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Unitary partitioning and the contextual subspace variational quantum eigensolver
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The contextual subspace variational quantum eigensolver (CS-VQE) is a hybrid quantum-classical algorithm
that approximates the ground-state energy of a given qubit Hamiltonian. It achieves this by separating the
Hamiltonian into contextual and noncontextual parts. The ground-state energy is approximated by classically
solving the noncontextual problem, followed by solving the contextual problem using VQE, constrained
by the noncontextual solution. In general, computation of the contextual correction needs fewer qubits and
measurements compared with solving the full Hamiltonian via traditional VQE. We simulate CS-VQE on
different tapered molecular Hamiltonians and apply the unitary partitioning measurement reduction strategy to
further reduce the number of measurements required to obtain the contextual correction. Our results indicate
that CS-VQE combined with measurement reduction is a promising approach to allow feasible eigenvalue
computations on noisy intermediate-scale quantum devices. We also provide a modification to the CS-VQE
algorithm; the CS-VQE algorithm previously could cause an exponential increase in Hamiltonian terms but with
this modification now at worst will scale quadratically.
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I. INTRODUCTION

One of the fundamental goals of quantum chemistry is
to solve the time-independent nonrelativistic Schrödinger
equation. The eigenvalues and eigenvectors obtained allow
different molecular properties to be studied from first princi-
ples. Standard methods project the problem onto a Fock space
(η electrons distributed in M orbitals) and solve. Under this
approximation, the problem sclaes exponentially with system
size, where the number of Slater determinants (configurations)
scales as

(M
η

)
making the problem classically intractable [1].

Quantum computers can efficiently represent the full configu-
ration interaction (FCI) Hilbert space and offer a potential way
to efficiently solve such molecular problems [2,3]. This use
case is often the canonical example of where the first quantum
computers will be advantageous over conventional computers
[4,5].

*alexis.ralli.18@ucl.ac.uk
†timothy.weaving.20@ucl.ac.uk
‡tufts@atranter.net
§william.kirby@tufts.edu
‖peter.love@tufts.edu
¶p.v.coveney@ucl.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

In the fault-tolerant regime, quantum phase estimation
(QPE) [6] provides a practical way to perform quantum
chemistry simulations in polynomial time [2]. However, cur-
rent noisy intermediate-scale quantum (NISQ) devices cannot
implement this algorithm due to the deep quantum circuits and
long coherence times required [7,8].

The constraints on present-day devices have given rise
to a family of quantum-classical algorithms that leverage as
much classical processing as possible to reduce the quantum
resources required to solve the problem at hand. Common
examples of NISQ algorithms are the variational quantum
eigensolver (VQE) [9], quantum approximate optimization
algorithm (QAOA) [10], and variational quantum linear solver
(VQLS) [11]. A good example is the recently proposed entan-
glement forging method [12], where the electronic structure
problem for H2O was reduced from a 10-qubit problem to
multiple 5-qubit problems that were each studied using con-
ventional VQE and classically combined. Recently, another
novel approach known as the quantum-classical hybrid quan-
tum Monte Carlo (QC-QMC) method was used to unbias the
sign problem in the projector Monte Carlo (PMC) method,
which implements imaginary time evolution [13]. At a high
level, the accuracy of a constrained PMC calculation is de-
termined by the quality of trial wave functions. Quantum
computers offer a way to efficiently store highly entangled
trial wave functions and measure certain overlaps, which
would require exponential resources classically. Huggins et al.
performed QC-QMC simulations of different chemical sys-
tems on Google’s Sycamore processor and obtained results
competitive with state-of-the-art classical methods [13].

2643-1564/2023/5(1)/013095(12) 013095-1 Published by the American Physical Society

https://orcid.org/0000-0001-8953-1235
https://orcid.org/0000-0003-3362-7275
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.013095&domain=pdf&date_stamp=2023-02-09
https://doi.org/10.1103/PhysRevResearch.5.013095
https://creativecommons.org/licenses/by/4.0/


ALEXIS RALLI et al. PHYSICAL REVIEW RESEARCH 5, 013095 (2023)

The contextual subspace VQE (CS-VQE) algorithm is an-
other hybrid quantum-classical approach [14]. It gives an
approximate simulation method, where the quantum resources
required can be varied for a trade-off in accuracy. This allows
problems to be studied where the full Hamiltonian would
normally be too large to investigate on current NISQ hard-
ware. This was shown in the original CS-VQE paper, where
chemical accuracy for various molecular systems was reached
using significantly fewer qubits compared with the number
required for VQE on the full system [14]. As CS-VQE reduces
the number of qubits required for simulation, the number of
terms in a Hamiltonian requiring separate measurements is
also reduced.

A natural question that arises from this is whether mea-
surement reduction schemes can be utilized to reduce the
overall measurement cost of these already reduced CS-VQE
Hamiltonians [15–28]. The goal of this work was to investi-
gate the possible reductions given by the unitary partitioning
strategy [15,29,30] and whether chemical accuracy on larger
molecules can be reached on currently available NISQ hard-
ware.

This paper is structured as follows. Section II summarizes
the CS-VQE algorithm. Here we provide a modification to
the unitary partitioning step of the CS-VQE algorithm; the
CS-VQE algorithm previously could cause the number of
terms in a Hamiltonian to exponentially increase but with this
modification now will at worst cause a quadratic increase.
Section III is split into a description of the method in Sec. III A
and two main parts, Secs. III B and III C. Section III B exam-
ines a model problem to exemplify each step of the CS-VQE
algorithm. Section III C gives the numerical results of ap-
plying unitary partitioning measurement reduction to a test
bed of different molecular structure Hamiltonians, where the
contextual subspace approximation has been employed.

II. BACKGROUND

To keep our discussion self-contained and establish nota-
tion, we summarize the necessary background theory of the
contextual subspace VQE algorithm in this section.

A. Contextuality

The foundation of quantum contextuality is the Bell-
Kochen-Specker (BKS) theorem [31]. In lay terms, every
measurement provides a classical probability distribution (via
the spectral theorem), and a joint distribution can be built as a
product over all possible measurements [32]. The BKS theo-
rem proves that it is impossible to reproduce the probabilities
of every possible measurement outcome for a quantum system
as marginals of this joint probability distribution [33]. This is
related to how quantum mechanics does not allow models that
are locally causal in a classical sense [34]. Contextuality is a
generalization of nonlocality [34,35]. This means that quan-
tum measurement cannot be understood as simply revealing a
preexisting value of some underlying hidden variable [36,37].
Bell’s theorem also reaches a similar conclusion against hid-
den variables [38], but in a different way.

A good example of this phenomenon is the “Peres-Mermin
square” [37,39], where no state preparation is involved and

only observables are considered. We include an example in
the Appendix and remark on the relation to VQE. Collo-
quially, for a noncontextual problem it is possible to assign
deterministic outcomes to observables simultaneously without
contradiction; however, for a contextual problem this is not
possible [14].

The following sections set out the contextual subspace
VQE algorithm, and we provide an alternate way to construct
UW (defined below) compared with the original work [14].
This modification addresses the exponential scaling part of the
method. Further background on the full CS-VQE algorithm is
given in the Supplemental Material [40].

B. Contextual subspace VQE

Consider a Hamiltonian expressed as

Hfull =
∑

a

caPa =
∑

a

ca

⎛
⎝ n−1⊗

j=0

σ
(a)
j

⎞
⎠

=
∑

a

ca
(
σ

(a)
0 ⊗ σ

(a)
1 ⊗ · · · ⊗ σ

(a)
n−1

)
, (1)

where ca are real coefficients. Each Pauli operator Pa is made
up of an n-fold tensor product of single-qubit Pauli matrices
σ j ∈ {I, X,Y, Z}, where j indexes the qubit the operator acts
on. The CS-VQE algorithm is based on separating such a
Hamiltonian into a contextual part and a noncontextual part
[14]:

Hfull = Hcon + Hnoncon. (2)

As it is possible to assign definite values to all terms in Hnoncon

without contradiction, a classical hidden-variable model (or
quasiquantized model) can be used to represent this system
[41].

In Ref. [42], such a model is constructed along with a
classical algorithm to solve it. This was based on the work of
Spekkens [43,44]. Solving this model yields a noncontextual
ground state.

Once that solution is obtained, the remaining contextual
part of the problem is solved. Solutions to Hcon must be
consistent with the noncontextual ground state, which defines
a subspace of allowed states [14]. By projecting the problem
into this subspace the overall energy is given by

E (�θ ; �q, �r ) = Enoncon(�q, �r ) + Econ(�θ ; �q, �r )

= Enoncon(�q, �r )

+ 〈ψcon(�θ )| Q†
WU †

WHconUWQW |ψcon(�θ )〉
〈ψcon(�θ )|Q†

WQW |ψcon(�θ )〉

= 〈ψcon(�θ )| Q†
W U †

WHfullUW QW |ψcon(�θ )〉
〈ψcon(�θ )|Q†

WQW |ψcon(�θ )〉 .

(3)

We have written UW rather than UW (�q, �r) to simplify our
notation.

The vector (�q, �r) should be thought of as parameters that
define a particular noncontextual state: Normally, this will be
a parametrization for the noncontextual ground state [14,42].
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This vector has a size of at most 2n + 1 for a Hamiltonian
defined on n qubits [42]. From (�q, �r), we define a set of
stabilizers W which stabilize that particular noncontextual
state [14]. The unitary UW maps each of these stabilizers to
a distinct single-qubit Pauli matrix; details of this are covered
in Sec. II E. By enforcing the eigenvalue of these single-qubit
Pauli operators we define a subspace of allowed quantum
states that are consistent with the noncontextual state. To con-
strain the problem to this subspace, we use the projector QW .
Note that this is not a unitary operation: hence the renormal-
ization in Eq. (3). By projecting our contextual Hamiltonian
into this subspace, Hcon �→ HW

con = Q†
WU †

WHconUWQW , we
ensure that solutions to HW

con remain in the subspace consistent
with the noncontextual solution [14]. In other words, this
operation means that solutions to HW

con will remain consistent
with the noncontextual solution. Section II E goes into detail
on this.

The contextual trial or ansatz state is prepared as
|ψcon(�θ )〉 = U †

WV (�θ )|0〉⊗n, where V (�θ ) is the parametrized
operator that prepares it. The projector QW , in Eq. (3), then
projects this state into the subspace of possible states consis-
tent with the noncontextual ground state. Again this depends
on which stabilizer eigenvalues are fixed. Note that as QW
is not a unitary operation, the state must be renormalized.
Further analysis of the contextual subspace VQE projection
ansatz is provided in Ref. [45]. In Sec. II C we discuss how to
solve the noncontextual problem.

C. Noncontextual Hamiltonian

For a given noncontextual Hamiltonian, we define SHnoncon

to be the set of Pi present in Hnoncon. This set can be expanded
as two subsets denoted as Z and T , representing the set of
fully commuting operators and its complement, respectively
[14,42]. The set T can be expanded into N cliques, where
operators within a clique must all commute with each other
and operators between cliques must pairwise anticommute.
This is because commutation forms an equivalence relation
on T if and only if SHnoncon is noncontextual [14,42].

A hidden-variable model for such a system can be built,
where the set of observables R that define the phase-space
points of the hidden-variable model is [14,42,46]

R ≡ {
P( j)

0

∣∣ j = 0, 1, . . . , N − 1
} ∪ {G0, G1, G2, . . .}

≡ {
P( j)

0

∣∣ j = 0, 1, . . . , N − 1
} ∪ G. (4)

The set G represents an independent set of Pauli operators
that generates the set of commuting observables Z . Each P( j)

0
corresponds to a chosen Pauli operator in the jth clique of T :
By convention we say that this is the first operator in the set,
but this can be any operator in the jth clique.

With respect to the phase-space model given in Ref. [42],
a valid noncontextual state is defined by the parameters (�q, �r),
which set the expectation value of the operators in R [Eq. (4)].
Each operator in G is assigned the value 〈Gi〉 = qi = ±1. The
operators in T are assigned the values 〈P( j)

0 〉 = r j , where �r is
a unit vector (|�r| = 1) [14,42]. The number of elements in �q
and �r are |G| and N , respectively. For n qubits the size of |R|
is bounded by 2n + 1, which bounds the size of (�q, �r) [42,46].

The observables for the N anticommuting P( j)
0 operators in

R can be combined into the observable [42]

A(�r) =
N−1∑
j=0

r jP
( j)
0 . (5)

We denote the set of Pauli operators making up this operator
as A ≡ {P( j)

0 | j = 0, 1, . . . , N − 1}.
The expectation value of A(�r) is assigned by the hidden-

variable model to always be +1, due to

〈A(�r)〉 =
N−1∑
j=0

r j
〈
P( j)

0

〉 =
N−1∑
j=0

r jr j =
N−1∑
j=0

|r j |2 = +1, (6)

using 〈P( j)
0 〉 = r j and |�r| = 1.

The expectation value for Hnoncon can be induced, by setting
the expectation values of operators in R [Eq. (4)], as this set
generates SHnoncon [14,42]. To find the ground state of Hnoncon,
we perform a brute-force search over this space. For each
possible ±1 combination of expectation values for each Gj

(2|G| possibilities), the energy is minimized with respect to the
unit vector �r: That sets the expectation values 〈P( j)

0 〉 = r j . The
Supplemental Material provides further algorithmic details
[40]. The vector (�q, �r) that was found to give the lowest energy
defines the noncontextual ground state. Each noncontextual
state (�q, �r) corresponds to subspaces of quantum states, which
we will describe in Sec. II D.

D. Contextual subspace

In Refs. [15,29] it was shown that an operator constructed
as a normalized linear combination of pairwise anticommut-
ing Pauli operators, such as A(�r) [Eq. (5)], is equivalent to a
single Pauli operator up to a unitary rotation R. We can there-
fore write A(�r) �→ P(k)

0 = RA(�r)R† for a selected P(k)
0 ∈ A.

We write the set R�r [Eq. (4)] under this transformation:

R�r ≡ {A(�r)} ∪ G �→ R′ ≡ {
P(k)

0

}︸ ︷︷ ︸
P(k)

0 =RA(�r)R†

∪ G.
(7)

It will be shown later that the unitary R is constructed from the
operators in A. This means that the terms in G are unaffected
by this transformation, as operators in G must universally
commute and so must commute with R.

A given noncontextual state (�q, �r) is equivalent to the
joint expectation value assignment of 〈Gi〉 = qi = ±1 and
〈A(�r)〉 = +1. This defines a set of stabilizers:

Wall ≡ {q0G0, q1G1, . . . , q|G|−1G|G|−1, A(�r)}, (8)

which by definition must stabilize that noncontextual state
(�q, �r) or more precisely, the subspace of quantum states cor-
responding to it [47]. Note that A(�r) is not a conventional
stabilizer, but is unitarily equivalent to a single-qubit operator
P(k)

0 [15,29].
We can consider this problem under the unitary transform

defined in Eq. (7). The stabilizers in Wall become

W ′
all ≡ {

q0G0, q1G1, . . . , q|G|−1G|G|−1, ξ P(k)
0

}
, (9)

which defines a regular set of stabilizers for the noncontextual
state (�q, �r), which defines a subspace of quantum states. Here,
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ξ = ±1, is determined by RA(�r)R† = ξP(k)
0 , and can always

be chosen to be +1, which we do throughout this paper.
Altogether, when certain noncontextual stabilizers are

fixed (by the noncontextual state), they specify a subspace
of allowed quantum states that will be consistent with that
noncontextual state and thus define the constraints for the
contextual part of the problem. We refer to this subspace as
the contextual subspace [14].

E. Mapping a contextual subspace to a stabilizer subspace

In CS-VQE, the expectation value of the full Hamiltonian
is obtained according to Eq. (3). First, the noncontextual prob-
lem is solved yielding the noncontextual state ( �q, �r): normally
the ground state (�q0, �r0). The Supplemental Material shows
how (�q0, �r0) can be obtained via a brute-force approach [40].
Next the contextual Hamiltonian is projected into the sub-
space of allowed quantum states consistent with the defined
noncontextual state. This constraint is imposed via Hfull �→
HW

full = Q†
WU †

WHfullUWQW , where the expectation value is
then found on a quantum device.

The unitary operation UW is defined by the set of contex-
tual stabilizers W ⊆ Wall [Eq. (8)], whose eigenvalue we fix
according to the noncontextual state. If A(�r) ∈ W , meaning
that 〈A(�r)〉 is fixed to be +1, then the steps summarized in
Eq. (7) must first be performed to reduce A(�r) to a single Pauli
operator. Clifford operators Vi(P) are then used to map each
P ∈ W to a single-qubit Z operator. Each Vi is made up of at
most two π

2 Clifford rotations, generated by Pauli operators,
per element in W . In Ref. [14] it was shown that at most there
will be 2n of these rotations, where n is the number of qubits
the problem is defined on [48]. We can write this operator as

U †
W (�q, �r) =

{∏
Pi∈W⊆Wall

Vi(Pi ) if A(�r) �∈ W(∏
Pi∈W⊆Wall

Vi(Pi )
)
R if A(�r) ∈ W .

(10)

Applying U †
WWUW = WZ results in a set of single-qubit

Z Pauli operators. An implementation note is that each oper-
ator Vi(Pi ) in UW depends on the others: This can be seen by
expanding U †

WWUW . Therefore each Vi operator is dependent
on the stabilizers in W and the order in which they occur. We
recursively define each Vi as follows.

(1) Set W = RWR† if and only if A(�r) ∈ W .
(2) Find the unitary V0 mapping the first Pauli operator P0 ∈

W to a single-qubit Pauli operator.
(3) Apply this operator to each operator in the set:

V0WV †
0 = W (0).

(4) Find the unitary V1 mapping V0P1V
†

0 ∈ W (0) to a single-
qubit Z Pauli operator.

(5) Apply this operator to all operators in the set:
V1W (0)V †

1 = W (1).
(6) Repeat this procedure from step (3) until all the opera-

tors are mapped to single-qubit Z Pauli operators: W �→ WZ .
Finally, the eigenvalue of each single-qubit Z Pauli stabi-

lizers in WZ is defined by the vector �q of the noncontextual
ground state (�q, �r); note that 〈A(�r)〉 is fixed to +1 and thus �r is
not important here. UW can flip the sign of these assignments,
but it is efficient to classically determine by tracking how UW
affects the sign of the operators in W .

To project the Hamiltonian into the subspace consistent
with the noncontextual state, we first perform the follow-
ing rotation: Hfull �→ H ′

full = U †
WHfullUW . As this is a unitary

transform, the resultant operator has the same spectrum as
before. We then restrict the rotated Hamiltonian to the correct
subspace by enforcing the eigenvalue of the operators in WZ ,
where the outcomes are defined by the noncontextual state. As
each operator in WZ only acts nontrivially on a unique qubit,
each stabilizer fixes the state of that qubit to be either |0〉 or
|1〉. We write this state as

|ψfixed〉 =
⊗

Pv∈WZ

|i〉v
{

i = 0 if 〈Pv〉 = +1

i = 1 if 〈Pv〉 = −1,
(11)

where v indexes the qubit a given single-qubit stabilizer acts
on and 〈Pv〉 is defined by the noncontextual state. We can write
the projector onto this state as

QW = |ψfixed〉〈ψfixed| ⊗ I(n−|WZ |), (12)

where I(n−|WZ |) is the identity operator acting on the (n −
|WZ |) qubits not fixed by the single-qubit Pv stabilizers. The
action on a general state |φ〉 is

QW |φ〉 = |ψfixed〉〈ψfixed|φ〉 ⊗ |φ〉(n−|WZ |), (13)

where QW has only fixed the state of qubits v and thus each
stabilizer Pv removes 1 qubit from the problem. As the states
of these qubits are fixed, the expectation values of the single-
qubit Pauli matrices indexed on qubits v are known. Thus the
Pauli operators in the rotated Hamiltonian H ′

full = U †
WHfullUW

acting on these qubits can be updated accordingly, and the
Pauli matrices on qubits v can be dropped. Any term in the
rotated Hamiltonian that anticommutes with a fixed gener-
ator Pv is forced to have an expectation value of zero and
can be completely removed from the problem Hamiltonian.
The resultant Hamiltonian acts on |WZ | fewer qubits. We
denote this operation as Hfull �→ HW

full = Q†
WU †

WHfullUWQW .
The noncontextual approximation will be stored in the identity
term of the problem and therefore does not need to be tracked
separately.

The choice of which stabilizer eigenvalues to fix (i.e., what
is included in W) and which to allow to vary remains an open
question of the CS-VQE algorithm. The number of possible
stabilizer combinations will be

∑|Wall|
i=1 ( |Wall|

i ) = 2|Wall| − 1.
Rather than searching over all 2|Wall| − 1 combinations of
stabilizers to fix, in this paper we use the heuristic given in
Ref. [14]. This begins at the full noncontextual approximation,
where W contains all possible stabilizers. We then add a qubit
to the quantum correction, by removing an operator from W
and greedily choosing each pair that gives the lowest ground-
state energy estimate [14]. Alternative strategies on how to do
this remain an open question of CS-VQE. A possible way to
approach this problem is to look at the priority of different
terms in Hcon [49]. Note that the quality of the approximation
is sensitive to which stabilizers are included in W . When
fewer stabilizers are considered (included in W), the resultant
rotated Hamiltonians will act on more qubits and approximate
the true ground-state energy better.

In Ref. [14], Kirby et al. construct R as a sequence of
rotations (exponentiated Pauli operators) defined by A(�r) as
in the unitary partitioning method [15,29]. We denote this
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operation RS . The Supplemental Material gives the full def-
inition of this operator [40]. If RS is considered as just an
arbitrary sequence of exponentiated Pauli operator rotations,
then the transformation Hfull �→ HRS

full = RSHfullR
†
S results in an

operator whose terms have increased by a factor of O(2N ),
where N is the number of cliques defined from T [14]. This
presents a possible roadblock for the CS-VQE algorithm, as
classically precomputing U †

WHfullUW could cause the number
of terms to exponentially increase. We give a further analysis
of this in the Supplemental Material [40]. Additional structure
between RS and Hfull can make the base of the exponent
slightly lower; however, the scaling still remains exponential
in the number of qubits n, where |A| � 2n + 1 [42]. The only
case in which there is not an exponential increase in terms
is for the trivial instance that RS commutes with Hfull. In the
next section, we provide an alternative construction of R via
a linear combination of unitaries (LCU) that results in only a
quadratic increase in the number of terms of the Hamiltonian
when transformed. This avoids the need to apply the unitary
partitioning operator R (via a sequence of rotations) coher-
ently in the quantum circuit after the ansatz circuit, which was
proposed in Ref. [14].

F. Linear-combination-of-unitaries construction of R

In the unitary partitioning method [15,29], it was shown
that R could also be built as a linear combination of Pauli
operators [15,30]. We provide the full construction in the
Supplemental Material [40]. We denote the operator as RLCU.
Rotating a general Hamiltonian Hfull by this operation RLCU

results in

RLCUHfullR
†
LCU =

|Hfull|∑
i

(μi )Pi

+
|A|−1∑

j

|Hfull|∑
i∀{Pj Pk ,Pi}=0

μi jPjPkPi

+
|A|−1∑

j

|Hfull|∑
i

|A|−1∑
l> j

∀{Pi,Pj Pl }=0

μi jl PiPjPl . (14)

The Pauli operators Pj , Pk , and Pl are operators in A; further
details are covered in the Supplemental Material [40]. Overall,
this unitary transformation causes the number of terms in
the Hamiltonian to scale as O(|Hfull| · |A|2). This scaling is
quadratic in the size of A, and as |A| � 2n + 1 [42], the
number of terms in the rotated system will at worst scale
quadratically with the number of qubits n. In a different
context, this scaling result was also obtained for involutory
linear combinations of entanglers [50]. Overall, unlike the
sequence-of-rotations approach, this non-Clifford operation
does not cause the number of terms in a Hamiltonian to
increase exponentially.

The transformation given in Eq. (14), Hfull �→ HLCU
full =

R†
LCUHfullRLCU, is performed classically in CS-VQE. This is

efficient to do because it just involves Pauli operator multipli-
cation, which can be done symbolically or via a symplectic
approach [51]. This operation could be applied within the

quantum circuit. However, in contrast to the deterministic
sequence-of-rotations approach, this implementation would
be probabilistic as it requires postselection on an ancillary reg-
ister [15,30,52,53]. Amplitude amplification techniques could
improve this but would require further coherent resources
[54–57]. Performing this transformation in a classical prepro-
cessing step therefore reduces the coherent resources required
and at worst increases the number of terms needing measuring
quadratically with respect to the number of qubits.

G. CS-VQE implementation

In Ref. [14], UW (�q, �r) was fixed to include all the stabi-
lizers of the noncontextual ground state W ≡ Wall [Eq. (8)],
rather than possible subsets W ⊆ Wall. The whole Hamilto-
nian was mapped according to Hfull �→ H ′

full = U †
Wall

HfullUWall .
In general, A(�r) ∈ W , and UWall will therefore normally in-
clude the unitary partitioning operator R. The problem with
this approach is that the unitary R is not a Clifford operation
and the transformation can cause the number of terms in
the Hamiltonian to increase. This increase is exponential if
RS is used and quadratic if RLCU is employed. As this step
can generate more terms, R should only be included in UW
if the eigenvalue of A(�r) is fixed to +1; otherwise it is a
redundant operation as the spectrum of the operator rotated by
R is unchanged. We therefore modify the CS-VQE algorithm
to construct UW from the CS-VQE noncontextual generator
eigenvalues that are fixed. This means that W ⊆ Wall and
ensures that the number of terms can only increase if the
eigenvalue of A(�r) is fixed.

III. NUMERICAL RESULTS

We describe the method in Sec. III A and then split our
results into the two remaining sections. First, we explore a
toy problem, showing the steps of the CS-VQE algorithm. We
show how classically applying R without fixing the eigenvalue
of A(�r) to +1 can unnecessarily increase the number of terms
in a Hamiltonian without changing its spectrum. Finally, in
Sec. III C we apply measurement reduction combined with
CS-VQE to a set of electronic structure Hamiltonians and
show that this can significantly reduce the number of terms
requiring separate measurement. The raw data for these results
are supplied in the Supplemental Material [40].

A. Method

We investigated the same electronic structure Hamiltonians
considered in the original CS-VQE paper [14]. All molecules
considered had a multiplicity of 1 and thus a singlet ground
state. The same qubit tapering was performed to remove the
Z2 symmetries [58]. For each tapered Hamiltonian, we gen-
erate a set of reduced Hamiltonians {Q†

WU †
WHfullUWQW},

where the size of W varies from 1 to |Wall|, represent-
ing differing noncontextual approximations, as summarized
in Sec. II G. To generate the different CS-VQE Hamiltoni-
ans, we modify the original CS-VQE source code used in
Refs. [14,59]. The code was modified to implement the uni-
tary partitioning step of CS-VQE if and only if the eigenvalue
of A(�r) was fixed. This ensured that the number of terms
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in the rotated Hamiltonian did not increase unnecessarily, as
described in Sec. II G.

For each electronic structure Hamiltonian generated in
this way, we then apply the unitary partitioning measure-
ment reduction scheme to further reduce the number of terms
requiring separate measurement [15,29,30]. Partitioning into
anticommuting sets was performed using NETWORKX [60]. A
graph of the qubit Hamiltonian is built, where nodes represent
Pauli operators and edges are between nodes that commute. A
graph coloring can be used to find the anticommuting cliques
of the graph. This searches for the minimum number of colors
required to color the graph, where no neighbors of a node
can have the same color as the node itself. The largest-first
coloring strategy in NETWORKX was used in all cases [60,61].

We calculate the ground-state energy of each Hamiltonian
in this paper by directly evaluating the lowest eigenvalues.
This was achieved by diagonalizing them on a conventional
computer.

B. Toy example

We consider the qubit Hamiltonian

H = 0.6 IIY I + 0.7 XY XI + 0.7 XZXI + 0.6 XZZI

+ 0.1 Y XY I + 0.7 ZZZI + 0.5 IIIZ + 0.1 XXXI

+ 0.5 XXY I + 0.2 XXZI + 0.2 Y XXI + 0.2 YY ZI

+ 0.1 Y ZXI + 0.1 ZYY I (15)

and use it to exemplify the steps of the CS-VQE algorithm.
The results are reported to three decimal places, and full
numerical details can be found in the Supplemental Material
[40].

Following the CS-VQE procedure [14], we first split
the Hamiltonian into its contextual and noncontextual parts
[Eq. (2)]:

Hnoncon = 0.5 IIIZ︸︷︷︸
Z

+0.7 XZXI + 0.7 ZZZI

+0.1 Y XY I + 0.6 IIY I

+ 0.7 XY XI + 0.6 XZZI︸ ︷︷ ︸
T

, (16a)

Hcon = 0.1 XXXI + 0.5 XXY I + 0.2 XXZI

+0.2 Y XXI + 0.2 YY ZI + 0.1 Y ZXI

+0.1 ZYY I. (16b)

Each row after the first in Eq. (16a) is a clique of T . From
here, we define the set R [Eq. (4)]:

R = {Y IY I, IXY I, IIIZ}︸ ︷︷ ︸
G

∪ {XZXI,Y XY I, XY XI}︸ ︷︷ ︸{
P( j)

0 | j=0,1,...,N−1
} .

(17)

Note how different combinations of the operators in Eq. (17)
allow all the operators in Hnoncon [Eq. (16a)] to be inferred
under the Jordan product, defined as Pa ◦ Pb = {Pa,Pb}

2 . Basi-
cally, the Jordan product is equal to the regular matrix product
if the operators commute and equal to zero if the operators
anticommute. Next the noncontextual problem was solved.

The expectation value for Hnoncon can be induced, by setting
the expectation values of operators in R [Eq. (17)], as the
Pauli operators in Hnoncon are generated by R under the Jordan
product. The expectation value of each operator in Hnoncon can
therefore be inferred without contradiction. To find the ground
state of Hnoncon, we checked all possible ±1 expectation values
for each Gj (23 = 8 possibilities). For each possible ±1 com-
bination, the energy was minimized with respect to the unit
vector �r, which sets the expectation value for each 〈P( j)

0 〉 = r j .
The vector (�q, �r) that was found to give the lowest energy
defines the noncontextual ground state. In this case the ground
state is

( −1,+1,−1︸ ︷︷ ︸
�q0

,+0.253,−0.658,−0.709︸ ︷︷ ︸
�r0

).
(18)

This noncontextual state defines the operator A(�r0):

A(�r0) = 0.253 Y XY I − 0.658 XY XI − 0.709 XZXI. (19)

From this we can write R�r [Eq. (7)]:

R�r ≡ {A(�r0)} ∪ {Y IY I, IXY I, IIIZ}. (20)

To map A(�r0) to a single Pauli operator, we use unitary parti-
tioning [15,29,30]. The required unitary can be constructed as
either a sequence of rotations [15],

RS = e−1i·0.788·ZY ZI · e+1i·1.204·ZZZI , (21)

or linear combination of unitaries [15],

RLCU = 0.792 IIII + 0.416i ZZZI − 0.448i ZY ZI. (22)

These operators perform the following reduction:
RSA(�r0)R†

S = RLCUA(�r0)R†
LCU = Y XY I .

If the eigenvalue of A(�r0) is fixed, then we should con-
sider R�r [Eq. (20)] under the unitary transform RLCU or RS

[Eq. (7)]:

R′ = RS/LCUA(�r)R†
S/LCU ∪ {Y IY I, IXY I, IIIZ}

= {Y XY I} ∪ {Y IY I, IXY I, IIIZ}. (23)

Equations (18), (20), and (23) define the noncontextual
stabilizers:

Wall ≡ {+1 A(�r0),−1 Y IY I,+1 IXY I,−1 IIIZ},
W ′

all ≡ {+1 Y XY I,−1 Y IY I,+1 IXY I,−1 IIIZ}. (24)

Next, we define different UW [Eq. (10)], depending
on which stabilizers W we wish to fix. For this prob-
lem we found the optimal ordering of which stabiliz-
ers to fix to be {−1Y IY I,+1 IXY I,+1A(�r0),−1 IIIZ}
followed by {+1 IXY I,−1 IIIZ,+1A(�r0)} followed by
{+1 IXY I,−1 IIIZ} followed by {−1 IIIZ}. This was
achieved by a brute-force search over all

∑|Wall|
i=1

(|Wall|
i

) =
24 − 1 = 15 possibilities for W .

The members of the resulting set of four different W each
represent different noncontextual approximations. These give
four different UW built according to Eq. (10). The full defi-
nition of each operator is given in the Supplemental Material
[40].

Taking a specific example, for W = {+IXY I,−IIIZ,+
A(�r0)} we define U †

W [Eq. (10)]. This operator transforms W
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FIG. 1. Ground-state energy and the number of terms of different
contextual subspace projected Hamiltonians generated in CS-VQE.
Each Hamiltonian has been transformed as Q†

WU †
WHUWQW , apart

from the 4-qubit case, which is the full H . The scatterplot is associ-
ated with the left-hand y axis and gives the energy error as 	E =
|Eapprox − Etrue|. The bar chart gives the number of terms in each
Hamiltonian and is associated with the right-hand y axis. From left to
right the following generators are fixed: {Y IY I, IXY I, IIIZ,A(�r0)},
{IXY I, IIIZ,A(�r0)}, {IXY I, IIIZ}, {IIIZ}, and { }. The W = { }
case represents standard full VQE over the full problem. The 0-qubit
case presents the scenario where the problem is fully noncontextual
and no quantum correction is made. The full details as to how each
Hamiltonian is built are provided in the Supplemental Material [40].
The horizontal black line indicates an absolute error of 1.6 × 10−3.
SeqRot, sequence of rotations.

as WZ = U †
WWUW = {+IZII,−IIIZ,+IIZI}. The eigen-

values of the operators in WZ are fixed by the noncontextual
state to be 〈IZII〉 = +1, 〈IIZI〉 = +1, 〈IIIZ〉 = −1. This
defines the projector:

QW = (|0〉〈0| + |1〉〈1|︸ ︷︷ ︸
I(n−|WZ |)

) ⊗ |0〉〈0| ⊗ |0〉〈0| ⊗ |1〉〈1|︸ ︷︷ ︸
|ψfixed〉

= I ⊗ |001〉〈001|. (25)

The reduced Hamiltonian is therefore

H �→ HLCU
W = Q†

WU † (LCU)
W HfullU

(LCU)
W QW

= −1.827 I − 0.414 X − 0.292 Z + 0.648 Y.

(26)

The Supplemental Material gives further details about this
operation and provides the specifics for the other projected
Hamiltonians [40].

Overall, four Hamiltonians are generated, representing dif-
ferent levels of approximation, that act on 0, 1, 2, and 3 qubits,
respectively. The 4-qubit case represents the standard VQE
on the full Hamiltonian. Figure 1 summarizes the error 	E
of each of these compared with the true ground-state energy
(scatterplot). The number of terms in each Hamiltonian is
given by the bar chart. The green and orange results have
W ≡ Wall for all cases and represent the old CS-VQE imple-
mentation. For these results, the 3- and 4-qubit Hamiltonians
have an increased number of terms due to RS/LCU being im-
plemented, even though the eigenvalue of A(�r0) is not being

FIG. 2. Number of Pauli operators requiring separate measure-
ment to determine the ground-state energy of a particular molecular
Hamiltonian to within chemical accuracy. For each molecule the full
Hamiltonian, tapered Hamiltonian, CS-VQE, and CS-VQE with uni-
tary partitioning (UP) measurement reduction applied are given. Full
numerical numerical details of each are provided in the Supplemental
Material [40]. The size of the Hamiltonian for LiH (3-21G singlet)
with measurement reduction applied is different for the sequence-of-
rotations and LCU unitary partitioning methods. This is an artifact of
the graph color heuristic finding different anticommuting cliques in
the CS-VQE Hamiltonian.

fixed to +1. On the other hand, the gray and blue results in
Fig. 1 build UW according to Eq. (10), where W ⊆ Wall. This
approach ensures that RS/LCU is only applied when necessary.

C. Measurement reduction

Figures 2 and 3 summarize the results of applying the
unitary partitioning measurement reduction strategy to a set
of electronic structure Hamiltonians. We report the number
of terms and number of qubits in each Hamiltonian required
to achieve chemical accuracy compared with the origi-

FIG. 3. Number of qubits required to simulate different elec-
tronic structure Hamiltonians in order to achieve chemical accuracy.
For each molecule the full Hamiltonian, tapered Hamiltonian, CS-
VQE, and CS-VQE with unitary partitioning measurement reduction
applied are given. Numerical details for each result are provided in
the Supplemental Material.
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nal problem. The Supplemental Material [40] gives further
information about each result, where the different levels of
noncontextual approximation are shown. As previously dis-
cussed in Ref. [14], even though CS-VQE in general is an
approximate method, chemical accuracy can still be achieved
using significantly fewer qubits. Applying unitary partition-
ing on top of the reduced CS-VQE Hamiltonians required to
achieve chemical accuracy can further reduce the number of
terms by roughly an order of magnitude. This is consistent
with the previous results in Ref. [30].

To actually obtain a measurement reduction, one needs to
show that the number of measurements required to measure
the energy of a molecular system, to a certain precision ε,
is reduced. Currently, Fig. 2 only shows that we have re-
duced the number of Pauli terms being measured. We have
not commented on the variance. In the Supplemental Material
[40], we prove that simultaneous measurement of normalized
anticommuting cliques can never do worse than performing no
measurement reduction and will more often than not give an
improvement. The proof given is state independent. There are
other measurement strategies based on grouping techniques,
such as splitting a Hamiltonian into commuting or qubit-wise
commuting cliques [16,17,21,24,25]. The measurement re-
duction obtained from these methods is more complicated, as
the covariance of operators within a clique must be carefully
accounted for [24,62]. This is one of the reasons we do not
analyze the performance of these strategies in this paper.
Many other measurement methods have also been proposed
[18–20,22,23,25–28,63,64], and their effect on the number of
measurements would be interesting to investigate.

In Table I, we report the upper bound on the gate count
required to implement measurement reduction as a sequence
of rotations. The LCU method would require ancilla qubits,
and analysis of the circuit depth is more complicated. Further
analysis can be found in Ref. [30]. The number of extra
coherent resources required to implement unitary partitioning
measurement reduction is proportional to the size of each
anticommuting clique a Hamiltonian is split into [15,30]. The
sequence-of-rotations circuit depth scales as O(Ns(|C| − 1))
single-qubit and O(Ns(|C| − 1)) CNOT gates, where Ns is the
number of system qubits and |C| is the size of the anticom-
muting clique being measured. Table I reports the gate count
upper bound for the largest anticommuting clique of a given
CS-VQE Hamiltonian. We do not consider possible circuit
simplifications, such as gate cancellations. To decrease the
depth of the quantum circuit required for practical application,
we suggest finding nonoptimal clique covers; for example, if
anticommuting cliques are fixed to a size of 2, the resources
required to perform RS are experimentally realistic for current
and near-term devices, as only O(Ns) single-qubit and O(Ns)
CNOT gates are required [30].

The heuristic used to determine the operators in Hnoncon

selected terms in the full Hamiltonian greedily by coefficient
magnitude, while keeping the set noncontextual [42]. The
Hamiltonians studied here had weights dominated by diagonal
Pauli operators, as the Hartree-Fock approximation accounts
for most of the energy. This heavily constrains the opera-
tors allowed in A. For the electronic structure Hamiltonians
considered in this paper, we found in all cases that |A| = 2.
In general, we do expect more commuting terms in Hnoncon

TABLE I. Gate requirements to implement R as a sequence of
rotations in the unitary partitioning measurement reduction step. The
square tuple gives the upper bound on the number of single-qubit and
CNOT gates required: [single, CNOT]. These resource requirements are
based on the largest anticommuting clique of each Hamiltonian, as
these have the largest circuit requirements for RS .

Molecule Basis Number of gates for RS

BeH2 STO-3G [90, 72]
Mg STO-3G [189, 162]
H+

3 3-21G [209, 176]
O2 STO-3G [184, 160]
OH− STO-3G [104, 80]
CH4 STO-3G [325, 286]
Be STO-3G [14, 8]
NH3 STO-3G [299, 260]
H2S STO-3G [120, 96]
H2 3-21G [66, 48]
HF 3-21G [735, 672]
F2 STO-3G [133, 112]
HCl STO-3G [36, 24]
HeH+ 3-21G [88, 64]
MgH2 STO-3G [403, 364]
CO STO-3G [325, 286]
LiH STO-3G [36, 24]
N2 STO-3G [207, 180]
NaH STO-3G [493, 442]
H2O STO-3G [120, 96]
H+

3 STO-3G [3, 0]
LiOH STO-3G [378, 336]
LiH 3-21G [459, 408]
H2 6-31G [66, 48]
NH+

4 STO-3G [325, 286]
HF STO-3G [36, 24]

than anticommuting terms. This is because there are more
possible commuting Pauli operators defined on n qubits com-
pared with anticommuting operators (2n vs 2n + 1). G will
therefore in general be the larger contributor to the superset R
[Eq. (4)].

In Fig. 2, the CS-VQE bars have not been split into two for
the case when R is constructed as RLCU or RS . This is due to
|A| being 2 in all cases, which is the special case when these
operators (RLCU and RS) end up being identical. In this in-
stance, R has the form R = αI + iβP, and thus the number of
terms will only increase for every term in the Hamiltonian that
P anticommutes with. However, in general, |A| will be greater
than 2, and the effect of R can dramatically affect the number
of terms in the resultant rotated Hamiltonian. We observe
this in Fig. 1 of the toy example, where the 2- and 3-qubit
CS-VQE Hamiltonians have had UWall applied to them even
though the eigenvalue of A(�r) is not fixed. In that example, for
the 3-qubit approximation the sequence-of-rotations rotated
Hamiltonian green) actually has fewer terms than the LCU
rotated operator orange). This result is an artifact of the small
problem size. In the Supplemental Material we show that the
scaling will favor the LCU implementation, where the number
of terms in a Hamiltonian can only increase quadratically,
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not exponentially, when performing the unitary partitioning
rotation as a LCU rather than a sequence of rotations [40].

In the Supplemental Material, we show the convergence
of CS-VQE at different noncontextual approximations. The
results illustrate that CS-VQE can converge to below chemical
accuracy well before the case when no noncontextual approx-
imation is made (full VQE). Results beyond convergence are
included to show the different possible levels of approxima-
tion. In practice, knowledge of the true ground-state energy
is not known a priori, and so using chemical precision to
motivate the noncontextual approximation will not be possi-
ble. In this setting, a way to approach quantum advantage is
to note that CS-VQE is a variational method. The quantum
resources required can be expanded until the energy obtained
by CS-VQE is lower than that coming from the best possible
classical method. At this point, either the algorithm can be
terminated or further contextual corrections can be added until
the energy converges, at which point the algorithm should be
stopped.

IV. CONCLUSION

The work presented here shows that combining the unitary
partitioning measurement reduction strategy with the CS-
VQE algorithm can further reduce the number of terms in
the projected Hamiltonian requiring separate measurement by
roughly an order of magnitude for a given molecular Hamil-
tonian. The number of qubits needed to achieve chemical
accuracy in most cases was also dramatically decreased, for
example, the H2S (STO-3G singlet) problem was reduced to
7 qubits from 22.

We also improve two parts of the CS-VQE algorithm. First,
we avoid having to apply the unitary partitioning operator
R after the ansatz, which prevents the potential exponential
increase in the number of Pauli operators of the CS-VQE
Hamiltonian caused by classically computing the non-Clifford
rotation of the full Hamiltonian when R is defined as a
sequence of rotations [14,15]. We show that applying this
operation as a linear combination of unitaries [15], Hfull �→
HLCU

full = R†
LCUHfullRLCU, results in the number terms at worst

increasing quadratically with the number of qubits. This result
makes classically precomputing this transformation tractable,
and R no longer needs to be performed coherently after the
ansatz. Secondly, we define the unitary UW , which maps each
stabilizer in Wall [Eq. (9)] to a distinct single-qubit Pauli
matrix, according to which stabilizer eigenvalues are fixed
by the noncontextual state. This ensures that the non-Clifford
rotation required by CS-VQE is only applied when necessary
and also reduces the number of redundant Clifford operations
that are classically performed.

There are still several open questions for the CS-VQE
algorithm. We summarize a few here. (1) What is the best
optimization strategy to use when minimizing the energy
over (�q, �r) in the classical noncontextual problem? (2) What
heuristic is best to construct the largest |Hnoncon|? (3) How can
we efficiently determine which noncontextual stabilizers to
fix while maintaining low errors? In this paper, the size of
each electronic structure problem allowed us to classically
compute the ground-state energies at each step, but if this
is not possible, then VQE calculations would be required.

However, as each run requires fewer qubits and decreases
the number of terms requiring separate measurement, this
approach may overall still be less costly than performing
VQE over the whole problem, especially when combined with
further measurement reduction strategies. (4) What are the
most important terms to include in Hcon or, equivalently, in
Hnoncon? Currently, it is not known whether |Hnoncon| should
be maximized or whether selecting high-priority terms [49]
from the whole Hamiltonian results in a better approximation
for a given problem. We leave these questions to future work.

We have written an open-source CS-VQE code that in-
cludes all the updated methodology discussed in this paper.
We welcome readers to make use of this code, which is freely
available on GitHub [65].
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APPENDIX: PERES-MERMIN SQUARE

The “Peres-Mermin square” (PM square) [37,39] in-
volves the construction of nine measurements arranged in a
square. In this Appendix we follow the construction given
in Ref. [33]. Each measurement has only two possible out-
comes (dichotomic), +1 and −1. In a realistic interpretation,
performing each measurement on an object reveals whether
the property is present (+1) or absent (−1), yielding nine
properties.

We take three measurements along a column or row to
form a “context”: a set of measurements whose values can
be jointly measured, i.e., the observables commute and thus
share a common eigenbasis. Table II gives an example.

In a classical (noncontextual) model for this system, the
nine measurements {IZ, ZI, ZZ, XI, IX, XX, XZ, ZX,YY }
can be assigned a definite value independent of the context the
measurement is obtained in. For example, if all measurements
are assigned +1 in Table II, then c0 = c1 = c2 = r0 = r1 =
r2 = +1, and six positive products are obtained. If a single
entry in Table II is changed, it will affect two products (a row

TABLE II. Example Peres-Mermin square of nine possible ob-
servables for a physical system, where each measurement can be
assigned a ±1 value.

c0 c1 c2

r0 IZ ZI ZZ
r1 XI IX XX
r2 XZ ZX YY

013095-9



ALEXIS RALLI et al. PHYSICAL REVIEW RESEARCH 5, 013095 (2023)

and column product). We consider the following equation in
this setting:

〈PM〉 ≡ 〈IZ · ZI · ZZ〉 + 〈XI · IX · XX 〉
+ 〈XZ · ZX · YY 〉 + 〈IZ · XI · XZ〉
+ 〈ZI · IX · ZX 〉 − 〈ZZ · XX · YY 〉

= r0 + r1 + r2 + c0 + c1 − c2. (A1)

We find that classically, we get an inequality, 〈PM〉 � 4. We
reiterate that this is the setting of eight +1 assignments and a
single −1 assignment. This inequality is saturated when the
−1 value is assigned to one of the observables in the last
column of Table II.

The significance of this inequality is that it can be violated
by quantum systems. Thinking of this in a quantum setting,
the operators in the rows and columns of Table II commute.
If we multiply along the rows and columns, we get +II , apart
from the last column, where c2 = −II (see Table III). This
is the case regardless of what quantum state is considered.
Using the expectation values of the product of these operators
in Eq. (A1), we find 〈PM〉 = 6, violating the classical bound.

Classically, Eq. (A1) is bounded as 〈PM〉 � 4 due to the
assumption that the nine observables of the object can be
assigned a value consistently. Violation of this bound implies
that either the value assignment must depend on which context

TABLE III. Example Peres-Mermin square of nine Hermitian
operators, all with ±1 eigenvalues, representing observables.

〈+II〉 = +1 〈+II〉 = +1 〈−II〉 = −1

〈+II〉 = +1 IZ ZI ZZ
〈+II〉 = +1 XI IX XX
〈+II〉 = +1 XZ ZX YY

(row or column) the observable appears in or there is no
value assignment. This phenomenon is known as quantum
contextuality [33].

In VQE, a Hamiltonian is defined by a linear combina-
tion of Pauli operators. The expectation value is obtained
by measuring each Pauli operator in a separate experiment
and combining the results. Different groups of commuting
operators form contexts. In general, there will be incompatible
contexts where it is impossible to consistently assign joint
outcomes. In other words, different inference relations will
lead to contradictions. Outcomes assigned to individual mea-
surements are therefore context dependent, and the problem
is contextual. If not, then the problem is noncontextual, and a
noncontextual (classical) hidden-variable model can be used
to solve such systems.
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