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Subjective signal strength distinguishes
reality from imagination

Nadine Dijkstra 1 & Stephen M. Fleming 1,2,3

Humans are voracious imaginers, with internal simulations supporting mem-
ory, planning and decision-making. Because the neural mechanisms support-
ing imagery overlap with those supporting perception, a foundational
question is how reality and imagination are kept apart. One possibility is that
the intention to imagine is used to identify and discount self-generated signals
during imagery. Alternatively, because internally generated signals are gen-
erally weaker, sensory strength is used to index reality. Traditional psychology
experiments struggle to investigate this issue as subjects can rapidly learn that
real stimuli are in play. Here, we combined one-trial-per-participant psycho-
physics with computational modelling and neuroimaging to show that ima-
gined and perceived signals are in fact intermixed, with judgments of reality
being determined by whether this intermixed signal is strong enough to cross
a reality threshold. A consequence of this account is that when virtual or
imagined signals are strong enough, they become subjectively indistinguish-
able from reality.

In order to function in complex environments, humans have evolved
to move beyond stimulus-triggered responses to guide behaviour via
offline simulations, such as during navigation and planning1. Con-
temporary generative models of brain function propose that mental
imagery relies on similar neuralmachinery to that engaged by veridical
perception2–4, a hypothesis supported by neuroimaging data5–8. While
allowing for a vast increase in cognitive sophistication, the existenceof
stimulus-independent processing poses a fundamental challenge for
the nervous system: given that internally and externally triggered
signals are often similar, there is considerable potential for confusing
perception and imagery9. The capacity to resolve such confusion, and
distinguish between imagination and reality, is known as perceptual
reality monitoring.

One cue that the brainmight use for reality monitoring is volition
or intention. In the literature on sense of agency, the extent to which
incoming sensory activity canbepredicted from the intention tomove
is believed to generate the feeling that such activity is self-caused,
rather than reflecting a change in the outside world10,11. Accordingly,
sensory inputs congruent with self-triggered actions are attenuated
because they are ‘explained away’ by a top-down intention signal.

Hallucinations in disorders of realitymonitoring such as schizophrenia
are thus explained as reflecting disturbances in the forward model
which predicts the sensory consequences of actions12. In this scenario,
the sensory consequences of internally triggered speech or thoughts
are not explained away and are therefore erroneously attributed to an
external source13–15.

Anecdotal evidence that a similar mechanism might underlie
perceptual reality monitoring in otherwise healthy observers comes
from the Perky effect, which was demonstrated by Mary Cheves West
Perky in 1910 and has achieved almost mythical status within imagery
research16,17. In this study, participants were instructed to imagine
various objects at a certain location on the wall while, unbeknownst to
the participants, images of the same objects were simultaneously
projected to the same location. All participants failed to notice the
presence of these real stimuli, reflecting that “if I hadn’t known I was
imagining, I would have thought it real” (Perky, 1910, p. 433).”

However, visual imagery is often also triggered automatically,
outside of voluntary control and, despite the absence of a clear
intention in these instances, such involuntary imagery is generally
still not mistaken for reality18,19. Another cue that the brain might use
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to dissociate imagination and reality is sensory strength. The phe-
nomenological experience of imagery tends to be much weaker
and less clear than that of perception. This difference in sensory
strength has recently been suggested to be a direct consequence of
running the visual system backwards when engaged in mental
imagery20,21. Due to the absence of bottom-up input during imagery,
the excitatory neurons within the middle layer of primary visual
cortex are not activated22,23, leading to lower activation levels overall.
Furthermore, because imagery signals are likely to originate in
higher-level areas which have larger receptive fields, the precision of
sensory signals is also lower during imagery24,25. Accordingly, the
sensory consequences of imagery might not need to be explained
away because they are generally not strong enough to be mistaken
for reality.

It has been surprisingly difficult to obtain empirical data with high
enough statistical power that bears on these conjectures. Previous
work has shown that imagery generally biases perception towards the
imagined percept26–28 (but see29 for opposite effects) and that it can
hamper or facilitate perceptual discrimination30–33. However, the con-
sequence of these interactions for source judgements about whether
signals reflect imagination or reality remain unclear. Moreover, in the
context of a perceptual realitymonitoring task, as soon as a participant
realizes that an external stimulus might be presented, attention on
subsequent trials will naturally be directed externally, biasing inter-
pretation of sensory signals back towards reality34,35. This might
explain the steady decline and eventual reversal in reports of the Perky
effect over the years as the development of modern technology made
multi-trial psychophysics the norm in psychology labs (Supplemen-
tary Fig. 1).

In the current study we combine computational modelling with
recent developments in large-scale online data collection35,36 and
single-trial psychophysics to test differentmodels of perceptual reality
monitoring in a statistically robust fashion. We validate model pre-
dictions about underlying brain mechanisms using multivariate pat-
tern analysis of neuroimagingdata. In a behavioural study, participants
were instructed to vividly imagine a stimulus while looking at dynamic
noise and then report the vividness of their imagery (Fig. 1A). Then,
unbeknownst to the participant, similar to Perky’s (1910) study, on a
final, critical trial, a stimulus that was either congruent or incongruent
with participants’ imagery gradually appeared in the noise until it was
around detection threshold. After again reporting their imagery
vividness on this critical trial, participants were asked whether they
thought a real stimulus had been presentedon the last trial, orwhether
what they had experiencedwasonly imagined. Participants’ answers to
this last question provided a direct, unbiased test of perceptual reality
monitoring, in the absence of expectations or prior instructions that
external stimuli might be presented.

Results
Competing models for perceptual reality monitoring
We combined these large-scale single-trial psychophysical data with
computational modelling and neuroimaging to distinguish between
three hypothesized mechanisms for perceptual reality monitoring.
According to our null model, the subjective experiences of imagery
and perception are distinct and they do not get confused (Fig. 1B; H0).
In this scenario, imagery vividness and perceptual visibility (an infer-
ence as to whether a real stimulus is present) are each determined by
distinct computations. This model suggests that imagery and

Fig. 1 | Experimental design and theoretical accounts of reality monitoring.
A We employed online psychophysics to test reality monitoring in a statistically
robust manner. Participants were instructed to imagine oriented gratings while
looking at dynamic noise. On the final, critical trial, a grating with either the same
(congruent) or perpendicular (incongruent) orientation to the imagined stimulus
gradually becamemore visible until it was around detection threshold. Participants

were then asked whether they thought a stimulus was presented on the last trial or
if what they saw was imagined. Importantly, each participant only performed one
critical, reality monitoring trial ensuring they remained naïve about the potential
presence of external stimuli. B We compared three theoretical accounts of per-
ceptual realitymonitoring:H0source separation,H1 Perky effect11 andH2complete
source mixing.
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perception in fact rely on distinct neural populations (e.g. in different
cortical layers22,23) but that the overlap found in previous studiesmight
for example be an artefact of the poor resolution of neuroimaging
methods which look at the average activation over many thousands of
neurons37. Accordingly, this null model (H0) predicts that whether
imagery is congruent or not with perception is immaterial for reality
judgements, and that reality judgements do not influence reported
imagery vividness.

Our second hypothesis (H1) is inspired by Perky’s findings and
captures the idea that sensory signals in line with an imagery intention
are inferred to reflect imagination. It predicts that if the same content
is both imagined and perceived, external input is ‘explained away’ as
reflecting imagery (Fig. 1B; H1). This can be modelled as a suppressive
influence of imagery on perception, decreasing the probability that a
stimulus is judged to be real when that stimulus is also imagined.
Accordingly, when a congruent stimulus is judged to be imagined this
means that the suppressive influence of imagery was strong enough to
suppress the sensory input. Therefore, congruent imagery judgements
should be associated with higher imagery vividness reports than
congruent reality judgements.

Finally, if imagery and perception are supported by similar
computations and imagery signals are not explained away, we might
expect the subjective experiences of imagery and perception to only
be distinguishable based on their relative strength (Fig. 1B; H2). In
this scenario, imagining and perceiving the same content would lead
to an increase in both imagery vividness as well as perceptual visi-
bility, because both signals are added together to create one, inse-
parable sensory experience. Reality monitoring is then implemented
by judging whether this subjective mixture of perception and ima-
gery crosses a reality threshold (Fig. 1B; H2). Previous studies
reporting more liberal perceptual detection criteria during simulta-
neous congruent imagery would be in line with this model35,38. Fur-
thermore, because imagery and perception are intermixed and
reality judgements are based on the sensory strength of the mixed

signal, this model also predicts that when stimuli are judged to
reflect reality, they should be associated with stronger ratings of
imagery vividness compared to when they are judged to reflect
imagination.

We simulated the predicted pattern of results in the two con-
ditions for each of these three models within a signal detection
theory framework39 (see Methods for details). Critically, as shown in
Fig. 2A, each hypothesis makes qualitatively different predictions for
the patterns of imagery vividness and perceptual reality judgments
on the final, critical trial across the conditions in our experiment.
Complete source separation (H0) predicts no difference between
congruent and incongruent imagery conditions in terms of experi-
enced vividness or the likelihood an external stimulus is judged as
real (Fig. 2A, left). This is because under this model imagery and
perception are always distinguishable, even if they overlap in content
(the congruent condition). In contrast, the Perky effect (H1) predicts
that congruent perceptual signals are incorporated into the imagery
experience such that vivid, congruent imagery leads to a decrease in
the likelihood a stimulus is judged as real (Fig. 2A, middle). Finally,
complete source mixing (H2) predicts that internal and external
signals are intermixed and this combined signal underpins judg-
ments of both stimulus presence and imagery vividness. This
account predicts bidirectional influences between detection and
vividness on congruent imagery trials, such that there is both a
higher probability of judging a stimulus as real (relative to incon-
gruent imagery), and, counter-intuitively, when a stimulus is judged
to be real, the vividness of imagery should also be higher (Fig. 2A,
right). We also explored a variation of the source mixing model that
contained an extra parameter which allowed for the weighting of
internal and external signals to be different for source judgements
and imagery judgements (Supplementary Fig. 3A). This model pre-
dicted qualitatively similar results as the more parsimonious source
mixingmodel (Supplementary Fig. 3B), and therefore in what follows
we focus on the simpler one-parameter model.

Fig. 2 | Model predictions and results. A Simulations of the three alternative
theoretical models. Predicted percentage of trials judged as “real” (left hand bars)
and imagery vividness (right hand bars) separated by condition (congruent,
incongruent) and, for vividness ratings, reality judgment. Error bars indicate the
standard error of the mean (SEM) over simulation samples. For H0: n = 1898; H1:
n = 1872; H2: n = 1682 independent simulation samples. B Empirical data for reality
judgments and vividness from Experiment 1. Data are presented asmean values +/−
SEM and dots indicate individual participants, n = 274 independent participants. A
logistic regression indicated amain effect of conditionon reality judgements (β(1) =
0.860 (CI = 0.31–1.41), p =0.002 (uncorrected), OR=0.423). A multinomial
regression indicated that there was a significant difference in vividness for real

versus imagined judgements for the congruent condition (β(1)=0.40 (CI=0.22–
0.58)p =0.000013 (uncorrected)) but not for the incongruent condition (β(1)=0.19
(CI= −0.03–0.40), p =0.092 (uncorrected)) CModel simulations as in (A), but now
for the casewith no external input. Data are presentedasmeanvalues + /− SEMover
simulation samples, for H0: n = 902; H1: n = 879; H2: n = 929 independent simula-
tion samples D. Empirical findings for Experiment 2. A multinomial regression
indicated a significancedifference in vividness for real versus imagined judgements
(β(1)=0.22, p =0.013, CI =0.05–0.40). Data are presented as mean values +/− SEM
over participants, n = 339 independent participants. *p <0.05; **p <0.005;
***p <0.0005; ****p <0.00005 all two-sided. Source data are provided as a Source
Data file.
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Perception and imagery are subjectively intermixed
The results of Experiment 1 (N = 272) are shown in Fig. 2B. We found
that the probability of judging a stimulus to be real was higher in the
congruent condition (0.41) compared to the incongruent condition
(0.25; OR =0.423, β =0.860, SE = 0.279, p =0.002, CI = 0.31–1.41;
Fig. 2B, left) and that during the congruent condition, participantswho
judged the critical trial to be real also indicated higher imagery vivid-
ness for that trial (M = 3.12, SD = 1.17) compared to participants who
judged the critical trial to be imagined (M = 2.16, SD = 1.32; β(1)=0.40,
p =0.000013, CI = 0.22–0.58). The difference in vividness in the
incongruent condition was not significant (β(1)=0.40, p =0.092, CI =
−0.03 –0.40). This qualitative patternof results is exactly as predicted
under the complete sourcemixing hypothesis (Fig. 2A; right), and goes
against the other two hypotheses which would either predict no dif-
ferences in reality judgments and vividness reports (H0), or the
opposite direction of effect (H1). Note that the source mixing model
also predicts a difference in vividness between real and imagined
judgements in the incongruent condition and while this is numerically
indeed the case, this difference is not significant, likely due to the
increased noise level in our data compared to the simulations. Toge-
ther, this combination of simple models with large-scale one-shot
psychophysics reveals a failure of perceptual reality monitoring –

when a stimulus is judged as real, participants experience greater
imagery vividness, and in turn congruent imagery leads to a greater
likelihood of a stimulus being judged as real.

One potential concern is that due to the online nature of these
experiments, participants were less engaged with either imagination,
perception, or both. To investigate this possibility, we simulated how
changes in task engagement influenced the predicted patterns of
results for each of our models. We modelled task engagement as
influencing either external attention (the scaling of sensory input),
the strength of the imagery signal, or both. While task engagement
did influence the overall predicted proportion of presence responses
and vividness ratings in all models, the patterns of predicted condi-
tion differences remained unchanged when comparing between
models (Supplementary Fig. 2). For example, the Perky model always
predicted more congruent than incongruent misses while the inter-
mixing model always predicted the reverse. This suggests that the
qualitative differences between conditions we observe here cannot
be explained based on an overall lack of task engagement. We also
considered whether our results could be explained by individual
differences in perceptual sensitivity between conditions, irrespective
of imagery. In general, participants with a higher discrimination
sensitivity d’ were more likely to respond that they saw a real sti-
mulus (F(1) = 15.93, p < 0.001, β = 0.84, CI: 0.39–1.30). Critically,
however, there was no difference in d’ between the conditions
(F(1) = 2.851, p = 0.092, CI = −0.33– 0.026) nor an interaction between
condition and reality judgement (F(1) = .753, p = 0.386), indicating
that our effect also cannot be explained by individual differences in
discrimination sensitivity.

An alternative explanation of our results is that participants may
have been confused about the task instructions, and mistakenly
reported the vividness of the stimulus on the critical trial rather than
their imagery. According to this explanation, imagery and perception
are in fact subjectively dissociable, but participants confused them
when giving their ratings – perhaps due to the surprising appearance
of anexternal stimulus on thefinal, critical trial. Inorder to ruleout this
possibility, we ran another experiment (Experiment 2, N = 339) in
which we never presented a stimulus on the critical trial, meaning that
participants could notmistakenly interpret the vividness of anexternal
stimulus as imagery. The instructions were identical to Experiment 1.
Importantly, the different models again make qualitatively distinct
predictions about how vividness covaries with reality judgements on
the critical trial– even in the absenceof external input (see Fig. 2C).We
found that the vividness of critical trials mistakenly judged to be real

was higher (M = 2.8, SD = 1.36) compared to critical trials correctly
judged to be imagined (M = 2.29, SD = 1.2; β(1) = 0.22, p =0.013,
CI =0.05–0.40; Fig. 2D) – again in line with the source mixing
hypothesis and qualitatively at odds with the predictions of the other
two accounts.

Neural correlates of sensory strength
Together, the results from Experiments 1 and 2 reveal that the overlap
between imagery and perception places fundamental constraints on
perceptual reality monitoring. A simple signal detection model
accounted for these findings by hypothesising that the vividness of
imagery and the visibility of perception rely on common latent vari-
ables (Fig. 1B; H2). If this is the case, we would expect similar neural
substrates to track both the vividness of internally triggered images as
well as the visibility of externally presented stimuli. We tested this
prediction by reanalysing functional magnetic resonance imaging
(fMRI) data collected while participants gave vividness and visibility
ratings during imagery and perception, respectively40. In both tasks
participants performed a forced-choice animacy discrimination task
and rated the visibility/vividness of their visual experience on a 4-point
scale (response mappings were randomized over trials to exclude
motor contributions to vividness/visibility-related activations). During
perception, the stimuli were presented very briefly followed by a
backwardmask, leading to variation in visibility. The imagery task was
a retro-cue task in which participants imagined one of two previously
perceived stimuli, without any physical stimulus being present, and
without any detection judgment being required.

In line with our hypothesis, imagery vividness and perceptual
visibility both correlated with activation in the same brain areas,
despite the different nature of the task: the pre-SMA, anterior insula
and right dlPFC (Fig. 3A). This coding appeared stronger during per-
ception, possibly because high-visibility perception is generally sub-
jectively stronger than even the most vivid imagery19. Furthermore,
using cross-decoding multivariate pattern analysis (after mean-
centring the activation within imagery and within perception to
account formeandifferences in strength),we found that themanner in
whichhigh versus low visibility and vividnesswas encoded in each area
was also similar, leading to significant cross-decoding within each ROI
(pre-SMA: M = 0.53, SD =0.06, t(34) = 2.96, p = 0.0003, d =0.5,
CI =0.51–0.55; anterior insula: M =0.52, SD = 0.04, t(34) = 2.96,
p =0.0008, d =0.5, CI=0.51– 0.54; right dlPFC: M =0.52, SD=0.05,
t(34) = 2.37, p =0.0097, d = 0.4, CI=0.502–0.53). Note that this analy-
sis did not investigate the neural correlates of the content of imagery
and perception, but rather their strength or vividness, which might
explain the absenceof visual cortex involvement. The notion of higher-
order, abstract (content-free) neural codes for perceptual strength has
attractedmuch recent debate in both philosophy andpsychology41 but
direct empirical evidence for such magnitude representations has
been lacking. Our results suggest that the strength of visual experience
is encoded in similar activity patterns, regardless of whether it reflects
imagery or perception. The functional nature of such signals remains
to be fully understood. For instance, one possibility is that these areas
might reflect changes in (a model of) visuospatial attentional strength
which is in turn used to infer both perceptual visibility42,43 and imagery
vividness.

We did not find any direct effects of imagery vividness or per-
ceptual visibility on univariate activation in sensory areas, despite
previous studies suggesting a key role for the early visual cortex (EVC)
in determining the vividness of visual experience44. Importantly,
however, vividnessmight not be related tooverall activation levels, but
rather to how precisely stimulus information is encoded in activation
patterns. For instance, previous studies have found that imagery
vividness is related to the extent of representational overlap between
imagery and perception in EVC – i.e. the more vivid the imagery, the
more perception-like the stimulus representation in EVC45–47. Our
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source mixing model nuances this hypothesis, and predicts that not
only should high-vividness imagery be more perception-like than low-
vividness imagery, but also that low-visibility perception should be
more imagery-like than high-visibility perception. To further investi-
gate the influence of vividness/visibility on sensory activity, we ran a
region of interest (ROI) analysis on the activation in EVC (Fig. 3B). In
line with our whole-brain analysis, we did not find a direct effect of
either imagery vividness (F(26,3) = 1.76, p =0.18; Fig. 3B, top left plot)
or perceptual visibility (F(26,3) = 0.35, p =0.78; Fig. 3B, top middle
plot), nor any above-chance cross-decoding between vividness and
visibility (M = 0.51, SD = 0.03, t(34) = 1.18, p =0.13, CI = 0.5–0.52;
Fig. 3B, top right plot) in EVC activation. However, we did find that
representations of stimulus content were modulated by vividness and
visibility. In line with our hypothesis, we could decode stimulus con-
tent on perception trials significantly better from high vividness ima-
gery trials (M =0.513, SD = 0.029) than from low vividness imagery
trials (M = 0.498, SD=0.029, t(32) = 2.50, p = 0.017, d =0.5,
CI =0.006–0.02), indicating that perception is more akin to highly
vivid imagery. Wewere also able to significantly decode the identity of
imagined stimuli from a classifier trained on low visibility (M =0.504,
SD = 0.03, p = 0.025, d =0.13, CI = 0–0.014), but not from high visibility
perception trials (M =0.503, SD =0.022, p =0.175), suggesting that
imagery is akin to low visibility perception (although this difference
was itself not significant t(32) = −0.15, p = 0.88).

Determining whether something is real
Our findings suggest that imagery and perception are subjectively
intermixed. How, then, do we ever determine whether something is
real? According to our model, this is achieved simply by evaluating
whether the total strength of a signal exceeds a reality threshold
(Fig. 1B; right–dashed black line), based on the assumption that ima-
gery is generally weaker, or less vivid, than perception19,20. Such a
model predicts that reality monitoring should be worse in people with
more vivid imagery. In line with this idea, we found that the frequency
of sourceconfusions–mistaking reality for imaginationor imagination
for reality – was associated with generally higher imagery vividness
across subjects (Supplementary Fig. 4). Specifically, in experiment 1,
during the congruent condition, average vividness ratings on the trials
preceding the critical trial were higher for participants who erro-
neously judged real stimuli to be imagined (M = 2.48, SD= 1.01) com-
pared to participants who correctly judged those stimuli to be real
(M = 2.11, SD = 1.09; t(144) = 2.04, p = 0.043, d =0.35, CI = 0.02–0.72),
but not during the incongruent condition (t(124) = 1.19, p =0.234).
Furthermore, in the no-input Experiment 2, mean pre-critical-trial
vividness was higher for participants who erroneously thought a real
stimulus had been presented (M = 2.78, SD =0.92) compared to parti-
cipants who accurately judged their sensory experience to be ima-
gined (M = 2.24, SD = 0.96; t(337) = 3.38, p = 0.0008, d =0.57,
CI = 0.23–0.85).

Fig. 3 | Neural representations of imagery vividness and perceptual visibility.
AThe outer panels show brain areas significantly modulated by imagery vividness
(left) and perceptual visibility (right). The bars indicate the average activation per
vividness/visibility level where 1 is low vividness/visibility and 4 is high vividness/
visibility. The middle panel shows cross-decoding accuracy minus chance level
(50%) between imagery vividness and perceptual visibility in the three brain areas
that showed significant univariate modulation, indicating that not only are the
same areas involved in tracking vividness and visibility, they also do so in a similar
manner. Pre-SMA: pre-supplementary motor area, dlPFC: dorsolateral prefrontal
cortex. n = 35 independent participants. Plotted brain regions showed a sig-
nificant effect of vividness/visibility in a general linear model with whole-brain
FDR correction applied at a q-value of 0.01 (two-sided) with all t(34)<−4.14. Sig-
nificance of decoding accuracy was determined based on a one-sided permuta-
tion test within individual ROIs84; pre-SMA: t(34)=2.96, p = 0.0003, d = 0.5,
CI = 0.51–0.55; anterior insula: t(34) = 2.96, p = 0.0008, d =0.5, CI = 0.51–0.54;
right dlPFC: t(34) = 2.37, p = 0.0097, d = 0.4, CI = 0.502–0.53, all uncorrected.
B The influence of vividness/visibility on early visual cortex activity (EVC). The
bottom left plot represents the location of the EVC region of interest (ROI) in
blue. The top panel indicate the univariate effect of vividness F(26, 3) = 1.76,
p = 0.18 (two-sided, uncorrected)/visibility (F(26, 3) = 0.35, p = 0.78 (two-sided,

uncorrected) on overall activation level within the ROI (lefthand two plots) as well
as on the cross-decoding accuracy (t(34) = 1.18, p = 0.13 (one-sided, uncorrected),
CI = 0.5–0.52) between vividness and visibility (right plot). The panels on the
bottom right indicate the influence of vividness/visibility on the overlap in
representations of stimulus content between imagery and perception. Purple
bars reflect training on perception and decoding during imagery and green bars
reflect training on imagery and decoding during perception. Light bars reflect
training on low visibility/vividness trials, and darker bars reflects training on high
visibility/vividness trials. These results indicate that representations of stimulus
content during imagery are more akin to those evoked on low-visibility percep-
tion trials, whereas representations of stimulus content during perception are
more akin to those evoked during high vividness imagery. n = 33 independent
participants. Errors bars represent SEM over participants, and dots represent
individual participants; train on low visibility: t(32) = 0.77, p = 0.025 (one-sided,
uncorrected), CI = 0.5–0.514; train on high visibility: t(32) = 0.78, p = 0.175 (one-
sided, uncorrected), CI = 0.496–0.511); train on high vividness: t(32) = 2.58,
p < 0.0001 (one-sided, uncorrected), CI = 0.503–0.523; train on low vividness:
t(32) = 0.4, p = 0.77 (one-sided, uncorrected), CI = 0.488-0.508. *p < 0.05;
**p < 0.005; ***p < 0.0005. Source data are provided as a Source Data file.
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Discussion
In this study we investigated how imagined and perceived signals
interact to determine reality judgements. By combining large-scale
single-trial psychophysics, computationalmodelling andneuroimaging,
we find evidence in support of a theoretical model in which reality and
imagination are intermixed to determine a unified sensory experience.
This model runs counter to accounts in which imagery and perception
are separable, and to earlier findings of the Perky effect which imply
imagery suppresses perception of reality. When deciding whether an
experience reflects external reality or internal imagination, our model
compares the strength of this experience to a reality threshold. But if
reality and imagination are subjectively intermixed by default, why do
we not confuse them more often in daily life? We suggest that such
confusions are rare simply because imagery is typically less vivid than
veridical perception, rarely crossing the reality threshold. However,
these results also suggest that if imagery does become vivid or strong
enough, it will be indistinguishable from perception.

Our findings are inconsistent with a Perky effect, in which people
tend to downweigh or discard incoming sensory information when
imagining. More broadly, our results challenge a proposal that the
intention or volition associated with imagery is used to classify an
experience as imagined rather than real. According to a range of the-
oretical frameworks, sensory signals that can be predicted from top-
down intentions are tagged as self-triggered and external input con-
gruent with these predictions is suppressed11,13,15,48–55. One possible
explanation for the discrepancy between these proposals and our
results is that the sensory signals caused by our own actions – such as
shifts in visual input caused by eyemovements, proprioceptive signals
caused by arm movements and auditory signals caused by speech
production – tend to be stronger than those caused by visual imagery,
and thereforemaybemore in needof suppression. Indeed, the sensory
signals produced by self-action are often comparable in strength to
those same signals caused by external sources – i.e. the world actually
shifting, your armbeingmoved or someone else’s speech being heard.
In contrast, due to the absence of excitatory, bottom-up input, the
sensory signals caused by visual imagery are generally much weaker
than those caused by external visual signals20,21. Accordingly, while
there is a clear need to attenuate self-triggered signals during overt
action, such a mechanismmight not be necessary for attenuating self-
triggered signals during covert imagery. In line with this idea, there is
evidence that auditory and visual hallucinations rely on (partly) dis-
tinct mechanisms48,55. Future studies investigating the influence of
visual imagery on simultaneously congruent perception in different
scenarios as well as the neural consequences of congruent imagery on
sensory processing of external inputs are necessary to test this
hypothesis.

If congruent sensory input is not suppressed during mental ima-
gery, why did Perky then observe such a clear suppressive effect of
imagery in her study? One possibility is that Perky’s finding was a false
positive, caused by the low statistical power of her sample. Another,
more interesting possibility is that the reality threshold is likely to be
dynamic and influenced by several factors. Both in the lab and in the
world, the current context provides information about the likelihood
of an external stimulus being presented. In Perky’s experiment, during
which stimuli were presented using a hidden ‘magic lantern’, and in an
era when video presentations were very uncommon56, participants
mayhave beenmore likely to believe that their sensory experiencewas
a product of their imagination – because what else could have caused
it? This might also partly explain the steady decline of the Perky effect
over the last century when technological advances made visual pre-
sentation of stimuli more and more common, leading to a decrease in
reality thresholds (Supplementary Fig. 1). An exciting avenue for future
research is to further characterize the contextual and cognitive factors
that influence the reality threshold and how this is implemented in the
brain. A final possibility is that there is a difference between knowing

something is real and experiencing it as real21. Perhaps participants in
Perky’s experiment cognitively attributed their sensory experience to
imagery, because they had no alternative explanation, but due to the
enhanced strength of their experience caused by the external input,
they still experienced it as real. This would be in line with participants
saying things like “if they hadn’t known they were imagining, they
would have thought it real” (Perky, 1910; p. 433).

Our source mixing model for perceptual reality monitoring has
intriguing clinical implications. A model in which sensory strength
biases source judgements towards reality is in line with a proposal that
hallucinations are caused in part by hyperactivation of sensory
areas57–59. Within our source mixing model, such hallucinations would
arise when internally triggered activity is so strong that it crosses a
reality threshold. Reality monitoring errors could alternatively also be
caused by problems with setting a reality threshold. One factor that
might influence this calibration is individual differences in imagery
vividness, with more vivid imagery rendering it more difficult to
choose a setting of the reality threshold that cleanly separates reality
from imagination. This hypothesis is in line with our findings that
people who reported higher imagery vividness in general (on the trials
preceding the critical trial) were more likely to exhibit failures of
perceptual reality monitoring. Furthermore, more vivid imagery has
been associated with an increased probability of experiencing hallu-
cinations in both clinical60,61 as well as non-clinical populations62

(however, see63). Future studies could investigate whether the reality
monitoring errors found in the current study are indeed associated
with a higher probability of experiencing hallucinations in both clinical
and non-clinical samples, as would be predicted by our source
mixing model.

The exact mechanism through which imagery and perception are
intermixed in the brain is an interesting question for future research.
One possibility is that imagery amplifies perceptual signals in a similar
wayas top-down, feature-based attention.However, two recent studies
suggest that imagery and feature-based attention might rely on dif-
ferent mechanisms. First, people with aphantasia – an inability to form
mental images – perform just as well as controls on a feature-based
attention task64. Second, while feature-based attention provides a
signal-dependent boost in sensory input, leading to an increase in
perceptual sensitivity, imagery appears to add sensory evidence irre-
spective of input strength65. Moreover, an explanation of intermixing
in terms of top-down attention only accounts for imagery’s influence
on perception but does not explain why perception in turn should also
increase imagery vividness. Another possibility is that the intermixed
sensory representation is read out by higher-order brain areas to
determine both its strength and source. This idea would neatly fit with
our neuroimaging results showing that frontal areas code both per-
ceptual and imagery vividness while sensory areas encode stimulus
content, and would be in line with both higher-order theories of con-
sciousness and recent models of the mechanisms supporting percep-
tual reality monitoring21,66–68.

Taken together, our results reveal a subjective intermixing of
imagery and perception, leading to widespread perceptual reality
monitoring failure in large general population samples. The success of
a signal detectionmodel in capturing thesedata patterns indicates that
reality monitoring may be implemented simply by comparing sensory
signals against a reality threshold. Such a model is parsimonious and
powerful, but also has profound implications. In particular, a con-
sequence of this account is that it predicts when virtual or imagined
sensory signals are strong or detailed enough, they become indis-
tinguishable from reality. While currently the most common driver of
top-down signals is imagination, in near-future scenarios in which
brain stimulation and/or virtual reality technology is used to drive
sensory signals wemight be less able to tell apart reality from unreality
than we would like to believe. Our model provides a framework within
which to investigate these issues, and offers a route towards ensuring
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our reality thresholds remain well-calibrated in the face of technolo-
gical advances.

Methods
The experimental design and initial analyses were preregisteredwithin
the Open Science Framework (OSF; https://osf.io/rdqvm/?view_only=
ec5e3e7afd78409cb9b4419c1ae41902) unless otherwise stated. The
computational modelling and neuroimaging analyses were not inclu-
ded in the pre-registration document.

Computational models
In all models we assume that the observer’s percept P and imagery
vividness I are both a function of two random variables, a perceptual
sample X and a vividness sample V .

P = f X ,Vð Þ ð1Þ

I = f X ,Vð Þ ð2Þ

In keeping with standard signal detection theory (SDT) approa-
ches, the perceptual sample is drawn from a bivariate Gaussian with
mean μX and covariance ΣX :

X ∼NðμX ,ΣX Þ ð3Þ

where μX = ½1 0� for left-tilted stimuli, ½0 1� for right-tilted stimuli, and
½00� for stimulus absence.

The vividness sample is drawn from a bivariate Gaussian with
mean μV and covariance ΣV :

V ∼NðμV ,ΣV Þ ð4Þ

where μV = VS 0
� �

or 0VS

� �
, depending on the stimulus (left-tilt or

right-tilt) the observer has been asked to imagine on this trial.
VS reflects a subject’s average imagery vividness, which is itself

drawn from a normal distribution:

VS ∼Nð2:5, 1Þ ð5Þ

Due to the symmetry of left- and right-tilted stimuli, when simu-
lating themodel, we assumed imagerywas always for left-tilted stimuli
(μV = VS 0

� �
) and varied whether μX was congruent or incongruent (or

absent) with respect to this imagery. ΣX and ΣV were both set to the
identity matrix.

Depending on the model variant, P and I are then formed via
different decision rules.

Model 1 – source separation

P =X ð6Þ

I =V ð7Þ

Model 2 – Perky effect

P =αX � V ð8Þ

I =V ð9Þ

Model 3 – source mixing

P = I =V +αX ð10Þ

Model 3b – two-parameter source mixing

P =X +αV ð11Þ

I =V +βX ð12Þ

Note thatModel 3 is a special case ofModel 3bwhenα =1 and β = 1.
In all models the integrated percept P is then compared to a

reality threshold T to determine reality monitoring decisions (real,
imagined), which we assumed to be fixed and equal to mean vividness
across subjects (2.5). If P >T , the trial is classified as real, and imagined
otherwise.

Large-scale online psychophysics
Participants. 400 participants were recruited for experiment 1 (100
per condition: imagery (left vs. right tilt) x perception (left vs. right
tilt)) using Prolific (www.prolific.co) and completed the study online.
Data were collected on a private institutional server managed by the
JATOS tool69. Informed consent was obtained from each participant
included in the study. The study took approximately 10min to
complete and participants were paid £1.25 for their contribution,
equivalent to an hourly rate of £7.50. All procedures were approved
by the University College London Research Ethics Committee. Due to
the single-critical-trial design of our experiment, we were unable to
determine individual threshold contrast for each participant a priori,
and instead we estimated participants’ discrimination sensitivity at
the presented contrast after the main task (see below for more
details). This meant that we had to exclude a high number of parti-
cipants who would have been unable to detect the stimuli in themain
task due to low sensitivity. 4 participants were removed due to
technical issues, 4 because they participated in multiple conditions,
73 because of having discrimination performance below 55%, 11
because they indicated in the debrief questions not to have imagined
the stimuli as instructed and 36 because they indicated the presence
of the incorrect stimulus (see below). The final sample consisted of
272 participants (mean age 27.5, SD 9.9), 146 in the congruent con-
dition and 126 in the incongruent condition. For experiment 2, we
collected participants as above until we obtained 40 usable partici-
pants who reported the presence of a grating despite none being
presented, to provide a sufficient between-subject false alarm
rate for analysis. This led to the collection of 461 participants. 4 of
these were removed because they participated multiple times, 87
because of having discrimination performance below 55%, 12 because
they indicated in the debrief questions not to have imagined the
stimuli as instructed and 23 because they indicated the presence of
the incorrect stimulus. The final sample for experiment 2 contained
339 participants (mean age 27.5, SD 10.1)

Experimental procedures and design. Prior to the start of the main
task, participants filled out the Vividness of Visual Imagery Ques-
tionnaire (VVIQ70,71). The VVIQ measures people’s general imagery
vividness and also serves the purpose of clearly explaining the con-
cept of mental imagery and the imagery vividness scale. During the
main task, participants were instructed to imagine a left or right
tilted grating as vividly as possible while looking at dynamic noise
(Fig. 1B; main text). After each trial, participants were asked to rate
their imagery vividness on a scale from 1 (not vivid at all) to 5 (as vivid
as real seeing). Participants performed 10 of these imagery trials and
on the 10th trial either the same grating (congruent) or a grating
orthogonal to the imagined grating (incongruent) gradually ramped
up to about threshold. After rating the vividness of the 10th trial,
participants were asked: “On the last trial, was there a grating pre-
sented on the screen?” The response options were: “No, there was
only noise on the screen, any grating I saw was my imagination [No];
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Yes, there was actually a left-tilted grating on the screen [Left tilted];
Yes, there was actually a right-tilted grating on the screen [Right
tilted].” After this, they were asked to rate their confidence in this
decision on a five-point scale.

Since there was only one detection trial per participant we were
not able to determine threshold contrast values on an individual basis.
Instead, we selected the contrast value that was associated with an
average detection performance of ~80% in a previous sample. We first
ran the study with a visibility level of 4% grating in noise, which was
associated with detection performance around 70% in a previous
sample. However, this resulted in only 12% ‘real’ responses during
the critical trial and of these, only 57% were for the correct grating
(chance is 50%), suggesting that the contrast was too low for partici-
pants to be able to perceive the presented grating during the critical
trial. Therefore, in the experiments reported here, the visibility level
was increased to 7%. With this higher visibility level the proportion of
presence responses during the critical imagary trial was still relatively
low (44% on average over conditions), but 72% of those were for the
correct grating, indicating that participants were able to sometimes
perceive the (correct) grating.

Differences in viewing distance and monitor brightness between
participants likely resulted in considerable variation in grating visibility
between participants. Therefore, to ensure that all included partici-
pants could detect the stimuli at this contrast level, after the main
experiment participants performed a standard forced-choice dis-
crimination task on the left and right-tilted gratings presented at the
same contrast in the same dynamic noise schema for 40 trials. We
chose a discrimination task instead of a detection task to avoid mea-
surement of perceptual sensitivity being influenced by differences in
detection criterion. Furthermore, discrimination and detection per-
formance can bemathematically related under signal detection theory
(SDT), allowing us to use discrimination sensitivity to infer detection
sensitivity72. Interesting, despite the low hit rate during the reality
judgement, detection sensitivity as estimated using the discrimination
task with the same visibility level but without imagery was high and
significantly above chance (d’ M = 2.1, SD =0.73). Finally, there was a
significant negative correlation between averaged pre-critical trial
imagery vividness and discrimination sensitivity in both experiment 1
(r = −0.2, p = 0.0007) and experiment 2 (r = −0.18, p =0.0007).

Finally, it is possible thatparticipantswereunsurewhat gratings at
threshold were supposed to look like on the critical trial, limiting our
ability to characterise reality monitoring failures. Therefore, after
participants performed the discrimination task (and had plenty of
experience with the stimuli involved) they were asked again whether
they saw a grating on the critical imagery trial and asked to again rate
their confidence in this response. Of the included participants 150/272
(55%) changed their judgement after the discrimination task in
experiment 1 and 204/339 (60%) in experiment 2. These changes of
mind consisted mostly of ‘imagined’ responses being changed to ‘real’
responses after the discrimination task (75% of the changes of mind in
experiment 1 and 89% in experiment 2), which is consistent with the
discrimination task revealing to participants both a) that real near-
threshold gratings are commonplace in our task environment and b)
that such gratings are often difficult to see. As we already found clear
results with the immediate reality monitoring judgement, the data of
this second judgement were not analysed further. Importantly, the
qualitative pattern of results (condition effects on proportion real
judgments and vividness reports) was similar when looking at the
second response, but given the delay, we considered the immediate
response to be a more reliable measure of source confusion.

Data analysis and statistics. Analyses were performed in MATLAB
R2018b, JASP 0.14.1.073 and SPSS 2574. To investigate whether external
input was mistaken for imagery, we tested whether imagining a con-
gruent stimulus was associated with a different (i.e. two-sided)

probability of reporting real stimulus presence compared to imagining
an incongruent stimulus. To this end, we used binary logistic regres-
sion with response (“real” versus “imagined”) as the dependent vari-
able and condition (congruent vs. incongruent) as the independent
variable. “Imagined” responses were coded as zeros and correct pre-
sence (“real”) responses as ones. We removed participants who indi-
cated that they perceived a grating orthogonal to the presented
grating because these responses are hard to interpret (theymight have
reflected hallucinations in the context of incongruent imagery, but it is
unclear what they reflected during congruent imagery) and they are
not essential for answering our main question.

We also measured participants’ detection sensitivity and imagery
vividness. Detection sensitivity was calculated based on performance
in the discrimination task as d0

discriminationffiffi
2

p . We decided to use the mean
vividness rating on the non-critical trials as a measure of participants’
imagery vividness instead of the VVIQ because previous studies found
that within-task measures were more predictive of task effects35,45,75–78.
Consistent with the possibility of such dissociations, we found no
effect of vividness as measured by the VVIQ on reality judgement
responses (b =0.317, p =0.233), despite effects on the within-task
vividness ratings (see main text). Similarly, while there was a robust
correlation between the two vividness measures both in experiment 1
(R2 = 0.073, p = 0.000006) and experiment 2 (R2 = 0.07, p =0.00001),
a large proportion of the variation in vividnessmeasured by the online
ratings was not captured by the VVIQ. We therefore decided to focus
on within-task vividness ratings as our primary individual difference
measure of mental imagery. Nonetheless, despite the absence of any
task effects, the VVIQ was still useful as a validated way to explain the
concept of mental imagery to our participants.

We expected the probability of reporting stimulus presence to be
positively correlated with detection sensitivity and negatively with
imagery vividness. Furthermore, we hypothesized that these factors
might interact with congruency such that source confusion, measured
as the difference between congruent and incongruent imagery, would
be largest for participants with low detection sensitivity and high
imagery vividness. We tested this by adding detection sensitivity and
imagery vividness as well as their interactions (both with each other
and with congruency) as predictors to the logistic regression model.

We used backwards selection to determine which factors best
predicted the presence responses. The model with the best fit, mea-
sured as the lowest Bayesian Information Criterion, included only the
main effects of condition (congruent vs. incongruent), detection d’
and imagery vividness as predictors (X2(1) = 28.442, p <0.001). This
model explained 13.8% (Nagelkerke R2) of the variance in reality jud-
gements and correctly classified 70.6% of cases. The main effects of
condition are reported in detail in the main text. Detection sensitivity,
asmeasured by the discrimination task, also significantly predicted the
likelihood of reporting presence of a real stimulus (β =0.841, SE=
0.233; p <0.001).

Finally, we considered that if participants indeed confused
external signals as imagery, this might also manifest in subjects’ con-
fidence reports during the critical reality judgement trial. Specifically,
stimulus-presence judgements might be held with less confidence in
the congruent compared to the incongruent conditions, due to the
source confusion inherent to this condition. We tested this using
multinomial ordinal regression with confidence as dependent variable
and condition as independent variable. There was no significant effect
of either condition (t(1) = 0.020, p =0.984), response (t(1) = 0.753,
p =0.451) or their interaction (t(1) = 0.178, p = 0.859) on confidence.

Neuroimaging data and analyses
To investigate the relationship between neural coding of imagery
vividness and perceptual visibility, we re-analysed previously acquired
fMRI data. More information about task design, participants and pre-
processing of the fMRI data can be found in ref. 40.
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Participants andexperimental design. fMRIdata from35participants
were analysed (mean age, 25.9 years; SD = 5.9). The imagery taskwas a
retro-cue task in which two stimuli were presented after each other for
500ms each followed by a retro-cue indicating whether the first or
second stimulus was to be imagined. The participant then imagined
this retro-cued stimulus for 4s79. The perception task consisted of a
backwards masking design in which the stimulus was presented for
one frame (17ms) followed by an ISI of 66ms and a mask of 400ms.
After each imagery or perception trial, participants decided whether
the perceived or imagined stimulus was animate or inanimate. Stimuli
were 4 full-colour objects/animals: a watering can, a football, a fish and
a rooster. After the discrimination decision, participants rated their
imagery vividness/perceptual visibility on a scale from 1 to 4. Response
mappings (whether 1 indicated high or low visibility) were randomized
over trials so that visibility modulations cannot reflect motor-related
activity.

Data analysis and statistics. Analyses were performed in MATLAB
R2018b. First, trial specific beta maps were obtained using SPM12
within a GLMwith one regressor per trial plus nuisance regressors (e.g.
movement, instruction screens, button presses). Next, we determined
which brain areas were modulated by imagery vividness and percep-
tual visibility by running a GLM on the trial-specific beta values with a
regressor for themain effects of perception and imagery as well as the
parametric modulation of vividness and visibility respectively. Sig-
nificance was determined by comparing the betas for vividness and
visibility at the group level against 0 with a one sample t-test and then
correcting the p-value for multiple comparisons using FDR correction
at a q-value of 0.01.

We used the AICHA atlas80 to determine regions of interest (ROIs)
for cross-decoding of vividness and visibility, based on which brain
areas were revealed as being univariately modulated by vividness and
visibility. We identified three ROIs: pre-SMA (containing ‘G_Frontal_-
Sup_Medial-3107’,’G_Supp_Motor_Area-1112’ and ‘S_Cingulate-1115’),
anterior insula (containing ‘G_Insulate_Anterior-376’ and ‘G_Insula-
te_Anterior-477’) and dorsolateral prefrontal cortex (containing
‘S_Inf_Frontal-116’ and ‘S_Inf_Frontal-217’). Cross-decoding was per-
formed by training a classifier on low (ratings 1 and 2) versus high
(ratings 3 and 4) imagery vividness and then testing it on high versus
low perceptual visibility and vice versa. We then averaged over
decoding directions to calculate the cross-decoding accuracy81.
Decoding was done using a linear discriminant analysis, as in ref. 82.
Prior to decoding, data were down-sampled so that there were an
equal number of trials in the low and high class, and mean-centred so
that overall amplitude differences between imagery and perception
were removed and only relative differences between high and low
vividness/visibility remained. Participants with fewer than 10 trials per
class were removed from this analysis (N = 4).

To explore to what extent activation in visual cortex was modu-
lated by vividness, we performed an ROI analysis on the early visual
cortex (EVC). The EVC ROI was created by combining all early visual
areas (V1-V4) fromtheKastner atlas83. Stimulus identitywasdecoded in
a pairwise fashion and subsequently averaged over all pairs to create a
stimulus decoding summary statistic for each classification type.
Classifiers were trained on low (ratings 1 and 2) versus high (ratings 3
and 4) imagery vividness/perceptual visibility trials and tested on all
perception/imagery trials to investigate generalization of decoding.
Participants with fewer than 2 trials per stimulus class per visibility/
vividness level were removed from the analysis (N = 2).

Determining whether decoding accuracy was significantly above-
chance was done by comparing mean group decoding accuracy with a
null distribution created by permuting the class labels prior to
decoding 25 times per participant and then using bootstrapping to
create a group null-distribution84. Comparisons between decoding
accuracies were done using t-tests.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The psychophysical data generated in this study have been deposited
in GitHub [https://github.com/NadineDijkstra/IMAREAL]. The rawMRI
data have been deposited in the Donders Repository [https://doi.org/
10.34973/j9yn-q419]. The pre-processed data used for figure genera-
tion are available in the accompanying Source Data File. The atlases
used in this study are openly available. The AICHA atlas is part of the
SPM12 toolbox and the Kastner atlas can be accessed online [https://
pubmed.ncbi.nlm.nih.gov/25452571/]. Source data are provided with
this paper.

Code availability
All experimental and analysis code is available at [https://doi.org/10.
5281/zenodo.7646917].

References
1. Mugan, U. & MacIver, M. A. Spatial planning with long visual range

benefits escape from visual predators in complex naturalistic
environments. Nat. Commun. 11, 1–14 (2020).

2. Friston, K., Kilner, J. & Harrison, L. A free energy principle for the
brain. J. Physiol. Paris 100, 70–87 (2006).

3. Parr, T. & Friston, K. J. TheAnatomy of Inference: GenerativeModels
and Brain Structure. Front. Comput. Neurosci. 12, 90 (2018).

4. Bastos, A. M. et al. Canonical Microcircuits for Predictive Coding.
Neuron 76, 695–711 (2012).

5. Siclari, F. et al. The neural correlates of dreaming.Nat. Neurosci.20,
872–878 (2017).

6. Pearson, J. The human imagination: the cognitive neuroscience of
visual mental imagery. Nat. Rev. Neurosci. https://doi.org/10.1038/
s41583-019-0202-9 (2019).

7. Dijkstra, N., Bosch, S. E. & van Gerven, M. A. J. Shared Neural
Mechanisms of Visual Perception and Imagery. Trends Cogn. Sci.
23, 18–29 (2019).

8. Kent, C. & Lamberts, K. The encoding–retrieval relationship: retrie-
val as mental simulation. Trends Cogn. Sci. 12, 92–98 (2008).

9. Bentall, R. P. The illusion of reality: a review and integration of
psychological research on hallucinations. Psychol. Bull. 107,
82–95 (1990).

10. Miall, R.C. &Wolpert,D.M. Forwardmodels for physiologicalmotor
control. Neural Networks https://doi.org/10.1016/S0893-6080(96)
00035-4 (1996).

11. Haggard, P. Sense of agency in the human brain. Nature Reviews
Neuroscience https://doi.org/10.1038/nrn.2017.14 (2017).

12. Teufel, C., Kingdon, A., Ingram, J. N.,Wolpert, D. M. & Fletcher, P. C.
Deficits in sensory prediction are related to delusional ideation in
healthy individuals. Neuropsychologia 48, 4169–4172 (2010).

13. Frith, C. The neural basis of hallucinations and delusions. Comptes
Rendus - Biol. 328, 169–175 (2005).

14. Sterzer, P. et al. The Predictive Coding Account of Psychosis. Biol.
Psych. 84, 634–643 (2018).

15. Corlett, P. R., Taylor, J. R., Wang, X. J., Fletcher, P. C. & Krystal, J. H.
Toward a neurobiology of delusions. Prog. Neurobiol. 92,
345–369 (2010).

16. Thomas, N. J. T. Mental Imagery > The Perky Experiment (Stanford
Encyclopedia of Philosophy). https://plato.stanford.edu/entries/
mental-imagery/perky-experiment.html (2014).

17. Perky, C. W. An Experimental Study of Imagination. Am. J. Psychol.
21, 422 (1910).

18. Pearson, J. & Westbrook, F. Phantom perception: voluntary
and involuntary nonretinal vision. Trends Cogn. Sci. 19,
278–284 (2015).

Article https://doi.org/10.1038/s41467-023-37322-1

Nature Communications |         (2023) 14:1627 9

https://github.com/NadineDijkstra/IMAREAL
https://doi.org/10.34973/j9yn-q419
https://doi.org/10.34973/j9yn-q419
https://pubmed.ncbi.nlm.nih.gov/25452571/
https://pubmed.ncbi.nlm.nih.gov/25452571/
https://doi.org/10.5281/zenodo.7646917
https://doi.org/10.5281/zenodo.7646917
https://doi.org/10.1038/s41583-019-0202-9
https://doi.org/10.1038/s41583-019-0202-9
https://doi.org/10.1016/S0893-6080(96)00035-4
https://doi.org/10.1016/S0893-6080(96)00035-4
https://doi.org/10.1038/nrn.2017.14
https://plato.stanford.edu/entries/mental-imagery/perky-experiment.html
https://plato.stanford.edu/entries/mental-imagery/perky-experiment.html


19. Pearson, J., Naselaris, T., Holmes, E. A. & Kosslyn, S. M. Mental
Imagery: Functional Mechanisms and Clinical Applications. Trends
Cogn. Sci. 19, 590–602 (2015).

20. Koenig-Robert, R. & Pearson, J. Why do imagery and perception
look and feel so different? Philos. Trans. R. Soc. B Biol. Sci. 376,
20190703 (2021).

21. Dijkstra, N., Kok, P. & Fleming, S. M. Perceptual reality monitoring:
Neuralmechanisms dissociating imagination from reality.Neurosci.
Biobehav. Rev. 135, 104557 (2022).

22. Bergmann, J., Morgan, A. T. & Muckli, L. Two distinct feedback
codes in V1 for ‘real’ and ‘imaginary’ internal experiences. bioRxiv
664870, https://doi.org/10.1101/664870 (2019).

23. Lawrence, S. J. D. et al. Laminar Organization of Working Memory
Signals in Human Visual Cortex. Curr. Biol. 28, 3435–3440 (2018).

24. Favila, S., Kuhl, B. & Winawer, J. Spatial perception and memory
have distinct activation profiles in human visual cortex. bioRxiv
811331, https://doi.org/10.1101/811331 (2020).

25. Breedlove, J. L., St-Yves, G., Olman, C. A. & Naselaris, T. Generative
Feedback Explains Distinct Brain Activity Codes for Seen and
Mental Images. Curr. Biol. 30, 1–4 (2020).

26. Pearson, J., Clifford, C. W. G. & Tong, F. The functional impact of
mental imagery on conscious perception. Curr. Biol. 18,
982–986 (2008).

27. Keogh, R. & Pearson, J. The perceptual and phenomenal capacity of
mental imagery. Cognition 162, 124–132 (2017).

28. Sherwood, R. & Pearson, J. Closing the mind’s eye: incoming
luminance signals disrupt visual imagery. PLoS One. 5,
e15217 (2010).

29. Dijkstra, N., Hinne, M., Bosch, S. E. & van Gerven, M. A. J. Between-
subject variability in the influence of mental imagery on conscious
perception. Sci. Rep. 9, 1–10 (2019).

30. Ishai, A. & Sagi, D. Visual imagery facilitates visual perception:
Psychophysical evidence. J. Cogn. Neurosci. 9, 476–489 (1997).

31. Craver-Lemley, C. & Reeves, A. How visual imagery interferes with
vision. Psychol. Rev. 99, 633–649 (1992).

32. Reeves, A., Grayhem, R. & Craver-Lemley, C. The Perky effect
revisited: Imagery hinders perception at high levels, but aids it at
low. Vis. Res. 167, 8–14 (2020).

33. Ishai, A. & Sagi, D. Common mechanisms of visual imagery and
perception. Science 268, 1772–1774 (1995).

34. Farah, M. J. Psychophysical Evidence for a Shared Representational
Medium for Mental Images and Percepts. J. Exp. Psychol. Gen. 114,
91–103 (1985).

35. Dijkstra, N., Mazor, M., Kok, P. & Fleming, S. Mistaking imagination
for reality: Congruent mental imagery leads to more liberal per-
ceptual detection. Cognition 212, 104719 (2021).

36. Stewart, N., Chandler, J. & Paolacci, G. Crowdsourcing Samples in
Cognitive Science. Trends Cogn. Sci. 21, 736–748 (2017).

37. Goense, J. B. M. & Logothetis, N. K. Neurophysiology of the BOLD
fMRI Signal in Awake Monkeys. Curr. Biol. 18, 631–640 (2008).

38. Moseley, P., Smailes, D., Ellison, A. & Fernyhough, C. The effect of
auditory verbal imagery on signal detection in hallucination-prone
individuals. Cognition 146, 206–216 (2016).

39. Green, D. M. & Swets, J. A. Signal detection theory and psycho-
physics. John Wiley vol. 5 (1966).

40. Dijkstra, N., Gaal, S., van, Geerligs, L., Bosch, S. E. & Gerven, M. A. J.
van. No Evidence for Neural Overlap between Unconsciously Pro-
cessed and Imagined Stimuli. eNeuro 8,
ENEURO.0228–21.2021 (2021).

41. Morales, J. Introspection Is Signal Detection. Br. J. Philos. Sci.
https://doi.org/10.1086/715184 (2022).

42. Carrasco, M., Fuller, S. & Ling, S. Transient attention does increase
perceived contrast of suprathreshold stimuli: A reply to Prinzmetal,
Long, and Leonhardt. Percept. Psychophys. 70, 1151–1164 (2008).

43. Graziano, M. S. A. & Webb, T. W. The attention schema theory: a
mechanistic account of subjective awareness. Front. Psychol. 06,
1–11 (2015).

44. Fazekas, P., Nemeth, G. & Overgaard, M. Perceptual Representa-
tions and the Vividness of Stimulus-Triggered and Stimulus-
Independent Experiences. Perspect. Psychol. Sci. https://doi.org/
10.1177/1745691620924039 (2020).

45. Dijkstra, N., Bosch, S. E. & van Gerven, M. A. J. Vividness of Visual
Imagery Depends on the Neural Overlap with Perception in Visual
Areas. J. Neurosci. 37, 1367–1373 (2017).

46. Albers, A. M., Kok, P., Toni, I., Dijkerman, H. C. & De Lange, F. P.
Shared representations for workingmemory andmental imagery in
early visual cortex. Curr. Biol. 23, 1427–1431 (2013).

47. Lee, S.-H., Kravitz, D. J. & Baker, C. I. Disentangling visual imagery
and perception of real-world objects. Neuroimage 59,
4064–4073 (2012).

48. Bays, P. M., Flanagan, J. R. & Wolpert, D. M. Attenuation of self-
generated tactile sensations is predictive, not postdictive. PLoS
Biol. 4, 281–284 (2006).

49. Blakemore, S. J.,Wolpert, D. M. & Frith, C. D. Central cancellation of
self-produced tickle sensation. Nat. Neurosci. 1, 635–640 (1998).

50. Bays, P. M., Wolpert, D. M. & Flanagan, J. R. Perception of the con-
sequences of self-action is temporally tuned andevent driven.Curr.
Biol. 15, 1125–1128 (2005).

51. Shergill, S. S., Bays, P. H., Frith, C. D. & Wotpert, D. M. Two eyes for
an eye: The neuroscience of force escalation. Science 301,
187 (2003).

52. Shergill, S. S., Samson, G., Bays, P. M., Frith, C. D. & Wolpert, D. M.
Evidence for sensory prediction deficits in schizophrenia. Am. J.
Psychiatry. 162, 2384–2386 (2005).

53. Synofzik, M., Thier, P., Leube, D. T., Schlotterbeck, P. & Lindner, A.
Misattributions of agency in schizophrenia are based on imprecise
predictions about the sensory consequences of one’s actions. Brain
133, 262–271 (2010).

54. Curio, G., Neuloh, G., Numminen, J., Jousmäki, V. & Hari, R.
Speaking Modifies Voice-Evoked Activity in the Human Auditory
Cortex. Hum. Brain Mapp. 9, 183–191 (2000).

55. Ford, J. M. et al. Neurophysiological evidence of corollary dis-
charge dysfunction in schizophrenia. Am. J. Psychiatry 158,
2069–2071 (2001).

56. Perky, C. W. An Experimental Study of Imagination. Am. J. Psychol.
21, 422–452 (1910).

57. Allen, P., Larøi, F., McGuire, P. K. & Aleman, A. The hallucinating
brain: A review of structural and functional neuroimaging studies of
hallucinations. Neurosci. Biobehavioral Rev. https://doi.org/10.
1016/j.neubiorev.2007.07.012 (2008).

58. Hahamy, A., Wilf, M., Rosin, B., Behrmann, M. & Malach, R. How do
the blind ‘see’? The role of spontaneous brain activity in self-
generated perception. Brain 144, 340–353 (2021).

59. Zmigrod, L., Garrison, J. R., Carr, J. & Simons, J. S. The neural
mechanisms of hallucinations: A quantitative meta-analysis of
neuroimaging studies. Neurosci. Biobehav. Rev. 69, 113–123 (2016).

60. El Haj, M. et al. A look into hallucinations: the relationship between
visual imagery and hallucinations in Alzheimer’s disease. Cogn.
Neuropsychiatry 24, 275–283 (2019).

61. Shine, J. M. et al. Imagine that: elevated sensory strength of mental
imagery in individuals with Parkinson’s disease and visual halluci-
nations. Proc. R. Soc. B Biol. Sci. 282, 2047–20142047 (2014).

62. Salge, J. H., Pollmann, S. & Reeder, R. R. Anomalous visual experi-
ence is linked to perceptual uncertainty and visual imagery vivid-
ness. Psychol. Res. 85, 1848–1865 (2021).

63. van de Ven, V. & Merckelbach, H. The role of schizotypy, mental
imagery, and fantasy proneness in hallucinatory reports of under-
graduate students. Pers. Individ. Dif. 35, 889–896 (2003).

Article https://doi.org/10.1038/s41467-023-37322-1

Nature Communications |         (2023) 14:1627 10

https://doi.org/10.1101/664870
https://doi.org/10.1101/811331
https://doi.org/10.1086/715184
https://doi.org/10.1177/1745691620924039
https://doi.org/10.1177/1745691620924039
https://doi.org/10.1016/j.neubiorev.2007.07.012
https://doi.org/10.1016/j.neubiorev.2007.07.012


64. Keogh, R. & Pearson, J. Attention driven phantom vision: measuring
the sensory strength of attentional templates and their relation to
visual mental imagery and aphantasia. Philos. Trans. R. Soc. B Biol.
Sci. 376, 20190688 (2021).

65. Dijkstra, N., Kok, P. & Fleming, S. M. Imagery adds stimulus-specific
sensory evidence to perceptual detection. J. Vis. 22, 11–11 (2022).

66. Brown, R., Lau, H. & LeDoux, J. E. Understanding the Higher-Order
Approach to Consciousness. Trends Cogn. Sci. 23, 754–768 (2019).

67. Fleming,S.M.Awareness as inference in ahigher-order state space.
Neurosci. Conscious. 2020, 1–9 (2020).

68. Lau, H. Consciousness, Metacognition, & Perceptual Reality Mon-
itoring. PsychArxiv. 1–17 https://doi.org/10.31234/osf.io/
ckbyf (2019).

69. Lange, K., Kühn, S. & Filevich, E. “Just Another Tool for Online
Studies” (JATOS): An Easy Solution for Setup and Management of
Web Servers Supporting Online Studies. PLoS One. 10,
e0130834 (2015).

70. Marks, D. F. New directions for mental imagery research. J. Ment.
Imag. 19, 153–167 (1995).

71. Marks, D. F. Visual imagery differences in the recall of pictures.Br. J.
Psychol. 64, 17–24 (1973).

72. Ingleby, J. D. Signal detection theory and psychophysics. J. Sound
Vib. https://doi.org/10.1016/0022-460x(67)90197-6 (1967).

73. JASP & JASP Team. JASP. [Computer software] (2019).
74. IBM. IBM SPSS Statistics Software for Windows, Version 25.

IBM (2017).
75. Dijkstra, N., Zeidman, P., Ondobaka, S., Van Gerven, M. A. J. &

Friston, K. Distinct Top-down and Bottom-up Brain Connectivity
during Visual Perception and Imagery. Sci. Rep. 7, 5677 (2017).

76. D’Angiulli, A. et al. Vividness of Visual Imagery and Incidental Recall
of Verbal Cues,When Phenomenological Availability Reflects Long-
Term Memory Accessibility. Front. Psychol. 0, 1 (2013).

77. Runge, M., Bakhilau, V., Omer, F. & D’Angiulli, A. Trial-by-Trial
Vividness Self-Reports Versus VVIQ. Imagin. Cogn. Pers. 35,
137–165 (2015).

78. Runge, M. S., Cheung, M. W.-L. & D’Angiulli, A. Meta-analytic
comparison of trial- versus questionnaire-based vividness report-
ability across behavioral, cognitive and neural measurements of
imagery. Neurosci. Conscious. 2017, nix006 (2017).

79. Harrison, S. A. & Tong, F. Decoding reveals the contents of
visual working memory in early visual areas. Nature 458,
632–635 (2009).

80. Joliot, M. et al. AICHA: An atlas of intrinsic connectivity of homo-
topic areas. J. Neurosci. Methods. https://doi.org/10.1016/j.
jneumeth.2015.07.013 (2015).

81. van den Hurk, J. & Op de Beeck, H. P. Generalization asymmetry in
multivariate cross-classification: When representation A gen-
eralizes better to representation B than B to A. bioRxiv https://doi.
org/10.1101/592410 (2019).

82. Mostert, P., Kok, P. & de Lange, F. P. Dissociating sensory from
decision processes in human perceptual decisionmaking. Sci. Rep.
5, 18253 (2015).

83. Wang, L., Mruczek, R. E. B., Arcaro, M. J. & Kastner, S. Probabilistic
Maps of Visual Topography in Human Cortex. Cereb. Cortex. 25,
3911–3931 (2015).

84. Stelzer, J., Chen, Y. & Turner, R. Statistical inference and multiple
testing correction in classification-based multi-voxel pattern ana-
lysis (MVPA): Random permutations and cluster size control. Neu-
roimage 65, 69–82 (2013).

Acknowledgements
Wewould like to thankMatanMazor and Peter Kok for discussions on the
content of this paper. N.D. is supported by a Rubicon grant from the
Netherlands Organization for Scientific Research (NWO)
[019.192SG.003] and a Marie Curie grant from the European Union
Horizon 2020 program [882832/MSCA/IF/EF/ST]. S.M.F. is a CIFAR Fel-
low in the Brain, Mind and Consciousness Program, and supported by a
Wellcome/Royal Society Sir HenryDale Fellowship [206648/Z/17/Z] and
a Philip Leverhulme Prize from the Leverhulme Trust. The Wellcome
Centre for Human Neuroimaging is supported by core funding from the
Wellcome Trust [206648/Z/17/Z]. The Max Planck UCL Centre is a joint
initiative supported by UCL and the Max Planck Society. This research
was funded in whole, or in part, by the Wellcome Trust. For the purpose
of open access, the author has applied a CC BY public copyright license
to any Author Accepted Manuscript arising from this submission.

Author contributions
Conceptualization: N.D., S.M.F. Methodology: N.D., S.M.F. Formal ana-
lysis: N.D. Investigation: N.D. Resources: S.M.F. Data Curation: N.D.
Writing – original draft: N.D. Writing – review & editing: S.M.F. Visuali-
zation: N.D. Supervision: S.M.F. Project Administration: N.D. Funding
Acquisition: N.D., S.M.F.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-37322-1.

Correspondence and requests for materials should be addressed to
Nadine Dijkstra.

Peer review information Nature Communications thanks Sam Ling,
Reshanne Reeder and the other anonymous reviewer(s) for their con-
tribution to the peer review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-37322-1

Nature Communications |         (2023) 14:1627 11

https://doi.org/10.31234/osf.io/ckbyf
https://doi.org/10.31234/osf.io/ckbyf
https://doi.org/10.1016/0022-460x(67)90197-6
https://doi.org/10.1016/j.jneumeth.2015.07.013
https://doi.org/10.1016/j.jneumeth.2015.07.013
https://doi.org/10.1101/592410
https://doi.org/10.1101/592410
https://doi.org/10.1038/s41467-023-37322-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Subjective signal strength distinguishes reality�from imagination
	Results
	Competing models for perceptual reality monitoring
	Perception and imagery are subjectively intermixed
	Neural correlates of sensory strength
	Determining whether something is real

	Discussion
	Methods
	Computational models
	Large-scale online psychophysics
	Participants
	Experimental procedures and design
	Data analysis and statistics
	Neuroimaging data and analyses
	Participants and experimental design
	Data analysis and statistics
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




