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The Weyl double copy relates vacuum solutions in general relativity to Abelian gauge fields in
Minkowski spacetime. In a previous work, we showed how the Weyl double copy can be extended to
provide a treatment of external gravitational sources consistent with the classical Kerr-Schild double copy.
Using this generalization, here we provide a complete double-copy analysis of electrovacuum Petrov
type-D spacetimes. This includes the first analysis of the charged C metric, whose single-copy
interpretation invokes the two-potential formalism of electrodynamics. We also present the first
double-copy prescription for the Ricci spinor, which for nonaccelerating spacetimes, takes a form similar
to the original double-copy relation for the Weyl spinor.
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I. INTRODUCTION

Gravity and non-Abelian gauge theories share several
formal similarities. For example, general relativity and
Yang-Mills are each characterized by nonlinear equations
of motion whose solution yields the (gauge) curvature of
the background. Color-kinematics duality [1] realizes an
equivalence between gravity and gauge theory at the level
of perturbative scattering amplitudes. Namely, amplitudes
in gravity are expressed as a double copy of Yang-Mills
gauge theory amplitudes, i.e., a multiloop, multipoint
gravity amplitude is given by the product of two gauge
theory amplitudes [2,3]. This result was anticipated by the
Kawai-Lewellen-Tye relation demonstrating any closed-
string amplitude may be cast as a linear sum of factors,
each of which is a product of two open-string amplitudes,
at tree level [4]. The discovery of the double copy resulted
in powerful new techniques for computing amplitudes in
(super)gravity at tree level and beyond [3,5–8], offering
new insights into the fundamental nature of perturbative
quantum gravity, and has numerous applications, particu-
larly in gravitational wave physics [9–12] (see [13–15] for
comprehensive reviews).

The success of the perturbative double copy motivated
the development of a classical double copy, where
exact solutions in gravity have a correspondence to exact
(linearized) Yang-Mills solutions [16–19] (see also,
[20–24]). For example, the Kerr-Schild double copy is a
copying relation at the level of the graviton and gauge field
[17]. Specifically, consider a spacetime gμν in Kerr-Schild
form,

gμν ¼ ημν þ ϕkμkν; gμν ¼ ημν − ϕkμkν;

gμνkμkν ¼ ημνkμkν ¼ 0; ð1:1Þ

where ϕ is a scalar-field function of the background
coordinates and kμ is a null geodesic with respect to both
ημν and gμν. The Kerr-Schild ansatz (1.1) linearizes
Einstein’s field equations, and when gμν solves Einstein’s
equations, the four-vector Aμ ≡ ϕkμ is a solution to
Maxwell’s equations. Indeed, choosing k0 ¼ 1 and intro-
ducing the tensor Fμν ¼ ∂½μAν�, from the trace-reversed
Einstein equations we identify the sourced Maxwell equa-
tions (working in units of 8πG ¼ 1) [25]:

R0
μ ¼ T0

μ −
T

ðd − 2Þ δ
0
μ ↔

1

2
∂
νFνμ ¼ −

1

2
Jμ; ð1:2Þ

where the (external) sources of the Einstein field equations
correspond to (external) sources of the Maxwell equations,
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Jμ ¼ −2ðTμ
0 − Tδμ0=ðd − 2ÞÞ, where we used the rela-

tion Rμ
0 ¼ − 1

2
∂νFμν.1

The simplest example is the four-dimensional (exterior)
Schwarzschild black hole, where, under an elementary
gauge transformation, Aμ is recognized as the Coulomb
solution for a static point charge located at the origin [17]2;
the Schwarzschild solution is the classical double copy of a
static point charge.3 This version of the classical double
copy holds for a variety of spacetimes in higher- and lower
dimensions and has been generalized such that ημν in the
Kerr-Schild ansatz (1.1) may be replaced by a curved
background ḡμν, e.g., [30–35]. Notably, the Kerr-Schild
classical double copy accounts for gravity theories with
sources, such as Einstein-Maxwell theory, and is thus
capable of describing, for example, charged black holes.
Stronger links between the perturbative double copy and
Kerr-Schild double copy are presented in [36,37].
Another version of the classical double copywas explored

in [19], known as the Weyl double copy, and is defined as
follows. Let ΨABCD denote the completely symmetric Weyl
spinor satisfying the four-dimensional vacuum Einstein
equations for Petrov type-D or type-N spacetimes. Then
the Weyl double copy relates a single copy Maxwell field-
strength spinor fAB and a (complex) scalar field S to the
gravity solution that constructs ΨABCD,

ΨABCD ¼ 1

S
fðABfCDÞ: ð1:3Þ

In this context, S is referred to as the zeroth copy since in the
case of single Kerr-Schild spacetimes the real part of S is
equal to ϕ up to a constant. The spinors fAB and ΨABCD are
related to their tensorial counterparts, Fμν and Wμνλγ , via
Infeld–van der Waerden symbols built from Pauli matrices
and spacetime vierbeins.WhenΨABCD is constructed from a
vacuum type-D spacetime, then [19]

□
ð0ÞS ¼ 0; ∇ð0Þ

μ Fνμ ¼ ∇ð0Þ
μ F̃νμ ¼ 0; ð1:4Þ

where F̃μν ¼
ffiffiffiffi−gp
2

εμναβFαβ is the dual single-copy field-
strength tensor. The (0) superscript indicates that these

derivatives are taken over the flat background metric, which
is obtained by taking the appropriate limit of the full
spacetime metric associated with ΨABCD. The Weyl double
copy is consistent with the Kerr-Schild double copy and
furthermore, resolves some ambiguities of the latter [19].
The Weyl double copy has since been shown to hold for
vacuum spacetimes of arbitrary Petrov type using methods
from twistor theory [21,22,38].
Despite its fundamental underpinnings, a weakness of

the Weyl double copy (1.3), compared to the Kerr-Schild
double copy, is that it cannot describe classical spacetimes
with external sources. More bluntly, the Weyl double copy
cannot be used to construct a four-dimensional charged
black hole. This is certainly a drawback to the Weyl double
copy as realistic spacetimes typically involve external
matter sources. Thus, to have any empirical merit, the
Weyl double copy requires an extension to describe gravity
theories with external sources.
In a recent paper [39], we proposed a simple generali-

zation of the Weyl double copy (1.3) to include sources on
the gravity side of the duality. Rather than ΨABCD being
constructed from a single scalar-gauge theory, we promote
it to a sum over m scalar-gauge theories,

ΨABCD ¼
Xm
n¼1

1

SðnÞ
fðnÞðABf

ðnÞ
CDÞ; ð1:5Þ

where for n > 1, each SðnÞ and fðnÞAB satisfy a particular
sourced wave equation and sourced Maxwell equations,
respectively,

∇ð0Þ
μ Fνμ

ðnÞ ¼ JνðnÞ; □
ð0ÞSðnÞ ¼ ρSðnÞ: ð1:6Þ

We thus refer to (1.5) as the sourced Weyl double copy.
Here ρSðnÞ and JνðnÞ are external sources for the zeroth-

4 and

single copies, respectively, with the n ¼ 1 term correspond-
ing to (1.3), or what we may consider the vacuum part of
the metric. Terms associated with n ¼ 2; 3;…; m corre-
spond to each external source. That is, all parameters that
contribute nontrivially to the Ricci curvature pair with a
gauge theory labeled by n for each n > 1.
The purpose of this article is to explore the sourced Weyl

double copy for exact solutions to Einstein-Maxwell
theory, focusing on stationary spacetimes. Our work not
only provides the first complete double-copy analysis of
canonical electrovacuum type-D spacetimes, including the
charged C-metric and Kerr-Newman-Taub–Newman-Unti-
Tamburino (NUT) black hole, but also presents the first
double-copy prescription for the Ricci spinor.

1It is generally less clear how one should interpret the spatial
componentsRi

j in the double copy. For vacuum spacetimes Ri
j ¼

0 acts as a constraint on the Maxwell theory akin to color-
kinematics duality [19], while Ri

j ≠ 0 is fixed by the charge
density and the spatial component of the current parallel to ki [25].2“Vacuum” Schwarzschild is already an example of
Einstein’s equations with sources: Tμν ¼ Mvμvνδð3Þðx⃗Þ with
vμ ¼ ð1; 0; 0; 0Þ. Correspondingly, identifying k0 ¼ þ1, the
Maxwell current is Jμ ¼ −M

2
vνδð3Þðx⃗Þ [17].

3There is actually a bit more to this story. The Coulomb
charge has been shown to double copy into a more general
static, spherically symmetric configuration known as the JNW
solution [26], which includes both the metric and a dilaton
field [18,27–29].

4Note that here S will always turn out to be time independent.
This is related to the fact we are considering stationary KS
spacetimes, for which ϕ is time-independent. Thus, ρSðnÞ is related
to the charge density J0 of the nth term of the expansion (1.5).

EASSON, MANTON, and SVESKO PHYS. REV. D 107, 044063 (2023)

044063-2



The article is outlined as follows. We begin in Sec. II by
offering a Lagrangian perspective of the double-, single-,
and zeroth-copy fields, together with their respective
sources. Although not often discussed in the Weyl dou-
ble-copy literature, the Lagrangian perspective provides a
useful way to organize each field and the spacetimes on
which they live. This will be crucial for our purposes, since
we must distinguish a Maxwell source on the double-
copy side from the Maxwell fields on the single-copy side.
We proceed by describing the relationship between the
Maxwell source on the double-copy side to the appropriate
single-copy quantity in Sec. II A, before presenting new
relations for the spinorial counterpart of the Ricci tensor in
Sec. II B.
In the remainder of the article, we apply our general

prescriptions to specific electrovacuum type-D spacetimes.
Section III is devoted to studying the Kerr-Newman black
hole, which was given a preliminary treatment in [39];
however, here we include an analysis of its associated Ricci
spinor. In Sec. IV, we provide the first complete analysis of
the charged C metric. Here we encounter a peculiar feature
of the sourcedWeyl double copy for spacetimes that are not
(Riemann) asymptotically flat.5 The single-copy theory
associated with the black hole charge parameter exhibits
a nontrivial divergence of the dual field-strength tensor,
corresponding to a magnetic current vector. A covariant
description of such a solution can be obtained by introducing
a so-called two-potential electrodynamic theory [40], from
which we provide explicit formulas for the two necessary
vector potentials associated with the charged C metric.
In Sec. V, after we review the most general Petrov type-D
electrovac solution obtained by Plebański and Demiański
[41], we apply the sourced Weyl double copy to the Kerr-
Newman-Taub-NUT spacetime for the first time.
Finally, we conclude in Sec. VI, outlining future research

directions. To keep this article streamlined yet self-
contained, we relegate a review of the spinor formalism
to the Appendix.

II. LAGRANGIAN PERSPECTIVE AND NEW
SPINOR RELATIONS

The Kerr-Schild double copy is often explained at the
level of the equations of motion, e.g., (1.2). It is illuminating
to see how this translates to the actions characterizing the
double-, single-, and zeroth-copy fields. This is xparticularly
useful for our purposes as we must keep track of three
different Maxwell fields. Beginning with the double-copy
action (standard Einstein-Maxwell theory), we have a Uð1Þ
gauge field minimally coupled to general relativity,

Idc ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R −

1

4
F2
s

�
; ð2:1Þ

where Fs ¼ dAs is the field-strength tensor of the
Maxwell source. The single- and zeroth-copy theories are
described by

Isc ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q �
−
1

4
F2
ð1Þ −

1

4
F2
ð2Þ þ Að2Þ

μ Jμ
�
; ð2:2Þ

Izc ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q �
−
1

2
ð∇ð0ÞSð1ÞÞ2

−
1

2
ð∇ð0ÞSð2ÞÞ2 þ Sð2ÞρS

�
: ð2:3Þ

Here Fð1Þ and Sð1Þ are the single-copy field strength and
zeroth-copy scalar thatmap to the “vacuum” termof theWeyl
tensor,Fð2Þ andSð2Þ are the single- and zeroth-copy fields that
map to the Uð1Þ charge on the gravity side, produced by Fs.
We have explicitly introduced an electric current density Jμ

directly coupling to the single-copy gauge field Aμ
ð2Þ mapped

to the Uð1Þ gravity source, and, similarly, ρS is the gravity
source for the zeroth-copy Sð2Þ. Further, gμν denotes the full

spacetime metric while gð0Þμν is the appropriate “flat-space”
limit of gμν, where all parameters responsible for generating
curvature are tuned to zero (we will see explicit examples of
this in subsequent sections).
Varying the actions (2.1)–(2.3) with respect to the fields

fgμν; Aμ
s ; A

μ
ð1Þ; A

μ
ð2Þ; Sð1Þ; Sð2Þg yields the field equations

Gμν ¼ Fs;μ
αFs;να −

1

4
gμνF2

s ; ∇νF
μν
s ¼ 0; ð2:4Þ

∇ð0Þ
ν Fμν

ð1Þ ¼ 0; ∇ð0Þ
ν Fμν

ð2Þ ¼ Jμ; ð2:5Þ

□
ð0ÞSð1Þ ¼ 0; □

ð0ÞSð2Þ ¼ ρS; ð2:6Þ

where ∇μ is the covariant derivative with respect to gμν and

∇ð0Þ
μ is the covariant derivative with respect to gð0Þμν , with

□
ð0Þ ≡ gμνð0Þ∇ð0Þ

μ ∇ð0Þ
ν . In principle, the scalar fields Sð1Þ and

Sð2Þ could both be complex; however, in what follows we
will see for specific examples that Sð1Þ is typically complex,
while Sð2Þ is typically real.6

The Kerr-Schild double copy [17] provides the prescrip-
tion for the single-copy charge density and the zeroth-copy
scalar charge as

5By Riemann asymptotically flat we mean that in Boyer-
Lindquist coordinates, the Riemann curvature tensor vanishes
in the limit of large radial coordinate. We will discuss this further
in Sec. II B.

6For complex scalar fields, the action Isc should be modified
by, e.g., replacing the real quadratic terms with their modulus,
and so forth, to ensure a real action.
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Rμ
0 ¼ −

1

2
Jμ; R0

0 ¼ 2ρS: ð2:7Þ

Further, the actions (2.5) and (2.6) with the sourced Weyl
double copy (1.5) imply the Weyl spinor for Einstein-
Maxwell theories is cast as the following sum [39]:

ΨABCD ¼ 1

Sð1Þ
fð1ÞðABf

ð1Þ
CDÞ þ

1

Sð2Þ
fð2ÞðABf

ð2Þ
CDÞ: ð2:8Þ

The spinors ΨABCD, fð1ÞAB, and fð2ÞAB are related to their
tensorial counterparts through contractions with the Infeld–
van der Waerden symbols σμνAB, constructed from Pauli
matrices and spacetime vierbeins (see the Appendix). The
Weyl tensorWμναβ is related to the (completely symmetric)
Weyl spinor ΨABCD by

ΨABCD ¼ 1

4
Wμναβσ

μν
ABσ

αβ
CD: ð2:9Þ

Similarly, the source field-strength spinor is

fsAB ¼ 1

2
Fs
μνσ

μν
AB; ð2:10Þ

while the single-copy field strengths are

fðnÞAB ¼ 1

2
FðnÞ
μν σ

ð0Þ;μν
AB ; n ¼ 1; 2: ð2:11Þ

We write σð0Þ;μνAB to make explicit that the vierbeins required
to construct (2.11) are those which build the appropriate flat
limit of the full spacetime metric.
Due to the presence of Fs

μν, the solution necessarily has a
nonzero Ricci tensor and associated Ricci spinor. The key
result from [39] is that by writing the Weyl spinor as the
sum of two terms as (2.8), then the field equations (2.5) and
(2.6) are satisfied and the sources are given by (2.7). We
therefore have three quantities which require a single- and
zeroth-copy prescription, namely,

ΨABCD; ΦABC0D0 ; fsAB; ð2:12Þ
where ΦABC0D0 is related to the Ricci tensor and will be
defined shortly (see the Appendix for a detailed discus-
sion). Interestingly, for all of the electrovacuum spacetimes
considered in this article we find

1

Sð1Þ
fð1ÞAB ∝

1

Sð2Þ
fð2ÞAB: ð2:13Þ

Here the proportionality symbol denotes equality up to a
constant ratio depending on the dynamical parameters of
the full spacetime. As noted, the sourced Weyl double copy
(2.8) provides the prescription for ΨABCD. We now provide
copying prescriptions for the double-copy field strength
and Ricci spinors, fsAB and ΦABC0D0 , respectively.

A. Prescription for the Uð1Þ source
The field equation for Fs

μν (2.4) is that of a free Maxwell
gauge field over the full metric gμν, while the field equation

for Fð1Þ
μν in (2.5) is that of a free Maxwell field over gð0Þμν .

Since they both satisfy a vacuum equation, the form of their
spinor field strengths are in fact equivalent, which can be
seen as follows. Define the frame field strength associated

with Fð1Þ
μν as Fð1Þ

ab ¼ Fð1Þ
μν ðeð0ÞÞμaðeð0ÞÞνb. It is straight-

forward to show when Fð1Þ
μν satisfies a vacuum equation

over gð0Þμν , then Fð1Þ
ab satisfies the vacuum equations over

ηab ¼ ð−1; 1; 1; 1Þ. Explicitly, in terms of vierbeins and
Infeld–van der Waerden symbols (A10),

fð1ÞAB ¼ 1

2
Fð1Þ
μν ðeð0ÞÞμaðeð0ÞÞνbσ½aAC0 σ̄

b�C0
B ¼ 1

2
Fð1Þ
ab σ

½a
AC0 σ̄

b�C0
B;

ð2:14Þ

where we used ðeð0ÞÞaμðeð0ÞÞμb ¼ δab. For the source field
strength, we have

fsAB ¼ 1

2
Fs
μνe

μ
aeνbσ

½a
AC0 σ̄

b�C0
B ¼ 1

2
Fs
abσ

½a
AC0 σ̄

b�C0
B; ð2:15Þ

where Fs
ab ¼ Fs

μνe
μ
aeνb also satisfies the vacuum Maxwell

equation over ηab,
7 and we used eaμe

μ
b ¼ δab. The key point is

that although Fs
μν and Fð1Þ

μν are constructed using different

vierbeins, their frame field strengths Fs
ab and Fð1Þ

ab both
satisfy the vacuum Maxwell equations over ηab.
Consequently,

Fs
ab ∝ Fð1Þ

ab ⇔ fsAB ∝ fð1ÞAB; ð2:16Þ

which is clear from the rightmost equality in (2.14)
and (2.15).

B. Prescription for the Ricci spinor

We describe the essential relations between the Ricci
tensor Rμν and the Ricci spinor ΦABC0D0 ¼ ΦðABÞðC0D0Þ
in the Appendix. For Einstein-Maxwell theory, the
only nonzero contraction8 from (A26) is the component
Φ010010 ≡Φ11 ¼ − 1

2
Rμνnμlν þ 3Π, where Π ¼ 1

12
R. The

Ricci spinor thus dramatically simplifies to

ΦEM
ABC0D0 ¼ 4Φ11oðAιBÞōðC0 ῑD0Þ: ð2:17Þ

7To see this, note that ∇aFab ¼ eλað∇λFμνÞeaμebν ¼
δλμð∇λFμνÞebν ¼ ð∇μFμνÞebν ¼ 0, where we have used the
no-torsion constraint ∇λeaν ¼ 0.

8More specifically, we work with the principle null tetrad that
results in the Weyl scalar Ψ2 ≠ 0, while all others (A23) vanish.
The same tetrad is used to compute ΦABC0D0 , which is such that
onlyΦ11 ≠ 0. Choosing a different tetrad generically will result in
additional Ricci scalars being nonzero.
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Now, the fields Sð2Þ and fð2ÞAB are nonzero due to the
presence of Fs

μν, which in turn results in ΦABC0D0 being
nonzero. Therefore we expect ΦABC0D0 to be related to the

Sð2Þ and fð2ÞAB. The spinor ΦABC0D0 clearly carries two
conjugate indices, and itself is real for all spacetimes we

consider. In general, fð2ÞAB is complex; therefore, its con-
jugate must be involved in the copying prescription for
ΦABC0D0 . In fact, the desired relationship is analogous to the
prescription for the Weyl spinor,

ΦABC0D0 ¼ 1

3

1

Sð2Þ
fð2ÞABf̄

ð2Þ
C0D0 ; ð2:18Þ

where f̄ð2ÞA0B0 ∝ ōðA0 ῑB0Þ is the complex conjugate of fð2ÞAB.
As we stated previously, the scalar- and spinor field

strength for the two terms in the sourced Weyl double copy
(2.8) are proportional up to parameters characterizing the
spacetime when we take the combination 1

S fAB, (2.13).
Further, when the scalar fields Sð1Þ and Sð2Þ obey

Sð2Þ ∝ jSð1Þj2: ð2:19Þ

Then, combined with (2.13) it follows

1

Sð2Þ
fð2ÞABf̄

ð2Þ
C0D0 ∝

�
1

Sð1Þ
fð1ÞAB

��
Sð2Þ
Sð1Þ

fð1ÞCD

��

¼ Sð2Þ
jSð1Þj2

fð1ÞABf̄
ð1Þ
C0D0 ∝ fð1ÞABf̄

ð1Þ
C0D0 ; ð2:20Þ

where the � refers to complex conjugation. Subsequently,

ΦABC0D0 ∝ fð1ÞABf̄
ð1Þ
C0D0 : ð2:21Þ

Despite relating the Ricci spinor—which vanishes in pure
vacuum—directly to the product of the single-copy field-
strength spinors associated with the vacuum solution, this
relationship in fact should not come as a surprise. In
Einstein-Maxwell theory, the trace-reversed Einstein
equations yield Rμν ¼ Tμν. In the language of spinors, this
is [42]

ΦABC0D0 ∝ fsABf̄
s
C0D0 : ð2:22Þ

As we showed in Sec. II A, fð1ÞAB ∝ fsAB; therefore (2.22)
implies (2.21).

C. Comment on asymptotic flatness

The single-copy fields building the Ricci spinor (2.17)
will be different depending on the behavior of the curvature
of the double-copy spacetime at asymptotic spatial infinity.
In particular and as we will show explicitly in subsequent
sections, all spacetimes examined in this article, including

the most general type-D spacetime, naturally have Ricci
spinor obeying (2.22) and therefore (2.21); however, not all
electrovacuum spacetimes satisfy the relations (2.18)
or (2.19).
To appreciate this point, we briefly comment on the

notion of asymptotic flatness. A traditional and practical
definition is that a spacetime is said to be asymptotically
flat if at spatial infinity the spacetime metric takes a
Minkowski form. For example, the Schwarzschild black
hole is asymptotically flat while the Taub-NUT solution is
not, the latter having a nonzero gtϕ component in the large
radial-r limit in Boyer-Lindquist coordinates. With this
notion, any metric which is asymptotically flat will nec-
essarily have vanishing curvature at spatial infinity.
However, the reverse need not be true: asymptotically,
all components of the Riemann curvature of the Taub-NUT
solution vanish. In what follows, with a slight abuse of
terminology, we will work with a refined notion of
asymptotically flat, dubbed “Riemann asymptotically
flat,”9 as being a spacetime whose curvature tensor vanishes
at infinity. By this notion, the (charged) Taub-NUT solution
is Riemann asymptotically flat (counter to the traditional
sense of asymptotic flatness of the metric).
Intriguingly, when the Riemann tensor is nonvanishing at

infinity, we will observe the gauge field strengths fð2ÞAB do
not satisfy the relations (2.18) or (2.19). In particular, this is
the case for the charged C metric and general Plebanski and
Demianski solution [41], for which the charged C metric is
a special limit. However, the Kerr-Newmann-Taub-NUT
does obey these relations, and, subsequently, the Ricci
spinor may be cast as (2.18).
Further, as we will see, for the two non-Riemann

asymptotically flat spacetimes we analyze, the dual field-
strength tensor F̃ð2Þ

μν associated with fð2ÞAB has a nontrivial
divergence, signaling the presence of a magnetic four-
current:

∇ð0Þ
ν F̃μν

ð2Þ ¼ Jμm: ð2:23Þ

This is equivalent to the field-strength tensor failing to

satisfy the Bianchi identity ∇ð0Þ
½μ Fρσ� ≠ 0. Traditional

Maxwell theory cannot accommodate a nontrivial diver-
gence of the dual field strength. However, a magnetic
current can be accounted for if Maxwell theory is extended
to include a second vector potential [40,43], which we will
describe in Sec. IV.
Having established a general prescription relating the

double-copy spinor fields to single- and zeroth copies, let
us survey several electrovacuum type-D spacetimes. We
will find the sum over products of gauge field strengths

9In other words, asymptotic flatness implies Riemann asymp-
totic flatness, but the converse need not be true.
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(2.8) leads to a consistent Weyl double copy that incor-
porates external Maxwell sources.

III. KERR-NEWMAN BLACK HOLE

The Kerr-Newman solution describes a rotating black
hole with rotation parameter a that carries an electric
charge Q, and is an exact solution to the Einstein-
Maxwell equations. The line element in Boyer-Lindquist
coordinates is

ds2 ¼ −
Δ
ρ2

ðdt− asin2θdϕÞ2 þ sin2θ
ρ2

ððr2 þ a2Þdϕ− adtÞ2

þ ρ2

Δ
dr2 þ ρ2dθ2;

ρ2 ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2 þQ2: ð3:1Þ

The flat-space limit of the line element is Minkowski space
in oblate spheroidal coordinates,

ds2ð0Þ ¼ −dt2 þ ρ2

r2 þ a2
dr2 þ ρ2dθ2 þ ða2 þ r2Þ sin2 θdϕ2;

ð3:2Þ

which is obtained by tuning the “dynamical parameters”
fM → 0; Q → 0g, as this is the limit in which the Weyl
curvature is vanishing.
The Weyl spinor associated with the Kerr-Newman

solution is given by [44]

ΨABCD ¼ Ψð1Þ
ABCD þΨð2Þ

ABCD

¼ 6

�
−

M
ðrþ ia cos θÞ3

þ Q2

ðrþ ia cos θÞ3ðr − ia cos θÞ
�
oðAoBιCιDÞ:

ð3:3Þ

The contribution proportional to parameter M is present in
the “pure”Weyl double copy and appears in the first term in
the sourced Weyl double-copy sum (2.8),

1

Sð1Þ
fð1ÞðABf

ð1Þ
CDÞ ¼ −

6M
ðrþ ia cos θÞ3 oðAoBιCιDÞ: ð3:4Þ

The single- and zeroth-copy interpretation of this quantity
was given in [19], where the scalar and gauge fields were
identified to be

Sð1Þ ¼ −
q21
6M

1

rþ ia cosθ
; fð1ÞAB ¼ q1

ðrþ ia cosθÞ2 oðAιBÞ;

ð3:5Þ

both of which satisfy the vacuum equations over the flat-
space metric (3.2). Here one has introduced the free
parameter q1 associated with the mass parameter M [17].10

A. Sourced Weyl double copy

The Q2 contribution to the Weyl spinor (3.3) implies the
second term in the sum (2.8) is

1

Sð2Þ
fð2ÞðABf

ð2Þ
CDÞ ¼

�
6Q2

ðrþ iacosθÞ3ðr− ia cosθÞ
�
oðAoBιCιDÞ:

ð3:6Þ

Following [39], we choose the zeroth-copy scalar field and
single-copy spinor field strength corresponding to the
Maxwell source of the full space to be

Sð2Þ ¼
q22
6Q2

1

ðrþ ia cos θÞðr − ia cos θÞ ;

fð2ÞAB ¼ q2
ðrþ ia cos θÞ2ðr − ia cos θÞ oðAιBÞ; ð3:7Þ

where we have introduced a second free parameter q2
associated with the black hole chargeQ. With respect to the
flat-space metric (3.2), it is straightforward to show the
zeroth-copy scalar field satisfies

□
ð0ÞSð2Þ ¼ −

2q22
Q2

ðr2 þ a2Þ þ a2 sin θ2

ρ6
; ð3:8Þ

while the field strength obeys

∇ð0Þ
μ Fνμ

ð2Þ ¼−q2

0
BBBBB@

ðr2þa2Þþa2 sinθ2

2ρ6

0

0
a
ρ6

1
CCCCCA
; ∇ð0Þ

μ F̃νμ
ð2Þ ¼0: ð3:9Þ

The presence of the rotation parameter introduces a current
density and therefore a magnetic field, as expected.
Another new element not present in the pure Weyl double
copy is the gravitational energy density ρgrav,

ρgrav ¼ 8Q2
ðr2 þ a2Þ þ a2 sin θ2

ρ6
: ð3:10Þ

Comparing to the scalar wave equations (3.8), the
gravitational energy density is proportional to the single-
copy electric charge density ρe ≡ J0, and the scalar charge
density ρS.

10Note the real scalar Sð1Þ þ S̄ð1Þ is identified as the Kerr-Schild
function ϕ in the metric decomposition (1.1).

EASSON, MANTON, and SVESKO PHYS. REV. D 107, 044063 (2023)

044063-6



Computing the (1,1) Ricci tensor, we find

Rμ
0 ¼ −16Q2

0
BBBBB@

ðr2þa2Þþa2 sin2 θ
2ρ6

0

0
a
ρ6

1
CCCCCA

∝ Jμð2Þ; ð3:11Þ

in agreement with our expectations from the sourced
Kerr-Schild double copy. By inspection of (3.5) and
(3.7), we see

1

Sð1Þ
fð1ÞAB ∝

1

Sð2Þ
fð2ÞAB; and Sð2Þ ∝ jSð1Þj2; ð3:12Þ

as claimed above for asymptotically flat spacetimes. We
will return to this point momentarily.
As discussed in [39], the gauge field required to supple-

ment the Kerr-Newman solution is

Aμ ¼
Q2r
ρ2

ð1; ρ2=ðr2 þ a2Þ; 0; asin2θÞ; ð3:13Þ

which we note is (gauge) equivalent to the single-copy
gauge field associated with the Kerr solution, i.e., the
solution associated with fð1ÞAB. More precisely, when
the Kerr-Newman black hole is expressed in Kerr-Schild
form (1.1), one may decompose the Kerr-Schild scalar ϕ as

ϕ ¼ ϕK þ ϕN; ϕK ¼ 2Mr
ρ2

; ϕN ¼ −
Q2

ρ2
: ð3:14Þ

In this case, the single-copy gauge field Aμ ≡ ϕkμ, for
null vector kμ ¼ ð1; ρ2=ðr2 þ a2Þ; 0; a sin2 θÞ, takes a sim-
ilar decomposition, Aμ ¼ AK

μ þ AN
μ . The gauge field AK

μ

matches the one found in [19] (up to a parameter rescaling),

and whose corresponding gauge field strength Fð1Þ
μν is

divergenceless. Meanwhile, the gauge field AN
μ produces

a field strength Fð2Þ
μν whose divergence is proportional to

(3.11). This demonstrates a consistency between the Kerr-
Schild and sourced Weyl double copy.

B. Ricci spinor

We now analyze the Ricci spinor for the Kerr-Newman
solution and provide its double-copy analysis. The only
nonzero component is Φ010010 such that [45]

ΦABC0D0 ¼ 2Q2

ðr2 þ a2 cos2 θÞ2 oðAιBÞōðC0 ῑD0Þ: ð3:15Þ

Comparing to the single-copy field-strength spinor fð1ÞAB
(3.5), we see the Ricci spinor is proportional to the complex

square of fð1ÞAB;

fð1ÞABf̄
ð1Þ
C0D0 ¼ q21

ðr2 þ a2 cos θ2Þ2 oðAιBÞōðC0 ῑD0Þ ¼
q21
2Q2

ΦABC0D0 :

ð3:16Þ

Alternately, via the zeroth- and single-copy fields Sð2Þ and
fð2ÞAB (3.7), we observe

1

Sð2Þ
fð2ÞABf̄

ð2Þ
C0D0 ¼ 6Q2

ðr2 þ a2 cos2 θÞ2 oðAιBÞōðC0 ῑD0Þ ¼ 3ΦABC0D0 :

ð3:17Þ

Hence, the Ricci spinor for the Kerr-Newman black hole
may be characterized by the product of a single-copy field-
strength spinor and its complex conjugate, reminiscent of
the double-copy relation of the Weyl spinor. The fact the

Ricci spinor can be cast as a product of fð2ÞAB is the relation
which is only enjoyed by Riemann asymptotically flat
spacetimes, as we now explore.11

IV. CHARGED C METRIC

The charged C metric will serve as a simple example of
the rich new properties of non-Riemann asymptotically flat,
nonvacuum spacetimes in the framework of the Weyl
double copy. In spherical-like coordinates, its metric takes
the form [45]

ds2 ¼ 1

Ω2

�
−
A
r2
dt2 þ r2

A
dr2 þ r2

B
dθ2 þ Br2sin2θdϕ2

�
;

ð4:1Þ

with

Ω ¼ 1 − αr cos θ;

A ¼ ðQ2 − 2Mrþ r2Þð1 − α2r2Þ;
B ¼ 1 − 2αM cos θ þQ2α2cos2θ: ð4:2Þ

This solution describes a (chargedQ) black hole of massM
that is uniformly accelerating with acceleration parameter
α, generated by a cosmic string pulling it outward.
Alternatively, the solution represents a pair of charged,
uniformly accelerating black holes moving in opposite
directions, either due to a connecting cosmic string between
pushing them apart or as two semi-infinite cosmic strings
pulling them away from each other (cf. [46]). In the α → 0
limit, the solution describes a single Reissner-Nordström
black hole. Importantly, the C metric is not asymptotically
flat, in the sense of the metric not being asymptotically

11The double-copy relations of the Reissner-Nordström black
hole follow from the above analysis of the Kerr-Newman black
hole in the a → 0 limit, or equivalently in the limit that α → 0 of
the charged C metric of Sec. IV.
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Minkowskian and, correspondingly, has nonvanishing
Riemann curvature at infinity.
With respect to these coordinates, the Weyl spinor

ΨABCD naturally decomposes into a term proportional to
M and Q2:

ΨABCD ¼ Ψð1Þ
ABCD þΨð2Þ

ABCD

¼ −6M
ð1 − αr cos θÞ3

r3
oðAoBιCιDÞ

þ 6Q2
ð1þ αr cos θÞð1 − αr cos θÞ3

r4
oðAoBιCιDÞ;

ð4:3Þ

while the Ricci spinor and Ricci tensor are, respectively,

ΦABC0D0 ¼ 2Q2
ð1 − αr cos θÞ4

r4
oðAιBÞōðC0 ῑD0Þ; ð4:4Þ

Rμ
ν ¼ Q2

ð1 − αr cos θÞ4
r4

diagð−1;−1; 1; 1Þ: ð4:5Þ

The pure Weyl double copy of the neutral C metric, with
Weyl spinor Ψð1Þ

ABCD, was examined in [19], where it was
recognized that the gauge potential Aμ associated with the

single-copy field strength Fð1Þ
μν corresponds to the Liénard-

Wiechert potential describing a pair of causally dis-
connected charges, uniformly accelerating in opposite
directions with acceleration α. The zeroth- and single-copy

fields Sð1Þ and fð1ÞAB associated with Ψð1Þ
ABCD in (4.3) are

Sð1Þ ¼
q21
M

1− αrcosθ
r

; fð1ÞAB ¼ q1
ð1− αr cosθÞ2

r2
oðAιBÞ;

ð4:6Þ

where we have introduced the real, free parameter q1,
understood as the charge of the particle in the single-copy

picture. These fields construct the product Ψð1Þ
ABCD ¼

1
Sð1Þ

fð1ÞðABf
ð1Þ
CDÞ and live over the flat background obtained

by sending fM;Qg → f0; 0g in (4.1),

ds2ð0Þ ¼
1

Ω2

�
−ð1 − α2r2Þdt2 þ dr2

1 − α2r2
þ r2dΩ2

�
; ð4:7Þ

which is Minkowski space in accelerated coordinates.
Additionally, the zeroth- and single-copy field-strength

tensor associated with fð1ÞAB satisfy the vacuum equations

□
ð0ÞSð1Þ ¼ 0; ∇ð0Þ

ν Fμν
ð1Þ ¼ ∇ð0Þ

ν F̃μν
ð1Þ ¼ 0: ð4:8Þ

From here, it is straightforward to show the gauge potential

corresponding to Fð1Þ
μν is

Að1Þ ¼
q1
r
dt; ð4:9Þ

which (functionally) agrees with the potential required to
solve the Einstein-Maxwell equations on the double-copy
side, As ¼ Q

r dt. To express the gauge potential in a more
standard Liénard-Wiechert form, one may transform the
accelerated coordinate system to Minkowski space in
Cartesian coordinates [19].

A. Sourced Weyl double copy

Let us now determine the fields required to construct the
second term Ψð2Þ

ABCD of the complete Weyl spinor (4.3) such
that it may be cast as

Ψð2Þ
ABCD ¼ 1

Sð2Þ
fð2ÞðABf

ð2Þ
CDÞ: ð4:10Þ

The scalar field is required to satisfy □
ð0ÞSð2Þ ∝

Rt
t ∼ ð1 − αr cos θÞ4=r4, which has the solution

Sð2Þ ¼
q22
6Q2

ð1þ αr cos θÞð1 − αr cos θÞ
r2

; ð4:11Þ

where we have introduced another free parameter q2. Thus,
the single-copy field strength is

fð2ÞAB ¼ q2
ð1þ αr cos θÞð1 − αr cos θÞ2

r3
oðAιBÞ: ð4:12Þ

Correspondingly, the tensor field strength associated with

fð2ÞAB is

Fð2Þ ¼ −q2
1þ αr cos θ

2r3
dt ∧ dr; ð4:13Þ

whose divergence corresponds to the expectation from the
Kerr-Schild double copy,

∇ð0Þ
ν Fμν

ð2Þ ¼ −
q2
2

ð1 − αr cos θÞ4
r4

δμt ≡ Jμe ∝ Rμ
t: ð4:14Þ

A new feature of the C metric is that we also have a
nontrivial divergence of the dual tensor F̃μν

ð2Þ,

∇ð0Þ
ν F̃μν

ð2Þ ¼ −
q2α
2

ð1 − αr cos θÞ4
r4

δtϕ ≡ Jμm: ð4:15Þ

A nonzero divergence of the dual tensor typically implies
the presence of a magnetic monopole with its own magnetic
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current, Jμm. We emphasize, this magnetic current is not
present in the neutral C metric. To better interpret the

corresponding single-copy field strength Fð2Þ
μν , let us briefly

digress to discuss how two-potential electrodynamics can
account for the new magnetic current.

B. Two-potential electrodynamics

In the presence of magnetic charges, Maxwell’s equa-
tions may be modified while maintaining the traditional
definition of the Maxwell potential Aμ. Doing so, however,
comes at the cost of placing magnetic charges at the end of
a string on which Aμ develops a singularity [43,47].
Alternatively, one may avoid introducing these singular
and nonlocal Dirac strings by way of two-potential electro-
dynamics, where one introduces a pseudo-4-vector poten-
tial, Cμ, in addition to the standard potential Aμ [40]
(see also [48–50]). While this alternative formulation of
classical electrodynamics is not entirely necessary for
understanding the double copy of type-D spacetimes, it
is nonetheless useful, particularly for the single-copy
interpretation of the charged C metric.
The role of the potential Cμ is to modify the Maxwell

equations such that they are symmetric in electric and
magnetic fields in the presence of magnetic charges and
currents. Doing so, however, requires an extension of the
field-strength tensor Fμν to incorporate both four-vector
potentials Aμ and Cμ,

Fμν ¼ ∂½μAν� þ εμν
ρσ
∂ρCσ: ð4:16Þ

This field strength and its dual satisfy

∇νFμν ¼ Jμe; ∇νF̃μν ¼ Jμm; ð4:17Þ
as desired, where the new potential Cμ is solely responsible
for the magnetic current Jμm. The components of (4.17) are

∇ · E⃗ ¼ ρe; ∇ × B⃗ ¼ J⃗e þ ∂tE⃗;

∇ · B⃗ ¼ ρm; −∇ × E⃗ ¼ J⃗m þ ∂tB⃗: ð4:18Þ

Let us now apply this two-potential formalism to the
charged C metric, where we can explicitly construct the
gauge potentials Aμ and Cμ required to produce the field
equations (4.14) and (4.15). The full field-strength tensor

Fð2Þ
μν is

Fð2Þ
μν ¼ ∂½μA

ð2Þ
ν� þ

ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
gρλð0Þg

σγ
ð0Þϵμνλγ∂ρCσ; ð4:19Þ

with gð0Þμν being the accelerated Minkowski metric (4.7).

Using that Fð2Þ
μν takes the form in (4.13), we find that the two

vector potentials are

Að2Þ
μ ¼ −

q2
4r2

δtμ; Cμ ¼ −
q2α
4

sin2 θδϕμ : ð4:20Þ

The Að2Þ
μ leads to a correction to the Liénard-Wiechert

potential (4.9),12 while the Cμ accounts for the magnetic
monopole-like behavior. Moreover, we obtain the Reissner-
Nordström solution from the charged C metric in the limit
that α → 0. Clearly, Cμ in (4.20) vanishes in that limit, and
we recover traditional Maxwell theory.

C. Ricci spinor

From the zeroth- and single-copy fields (4.3), (4.11), and
(4.12), it is clear

1

Sð1Þ
fð1ÞAB ∝

1

Sð2Þ
fð2ÞAB; Sð2Þ ∝ jS1j2: ð4:21Þ

As expected, the Ricci spinor (4.4) is proportional to the

modulus of the single-copy spinors fð1ÞAB,

fð1ÞABf̄
ð1Þ
C0D0 ¼q21

ð1−αrcosθÞ4
r4

oðAιBÞōðC0 ῑD0Þ ¼
q21
2Q2

ΦABC0D0 :

ð4:22Þ

However,

1

Sð2Þ
fð2ÞABf̄

ð2Þ
C0D0 ¼ 6Q2

ð1þ αr cos θÞð1 − αr cos θÞ3
r4

× oðAιBÞōðC0 ῑD0Þ ∝ ΦABC0D0 ; ð4:23Þ

as alluded to above, although the two expressions agree in
the α → 0 limit.

V. GENERAL ELECTROVACUUM TYPE-D
SPACETIMES

The most general Petrov type-D solution of the Einstein-
Maxwell field equations with a nonzero cosmological
constant Λ is described by the Plebanski-Demianski
(PD) family of metrics [41]. A useful form of the line
element13 is

12The Liénard-Wiechert potential in the accelerated coordi-
nates falls off as 1=r, while Að2Þ falls off as 1=r2. Transforming
out of the accelerated coordinates into standard Minkowski space
in spherical coordinates ðT; R;Θ;ΦÞ centered on the point
charge, it follows that the sum of Að1Þ and Að2Þ can be written as

Að1Þ þ Að2Þ ¼
�
1þ q2

q1

�
αþ 2 cos2 Θ

αR2
þOðR−4Þ

��
AðLWÞ;

where AðLWÞ is the Liénard-Wiechert potential. Note that the
α → 0 is not well defined because the diffeomorphism between
the accelerated coordinates to standard Minkowski space
is singular in that limit [19].

13We use the form of the metric presented in [51] with a
“mostly plus” signature.
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ds2 ¼ 1

ð1 − pqÞ2
�
p2 þ q2

PðpÞ dp2 þ p2 þ q2

QðqÞ dq2

þ PðpÞ
p2 þ q2

ðdτ þ q2dσÞ2 − QðqÞ
p2 þ q2

ðdτ − p2dσÞ2
�
;

ð5:1Þ

with

QðqÞ ¼ kþ e2 þ g2 − 2mqþ ϵq2 − 2nq3 − ðkþΛ=3Þq4;
PðpÞ ¼ kþ 2np− ϵp2 þ 2mp3 − ðe2 þ g2 þ kþΛ=3Þp4:

ð5:2Þ

The real parameters fm; n; e; g; ϵ;Λg are taken to be
arbitrary; however, limiting cases of the PD metric, e.g.,
the Kerr-Newman black hole, provide a physical inter-
pretation for these parameters; e.g., m and n correspond
to mass and NUT parameters, respectively, and e and g
correspond to electric and magnetic monopole charges.
While the classical Kerr-Schild double copy has been
extended to describe maximally symmetric spacetimes
[32], we will set Λ ¼ 0. For e ¼ g ¼ Λ ¼ 0 and k ¼ γ
one recovers the PDmetric analyzed in the pureWeyl double
copy [19].
Notably, the PD metric cannot generally be placed in

Kerr-Schild form (1.1); however, it may be put into double
Kerr-Schild form via the complex diffeomorphism [41]

τ ¼ uþ
Z

q2dq
QðqÞ þ i

Z
p2dp
PðpÞ ;

σ ¼ v −
Z

dq
QðqÞ þ i

Z
dp
PðpÞ ; ð5:3Þ

such that the metric (5.1) takes the form

ds2 ¼ 1

ð1 − pqÞ2
�
2ðiKdp − LdqÞ þ PðpÞ

p2 þ q2
K2

−
QðqÞ

p2 þ q2
L2

�
; ð5:4Þ

where one has introduced null, geodesic, and mutually
orthogonal covectors K and L∶

K ¼ duþ q2dv; L ¼ du − p2dv: ð5:5Þ

The flat-space limit is identified by simultaneously
setting all dynamical, curvature-producing parameters to
zero, namely, m ¼ n ¼ g ¼ e ¼ 0. The remaining param-
eters, k and ϵ, are said to be kinematical as they do not
generate curvature. Following [19], we include the kin-
ematical parameters in the definition of the flat-space
metric ds2ð0Þ which is identified as

ds2ð0Þ ¼
1

ð1 − pqÞ2
�
2ðiKdp − LdqÞ þ kð1 − p4Þ − ϵp2

ðp2 þ q2Þ K2

−
kð1 − q4Þ þ ϵq2

ðp2 þ q2Þ L2

�
: ð5:6Þ

From here it is easy to see the PD metric in these
coordinates is of double Kerr-Schild form with Kerr-
Schild functions ϕK and ϕL∶

ϕK ¼ 2npþ 2mp3 − ðe2 þ g2Þp4

ðp2 þ q2Þð1 − pqÞ2 ;

ϕL ¼ 2mqþ 2nq3 − e2 − g2

ðp2 þ q2Þð1 − pqÞ2 ; ð5:7Þ

and hence

ds2 ¼ ds2ð0Þ þ ϕKK2 þ ϕLL2: ð5:8Þ

Keeping the kinematical parameters in the flat-space
portion of the double Kerr-Schild decomposition is a
choice, and thus far, ambiguous. We will return to this
ambiguity in a moment and see how it affects the source
contributions to the Weyl double copy.
While the Ricci tensor Rμ

ν is linear in Kerr-Schild form,
this property is generally not the case for metrics in double
Kerr-Schild form. Nonetheless, as shown in [19], the PD
metric (5.4) has a linear Ricci tensor, given by

Rμ
ν ¼ ðe2 þ g2Þ

0
BBBBBBBB@

ðpq−1Þ4ðp2−q2Þ
ðp2þq2Þ3

2p2q2ðpq−1Þ4
ðp2þq2Þ3 0 0

2ðpq−1Þ4
ðp2þq2Þ3 − ðpq−1Þ4ðp2−q2Þ

ðp2þq2Þ3 0 0

0 0
ðpq−1Þ4
ðp2þq2Þ2 0

0 0 0 − ðpq−1Þ4
ðp2þq2Þ2

1
CCCCCCCCA
; ð5:9Þ
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from which we obtain the energy density ρgrav, i.e., the
negative of the first entry of (5.9),

ρgrav ¼ ðe2 þ g2Þðpq − 1Þ4ðq2 − p2Þ
ðp2 þ q2Þ3 : ð5:10Þ

With the Ricci tensor we can build its spinorial counter-
part [51],

ΦABC0D0 ¼ 2ðe2 þ g2Þ ð1 − pqÞ4
ðq2 þ p2Þ2 oðAιBÞōðC0 ῑD0Þ: ð5:11Þ

Lastly, the Weyl spinor corresponding to the metric (5.4)
is [51]

ΨABCD ¼ Ψð1Þ
ABCD þΨð2Þ

ABCD

¼ −6ðmþ inÞ
�
1 − pq
qþ ip

�
3

oðAoBιCιDÞ

þ 6ðe2 þ g2Þ
�
1 − pq
qþ ip

�
3 1þ pq
q − ip

oðAoBιCιDÞ:

ð5:12Þ
The first term Ψð1Þ

ABCD ¼ 1
Sð1Þ

fð1ÞðABf
ð1Þ
CDÞ was previously

determined in [19], explicitly given by

Sð1Þ ¼
i
6

ðm̃þ iñÞ2ð1 − pqÞ
ðmþ inÞðp − iqÞ ;

fð1ÞAB ¼ ðm̃þ iñÞð1 − pqÞ2
ðp − iqÞ2 oðAιBÞ; ð5:13Þ

and satisfy the vacuum equations over the flat background
(5.6). The constants m̃ and ñ are introduced in the spirit

of having gauge parameters separate from the gravity
parameters.

A. Sourced Weyl double copy

We analyzed the second term (5.12) in [39]:

Sð2Þ ¼
ðẽ2 þ g̃2Þ2
6ðe2 þ g2Þ

�
1 − pq
qþ ip

�
1þ pq
q − ip

;

fð2ÞAB ¼ ðẽ2 þ g̃2Þ
�
1 − pq
qþ ip

�
2 1þ pq
q − ip

oðAιBÞ; ð5:14Þ

introducing gauge parameters ẽ and g̃. Notice the wave
equation of the zeroth-copy scalar field obeys

□
ð0ÞSð2Þ ¼

ðẽ2 þ g̃2Þ2
6ðe2 þ g2Þ

�
−2ϵ

ð1 − pqÞ4ðq2 − p2Þ
ðp2 þ q2Þ3

þ 4k
ð1 − pqÞ4ð1þ p2q2Þ

ðp2 þ q2Þ3
�

∝ ϵρgrav þ kΔðp; qÞ: ð5:15Þ

This shows □ð0ÞSð2Þ ∝ ρgrav is met only if the kinematical
parameter vanishes, k → 0. Due to the ambiguity in
choosing the flat background, this is no issue. Indeed,

the vacuum equations for Sð1Þ and fð1ÞAB are immune to the
choice of k. This observation suggests the sourced Weyl
double copy may specify an appropriate flat background
where the single- and zeroth-copy fields live.
The Maxwell tensor associated with the spinor field

strength fð2ÞAB is

Fð2Þ
μν ¼ ðẽ2 þ g̃2Þ

0
BBBBBBBB@

0 0
pðpqþ1Þ
2ðp2þq2Þ2

qðpqþ1Þ
2ðp2þq2Þ2

0 0
pq2ðpqþ1Þ
2ðp2þq2Þ2 − p2qðpqþ1Þ

2ðp2þq2Þ2

− pðpqþ1Þ
2ðp2þq2Þ2 − pq2ðpqþ1Þ

2ðp2þq2Þ2 0 0

− qðpqþ1Þ
2ðp2þq2Þ2

p2qðpqþ1Þ
2ðp2þq2Þ2 0 0

1
CCCCCCCCA
; ð5:16Þ

and obeys

∇ð0Þ
μ Fνμ

ð2Þ ¼ ðẽ2 þ g̃2Þ

0
BBBBB@

− ðq2−p2Þðpq−1Þ4
2ðp2þq2Þ3
ðpq−1Þ4
ðp2þq2Þ3

0

0

1
CCCCCA
: ð5:17Þ

Thus, (5.17) shows the single-copy charge density is
proportional to the gravitational energy density, and the
current density is proportional to an angular-momentum
term, i.e., Rμ

0 ∝ Jμð2Þ, as anticipated from the Kerr-Schild

relation (1.2). We also find that the Jacobi identity for

(5.16) fails, ∇ð0Þ
½μ Fð2Þ

λγ� ≠ 0. Or, in terms of the divergence

of F̃ð2Þ
μν ,

∇ð0Þ
ν F̃μν

ð2Þ ¼ ðẽ2 þ g̃2Þ

0
BBBBB@

− p2q2ðpq−1Þ4
ðp2þq2Þ3

ðp2−q2Þðpq−1Þ4
2ðp2þq2Þ3

0

0

1
CCCCCA
: ð5:18Þ
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A nonzero divergence of F̃μν
ð2Þ suggests the presence of a

magnetic charge and magnetic current. This is consistent
with what we found for the charged C metric, which is a
limiting case of the general PD metric. That is, since the PD
metric is not asymptotically flat, the single-copy gauge
fields are sourced by both an electric and magnetic current
density.14

B. Ricci spinor

Using single-copy spinor field strength fð1ÞAB (5.13), we
have

fð1ÞABf̄
ð1Þ
C0D0 ¼ ðm̃2 þ ñ2Þ

2ðe2 þ g2ÞΦABC0D0 ; ð5:19Þ

which is clear by inspection to (5.11). Calling ðm̃2 þ ñ2Þ≡
q21 and ðe2 þ g2Þ≡Q2, we uncover the same relation as in
(3.16) and (4.22). Meanwhile, the nonvacuum single-copy
fields (5.14) are not directly proportional to the Ricci
spinor. This is consistent with the our Ricci spinor analysis
of the charged C metric (4.23), and is a by-product of the
fact Sð2Þ∝jSð1Þj2 in the general PD metric.

C. Kerr-Newman-Taub–NUT
As our final example, let us consider a the Kerr-

Newman-Taub–NUT solution, a special limiting case of
the general PD metric. One can acquire the line element of
this solution via a combination of coordinate and parameter
rescalings of the general PD metric (5.4). Specifically,
perform the coordinate rescalings

u→lu; v→l3v; p→l−1p; q→l−1q; ð5:20Þ

along with the parameter rescalings

m→ l−3m; n→ l−3n; e→ l−2e; g→ l−2g;

ϵ→ l−2ϵ; k→ l−4k: ð5:21Þ

Then, taking the l → ∞ limit yields the line element

ds2 ¼ 2ðiKdp − LdqÞ þ kð2duþ dvðq2 − p2ÞÞdv
− ϵðdu2 þ p2q2dv2Þ þ ϕKK2 þ ϕLL2; ð5:22Þ

where the first three terms correspond to the flat-space
line element and now the Kerr-Schild functions (5.7) ϕK
and ϕL are

ϕK ¼ 2np
p2 þ q2

; ϕL ¼ 2mq − ðe2 þ g2Þ
p2 þ q2

: ð5:23Þ

Technically, the line element (5.22) is the Kerr-Newman-
Taub–NUT solution, including rotation, electric, magnetic,
and NUT charges (when e ¼ g ¼ 0 we recover the form of
the neutral Kerr-Taub–NUT solution considered in [19]).
Additionally, while this metric does not approach
Minkowski space in the asymptotic limit, it nonetheless
has vanishing Riemann curvature at spatial infinity.15

Analogous to [19], the zeroth- and single-copy fields for
the Kerr-Newman-Taub–NUT solution readily follow from
applying the rescalings (5.20) and (5.21), together with
rescaling ðẽ; g̃Þ → l−2ðẽ; g̃Þ, to the gauge fields of the
general PD solution (5.13) and (5.14). Precisely, upon

rescaling Sð1Þ and fð1ÞAB, take the Oðl−2Þ and Oðl−1Þ
coefficients, respectively, in a large l limit,

Sð1Þ ¼
i
6

ðm̃þ iñÞ2
ðmþ inÞðp − iqÞ ; fð1ÞAB ¼ m̃þ iñ

ðp − iqÞ2 oðAιBÞ:

ð5:24Þ

Likewise, we find

Sð2Þ ¼
ðẽ2 þ g̃2Þ2

6ðe2 þ g2Þðp2 þ q2Þ ;

fð2ÞAB ¼ −i
ðẽ2 þ g̃2Þ

ðp − iqÞ2ðpþ iqÞ oðAιBÞ: ð5:25Þ

It is worth pointing out that for real parameters e; g; ẽ and g̃,
the function Sð2Þ is a real function, unlike the zeroth copy
Sð1Þ. Additionally,

1

Sð1Þ
fð1ÞAB ∝

1

Sð2Þ
fð2ÞAB; Sð2Þ ∝ jSð1Þj2; ð5:26Þ

unlike the relation (4.21) for the charged C metric and
general PD solution.
In the same vein, upon the rescalings (5.20) and (5.21)

and taking the l → ∞ limit of (5.11) and (5.12), the Ricci
spinor and Weyl spinor are, respectively,

ΦABC0D0 ¼ 2
ðe2 þ g2Þ
ðp2 þ q2Þ2 oðAιBÞōðC0 ῑD0Þ; ð5:27Þ

ΨABCD ¼ −6i
ðmþ inÞ
ðp − iqÞ3 oðAoBιCιDÞ

−
6ðe2 þ g2Þ

ðp − iqÞ3ðpþ iqÞ oðAoBιCιDÞ: ð5:28Þ
14In [39] we imprecisely remarked the appearance of the

magnetic monopole arises due to the moving NUT charge. Now it
is clear the reason for the magnetic monopole-like behavior is
primarily due to the acceleration.

15This is mostly easily verified by switching to Boyer-
Lindquist form coordinates; see, e.g., [51].
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And, by virtue of (5.26), we see

1

Sð2Þ
fð2ÞABf̄

ð2Þ
C0D0 ¼ 6ðe2 þ g2Þ

ðp2 þ q2Þ2 oðAιBÞōðC0 ῑD0Þ ¼ 3ΦABC0D0 ;

ð5:29Þ

which is the same form as the Kerr-Newman solution (3.17)

and is proportional to fð1ÞABf̄
ð1Þ
C0D0 .

VI. DISCUSSION

In this work, we explored the sourced Weyl double
+copy [39] for exact solutions to Einstein-Maxwell theory.
In doing so we provided the first double-copy analysis of the
charged C metric and Kerr-Newman-Taub–NUT black hole,
and developed a double prescription for the Ricci spinor for
the type-D solutions considered. Paramount in our interpre-
tation of the zeroth- and single-copy fieldswas the role played
by Riemann asymptotic flatness, i.e., whether the Riemann
curvature tensor was nonvanishing at spatial infinity.
Spacetimes whose Riemann curvature tensor was nonvanish-
ing asymptotically, namely, the charged Cmetric and general
Plebanski-Demianski solution, had a corresponding single-
copydual field-strength tensorwith nonvanishing divergence.
This indicates the existence of a nontrivial magnetic current.
In the case of the charged C metric, we used a two-potential
formulation of electrodynamics to provide a consistent
description of the single-copy field strength, Fð2Þ

μν , leading
to a correction of the Liénard-Wiechert potential (owed to

Að2Þ
μ ) and a second potential Cμ responsible for the magnetic

current density. Additionally, we showed all Riemann asymp-
totically flat electrovacuum spacetimes, including the Kerr-
Newman-Taub–NUT solution, have a Ricci spinor whose
double-copy form is reminiscent of the Weyl double copy.
Summarily,

ΦABC0D0 ¼2q2s
q21

fð1ÞABf̄
ð1Þ
C0D0 ; ΦABC0D0 ¼ 1

3Sð2Þ
fð2ÞABf̄

ð2Þ
C0D0 ; ð6:1Þ

where the first equality holds for all electrovacuum solutions
with external source chargeqs, while the second equality only
holds for asymptotically flat electrovacuum spacetimes.
There are multiple potential avenues of future research.

Firstly, it would be worthwhile to examine the sourced
Weyl double copy including matter field sources beyond
Einstein-Maxwell theory. More generally one may include
additional gauge fields, scalar fields, etc., motivated by,
e.g., string theory or supergravity. Such extensions have
been considered in the context of the perturbative double
copy; however, the exact Kerr-Schild double copy for pure
Einstein gravity has difficulty describing an additional
massless NS-NS field like a Kalb-Ramond field or a
dilaton using the single-null congruence in the conventional
Kerr-Schild ansatz. To understand the double copy of such

fields in a nonperturbative way, the Kerr-Schild framework
was generalized to describe double-field theory and super-
gravities in [52,53] (see also the extensions [54–56]). It
would be interesting to try to incorporate such fields using
the sourced Weyl double copy, and compare to the spinorial
representation of the torsionful Riemann curvature intro-
duced in [37] to study solutions of the universal massless
sector of supergravity. Doing so may also lead to a better
understanding how the sourced Weyl double copy relates to
the scattering amplitudes of the corresponding single-copy
gauge-field theory. Alternately, imposing the (sourced)
Weyl double copy in double-field theory could be provide
a mechanism to study the relation between T duality and
double copy for type-D solutions.16

Further, it would be interesting to extend our current
analysis to other types of black hole spacetimes, particularly
those including a cosmological constant (whose Weyl
double copy was presented in [57]), additional Abelian
gauge fields [58], andmassless or higher-spin fields [59,60].
It would also be interesting to adapt our formalism to three-
dimensional spacetimes, such as the Bañados-Teitelboim-
Zanelli (BTZ) black hole [61], its quantum and de Sitter
generalizations [62,63], or generalized three-dimensional
solutions described in [64,65]. To this end, it would be
worthwhile to also attempt to extend the Cotton double copy
[66] to include external sources.
Finally, we have studied an elementary extension of the

original Weyl double copy, and begun to gather evidence of
a double-copy prescription for the Ricci spinor. To better
understand both double-copy structures on a more funda-
mental level, it would be interesting to explore the
twistorial foundations of the sourced Weyl double copy,
utilizing and extending [21,22,36,38,67–69].
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APPENDIX: SPINOR FORMALISM

Here we briefly illustrate how to obtain various spinorial
quantities of interest from a four-dimensional curved space-
time metric gμν. In our notation, spacetime indices are given
by fμ; ν;…g, frame indices by fa; b;…g, while the spinor
indices are fA; B;…g and their conjugates fA0; B0;…g. Our
remaining conventions primarily follow [42,70].

16We thank Eric Lescano for suggesting this to us.
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1. Tetrads and the spinor basis

We introduce a complex null tetrad fl; n;m; m̄g con-
structing the metric gμν and it satisfies

gμν ¼ −2lðμnνÞ þ 2mðμm̄νÞ;

lμlμ ¼ nμnμ ¼ mμmμ ¼ m̄μm̄μ ¼ 0;

nμlμ ¼ −1; mμm̄μ ¼ þ1; ðA1Þ
for which null vectors nμ and lμ are real andmμ is generally
complex with m̄μ its conjugate. The tetrad vectors have an
associated frame tetrad that can be obtained using the
vierbein as, e.g., la ¼ eμμlμ. Explicitly, we work with the
tetrad set

la ¼
1ffiffiffi
2

p ð1;−1; 0; 0Þ; na ¼
1ffiffiffi
2

p ð1; 1; 0; 0Þ

ma ¼
1ffiffiffi
2

p ð0; 0; i; 1Þ; m̄a ¼
1ffiffiffi
2

p ð0; 0;−i; 1Þ; ðA2Þ

which constructs Minkowski space analogously to (A1) as
ηab ¼ −2lðanbÞ þ 2mðam̄bÞ. All frame indices are raised
with ηab.
To translate between tensors and spinors, we use the

Pauli four-vectors:

σaAA0 ¼ 1ffiffiffi
2

p ð1; σ⃗ÞAA0 ; ðA3Þ

where the σi are the standard SUð2Þ generators:

σ1≐
�
0 1

1 0

�
; σ2≐

�
0 −i
i 0

�
; σ3≐

�
1 0

0 −1

�
: ðA4Þ

The Pauli four-vectors satisfy

σaAA0σBB
0

a ¼ δABδ
A0
B0 ; σaAA0σBB

0
b ¼ δab: ðA5Þ

Then, any spacetime (frame) vector has a spinor analog,

Va → VAA0 ¼ Vaσ
a
AA0 ; ðA6Þ

which has its associated spacetime vector Vμ ¼ eaμVa.
We next identify a spinor basis foA; ιAg (and the

conjugate basis fōA0 ῑA0 g), whose indices are raised and
lowered by the two-dimensional Levi-Civita symbol,

ϵAB ≐
�

0 1

−1 0

�
¼ −ϵAB ðA7Þ

and its conjugate ϵA
0B0
. The basis spinors are related to the

frame tetrad by

oAōA0 ¼ laσaAA0 ; ιA ῑA0 ¼ naσaAA0 ;

ιAōA0 ¼ maσ
a
AA0 ; oA ῑA0 ¼ m̄aσ

a
AA0 : ðA8Þ

The spinor basis satisfies ϵABoBoA¼ ϵABιBιA¼0, ϵABιBoA ¼
ιAoA ¼ 1, with ϵABoBιA ¼ oAιA ¼ −1. Using (A8) along
with our choice of tetrads (A2), we can deduce that the
(normalized) spinor basis vectors are given by

oA ¼ 1ffiffiffi
2

p ð1; 1Þ; ιA ¼ 1ffiffiffi
2

p ð1;−1Þ: ðA9Þ

We next introduce the Infeld–van der Waerden symbols:

σabAB ¼ σ½aAA0 σ̄b�A
0CϵCB; σ̄ ¼ 1ffiffiffi

2
p ð1;−σ⃗Þ; ðA10Þ

which, along with the spacetime vierbeins, allow us to
obtain the spinorial forms of any (even) rank-2 and higher
tensor. For example, defining σμνAB ¼ eμaeνbσ

ab
AB, the Weyl

spinor and spinor field strength are given by

ΨABCD ¼ 1

4
Wμναβσ

μν
ABσ

αβ
CD; ðA11Þ

fAB ¼ 1

2
Fμνσ

μν
AB; ðA12Þ

where Wμναβ is the Weyl tensor and Fμν is the standard
field-strength tensor. Both ΨABCD and fAB are completely
symmetric in their indices.

2. Field-strength spinor

In the Weyl double copy, the spinor field strength lives
in an appropriate flat limit of the full spacetime metric,
which we relate to the “Minkowski vierbeins” eð0Þ as

gð0Þμν ¼ eð0Þ;aμ eð0Þ;bν ηab. We then define the “frame field
strength” Fab, related to the spacetime field strength by

Fμν ¼ eð0Þ;aμ eð0Þ;bν Fab: ðA13Þ

Importantly, Fab lives on Minkowski space defined by
ηab ¼ diagð−1; 1; 1; 1Þ, while Fμν lives on a different form

of flat space described by gð0Þμν .
The spinor field strength associated with the frame field

strength Fab is analogous to (A12),

fAB ¼ 1

2
Fabσ

ab
AB: ðA14Þ

Componentwise, fAB is

f00 ¼ −F01 þ F13 þ iðF02 − F23Þ;
f01 ¼ F03 þ iF12;

f11 ¼ F01 þ F13 þ iðF02 þ F23Þ; ðA15Þ

We can invert (A15) together with their complex conjugate
f̄A0B0 to solve for the Fab’s:
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F01 ¼
1

4
½f11 − f00 þ f̄1010 − f̄0000 �; F02 ¼

1

4i
½f̄1010 þ f̄0000 − ðf11 þ f00Þ�; F03 ¼

1

2
½f01 þ f̄0010 �

F13 ¼
1

4
½f00 þ f11 þ f̄0000 þ f̄1010 �; F23 ¼

1

4i
½f11 − f00 − ðf̄1010 − f̄0000 Þ�; F12 ¼

1

2i
½f01 − f̄0010 �: ðA16Þ

Note that for each of the type-D metrics we consider, the
matrix structure of fAB is the Pauli matrix σ3, i.e.,

fAB ¼ Z

�
1 0

0 −1

�
AB

; ðA17Þ

where in general, Z ∈ C. Thus, f00 ¼ −f11 ¼ Z,
f0000 ¼ −f1010 ¼ Z�, and f10 ¼ f01 ¼ 0. This allows us
to write the two nonzero components of Fab solely in
terms of Z as

F01 ¼ −
1

2
ReðZÞ; F23 ¼ −

1

2
ImðZÞ: ðA18Þ

Finally, to obtain Fμν, we now contract Fab terms using

the flat-space vierbeins eð0Þ;aμ . Dropping the (0) superscript
on the vierbeins for conciseness, this reads

Fμν¼Fabeaμebν ¼−
1

2
ðReðZÞe0½μe1ν� þ ImðZÞe2½μe3ν�Þ: ðA19Þ

We point out that when vierbeins are diagonal (as would be

the case if gð0Þμν is the metric in spherical polar or oblate
spheroidal coordinates), then, from (A19), if Z has an
imaginary component, then Fμν has a magnetic field
component. This is in line with standard results for the
Schwarzschild solution contrasted to the Kerr solution: the
presence of the rotation parameter resulted in Z being
complex in the latter case, which corresponds to the
magnetic field present as a result of the angular momentum
of the black hole. For Schwarzschild, Z ∈ R and the single-
copy gauge field strength contains a (radial) electric
field only.
Finally, as described in Sec. II A, let us explicitly show

the form of the spinor field strengths of the single-copy
source fð1ÞAB and double-copy source fsAB are equivalent. For

frame field strength Fð1Þ
ab ¼ Fð1Þ

μν ðeð0ÞÞμaðeð0ÞÞνb, then

fð1ÞAB ¼ 1

2
Fð1Þ
μν ðeð0ÞÞμaðeð0ÞÞνbσ½aAC0 σ̄

b�C0
B

¼ 1

2
Fð1Þ
cd ðeð0ÞÞcμðeð0ÞÞdνðeð0ÞÞμaðeð0ÞÞνbσ½aAC0 σ̄

b�C0
B

¼ 1

2
Fð1Þ
cd δ

c
aδ

d
bσ

½a
AC0 σ̄

b�C0
B

¼ 1

2
Fð1Þ
ab σ

½a
AC0 σ̄

b�C0
B; ðA20Þ

where we used ðeð0ÞÞaμðeð0ÞÞμb ¼ δab in the third line.
Likewise,

fsAB ¼ 1

2
Fs
μνe

μ
aeνbσ

½a
AC0 σ̄

b�C0
B

¼ 1

2
Fs
cde

c
μedνe

μ
aeνbσ

½a
AC0 σ̄

b�C0
B

¼ 1

2
Fs
cdδ

c
aδ

d
bσ

½a
AC0 σ̄

b�C0
B

¼ 1

2
Fs
abσ

½a
AC0 σ̄

b�C0
B; ðA21Þ

where we used eaμe
μ
b ¼ δab.

3. Weyl spinor

The Weyl spinor ΨABCD may be expanded using the
spinor basis foA; ιBg as [42,71]

ΨABCD ¼ Ψ0ιAιBιCιD − 4Ψ1oðAιBιCιCÞ þ 6Ψ2oðAoBιCιDÞ
− 4Ψ3oðAoBoCιDÞ þ Ψ4oAoBoCoD: ðA22Þ

Here parentheses represent symmeterization, with the
convention, HðABÞ ¼ 1

2
ðHAB þHBAÞ. The ΨI ∈ C denote

the Weyl scalars involved in the Petrov classification of the
spacetime (see, e.g., [70] for a thorough description of the
classification scheme), and are defined using the Weyl
tensor Wμνλγ and the complex null tetrad (A1):

Ψ0 ¼ Wμνρλnμmνnρmλ;

Ψ1 ¼ Wμνρλnμlνnρmλ;

Ψ2 ¼ Wμνρλnμmνm̄ρlλ;

Ψ3 ¼ Wμνρλnμlνm̄ρlλ;

Ψ4 ¼ Wμνρλm̄μlνm̄ρlλ: ðA23Þ

For all Petrov type-D spacetimes, one can always choose a
coordinate system such that Ψ2 ≠ 0 while all other ΨI
vanish, such that the Weyl spinor becomes

Ψtype D
ABCD ¼ 6Ψ2oðAoBιCιDÞ: ðA24Þ

4. Ricci spinor

The Riemann tensor decomposes into the Weyl tensor,
Ricci tensor, and Ricci scalar schematically as Riem ¼
Weylþ Ric ⊗ gþ Rðg ⊗ gÞ. Similarly, the Riemann
spinor decomposes as
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RAA0BB0CC0DD0 ¼ ΨABCDϵA0B0ϵC0D0 þ Ψ̄A0B0C0D0ϵABϵCD þΦABC0D0ϵA0B0ϵCD þ Φ̄A0B0CDϵABϵC0D0

þ 2ΛðϵACϵBDϵA0B0ϵC0D0 þ ϵABϵCDϵA0D0ϵB0C0 Þ; ðA25Þ

where Λ and ΦABC0D0 ¼ ΦðABÞðC0D0Þ are related to the Ricci scalar and Ricci tensor, respectively, and Φ̄A0B0CD is the complex
conjugate of ΦABC0D0 . We refer to ΦABC0D0 as the Ricci spinor. The components of the Ricci spinor can be calculated using
the Ricci tensor and the complex null tetrad fl; n;m; m̄g. There are nine individual components of ΦABC0D0 [42],

Φ000000 ¼ −
1

2
Rμνnμnν; Φ000010 ¼ −

1

2
Rμνnμmν; Φ001010 ¼ −

1

2
Rμνmμmν;

Φ010000 ¼ −
1

2
Rμνnμm̄ν; Φ010010 ¼ −

1

2
Rμνnμlν þ 3Π; Φ011010 ¼ −

1

2
Rμνmμlν;

Φ110000 ¼ −
1

2
Rμνm̄μm̄ν; Φ110010 ¼ −

1

2
Rμνm̄μlν; Φ111010 ¼ −

1

2
Rμνlμlν: ðA26Þ

Here, Π is related to the Ricci scalar via Π ¼ 1
12
R.

The scalar functions fΦ000000 ;…;Φ111010g can also be
obtained via contractions with foA; ιAg, for example
(cf. page 22 of [71]),

Φ000000 ¼ΦABC0D0oAoBōC
0
ōD

0
; Φ110010 ¼ΦABC0D0 ιAιBōC

0
ῑD

0
;

ðA27Þ

and so forth. Following the notation of [42], the Ricci
scalars are conveniently written as

Φ00 ≡Φ000000 ; Φ01 ≡Φ000010 ; Φ02 ≡Φ001010 ;

Φ10 ≡Φ010000 ; Φ11 ≡Φ010010 ; Φ12 ≡Φ011010 ;

Φ20 ≡Φ110000 ; Φ21 ≡Φ110010 ; Φ22 ≡Φ111010 :

ðA28Þ

Note ΦABC0D0 is generally Hermitian, since Φab ¼ Φ̄ba.

Using the normalized spinor basis, we can deduce an
expansion for the Ricci spinor:

ΦABC0D0 ¼ Φ22oAoBōC0 ōD0 − 2Φ12oðAιBÞōC0 ōD0

þΦ02ιAιBōC0 ōD0 − 2Φ21oAoBōðC0 ῑD0Þ

þ 4Φ11oðAιBÞōðC0 ῑD0Þ − 2Φ01ιAιBōðC0 ῑD0Þ
þΦ20oAoB ῑC0 ῑD0 − 2Φ10ιðAoBÞ ῑC0 ῑD0

þΦ00ιAιB ῑC0 ῑD0 : ðA29Þ

As was discussed in the text, the only nonzero Ricci
coefficient in Einstein-Maxwell theory is Φ11; thus, the
Ricci spinor is

ΦABC0D0 ¼ 4Φ11oðAιBÞōðC0 ῑD0Þ: ðA30Þ
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