

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  APRIL 05 2023

Interactions between a heavy particle, air, and a layer of
liquid 
E. M. Jolley   ; F. T. Smith

Physics of Fluids 35, 043311 (2023)
https://doi.org/10.1063/5.0145552

Articles You May Be Interested In

Pre-impact dynamics of a droplet impinging on a deformable surface

Physics of Fluids (September 2021)

Collisions, rebounds and skimming

AIP Conference Proceedings (October 2013)

A radio-frequency Bose–Einstein condensate magnetometer

Appl. Phys. Lett. (April 2022)

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0145552/16828671/043311_1_5.0145552.pdf

https://pubs.aip.org/aip/pof/article/35/4/043311/2883044/Interactions-between-a-heavy-particle-air-and-a
https://pubs.aip.org/aip/pof/article/35/4/043311/2883044/Interactions-between-a-heavy-particle-air-and-a?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/pof/article/35/4/043311/2883044/Interactions-between-a-heavy-particle-air-and-a?pdfCoverIconEvent=crossmark
javascript:;
javascript:;
javascript:;
https://doi.org/10.1063/5.0145552
https://pubs.aip.org/aip/pof/article/33/9/092119/1064432/Pre-impact-dynamics-of-a-droplet-impinging-on-a
https://pubs.aip.org/aip/acp/article/1558/1/297/879166/Collisions-rebounds-and-skimming
https://pubs.aip.org/aip/apl/article/120/16/164002/2833527/A-radio-frequency-Bose-Einstein-condensate
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2063275&setID=592934&channelID=0&CID=754934&banID=520996622&PID=0&textadID=0&tc=1&adSize=1640x440&matches=%5B%22inurl%3A%5C%2Fpof%22%5D&mt=1685454265683815&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fpof%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0145552%2F16828671%2F043311_1_5.0145552.pdf&hc=dc843264a2cbd398be3cebe256abecc2c19b1470&location=


Interactions between a heavy particle, air,
and a layer of liquid

Cite as: Phys. Fluids 35, 043311 (2023); doi: 10.1063/5.0145552
Submitted: 6 February 2023 . Accepted: 16 March 2023 .
Published Online: 5 April 2023

E. M. Jolleya) and F. T. Smith

AFFILIATIONS

Department of Mathematics, University College London, London WC1E 6BT, United Kingdom

a)Author to whom correspondence should be addressed: ellen.jolley.18@ucl.ac.uk

ABSTRACT

As an aircraft flies through cloud at temperatures below freezing, it encounters ice particles and supercooled droplets, which results in the
accretion of ice onto its surfaces and hence deformation of its aerodynamic shape. This can, in worst cases, cause series accidents. Here, we
focus on tackling the common situation where there is a thin layer of water on the aircraft surface and the particles are similarly thin such as
to be able to interact with the water layer. Three-way interaction occurs between air, water, and body motion: under suitable assumptions
(including that the Reynolds and Froude numbers are large, and that the body is much denser than the air), the model allows the shape of
the layer interface and pressure profile beneath the body to be calculated for a given body position. Simultaneously, this in turn allows the
forces on the body to be calculated and hence the motion of the particle to be computed in full. The result is a wide range of possible motions
of the particle, including both “sink” cases (the particle enters the water and becomes submerged) and “skim” cases (where the particle is
launched back off the surface of the water following contact). The latter cases have analogy with traditional “stone skimming/skipping”
games. Repeated skims and significant wakes are accommodated rationally.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0145552

I. INTRODUCTION

We consider a rigid body (particle, object) moving under the
pressure forces of a high-Reynolds number air flow above a wall
coated in a layer of fluid (liquid, say) whose density is greater than that
of air. The dynamics are fully coupled, so the movement of the body
affects the surrounding flow and liquid layer position, and vice versa.
In the case that the body impacts with the layer, we also analyze subse-
quent interactions between the body, the air, and the liquid layer,
including both “skimming” and “sinking” behavior. High Reynolds
numbers are of interest because of many applications. The application
most in mind is aircraft icing, wherein ice particles may adhere to the
surfaces of aircraft and degrade performance (Gent et al., 2000; Purvis
and Smith, 2016; Janjua et al., 2018). In this context, aircraft may
become coated in a thin layer of water after flying through clouds, and
the interactions of incoming ice with this layer then affect the forma-
tion of further ice. The aircraft-icing application is a prime motivation
for the present study where, in contrast to previous studies, we now
seek to incorporate body–air–liquid interplay.

The initial problem of a body moving in an air flow above a layer
is related to the air–body interaction scenario studied in Jolley and
Smith (2022) and Jolley et al. (2021). In that scenario, a body, assumed

to be much more dense than the surrounding air, moves under the
effects of an incoming boundary layer flow in the vicinity of a wall.
This system displays a wide variety of behaviors, and in particular, the
body may “fly away,” i.e., the body escapes from the wall at large times
and does not return. The various behaviors can occur in the present
system also, with fly-away effectively unchanged from the analysis in
the above papers (since as the body becomes very distant from the liq-
uid layer its influence becomes negligible). In this paper, we therefore
focus on solutions where the body moves toward the liquid layer such
as to eventually impact. In the absence of air, this is known as the
water entry problem. Water entry problems have been much studied
over the years, going back to Von K�arm�an (1929); Wagner (1932). In
these works, it is typical that a jet forms along the perimeter of the
impacting body. This was first hypothesized by Wagner (1932) and
developed using matched asymptotic expansions in, for example,
Cointe and Armand (1987), Howison et al. (1991) in the context of
deep water-entry, and by Korobkin (1995) for shallow water. Howison
et al. (2004) considered the structure of the jet in the context of oblique
impacts, which is most relevant for skimming problems. However, the
vertical motion of the body in their paper is prescribed and so there
can be no analysis of the rebound.
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Stone skimming or skipping will be familiar to many readers
from a childhood (and others’!) game, known (among other names) as
ducks and drakes. Recent media attention (Sample, 2023; Pinkstone,
2023) given to the paper by Palmer and Smith (2023) demonstrates
the significant popular interest in the topic. The paper by Tuck and
Dixon (1989) is of particular relevance to the present study, as we
make use of the momentum jump condition at the jet root derived in
that paper. The model used in this paper, including the use of the
Tuck and Dixon criterion, is related to the model used by Hicks and
Smith (2011), among others (Liu and Smith, 2014; 2021; Palmer and
Smith, 2020; 2022; 2023). Other recent studies of stone skimming
include Tang et al. (2021); Li et al. (2021). In this two-dimensional
model, the body and water layer are assumed thin, air effects are
neglected, and the body is taken to have a sharp trailing edge such that
during impact the water flow always detaches there (the effect of a
smooth trailing edge is considered in Liu and Smith, 2021). The model
used in the current work differs from the models just mentioned in
the inclusion of air dynamics throughout the particle motion, bringing
together the body–air interaction problem considered in Jolley and
Smith (2022) with the interactions with the liquid layer, and allowing
modeling of repeat skims among other phenomena. Here, the density
ratio between the air and the liquid layer is assumed to be of order
unity in general, and the water case is studied by taking the density
ratio to be large—hence, generally we avoid referring to the layer as a
“water layer” in this paper. Note that the generality of the model
means that the layer could be a gas instead of a liquid.

Our main focus in this work is to allow rationally for pre- and
post-impact interactions between air, liquid and body motion, includ-
ing a moving contact point in the post-impact situation. The work is
also to admit fully nonlinear skimming and/or sinking of the body, in
contrast with many studies (Hicks and Smith, 2011; Liu and Smith,
2014; 2021; Palmer and Smith, 2020; 2022; 2023).

The paper begins by outlining the body/air/liquid layer interac-
tion model for the pre-impact stage (when the body is not in contact
with the layer) in Sec. II. Asymptotic analysis of impacts with the layer
are then given first for the general case in Sec. III and then for the case
of large density ratio between the air and the liquid (i.e., approaching
the case of a water layer) in Sec. IV. Then in Sec. V, the model for the
post-impact motion (i.e., during skim) of the body is described and
numerical results pairing the solutions of the two problems showing
repeat skims are presented. In Sec. VI, the possibility of the body com-
ing into contact with the wall beneath the layer is considered and
asymptotically described. In Sec. VII, the inclusion of the gravity
effects on the body motion is investigated and a further set of numeri-
cal results presented. Finally, Sec. VIII discusses implications of the
work and future extensions to be considered.

II. BODY/AIR/LIQUID LAYER INTERACTION MODEL

A diagram showing the problem setup is shown in Fig. 1. The
non-dimensionalization here is based on the typical oncoming air
velocity, the air density, and the length of the thin body. The work is
in terms of body-centered coordinates such that effectively the velocity
uc in the figure is subtracted from ua, uw. The body moves in an air or
other gas flow above a surface coated in a layer of liquid with density
qw, with qw > qa where qa is the air density. We define the density
ratio E ¼ qw=qa > 1. Note again that, although for the industrial
application we are interested in a water layer, this liquid is not in

general assumed to be water; instead the water case will be investigated
by taking a specific large value of the density ratio E afterward. We
thus have three-way coupling wherein the body motion, the air pres-
sure and the height of the liquid layer all interact with each other.

We assume that the body is small and thinner than it is long, of
width D and length L where D� L. We also assume that both the liq-
uid layer height and the initial air gap between the body and the layer
are OðDÞ. In aircraft icing applications, we anticipate flows with high
Reynolds, Froude and Weber numbers, meaning as discussed in
Purvis and Smith (2016) that the effects of viscosity, gravity and sur-
face tension are nominally negligible (although the effects of gravity
are considered in Sec. VII). See discussion of flow separation effects in
Smith and Ellis (2010); Jolley et al. (2021); Smith and Servini (2019).
The body is translating in the upstream direction, but we work in its
rest frame so this effectively means positive tangential velocity at the
wall. We consider bodies whose density is much greater than that of
the surrounding fluid (as for ice in air). We take the incoming flow
(i.e., upstream of the body) both in the air and in the liquid layer as
uniform. Due to the assumption that the body, liquid layer, and the air
gap between them are significantly thinner than they are wide, we can
neglect vertical variations in the problem, so in our re-scaled coordi-
nates the non-dimensional governing equation for the air is

euT þ uuX ¼ �pX ; pY ¼ 0; (1)

where X is the horizontal Cartesian coordinate scaled such that X¼ 0
at the leading edge of the body and X¼ 1 at the trailing edge, and Y is
the vertical coordinate scaled by D such that the layer height is at
Y¼ 1 in the absence of effects from the body. Also, T is a time coordi-
nate scaled according to the body motion (more detail below), u is
the horizontal velocity in the air flow, p is the air pressure, and
e ¼ ðL=DÞðqa=qBÞ1=2 (for body density qB) is a constant arising from
the time scaling which we assume to be small based on the small den-
sity of air compared to the body density. Hence the air flow is modeled
as steady. This allows Bernoulli’s theorem to be applied. We assume
the air flow is incoming with uniform velocity u¼ 1, and thus,

FIG. 1. A diagram showing the non-dimensional problem setup. A thin body trans-
lates with velocity uc through a gas (e.g., air) near a wall coated in a layer of liquid
(e.g., water). The height of the body’s center of mass is h, and the angle its chord
line makes with the x-axis is h. The incoming velocity profile is u ¼ ua in the air
and u ¼ uw in the liquid. Note the liquid could instead be another gas. The shape
of the dashed portion of the liquid layer interface is to be found.
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1
2
u2 þ p ¼ 1

2
; (2)

holds. There is an Euler region just upstream of the leading edge of the
body, where the incoming flow adapts to the presence of the body
(Jones and Smith, 2003; Smith and Servini, 2019). Since this region is
also steady, Eq. (2) holds throughout the air flow, subject to replacing
u by the flow speed within the Euler region.

The body motion is governed solely by the pressure force under
the body (which is an order of magnitude greater than that above the
body). Hence

MhTT ¼
ð1
0
p dX; IhTT ¼

ð1
0
ðX � bÞp dX; (3)

where h is the Y-coordinate of the center of mass, b is its X-coordinate,
h is the angle of the body chord to the X-axis, M ¼ M̂=ðqBLDÞ and
I ¼ Î=ðqBL

3DÞ are the non-dimensional mass and moment of inertia,
respectively (compared to dimensional equivalents M̂ and Î). The bal-
ance of scales in Eq. (3) gives the body motion timescale as
DðqB=qaÞ1=2, which leads to the value of e given in the previous para-
graph. The underbody curve is given by

Y ¼ f ðX;TÞ ¼ fuðXÞ þ hðTÞ þ ðX � bÞhðTÞ: (4)

Equations (1) and (3) define the body–air interaction problem, which
displays an intriguing variety of solutions even in the absence of a liq-
uid layer, including several distinct cases of fly-away solutions where
the body height tends to infinity as time tends to infinity. The body–air
system is discussed at length in Jolley and Smith (2022) and Jolley
et al. (2021).

The Weber number is large, to repeat, and so we do not include
surface tension effects. Since there is no vertical variation, this then
dictates that the pressure in the liquid layer is everywhere equal to that
in the air (a consequence of applying the dynamic boundary condition
at the interface). We model the layer flow as quasi-steady, obeying an
analogous equation to Eq. (1) with allowance for the different densi-
ties; thus

euT þ uuX ¼ �
1
E
pX (5)

leading to
1
2
u2 þ 1

E
p ¼ 1

2
; (6)

when e is small as assumed. The above requires the assumption that the
density of the liquid in the layer is much less than the density of the body
[specifically, qw=qB � ðD=LÞ2]. This is false for ice in water, where the
density ratio qw=qB is approximately unity (a case which is addressed in
the final discussion of the paper), however it applies for either a denser
body or a lighter fluid, and the ice in water case can still be studied to
some extent in the limit of large qw as considered in Sec. IV. The
unknown interfacial curve is given by Y ¼ FðX;TÞ, and we denote the
unknown air gap width by Y ¼ HðX;TÞ ¼ f ðX;TÞ � FðX;TÞ.
Assuming E ¼ Oð1Þ in general, Bernoulli’s theorem combined with
mass conservation of uH in the air and of uF in the liquid yields the flow
equations as follows:

pþ 1
2
Hð1;TÞ2

HðX;TÞ2
¼ 1

2
in airð Þ; (7)

p
E
þ 1
2
Fð1;TÞ2

FðX;TÞ2
¼ 1

2
ðin liquidÞ: (8)

The Kutta condition applying at the trailing edge of the body forces
the pressure to be zero there and consequently the height of the layer
there is fixed at Fð1;TÞ ¼ 1, by virtue of the Bernoulli and mass-
conservation properties holding all the way from just upstream of the
Euler zone to the trailing edge and p being zero in both locations.
Enforcing this requirement and equating the pressures in Eqs. (7) and
(8) leads to a quartic relation between the body position and layer
height, namely,

ðð1� EÞFðX;TÞ2 þ EÞHðX;TÞ2 ¼ Hð1;TÞ2FðX;TÞ2: (9)

This enables both the layer height and pressure to be found for a given
body position, and thus for the system of integro-ordinary differential
equations in Eq. (3) to be integrated numerically.

III. ANALYSIS OF IMPACT ONTO THE LIQUID LAYER

The problem given by Eq. (3) to Eq. (9) displays both solutions
where the body lifts off from its initial position and solutions where it
approaches the liquid layer. In the former category, the presence of the
layer as expected has increasingly small effect as the body departs.
Therefore, these solutions are effectively unchanged from those in the
body–air system, which are discussed at length in Jolley and Smith
(2022). Thus, we focus on solutions where the body approaches and
subsequently impacts on the layer, which we analyze here for general
density ratio, i.e., E ¼ Oð1Þ, and in Sec. IV for large density ratio,
E� 1.

Inspecting the quartic Eq. (9), we see that for the body to impact
on the layer, i.e., HðX;TÞ ¼ 0 for some X, either Hð1;TÞ ¼ 0 or
FðX;TÞ ¼ 0. The former corresponds to the trailing edge of the body
being in contact with the layer, while the latter corresponds to both
the body and the free surface touching the wall at the same point. We
focus for now on the former option, but the latter is discussed in the
Appendix. Assuming then that the trailing edge has impacted (say at
time T0), as in Figs. 2–5, we see for 0 � X < 1 there are two positive
roots,

FðX;T0Þ ¼ f ðX;T0Þ and FðX;T0Þ ¼ 1=a; where a¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=E

p
:

(10)

The first of these roots corresponds to impact (where the gap between
the body and the free surface tends to zero), while the second is a con-
stant level which approaches 1 in the limit of large E. We also require
FðX;TÞ � 1=a throughout the motion [or else the right-hand side of
Eq. (9) is negative], hence impact is only possible at a given X if f
moves below height 1=a, and we can state that the liquid surface has

FðX;T0Þ ¼ min f ðX;T0Þ; 1=a½ � (11)

at impact. This can be seen in the numerical results displayed in Figs.
2 and 3, for E¼ 2. In Fig. 2, the body angle is sufficiently negative to
allow the body to impact at the trailing edge while remaining above
the 1=a level (i.e.,

ffiffiffi
2
p

here) at the leading edge: see the curved inter-
face. In Fig. 3, the body angle is positive, meaning it impacts along the
full length of the underbody.

Taking the gap width H(X, T) to be small for some values of X,
and using the feature that the trailing edge height F(1, T) remains
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unity due to the Kutta requirement, we find from Eq. (8) the corre-
sponding pressure response in the impact region is

p ¼ 1
2
E 1� 1

f 2

� �
: (12)

This remainsO(1) as contact with the liquid is approached.

IV. IMPACT SOLUTION IN THE E ���� 1 LIMIT

A natural question is how a large value of the density ratio E
affects the conclusions of Sec. III. Expanding

F ¼ F̂ 0ðX;TÞ þ E�1F̂ 1ðX;TÞ þ � � � ; (13)

where E�1 � 1, and denoting ÂðTÞ ¼ Hð1;TÞ as the trailing edge
gap width, we arrive at the following hierarchical system at O(1) and
OðE�1Þ, respectively,

Oð1Þ : 1� F̂
2
0

h i
ðF̂ 0 � f Þ2 ¼ 0; (14)

OðE�1Þ : ðF̂ 2
0 � 2F̂ 0F̂ 1ÞðF̂ 0 � f Þ2 þ 2ð1� F̂

2
0ÞðF̂ 0 � f ÞF1 ¼ Â

2
F̂
2
0:

(15)

FIG. 2. The body motion and layer reaction at three points in time for a density ratio E¼ 2 and an initially negative body angle, hð0Þ ¼ �1. In the final impact, the layer is
either in contact with the body or at the constant level

ffiffiffi
2
p

.

FIG. 3. The body motion and layer reaction at three points in time for a density ratio E¼ 2 and an initially positive body angle, hð0Þ ¼ 0:2. In the final impact, the layer is
everywhere in contact with the body.

FIG. 4. The body motion and liquid layer reaction at three points in time for a density ratio E¼ 1000 (the air–water case) and an initially negative body angle, hð0Þ ¼ �0:2.
The layer shows no reaction to the body until it is very near. In the middle image, the intermediate regime 3 governs the dynamics near the contact point. This then progresses
to wetting. In the rightmost image, we see a leveled off region (regime 1) at the leading edge and a wetted region (regime 2) at the trailing edge.
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We see from Eq. (14) that either F̂ 0 ¼ 1, the undisturbed height [note
that 1=a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=ðE � 1Þ

p
! 1 as E!1], or F̂ 0 ¼ f (impact).

Analyzing Eq. (15) reveals three distinct asymptotic regimes which
between them capture the range of behaviors of the layer leading up to
impact. These have been termed “leveling off,” “wetting,” and
“intermediate,” and are discussed below in Subsecs. IVA, IVB, and
IVC, respectively. All three regimes can be seen in Figs. 4 and 5 for
E¼ 1000 (i.e., for air and water values).

A. Regime 1 (leveling off)

First we consider the case F̂ 0 ¼ 1 < f , i.e., the body is relatively
far from the layer and the layer is level to leading order (termed level-
ing off). We have

F̂ 1 ¼
1
2

1� Â
2

ð f � 1Þ2

 !
; (16)

hence

F ¼ 1þ 1
2
E�1 1� Â

2

ð f � 1Þ2

 !
þ � � � : (17)

It is then clear that for f close to 1 but Â still O(1), the second order
term makes a contribution. This corresponds with our numerical
results for large E (see Fig. 5 and Appendix), when the body is far
from the layer, i.e., where the body shape is much below the trailing
edge, we see a corresponding “dip” in the water (this intuition is given
more careful treatment in Sec. IVC). The expansion in Eq. (17) agrees
with Eq. (11), since in the case Â ¼ 0 this is equal to the Taylor expan-
sion of ðE=ðE � 1ÞÞ1=2. The pressure response in this regime is

p ¼ 1
2

1� Â
2

ð f � FÞ2

 !
; (18)

here, corresponding to body–air interaction (Jolley and Smith, 2022), so
pressure is O(1) here. We see that as the trailing edge gap width Â ! 0,
the pressure p! 1=2 uniformly (a feature which is to be used later).

B. Regime 2 (wetting)

In this regime, we consider the second root of Eq. (14), for which
the body is close to contact (but not yet in contact) with the layer, here

referred to as wetting. The rationale for the scales involved here is
based on the squared factor HðX;TÞ2 in Eq. (9) given that H ¼ f � F
is small here. Thus, we can employ the expansion

F ¼ f þ E�1=2ÂF� þ � � � (19)

to obtain

F ¼ f þ E�1=2Â
fffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f 2
p þ � � � : (20)

This applies both for Â ¼ Oð1Þ and in the limit Â ! 0. For the pres-
sure, we have Eq. (12), so p ¼ OðEÞ and the pressure is unchanged in
the large E limit from the E ¼ Oð1Þ case.

C. Regime 3 (intermediate)

In each of the above cases, a different regime is needed to explain
the solution close to f¼ 1 when Â ¼ Oð1Þ as both regimes 1 and 2 dis-
play singularities in this case. This corresponds to some portion of the
body being close to the liquid layer rest height despite the trailing edge
being still some distance away. We see from Fig. 3 that for smaller E,
the layer tends to bend according to the body shape some time before
impact, which prevents the body meeting the layer before the trailing
edge has “caught up.” However, for sufficiently large E, it is possible to
have the body close to the layer (i.e., f close to 1) without requiring Â
to be small, see Figs. 4 and 5. The inherent balance here is between
EðF � 1ÞH2 on the left-hand side of Eq. (9) and the O(1) contribution
on the right-hand side, with ðF � 1Þ and H being comparably small.
In this case, the expansions

F ¼ 1� E�1=3~F þ � � � and f ¼ 1� E�1=3~f þ � � � (21)

are required, where we expect that ~F is positive but ~f can be either
sign. Then we have, from Eq. (9), and recalling that Â is the trailing
gap widthH(1, T),

2~Fð~f � ~FÞ2 ¼ Â
2
; (22)

which is a cubic for ~F in terms of ~f . It can be solved for ~f to find

~f ¼ �Â
ffiffiffiffiffiffi
1

2~F

r
þ ~F : (23)

A plot of Eq. (23) is shown in Fig. 6. As can be seen in the figure, this
matches with Eq. (17) as ~f ! �1 (i.e., body far away from the

FIG. 5. The body motion and liquid layer reaction at three points in time for a density ratio E¼ 1000 (the air–water case) and an initially positive body angle, hð0Þ ¼ 0:2. The
layer shows no reaction to the body until it is very near. In the middle image, the intermediate regime 3 governs the dynamics near the contact point. This then progresses to
wetting and eventually the full underbody is wetted in the rightmost image.
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interface) and with Eq. (20) as solution ~f !þ1 (i.e., body pushing
the layer below its rest height). The pressure in this regime is given by

p ¼ �E2=3~F : (24)

The body then continues to lower and this progresses to regime 2
(wetting). Again, there are two categories of outcome in general. The
first, as shown in Fig. 4, is that the body impacts onto the layer with
negative angle, creating two distinct regions, one wetted and one level
(separated by an intermediate region). The second category is that the
body impacts with positive angle, leading eventually to the whole
underbody becoming wetted. In this second case, we expect the layer
to flow over the top of the body; we do not model this outcome further
in the present study. However, the former case leaves the possibility of
further interesting dynamics including skimming, which is addressed
in Sec. V.

V. POST-IMPACT MODEL

Returning now to assuming that the density ratio is order-one in
general, suppose the body has impacted with the layer, creating a wet-
ted region and a level region, as in Figs. 2 and 4. There is a stagnation
point at (say) X¼X0 on the body surface where it meets the incoming
liquid flow, which we refer to as the “contact point.” As the body con-
tinues to lower, mass flux is lost at the trailing edge (thus a significant
wake is created post-impact whereas none was present pre-impact).
Since the incoming mass flux in the level region is unchanged, but the
mass allowed to continue downstream into the wake is decreased, the
mass must be accounted for in the vicinity of the contact point. We
thus anticipate the formation of a jet along the underbody in X < X0

to accommodate the lost mass of fluid from the layer and a pressure
jump occurring at X¼X0. This is shown in Fig. 7. As discussed in
Sec. I, the formation of a jet is typical in models of skimming, includ-
ing Hicks and Smith (2011); Howison et al. (2004); Tuck and Dixon
(1989).

Concerning the jet sketched in Fig. 7 (and appearing in Figs.
8–11 of results), its width at a given time remains spatially constant
along the lower surface of the body because of the uniform pressure in

the air pocket but the width does vary with time due to mass conser-
vation and the properties at the contact point. The jet instanta-
neously wets the whole lower surface ahead of the contact point.
Notably, the jet then continues leftward and upward beyond the
leading edge of the body because of the jet momentum; the same
continuation applies throughout our subsequent results. A possibil-
ity is that the jet is then gradually turned rightward and upward by
the oncoming air flow. The detailed travel of the jet beyond the body
leading edge has no leading-order effect, however, on the dynamics
of the body motion and the local three-way interplay between body,
air, and liquid.

The presence of the jet creates an air pocket or bubble upstream
of the contact point. As a consequence of the lack of vertical depen-
dency in the problem, the air flow in the pocket is forced to be stag-
nant at leading order, so pðX;TÞ ¼ 1=2 in this region, and
FðX;TÞ ¼ 1=a. (Note that this is equal to the predicted values of pres-
sure and liquid layer height under regime 1 as Â ! 0, as discussed in
Sec. IVA.) The pressure in the wetted region downstream of the con-
tact point where X ¼ X0ðTÞ is slightly altered from Eq. (12) due to the
lowered trailing edge layer height, giving

p ¼ 1
2
E 1� F2

1

f ðX;TÞ2

 !
; (25)

where F1 ¼ Fð1;TÞ ¼ f ð1;TÞ is the trailing edge height, by use of
Bernoulli’s theorem and mass conservation. Thus, substituting this
into Eq. (3), the motion is governed by

MhTT ¼
1
2
X0 þ

1
2
E
ð1
X0

1� f ð1;TÞ
f ðX;TÞ

� �2

dX; (26)

IhTT ¼
1
4
X2
0 �

1
2
bX0 þ

1
2
E
ð1
X0

ðX � bÞ 1� f ð1;TÞ
f ðX;TÞ

� �2
 !

dX;

(27)

which can be solved numerically provided we can find the location of
the contact point X0.

Applying Bernoulli’s theorem to the free surface along the inside
of the pocket then yields that the velocity in the jet is u ¼ a where
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=E

p
by virtue of the results of Sec. III. Conservation of

FIG. 6. A plot of Eq. (23), showing the leveling off behavior for large negative ~f and
the linear relationship for positive ~f , with Â ¼ 1.

FIG. 7. Model for the post-impact analysis. This includes the moving contact point
which is shown by a black cross (there, X¼ X0). The latter is surrounded by an
Euler region which is of short horizontal length scale but vertically spans the gap
between the wall and the underbody and accommodates the turnover and jet root
to the left of the contact point. The mass flux of liquid in the layer Q is 1 upstream
of the contact point and less than 1 downstream. Strictly the wake is substantially
longer than the body.
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FIG. 8. Top left: The body in its initial position. Top middle: A first impact occurs. Top right: The jet and wake form (note this jet continues into the air ahead of the body).
Middle left: The body lifts off and the wake travels downstream. Middle middle: The body rotates in the air. Middle right: The body returns for a second impact. Bottom left: A
larger wake and jet form. Bottom middle: The body lifts off again and the wake travels downstream. Bottom right: The body flies away and does not return. More information
about fly away phenomena can be found in [1]. The body has center of mass b ¼ 0:3 and small moment of inertia to mass ratio I=M ¼ 0:01.

FIG. 9. A body impacting onto a layer with E¼ 2 and subsequently sinking. The left image shows the initial position of the body. It then impacts onto the layer, forming a jet
(middle image). Note this jet continues into the air ahead of the body. The contact point then moves upstream until the underside of the body is fully wetted (right image).
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mass between the incoming, outgoing and jet flows then yields the
width of the jet as

ĥJ ¼ ð1� F1Þ=a: (28)

Since all streamlines originally come from far upstream, we also have
in the liquid

1
2
u2 þ p=E ¼ 1

2
: (29)

Let the dividing streamline be given by Y ¼ ĥðX;TÞ, where
ĥðX;TÞ ¼ f ðX;TÞ for X > X0 (in other words, all flow below this
streamline continues to the wetted region, and all that above the
streamline is expelled through the jet). Then, we also have that

uĥ ¼ independent of X ¼ F1ðTÞ; (30)

by conservation of mass, given that F1 is the unknown height of
the liquid at the trailing edge location. We note that the incident
water height F(X, T) remains unity upstream of the contact point
X ¼ X0ðTÞ. Conservation of momentum (comparing the momen-
tum far upstream with that to the right of the contact point)
yields

1
2
ðu20 � u2LÞĥL ¼ u20ĥJ þ u20ĥ0 � u2LĥL; (31)

where uL is the velocity following the pressure jump at the contact
point and ĥL ¼ FðX0;TÞ ¼ f ðX0;TÞ is the corresponding height of
the underbody there, while u0 and ĥ0 represent the velocity and layer
height upstream of the contact point; thus, in our non-
dimensionalization u0; ĥ0 are unity. In Eq. (31), the left-hand side rep-
resents the change in pressure across the jump while the right-hand
side corresponds to the momentum lost from the system by the pro-
duction of the jet. This is the criterion first derived in Tuck and Dixon
(1989) and subsequently used in other models of stone skimming such
as Hicks and Smith (2011), with allowance being made for the quasi-
steady nature of the fluid flows here. Rearranging this using Eqs. (28)
and (30), we have

uL ¼ a 2
1

aĥL

� �1=2

� 1

 !
; (32)

or equivalently, by Eq. (30),

F1 ¼ a 2
ĥL
a

� �1=2

� ĥL

 !
: (33)

Since we know that ĥL ¼ f ðX0;TÞ and F1 ¼ f ð1;TÞ (since the body
must be in contact at the trailing edge), we can find the contact point
for a given body position using the relation

f ðX0;TÞ ¼ 2� f ð1;TÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f ð1;TÞ

ph i
=a: (34)

Knowing the contact point and pressure then allows the lift and
moment to be found by Eqs. (26) and (27) and hence subsequent body
positions, giving an algorithm for determining the motion of the body.

Numerical results reveal a number of possible behaviors. First,
the body may skim, i.e., the additional lift from the liquid layer is suffi-
cient to change the direction of motion of the body upward and it lifts
off from the liquid layer. Its motion is then again governed by the pre-
impact model as described in Secs. II and III. This allows repeat skims
to occur, as shown in Fig. 8. (We remark in passing that, in the sense
that the vertical scales are exaggerated compared with the horizontal,
this figure and Figs. 9–13 are not to scale.) This figure demonstrates
the body skimming twice and then flying away, for a density ratio
E¼ 1000. The apparent vertical shock propagating in the liquid in the
direction of wetting is smoothed out inside the moving Euler region.
The shock is readily added into the figures based on the calculated
region of wetting and the jet thickness. The flying away is due to the
large Froude number and hence small gravitational effects compared
with the lift force from the air—the effect of increasing gravity is dis-
cussed in Sec. VII. Other possible behaviors are sinking, where the
body underside eventually becomes fully wetted (at which point our
modeling ends) and “crashing,” where the body collides with the wall
before its underside is fully wetted. A sinking case is shown in Fig. 9
for E¼ 2, while crashing is addressed in Sec. VI.

A. Wake region

As the body impacts onto the layer, a wake forms downstream of
the trailing edge. In the wake region, we have p¼ 0 and u¼ 1, and
conservation of mass gives the equation

eFT þ FX ¼ 0 (35)

for the height of the liquid wake. Here, as a reminder,
e ¼ ðL=DÞðqa=qBÞ1=2 is the unsteadiness parameter arising from the

FIG. 10. A body impacting onto a layer with E¼ 100 and subsequently colliding with the wall at the trailing edge. The left image shows the initial position of the body. In the
middle image, the body impacts onto the layer and a jet forms; this jet continues into the air ahead of the body. In the right image, the body collides with the wall.
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FIG. 11. Series of images depicting a series of seven skims followed by finally sinking in the bottom-most right image. Scaled gravity ĝ was taken as 5.
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choice of timescale, as in Eq. (1); provided the body is sufficiently
heavier than the air this is a small parameter and hence unsteady terms
were negligible until this point. Equation (35) is easily solved to yield

FðX;TÞ ¼ Fð1;T � eXÞ: (36)

Hence, calculating the body motion also reveals the shape of its wake,
in a sense. The wake can be seen downstream of the body during and
after impact in Fig. 8. Notably, because of the factor epsilon in Eq. (35)
the wake length is strictly much larger than the body length in this
post-impact phase. The wake physics is simpler than in previous stud-
ies such as those by Hicks and Smith (2011) and Palmer and Smith
(2022) because of the quasi-steadiness of the air and liquid flow over
the body scale.

VI. IMPACT WITH WALL

In this section, we describe solutions where, following impact
with the layer, the lift from the impact is not sufficient to change the
downward direction of the body and hence it collides with the wall.
This is shown in Fig. 10. The result is similar to the body–air crashes
discussed in Jolley and Smith (2022) and Jolley et al. (2021).

A. First stage

In the post-contact regime (see Sec. V), we have that pðX;TÞ ¼ 1
2

to the left of the contact point and pðX;TÞ ¼ 1
2 Eð1� f ð1;TÞ2=

f ðX;TÞ2Þ to the right of the contact point. Suppose impact occurs at
X1 > X0 at time T1, and let f ðX;TÞ ¼ OðT1 � TÞn as T ! T1 for
X ¼ X1 þ OðT1 � TÞn=2 for some n to be determined. This leads to
n¼ 4/5, the same time scaling as in the absence of water (Jolley and
Smith, 2022; Jolley et al., 2021) since the dominant term in the pres-
sure is still proportional to 1=f 2.

B. Second stage

As in Jolley and Smith (2022) and Jolley et al. (2021), there is a
second stage of the impact where the body velocity increases in
the approach to the wall and flow unsteadiness asserts itself. Letting
T ¼ T1 þ E�1=2st with the scale s to be found, we have the following
scalings in the inner region where X ¼ X1 þ s2=5n,

ðh; hÞ ¼ ðh1; h1Þ þ s4=5ð~h; ~hÞ; p ¼ Es�8=5~p; u ¼ s�4=5~u:

By conservation of mass and the Bernoulli equation, we then have

~u ¼ qðtÞ
/ðn; tÞ ;

~p ¼ � 1
2

qðtÞ2

/ðn; tÞ2
; (37)

where /ðn; tÞ ¼ s�4=5f ðX;TÞ. In the outer region where X is of order
unity, the momentum equation in the water is

uuX þ pX ¼ es�1ut ; (38)

where e ¼ ðL=DÞðqa=qbÞ1=2 ¼ ðL=DÞðqw=qbÞ1=2E�1=2. Integrating
this yields the “modified Bernoulli equation” in the same form as in
the previously studied water-free case,

1
2
u2 þ p ¼

1
2
; X < X1;

1
2
�
ð1
�1

~ut dn; X > X1;

8>>><
>>>:

(39)

for s ¼ e5=7. We thus see that the second stage dynamics are
unchanged by the addition of a new fluid (the liquid) apart from the
shorter timescale E�1=2e5=7.

VII. EFFECT OF GRAVITY

The results in Fig. 8 display fly away, where after two skims the
body lifts off to infinity, according to the fly away solutions described
in Jolley and Smith (2022). This is a direct result of the high Froude
number and hence lack of gravity in the problem. This is relevant to
the aircraft icing application but of course is not usual in stone skim-
ming games, for example. It is then of natural interest to investigate
the effect of gravity on the body dynamics. Including gravity in Eq. (3)
yields

MhTT ¼
ð1
0
p dX �M

qB

qa
D

1

Fr2
¼
ð1
0
p dX �Mĝ : (40)

Here, we have defined ĝ ¼ ðqB=qaÞD=Fr2, the scaled gravity, where
Fr ¼ U=

ffiffiffiffi
gl

p
is the Froude number, U and l are the dimensional

velocity and length scales and g is the gravitational acceleration con-
stant. Considering ĝ to be order one, gravity then makes a comparable
contribution to pressure forces. Gravity then affects the body dynamics
but is still negligible for the air and liquid layer flow. This is equivalent
to the assumption that ðqw=qBÞ � D=L (in words, the density ratio
between the fluid and the body is much less than the aspect ratio of
the body, which we have assumed is small). This is a weaker assump-
tion than the previously assumed ðqw=qBÞ � ðD=LÞ2 for steady flow
in the liquid, so valid under our current model, but again excludes the
ice on water case. As may be expected, for sufficient gravity this disal-
lows fly away and makes many repeated skims more achievable. The
model results in Fig. 11 show a body skimming seven times before
finally sinking.

VIII. CONCLUSION

There are three prime points to make from the present work.
The first is that near-wall interaction between gas (e.g., air), liquid
(e.g., water) and a freely moving body has been accommodated in
the modeling. This can lead to impact of the body onto the liquid
layer. Second, post-impact behavior has been included, showing
air–water interactive effects on the skimming of the body consistent
with a moving contact point within a moving Euler region. The
third point here is that the skimming found is fully nonlinear and
can produce complete sinking of the body or repeat skims, with
multiple skims being seen in some results. The work is subject to
several physical assumptions and simplifications of course but these
are made on a rational basis.

Thus, the work in this paper has combined models of body–air
interactions with a model body skimming on water (with air effects
included) to describe the complete motion of a skimming body as it
travels through the air and impacts onto water, repeatedly in some
cases, as well as being able to describe other phenomena, such as
sinking, as shown in Fig. 3. This has allowed the phenomenon of
repeat skims to be fully captured, as demonstrated in Fig. 8 without
gravity and Fig. 11 with gravity, the former being more relevant to
aircraft icing, while the latter is more relevant to the more familiar
“stone skimming” games. The result that repeat skims are possible
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even in the gravity free case is surprising, and is a result of the com-
plex and sensitive interactions between the particle and the air (the
particle is pulled down purely by its interaction with the pressure
forces in the air). Also surprising is the possibility of the particle
being sent away from the wall entirely due to its interactions with
the layer (fly away). This indicates that the presence of a layer of
water could indeed be crucial to the behavior of an impinging parti-
cle. In the gravity case, the eventual sinking of the particle is often
attributed to loss of horizontal momentum by drag forces, however
in our model the particle loses no horizontal momentum at leading
order but is still fated to sink eventually by the sensitivity of the sys-
tem to its conditions. (To skim requires it to impact with specific
conditions which are doomed to be violated eventually in any real
system, or indeed simulation.)

The main findings, in short, are the cases of fly-away, skim, and
sink responses in the free body motion when both air and liquid/water
effects are admitted. These include multiple repeated skimmings as the
body passes through the air, glances on the water, then rebounds and
so on, followed by fly-away or by complete sinking onto the wall.
Considerable wake displacements are also found to arise during each
of the skims.

The model is applicable to a wide range of density ratios between
the two fluids, but requires that the body is much denser than both.
However, the case of an ice particle and a water layer can still be inves-
tigated by considering the limit of large density ratio between the two
fluids. The adaptation of the model to accommodate bodies with den-
sity comparable to the liquid in the layer is still however the most obvi-
ous extension to the work in this paper. Other extensions include
modeling multiple bodies rebounding, and investigating more closely
other effects that may become relevant as the body is near or in the
layer for a long period, since the model currently admits some solu-
tions which do not appear physically realistic or are at least question-
able, or perhaps are counter-intuitive, such as that described in the
Appendix.
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APPENDIX: SIMULTANEOUS IMPACT WITH BOTH
LIQUID LAYER AND WALL

This appendix addresses the second impact solution to Eq. (9),
specifically FðX;TÞ ¼ f ðX;TÞ ¼ 0, where theoretically the body
touches both the layer and the wall for the first time simultaneously.
This can happen for body angles which are sufficiently positive for
the leading edge to touch the wall while the trailing edge is still
above the layer. This can be seen in Figs. 12 and 13 for two different
E values. The layer being able to reach such a low level without any
flow over the top of the body from upstream is counter-intuitive—
we can think of this as a wave of increasing height building up
in the Euler region just upstream of the leading edge, which may
eventually break in reality. Since the pressure here is
pðX;TÞ ¼ 1

2 ð1�Hð1;TÞ2=HðX;TÞ2Þ, this reproduces the asymp-
totic behavior for the other type of wall collision as described in Sec.
VI. In reality here, as well as potential wave-breaking upstream of
the leading edge, it is possible that other physical effects in the very
thin layer of air between the body and the layer will become
relevant.

FIG. 12. The body motion and layer reaction at three points in time for a density ratio E¼ 2 and an initially positive body angle, hð0Þ ¼ 2. The liquid layer reacts to the body
motion even while it is still some distance away. Eventually, in the rightmost image, the body touches the wall before the trailing edge comes into contact—this is also the first
time it touches the layer.
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