece-wise quasi-static fracture growth related to
material heterogeneity (Da Fies et al. 2022a, b, for example).

At late shut-in time, the fracture experiences a direct post-
shut-in propagation followed by the final fracture arrest. The
fluid lag is small at the time of shut-in, which facilitates
the transition of the fracture growth to zero-lag solutions
(Fig. 6). Note that similar continuous propagation after the
shut-in with the presence of a fluid lag has already been
observed in laboratory hydraulic fracture experiments (Liu
2021; Liu and Lecampion 2023).

For all these propagation patterns shown in Fig. 6, the elas-
tic energy stored prior to the shut-in is released through the
deflation of the fracture opening. The fluid front continues to
advance towards the fracture tip, which leads to an increase in
the fluid fraction and a drop in the pressure gradient inside the
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fluid flow. As a result, the dominated width asymptote also
evolves with time.

Linear hydraulic fracture mechanics (Detournay 2016,
and references therein) point out that the fracture width may
present k-, m- and o-asymptote characterized respectively by
fracture toughness, viscous fluid flow, and fluid lag. All these
asymptotes are present during the post-shut-in growth of the
fracture as shown in Fig. 7. At early time of the shut-in, the
o-asymptote dominates the width profile due to a significant
fluid lag. As the fluid lag vanishes, the viscous fluid flow
becomes the dominant mechanism at intermediate time, and
the width is then better characterized by the m-asymptote. As
the fracture approaches the final arrest, the spatial pressure
gradient inside the fracture decreases with time and becomes
nearly zero. The fracture width can be thus approximated by a
uniformly pressurized linear elastic solution, which is associ-
ated with the k-asymptote.
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Fig.6 Spatial profiles of a the dimensionless fracture opening and b
fluid pressure for /C,, = 0.232 at different shut-in time { = 7, /¢,,, cor-
responding to fracture behaviour such as immediate arrest, temporary
arrest, and direct propagation after the shut-in. The black curve indi-

5.3.3 Three Post-shut-in Propagation Patterns
in the Parametric Space

The fracture propagation pattern after shut-in is a func-
tion of both the shut-in time ¢,/7,,, (Fig. 5) and the dimen-
sionless toughness IC,,. How the three patterns locate in
the ¢, /t,,, — K, parametric space will be discussed in the
following.
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cates the spatial profile at the time of shut-in #,, while the red curve
represents the profile at £ = 1000¢,. The black dots on the width pro-
files indicate their fluid front position

The immediate arrest is very likely to occur at early
time ¢,/t,, < 1for K,, <« 1 associated with an overshoot
of the fracture extent due to a strong pressure gradient in
the viscous fluid. This immediate arrest will disappear for
later shut-in or larger dimensionless toughness and can
be approximately constrained by the critical timescale ¢,
(Fig. 4). In absence of a fluid lag, the immediate arrest also
occurs at large dimensionless toughness with little vis-
cous fluid flow. Here one sets this immediate arrest limit
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Fig. 7 Various width asymptotes corresponding to different time after
the shut-in for K,, = 0.232 and ¢ = 1, /1,,, = 1.95 x 107>, The k-, m-,
and o-asymptote represent respectively the width asymptote domi-
nated by fracture toughness, fluid viscosity, and fluid lag. The black
dots indicate the fluid front positions of different width profiles

as IC,, = 4.3, which represents the validity of the zero-
viscosity solutions for a plane-strain hydraulic fracture
(Garagash 2006a).

The temporary arrest/delayed propagation most likely
occurs for medium dimensionless toughness and medium
range of the shut-in time ¢,/ ,,. One defines ¢, as the restart
time of fracture propagation and displays in Fig. 8 the time
ratio t, /1, and the fluid fraction §:(¢ = t,) for different dimen-
sionless toughness. This delayed propagation restarts later
for an earlier shut-in and a lower dimensionless toughness
IC,,- Moreover, the restart of propagation does not necessar-
ily require zero fluid lag.

When K, — 1, t,/t, approaches to one. The fracture is
more likely to experience direct post-shut-in propagation

Immediate
106 | arrest
K = 0.045
- 10*
~ Immediate
had arrest
Km = 0.232
100 |
Km = 0.495
1 Km = 1.00925
1078 1076 1074 1072
C = ts/tom
(@)

Fig.8 a Time ¢, /1, of the restart of propagation and b its correspond-
ing fluid fraction &:(# = 7,) as a function of the dimensionless tough-
ness K, and shut-in time ¢ =17,/z,,,. In figure (b), the gray curves
indicate the fluid fraction rff(t =¢,) at the time of shut-in. The solid
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followed by the final fracture arrest. This direct post-shut-in
growth can be expected at ¢,/t,,, — 1 for lower dimension-
less toughness, in which case the fluid fraction is almost one
upon shut-in. The precise boundary between the temporary
arrest and the direct propagation after shut-in is difficult to
determine. Here one performs a series of numerical simula-
tions at different shut-in time to narrow the boundary zone.
One summarizes in Fig. 9 the approximated boundaries in

the plane of C,, — 1, /¢, for different propagation patterns.
5.3.4 Emplacement Scaling Relation

In the following, one focuses on the evolution of emplace-
ment scaling which of course depends on the dimensionless
toughness and shut-in time.

From Eq. (25), the emplacement of a fracture at arrest
will follow the relation of w,(0) ~ \/2/7,1 . However, such a
square-root scaling relation is not guaranteed during the
hydraulic fracture propagation before and after the shut-
in. As shown in Fig. 10a, the zero-lag solutions follow
w(0)/w,(0) ~ /¢ /¢, before the shut-in and then transi-
tions to w(0)/w,(0) ~ (¢/¢,)~" due to the post-shut-in frac-
ture deflation. The deflation period is shorter for a more
toughness dominated fracture propagation with a larger
dimensionless toughness. During this process, the aspect
ratio of the hydraulic fracture first increases, then decreases
and eventually converges to (1,1) in the /¢, — w(0)/w,(0)
plane, which indicates the theoretical fracture arrest.

Non-zero lag solutions however present a larger aspect
ratio at the stop of injection compared with the zero-lag solu-
tions. As the shut-in occurs later (an increase in¢ = ¢, /¢,,,),
the fluid lag tends to vanish and the emplacement scaling
relation tends to faster converge to the zero-lag shut-in
asymptote (Fig. 10b). However, when the immediate arrest

/7
081 K, =1.00925

Km = 0.495

06} } ]
&r Kom = 0.232
04F .
s | o—0—2 < Ky = 0.045 ]
o_o—-c
0.0 E ‘ ‘ ‘ ‘ j
10°8 10°6 1074 1072
C = ts/tam
(b)

disks represent the fluid fraction at the restarting propagation time of
the temporary arrest or at the shut-in time of the direct propagation.
The empty disks represent the fluid fraction at the shut-in time char-
acterized by the immediate fracture arrest (z, /¢, = o0)
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Fig.9 Illustration of different fracture propagation patterns after
shut-in as a function of the dimensionless toughness K, and shut-in
time 7, /¢,,,. The gray empty and filled disks represent respectively the
numerical results indicating the pattern of temporary arrest and direct
propagation after shut-in. The black filled disks represent the limit of
the immediate arrest associated with the fracture overshoot at early
time (Fig. 4). The black horizontal line KC,, = 4.3 (Garagash 2006a)
indicates the limit of toughness dominated regime which leads to the
immediate arrest upon shut-in

occurs for an early shut-in with a small value of /C,,, the
fracture extension is overshot and the fracture may present a
smaller width and a longer length leading to a smaller aspect
ratio at arrest with w(0)/w,(0) < £/Z,.
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Fig. 10 a Emplacement scaling relation upon shut-in for different
dimensionless toughness K, in the presence of a fluid lag (black
curves). The shut-in time ¢, /z,,, increases from right to the left (for
black curves). b Evolution of the emplacement scaling relation
for K, = 0.232 with different shut-in time { =1¢/t,, (black solid

6 Discussion

6.1 Implications for Hydraulic Fractures
at Laboratory and Field Scales

To gauge the implications for real systems, one considers
typical values relevant to the laboratory- and field-scale
hydraulic fractures and report in Table 2 the corresponding
characteristic scales and dimensionless numbers for different
types of injection.

Laboratory hydraulic fracturing injection is often per-
formed in samples with limited dimensions under limited
confinement. Assuming relatively low confinement applied
on the rock samples, one considers here the injection of a
highly viscous and a barely viscous fluid [with experimental
conditions similar to those in Liu et al. (2020) and Liu and
Lecampion (2021, 2023)] leading respectively to viscous
flow/fluid lag dominated growth regime (Lab injection A)
and fracture toughness dominated growth regime (Lab injec-
tion B). When the fracture toughness dominates the fracture
propagation (Lab injection B), the fracture is uniformly pres-
surized and will immediately arrest upon shut-in. Otherwise,
the fracture tends to present a temporary arrest then followed
by a restart of the propagation. Note that the restart of the
fracture propagation may occur quite late after the shut-
in. Direct observation of such temporary arrest has rarely
been reported in the laboratory (Liu 2021; Liu and Lecam-
pion 2023) since it necessitates long-period monitoring of
the fracture behaviour/dimensions after the fluid shut-in.
Apart from the temporary arrest, an immediate arrest of the
fracture front may also likely occur in lag/viscosity domi-
nated experiments like Lab injection A: for an early shut-in

Km = 0.232

Shut-in time

%
st B —
w o # o p
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propagation

Temporary
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[«—Immediate
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1.95 x 107°

05, 179 x 107° ‘ ;
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curves). The black and gray dashed lines in a and b represent respec-
tively the evolution of the zero lag emplacement scaling relation
before (with a scaling relation of 1/2) and after shut-in (with a scaling
relation of — 1)
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Table 2 Examples of characteristic scales for laboratory- and field-scale hydraulic fracturing injections and their possible propagation patterns

after shut-in

Fracturing fluid u (Pas) Q,(m3 s 'm™) o, (MPa) Injection duration 7,

Lab injection A Silicone oil 1000 1.0x 107° 0.1 600-1800 s
Lab injection B Glycerol 0.6 1.0x 107 5 30-1800 s
Micro-HF test Slick water 0.005 1.0x 107 20 60-240's
Well stimulation Slick water 1 1.0x 1073 20 1800-7200 s
Magma dike A Magma 300 2 20 0.5h
Magma dike B Magma 0.1 0.02 20 30d

K. Lo (8) t/tm Possible growth patterns after shut-in
Lab injection A 0.004 1.4 x 10! ~ 1078 Immediate arrest or temporary arrest
Lab injection B 4.0 250 ~0.1-10 Immediate arrest
Micro-HF test 1.32 0.03 ~10% - 10* Direct propagation or immediate arrest
Well stimulation 0.11 6.5 ~10% - 10* Direct propagation
Magma dike A 0.004 1.95% 103 ~0.1-1 Temporary arrest or direct propagation
Magma dike B 0.09 0.65 ~10° Direct propagation

One takes E = 60 GPa, v = 0.3, K, = 1.5MPa m'/2 for most cases except Lab injection A where one takes instead £ = 100 GPa, v = 0.3 and

K. = 0.6MPam!/?

t,/t,,, < 1, the fracture front may stop growing immediately
at the stop of injection, and the fluid front gradually evolves
towards the fracture front until it catches up with the fracture
tip or reaches the sample boundary.

Most in-situ industrial injections are performed at a depth
from 1.5 km down to 4 km, corresponding to a minimum
confining stress of around tens of MPa. Under such con-
finement, one evaluates the characteristic scales for two
injection scenarios: a micro-HF test with the injection of
a less-viscous type of slick water, and a well stimulation
operation with the injection of a more-viscous type of slick
water. As shown in Table 2, in both cases, the timescale z,,,
is small and indicates the presence of a negligible fluid lag.
The temporary arrest behaviour, which necessitates the pres-
ence of a fluid lag, is possibly excluded in typical industrial
injections. For the micro-HF test, the injection is often per-
formed at a small injection rate, and the fracture growth is
characterized by a dimensionless toughness /C,, of less than
two. As a result, the fracture either continues to propagate
after the shut-in or stops growing immediately when the
fracture toughness dominates the propagation at the stop of
injection (which happens under the conditions of a smaller
injection rate, less viscous fluid, and rocks with larger frac-
ture toughness). Different from the micro-HF test, the well
stimulation is characterized by a larger injection rate and
a longer injection period. The viscosity likely governs the
fracture growth upon shut-in, and the fracture may directly
continue propagating afterwards. In terms of the injection
efficiency (30), the fluid lag vanishes fast in both scenarios,
and the fracture volume most likely equals to or becomes
smaller than the volume of injected fluid due to a probable
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leak-off. The injection efficiency is thus probably smaller
than one for most industrial injections.

When neglecting buoyancy, magma-driven geological
structures, such as sills and dikes, can be approximated by
a hydraulic fracture driven by a pulse fluid injection in the
plane-strain state (Rubin 1993; Bunger and Cruden 2011).
The formation of these geological structures is often char-
acterized by a significant cavitation between the magma
front and the fracture front due to the large viscosity of
magma and little leak-off (Rubin 1993). Previous stud-
ies point out that dikes present a wide range of distribu-
tion in the emplacement scaling relations and aspect ratios
(Olson 2003; Scholz 2010; Olson and Schultz 2011; Rivalta
et al. 2015). This has been attributed to the scale-related
fracture apparent toughness of geological formations, the
interplay between the process zone and roughness-induced
fluid flow deviation (from Poiseuille’s law), and the mixed
mode fracturing at small scales (Liu et al. 2019; Liu and
Lecampion 2021, 2022; Arachchige et al. 2022). In the fol-
lowing, assuming constant fracture energy, one focuses on
the influence of the fluid lag on the dike emplacement. As
shown in Table 2, one considers two scenarios related to the
magma dike formation under relatively low tectonic stresses.
One scenario is characterized by a short-period injection of
basaltic magma with a large flux (Magma dike A), and the
other is characterized by a long-period injection of a low-
end viscous magma (similar to that of Kimberlite) with a
small flux (Magma dike B) (Rivalta et al. 2015). For both
scenarios, the growth of magma dikes at the shut-in is very
likely dominated by the viscous fluid flow and the fluid lag
can not be neglected at least during the pulse injection stage.
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In the case of a very short injection with an extremely large
flux, the dike may probably present a temporary arrest. Oth-
erwise, it tends to propagate continuously after the shut-in
followed by a permanent arrest. Such a temporary arrest may
last for quite a long time, and the magma may cool off and
solidify before the restart of the propagation. It is thus very
likely that the final geometry of the dikes deviates from the
square-root emplacement scaling relation w(0) ~ \/; and
presents a different aspect ratio. This partly explains the
wide range of dike emplacement/aspect ratio observed in
nature. As a result, fracture toughness estimation based on
linear elastic fracture mechanics and dikes’ emplacement
may not be precise. Further investigation accounting for the
injection/shut-in history and fluid lag is necessary to better
decipher the relation between the emplacement scaling and
fracture toughness.

6.2 Effects of a Possible Fluid Leak-Off

In this study, one assumes an impermeable medium and
zero fluid leak. When accounting for a permeable medium,
the fracture growth may present more complex behaviours
due to fluid leak-off. Adachi and Detournay (2008), Hu
and Garagash (2010) and Chen et al. (2018) account for
the fluid leaking into the surrounding medium in the case
of zero fluid shut-in for a plane-strain hydraulic fracture.
They approximate the fluid leak-off using Carter’s law
(Howard and Fast 1957; Lecampion et al. 2018), which is a
1-D approximation of the fluid diffusion into the medium.
The local fluid continuity equation thus writes as follows.

AL B
ot ox 1’l‘—l‘0(x)

where f, is the arrival time of the fluid front at the position
x and C' = 2C, is the effective leak-off coefficient with C;
the fluid loss constant which can be calibrated from hydrau-
lic fracture injection tests. Such fluid leak-off is a time-
dependent process and introduces another timescale £;, in
the dimensional analysis (Adachi and Detournay 2008; Hu
and Garagash 2010; Chen et al. 2018; Peirce and Detournay
2022a):

WO
L, = T
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(32

This timescale characterizes the transition between stor-
age growth regimes (OMK) and leak-off regimes (OMK),
where OMK correspond to the leak-off regimes character-
ized respectively by a significant fluid lag and the dominant
effects of viscous fluid flow and fracture surface creation.
In the absence of fluid shut-in, the fracture growth transi-
tions between the six distinct growth regimes (OMK-OMK)

depending on the interplay among K and¢,,;. Detailed

m? t{)m

information on these fracture growth transitions can be
found in Adachi and Detournay (2008), Hu and Garagash
(2010) and Chen et al. (2018).

In the presence of fluid shut-in, the fluid leak-off tends
to favour an immediate fracture arrest upon shut-in, and
may even result in the disappearance of the temporary
arrest and the continuous propagation after the stop of
fluid injection. In addition, as the stress intensity factor
at the fracture tip drops from the fracture toughness K. to
zero, fracture deflation and recession may occur, as previ-
ously discussed in Peirce and Detournay (2022a) assuming
zero fluid lag. The post-shut-in fracture behaviour thus
results from the interplay among the dimensionless tough-
ness KC,,, the shut-in time 7,, the timescale characterizing
the coalescence of the fracture and fluid fronts 7,,,, and the
leak-off timescale ¢,,;. Only when the leak-off timescale
is significantly greater than the other timescales (z,,; > .,
tn > ) can the fracture growth be approximated by the
zero leak-off solutions reported in this study.

7 Conclusions

One has investigated the growth of a plane-strain hydraulic
fracture after shut-in by accounting for the possible pres-
ence of a fluid lag. One assumes that the fracture propa-
gates in an impermeable medium and is driven under a
constant injection rate before shut-in. After shut-in, the
fracture presents a deflation of fracture opening and a con-
tinuous advancement of fluid front towards the fracture
tip. Three propagation patterns emerge with respect to the
fracture front: an immediate arrest, a temporary arrest fol-
lowed by a restart of fracture propagation, and a continu-
ous post-shut-in fracture growth. The fracture behaviour
depends on three dimensionless parameters: the dimen-
sionless toughness KC,, which characterizes the energy dis-
sipation between the creation of fracture surfaces and the
viscous fluid flow prior to the shut-in, the shut-in time
t,/t,, which characterizes the relative position of the fluid
front upon shut-in (for a given K,,), and the dimension-
less time #/t,. The immediate fracture arrest occurs when
toughness dominates the fracture growth (K,, > 4.3) and
when the fracture front is overshot at early time due to a
significant fluid lag and a strong viscous effect (IC,, < 0.3
with 7./t,,, § 107" for 1,/t,, € [107%,1]). For later shut-
in time and larger dimensionless toughness, the fracture
may also experience a post-shut-in temporary arrest or a
direct propagation before the final arrest. A smaller dimen-
sionless toughness K, or an earlier shut-in #,/¢,,, tends
to favour the presence of a temporary arrest and extend
the arrest period. Different propagation patterns result in
various fracture dimensions and aspect ratios, which may
possibly explain the wide range of emplacement scaling
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relations and derived apparent toughness for magma-
driven dikes. The results reported in this study may also
help guide the design and interpretation of laboratory
hydraulic fracturing experiments in the presence of a non-
negligible fluid lag (Liu 2021; Liu and Lecampion 2023).

Appendix 1: Zero-Lag Shut-In Solutions
in the State of Plane-Strain

Gauss—Chebyshev quadrature combined with Barycentric
interpolation techniques provides an efficient way to solve
elastic boundary integral solutions arising in fracture prob-
lems (Viesca and Garagash 2018; Liu and Brantut 2023).
It has been recently applied to semi-infinite (Garagash
2019) and finite hydraulic fracture propagation problems
(Liu et al. 2019; Kanin et al. 2021; Mori and Lecampion
2021; Pereira and Lecampion 2021; Liu and Lu 2023),
illustrating spectral accuracy and efficiency in large time-
span semi-analytical investigations. In this work, follow-
ing Liu et al. (2019) and Liu and Lu (2023) one uses the
first type Gauss—Chebyshev quadrature 7}, to discretize the
fracture. It consists of two sets of nodes whose values are
in the range of (—1, 1).

(=12 ,
sp=cos| —— ), j=1..,n

" (33)
7[_1

zi=cos< ) i=1,....,n—1,

n
where n is the number of unknowns. These nodes naturally
include the dislocation singularity appearing at the fracture
tips in linear elastic fracture mechanics.

W oF (s, ) = —=

ds m (34)

where F(s) is an non-singular unknown. Following Viesca
and Garagash (2018) and Liu et al. (2019), one discretizes
the governing equations as follows.

e Elasticity

4¢ 11
ZP=HF IH1={— } 35)

nz;—s;

e Lubrication flow

9 9 %
- za—t(s -F) + a—t(s -(sF) + 2(S - (sF))

= —L(S-F)3(D “H-F)
4/4/{3

(36)

e Global continuity equation and shut-in condition
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Vi
S, F)+— =0 (37)

where V; = Q1 before the shut-in time 7,. Such a con-
stant flux before shut-in and the zero flux condition after
shut-in is applied via a smoothed step function f.

Ve = Q,t(1 = f(t/t; = 1) + Q,1f(t/t, = 1),

fm) =1/(1 + exp(—=2hm)) (38)

h = 130 is a dimensionless parameter one sets to model
the sudden shut-in of the fluid injection at ¢ = ¢,.
e Propagation criterion

- T T B 39)

H is the Hilbert transform matrix. S and S, are integration
operators, D is the differentiation operator, and Q is the
extrapolation operator, see the expressions with the same
notations in Liu et al. (2019) for more details.

The unknowns of these ordinary differential
equations therefore become the unknown vector
F = {F(s;)},j=1,...,n and the fracture dimension . One
uses n = 80 for all the zero-lag simulations presented in this
work.

Appendix 2: Model Validation in the Case
of Zero Fluid Shut-In

Previous numerical work (Lecampion and Detournay 2007;
Gordeliy and Detournay 2011) sets the early-time simi-
larity solutions (Garagash 2006b) as the initial condition
when simulating the growth of a hydraulic fracture in the
presence of a fluid lag. Shen (2014) and Mollaali and Shen
(2018) argue that the hydraulic fracture growth is insensi-
tive to the pressure profile of the initial condition and use
the elastic solution corresponding to a pressure profile with
a constant gradient and a fluid lag. In this study, one adopts
the static elastic solution of a uniformly pressurized fracture
as the initial condition. It is a natural choice when there is
not much prior knowledge available about the exact fracture
growth, and it corresponds to the state of a small notch full
of fluid prior to injection, which is often the case in labora-
tory hydraulic fracturing experiments (Liu and Lecampion
2022). This initial condition introduces a small amount of
fluid in addition to the injected fluid. As the fracture grows,
the fluid mass introduced by the initial condition becomes
negligible compared to the total injected fluid mass. Moreo-
ver, the numerical solver simulates the spontaneous nuclea-
tion of the fluid lag and makes the pressure profile inside the
fracture quickly converge toward the exact solution of the
problem with a non-zero pressure gradient and a fluid lag.
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Fig. 11 Time evolution of a the half fracture length in the viscosity scaling and b fluid fraction for different dimensionless toughness C,, for the

case of zero fluid shut-in

However, the numerical results may deviate from the exact
solutions in the first few time steps due to the initial condi-
tion and the relatively low mesh resolution inside the frac-
ture. To minimize this deviation, one assumes a very small
flaw size with the fluid pressure p, only slightly larger than
the minimum confining stress o, at the initial state, which
minimizes the fluid mass perturbation. One also removes the
numerical results of the first several time steps, which are
significantly influenced by the initial condition. Moreover, to
simulate the fluid shut-in, fluid injection is halted only when
the fluid mass introduced by the initial condition becomes
negligible relative to the total injected fluid mass. These
measures ensure that the initial condition has a negligible
impact on the fracture behaviours.

One benchmarks the numerical scheme for the case of
zero fluid shut-in and compares the results obtained in this
study with those reported by Lecampion and Detournay
(2007), who employ the early-time similarity solutions as
the initial condition. As shown in Fig. 11, the numerical
results agree very well with each other, indicating that the
initial condition has a negligible influence on the reported
fracture growth. It is worth noting that Fig. 3 is obtained by
processing the same numerical results displayed in Fig. 11.
This ensures that the early-time fracture overshoot (£, > ¢ ,)
and the potential of post-shut-in fracture extension (7, < )
as shown in Fig. 3 are not influenced by the initial condition,
and these behaviours reflect the different growth patterns of
hydraulic fractures after fluid shut-in.
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