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ABSTRACT: Tremor is the most frequent human move-
ment disorder, and its diagnosis is based on clinical
assessment. Yet finding the accurate clinical diagnosis is
not always straightforward. Fine-tuning of clinical diagnos-
tic criteria over the past few decades, as well as device-
based qualitative analysis, has resulted in incremental
improvements to diagnostic accuracy. Accelerometric
assessments are commonplace, enabling clinicians to cap-
ture high-resolution oscillatory properties of tremor, which
recently have been the focus of various machine-learning
(ML) studies. In this context, the application of ML models
to accelerometric recordings provides the potential for
less-biased classification and quantification of tremor dis-
orders. However, if implemented incorrectly, ML can result
in spurious or nongeneralizable results and misguided con-
clusions. This work summarizes and highlights recent
developments in ML tools for tremor research, with a focus

on supervised ML. We aim to highlight the opportunities
and limitations of such approaches and provide future
directions while simultaneously guiding the reader through
the process of applying ML to analyze tremor data. We
identify the need for the movement disorder community to
take a more proactive role in the application of these novel
analytical technologies, which so far have been predomi-
nantly pursued by the engineering and data analysis field.
Ultimately, big-data approaches offer the possibility to
identify generalizable patterns but warrant meaningful
translation into clinical practice. © 2023 The Authors.
Movement Disorders published by Wiley Periodicals LLC
on behalf of International Parkinson and Movement Disor-
der Society.
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Introduction

Tremor is the most common disturbance of movement
in man, defined as an involuntary rhythmic, oscillating
movement of a body part. Oscillatory movements are a
function of a mechanical component, that is, the inherent
mechanical propensity of an object to oscillate, and a
central component, that is, the result of an activation of
agonist–antagonist muscles by rhythmic central nervous
system activity.1 Clinically, tremor presents with a partic-
ular body distribution (affecting limbs, the head, neck,
jaw, vocal cords, or palate), activation condition (pos-
tural, kinetic, intention, or task specific), and frequency.
It can occur in isolation or along various additional
symptoms as part of a clinical syndrome, as summarized
in the most recent consensus criteria.2

To date, tremor disorders remain as clinical diagno-
ses, and their definition has evolved with the first con-
sensus criteria formalized only in 19983 and most
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recently updated in 2018.2 Over time, changes particu-
larly affected the concept of essential tremor (ET),4–6

which led to the identification of specific tremor entities
previously subsumed within ET. The importance of
exact clinical phenotyping is documented, for example,
by the fact that evidence-based treatment options
greatly differ between ET7,8 and dystonic tremor (DT),9

rubrics previously lumped together.
Correct diagnosis remains a challenge, with mis-

diagnosis rates reported up to 37%10 or even 50%.11

This uncertainty documents the need for more objective
measures for tremor classification. In contrast to the
perception of clinical raters, measurement devices pro-
vide objective measures of tremor movement, from
which features can be extracted. In the ML context, a
feature can be any quantifiable signal characteristic that
can be fed into an algorithm. Several techniques equally
fulfill quality criteria for the quantification and charac-
terization of tremor,12 with accelerometry by far the
most widely used method.
For differentiation, simple tremor metrics have con-

sistently proven unreliable,13 and only two methods are
validated to differentiate between ET and Parkinson’s
disease (PD): the tremor stability index (TSI)14 was
developed based on an exploratory data set of 16 PD
rest tremor and 20 ET postural tremor recordings. In a
validation data set of 55 PD and ET patients, a TSI cut-
off of 1.05 (below: PD, above: ET) achieved a sensitiv-
ity and a specificity of 95% each. However, absolute
mean TSI values for ET postural tremor have been
reported below 0.5 by other groups,15,16 casting doubt
on its generalizability. The mean harmonic power17

was established based on 30-s postural accelerometric
recordings in 41 ET and 39 PD patients, reaching a
classification accuracy of 94%. In a validation data set
of 41 tremor patients, it has been shown to differentiate
the two entities with 90.1% sensitivity and 100% speci-
ficity.18 However, it has not been used beyond a third
data set, where it was marginally outperformed by the
TSI,14 most likely as it relies on carefully calibrated
accelerometers,17,18 limiting its general use.
Currently, the most reliable diagnostic tests for ET,19

enhanced physiological tremor20 and functional
tremor,20–23 are diagnostic tools, based on the combi-
nation of electrophysiological features and clinical scor-
ing systems,13 which again are not regularly used in
clinical practice.
Meanwhile, machine-learning (ML) approaches, the

cornerstone of the current artificial intelligence
(AI) revolution, are combining the theoretical attraction
of purely data-driven analyses and the statistical power
of large data sets, revolutionizing medicine24 and neu-
rology25 at a rapid pace. Based on the integration of
multiple high-dimensional sources of data, ML can help
to identify unifying, consistent, and generalizable dis-
ease characteristics.26 The promise of better detection,

prediction, and treatment of human disease has been
showcased in numerous examples.27–31

The unifying principle of ML approaches is to “learn”
patterns from data without human instruction. Given
its analytical power and unbiased nature, ML therefore
holds great potential to aid tremor research. This
review summarizes the most recent developments in the
application of supervised ML to tremor disorders, as
well as challenges in applying and translating these
exciting possibilities into clinical practice.

Literature Search Strategy and Results
PubMed searches were conducted on November

25, 2022 (date of final search), without restrictions of
publication language or type, considering publications
from January 1, 2009, onward and the following sea-
rch terms (“tremor*” OR “tremor” OR “tremor disor-
der”) AND (“accelero*” OR “accelerometry” OR
“accelerometer”) AND (“machine*” OR “machine
learning”). Additional publications were identified from
the reference lists of selected papers. Identified abstracts
were screened and selected based on reporting human
clinical data.
After removing duplicates, the described searches

provided 36 articles, including data of n = 1558 partic-
ipants. The majority of publications (29, n = 1059
patients) related to the detection and quantification of
PD tremor, five (n = 187 patients) focused on ET, four
on the differentiation between PD and ET, and one
each on the quantification of physiological and fatigue-
induced enhanced physiological tremor, respectively.
The sample size ranged between n = 39832 and
n = 1.33 The majority of studies were conducted under
laboratory conditions based on “scripted protocols”
with fixed recording length and positions, whereas nine
studies were “unscripted,” that is, recording patients
during activities of daily living (ADL; see Table 1).

Data Collection
Clinical Aspects

It is known from the classical tremor analysis litera-
ture that tremor depends not only on cause but also on
limb position, activation, vigilance, and treatment state,
which by nature of the experiment are controlled only
under scripted protocols. In addition to the exact defini-
tion of diagnostic criteria applied, documentation of
recording conditions therefore is crucial and should fol-
low standard practice.
Recordings should therefore be performed with both

forearms fully supported on an armrest to isolate the
limb movement from external factors.68 As governed
by clinical phenomenology,2 tremor movements are
recorded in several defined positions. Although the
main tremor positions are generally accepted, their
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exact execution differs from center to center and
throughout the tremor literature: this pertains predomi-
nantly to rest (hands hanging freely without active hold-
ing68 or resting flat54 or on the ulnar side of the hand on
a desk38 or own lap,52,69 or not specifically defined32).
For posture recordings many authors adopted the clas-

sic clinical position (extending both arms and hands in
parallel in front of the chest32,52), as previously done in
several seminal analytical tremor publications,14,22,70–72

over the more lab-oriented routine of extending the
hands while the arms are still resting on an arm-
rest.68,73,74 Others again used certain activation para-
digms, such as spreading fingers,75,76 arithmetic stress77

to induce tremor, or even measured patients lying supine
to exclude all possible interfering body movements.77,78

It is very likely that although clinically the activation
pattern between, for example, slightly different posture
positions might be fundamentally the same, the physical
signal characteristics might be very different. Although
the effects of slightly different accelerometer positions
have been shown to influence classic signal characteristics
such as amplitude, frequency, and total power,73,79 dif-
ferent rest and posture recording positions have not been
systematically compared so far. One argument in favor
of the clinical measurement position is the more direct
correlation with routine clinical diagnosis and scoring.
Future studies should compare such positions, identifying
the ideal tremor recording position.
It is generally accepted that recordings should be done

after sufficient (ideally >12 hours for levodopa, >30 hours
for dopamine agonists, >24 hours for β-blockers, and
>36 hours for primidone) withdrawal of tremor-
influencing medication and other substances such as nico-
tine and caffeine or tremor-inducing medication.80,81

Our search identified several disadvantages in the
tremor ML literature so far, as only 12 studies (of 36,
representing 455 participants) stated the diagnostic
criteria applied, and only 22 stated the summary clini-
cal/demographic details. The patient treatment state
was reported in some papers33,43,47,53–55,58,64,67:
whereas some patients were recorded in their medica-
tion on state,37,62 other reports included patients on
various medication states,32,49 or throughout a medica-
tion cycle.64,67 These aspects greatly limit the generaliz-
ability of results, as the clinical context is paramount
for interpretation.

Experimental Setup
The exact placement of sensors does influence accel-

erometer signal characteristics.73,79 Sensor placement in
the aforementioned studies was not uniform, ranging
from, for example, wrist,34,36,37,40,44 dorsal middle
metacarpal,38,39,52,54,82 middle phalangeal,42 distal
phalangeal,32 and middle of the lower arm49,58 to com-
binations of, for example, wrist and finger43,51 or wrist

and ankle.47 Traditionally, sensors have been—with
some center-to-center differences—placed on the back
of the hand.68,73,74 Studies assessing the ideal sensor
placement for tremor analysis showed contrasting
results.35,83

Recording Device
Today capacitive microelectromechanical

accelerometers—measuring translational acceleration—
are most widely used.84,85 To adequately capture the
entire dynamics of the tremor signal, the device sampling
rate, frequency range, and sensitivity have to be optimized
for the respective signal. Most modern digital transducers
have their own built-in A/D (analog-to-digital) converter or
use pulse-width modulation to estimate the width of the
pulse generated proportional to the physical quantity being
measured. As a rule, the A/D converter must have a sam-
pling rate of at least twice—ideally four times—the highest
frequency of interest (Nyquist frequency) to avoid aliasing
artifacts.12,68,85 In the majority of studies the sampling fre-
quency was 100 Hz, for example,33,40,41,58 whereas some
authors recorded at frequencies far above four times,32,38,82

respectively, just about two-times the Nyquist frequency.54

Gravitational artifacts could be overcome by the applica-
tion of multiple accelerometers on the same limb.86 In
practice, this has been applied very rarely87 and is not com-
monly recommended for clinical or research recordings.68

It is encouraging that most of the aforementioned studies
used triaxial recordings, which, by the nature of providing
a vector sum, are independent of the main movement axis.
It, however, remains to be proven if recording tremor
along three axes is superior to mono-axial recordings.68

Adding gyroscope data to triaxial recordings, however, has
been shown not to increase tremor scoring accuracy.43

The accelerometer sensor range, that is, the maximal
acceleration that can be recorded, ranged from 2 g37 to
16 g.51 Another sensor characteristic not commonly
reported in the literature is the sensor sensitivity, mea-
sured in mV/g, governing the resolution at which a sensor
can measure acceleration. This usually ranges between 20
and 100 mV/g, with exceptional devices providing a reso-
lution of up to 800 mV/G. As the natural frequency of a
limb depends on its weight,1 the ideal sensor should also
be as small and light as possible,85 with heavier devices
(eg, smartphones) presumably interfering more.

Signal Length and Preprocessing
As tremor intensity physiologically fluctuates with time,

the recording length governs which temporal aspects of
the signal are included in the analysis. For most studies,
the length per tremor signal recorded ranged from 2038,82

to 3032 to 60 seconds,51 representing common clinical
examination durations. Whereas some studies suggested
that differentiation accuracy plateaus with recording
lengths from 5 seconds upward,58 other studies for tremor
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detection “in-the-wild” analyzed data collected over up to
26 hours per patient.62

To avoid biasing the analysis and learning features
dependent on time-series length, equal lengths/equal
number of data points of signal from all groups/
conditions should be entered into the analytical pipe-
line. For in-the-wild experiments, it is necessary to seg-
ment the unequal prolonged time periods of
experimentation into equal-length segments for effective
classification. One study used a bag-of-features classifi-
cation, where an overlapping window of fixed size was
used to break the data into segments, and windows
with the highest energy in the tremor frequency range
were selected.61

ML Analysis

ML methods can generally be separated into super-
vised learning, meaning that an algorithm is trained to
detect patterns in data according to ground truth labels
or “gold standard” samples fed during training
(Fig. 1A), and unsupervised learning, meaning that an
algorithm detects similarities and differences between
samples without ground truth labels or training on

standard samples (Fig. 1B). The identified studies ulti-
mately implemented supervised learning (although
unsupervised ML, such as dimensionality reduction,
was sometimes used as a precursor step). We therefore
have not specifically included unsupervised learning in
this review, which can provide additional insights into
tremor data.88

Data Preparation
Data preparation involves the transformation of raw

data into an appropriate format for modeling.
First, recordings (Fig. 2A) need to be “cleaned,”

removing mistakes, artifacts, or recording errors in the
raw data when visually inspected in the time and fre-
quency domain (Fig. 2B). In the absence of time stamps,
as a reference for subselecting parts of the full record-
ings, the time window can be treated as a hyper-
parameter that needs to be optimized during the
validation step of the ML process. However, we
emphasize that biased subselecting of data, akin to
“cherry picking,” may omit the physiological fluctua-
tions inherent to tremor. Some authors clip the first and
last 10 seconds of the recordings to exclude artifacts
and instability associated with starting the experiment51

(A)

(B)

FIG. 1. (A) Supervised learning requires (i) samples with a known ground truth such as the disease (discrete classes) for classification or a clinical score
(continuous value) for regression. Example here shows a classification problem. (ii) The supervised machine-learning (ML) algorithm learns a decision
boundary that optimally separates the training samples based on the ground truth classes. (iii) Given a new sample with, for example, an unknown dis-
ease, the algorithm can assign a class based on its position relative to the decision boundary. (B) Unsupervised learning looks to uncover structure in
the data when (i) ground truth samples are not known. (ii) Using a clustering algorithm, groups of samples that are naturally close to each other, but
separated from the other clusters, can be uncovered. (iii) The clusters do not necessarily correspond to ground truth diseases but will reflect the struc-
ture of the underlying data and may, for example, find subgroups of diseases. [Color figure can be viewed at wileyonlinelibrary.com]
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(A) (B)

(C) (D)

(E) (F) (G)

×10–3

FIG. 2. Machine-learning workflow for analyzing tremor accelerometry recordings. (A) Raw tremor accelerometry recordings are (B) first preprocessed
to clip periods of time with artifacts in both time (i) and frequency domain (ii) and then band-pass filtered to remove high- and low-frequency compo-
nents. (C) Time-series features are extracted from the recordings, including (i) traditional hypothesis-driven features that are often derived from Fourier
or Hilbert transforms and (ii) nondomain specific data-driven features, and which are then entered into a feature matrix (iii). (D) The ML model is trained
for (i) classification or (ii) regression against the dependent variable. (E) The trained model is evaluated on a test set where the predicted classes of each
sample are compared against the ground-truth classes using, for example, a confusion matrix. (F) The importance of each feature in the ML model is
measured using different approaches, such as the (i) magnitude of the coefficient in a linear model or (ii) the Shapley additive explanation (SHAP) value
in a nonlinear model so that (G) a clinician can make informed diagnoses and decisions. [Color figure can be viewed at wileyonlinelibrary.com]
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(Fig. 2Bi). Nonphysiological artifacts due to ADL, voli-
tional movement, and spurious artifacts are further
removed by band-pass filtering (Fig. 2Bii), classically in
the range of 1 to 16,51 0.5 to 15,47 or 2 to 30 Hz.68

Next, the features for best characterization of tremor
time series need to be selected (Fig. 2C). Here, one can
take either (1) a hypothesis-driven approach using engi-
neering features that one expects to be predictive or
(2) a data-driven approach by utilizing nondomain spe-
cific feature extraction tools or directly learning the fea-
tures using a deep-learning (DL) algorithm. The former
allows to input prior knowledge into the modeling pro-
cess and can often provide more interpretable insights,
whereas the latter is less biased and can often identify
novel, unexpected, and (potentially nonlinear)
relationships.
Early attempts to analyze tremors used hypothesis-

driven approaches and defined features, including
position-dependent tremor peak frequency (Fig. 2Ci),
patient demographics, and derived metrics to further
quantify the dynamic nonlinear oscillatory characteris-
tics of tremor time series.74 Cross-correlation and auto-
correlation features are generally accepted as good
representatives of tremor characteristics.89 Most of the
reviewed accelerometer publications engineered 1 to
10 features from both time and frequency
domains,34,39,42,47 representing amplitude and
regularity,32,51 spectral power,51 fast Fourier transform
coefficients,32 and spectrograms.59

Transitioning from a hypothesis-driven toward a
data-driven approach, a selection of studies increased
the number of features that they engineered (Fig. 2Cii),
including 40 features,32 74 features,43 or up to
290.37,41 Any actively selected feature might however
introduce bias and limit the scope for data exploration.
Recently, an entirely data-driven approach employing
highly comparative time-series analysis for massive fea-
ture extraction was applied to tremor signals and was
able to accurately predict between pre- and
poststimulation,90 highlighting the potential of training
predictive models of tremor signals without any domain
knowledge. Finally, DL methods circumvent feature
extraction steps by learning hierarchical features
directly from time series.91 Whereas classical ML
approaches allow the input of human intuition and
domain knowledge, DL methods can identify complex
nonlinear patterns that cannot be captured by individu-
ally engineered features.
After a feature matrix has been constructed from

engineered features (Fig. 2Ciii), a second round of data
cleaning can be performed on the features, for example,
mean imputation to fill in missing values.32 Commonly,
features are scaled by either normalization (bounding
values between 0 and 1) or standardization (zero mean
and unit variance). This is to make each feature com-
paratively similar in magnitude, allowing ML

algorithms based on gradient descent to iterate/
converge more smoothly. Some authors used standardi-
zation to scale the features to ensure comparability
between ML model performance,32 whereas others nor-
malized, minimum to maximum, their power-spectrum
density (PSD)–based features before implementing a
two-stage algorithm.46

Models
The choice of supervised ML model is partially

dependent on the research question and the accompa-
nying data. Generally, supervised ML models can be
separated into regression and classification models
(Fig. 2D), whereby the former predict continuous
values (eg, a tremor score) and the latter predict discrete
values (eg, disease). A wide range of linear, ensemble,
and DL methods have been applied for ML-based clas-
sification, and most of the reviewed publications
applied all or a combination of these.
Linear discriminant analysis (LDA)92,93 and support

vector machines (SVM)52,58 are frequently used algo-
rithms for tremor classification. LDA inherently pro-
vides dimensionality reduction while preserving the
interclass variance and ensuring maximum class separa-
bility, whereas SVMs try to estimate the best hyper-
plane that would serve as a boundary between classes
by mapping the input to a higher dimension. Other
popular ML algorithms for tremor classification include
Random Forest, an ensemble algorithm used for both
regression and classification tasks with an additional
layer of randomness for bootstrap aggregation, and
naive-Bayes classifier, based on Bayes’ theorem, that
assumes features are independent and each feature is
learned separately, simplifying the learning in compari-
son to other algorithms.38,94

A DL model employs the use of artificial neural net-
works (ANN) several layers deep, which provides a
very powerful nonlinear architecture to analyze the
input. The characteristics of the hidden layers can be
easily modified, making this architecture very flexible.
The neurons in the hidden layer help recognize the fea-
tures of time-series data, whereas the individual weights
associated with the neurons represent the feature. DL
models are completely independent of user-defined fea-
tures, and time-series data with minimal preprocessing
can be input directly into the model.
Convolutional neural networks are a modification of

ANNs that learn relational information between spa-
tially close data, for example, across the three dimen-
sions of triaxial data or through time.50,91,95

Alternatives for continuous time-series data analysis
include sequence models like recurrent neural networks
(RNN), which learn features across sequential
timesteps, pushing the most relevant features from each
timestep forward for a better representation of the
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sequential data. RNN82 and its modified versions, long
short-term memory (LSTM)96 and gated recurrent unit,
proved very useful in sequential tremor time-series
analysis.45,97

DL methods, however, have several disadvantages.
They are very data intensive, and proper training
requires large data sets and expensive computations.
ANNs are often described as black boxes due to the
long series of complex operations that are difficult to
disentangle, although explainable AI is emerging as a
possible route to interpretability.98 The absence of
handcrafted custom features lends this approach more
objectiveness but leads to a rather opaque view of fea-
tures and the inner workings of the algorithms. In this
context, careful clinical phenotyping of the training set
becomes an even more pressing necessity.
A common approach therefore is to use a variety of

models, including linear, ensemble, and DL-based algo-
rithms.32,99 This has similarly been tried in unscripted
experiments.59 An interesting study used multiple-
instance learning, whereby a bag (sequence of signal
segments associated with a single class label) was pro-
vided as input and the bag (ie, not singular data points)
mapped to a label, overcoming noise in the data set.61

Training and Evaluation
Once an appropriate ML model has been chosen, it

must be optimally trained and evaluated. Training
involves optimizing the model parameters and hyper-
parameters on a training set and a validation set,
respectively, using cross-validation, whereas evaluation
usually requires testing the optimized model on unseen
test sets.
Cross-validation is a technique of splitting the data

into a specified number of folds and permuting the
training and validation sets among them. This helps to
tune hyperparameters, overcome instability in sam-
pling, and test the model performance on unseen data.
K-fold cross-validation (splitting the training data into,
eg, 10-folds) is one of the most common
forms,32,36,38,47 and leave-one-out-cross-validation
implies the number of folds equals the number of sam-
ples.51–53,61 To tune the hyperparameters of a model, a
popularly adopted method is grid search, testing all
possible combinations of hyperparameters within a
defined range of values to find the optimal combina-
tion. Cross-validation is usually carried out on the
training data within the grid search loops to evaluate
the optimal set of hyperparameters.58

Given a trained model, its ability to generalize to
unseen data must be evaluated. Deciding the best met-
rics for evaluating model performance is a critical step
in the process. A poor metric choice might lead to a dis-
torted representation of the model capabilities and
characteristics; for example, a model that simply

classifies every sample into the same class in the pres-
ence of a large class imbalance will inevitably lead to
many positively classified samples but has little clinical
use. For tremor classification, model evaluation is fre-
quently done using a confusion matrix (Fig. 2E), which
allows the calculation of precision, recall, specificity,
and F1 scores.32,61,100 The F1 score appears to be a
favorable metric especially in unbalanced class cases.100

For binary classification models, some studies used the
receiver operating characteristic curve.32,36,38 Regres-
sion models must be evaluated using some measure of
distance between the ground truth and predicted scores;
metrics such as mean absolute error or root mean
square have been used in this context.35,51

The computational cost to train ML models varies
considerably. We emphasize that standard ML models
(linear models, SVMs, Random Forest) with a few hun-
dred samples can easily be trained on modern laptops
in a matter of seconds to minutes. The computational
cost increases with larger data sets and algorithms, with
increasing numbers of parameters to optimize, that is,
ANN, which can take hours to days to train. For
tremor measurements, the computational cost of such
models will not yet be a limiting factor.

Interpretation
Adequate interpretation of ML results in the context

of each experiment is paramount for insights into dis-
ease mechanisms and clinical translation. As the tremor
field transitions from hypothesis-driven analyses toward
data-driven analyses with high-dimensional data sets
and complex DL models, it is necessary to identify the
features that contributed the most toward classification
(Fig. 2F).
Model comparison allows to train multiple models

on different features, and subsequently compare their
performance, identifying the feature sets providing the
strongest predictive power. In this way, several ML
studies identified, for example, models training on
power-spectrum engineered features101 or SVM
models52 to perform best. The coefficients in linear ML
models, for example, linear SVM or logistic regression,
are often directly interpretable (Fig. 2Fi). For example,
Ali et al35 found a linear relationship between Fahn–
Tolosa–Marin tremor score and PSD features using a
least-squares linear regression, with which they could
define a model equation relating the contributions of
each feature to the clinical score.35

Interpreting results of nonlinear ML models is more
difficult: model gain analysis can be used to identify the
parts of the signal most relevant for classification, for
example, after XGBoost (Extreme Gradient Boosting)
and LSTM analysis,47 or the use of Shapley additive
explanation (SHAP) values (Fig. 2Fii). Another
approach generated visual explanations of tremor
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spectrograms using gradient-weighted class activation
mapping to highlight the regions of the spectrogram
most relevant for classification.38

Discussion

The results from the studies summarized earlier docu-
ment, in principle, the great potential of ML for the
study of tremor disorders, as time-series analysis has
evolved from comparing relatively simple metrics to
more sophisticated feature-based analysis. Concur-
rently, methods for measuring tremor signals are well
established, and the strengths and weaknesses of ML
analytical approaches are acknowledged. As evidenced
by the strong presence of authors from the engineering/
signal analysis field in the aforementioned publications,
ML technology is now sufficiently developed and
widely available.
This contrasts with the lack of clinically well-defined

tremor cohorts in our search. As in other fields of
medicine,102 the absence of clinical and demographic
details from most of the papers summarized earlier
limits their clinical value: similar to training a clinician’s
eye to detect clinical patterns, ML-based analyses can
only be as good as the data fed to the algorithm. This
pertains to the meticulous clinical description to deter-
mine potential bias. Further, most analyses are limited
to historically established, well-known features, poten-
tially introducing signal bias and limiting the scope for
data exploration. Together with relatively small sample
sizes, the single-center design by its nature is limiting
the ability to identify generalizable, disease-specific
characteristics.

What Is Ground Truth in Tremor Research?
Accurate tremor classification has proven to be a

challenge and an ongoing struggle for the movement
disorder community,5,6,11,103 and several concepts con-
tinue to be debated. As tremor remains a clinical diag-
nosis without clear biomarker profile beyond DAT
SPECT (dopamine transporter-single-photon emission
computed tomography) scans to quantify dopaminergic
neurodegeneration,104 it is important to recognize that
it is the combination of diagnostic criteria and their
clinical interpretation that governs how individual
symptoms are categorized. As there is no doubt this
already affects the differentiation of well-established
concepts such as ET and PD, this is even more likely to
be the case in, for example, comparably recent addi-
tions to the diagnostic spectrum, such as DT and
tremor associated with dystonia.2,105–107 In the absence
of consensus biomarkers, the clinical diagnosis remains
the gold standard for comparison for now. This in turn
implies that, by its nature, absolute ground truth in
tremor disorders is veiled by uncertainty.

What to Expect from ML-Based Tremor Studies
It is therefore important to correctly set the expecta-

tions for ML tremor studies. They can only learn/
identify patterns laid out by the clinical diagnoses fed in
the training data set. Therefore, it is neither realistic
nor desirable to replicate prediction accuracies 100% in
mono-centric data sets but rather to identify truly
disease- and not center-, device-, or clinician-specific
characteristics. The larger the pool of recordings from
several centers and populations, the more representative
will be the results. Purely data-driven attempts,34

aiming at clustering patient recordings without the
influence of clinical diagnoses, might provide additional
insights, if applied to clinically well-characterized multi-
center data sets of sufficient size. First, clustering exer-
cises based on a very limited number of manually
chosen variables allowed to identify patient subgroups
based on medication response.108 The power of such
approaches becomes evident when all possible move-
ment characteristics are included via unbiased feature
extraction—ML-based analyses therefore bear the real-
istic potential to predict the effect of an intervention.90

Lessons from Other Domains
Despite the large number of research papers applying

ML across various domains of medicine,109 models so
far only rarely transition into routine clinical practice
due to various conceptual and methodological
issues28,30: first, research papers that use ML to target a
medical problem often focus on the design and develop-
ment of an ML model, followed by evaluation on a lim-
ited data set, but leave validation, diffusion, and scaling
of the model into clinical care untouched. The validity
of an ML model should, however, be assessed in differ-
ent settings and across time periods to optimize its
validity.110 Second, translation necessarily requires con-
tinued monitoring and maintenance as factors such as
data quality and population characteristics change over
time. The continued training of ML models to ensure
robust predictions in medical care is an active field of
research.111 Moreover, changes in regulatory frame-
works or definitions of diseases require the evolution or
overhaul of existing models.112 Third, the predictions
made by ML models can sometimes be difficult to inter-
pret and explain, posing relevant medicolegal implica-
tions in potentially high-risk clinical decisions, as the
parties involved need to understand the reasons for a
health-care decision. Depending on the training data set
used, ML models can also exacerbate existing racial
and socioeconomic health inequalities.113

After a first wave of ML publications, several efforts
focused on identifying and overcoming relevant disad-
vantages114: for example, a meta-analysis on ML
approaches in imaging research identified the frequently
unmet need to compare the performance of clinical and
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ML diagnostic accuracy on the same data set, as well as
external validation.29 Despite the translational difficul-
ties of ML models, they still provide unprecedented
diagnostic and prognostic opportunities,28 driving a
shift toward precision and personalized health care
likely to accelerate further.
Like traditional statistics, ML methods are prone to

being biased if not correctly implemented. Over-fitting
algorithms to the specific nuances of a data set can pro-
duce a model that cannot generalize to new data. Com-
monly, over-fitting is overcome by splitting the data set
into a training set (trains the ML model), a validation
set (optimizes ML hyperparameters), and a test set
(evaluates final model performance). Other routes to
prevent over-fitting include early stopping criteria
(DL models usually include criteria to stop the training
process when the model performance is no longer
improving), expanding the data set (with a larger vari-
ety of samples), and regularization (penalizing the
parameters with larger coefficients to limit variance in
the ML model). Similarly, underlying issues with the
data set can bias the trained ML model. For example,
outliers, which are samples that are unlike the rest of
the data set, can heavily bias ML models. The definition
of an outlier is not fixed and depends on the data set;
nonetheless, outliers can be detected using visualization
or statistical methods,115 and training multiple ML
algorithms can help avoid models that are more robust
to outliers.

Future Directions for Tremor Research
ML predominantly holds great promises for

improved generalizability for tremor research (Fig. 2G).
From the methodological principles and advantages
summarized earlier, we identify several core points to
aid future analyses.
Learning from the successful application of ML in

other domains, it is clear that only collaborative ana-
lyses of recordings from different centers, including as
many samples as possible and sampling the whole spec-
trum of presentations, will provide the opportunity to
detect not patient-, center-, or population- but truly
disease-specific characteristics, improving diagnosis and
prognosis. Attempts in this direction failed so far, possi-
bly due to a mixture of the aforementioned
limitations.34

Increasing sample size alone, however, is insufficient
to improve accuracies, as data set and spectrum bias,
relating to the coverage of the disease/control spectrum
and its distribution within the data, are further relevant
factors influencing ML performance.114 First, this
relates to well-documented clinical inclusion criteria
and excluding treatment effects. Second, this should be
accounted for by ideally selecting a range of participat-
ing centers, covering general neurology outpatient

clinics as well as centers with dedicated specialist move-
ment disorder expertise.
It still remains to be seen which tremor characteris-

tics/features are ideal to be compared across centers, as
different sensor positions, recording devices, and proto-
cols influence established metrics. Thus, scripted proto-
cols will remain superior in addressing the pressing
questions in tremor research, such as improving diagno-
sis, prognosis; monitoring treatment effect; predicting
treatment response; and exploring disease mechanism
simply by reducing the amount of noise on top of layers
of physiological inter- and intraindividual variability.
The combination of multicenter data sets and the use of
extensive, unbiased, and automatically extracted fea-
tures116 appears a realistic strategy90 to overcome the
problem of multiple known and unknown confounders
introduced by the aforementioned factors.
Simultaneously, the interpretability of ML results will

remain key for the translation of such attempts into
clinical practice. It is essential that derived results be
compared against known metrics and clinically evalu-
ated so that they remain interpretable and intuitive to
clinicians.117

To make a translational impact on clinical care, fea-
tures identified through ML analyses should be made
available to the community, so they can be applied in
routine clinical accelerometer assessments.
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