

Redox-Neutral Rhodium(III)-Catalyzed Chemo- and Regiospecific [4+1] Annulation between Indoles and Alkenes for the Synthesis of Functionalized Imidazo[1,5-*a*]indoles

Fei Zhao,^{*,†,‡} Jin Qiao,[‡] Yangbin Lu,[‡] Xiaoning Zhang,[‡] Long Dai,[‡] Siyu Liu,[‡] Hangcheng Ni,^{*,‡} Xiuwen Jia,[†] Xiaowei Wu,^{§,||} and Shiyao Lu^{*,†,‡}

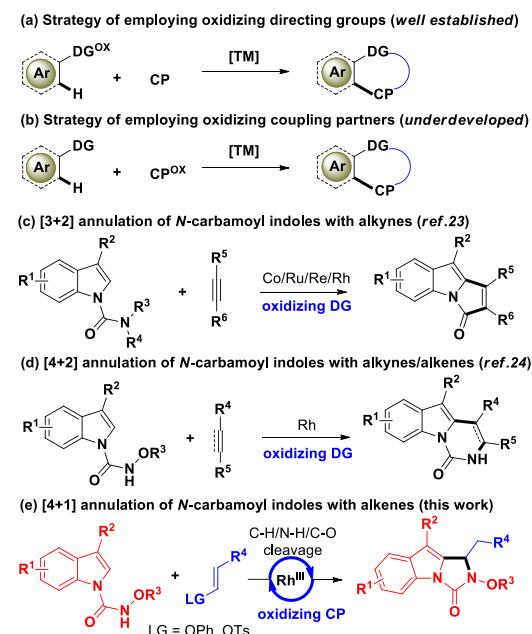
[†] Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China.

[‡] Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China.

[§] Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.

^{||} Zhongshan Institute for Drug Discovery, the Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan 528400, P. R. China.

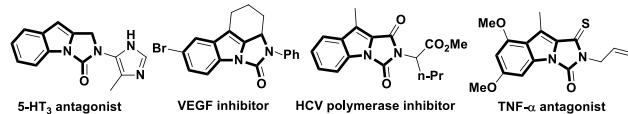
Supporting Information Placeholder



ABSTRACT: Exploiting internal alkenes embedded with an oxidizing function/leaving group as a rare and unconventional one-carbon unit, a redox-neutral rhodium(III)-catalyzed chemo- and regiospecific [4+1] annulation between indoles and alkenes for the synthesis of functionalized imidazo[1,5-*a*]indoles has been achieved. Internal alkenes employed here can fulfil an unusual [4+1] annulation rather than normal [4+2] annulation/C–H alkenylation. This method is characterized by excellent chemo- and regioselectivity, broad substrate scope, good functional group tolerance, good to high yields and redox-neutral conditions.

INTRODUCTION

Transition-metal (TM)-catalyzed C–H functionalization assisted by directing groups (DGs) has made remarkable advances in recent decades and become a powerful tool for the synthesis of a broad range of valuable molecules.¹ In particular, TM-catalyzed cycloaddition reactions triggered by C–H activation constitute an efficient strategy to access various heterocyclic compounds.² However, stoichiometric amounts of external oxidants are usually required because of the oxidative character of these C–H annulation reactions, and thus results in unsatisfactory selectivity and compatibility of functional groups, undesired side reactions and environmental pollution. An emerging dominant strategy to address this issue is to employ oxidizing DGs (working as an internal oxidant), which has been well established (Scheme 1a).³ A variety of oxidizing DGs, including N⁺–O[–],⁴ N–OAc,⁵ N–OH,⁶ N–OMe,⁷ N–OPiv,⁸ N–OBoc,⁹ O–NHAc,¹⁰ O–NEt₂,¹¹ N–N=O,¹² N–NHAc,¹³ N–N=C,¹⁴ N–NMe₂,¹⁵ etc, have been exploited. By contrast, an alternative strategy to avoid using external oxidants by incorporating the oxidizing function (typically a leaving group which could be eliminated during the annulation) into the coupling partners (CPs) is comparatively underdeveloped (Scheme 1b). This is mainly because of the relative


Scheme 1. Redox-neutral C–H annulations employing oxidizing DGs or CPs

scarcity of available synthons which can behave as reactive CPs and simultaneously act as efficient internal oxidants in C–H annulations. Nevertheless, several groups have made their efforts in adopting the strategy of employing oxidizing CPs to achieve cycloadditions under external-oxidant-free conditions. For example, Loh's group pioneered an intriguing assembly of isoindolin-1-ones using α,α -difluoromethylene alkynes as the oxidizing CPs, which underwent two consecutive β -F eliminations to allow the annulation to occur under redox-neutral conditions.¹⁶ The group of Glorius disclosed a facile furnishment of isoquinolines with propargylic carbonates as the oxidizing CPs, in this case, external oxidants were also not needed thanks to the β -elimination of the carbonate group.¹⁷ In this context, it is still highly desirable to explore new types of oxidizing CPs to fulfil redox-neutral cycloadditions to construct novel heterocycles.

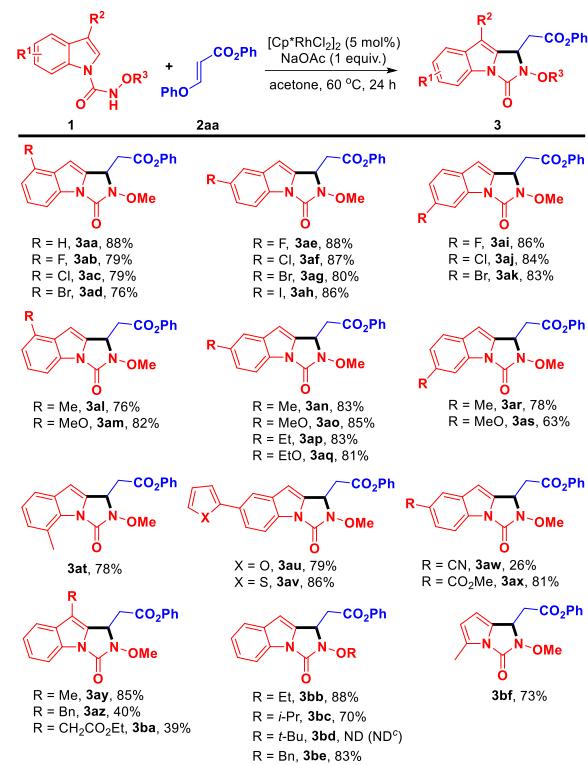
On the other hand, indole-fused polyheterocycles play an important role among numerous heterocycles as they are widely found in natural products and active pharmaceutical ingredients.¹⁸ Therefore, TM-catalyzed C–H annulations between indoles and CPs for the direct construction of indole-fused polyheterocycles have captured the attention of synthetic community.^{19,20} Within this field, *N*-carbamoyl indoles are popular indole substrates, not only because the carbamoyl²¹ DG is easy to install and can display as an oxidizing DG to avoid using external oxidants, but also because different annulation modes could be provided by *N*-carbamoyl indoles. With regard to CPs, alkynes/alkenes are hot CPs as they are readily available and reactive.²² The reported external-oxidant-free cycloadditions between *N*-carbamoyl indoles and alkynes/alkenes could be categorized into two patterns. (a) [3+2] annulation with alkynes for the synthesis of 3*H*-pyrrolo[1,2-*a*]indol-3-ones via Co,^{23a} Ru,^{23b} Re,^{23c} Rh^{23d, e} catalysis (Scheme 1c); (b) [4+2] annulation with alkynes/alkenes for the synthesis of pyrimido[1,6-*a*]indol-1(2*H*)-ones^{24/3,4-dihydropyrimido[1,6-*a*]indol-1(2*H*)-ones^{24a,25} via Rh catalysis (Scheme 1d). Despite the remarkable achievements made, however, the [4+1] annulation between *N*-carbamoyl indoles and alkynes/alkenes for the synthesis of imidazo[1,5-*a*]indoles has never been reported to date. Moreover, it should be noted that both annulation reactions mentioned above avoided the use of external oxidants by taking advantage of the oxidizing carbamoyl DG. With our interests in Rh(III)-catalyzed C–H activation^{23b,23d,24d,26} and indole compound synthesis,²⁷ herein we developed an unprecedented Rh(III)-catalyzed chemo- and regiospecific [4+1] annulation between *N*-carbamoyl indoles and internal alkenes embedded with an oxidizing function/leaving group for the synthesis of functionalized imidazo[1,5-*a*]indoles (Scheme 1e). Notably, our protocol does not require external oxidants by the strategy of employing oxidizing CPs, namely oxidizing internal alkenes, which is conceptually different from the aforementioned two annulations. Of note, this transformation has the following valuable advantageous features. (a) Internal alkenes embedded with an oxidizing function/leaving group are firstly used as a rare and unconventional one-carbon unit, which has not been disclosed before and is unusual since internal alkenes normally act as two-carbon partners to participate [n+2] annulations;²⁸ (b) a chemoselective [4+1] annulation, in which the background reactions such as [4+2] annulation^{24a} as well as C–H alkenylation²⁹ are completely suppressed; (c) a regioselective [4+1] annulation, in which both C–C and C–N bonds are formed at the same proximal sp^2 hybridized carbon; (d) a mild redox-}

neutral process because of the detachment of the oxidizing function/leaving group; (e) the activation of C–H bond, the cleavage of C–O/N–H bonds, and the construction of C–C/C–N bonds are integrated in a single process, indicating the high bond-cleaving/forming efficiency. Despite the elegant assembly of the imidazo[1,5-*a*]indole scaffold from indoles with hazardous diazo compounds (the group of Cui^{24a,30} and Song³¹), 4-hydroxyphenylboronic acid under Ag oxidant (Cui's group³²) or isocyanides under O₂ (Yu's group³³), to the best of our knowledge, our work stands as the first example of imidazo[1,5-*a*]indole synthesis via redox-neutral Rh(III)-catalyzed [4+1] cycloaddition reaction employing oxidizing internal alkenes as the one-carbon CPs and internal oxidants. Considering the large presence of the imidazo[1,5-*a*]indole nucleus in bioactive molecules (Figure 1),³⁴ our protocol is quite appealing as it allows the rapid and efficient synthesis of imidazo[1,5-*a*]indoles from simple materials via Rh(III)-catalyzed chemo- and regiospecific [4+1] annulation.

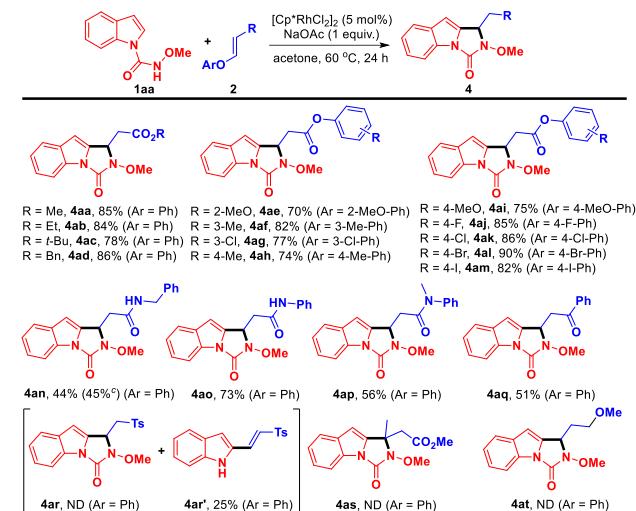
Figure 1. Representative bioactive molecules bearing the imidazo[1,5-*a*]indole motif.

RESULTS AND DISCUSSION

Optimization of the reaction conditions was carried out with indole **1aa** and (*E*)-phenyl 3-phenoxyacrylate **2aa** as the model substrates (Table 1). At first, with NaOAc as the additive, the reaction of **1aa** and **2aa** was performed with a series of metal catalysts in DCE at 60 °C for 24 h (entries 1–6). To our delight, when [Cp*RhCl₂]₂ was employed (entry 6), the desired [4+1] annulation product **3aa** was obtained in 67% yield with excellent regioselectivity, in which the C–H activation occurred at the indole C2 position and the C–C/C–N bonds were formed at the same proximal sp^2 hybridized carbon. Next, with [Cp*RhCl₂]₂ and NaOAc as the catalyst and additive, respectively, various solvents were screened (entries 7–17). As a result, except for DMF (entry 17), the [4+1] annulation could be tolerated in a diversity of solvents. Acetone was found to be the best solvent in which product **3aa** was obtained in 88% yield (entry 10). Interestingly, when MeOH was used as the solvent, the transesterification product of **3aa**, namely **4aa**, was observed as the final product (entry 13), while the reaction in TFE gave a ratio of 1:1.9 mixture of **3aa** and the transesterification product of TFE in 89% combined yield, which were inseparable by chromatography (entry 15). Subsequently, a variety of additives were investigated in acetone (entries 18–24), and NaOAc was proved to be the most effective additive. Besides, an investigation on the amount of the catalyst and additive was also carried out. The results showed that reducing the amount of [Cp*RhCl₂]₂ from 5 mol% to 2.5 mol% or NaOAc from 1 to 0.1 equivalent both caused incomplete conversion of **1aa**, thus leading to lower yields of product **3aa** (entries 25 and 26). Of note, the detachment of the PhO group was confirmed by the detection of PhOH during condition optimization. At last, blank experiments were conducted (entries 27 and 28). The result shows that the catalytic system of [Cp*RhCl₂]₂/NaOAc is crucial for the title [4+1] annulation. Notably, the background reaction products of [4+2] annulation and C–H alkenylation were not observed during condition optimization, suggesting the excellent chemoselectivity of this


Table 1. Optimization of the reaction conditions^a

Entry	Catalyst	Additive	Solvent	Yield (%) ^b
1	MnBr(CO) ₅	NaOAc	DCE	0
2	Pd(OAc) ₂	NaOAc	DCE	0
3	[Cp*IrCl ₂] ₂	NaOAc	DCE	0
4	[RuCl ₂ (<i>p</i> -cym)] ₂	NaOAc	DCE	0
5	CoCp ₂ *PF ₆	NaOAc	DCE	0
6	[Cp*RhCl ₂] ₂	NaOAc	DCE	67
7	[Cp*RhCl ₂] ₂	NaOAc	Toluene	54
8	[Cp*RhCl ₂] ₂	NaOAc	CH ₂ Cl ₂	71
9	[Cp*RhCl ₂] ₂	NaOAc	THF	82
10	[Cp*RhCl ₂] ₂	NaOAc	Acetone	88
11	[Cp*RhCl ₂] ₂	NaOAc	Dioxane	73
12	[Cp*RhCl ₂] ₂	NaOAc	CH ₃ CN	59
13	[Cp*RhCl ₂] ₂	NaOAc	MeOH	87 ^c
14	[Cp*RhCl ₂] ₂	NaOAc	EtOH	76
15	[Cp*RhCl ₂] ₂	NaOAc	TFE	89 ^d
16	[Cp*RhCl ₂] ₂	NaOAc	HFIP	27
17	[Cp*RhCl ₂] ₂	NaOAc	DMF	<10
18	[Cp*RhCl ₂] ₂	CsOAc	Acetone	37
19	[Cp*RhCl ₂] ₂	KOAc	Acetone	78
20	[Cp*RhCl ₂] ₂	Cu(OAc) ₂	Acetone	12
21	[Cp*RhCl ₂] ₂	Zn(OAc) ₂	Acetone	54
22	[Cp*RhCl ₂] ₂	Na ₂ CO ₃	Acetone	78
23	[Cp*RhCl ₂] ₂	K ₂ CO ₃	Acetone	<10
24	[Cp*RhCl ₂] ₂	NaCl	Acetone	0
25 ^e	[Cp*RhCl ₂] ₂	NaOAc	Acetone	79
26 ^f	[Cp*RhCl ₂] ₂	NaOAc	Acetone	58
27	-	NaOAc	Acetone	0
28	[Cp*RhCl ₂] ₂	-	Acetone	0

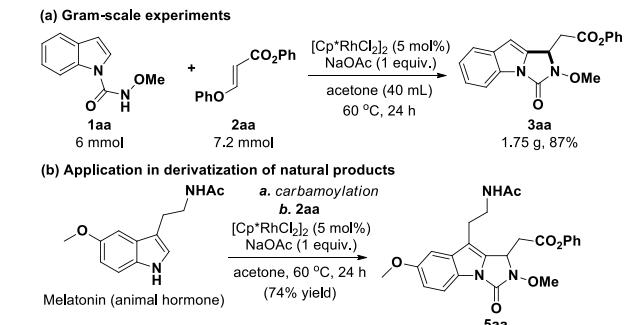

^aReaction conditions: **1aa** (0.25 mmol), **2aa** (0.3 mmol), catalyst (5 mol%), additive (0.25 mmol), solvent (4.0 mL), 60 °C, 24 h. ^bIsolated yield. ^cThe yield refers to the yield of transesterification product **4aa**. ^dThe yield refers to the combined yield of **3aa** and transesterification product of TFE, and the ratio was determined to be 1:1.9 by ¹H NMR integration of the crude products. ^e[Cp*RhCl₂]₂ (2.5 mol%) was used. ^fNaOAc (10 mol%) was used. DCE = 1,2-dichloroethane; THF = tetrahydrofuran; TFE = 2,2,2-trifluoroethanol; HFIP = 1,1,1,3,3,3-hexafluoroisopropanol; DMF = *N,N*-dimethylformamide.

transformation.

With the optimal reaction conditions in hands, the scope of indoles was explored at first with **2aa** as the reaction partner (Scheme 2). Overall, a broad range of indoles **1** carrying diverse substituents at R¹-R³ could react with **2aa** to deliver the regiospecific [4+1] annulation products **3** in moderate to high yields. For example, halogenated indoles having F, Cl, Br, I at C4-C6 positions underwent this reaction smoothly to give products **3ab**-**3ak** in 76-88% yields. Likewise, the reactions of electron-rich indoles possessing Me, MeO, Et, EtO at C4-C7 positions also took place uneventfully to afford products **3al**-

Scheme 2. Substrate scope of the indoles^{a,b}

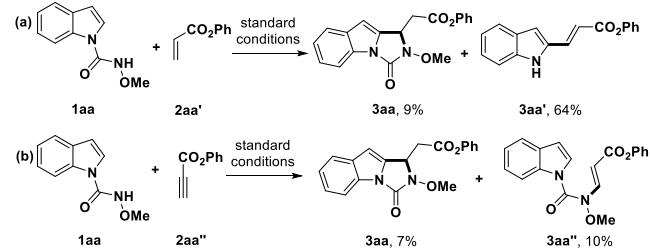
Scheme 3. Substrate scope of the alkenes ^{a,b}

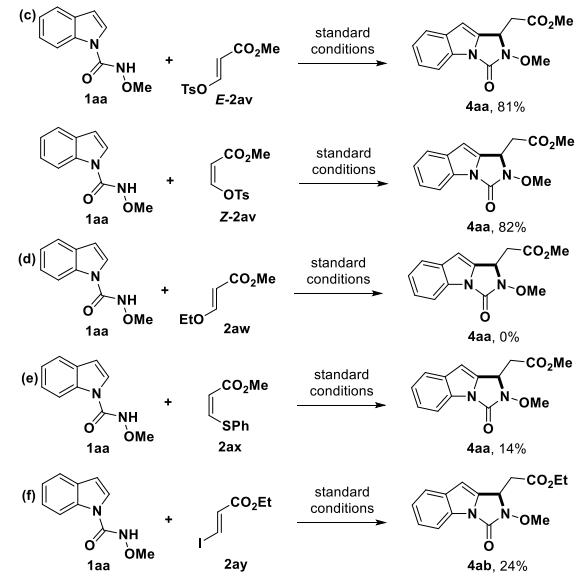

^aReaction conditions: **1aa** (0.25 mmol), **2** (0.3 mmol), $[\text{Cp}^*\text{RhCl}_2]_2$ (5 mol%), NaOAc (0.25 mmol), acetone (4.0 mL), 60 °C, 24 h. ^bIsolated yield. ^c(Z)-N-benzyl-3-phenoxyacrylamide was used. ND = not detected.

well to afford products **4aa-4ad** in 78-86% yields. Likewise, a series of (*E*)-aryl 3-aryloxyacrylates could undergo this transformation smoothly to give products **4ae-4am** in 70-90% yields. Notably, both (*E*)- and (*Z*)-*N*-benzyl-3-phenoxyacrylamide could react successfully to deliver the desired product **4an** in comparable yields, suggesting *E*- and *Z*-configuration of the C=C bond of the alkenes are both suitable. Similarly, the reactions of (*E*)-3-phenoxy-*N*-phenylacrylamide or (*E*)-*N*-methyl-3-phenoxy-*N*-phenylacrylamide with **1aa** underwent smoothly, providing products **4ao** and **4ap** in 73% and 56% yields, respectively. Moreover, (*E*)-3-phenoxy-1-phenylprop-2-en-1-one was also tolerated, producing product **4aq** in 51% yield. The reaction of (*E*)-1-methyl-4-((2-phenoxyvinyl)sulfonyl)benzene with **1aa** under standard conditions failed to give the [4+1] annulation product **4ar**, but gave the C-H alkenylation/DG cleavage product **4ar'** in 25% yield with the majority of the materials untouched. Besides, (*E*)-methyl 3-phenoxybut-2-enoate could not be converted into the corresponding product **4as**, maybe because of the steric hindrance caused by the Me group attached to the alkene carbon. Alkenes like (*E*)-((3-methoxyprop-1-en-1-yl)oxy)benzene failed to react to provide the corresponding product **4at**, indicating that alkenes **2** possessing electron-withdrawing groups rather than electron-donating groups at the R position are suitable alkene components for this [4+1] annulation.

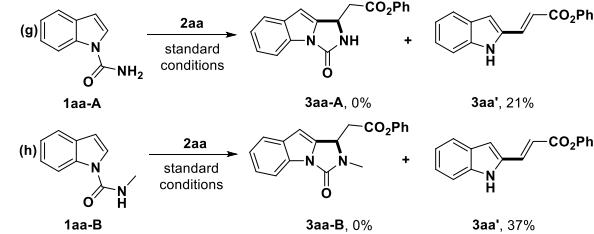
Gram-scale experiments were conducted to further prove the efficiency and practicality of this protocol. Impressively, the Rh(III)-catalyzed [4+1] annulation between **1aa** and **2aa** could be easily scaled up at a 6 mmol scale, providing product **3aa** in 87% yield (Scheme 4a). Moreover, our method could also be applied to the derivatization of natural products. For example, melatonin,³⁵ an animal hormone, underwent carbamoylation and the following Rh(III)-catalyzed [4+1] annulation with **2aa** smoothly to give melatonin derivative **5aa** bearing an imidazo[1,5-*a*]indole nucleus in a good yield (Scheme 4b).

A series of control experiments were performed to further

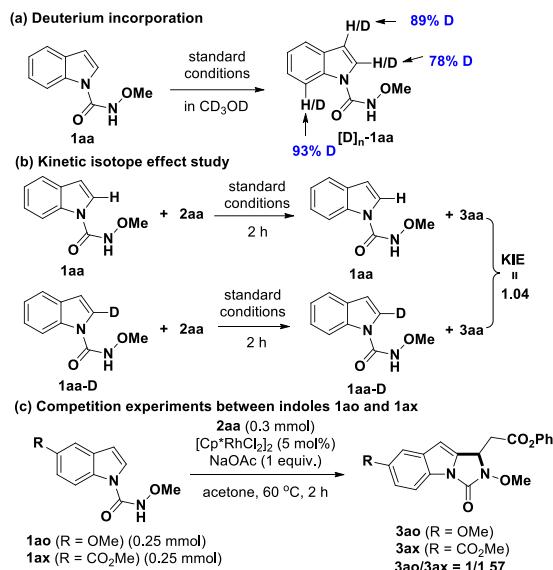

Scheme 4. Gram-scale experiments and derivatization of natural products


probe the Rh(III)-catalyzed [4+1] annulation. The reaction of **1aa** with phenyl acrylate **2aa'** under standard conditions gave the desired product **3aa** and C-H alkenylation/DG cleavage product **3aa'** in 9% and 64% yields, respectively (Scheme 5a). This indicates the PhO group attached to the alkene carbon of

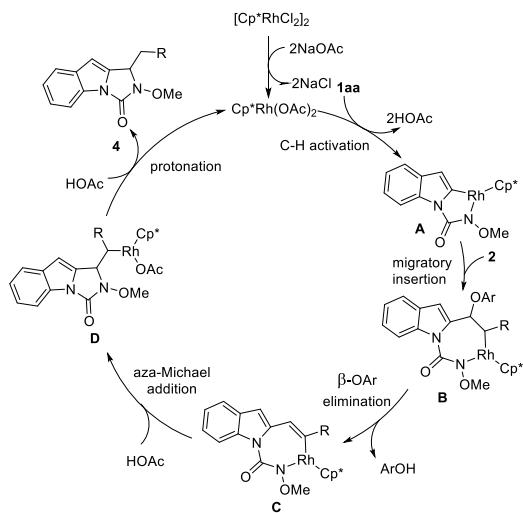
Scheme 5. Control experiments and investigation of the leaving groups and directing groups


Control experiments

An investigation of the leaving groups


An investigation of the directing groups

the alkene component **2aa** is essential. The reaction of **1aa** with phenyl propiolate **2aa''** under standard conditions afforded the desired product **3aa** and *aza*-Michael addition product **3aa''** in 7% and 10% yields, respectively, along with the majority of the starting materials untouched (Scheme 5b). This suggests the possibility that alkene **2aa** acts as a masked alkyne could be excluded. In addition, an investigation of the leaving groups was carried out. The replacement of the PhO group in **2ab** with TsO group has no impact on the yield of the desired product **4aa** (Scheme 5c). By contrast, the replacement of the PhO group with groups such as EtO, PhS or I caused a sharp decrease in the yield of the desired product (Scheme 5d-5f). This indicates the PhO and TsO groups display as better leaving groups than EtO, PhS and I. At last, an investigation of the directing groups was conducted. As a result, the reaction of indole **1aa-A** or **1aa-B** with **2aa** under standard conditions failed to deliver the corresponding [4+1] annulation product **3aa-A** or **3aa-B**, but both provided the C–H alkenylation/DG cleavage product **3aa'** in low yields with partial starting materials untouched (Scheme 5g and 5h). This shows the alkoxy groups like MeO attached to the amide N is indispensable for the [4+1] annulation.


Mechanistic experiments were carried out to gain some insights into the reaction mechanism. Treatment of **1aa** in CD_3OD under standard conditions led to high deuterations at C2, C3 and C7 positions of **1aa** (Scheme 6a). This shows the cleavage of C–H bond is reversible. Kinetic isotope effect (KIE) study through two parallel reactions gave a low KIE value of 1.04 (Scheme 6b), indicating the step of C–H bond cleavage is unlikely to be the rate-limiting step. In addition, intermolecular competition experiments between electron-rich indole **1ao** and electron-deficient indole **1ax** resulted in a ratio of 1/1.57 of desired products **3ao/3ax** (Scheme 6c), suggesting electron-deficient indole was favored. Thus, a concerted metalation/deprotonation mechanism³⁶ maybe involved in the step of C–H bond cleavage.

Scheme 6. Mechanistic experiments

Based on the mechanistic studies and literature reports,^{22b} a possible reaction mechanism was proposed in Scheme 7. Initially, the ligand exchange between $[\text{Cp}^*\text{RhCl}_2]_2$ and NaOAc generates the active catalyst $\text{Cp}^*\text{Rh}(\text{OAc})_2$, which activates the C–H bond at C2 position of indole selectively to

Scheme 7. Proposed reaction mechanism

form the rhodacycle **A**. The regioselective migratory insertion of the alkene into the Rh–C bond of **A** gives intermediate **B**. The polarization of the C=C bond by the electron-withdrawing substituents is believed to guarantee the regioselectivity as well as reactivity. Then, intermediate **B** undergoes β -OAr elimination to afford intermediate **C**, which undergoes intramolecular *aza*-Michael addition to yield intermediate **D**. Finally, the protonation of intermediate **D** occurs to afford the product with concomitant regeneration of the active rhodium catalyst. We speculated that the alkoxy groups like MeO may enable the amide N to possess an appropriate electronic property to coordinate with the rhodium catalyst to commence the catalytic cycle, and may also stabilize complexes **B** and **C** by electron donation effect to ensure the successful occurrence of the [4+1] annulation.

CONCLUSIONS

In conclusion, we have achieved the synthesis of imidazo[1,5-*a*]indoles via Rh(III)-catalyzed chemo- and regiospecific [4+1] annulation, in which internal alkenes embedded with an oxidizing function/leaving group are firstly exploited as a rare and unconventional one-carbon reaction partner, and thus can fulfil an unusual [4+1] annulation rather than common [4+2] annulation or C–H alkenylation. Additionally, the detachment of the oxidizing function/leaving group allows the [4+1] annulation to occur under redox-neutral conditions. This approach exhibits excellent chemo- and regioselectivity, broad substrate scope, good functional group tolerance and good to high yields. Further applications of this unique one-carbon unit in TM-catalyzed [n+1] annulations and biological studies of the indole-fused polyheterocycles incorporating the privileged imidazo[1,5-*a*]indole motif is undergoing in our laboratory.

EXPERIMENTAL SECTION

General Information. If not otherwise specified, the reagents were obtained from commercial sources and used directly without purification. Heating source: all the reactions that require heating were carried out in an oil bath. Analytical thin-layer chromatography (TLC): HSGF 254 (0.15–0.2 mm thickness). Detection under UV light at 254 nm. Column chromatography: separations were carried out on silica gel FCP 200–300. Yields refer to isolated compounds. Melting point apparatus: a micro melting point apparatus, values are uncorrected.

Nuclear magnetic resonance (NMR) apparatus: a Brucker 400, 500 or 600 MHz instrument. Chemical shifts (δ) are given in ppm. Proton coupling patterns were recorded as singlet (s), doublet (d), triplet (t), quartet (q), and multiplet (m). HRMS (high-resolution mass) were measured on a Thermo Scientific LTQ Orbitrap Discovery (Bremen, Germany). The linear ion trap (LTQ) part of the hybrid MS system was equipped with electrospray ionization (ESI) probe and operated in both positive and negative ion modes.

Preparation of the Indole Materials. All the indole substrates were prepared according to the literature procedure and their characterization data were in accordance with the published ones.^{24d, 25b}

Preparation of the Alkene Materials

(E)-phenyl 3-phenoxyacrylate (2aa): to a mixture of phenol (10 mmol, 1.0 equiv) and DMAP (10 mmol, 1.0 equiv) in dichloromethane (20 mL) at 0 °C in an ice bath was added phenyl propiolate (12 mmol, 1.2 equiv) dropwise. After addition, the resulting mixture was stirred at room temperature for 24 h. After removal of the solvent, the residue was purified by flash chromatography (Petroleum/EtOAc: 64:1→Petroleum/EtOAc: 32:1) on silica gel to provide the desired product **2aa** as a pale yellow oil (1.92 g, 80% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, J = 12.2 Hz, 1H), 7.44-7.36 (m, 4H), 7.25-7.21 (m, 2H), 7.17-7.09 (m, 4H), 5.74 (d, J = 12.2 Hz, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 165.8, 160.9, 155.9, 150.8, 130.2, 129.5, 125.8, 125.4, 121.9, 118.3, 101.4; HRMS (ESI) m/z: [M - H]⁺ Calcd for C₁₅H₁₁O₃ 239.0714; Found 239.0711.

(E)-methyl 3-phenoxyacrylate (2ab): compound **2ab** was prepared as a pale yellow oil (1.49 g, 84% yield) following the similar procedure carried out for **2aa**. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 12.2 Hz, 1H), 7.41-7.33 (m, 2H), 7.22-7.15 (m, 1H), 7.10-7.03 (m, 2H), 5.56 (d, J = 12.2 Hz, 1H), 3.73 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.8, 159.3, 156.0, 130.1, 125.1, 118.1, 101.9, 51.4; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₀H₁₁O₃ 179.0703; Found 179.0702.

(E)-ethyl 3-phenoxyacrylate (2ac): compound **2ac** was prepared as a pale yellow oil (1.64 g, 85% yield) following the similar procedure carried out for **2aa**. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 12.2 Hz, 1H), 7.42-7.32 (m, 2H), 7.22-7.14 (m, 1H), 7.11-7.02 (m, 2H), 5.55 (d, J = 12.2 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.4, 159.2, 156.0, 130.1, 125.1, 118.2, 102.3, 60.2, 14.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₃O₃ 193.0859; Found 193.0861.

(E)-tert-butyl 3-phenoxyacrylate (2ad): compound **2ad** was prepared as a pale yellow oil (1.28 g, 58% yield) following the similar procedure carried out for **2aa**. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 12.2 Hz, 1H), 7.40-7.33 (m, 2H), 7.21-7.15 (m, 1H), 7.06 (d, J = 7.8 Hz, 2H), 5.47 (d, J = 12.2 Hz, 1H), 1.49 (s, 9H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 166.7, 158.5, 156.0, 130.0, 124.9, 118.2, 104.0, 80.3, 28.4; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₇O₃ 221.1172; Found 221.1166.

(E)-benzyl 3-phenoxyacrylate (2ae): compound **2ae** was prepared as a pale yellow oil (2.06 g, 81% yield) following the similar procedure carried out for **2aa**. ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, J = 12.2 Hz, 1H), 7.43-7.36 (m, 6H), 7.35-7.31 (m, 1H), 7.23-7.16 (m, 1H), 7.12-7.04 (m, 2H), 5.61 (d, J = 12.2 Hz, 1H), 5.20 (s, 2H); ¹³C{¹H} NMR (151 MHz, CDCl₃)

δ 167.2, 159.7, 155.9, 136.3, 130.1, 128.7, 128.3, 128.3, 125.2, 118.3, 101.9, 66.1; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₅O₃ 255.1016; Found 255.1017.

(E)-2-methoxyphenyl 3-(2-methoxyphenoxy)acrylate (2af): compound **2af** was prepared as a white solid (0.726 g, 48% yield) following the similar procedure carried out for **2ak**. ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, J = 12.2 Hz, 1H), 7.23-7.17 (m, 2H), 7.12 (dd, J = 7.9, 1.5 Hz, 1H), 7.07 (dd, J = 7.9, 1.6 Hz, 1H), 7.00 (dd, J = 8.2, 1.2 Hz, 1H), 6.99-6.92 (m, 3H), 5.64 (d, J = 12.3 Hz, 1H), 3.89 (s, 3H), 3.83 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 165.5, 162.6, 151.5, 150.6, 144.3, 139.8, 126.8, 126.6, 123.2, 121.2, 120.9, 120.7, 113.0, 112.5, 99.8, 56.1, 56.0; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₇O₅ 301.1071; Found 301.1069.

(E)-m-tolyl 3-(m-tolyl)acrylate (2ag): compound **2ag** was prepared as a colorless oil (1.13 g, 84% yield) following the similar procedure carried out for **2ak**. ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, J = 12.2 Hz, 1H), 7.30-7.26 (m, 2H), 7.08-7.01 (m, 2H), 6.97-6.89 (m, 4H), 5.73 (d, J = 12.2 Hz, 1H), 2.39 (s, 3H), 2.37 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 166.0, 160.9, 155.9, 150.7, 140.5, 139.7, 129.9, 129.2, 126.6, 126.2, 122.5, 118.9, 118.8, 115.2, 101.2, 21.5, 21.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₇O₃ 269.1172; Found 269.1176.

(E)-3-chlorophenyl 3-(3-chlorophenoxy)acrylate (2ah): compound **2ah** was prepared as a yellow oil (0.657 g, 43% yield) following the similar procedure carried out for **2ak**. ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, J = 12.1 Hz, 1H), 7.37-7.28 (m, 2H), 7.24-7.19 (m, 2H), 7.19-7.12 (m, 2H), 7.06-7.00 (m, 2H), 5.76 (d, J = 12.2 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 165.1, 160.3, 156.2, 151.1, 135.6, 134.8, 131.0, 130.3, 126.2, 125.8, 122.5, 120.2, 118.9, 116.5, 102.0; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₁Cl₂O₃ 309.0080; Found 309.0080.

(E)-p-tolyl 3-(p-tolyl)acrylate (2ai): compound **2ai** was prepared as a white solid (0.701 g, 52% yield) following the similar procedure carried out for **2ak**. ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, J = 12.2 Hz, 1H), 7.22-7.16 (m, 4H), 7.03-6.98 (m, 4H), 5.69 (d, J = 12.2 Hz, 1H), 2.36 (s, 3H), 2.35 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 166.1, 161.3, 153.7, 148.5, 135.4, 135.1, 130.6, 130.0, 121.5, 118.2, 100.9, 21.0, 20.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₇O₃ 269.1172; Found 269.1174.

(E)-4-methoxyphenyl 3-(4-methoxyphenoxy)acrylate (2aj): compound **2aj** was prepared as a white solid (1.20 g, 80% yield) following the similar procedure carried out for **2ak**. ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, J = 12.2 Hz, 1H), 7.07-6.99 (m, 4H), 6.94-6.86 (m, 4H), 5.62 (d, J = 12.2 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 166.3, 162.0, 157.2, 157.1, 149.5, 144.2, 122.6, 119.7, 115.1, 114.5, 100.5, 55.8, 55.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₇O₅ 301.1071; Found 301.1076.

(E)-4-fluorophenyl 3-(4-fluorophenoxy)acrylate (2ak): to a mixture of 4-fluorophenol (11 mmol, 2.2 equiv), DCC (6 mmol, 1.2 equiv) and DMAP (5 mmol, 1.0 equiv) in DCM (20 mL) at 0 °C in an ice bath was added a solution of propiolic acid (5 mmol, 1.0 equiv) in DCM (20 mL) dropwise. After addition, the resulting mixture was stirred at room temperature for 24 h. After removal of the solvent, the residue was purified by flash chromatography (Petroleum/EtOAc: 64:1→Petroleum/EtOAc: 32:1) on silica gel to provide the desired product **2ak** as a white solid (0.824 g, 60% yield). ¹H

NMR (600 MHz, CDCl_3) δ 7.91 (d, $J = 12.2$ Hz, 1H), 7.14-7.02 (m, 8H), 5.67 (d, $J = 12.2$ Hz, 1H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 165.7, 161.3, 160.3 (d, $J_{\text{C}-\text{F}} = 244.1$ Hz), 160.0 (d, $J_{\text{C}-\text{F}} = 244.4$ Hz), 151.7 (d, $J_{\text{C}-\text{F}} = 2.7$ Hz), 146.5 (d, $J_{\text{C}-\text{F}} = 2.8$ Hz), 123.2 (d, $J_{\text{C}-\text{F}} = 8.5$ Hz), 120.0 (d, $J_{\text{C}-\text{F}} = 8.5$ Hz), 116.9 (d, $J_{\text{C}-\text{F}} = 23.7$ Hz), 116.2 (d, $J_{\text{C}-\text{F}} = 23.4$ Hz), 101.1; HRMS (ESI) m/z: [M + H]⁺ Calcd for $\text{C}_{15}\text{H}_{11}\text{F}_2\text{O}_3$ 277.0671; Found 277.0674.

(E)-4-chlorophenyl 3-(4-chlorophenoxy)acrylate (2al): compound **2al** was prepared as a white solid (0.821 g, 53% yield) following the similar procedure carried out for **2ak**. ^1H NMR (400 MHz, CDCl_3) δ 7.92 (d, $J = 12.2$ Hz, 1H), 7.43-7.30 (m, 4H), 7.13-7.00 (m, 4H), 5.72 (d, $J = 12.2$ Hz, 1H); $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 165.3, 160.6, 154.2, 149.1, 131.2, 130.9, 130.3, 129.6, 123.2, 119.6, 101.6; HRMS (ESI) m/z: [M - H]⁻ Calcd for $\text{C}_{15}\text{H}_{9}\text{Cl}_2\text{O}_3$ 306.9934; Found 306.9940.

(E)-4-bromophenyl 3-(4-bromophenoxy)acrylate (2am): compound **2am** was prepared as a white solid (1.51 g, 76% yield) following the similar procedure carried out for **2ak**. ^1H NMR (400 MHz, CDCl_3) δ 7.91 (d, $J = 12.2$ Hz, 1H), 7.57-7.43 (m, 4H), 7.07-6.95 (m, 4H), 5.73 (d, $J = 12.2$ Hz, 1H); $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 165.2, 160.5, 154.8, 149.7, 133.2, 132.6, 123.6, 120.0, 119.0, 118.4, 101.7; HRMS (ESI) m/z: [M + Na]⁺ Calcd for $\text{C}_{15}\text{H}_{10}\text{Br}_2\text{NaO}_3$ 418.8889; Found 418.8892.

(E)-4-iodophenyl 3-(4-iodophenoxy)acrylate (2an): compound **2an** was prepared as a white solid (1.42 g, 58% yield) following the similar procedure carried out for **2ak**. ^1H NMR (600 MHz, CDCl_3) δ 7.91 (d, $J = 12.2$ Hz, 1H), 7.74-7.64 (m, 4H), 6.92-6.83 (m, 4H), 5.73 (d, $J = 12.2$ Hz, 1H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 165.2, 160.3, 155.6, 150.5, 139.2, 138.6, 124.0, 120.4, 101.8, 89.9, 89.0; HRMS (ESI) m/z: [M - H]⁻ Calcd for $\text{C}_{15}\text{H}_9\text{I}_2\text{O}_3$ 490.8647; Found 490.8655.

(E)-N-benzyl-3-phenoxyacrylamide (E-2ao): compound **E-2ao** was prepared as a pale yellow solid (0.927 g, 37% yield) following the similar procedure carried out for **2aa**. ^1H NMR (600 MHz, CDCl_3) δ 7.81 (d, $J = 11.8$ Hz, 1H), 7.37-7.30 (m, 4H), 7.30-7.26 (m, 3H), 7.19-7.13 (m, 1H), 7.09-7.02 (m, 2H), 5.88 (s, 1H), 5.59 (d, $J = 11.8$ Hz, 1H), 4.49 (d, $J = 5.7$ Hz, 2H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 166.1, 156.7, 156.2, 138.4, 130.0, 128.8, 128.0, 127.6, 124.7, 117.9, 104.3, 43.6; HRMS (ESI) m/z: [M + H]⁺ Calcd for $\text{C}_{16}\text{H}_{16}\text{NO}_2$ 254.1176; Found 254.1175.

(Z)-N-benzyl-3-phenoxyacrylamide (Z-2ao): compound **Z-2ao** was prepared as a pale yellow solid (0.889 g, 35% yield) following the similar procedure carried out for **2aa**. ^1H NMR (600 MHz, CDCl_3) δ 7.40-7.36 (m, 2H), 7.36-7.29 (m, 5H), 7.29-7.26 (m, 1H), 7.23-7.17 (m, 1H), 7.05 (d, $J = 8.3$ Hz, 2H), 6.84 (d, $J = 7.1$ Hz, 1H), 5.28 (d, $J = 7.1$ Hz, 1H), 4.59 (d, $J = 5.8$ Hz, 2H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 164.9, 156.3, 148.9, 138.7, 130.2, 128.8, 127.6, 127.4, 125.2, 117.5, 106.0, 43.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for $\text{C}_{16}\text{H}_{16}\text{NO}_2$ 254.1176; Found 254.1178.

(E)-3-phenoxy-N-phenylacrylamide (2ap): compound **2ap** was prepared as a white solid (1.08 g, 45% yield) following the similar procedure carried out for **2aa**. ^1H NMR (600 MHz, CDCl_3) δ 7.88 (d, $J = 11.7$ Hz, 1H), 7.60-7.48 (m, 3H), 7.38-7.33 (m, 2H), 7.33-7.28 (m, 2H), 7.20-7.14 (m, 1H), 7.13-7.08 (m, 1H), 7.07-7.03 (m, 2H), 5.76 (d, $J = 11.7$ Hz, 1H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 157.6, 156.2, 130.1, 129.1, 124.9,

117.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for $\text{C}_{15}\text{H}_{14}\text{NO}_2$ 240.1019; Found 240.1022.

(E)-N-methyl-3-phenoxy-N-phenylacrylamide (2aq): compound **2aq** was prepared as a pale yellow oil (1.99 g, 79% yield) following the similar procedure carried out for **2aa**. ^1H NMR (600 MHz, CDCl_3) δ 7.80 (d, $J = 11.6$ Hz, 1H), 7.44-7.39 (m, 2H), 7.35-7.29 (m, 3H), 7.23-7.18 (m, 2H), 7.14-7.08 (m, 1H), 7.03-6.97 (m, 2H), 5.61 (d, $J = 11.6$ Hz, 1H), 3.36 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 166.6, 156.6, 156.5, 143.8, 129.9, 129.7, 127.7, 127.5, 124.4, 117.3, 103.4, 37.3; HRMS (ESI) m/z: [M + H]⁺ Calcd for $\text{C}_{16}\text{H}_{16}\text{NO}_2$ 254.1176; Found 254.1176.

(E)-3-phenoxy-1-phenylprop-2-en-1-one (2ar): compound **2ar** was prepared as a yellow oil (0.202 g, 9% yield) following the similar procedure carried out for **2aa**. ^1H NMR (600 MHz, CDCl_3) δ 8.01 (d, $J = 11.8$ Hz, 1H), 7.93 (d, $J = 7.7$ Hz, 2H), 7.58-7.54 (m, 1H), 7.50-7.45 (m, 2H), 7.43-7.37 (m, 2H), 7.24-7.19 (m, 1H), 7.13 (d, $J = 7.9$ Hz, 2H), 6.75 (d, $J = 11.8$ Hz, 1H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 190.4, 160.2, 156.1, 138.3, 132.7, 130.1, 128.6, 128.2, 125.2, 118.0, 106.8; LRMS (ESI) m/z: 225 [M+H]⁺. Compound **2ar** is a known compound and the characterization data were in accordance with the published ones.³⁷

(E)-1-methyl-4-((2-phenoxyvinyl)sulfonyl)benzene (2as): compound **2as** was prepared as a white solid (1.07 g, 39% yield) following the similar procedure carried out for **2aa**. ^1H NMR (600 MHz, CDCl_3) δ 7.81 (d, $J = 11.9$ Hz, 1H), 7.79-7.75 (m, 2H), 7.40-7.36 (m, 2H), 7.35-7.31 (m, 2H), 7.24-7.20 (m, 1H), 7.08-7.03 (m, 2H), 6.00 (d, $J = 11.9$ Hz, 1H), 2.43 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 157.7, 155.5, 144.1, 139.1, 130.3, 130.0, 127.2, 125.8, 118.4, 112.2, 21.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for $\text{C}_{15}\text{H}_{15}\text{O}_3\text{S}$ 275.0736; Found 275.0738.

(E)-methyl 3-phenoxybut-2-enoate (2at): to a mixture of phenol (10 mmol, 1.0 equiv) and DMAP (10 mmol, 1.0 equiv) in dichloromethane (20 mL) at 0 °C in an ice bath was added methyl but-2-ynoate (12 mmol, 1.2 equiv) dropwise. After addition, the resulting mixture was stirred at 50 °C for 48 h. After removal of the solvent, the residue was purified by flash chromatography (Petroleum/EtOAc: 64:1→Petroleum/EtOAc: 32:1) on silica gel to provide the desired product **2at** as a pale yellow oil (0.826 g, 43% yield). ^1H NMR (600 MHz, CDCl_3) δ 7.42-7.35 (m, 2H), 7.24-7.20 (m, 1H), 7.01 (d, $J = 8.0$ Hz, 2H), 4.87 (s, 1H), 3.62 (s, 3H), 2.49 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 173.1, 168.2, 153.4, 130.1, 125.8, 121.7, 95.9, 51.0, 18.6; HRMS (ESI) m/z: [M + H]⁺ Calcd for $\text{C}_{11}\text{H}_{13}\text{O}_3$ 193.0859; Found 193.0860.

(E)-(3-methoxyprop-1-en-1-yl)oxybenzene (2au): to a solution of (*E*)-3-phenoxyprop-2-en-1-ol³⁸ (3 mmol, 1.0 equiv) in anhydrous DMF (15 mL) was added NaH (6 mmol, 2.0 equiv) by portion at 0 °C, 30 minutes later, CH_3I (6 mmol, 2.0 equiv) was added dropwise at 0 °C. The resulting mixture was stirred at room temperature for 4 h. Then water was added and the reaction mixture was extracted with ethyl acetate, the organic extracts were washed with brine, dried over Na_2SO_4 and concentrated. The residue was purified by flash chromatography (Petroleum/EtOAc: 16:1→Petroleum/EtOAc: 8:1) on silica gel to provide **2au** as a colorless oil (0.406 g, 82%). ^1H NMR (600 MHz, CDCl_3) δ 7.36-7.30 (m, 2H), 7.11-7.06 (m, 1H), 7.01 (d, $J = 8.2$ Hz, 2H), 6.70 (d, $J = 12.2$ Hz, 1H), 5.51-5.40 (m, 1H), 3.94 (d, $J = 7.3$ Hz, 2H), 3.35 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 156.9, 146.3, 129.8, 123.4, 117.2,

108.0, 69.3, 57.6; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₀H₁₃O₂ 165.0910; Found 165.0909.

(Z)-methyl 3-(tosyloxy)acrylate (Z-2av): this compound was prepared according to the literature procedure and the characterization data were in accordance with the published ones.³⁹

(E)-methyl 3-(tosyloxy)acrylate (E-2av): this compound was prepared according to the literature procedure and the characterization data were in accordance with the published ones.³⁹

(E)-methyl 3-ethoxyacrylate (2aw): this compound was prepared according to the literature procedure and the characterization data were in accordance with the published ones.³⁸

(Z)-methyl 3-(phenylthio)acrylate (2ax): this compound was prepared according to the literature procedure and the characterization data were in accordance with the published ones.⁴⁰

ethyl (E)-3-iodoacrylate (2ay): this compound is a known compound⁴¹ and was obtained from commercial sources and used directly without purification.

Preparation of 2-Deuterium Indole and 1aa-D. 2-Deuterium indole (96% Deuteration) was prepared according to the reported procedure⁴² and the characterization data match published data.⁴³ **1aa-D** was synthesized from 2-Deuterium indole with 96% D incorporation following the reported method^{25b} and the characterization data match published data.^{25b}

General Procedure for the Rhodium-Catalyzed Chemo- and Regiospecific [4+1] Annulation between Indoles and Alkenes. To a mixture of indoles **1** (0.25 mmol, 1.0 equiv), [Cp^{*}RhCl₂]₂ (5 mol%) and NaOAc (0.25 mmol, 1.0 equiv) in a 25 mL Schlenk tube was added a solution of alkenes **2** (0.3 mmol, 1.2 equiv) in acetone (4.0 mL). Then the tube was capped with septa, and the resulting mixture was stirred at 60 °C in an oil bath for 24 h. After removal of the solvent, the residue was purified by flash chromatography on silica gel to give the desired products.

phenyl 2-(2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (3aa): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow amorphous solid (74.2 mg, yield 88%), mp 128–129 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, *J* = 8.1 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.46–7.38 (m, 2H), 7.37–7.31 (m, 1H), 7.30–7.26 (m, 2H), 7.16–7.08 (m, 2H), 6.47 (s, 1H), 5.38–5.30 (m, 1H), 4.01 (s, 3H), 3.31 (dd, *J* = 16.5, 6.2 Hz, 1H), 3.08 (dd, *J* = 16.5, 7.2 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.5, 152.5, 150.4, 134.8, 132.8, 131.0, 129.7, 126.3, 124.2, 123.5, 121.5, 121.4, 113.0, 100.2, 65.1, 55.3, 37.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₇N₂O₄ 337.1183; Found 337.1177.

phenyl 2-(8-fluoro-2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (3ab): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a white amorphous solid (70.0 mg, yield 79%), mp 122–123 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, *J* = 8.1 Hz, 1H), 7.44–7.39 (m, 2H), 7.30–7.26 (m, 2H), 7.14–7.08 (m, 2H), 6.96 (ddd, *J* = 10.0, 8.1, 0.5 Hz, 1H), 6.59 (dd, *J* = 1.5, 0.7 Hz, 1H), 5.38–5.32 (m, 1H), 4.01 (s, 3H), 3.33 (dd, *J* = 16.6, 6.1 Hz, 1H), 3.10 (dd, *J* = 16.6, 7.2 Hz, 1H); ¹³C{¹H}

NMR (126 MHz, CDCl₃) δ 168.4, 156.0 (d, *J*_{C-F} = 249.0 Hz), 152.1, 150.4, 134.8, 133.0 (d, *J*_{C-F} = 9.9 Hz), 129.8, 126.5, 125.2 (d, *J*_{C-F} = 7.4 Hz), 121.6, 121.4, 109.2 (d, *J*_{C-F} = 3.9 Hz), 108.9 (d, *J*_{C-F} = 18.8 Hz), 96.2, 65.2, 55.2, 37.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₆FN₂O₄ 355.1089; Found 355.1083.

phenyl 2-(8-chloro-2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (3ac): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a white amorphous solid (73.6 mg, yield 79%), mp 78–79 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.88 (d, *J* = 7.8 Hz, 1H), 7.45–7.39 (m, 2H), 7.30–7.24 (m, 3H), 7.12 (d, *J* = 7.7 Hz, 2H), 6.61 (s, 1H), 5.40–5.33 (m, 1H), 4.01 (s, 3H), 3.33 (dd, *J* = 16.6, 6.1 Hz, 1H), 3.11 (dd, *J* = 16.6, 7.2 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.4, 152.0, 150.3, 135.3, 131.6, 131.5, 129.8, 126.5, 125.0, 123.3, 121.4, 111.5, 98.7, 65.2, 55.2, 37.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₆ClN₂O₄ 371.0793; Found 371.0792.

phenyl 2-(8-bromo-2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (3ad): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a pale yellow amorphous solid (79.4 mg, yield 76%), mp 97–98 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.1 Hz, 1H), 7.46–7.39 (m, 3H), 7.30–7.26 (m, 1H), 7.23–7.17 (m, 1H), 7.15–7.10 (m, 2H), 6.58 (dd, *J* = 1.5, 0.7 Hz, 1H), 5.41–5.31 (m, 1H), 4.01 (s, 3H), 3.33 (dd, *J* = 16.6, 6.1 Hz, 1H), 3.11 (dd, *J* = 16.6, 7.2 Hz, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 168.4, 152.0, 150.4, 135.4, 133.4, 131.3, 129.8, 126.5, 125.3, 121.5, 114.9, 112.1, 100.4, 65.2, 55.2, 37.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₆BrN₂O₄ 415.0288; Found 415.0283.

phenyl 2-(7-fluoro-2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (3ae): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a white amorphous solid (78.1 mg, yield 88%), mp 119–120 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.91 (dd, *J* = 8.8, 4.5 Hz, 1H), 7.46–7.37 (m, 2H), 7.30–7.26 (m, 1H), 7.24 (dd, *J* = 9.0, 2.2 Hz, 1H), 7.11 (d, *J* = 7.7 Hz, 2H), 7.09–7.05 (m, 1H), 6.45 (s, 1H), 5.37–5.28 (m, 1H), 4.00 (s, 3H), 3.33 (dd, *J* = 16.6, 6.1 Hz, 1H), 3.09 (dd, *J* = 16.6, 7.3 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.5, 159.7 (d, *J*_{C-F} = 240.2 Hz), 152.2, 150.4, 136.5, 133.7 (d, *J*_{C-F} = 10.3 Hz), 129.8, 127.4, 126.4, 121.4, 113.8 (d, *J*_{C-F} = 9.6 Hz), 112.3 (d, *J*_{C-F} = 25.9 Hz), 107.1 (d, *J*_{C-F} = 24.4 Hz), 100.2 (d, *J*_{C-F} = 4.2 Hz), 65.2, 55.3, 37.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₆FN₂O₄ 355.1089; Found 355.1088.

phenyl 2-(7-chloro-2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (3af): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a pale yellow amorphous solid (80.4 mg, yield 87%), mp 87–88 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, *J* = 8.6 Hz, 1H), 7.55 (s, 1H), 7.45–7.38 (m, 2H), 7.31–7.26 (m, 2H), 7.10 (d, *J* = 8.2 Hz, 2H), 6.42 (s, 1H), 5.36–5.30 (m, 1H), 4.00 (s, 3H), 3.33 (dd, *J* = 16.6, 6.0 Hz, 1H), 3.09 (dd, *J* = 16.6, 7.3 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.4, 152.0, 150.3, 136.2, 133.9, 129.8, 129.3, 129.2, 126.5, 124.5, 121.4, 121.2, 113.9, 99.8, 65.2, 55.2, 37.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₆ClN₂O₄ 371.0793; Found 371.0791.

phenyl 2-(7-bromo-2-methoxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3ag): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a white amorphous solid (83.4 mg, yield 80%), mp 112–113 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.84 (d, *J* = 8.6 Hz, 1H), 7.72 (d, *J* = 1.6 Hz, 1H), 7.45–7.38 (m, 3H), 7.30–7.26 (m, 1H), 7.10 (d, *J* = 7.7 Hz, 2H), 6.42 (s, 1H), 5.37–5.31 (m, 1H), 4.00 (s, 3H), 3.33 (dd, *J* = 16.6, 6.1 Hz, 1H), 3.08 (dd, *J* = 16.6, 7.4 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.4, 152.0, 150.3, 136.0, 134.4, 129.8, 129.6, 127.2, 126.5, 124.2, 121.4, 116.8, 114.3, 99.6, 65.2, 55.2, 37.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₆BrN₂O₄ 415.0288; Found 415.0277.

phenyl 2-(7-iodo-2-methoxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3ah): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow viscous oil (99.2 mg, yield 86%). ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 1.1 Hz, 1H), 7.74 (d, *J* = 8.5 Hz, 1H), 7.60 (dd, *J* = 8.5, 1.4 Hz, 1H), 7.45–7.38 (m, 2H), 7.30–7.26 (m, 1H), 7.10 (d, *J* = 7.8 Hz, 2H), 6.40 (s, 1H), 5.37–5.31 (m, 1H), 4.00 (s, 3H), 3.33 (dd, *J* = 16.6, 6.1 Hz, 1H), 3.08 (dd, *J* = 16.6, 7.3 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.4, 152.0, 150.3, 135.6, 135.0, 132.7, 130.4, 130.1, 129.8, 126.5, 121.4, 114.7, 99.3, 87.5, 65.2, 55.1, 37.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₆IN₂O₄ 463.0149; Found 463.0141.

phenyl 2-(6-fluoro-2-methoxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3ai): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow amorphous solid (75.9 mg, yield 86%), mp 116–117 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.68 (dd, *J* = 8.7, 1.7 Hz, 1H), 7.50 (dd, *J* = 8.7, 5.0 Hz, 1H), 7.44–7.38 (m, 2H), 7.30–7.26 (m, 1H), 7.11 (d, *J* = 7.9 Hz, 2H), 7.05–7.00 (m, 1H), 6.45 (s, 1H), 5.36–5.29 (m, 1H), 4.00 (s, 3H), 3.33 (dd, *J* = 16.5, 6.1 Hz, 1H), 3.08 (dd, *J* = 16.5, 7.3 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.5, 160.6 (d, *J*_{C-F} = 242.1 Hz), 152.0, 150.4, 135.0 (d, *J*_{C-F} = 3.9 Hz), 130.9 (d, *J*_{C-F} = 13.1 Hz), 129.8, 129.0, 126.4, 122.2 (d, *J*_{C-F} = 9.9 Hz), 121.4, 112.0 (d, *J*_{C-F} = 24.3 Hz), 100.3 (d, *J*_{C-F} = 27.5 Hz), 100.1, 65.2, 55.2, 37.8; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₆FN₂O₄ 355.1089; Found 355.1085.

phenyl 2-(6-chloro-2-methoxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3aj): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a pale yellow amorphous solid (77.5 mg, yield 84%), mp 99–100 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (s, 1H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.44–7.38 (m, 2H), 7.30–7.26 (m, 1H), 7.24 (dd, *J* = 8.4, 1.3 Hz, 1H), 7.11 (d, *J* = 8.2 Hz, 2H), 6.45 (s, 1H), 5.37–5.31 (m, 1H), 4.01 (s, 3H), 3.33 (dd, *J* = 16.6, 6.0 Hz, 1H), 3.08 (dd, *J* = 16.6, 7.4 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.4, 151.9, 150.3, 135.3, 131.2, 130.2, 129.8, 126.5, 124.2, 122.3, 121.4, 113.2, 100.1, 65.2, 55.2, 37.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₆ClN₂O₄ 371.0793; Found 371.0785.

phenyl 2-(6-bromo-2-methoxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3ak): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to pro-

vide the product as a pale yellow amorphous solid (85.7 mg, yield 83%), mp 115–116 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.15 (s, 1H), 7.45–7.39 (m, 3H), 7.37 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.29–7.26 (m, 1H), 7.10 (d, *J* = 7.6 Hz, 2H), 6.45 (d, *J* = 0.6 Hz, 1H), 5.36–5.28 (m, 1H), 4.00 (s, 3H), 3.33 (dd, *J* = 16.6, 6.0 Hz, 1H), 3.08 (dd, *J* = 16.6, 7.4 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.4, 151.9, 150.3, 135.2, 131.6, 131.5, 129.8, 126.9, 126.5, 122.6, 121.4, 117.7, 116.1, 100.2, 65.2, 55.2, 37.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₆BrN₂O₄ 415.0288; Found 415.0277.

phenyl 2-(2-methoxy-8-methyl-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3al): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a white amorphous solid (66.3 mg, yield 76%), mp 77–78 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, *J* = 8.1 Hz, 1H), 7.46–7.40 (m, 2H), 7.30–7.27 (m, 1H), 7.26–7.22 (m, 1H), 7.13 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 7.3 Hz, 1H), 6.51 (s, 1H), 5.38–5.31 (m, 1H), 4.01 (s, 3H), 3.33 (dd, *J* = 16.5, 5.8 Hz, 1H), 3.09 (dd, *J* = 16.5, 7.3 Hz, 1H), 2.52 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.7, 152.6, 150.4, 134.2, 132.5, 131.0, 130.7, 129.7, 126.4, 124.3, 123.9, 121.5, 110.6, 98.8, 65.1, 55.4, 38.0, 18.8; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₉N₂O₄ 351.1339; Found 351.1330.

phenyl 2-(2,8-dimethoxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3am): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a pale yellow amorphous solid (75.4 mg, yield 82%), mp 102–103 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, *J* = 8.1 Hz, 1H), 7.45–7.38 (m, 2H), 7.29–7.27 (m, 1H), 7.27–7.25 (m, 1H), 7.15–7.09 (m, 2H), 6.71 (d, *J* = 8.0 Hz, 1H), 6.62–6.57 (m, 1H), 5.37–5.32 (m, 1H), 4.00 (s, 3H), 3.94 (s, 3H), 3.29 (dd, *J* = 16.5, 6.4 Hz, 1H), 3.08 (dd, *J* = 16.5, 7.0 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.5, 153.3, 152.5, 150.4, 133.1, 132.1, 129.7, 126.4, 125.3, 123.0, 121.5, 106.1, 103.8, 97.5, 65.1, 55.6, 55.3, 38.0; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₉N₂O₅ 367.1288; Found 367.1279.

phenyl 2-(2-methoxy-7-methyl-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3an): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow viscous oil (72.9 mg, yield 83%). ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, *J* = 8.3 Hz, 1H), 7.44–7.39 (m, 2H), 7.37 (s, 1H), 7.30–7.26 (m, 1H), 7.16 (d, *J* = 8.3 Hz, 1H), 7.11 (d, *J* = 8.2 Hz, 2H), 6.39 (s, 1H), 5.35–5.29 (m, 1H), 4.00 (s, 3H), 3.31 (dd, *J* = 16.4, 6.3 Hz, 1H), 3.07 (dd, *J* = 16.4, 7.2 Hz, 1H), 2.45 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.6, 152.6, 150.4, 134.9, 133.2, 133.1, 129.7, 129.2, 126.4, 125.6, 121.5, 121.4, 112.7, 100.0, 65.1, 55.4, 38.0, 21.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₉N₂O₄ 351.1339; Found 351.1331.

phenyl 2-(2,7-dimethoxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3ao): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow amorphous solid (77.9 mg, yield 85%), mp 117–118 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, *J* = 8.8 Hz, 1H), 7.44–7.39 (m, 2H), 7.29–7.26 (m, 1H), 7.14–7.09 (m, 2H), 7.04 (d, *J* = 2.4 Hz, 1H), 6.96 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.40 (d, *J* = 0.8 Hz, 1H), 5.34–5.27 (m, 1H), 3.99 (s, 3H), 3.85 (s, 3H), 3.31 (dd, *J* = 16.4, 6.2 Hz, 1H), 3.07 (dd, *J* =

16.4, 7.3 Hz, 1H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 168.6, 156.6, 152.6, 150.4, 135.7, 133.8, 129.7, 126.4, 125.7, 121.5, 113.7, 113.3, 104.1, 100.2, 65.2, 55.9, 55.4, 37.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for $\text{C}_{20}\text{H}_{19}\text{N}_2\text{O}_5$ 367.1288; Found 367.1281.

phenyl 2-(7-ethyl-2-methoxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3ap): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow viscous oil (75.7 mg, yield 83%). ^1H NMR (600 MHz, CDCl_3) δ 7.89 (d, J = 8.3 Hz, 1H), 7.44-7.38 (m, 3H), 7.30-7.26 (m, 1H), 7.19 (d, J = 8.3 Hz, 1H), 7.12 (d, J = 7.9 Hz, 2H), 6.42 (d, J = 0.4 Hz, 1H), 5.36-5.30 (m, 1H), 4.00 (s, 3H), 3.31 (dd, J = 16.4, 6.3 Hz, 1H), 3.07 (dd, J = 16.4, 7.2 Hz, 1H), 2.75 (q, J = 7.6 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 168.6, 152.6, 150.4, 139.8, 135.0, 133.1, 129.7, 129.4, 126.4, 124.7, 121.5, 120.1, 112.8, 100.1, 65.1, 55.4, 38.0, 29.2, 16.4; HRMS (ESI) m/z: [M + H]⁺ Calcd for $\text{C}_{21}\text{H}_{21}\text{N}_2\text{O}_4$ 365.1496; Found 365.1488.

phenyl 2-(7-ethoxy-2-methoxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3aq): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow amorphous solid (76.9 mg, yield 81%), mp 131-132 °C. ^1H NMR (600 MHz, CDCl_3) δ 7.85 (d, J = 8.8 Hz, 1H), 7.44-7.38 (m, 2H), 7.28 (d, J = 7.5 Hz, 1H), 7.11 (d, J = 8.1 Hz, 2H), 7.03 (d, J = 1.8 Hz, 1H), 6.95 (dd, J = 8.8, 2.0 Hz, 1H), 6.39 (s, 1H), 5.34-5.26 (m, 1H), 4.06 (q, J = 7.0 Hz, 2H), 3.99 (s, 3H), 3.31 (dd, J = 16.4, 6.2 Hz, 1H), 3.07 (dd, J = 16.4, 7.2 Hz, 1H), 1.44 (t, J = 7.0 Hz, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 168.6, 155.9, 152.6, 150.4, 135.6, 133.8, 129.7, 126.4, 125.7, 121.5, 113.8, 113.7, 105.0, 100.2, 65.2, 64.1, 55.5, 37.9, 15.1; HRMS (ESI) m/z: [M + H]⁺ Calcd for $\text{C}_{21}\text{H}_{21}\text{N}_2\text{O}_5$ 381.1445; Found 381.1436.

phenyl 2-(2-methoxy-6-methyl-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3ar): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow viscous oil (68.7 mg, yield 78%). ^1H NMR (600 MHz, CDCl_3) δ 7.81 (s, 1H), 7.45 (d, J = 8.1 Hz, 1H), 7.44-7.39 (m, 2H), 7.30-7.26 (m, 1H), 7.14-7.08 (m, 3H), 6.42 (s, 1H), 5.36-5.30 (m, 1H), 4.00 (s, 3H), 3.30 (dd, J = 16.4, 6.3 Hz, 1H), 3.07 (dd, J = 16.4, 7.2 Hz, 1H), 2.49 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 168.6, 152.6, 150.4, 134.5, 134.1, 131.4, 130.5, 129.7, 126.4, 125.1, 121.5, 121.0, 113.2, 100.1, 65.1, 55.4, 38.0, 21.8; HRMS (ESI) m/z: [M + H]⁺ Calcd for $\text{C}_{20}\text{H}_{19}\text{N}_2\text{O}_4$ 351.1339; Found 351.1333.

phenyl 2-(2,6-dimethoxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3as): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow amorphous solid (58.1 mg, yield 63%), mp 107-108 °C. ^1H NMR (600 MHz, CDCl_3) δ 7.49 (d, J = 2.3 Hz, 1H), 7.44 (d, J = 8.7 Hz, 1H), 7.43-7.39 (m, 2H), 7.29-7.26 (m, 1H), 7.13-7.09 (m, 2H), 6.91 (dd, J = 8.7, 2.4 Hz, 1H), 6.39 (d, J = 1.4 Hz, 1H), 5.35-5.29 (m, 1H), 4.00 (s, 3H), 3.88 (s, 3H), 3.30 (dd, J = 16.4, 6.2 Hz, 1H), 3.07 (dd, J = 16.4, 7.2 Hz, 1H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 168.6, 157.7, 152.6, 150.4, 133.2, 131.9, 129.7, 126.4, 126.4, 122.0, 121.5, 113.5, 100.1, 96.5, 65.1, 55.9, 55.3, 38.0; HRMS (ESI) m/z: [M + H]⁺ Calcd for $\text{C}_{20}\text{H}_{19}\text{N}_2\text{O}_5$ 367.1288; Found 367.1278.

phenyl 2-(2-methoxy-5-methyl-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3at): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a white amorphous solid (68.6 mg, yield 78%), mp 87-88 °C. ^1H NMR (600 MHz, CDCl_3) δ 7.44-7.40 (m, 2H), 7.39 (d, J = 7.8 Hz, 1H), 7.30-7.27 (m, 1H), 7.19-7.15 (m, 1H), 7.14-7.09 (m, 3H), 6.49 (d, J = 1.5 Hz, 1H), 5.34-5.27 (m, 1H), 4.01 (s, 3H), 3.30 (dd, J = 16.3, 6.3 Hz, 1H), 3.08 (dd, J = 16.4, 7.0 Hz, 1H), 2.91 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 168.6, 153.1, 150.4, 135.8, 133.5, 131.6, 129.7, 126.7, 126.4, 125.0, 123.9, 121.5, 118.8, 100.7, 65.0, 54.8, 38.1, 20.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for $\text{C}_{20}\text{H}_{19}\text{N}_2\text{O}_4$ 351.1339; Found 351.1332.

phenyl 2-(7-furan-2-yl)-2-methoxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3au): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow amorphous solid (79.0 mg, yield 79%), mp 120-121 °C. ^1H NMR (600 MHz, CDCl_3) δ 7.97 (d, J = 8.5 Hz, 1H), 7.88 (s, 1H), 7.66 (dd, J = 8.5, 1.5 Hz, 1H), 7.48 (d, J = 1.6 Hz, 1H), 7.45-7.38 (m, 2H), 7.30-7.26 (m, 1H), 7.15-7.07 (m, 2H), 6.65 (d, J = 3.3 Hz, 1H), 6.49 (dd, J = 3.3, 1.8 Hz, 1H), 6.47 (s, 1H), 5.36-5.29 (m, 1H), 4.00 (s, 3H), 3.32 (dd, J = 16.5, 6.2 Hz, 1H), 3.09 (dd, J = 16.5, 7.2 Hz, 1H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 168.5, 154.4, 152.2, 150.4, 141.9, 135.5, 133.2, 130.1, 129.7, 126.8, 126.4, 121.4, 120.7, 116.7, 113.2, 111.8, 104.6, 100.5, 65.1, 55.3, 37.8; HRMS (ESI) m/z: [M + H]⁺ Calcd for $\text{C}_{23}\text{H}_{19}\text{N}_2\text{O}_5$ 403.1288; Found 403.1286.

phenyl 2-(2-methoxy-3-oxo-7-(thiophen-2-yl)-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3av): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow amorphous solid (89.9 mg, yield 86%), mp 132-133 °C. ^1H NMR (600 MHz, CDCl_3) δ 7.97 (d, J = 8.4 Hz, 1H), 7.81 (s, 1H), 7.61 (dd, J = 8.4, 1.5 Hz, 1H), 7.46-7.38 (m, 2H), 7.33-7.31 (m, 1H), 7.30-7.26 (m, 2H), 7.12 (d, J = 7.7 Hz, 2H), 7.09 (dd, J = 5.0, 3.7 Hz, 1H), 6.49 (s, 1H), 5.38-5.32 (m, 1H), 4.01 (s, 3H), 3.34 (dd, J = 16.5, 6.2 Hz, 1H), 3.10 (dd, J = 16.5, 7.3 Hz, 1H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 168.5, 152.3, 150.4, 144.9, 135.6, 133.4, 130.4, 130.3, 129.8, 128.2, 126.4, 124.7, 123.1, 122.9, 121.5, 118.8, 113.3, 100.4, 65.2, 55.3, 37.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for $\text{C}_{23}\text{H}_{19}\text{N}_2\text{O}_4\text{S}$ 419.1060; Found 419.1060.

phenyl 2-(7-cyano-2-methoxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3aw): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 8:1 → Petroleum/EtOAc: 4/1) on silica gel to provide the product as a white amorphous solid (23.4 mg, yield 26%), mp 121-122 °C. ^1H NMR (600 MHz, CDCl_3) δ 8.06 (d, J = 8.4 Hz, 1H), 7.93 (s, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.45-7.39 (m, 2H), 7.31-7.26 (m, 1H), 7.10 (d, J = 8.1 Hz, 2H), 6.56 (s, 1H), 5.42-5.35 (m, 1H), 4.02 (s, 3H), 3.38 (dd, J = 16.8, 5.8 Hz, 1H), 3.12 (dd, J = 16.8, 7.5 Hz, 1H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 168.3, 151.3, 150.3, 136.9, 132.6, 132.6, 129.8, 127.3, 126.5, 126.5, 121.4, 119.6, 113.8, 107.0, 100.2, 65.3, 55.0, 37.4; HRMS (ESI) m/z: [M + H]⁺ Calcd for $\text{C}_{20}\text{H}_{16}\text{N}_3\text{O}_4$ 362.1135; Found 362.1127.

methyl 2-methoxy-3-oxo-1-(2-oxo-2-phenoxyethyl)-2,3-dihydro-1H-imidazo[1,5-*a*]indole-7-carboxylate (3ax): The reaction mixture was subjected directly to flash chromatog-

raphy (Petroleum/EtOAc: 8:1→Petroleum/EtOAc: 4/1) on silica gel to provide the product as a pale yellow amorphous solid (79.6 mg, yield 81%), mp 126-127 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.33 (s, 1H), 8.04 (dd, *J* = 8.5, 1.3 Hz, 1H), 8.00 (d, *J* = 8.5 Hz, 1H), 7.45-7.38 (m, 2H), 7.30-7.26 (m, 1H), 7.10 (d, *J* = 8.2 Hz, 2H), 6.55 (s, 1H), 5.40-5.33 (m, 1H), 4.01 (s, 3H), 3.94 (s, 3H), 3.35 (dd, *J* = 16.6, 6.1 Hz, 1H), 3.10 (dd, *J* = 16.6, 7.3 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.4, 167.4, 151.8, 150.3, 135.9, 133.5, 132.5, 129.8, 126.5, 125.6, 125.5, 124.0, 121.4, 112.7, 100.9, 65.2, 55.1, 52.3, 37.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₉N₂O₆ 395.1238; Found 395.1232.

phenyl 2-(2-methoxy-9-methyl-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3ay): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1→Petroleum/EtOAc: 8/1) on silica gel to provide the product as a white amorphous solid (74.8 mg, yield 85%), mp 122-123 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 8.0 Hz, 1H), 7.54 (d, *J* = 7.8 Hz, 1H), 7.42-7.37 (m, 2H), 7.37-7.33 (m, 1H), 7.32-7.28 (m, 1H), 7.27-7.26 (m, 1H), 7.10-7.05 (m, 2H), 5.48-5.41 (m, 1H), 3.97 (s, 3H), 3.20-3.14 (m, 2H), 2.31 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.8, 152.5, 150.5, 133.9, 131.0, 129.8, 129.7, 126.3, 124.3, 123.2, 121.4, 119.4, 113.1, 109.2, 64.9, 54.8, 37.2, 8.6; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₉N₂O₄ 351.1339; Found 351.1333.

phenyl 2-(9-benzyl-2-methoxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3az): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1→Petroleum/EtOAc: 8/1) on silica gel to provide the product as a white amorphous solid (42.4 mg, yield 40%), mp 187-188 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.1 Hz, 1H), 7.49 (d, *J* = 7.9 Hz, 1H), 7.39-7.32 (m, 5H), 7.30-7.26 (m, 4H), 7.25-7.21 (m, 1H), 6.96 (d, *J* = 7.7 Hz, 2H), 5.19 (dd, *J* = 7.9, 3.7 Hz, 1H), 4.16 (d, *J* = 16.5 Hz, 1H), 4.10 (d, *J* = 16.9 Hz, 1H), 3.91 (s, 3H), 2.75 (dd, *J* = 16.6, 7.9 Hz, 1H), 2.68 (dd, *J* = 16.5, 3.8 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.6, 152.3, 150.5, 139.1, 133.1, 131.1, 130.7, 129.6, 129.1, 128.8, 127.0, 126.2, 124.4, 123.3, 121.4, 119.8, 113.1, 112.7, 64.8, 54.8, 37.0, 30.4; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₃N₂O₄ 427.1652; Found 427.1643.

ethyl 2-(2-methoxy-3-oxo-1-(2-oxo-2-phenoxyethyl)-2,3-dihydro-1H-imidazo[1,5-*a*]indol-9-yl)acetate (3ba): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 8:1→Petroleum/EtOAc: 4/1) on silica gel to provide the product as a yellow viscous oil (41.7 mg, yield 39%). ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, *J* = 8.0 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.40-7.34 (m, 3H), 7.32-7.28 (m, 1H), 7.26-7.21 (m, 1H), 7.06 (d, *J* = 7.9 Hz, 2H), 5.55-5.47 (m, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.98 (s, 3H), 3.81-3.71 (m, 2H), 3.34 (dd, *J* = 16.7, 4.8 Hz, 1H), 3.20 (dd, *J* = 16.7, 7.1 Hz, 1H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 170.7, 168.9, 152.2, 150.5, 132.7, 131.9, 130.8, 129.6, 126.3, 124.5, 123.4, 121.5, 119.4, 113.1, 106.2, 64.9, 61.5, 54.9, 36.9, 30.1, 14.3; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₃N₂O₆ 423.1551; Found 423.1541.

phenyl 2-(2-ethoxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3bb): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1→Petroleum/EtOAc: 12/1) on silica gel to provide the product as a pale yellow amorphous solid (76.7 mg, yield 88%), mp 113-114 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.00 (d,

J = 8.1 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.44-7.39 (m, 2H), 7.36-7.32 (m, 1H), 7.30-7.26 (m, 2H), 7.15-7.10 (m, 2H), 6.48 (s, 1H), 5.39-5.29 (m, 1H), 4.29-4.17 (m, 2H), 3.34 (dd, *J* = 16.6, 6.1 Hz, 1H), 3.05 (dd, *J* = 16.6, 7.4 Hz, 1H), 1.38 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.6, 152.6, 150.4, 135.0, 132.8, 131.0, 129.7, 126.4, 124.2, 123.5, 121.5, 113.1, 100.2, 73.1, 55.5, 37.9, 13.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₉N₂O₄ 351.1339; Found 351.1330.

phenyl 2-(2-isopropoxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3bc): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1→Petroleum/EtOAc: 12/1) on silica gel to provide the product as a colorless viscous oil (63.7 mg, yield 70%). ¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, *J* = 8.1 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.44-7.38 (m, 2H), 7.36-7.32 (m, 1H), 7.30-7.26 (m, 2H), 7.12 (d, *J* = 7.8 Hz, 2H), 6.48 (s, 1H), 5.37-5.29 (m, 1H), 4.46-4.37 (m, 1H), 3.39 (dd, *J* = 16.9, 5.9 Hz, 1H), 3.00 (dd, *J* = 16.9, 7.7 Hz, 1H), 1.39 (d, *J* = 6.2 Hz, 3H), 1.36 (d, *J* = 6.2 Hz, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.7, 153.0, 150.4, 135.3, 132.8, 131.0, 129.7, 126.4, 124.1, 123.4, 121.5, 121.4, 113.1, 100.1, 79.1, 55.8, 37.7, 21.2, 21.1; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₁N₂O₄ 365.1496; Found 365.1487.

phenyl 2-(2-benzyloxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (3be): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1→Petroleum/EtOAc: 12/1) on silica gel to provide the product as a white amorphous solid (85.3 mg, yield 83%), mp 83-84 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, *J* = 8.1 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.54-7.47 (m, 2H), 7.44-7.39 (m, 3H), 7.39-7.33 (m, 3H), 7.30-7.27 (m, 1H), 7.26-7.24 (m, 1H), 7.00 (d, *J* = 7.9 Hz, 2H), 6.43 (s, 1H), 5.20-5.14 (m, 2H), 5.13-5.07 (m, 1H), 3.08 (dd, *J* = 16.7, 5.7 Hz, 1H), 2.84 (dd, *J* = 16.7, 7.7 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.6, 152.8, 150.3, 135.1, 135.1, 132.8, 131.0, 130.1, 129.6, 129.3, 128.8, 126.3, 124.2, 123.5, 121.5, 113.1, 100.2, 79.4, 55.8, 37.4; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₁N₂O₄ 413.1496; Found 413.1487.

phenyl 2-(2-methoxy-5-methyl-3-oxo-2,3-dihydro-1H-pyrrolo[1,2-*c*]imidazol-1-yl)acetate (3bf): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1→Petroleum/EtOAc: 10/1) on silica gel to provide the product as a colorless viscous oil (55.1 mg, yield 73%). ¹H NMR (600 MHz, CDCl₃) δ 7.44-7.36 (m, 2H), 7.28-7.25 (m, 1H), 7.12-7.04 (m, 2H), 6.03 (dd, *J* = 3.0, 1.0 Hz, 1H), 5.98 (dd, *J* = 3.0, 1.3 Hz, 1H), 5.19-5.12 (m, 1H), 3.95 (s, 3H), 3.18 (dd, *J* = 16.3, 6.4 Hz, 1H), 2.97 (dd, *J* = 16.2, 6.8 Hz, 1H), 2.46 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.7, 152.6, 150.4, 129.7, 128.9, 126.3, 126.3, 121.5, 113.8, 103.8, 64.8, 54.6, 38.3, 11.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₇N₂O₄ 301.1183; Found 301.1175.

methyl 2-(2-methoxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-*a*]indol-1-yl)acetate (4aa): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1→Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow viscous oil (58.2 mg, yield 85%). ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 8.1 Hz, 1H), 7.56 (d, *J* = 7.9 Hz, 1H), 7.34-7.29 (m, 1H), 7.27-7.24 (m, 1H), 6.40 (s, 1H), 5.24-5.18 (m, 1H), 3.96 (s, 3H), 3.78 (s, 3H), 3.09 (dd, *J* = 16.4, 5.8 Hz, 1H), 2.81 (dd, *J* = 16.4, 7.7 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 170.3, 152.6, 135.1, 132.8, 130.9, 124.1, 123.5, 121.4, 113.0, 100.0, 65.1, 55.4, 52.3, 37.5;

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₅N₂O₄ 275.1026; Found 275.1020.

ethyl 2-(2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (4ab): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow viscous oil (60.8 mg, yield 84%). ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, *J* = 8.1 Hz, 1H), 7.56 (d, *J* = 7.9 Hz, 1H), 7.33-7.28 (m, 1H), 7.26-7.23 (m, 1H), 6.39 (d, *J* = 0.9 Hz, 1H), 5.24-5.16 (m, 1H), 4.27-4.19 (m, 2H), 3.95 (s, 3H), 3.07 (dd, *J* = 16.3, 5.8 Hz, 1H), 2.80 (dd, *J* = 16.3, 7.6 Hz, 1H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 169.8, 152.5, 135.2, 132.8, 130.9, 124.0, 123.4, 121.4, 112.9, 99.9, 65.0, 61.3, 55.4, 37.7, 14.3; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₇N₂O₄ 289.1183; Found 289.1175.

tert-butyl 2-(2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (4ac): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow viscous oil (61.3 mg, yield 78%). ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 8.1 Hz, 1H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.33-7.28 (m, 1H), 7.27-7.22 (m, 1H), 6.38 (d, *J* = 0.5 Hz, 1H), 5.20-5.15 (m, 1H), 3.95 (s, 3H), 2.97 (dd, *J* = 16.2, 6.1 Hz, 1H), 2.74 (dd, *J* = 16.2, 7.2 Hz, 1H), 1.47 (s, 9H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 169.1, 152.5, 135.4, 132.8, 130.9, 123.9, 123.3, 121.3, 112.9, 99.7, 81.9, 65.0, 55.6, 38.9, 28.1; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₂₁N₂O₄ 317.1496; Found 317.1487.

benzyl 2-(2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (4ad): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow viscous oil (74.9 mg, yield 86%). ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 8.1 Hz, 1H), 7.54 (d, *J* = 7.8 Hz, 1H), 7.41-7.34 (m, 5H), 7.34-7.30 (m, 1H), 7.28-7.25 (m, 1H), 6.30 (s, 1H), 5.27-5.17 (m, 3H), 3.89 (s, 3H), 3.13 (dd, *J* = 16.3, 6.0 Hz, 1H), 2.86 (dd, *J* = 16.3, 7.5 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 169.7, 152.5, 135.4, 135.0, 132.8, 130.9, 128.8, 128.7, 124.1, 123.4, 121.4, 113.0, 100.0, 67.1, 65.0, 55.4, 37.8; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₉N₂O₄ 351.1339; Found 351.1330.

2-methoxyphenyl 2-(2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (4ae): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow viscous oil (64.2 mg, yield 70%). ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.1 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.36-7.31 (m, 1H), 7.29-7.26 (m, 1H), 7.26-7.23 (m, 1H), 7.06 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.02-6.99 (m, 1H), 6.99-6.96 (m, 1H), 6.52 (d, *J* = 0.8 Hz, 1H), 5.36-5.29 (m, 1H), 4.02 (s, 3H), 3.84 (s, 3H), 3.40 (dd, *J* = 16.4, 5.5 Hz, 1H), 3.08 (dd, *J* = 16.4, 8.0 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.0, 152.6, 151.1, 139.4, 135.0, 133.0, 131.0, 127.5, 124.2, 123.5, 122.7, 121.5, 121.0, 113.1, 112.6, 100.4, 65.3, 55.9, 55.5, 37.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₉N₂O₅ 367.1288; Found 367.1279.

m-tolyl 2-(2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (4af): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow viscous oil (71.9 mg, yield 82%). ¹H NMR

(600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.1 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.36-7.32 (m, 1H), 7.31-7.26 (m, 2H), 7.08 (d, *J* = 7.5 Hz, 1H), 6.95-6.87 (m, 2H), 6.48 (s, 1H), 5.38-5.30 (m, 1H), 4.01 (s, 3H), 3.31 (dd, *J* = 16.4, 6.2 Hz, 1H), 3.07 (dd, *J* = 16.4, 7.3 Hz, 1H), 2.37 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.6, 152.5, 150.4, 140.0, 134.9, 132.9, 131.0, 129.4, 127.2, 124.2, 123.6, 122.0, 121.5, 118.4, 113.1, 100.3, 65.2, 55.4, 37.9, 21.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₉N₂O₄ 351.1339; Found 351.1328.

3-chlorophenyl 2-(2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (4ag): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a pale yellow amorphous solid (71.7 mg, yield 77%), mp 121-122 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.1 Hz, 1H), 7.59 (d, *J* = 7.9 Hz, 1H), 7.37-7.31 (m, 2H), 7.30-7.26 (m, 2H), 7.17-7.13 (m, 1H), 7.02 (dd, *J* = 8.1, 1.2 Hz, 1H), 6.47 (s, 1H), 5.37-5.30 (m, 1H), 4.00 (s, 3H), 3.30 (dd, *J* = 16.5, 6.3 Hz, 1H), 3.09 (dd, *J* = 16.5, 7.1 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.2, 152.5, 150.8, 135.0, 134.6, 132.8, 131.0, 130.5, 126.7, 124.3, 123.6, 122.2, 121.5, 119.9, 113.1, 100.3, 65.2, 55.2, 37.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₆ClN₂O₄ 371.0793; Found 371.0786.

p-tolyl 2-(2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (4ah): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow viscous oil (64.4 mg, yield 74%). ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.0 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.37-7.32 (m, 1H), 7.30-7.26 (m, 1H), 7.21 (d, *J* = 8.2 Hz, 2H), 7.03-6.97 (m, 2H), 6.47 (s, 1H), 5.39-5.30 (m, 1H), 4.00 (s, 3H), 3.31 (dd, *J* = 16.4, 6.3 Hz, 1H), 3.07 (dd, *J* = 16.5, 7.3 Hz, 1H), 2.36 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.8, 152.5, 148.2, 136.1, 134.8, 132.8, 131.0, 130.2, 124.2, 123.5, 121.5, 121.1, 113.1, 100.2, 65.1, 55.3, 37.9, 21.0; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₉N₂O₄ 351.1339; Found 351.1332.

4-methoxyphenyl 2-(2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (4ai): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow viscous oil (68.4 mg, yield 75%). ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.1 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.37-7.31 (m, 1H), 7.29-7.26 (m, 1H), 7.06-6.99 (m, 2H), 6.93-6.90 (m, 2H), 6.47 (s, 1H), 5.38-5.29 (m, 1H), 4.00 (s, 3H), 3.81 (s, 3H), 3.30 (dd, *J* = 16.4, 6.2 Hz, 1H), 3.06 (dd, *J* = 16.4, 7.2 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.9, 157.7, 152.5, 143.9, 134.9, 132.8, 131.0, 124.2, 123.5, 122.2, 121.5, 114.7, 113.1, 100.2, 65.1, 55.7, 55.4, 37.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₉N₂O₅ 367.1288; Found 367.1277.

4-fluorophenyl 2-(2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (4aj): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a white amorphous solid (74.9 mg, yield 85%), mp 86-87 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.1 Hz, 1H), 7.59 (d, *J* = 7.9 Hz, 1H), 7.37-7.31 (m, 1H), 7.30-7.26 (m, 1H), 7.14-7.02 (m, 4H), 6.46 (d, *J* = 0.7 Hz, 1H), 5.37-5.29 (m, 1H), 4.00 (s, 3H), 3.30 (dd, *J* = 16.5, 6.3 Hz, 1H), 3.08 (dd, *J* = 16.5, 7.1 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.6, 160.6 (d, *J*_{C-F} = 245.2 Hz), 152.5, 146.2 (d, *J*_{C-F}

ν = 2.9 Hz), 134.7, 132.8, 131.0, 124.3, 123.6, 122.9 (d, J_{C-F} = 8.5 Hz), 121.5, 116.4 (d, J_{C-F} = 23.5 Hz), 113.1, 100.2, 65.1, 55.2, 37.8; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₆FN₂O₄ 355.1089; Found 355.1083.

4-chlorophenyl 2-(2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (4ak): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16/1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a white amorphous solid (79.4 mg, yield 86%), mp 93–94 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 7.9 Hz, 1H), 7.40–7.32 (m, 3H), 7.30–7.26 (m, 1H), 7.10–7.02 (m, 2H), 6.46 (d, J = 0.7 Hz, 1H), 5.37–5.29 (m, 1H), 3.99 (s, 3H), 3.30 (dd, J = 16.5, 6.3 Hz, 1H), 3.08 (dd, J = 16.5, 7.1 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.3, 152.5, 148.8, 134.7, 132.8, 131.8, 131.0, 129.8, 124.3, 123.6, 122.8, 121.5, 113.1, 100.3, 65.1, 55.2, 37.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₆CIN₂O₄ 371.0793; Found 371.0791.

4-bromophenyl 2-(2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (4al): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16/1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow viscous oil (93.7 mg, yield 90%). ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, J = 8.1 Hz, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.52 (d, J = 8.7 Hz, 2H), 7.37–7.31 (m, 1H), 7.30–7.26 (m, 1H), 7.00 (d, J = 8.7 Hz, 2H), 6.45 (s, 1H), 5.36–5.28 (m, 1H), 3.99 (s, 3H), 3.29 (dd, J = 16.5, 6.3 Hz, 1H), 3.08 (dd, J = 16.5, 7.0 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.2, 152.4, 149.4, 134.6, 132.8, 131.0, 124.3, 123.6, 123.2, 121.5, 119.5, 113.1, 100.2, 65.1, 55.2, 37.8; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₆BrN₂O₄ 415.0288; Found 415.0284.

4-iodophenyl 2-(2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (4am): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16/1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow viscous oil (94.4 mg, yield 82%). ¹H NMR (600 MHz, CDCl₃) δ 8.01–7.96 (m, 1H), 7.74–7.68 (m, 2H), 7.58 (d, J = 7.9 Hz, 1H), 7.37–7.32 (m, 1H), 7.29–7.26 (m, 1H), 6.91–6.85 (m, 2H), 6.45 (d, J = 0.8 Hz, 1H), 5.36–5.29 (m, 1H), 3.99 (s, 3H), 3.29 (dd, J = 16.5, 6.3 Hz, 1H), 3.08 (dd, J = 16.5, 7.0 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.2, 152.5, 150.2, 138.8, 134.6, 132.8, 131.0, 124.3, 123.6, 121.5, 113.1, 100.3, 90.5, 65.1, 55.2, 37.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₆IN₂O₄ 463.0149; Found 463.0143.

N-benzyl-2-(2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetamide (4an): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 8:1 → Petroleum/EtOAc: 4/1) on silica gel to provide the product as a white amorphous solid ((*Z*)-N-benzyl-3-phenoxyacrylamide: 39.4 mg, yield 45%; (*E*)-N-benzyl-3-phenoxyacrylamide: 38.4 mg, yield 44%), mp 130–131 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, J = 8.0 Hz, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.32–7.26 (m, 4H), 7.26–7.22 (m, 3H), 6.30 (s, 1H), 6.16 (s, 1H), 5.39–5.31 (m, 1H), 4.47 (d, J = 5.7 Hz, 2H), 3.85 (s, 3H), 2.94 (dd, J = 14.9, 6.2 Hz, 1H), 2.60 (dd, J = 14.9, 7.3 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 168.6, 152.3, 137.9, 135.3, 132.8, 130.9, 128.9, 128.0, 127.8, 124.0, 123.4, 121.4, 112.9, 100.0, 64.7, 55.3, 43.9, 39.6; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₀N₃O₃ 350.1499; Found 350.1490.

2-(2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)-N-phenylacetamide (4ao): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 8:1 → Petroleum/EtOAc: 4/1) on silica gel to provide the product as a yellow amorphous solid (61.2 mg, yield 73%), mp 134–135 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.10 (s, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 7.8 Hz, 2H), 7.49 (d, J = 7.8 Hz, 1H), 7.37–7.31 (m, 2H), 7.26–7.22 (m, 1H), 7.22–7.18 (m, 1H), 7.16–7.11 (m, 1H), 6.39 (s, 1H), 5.46–5.40 (m, 1H), 3.84 (s, 3H), 3.07 (dd, J = 15.0, 6.4 Hz, 1H), 2.72 (dd, J = 15.0, 7.5 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 167.2, 152.4, 137.7, 135.2, 132.8, 130.8, 129.2, 124.8, 124.1, 123.5, 121.5, 120.2, 112.8, 100.3, 64.7, 55.2, 40.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₈N₃O₃ 336.1343; Found 336.1338.

2-(2-methoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)-N-methyl-N-phenylacetamide (4ap): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 8:1 → Petroleum/EtOAc: 4/1) on silica gel to provide the product as a pale yellow amorphous solid (49.3 mg, yield 56%), mp 125–126 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, J = 7.8 Hz, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.40–7.35 (m, 2H), 7.33–7.31 (m, 1H), 7.29–7.27 (m, 1H), 7.25–7.22 (m, 1H), 7.16–7.12 (m, 2H), 6.42 (d, J = 0.7 Hz, 1H), 5.46–5.39 (m, 1H), 3.87 (s, 3H), 3.35 (s, 3H), 2.84 (dd, J = 16.2, 6.0 Hz, 1H), 2.44 (dd, J = 16.2, 7.7 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 169.0, 152.0, 143.2, 136.1, 132.8, 130.9, 130.2, 128.4, 127.3, 123.8, 123.3, 121.3, 112.9, 99.9, 64.5, 55.3, 37.8, 37.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₀N₃O₃ 350.1499; Found 350.1492.

2-methoxy-1-(2-oxo-2-phenylethyl)-1*H*-imidazo[1,5-*a*]indol-3(2*H*)-one (4aq): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 16:1 → Petroleum/EtOAc: 8/1) on silica gel to provide the product as a yellow amorphous solid (40.7 mg, yield 51%), mp 128–129 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.02–7.94 (m, 3H), 7.63–7.59 (m, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.52–7.47 (m, 2H), 7.33–7.29 (m, 1H), 7.26–7.22 (m, 1H), 6.39 (s, 1H), 5.56–5.50 (m, 1H), 3.95 (s, 3H), 3.84 (dd, J = 17.5, 5.2 Hz, 1H), 3.35 (dd, J = 17.5, 8.2 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.5, 152.5, 136.3, 136.0, 133.9, 132.9, 130.9, 128.9, 128.2, 123.9, 123.4, 121.4, 112.9, 100.5, 64.8, 55.0, 41.8; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₇N₂O₃ 321.1234; Found 321.1226.

(E)-2-(2-tosylvinyl)-1*H*-indole (4ar'): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 8:1 → Petroleum/EtOAc: 4/1) on silica gel to provide the product as a white amorphous solid (18.5 mg, yield 25%), mp 161–162 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.55 (s, 1H), 7.80 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 15.3 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 7.8 Hz, 2H), 7.36 (dd, J = 8.2, 0.7 Hz, 1H), 7.23 (d, J = 15.3 Hz, 1H), 7.22–7.18 (m, 1H), 7.05–6.99 (m, 2H), 2.40 (s, 3H); ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆) δ 144.2, 138.2, 138.1, 132.1, 131.7, 130.2, 127.7, 127.1, 125.1, 124.5, 121.4, 120.0, 111.6, 109.8, 21.1; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₆NO₂S 298.0896; Found 298.0891.

phenyl 2-(9-(2-acetamidoethyl)-2,7-dimethoxy-3-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-yl)acetate (5aa): The reaction mixture was subjected directly to flash chromatography (Petroleum/EtOAc: 2:1 → Petroleum/EtOAc: 1/1) on silica gel to provide the product as a pale yellow amorphous solid (84.0 mg, yield 74%), mp 111–112 °C. ¹H NMR (600

MHz, DMSO-*d*₆) δ 8.01 (t, *J* = 5.7 Hz, 1H), 7.68 (d, *J* = 8.8 Hz, 1H), 7.44–7.36 (m, 2H), 7.28–7.23 (m, 1H), 7.22 (d, *J* = 2.2 Hz, 1H), 7.04 (d, *J* = 7.9 Hz, 2H), 6.94 (dd, *J* = 8.8, 2.3 Hz, 1H), 5.49 (dd, *J* = 6.6, 3.9 Hz, 1H), 3.87 (s, 3H), 3.81 (s, 3H), 3.48 (dd, *J* = 16.6, 3.8 Hz, 1H), 3.34–3.26 (m, 2H), 3.24 (dd, *J* = 16.7, 6.9 Hz, 1H), 2.91–2.80 (m, 2H), 1.80 (s, 3H); ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆) δ 169.3, 168.4, 155.8, 151.5, 150.1, 133.9, 132.1, 129.6, 126.0, 124.7, 121.5, 112.5, 112.5, 110.2, 102.6, 64.1, 55.5, 54.2, 38.7, 35.5, 23.6, 22.6; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₆N₃O₆ 452.1816; Found 452.1815.

Gram-scale preparation of compound 3aa. To a mixture of **1aa** (6 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (5 mol%) and NaOAc (6 mmol, 1.0 equiv) in a 100 mL round-bottom flask was added a solution of **2aa** (7.2 mmol, 1.2 equiv) in acetone (40.0 mL). Then the flask was capped with septa, and the resulting mixture was stirred at 60 °C in an oil bath for 24 h. After removal of the solvent, the residue was purified by flash chromatography (Petroleum/EtOAc: 16:1→Petroleum/EtOAc: 8:1) on silica gel to provide the desired product **3aa** as a yellow amorphous solid (1.75 g, yield 87%).

Control experiments. To a mixture of **1aa** (0.25 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (5 mol%), NaOAc (0.25 mmol, 1.0 equiv) in a 25 mL Schlenk tube was added a solution of **2aa'** (0.3 mmol, 1.2 equiv) in acetone (4.0 mL). Then the tube was capped with septa, and the resulting mixture was stirred at 60 °C in an oil bath for 24 h. After removal of the solvent, the residue was purified by flash chromatography (Petroleum/EtOAc: 16:1→Petroleum/EtOAc: 8:1) on silica gel to give the product **3aa** (7.9 mg, yield 9%) and **3aa'** (41.9 mg, yield 64%).

(E)-phenyl 3-(1H-indol-2-yl)acrylate (3aa'): yellow amorphous solid (41.9 mg, yield 64%), mp 157–158 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.72 (s, 1H), 7.85 (d, *J* = 15.9 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.47–7.43 (m, 2H), 7.42 (d, *J* = 8.2 Hz, 1H), 7.31–7.27 (m, 1H), 7.25–7.21 (m, 3H), 7.08–7.02 (m, 1H), 7.01 (s, 1H), 6.76 (d, *J* = 15.9 Hz, 1H); ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆) δ 165.1, 150.6, 138.3, 136.7, 133.6, 129.5, 127.8, 125.8, 124.4, 121.9, 121.4, 119.9, 114.3, 111.6, 109.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₄NO₂ 264.1019; Found 264.1013.

Control experiments. To a mixture of **1aa** (0.25 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (5 mol%), NaOAc (0.25 mmol, 1.0 equiv) in a 25 mL Schlenk tube was added a solution of **2aa''** (0.3 mmol, 1.2 equiv) in acetone (4.0 mL). Then the tube was capped with septa, and the resulting mixture was stirred at 60 °C in an oil bath for 24 h. After removal of the solvent, the residue was purified by flash chromatography (Petroleum/EtOAc: 16:1→Petroleum/EtOAc: 8:1) on silica gel to give the product **3aa** (6.0 mg, yield 7%) and **3aa''** (8.1 mg, yield 10%).

(E)-phenyl 3-(*N*-methoxy-1H-indole-1-carboxamido)acrylate (3aa''): yellow viscous oil (8.1 mg, yield 10%). ¹H NMR (600 MHz, CDCl₃) δ 8.44 (d, *J* = 13.7 Hz, 1H), 8.11 (d, *J* = 8.3 Hz, 1H), 7.79 (d, *J* = 3.8 Hz, 1H), 7.62 (d, *J* = 7.7 Hz, 1H), 7.43–7.39 (m, 2H), 7.39–7.36 (m, 1H), 7.33–7.29 (m, 1H), 7.26–7.23 (m, 1H), 7.19–7.14 (m, 2H), 6.70 (d, *J* = 3.8 Hz, 1H), 5.89 (d, *J* = 13.7 Hz, 1H), 3.78 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 165.4, 150.8, 148.3, 138.9, 136.7, 130.0, 129.6, 126.1, 125.9, 124.9, 123.9, 121.8, 121.2, 115.5, 109.3, 98.8, 62.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₇N₂O₄ 337.1183; Found 337.1183.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Investigation of the leaving groups and directing groups, mechanistic experiments, X-ray data of compound **3aa**, copies of ¹H NMR and ¹³C{¹H} NMR Spectra of all isolated compounds (PDF)

Accession Codes

CCDC 2079908 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

*E-mail: zhaofei@cdu.edu.cn
*E-mail: nihc@hotmail.com
*E-mail: shiyao_lu_siia@126.com

Author Contributions

All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support from the Natural Science Foundation of Zhejiang Province (Grant LY21B020003), National Natural Science Foundation of China (Grant 21602022), Chengdu Talents Program, 1000 Talents Program of Sichuan Province, Longquanyi District Talents Program, Science and Technology Program of Sichuan Province (Grant 2018JY0345), Start-up Funding from Jinhua Branch of Sichuan Industrial Institute of Antibiotics (Grant 1003) and Chengdu University New Faculty Start-up Funding (Grant 2081915037).

REFERENCES

- (1). For selected reviews, see: (a) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Recent Advances in the Transition Metal-Catalyzed Two-fold Oxidative C–H Bond Activation Strategy for C–C and C–N Bond Formation. *Chem. Soc. Rev.* **2011**, *40*, 5068–5083. (b) Ramirez, T. A.; Zhao, B.; Shi, Y. Recent Advances in Transition Metal-Catalyzed sp³ C–H Amination Adjacent to Double Bonds and Carbonyl Groups. *Chem. Soc. Rev.* **2012**, *41*, 931–942. (c) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Rhodium Catalyzed Chelation-Assisted C–H Bond Functionalization Reactions. *Acc. Chem. Res.* **2012**, *45*, 814–825. (d) Wencel-Delord, J.; Glorius, F. C–H Bond Activation Enables the Rapid Construction and Late-Stage Diversification of Functional Molecules. *Nat. Chem.* **2013**, *5*, 369–375. (e) Ros, A.; Fernández, R.; Lassaletta, J. M. Functional Group Directed C–H Borylation. *Chem. Soc. Rev.* **2014**, *43*, 3229–3243. (f) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Transition Metal-Catalyzed C–H Bond Functionalizations by the Use of Diverse Directing Groups. *Org. Chem. Front.* **2015**, *2*, 1107–1295. (g) Gan-deepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. 3d Transition Metals for C–H Activation. *Chem. Rev.* **2019**, *119*, 2192–2452. (h) Zhao, Q.; Meng, G.; Nolan, S. P.; Szostak, M. N-Heterocyclic Carbene Complexes in C–H Activation Reactions. *Chem. Rev.* **2020**, *120*, 1981–2048.
- (2). For selected reviews, see: (a) Ackermann, L. Carboxylate-Assisted Ruthenium-Catalyzed Alkyne Annulations by C–H/Het–H

Bond Functionalizations. *Acc. Chem. Res.* **2014**, *47*, 281–295. (b) Guo, X.-X.; Gu, D.-W.; Wu, Z.; Zhang, W. Copper-Catalyzed C–H Functionalization Reactions: Efficient Synthesis of Heterocycles. *Chem. Rev.* **2015**, *115*, 1622–1651. (c) Wang, F.; Yu, S.; Li, X. Transition Metal-Catalyzed Couplings between Arenes and Strained or Reactive Rings: Combination of C–H Activation and Ring Scission. *Chem. Soc. Rev.* **2016**, *45*, 6462–6477. (d) Gulás, M.; Mascareñas, J. L. Metal-Catalyzed Annulations through Activation and Cleavage of C–H Bonds. *Angew. Chem. Int. Ed.* **2016**, *55*, 11000–11019. (e) Yang, Y.; Li, K.; Cheng, Y.; Wan, D.; Li, M.; You, J. Rhodium-Catalyzed Annulation of Arenes with Alkynes through Weak Chelation-Assisted C–H Activation. *Chem. Commun.* **2016**, *52*, 2872–2884. (f) Liu, J.; Chen, G.; Tan, Z. Copper-Catalyzed or -Mediated C–H Bond Functionalizations Assisted by Bidentate Directing Groups. *Adv. Synth. Catal.* **2016**, *358*, 1174–1194. (g) Minami, Y.; Hiyama, T. Recent Topics in Annulation Reaction via Double C–H Bond Cleavage and Double C–C Bond Formation. *Tetrahedron Lett.* **2018**, *59*, 781–788. (h) Duarah, G.; Kaishap, P. P.; Begum, T.; Gogoi, S. Recent Advances in Ruthenium(II)-Catalyzed C–H Bond Activation and Alkyne Annulation Reactions. *Adv. Synth. Catal.* **2019**, *361*, 654–672. (i) Kumar, S.; Nunewar, S.; Oluguttula, S.; Nanduri, S.; Kanchupalli, V. Recent Advances in Rh(III)/Ir(III)-Catalyzed C–H Functionalization/Annulation via Carbene Migratory Insertion. *Org. Biomol. Chem.* **2021**, *19*, 1438–1458.

(3) For selected reviews, see: (a) Patureau, F. W.; Glorius, F. Oxidizing Directing Groups Enable Efficient and Innovative C–H Activation Reactions. *Angew. Chem. Int. Ed.* **2011**, *50*, 1977–1979. (b) Huang, H.; Ji, X.; Wu, W.; Jiang, H. Transition Metal-Catalyzed C–H Functionalization of *N*-Oxygenamine Internal Oxidants. *Chem. Soc. Rev.* **2015**, *44*, 1155–1171. (c) Mo, J.; Wang, L.; Liu, Y.; Cui, X. Transition-Metal-Catalyzed Direct C–H Functionalization under External-Oxidant-Free Conditions. *Synthesis* **2015**, *47*, 439–459.

(4) For selected examples, see: (a) Wu, J.; Cui, X.; Chen, L.; Jiang, G.; Wu, Y. Palladium-Catalyzed Alkenylation of Quinoline-*N*-oxides via C–H Activation under External-Oxidant-Free Conditions. *J. Am. Chem. Soc.* **2009**, *131*, 13888–13889. (b) Huang, X.; Huang, J.; Du, C.; Zhang, X.; Song, F.; You, J. *N*-Oxide as a Traceless Oxidizing Directing Group: Mild Rhodium(III)-Catalyzed C–H Olefination for the Synthesis of *ortho*-Alkenylated Tertiary Anilines. *Angew. Chem. Int. Ed.* **2013**, *52*, 12970–12974.

(5) For selected examples, see: (a) Tan, Y.; Hartwig, J. F. Palladium-Catalyzed Amination of Aromatic C–H Bonds with Oxime Esters. *J. Am. Chem. Soc.* **2010**, *132*, 3676–3677. (b) Too, P. C.; Wang, Y.-F.; Chiba, S. Rhodium(III)-Catalyzed Synthesis of Isoquinolines from Aryl Ketone *O*-Acyloxime Derivatives and Internal Alkynes. *Org. Lett.* **2010**, *12*, 5688–5691.

(6) For selected examples, see: (a) Parthasarathy, K.; Jeganmohan, M.; Cheng, C.-H. Rhodium-Catalyzed One-Pot Synthesis of Substituted Pyridine Derivatives from α,β -Unsaturated Ketoximes and Alkynes. *Org. Lett.* **2008**, *10*, 325–328. (b) Zhang, X.; Chen, D.; Zhao, M.; Zhao, J.; Jia, A.; Li, X. Synthesis of Isoquinolines via Rhodium(III)-Catalyzed Dehydrative C–C and C–N Coupling between Oximines and Alkynes. *Adv. Synth. Catal.* **2011**, *353*, 719–723. (c) Hyster, T. K.; Rovis, T. Pyridine Synthesis from Oximes and Alkynes via rhodium(III) catalysis: Cp^{*} and Cp[†] Provide Complementary Selectivity. *Chem. Commun.* **2011**, *47*, 11846–11848. (d) Too, P. C.; Noji, T.; Lim, Y. J.; Li, X.; Chiba, S. Rhodium(III)-Catalyzed Synthesis of Pyridines from α,β -Unsaturated Ketoximes and Internal Alkynes. *Synlett* **2011**, 2789–2794. (e) Martin, R. M.; Bergman, R. G.; Ellman, J. A. Synthesis of Pyridines from Ketoximes and Terminal Alkynes via C–H Bond Functionalization. *J. Org. Chem.* **2012**, *77*, 2501–2507. (f) Chinnagolla, R. K.; Pimparkar, S.; Jeganmohan, M. Ruthenium-Catalyzed Highly Regioselective Cyclization of Ketoximes with Alkynes by C–H Bond Activation: A Practical Route to Synthesize Substituted Isoquinolines. *Org. Lett.* **2012**, *14*, 3032–3035. (g) Kornhaas, C.; Li, J.; Ackermann, L. Cationic Ruthenium Catalysts for Alkyne Annulations with Oximes by C–H/N–O Functionalizations. *J. Org. Chem.* **2012**, *77*, 9190–9198.

(7) For selected examples, see: (a) Guimond, N.; Gouliaras, C.; Fagnou, K. Rhodium(III)-Catalyzed Isoquinolone Synthesis: The N–O Bond as a Handle for C–N Bond Formation and Catalyst Turn-

over. *J. Am. Chem. Soc.* **2010**, *132*, 6908–6909. (b) Li, B.; Feng, H.; Xu, S.; Wang, B. Ruthenium-Catalyzed Isoquinolone Synthesis through C–H Activation Using an Oxidizing Directing Group. *Chem. Eur. J.* **2011**, *17*, 12573–12577. (c) Ackermann, L.; Fenner, S. Ruthenium-Catalyzed C–H/N–O Bond Functionalization: Green Isoquinolone Syntheses in Water. *Org. Lett.* **2011**, *13*, 6548–6551. (d) Li, B.; Ma, J.; Wang, N.; Feng, H.; Xu, S.; Wang, B. Ruthenium-Catalyzed Oxidative C–H Bond Olefination of *N*-Methoxybenzamides Using an Oxidizing Directing Group. *Org. Lett.* **2012**, *14*, 736–739. (e) Chinagolla, R. K.; Pimparkar, S.; Jeganmohan, M. A Regioselective Synthesis of 1-Haloisoquinolines via Ruthenium-Catalyzed Cyclization of *O*-Methylbenzohydroximoyl Halides with Alkynes. *Chem. Commun.* **2013**, *49*, 3703–3705. (f) Kornhaas, C.; Kuper, C.; Ackermann, L. Ferrocenylalkynes for Ruthenium-Catalyzed Isohypsic C–H/N–O Bond Functionalizations. *Adv. Synth. Catal.* **2014**, *356*, 1619–1624. (g) Gong, W.; Zhou, Z.; Shi, J.; Wu, B.; Huang, B.; Yi, W. Catalyst-Controlled [3 + 2] and [4 + 2] Annulations of Oximes with Propargyl Alcohols: Divergent Access to Indenamines and Isoquinolines. *Org. Lett.* **2018**, *20*, 182–185. (h) Yang, J.; Wu, L.; Xu, H.; Gao, H.; Zhou, Z.; Yi, W. Redox-Neutral [4 + 2] Annulation of *N*-Methoxybenzamides with Alkynes Enabled by an Osmium(II)/HOAc Catalytic System. *Org. Lett.* **2019**, *21*, 9904–9908.

(8) For selected examples, see: (a) Rakshit, S.; Grohmann, C.; Basset, T.; Glorius, F. Rh(III)-Catalyzed Directed C–H Olefination Using an Oxidizing Directing Group: Mild, Efficient, and Versatile. *J. Am. Chem. Soc.* **2011**, *133*, 2350–2353. (b) Guimond, N.; Gorelsky, S. I.; Fagnou, K. Rhodium(III)-Catalyzed Heterocycle Synthesis Using an Internal Oxidant: Improved Reactivity and Mechanistic Studies. *J. Am. Chem. Soc.* **2011**, *133*, 6449–6457. (c) Hyster, T. K.; Knörr, L.; Ward, T. R.; Rovis, T. Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C–H Activation. *Science* **2012**, *338*, 500–503. (d) Wang, H.; Grohmann, C.; Nimpfius, C.; Glorius, F. Mild Rh(III)-Catalyzed C–H Activation and Annulation with Alkyne MIDA Boronates: Short, Efficient Synthesis of Heterocyclic Boronic Acid Derivatives. *J. Am. Chem. Soc.* **2012**, *134*, 19592–19595. (e) Wang, H.; Glorius, F. Mild Rhodium(III)-Catalyzed C–H Activation and Intermolecular Annulation with Alkenes. *Angew. Chem. Int. Ed.* **2012**, *51*, 7318–7322. (f) Huckins, J. R.; Bercot, E. A.; Thiel, O. R.; Hwang, T.-L.; Bio, M. M. Rh(III)-Catalyzed C–H Activation and Double Directing Group Strategy for the Regioselective Synthesis of Naphthyridinones. *J. Am. Chem. Soc.* **2013**, *135*, 14492–14495. (g) Cui, S.; Zhang, Y.; Wu, Q. Rh(III)-Catalyzed C–H Activation/Cycloaddition of Benzamides and Methylenecyclopropanes: Divergence in Ring Formation. *Chem. Sci.* **2013**, *4*, 3421–3426. (h) Neely, J. M.; Rovis, T. Rh(III)-Catalyzed Regioselective Synthesis of Pyridines from Alkenes and α,β -Unsaturated Oxime Esters. *J. Am. Chem. Soc.* **2013**, *135*, 66–69. (i) Hyster, T. K.; Ruhl, K. E.; Rovis, T. A Coupling of Benzamides and Donor/Acceptor Diazo Compounds To Form γ -Lactams via Rh(III)-Catalyzed C–H Activation. *J. Am. Chem. Soc.* **2013**, *135*, 5364–5367.

(9) For selected examples, see: (a) Ye, B.; Cramer, N. Chiral Cyclopentadienyl Ligands as Stereocontrolling Element in Asymmetric C–H Functionalization. *Science* **2012**, *338*, 504–506. (b) Wodrich, M. D.; Ye, B.; Gonthier, J. F.; Corminboeuf, C.; Cramer, N. Ligand-Controlled Regiodivergent Pathways of Rhodium(III)-Catalyzed Dihydroisoquinolone Synthesis: Experimental and Computational Studies of Different Cyclopentadienyl Ligands. *Chem. Eur. J.* **2014**, *20*, 15409–15418. (c) Semakul, N.; Jackson, K. E.; Paton, R. S.; Rovis, T. Heptamethylindenyl (Ind^{*}) Enables Diastereoselective Benzamidation of Cyclopropenes via Rh(III)-Catalyzed C–H Activation. *Chem. Sci.* **2017**, *8*, 1015–1020. (d) Jia, Z.-J.; Merten, C.; Gontla, R.; Daniliuc, C. G.; Antonchick, A. P.; Waldmann, H. General Enantioselective C–H Activation with Efficiently Tunable Cyclopentadienyl Ligands. *Angew. Chem. Int. Ed.* **2017**, *56*, 2429–2434. (e) Ji, C.; Xu, Q.; Shi, M. Rhodium(III)-Catalyzed Controllable C–H Bond Functionalization of Benzamides and Vinylidene cyclopropanes: A Directing Group Determined Reaction Pathway. *Adv. Synth. Catal.* **2017**, *359*, 974–983. (f) Trifonova, E. A.; Ankudinov, N. M.; Kozlov, M. V.; Sharipov, M. Y.; Nelyubina, Y. V.; Perekalin, D. S. Rhodium(III) Complex with a Bulky Cyclopentadienyl Ligand as a Catalyst for Regioselective Synthesis of Dihydroisoquinolones through C–H Activation of Arylhy-

dioxamic Acids. *Chem. Eur. J.* **2018**, *24*, 16570–16575. (g) Shaaban, S.; Davies, C.; Merten, C.; Flegel, J.; Otte, F.; Strohmann, C.; Waldmann, H. Rh^{III}-Catalyzed C–H Activation of Aryl Hydroxamates for the Synthesis of Isoindolinones. *Chem. Eur. J.* **2020**, *26*, 10729–10734.

(10). For selected examples, see: (a) Liu, G.; Shen, Y.; Zhou, Z.; Lu, X. Rhodium(III)-Catalyzed Redox-Neutral Coupling of *N*-Phenoxyacetamides and Alkynes with Tunable Selectivity. *Angew. Chem. Int. Ed.* **2013**, *52*, 6033–6037. (b) Zhang, H.; Wang, K.; Wang, B.; Yi, H.; Hu, F.; Li, C.; Zhang, Y.; Wang, J. Rhodium(III)-Catalyzed Transannulation of Cyclopropenes with *N*-Phenoxyacetamides through C–H Activation. *Angew. Chem. Int. Ed.* **2014**, *53*, 13234–13238. (c) Yi, W.; Chen, W.; Liu, F.-X.; Zhong, Y.; Wu, D.; Zhou, Z.; Gao, H. Rh(III)-Catalyzed and Solvent-Controlled Chemoselective Synthesis of Chalcone and Benzofuran Frameworks via Synergistic Dual Directing Groups Enabled Regioselective C–H Functionalization: A Combined Experimental and Computational Study. *ACS Catal.* **2018**, *8*, 9508–9519. (d) Chen, W.; Liu, F.-X.; Gong, W.; Zhou, Z.; Gao, H.; Shi, J.; Wu, B.; Yi, W. Hydroxyl Group-Prompted and Iridium(III)-Catalyzed Regioselective C–H Annulation of *N*-phenoxyacetamides with Propargyl Alcohols. *Adv. Synth. Catal.* **2018**, *360*, 2470–2475.

(11). For selected examples, see: Li, X. G.; Liu, K.; Zou, G.; Liu, P. N. Rhodium(III)-Catalyzed, C–H Activated Annulation to Form Iso-coumarins and α -Pyrones using the O–N Bond as an Internal Oxidant. *Adv. Synth. Catal.* **2014**, *356*, 1496–1500.

(12). For selected examples, see: (a) Liu, B.; Song, C.; Sun, C.; Zhou, S.; Zhu, J. Rhodium(III)-Catalyzed Indole Synthesis Using N–N Bond as an Internal Oxidant. *J. Am. Chem. Soc.* **2013**, *135*, 16625–16631. (b) Wang, C.; Huang, Y. Traceless Directing Strategy: Efficient Synthesis of *N*-Alkyl Indoles via Redox-Neutral C–H Activation. *Org. Lett.* **2013**, *15*, 5294–5297. (c) Zhou, B.; Yang, Y.; Tang, H.; Du, J.; Feng, H.; Li, Y. Rh(III)-Catalyzed Intramolecular Redox-Neutral or Oxidative Cyclization of Alkynes: Short, Efficient Synthesis of 3,4-Fused Indole Skeletons. *Org. Lett.* **2014**, *16*, 3900–3903. (d) Song, X.; Gao, C.; Li, B.; Zhang, X.; Fan, X. Regioselective Synthesis of 2-Alkenylindoles and 2-Alkenylindole-3-carboxylates through the Cascade Reactions of *N*-Nitrosoanilines with Propargyl Alcohols. *J. Org. Chem.* **2018**, *83*, 8509–8521.

(13). For selected examples, see: (a) Zhao, D.; Shi, Z.; Glorius, F. Indole Synthesis by Rhodium(III)-Catalyzed Hydrazine-Directed C–H Activation: Redox-Neutral and Traceless by N–N Bond Cleavage. *Angew. Chem. Int. Ed.* **2013**, *52*, 12426–12429. (b) Liang, Y.; Yu, K.; Li, B.; Xu, S.; Song, H.; Wang, B. Rh(III)-Catalyzed Synthesis of 1-Aminoindole Derivatives from 2-Acetyl-1-Arylhydrazines and Diazo Compounds in Water. *Chem. Commun.* **2014**, *50*, 6130–6133. (c) Xie, W.; Chen, X.; Shi, J.; Li, J.; Liu, R. Synthesis of 1-Aminoindole Derivatives via Rh(III)-Catalyzed Annulation Reactions of Hydrazines with Sulfoxonium Ylides. *Org. Chem. Front.* **2019**, *6*, 2662–2666. (d) Lv, N.; Chen, Z.; Liu, Z.; Zhang, Y. Redox-Neutral Rhodium(III)-Catalyzed Annulation of Arylhydrazines with Sulfoxonium Ylides To Synthesize 2-Arylindoles. *J. Org. Chem.* **2019**, *84*, 13013–13021.

(14). For selected examples, see: Zheng, L.; Hua, R. Rhodium(III)-Catalyzed C–H Activation and Indole Synthesis With Hydrazone as an Auto-Formed and Auto-Cleavable Directing Group. *Chem. Eur. J.* **2014**, *20*, 2352–2356.

(15). For selected examples, see: Chuang, S.-C.; Gandeepan, P.; Cheng, C.-H. Synthesis of Isoquinolines via Rh(III)-Catalyzed C–H Activation Using Hydrazone as a New Oxidizing Directing Group. *Org. Lett.* **2013**, *15*, 5750–5753.

(16). Wang, C.-Q.; Ye, L.; Feng, C.; Loh, T.-P. C–F Bond Cleavage Enabled Redox-Neutral [4+1] Annulation via C–H Bond Activation. *J. Am. Chem. Soc.* **2017**, *139*, 1762–1765.

(17). Lu, Q.; Gribies, S.; Cembellín, S.; Klauck, F. J. R.; Daniliuc, C. G.; Glorius, F. Redox-Neutral Manganese(I)-Catalyzed C–H Activation: Traceless Directing Group Enabled Regioselective Annulation. *Angew. Chem. Int. Ed.* **2017**, *56*, 12778–12782.

(18). For selected reviews, see: (a) DeSimone, R. W.; Currie, K. S.; Mitchell, S. A.; Darrow, J. W.; Pippin, D. A. Privileged Structures: Applications in Drug Discovery. *Comb. Chem. High Throughput Screen.* **2004**, *7*, 473–494. (b) Ishikura, M.; Yamada, K. Simple

Indole Alkaloids and Those with a Nonrearranged Monoterpenoid Unit. *Nat. Prod. Rep.* **2009**, *26*, 803–852. (c) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Privileged Scaffolds for Library Design and Drug Discovery. *Curr. Opin. Chem. Biol.* **2010**, *14*, 347–361. (d) Kochanowska-Karamyan, A. J.; Hamann, M. T. Marine Indole Alkaloids: Potential New Drug Leads for the Control of Depression and Anxiety. *Chem. Rev.* **2010**, *110*, 4489–4497. (e) Melander, R. J.; Minvielle, M. J.; Melander, C. Controlling Bacterial Behavior with Indole-Containing Natural Products and Derivatives. *Tetrahedron* **2014**, *70*, 6363–6372. (f) Sears, J. E.; Boger, D. L. Total Synthesis of Vinblastine, Related Natural Products, and Key Analogues and Development of Inspired Methodology Suitable for the Systematic Study of Their Structure–Function Properties. *Acc. Chem. Res.* **2015**, *48*, 653–662. (g) Stempel, E.; Gaich, T. Cyclohepta[b]indoles: A Privileged Structure Motif in Natural Products and Drug Design. *Acc. Chem. Res.* **2016**, *49*, 2390–2402. (h) Homer, J. A.; Sperry, J. Mushroom-Derived Indole Alkaloids. *J. Nat. Prod.* **2017**, *80*, 2178–2187. (i) Xu, Z.; Wang, Q.; Zhu, J. Metamorphosis of Cycloalkenes for the Divergent Total Synthesis of Polycyclic Indole Alkaloids. *Chem. Soc. Rev.* **2018**, *47*, 7882–7898.

(19). For selected reviews, see: (a) Bandini, M.; Eichholzer, A. Catalytic Functionalization of Indoles in a New Dimension. *Angew. Chem. Int. Ed.* **2009**, *48*, 9608–9644. (b) Joucla, L.; Djakovitch, L. Transition Metal-Catalysed, Direct and Site-Selective N1-, C2- or C3-Arylation of the Indole Nucleus: 20 Years of Improvements. *Adv. Synth. Catal.* **2009**, *351*, 673–714. (c) Beck, E. M.; Gaunt, M. J. Pd-Catalyzed C–H Bond Functionalization on the Indole and Pyrrole Nucleus. *Top. Curr. Chem.* **2010**, *292*, 85. (d) Cacchi, S.; Fabrizi, G. Update 1 of: Synthesis and Functionalization of Indoles Through Palladium-Catalyzed Reactions. *Chem. Rev.* **2011**, *111*, PR215–PR283. (e) Leitch, J. A.; Bonoah, Y.; Frost, C. G. Beyond C2 and C3: Transition-Metal-Catalyzed C–H Functionalization of Indole. *ACS Catal.* **2017**, *7*, 5618–5627. (f) Petrini, M. Regioselective Direct C–Alkenylation of Indoles. *Chem. Eur. J.* **2017**, *23*, 16115–16151. (g) Kalepu, J.; Gandeepan, P.; Ackermann, L.; Pilarski, L. T. C4–H Indole Functionalisation: Precedent and Prospects. *Chem. Sci.* **2018**, *9*, 4203–4216. (h) Yang, Y.; Shi, Z. Regioselective Direct Arylation of Indoles on the Benzenoid Moiety. *Chem. Commun.* **2018**, *54*, 1676–1685. (i) Shah, T. A.; De, P. B.; Pradhan, S.; Punniyamurthy, T. Transition-Metal-Catalyzed Site-Selective C7-Functionalization of Indoles: Advancement and Future Prospects. *Chem. Commun.* **2019**, *55*, 572–587.

(20). For selected examples, see: (a) Shi, Z.; Cui, Y.; Jiao, N. Synthesis of β - and γ -Carbolinones via Pd-Catalyzed Direct Dehydrogenative Annulation (DDA) of Indole-carboxamides with Alkynes Using Air as the Oxidant. *Org. Lett.* **2010**, *12*, 2908–2911. (b) Ding, Z.; Yoshikai, N. Mild and Efficient C2-Alkenylation of Indoles with Alkynes Catalyzed by a Cobalt Complex. *Angew. Chem. Int. Ed.* **2012**, *51*, 4698–4701. (c) Yang, X.-F.; Hu, X.-H.; Loh, T.-P. Expedient Synthesis of Pyrroloquinolinones by Rh-Catalyzed Annulation of *N*-Carbamoyl Indolines with Alkynes through a Directed C–H Functionalization/C–N Cleavage Sequence. *Org. Lett.* **2015**, *17*, 1481–1484. (d) Morioka, R.; Nobushige, K.; Satoh, T.; Hirano, K.; Miura, M. Synthesis of Indolo[1,2-*a*][1,8]naphthyridines by Rhodium(III)-Catalyzed Dehydrogenative Coupling via Rollover Cyclometalation. *Org. Lett.* **2015**, *17*, 3130–3133. (e) Li, T.; Wang, Z.; Zhang, M.; Zhang, H.-J.; Wen, T.-B. Rh/Cu-Catalyzed Multiple C–H, C–C, and C–N Bond Cleavage: Facile Synthesis of Pyrido[2,1-*a*]indoles from 1-(Pyridin-2-yl)-1*H*-Indoles and γ -Substituted Propargyl Alcohols. *Chem. Commun.* **2015**, *51*, 6777–6780. (f) Liu, X.; Li, X.; Liu, H.; Guo, Q.; Lan, J.; Wang, R.; You, J. Aldehyde as a Traceless Directing Group for Rh(III)-Catalyzed C–H Activation: A Facile Access to Diverse Indolo[1,2-*a*]quinolines. *Org. Lett.* **2015**, *17*, 2936–2939. (g) Wu, Z.-J.; Li, Y.-Q.; Huang, Z.-Z. A Cascade C–H-Functionalization/Cyclization Reaction of Indoles with α -Halo or α -Sulfonyloxy Ketones for the Synthesis of Dihydropyrimidoindolone Derivatives. *Eur. J. Org. Chem.* **2016**, 5399–5404. (h) Zhou, X.; Fan, Z.; Zhang, Z.; Lu, P.; Wang, Y. Construction of Pyrrolo[1,2-*a*]indoles via Cobalt(III)-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1*H*-indoles with Ketenimines and Subsequent Base-Promoted Cyclization. *Org. Lett.* **2016**, *18*, 4706–4709. (i) Zhou, T.; Li, B.; Wang, B. Rhodi-

um-Catalyzed C2 and C4 C–H Activation/Annulation of 3-(1*H*-indol-3-yl)-3-Oxopropanenitriles with Internal Alkynes: a Facile Access to Substituted and Fused Carbazoles. *Chem. Commun.* **2017**, *53*, 6343–6346.

(21). For a seminal reference on C–H activation assisted by the carbamoyl directing group, see: (a) Wang, D.-H.; Wasa, M.; Giri, R.; Yu, J.-Q. Pd(II)-Catalyzed Cross-Coupling of sp^3 C–H Bonds with sp^2 and sp^3 Boronic Acids Using Air as the Oxidant. *J. Am. Chem. Soc.* **2008**, *130*, 7190–7191. For a review on C–H activation assisted by the carbamoyl directing group, see: (b) Zhu, R.-Y.; Farmer, M. E.; Chen, Y.-Q.; Yu, J.-Q. A Simple and Versatile Amide Directing Group for C–H Functionalizations. *Angew. Chem. Int. Ed.* **2016**, *55*, 10578–10599.

(22). For selected reviews on C–H activations with alkenes as the coupling partner, see: (a) Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J.-Q. Palladium(II)-Catalyzed C–H Activation/C–C Cross-Coupling Reactions: Versatility and Practicality. *Angew. Chem. Int. Ed.* **2009**, *48*, 5094–5115. (b) Satoh, T.; Miura, M. Oxidative Coupling of Aromatic Substrates with Alkynes and Alkenes under Rhodium Catalysis. *Chem. Eur. J.* **2010**, *16*, 11212–11222. (c) Patureau, F. W.; Wencel-Delord, J.; Glorius, F. Cp^{*}Rh-Catalyzed C–H Activations: Versatile Dehydrogenative Cross-Couplings of C_{sp^2} C–H Positions with Olefins, Alkynes and Arenes. *Aldrichimica Acta* **2012**, *45*, 31. (d) Kozhushkov, S. I.; Ackermann, L. Ruthenium-Catalyzed Direct Oxidative Alkenylation of Arenes through Twofold C–H Bond Functionalization. *Chem. Sci.* **2013**, *4*, 886–896. (e) Yang, L.; Huang, H. Transition-Metal-Catalyzed Direct Addition of Unactivated C–H Bonds to Polar Unsaturated Bonds. *Chem. Rev.* **2015**, *115*, 3468–3517. (f) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Oxidative Coupling between Two Hydrocarbons: An Update of Recent C–H Functionalizations. *Chem. Rev.* **2015**, *115*, 12138–12204. (g) Manikandan, R.; Jeganmohan, M. Recent Advances in the Ruthenium(II)-Catalyzed Chelation-Assisted C–H Olefination of Substituted Aromatics, Alkenes and Heteroaromatics with Alkenes via the Deprotonation Pathway. *Chem. Commun.* **2017**, *53*, 8931–8947. (h) Ma, W.; Gandeepan, P.; Li, J.; Ackermann, L. Recent Advances in Positional-Selective Alkenylations: Removable Guidance for Twofold C–H Activation. *Org. Chem. Front.* **2017**, *4*, 1435–1467. (i) Dong, Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Transition-Metal-Catalyzed C–H Alkylation Using Alkenes. *Chem. Rev.* **2017**, *117*, 9333–9403. For selected reviews on C–H activations with alkynes as the coupling partner, see ref. 2e and 2h.

(23). (a) Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. Pyrroloindolone Synthesis via a Cp^{*}Co^{III}-Catalyzed Redox-Neutral Directed C–H Alkenylation/Annulation Sequence. *J. Am. Chem. Soc.* **2014**, *136*, 5424–5431. (b) Xie, Y.; Wu, X.; Li, C.; Wang, J.; Li, J.; Liu, H. Ruthenium(II)-Catalyzed Redox-Neutral [3+2] Annulation of Indoles with Internal Alkynes via C–H Bond Activation: Accessing a Pyrroloindolone Scaffold. *J. Org. Chem.* **2017**, *82*, 5263–5273. (c) Yang, Y.; Wang, C. Re-Catalyzed Annulations of Weakly Coordinating *N*-Carbamoyl Indoles/Indolines with Alkynes via C–H/C–N Bond Cleavage. *Chem. Eur. J.* **2019**, *25*, 8245–8248. (d) Zhao, F.; Gong, X.; Lu, Y.; Qiao, J.; Jia, X.; Ni, H.; Wu, X.; Zhang, X. Additive-Controlled Divergent Synthesis of Tetrasubstituted 1,3-Enynes and Alkynylated 3*H*-Pyrrolo[1,2-*a*]indol-3-ones via Rhodium Catalysis. *Org. Lett.* **2021**, *23*, 727–733. (e) Kumar, S.; Nunewar, S.; Usama, K. M.; Kanchupalli, V. Rh(III)-Catalyzed [3+2] Annulation and C–H Alkenylation of Indoles with 1,3-Dynes by C–H Activation. *Eur. J. Org. Chem.* **2021**, 2223–2229.

(24). (a) Zhang, Y.; Zheng, J.; Cui, S. Rh(III)-Catalyzed C–H Activation/Cyclization of Indoles and Pyrroles: Divergent Synthesis of Heterocycles. *J. Org. Chem.* **2014**, *79*, 6490–6500. (b) Reddy, C. R.; Yarlagadda, S.; Sridhar, B.; Reddy, B. V. S. Arylative Cyclization of Indole-1-carboxamides with 1,6-Enynes for the Synthesis of Polycyclic Indole Scaffolds. *Eur. J. Org. Chem.* **2017**, 5763–5768. (c) Yamada, T.; Shibata, Y.; Tanaka, K. Functionalized Cyclopentadienyl Ligands and Their Substituent Effects on a Rhodium(III)-Catalyzed Oxidative [4+2] Annulation of Indole- and Pyrrole-1-Carboxamides with Alkynes. *Asian J. Org. Chem.* **2018**, *7*, 1396–1402. (d) Wu, X.; Li, P.; Lu, Y.; Qiao, J.; Zhao, J.; Jia, X.; Ni, H.; Kong, L.; Zhang, X.; Zhao, F. Rhodium-Catalyzed Cascade Reactions of Indoles with 4-

Hydroxy-2-Alkynoates for the Synthesis of Indole-Fused Polyheterocycles. *Adv. Synth. Catal.* **2020**, *362*, 2953–2960. (e) Reddy, C. R.; Sathish, P.; Mallesh, K.; Prapurna, Y. L. Construction of Unique Polycyclic 3, 4-Fused Indoles via Rhodium(III)-Catalyzed Domino Annulations. *ChemistrySelect* **2020**, *5*, 12736–12739.

(25). [4+2] annulation between *N*-carbamoyl indoles and alkenes for the synthesis of 3,4-dihydropyrimido[1,6-*a*]indol-1(2*H*)-ones has also been achieved with external oxidants or electrocatalysis. For Pd catalysis with K₂S₂O₈ as the external oxidant, see: (a) Hussain, M.; Chen, M.; Yang, S.; Wang, G.-W. Palladium-Catalyzed Heteroannulation of Indole-1-carboxamides with [60]Fullerene and Subsequent Electrochemical Transformations. *Org. Lett.* **2019**, *21*, 8568–8571. For Ag oxidant-promoted processes, see: (b) Zhang, L.-B.; Zhu, M.-H.; Ni, S.-F.; Wen, L.-R.; Li, M. Silver-Mediated Indole (4 + 2) Dearomatic Annulation with N-Radicals: A Strategy to Construct Heterocycle-Fused Indolines. *ACS Catal.* **2019**, *9*, 1680–1685. (c) Zhang, L.-B.; Zhu, M.-H.; Du, W.-B.; Ni, S.-F.; Wen, L.-R.; Li, M. Silver-Promoted Regioselective [4+2] Annulation Reaction of Indoles with Alkenes to Construct Dihydropyrimidoindolone Scaffolds. *Chem. Commun.* **2019**, *55*, 14383–14386. For procedures via electrocatalysis, see: (d) Song, C.; Liu, K.; Jiang, X.; Dong, X.; Weng, Y.; Chiang, C.-W.; Lei, A. Electrooxidation Enables Selective Dehydrogenative [4+2] Annulation between Indole Derivatives. *Angew. Chem. Int. Ed.* **2020**, *59*, 7193–7197.

(26). (a) Wu, X.; Wang, B.; Zhou, S.; Zhou, Y.; Liu, H. Ruthenium-Catalyzed Redox-Neutral [4 + 1] Annulation of Benzamides and Propargyl Alcohols via C–H Bond Activation. *ACS Catal.* **2017**, *7*, 2494–2499. (b) Wu, X.; Ji, H. Ruthenium(II)-Catalyzed Regio- and Stereoselective C–H Allylation of Indoles with Allyl Alcohols. *Org. Lett.* **2018**, *20*, 2224–2227. (c) Wu, X.; Lu, Y.; Qiao, J.; Dai, W.; Jia, X.; Ni, H.; Zhang, X.; Liu, H.; Zhao, F. Rhodium(III)-Catalyzed C–H Alkenylation/Directing Group Migration for the Regio- and Stereoselective Synthesis of Tetrasubstituted Alkenes. *Org. Lett.* **2020**, *22*, 9163–9168.

(27). (a) Zhao, F.; Zhang, D.; Nian, Y.; Zhang, L.; Yang, W.; Liu, H. Palladium-Catalyzed Difunctionalization of Alkynes via C–N and S–N Cleavages: A Versatile Approach to Highly Functional Indoles. *Org. Lett.* **2014**, *16*, 5124–5127. (b) Zhao, F.; Li, J.; Chen, Y.; Tian, Y.; Wu, C.; Xie, Y.; Zhou, Y.; Wang, J.; Xie, X.; Liu, H. Design, Synthesis, and Biological Evaluation of Indoline and Indole Derivatives as Potent and Selective α_{1A} -Adrenoceptor Antagonists. *J. Med. Chem.* **2016**, *59*, 3826–3839. (c) Qiao, J.; Jia, X.; Li, P.; Liu, X.; Zhao, J.; Zhou, Y.; Wang, J.; Liu, H.; Zhao, F. Gold-catalyzed Rapid Construction of Nitrogen-containing Heterocyclic Compound Library with Scaffold Diversity and Molecular Complexity. *Adv. Synth. Catal.* **2019**, *361*, 1419–1440. (d) Zhao, F.; Masci, D.; Ferla, S.; Varricchio, C.; Brancale, A.; Colonna, S.; Black, G. W.; Turner, N. J.; Castagnolo, D. Monoamine Oxidase (MAO-N) Biocatalyzed Synthesis of Indoles from Indolines Prepared via Photocatalytic Cyclization/Arylative Dearomatization. *ACS Catal.* **2020**, *10*, 6414–6421.

(28). For selected examples on [n+2] annulations with internal alkenes, see: (a) Su, Y.-T.; Wang, Y.-L.; Wang, G.-W. Palladium-Catalyzed Heteroannulation of [60]Fullerene with *N*-(2-Arylethyl) sulfonamides via C–H Bond Activation. *Org. Chem. Front.* **2014**, *1*, 689–693. (b) Qin, G.; Wang, Y.; Huang, H. Copper-Catalyzed Dehydrogenative Formal [4 + 2] and [3 + 2] Cycloadditions of Methyl-naphthalenes and Electron-Deficient Alkenes. *Org. Lett.* **2017**, *19*, 6352–6355. (c) Liu, B.; Hu, P.; Zhang, Y.; Li, Y.; Bai, D.; Li, X. Rh(III)-Catalyzed Diastereodivergent Spiroannulation of Cyclic Imines with Activated Alkenes. *Org. Lett.* **2017**, *19*, 5402–5405. (d) Li, C.; Xu, D.-N.; Ma, C.; Mei, G.-J.; Shi, F. Diastereo- and Enantioselective Construction of Dihydrobenzo[e]indole Scaffolds via Catalytic Asymmetric [3 + 2] Cycloannulations. *J. Org. Chem.* **2018**, *83*, 9190–9200. (e) Zhang, G.; Hu, Z.; Bertoli, G.; Gooßen, L. J. Iridium-Catalyzed Synthesis of Substituted Indanones from Aromatic Carboxylates and Unsaturated Ketones. *ACS Catal.* **2019**, *9*, 8153–8158. (f) Chaudhary, B.; Auti, P.; Shinde, S. D.; Yakkala, P. A.; Giri, D.; Sharma, S. Rh(III)-Catalyzed [3 + 2] Annulation via C–H Activation: Direct Access to Trifluoromethyl-Substituted Indenamines and Aminoindanes. *Org. Lett.* **2019**, *21*, 2763–2767. (g) Muniraj, N.; Prabhu, K. R. Cobalt(III)-Catalyzed [4 + 2] Annulation of *N*-

Chlorobenzamides with Maleimides. *Org. Lett.* **2019**, *21*, 1068–1072. (h) Hwang, J. Y.; Ji, A. Y.; Lee, S. H.; Kang, E. J. Redox-Selective Iron Catalysis for α -Amino C–H Bond Functionalization via Aerobic Oxidation. *Org. Lett.* **2020**, *22*, 16–21.

(29). For Rh/Ru-catalyzed C–H alkenylation of *N*-carbamoyl indoles with alkenes, see: (a) Li, B.; Ma, J.; Xie, W.; Song, H.; Xu, S.; Wang, B. Ruthenium-Catalyzed Regioselective C2 Alkenylation of Indoles and Pyrroles via C–H Bond Functionalization. *J. Org. Chem.* **2013**, *78*, 9345–9353. (b) Zhang, L.-Q.; Yang, S.; Huang, X.; You, J.; Song, F. Aerobic Ru-Catalyzed Direct C2-Olefination of *N*-Heteroarenes with Alkenes Directed by a Removable *N*-Dimethylcarbamoyl Group. *Chem. Commun.* **2013**, *49*, 8830–8832. (c) Li, B.; Ma, J.; Xie, W.; Song, H.; Xu, S.; Wang, B. Regioselective C2 Oxidative Olefination of Indoles and Pyrroles through Cationic Rhodium(III)-Catalyzed C–H Bond Activation. *Chem. Eur. J.* **2013**, *19*, 11863–11868. (d) Sharma, S.; Han, S.; Kim, M.; Mishra, N. K.; Park, J.; Shin, Y.; Ha, J.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. Rh-Catalyzed Oxidative C–C Bond Formation and C–N Bond Cleavage: Direct Access to C2-Olefinated Free (NH)-Indoles and Pyrroles. *Org. Biomol. Chem.* **2014**, *12*, 1703–1706. (e) Yang, L.; Li, C.; Wang, D.; Liu, H. Cp⁺Rh(III)-Catalyzed C–H Bond Difluorovinylation of Indoles with α,α -Difluorovinyl Tosylate. *J. Org. Chem.* **2019**, *84*, 7320–7330.

(30). Zhang, Y.; Wang, D.; Cui, S. Facile Synthesis of Isoindolinones via Rh(III)-Catalyzed One-Pot Reaction of Benzamides, Ketones, and Hydrazines. *Org. Lett.* **2015**, *17*, 2494–2497.

(31). Chen, X.; Yang, S.; Li, H.; Wang, B.; Song, G. Enantioselective C–H Annulation of Indoles with Diazo Compounds through a Chiral Rh(III) Catalyst. *ACS Catal.* **2017**, *7*, 2392–2396.

(32). Only one successful example was achieved with 4-hydroxyphenylboronic acid for the assembly of the 1*H*-imidazo[1,5-*a*]indol-3(2*H*)-one skeleton, providing the product with a relatively low yield due to the decomposition of materials, see: Zheng, J.; Zhang, Y.; Cui, S. Rh(III)-Catalyzed Selective Coupling of *N*-Methoxy-1*H*-indole-1-carboxamides and Aryl Boronic Acids. *Org. Lett.* **2014**, *16*, 3560–3563.

(33). Kong, W.-J.; Chen, X.; Wang, M.; Dai, H.-X.; Yu, J.-Q. Rapid Syntheses of Heteroaryl-Substituted Imidazo[1,5-*a*]indole and Pyrrolo[1,2-*c*]imidazole via Aerobic C2–H Functionalizations. *Org. Lett.* **2018**, *20*, 284–287.

(34). (a) Varasi, M.; Heidempergher, F.; Caccia, C.; Salvati, P. Imidazolylalkyl Derivatives of Imidazo[1,5-*a*]indol-3-one and Their Use as Therapeutic Agents. Patent, WO9532204A1, 1995. (b) Voss, M. E.; Carter, P. H.; Tebben, A. J.; Scherle, P. A.; Brown, G. D.; Thompson, L. A.; Xu, M.; Lo, Y. C.; Yang, G.; Liu, R.-Q.; Strzemienski, P.; Everlof, J. G.; Trzaskos, J. M.; Decicco, C. P. Both 5-Arylidene-2-

thioxodihydropyrimidine-4,6(1*H*,5*H*)-diones and 3-Thioxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]indol-1-ones Are Light-Dependent Tumor Necrosis Factor- α Antagonists. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 533–538. (c) Lennox, W. J.; Qi, H.; Lee, D.-H.; Choi, S.; Moon, Y.-C. Tetrahydrocarbazoles as Active Agents for Inhibiting VEGF Production by Translational Control. Patent, WO2006065480A2, 2006. (d) Summa, V.; Pace, P.; Francesco, M. E. D.; Hernando, J. I. M.; Nizi, E. Heterocyclic Compounds and Their Use as Inhibitors of HCV Polymerases for the Treatment of HCV. Patent, GB2450771A, 2009.

(35). Chadha, N.; Silakari, O. Indoles as Therapeutics of Interest in Medicinal Chemistry: Bird's Eye View. *Eur. J. Med. Chem.* **2017**, *134*, 159–184.

(36) (a) Hyster, T. K.; Rovis, T. Rhodium-Catalyzed Oxidative Cycloaddition of Benzamides and Alkynes via C–H/N–H Activation. *J. Am. Chem. Soc.* **2010**, *132*, 10565–10569. (b) Ackermann, L. Carboxylate-Assisted Transition-Metal-Catalyzed C–H Bond Functionalizations: Mechanism and Scope. *Chem. Rev.* **2011**, *111*, 1315–1345.

(37) Shi, Y.; Bai, T.; Bai, W.; Wang, Z.; Chen, M.; Yao, B.; Sun, J. Z.; Qin, A.; Ling, J.; Tang, B. Z. Phenol-yne Click Polymerization: An Efficient Technique to Facilely Access Regio- and Stereoregular Poly(vinylene ether ketone)s. *Chem. Eur. J.* **2017**, *23*, 10725–10731.

(38) Dochain, S.; Vetica, F.; Puttreddy, R.; Rissanen, K.; Enders, D. Combining Organocatalysis and Lanthanide Catalysis: A Sequential One-Pot Quadruple Reaction Sequence/Hetero-Diels–Alder Asymmetric Synthesis of Functionalized Tricycles. *Angew. Chem. Int. Ed.* **2016**, *55*, 16153–16155.

(39) Raju, S.; Annamalai, P.; Chan, F.-W.; Tseng, P.-Y.; Chen, P.-Y.; Kuo, T.-S.; Chuang, S.-C. Palladium-Catalyzed Regio- and Stereoselective Hydrosulfonation of Propiolate Esters. *Synthesis* **2017**, *49*, 5007–5016.

(40) Li, Y.; Mück-Lichtenfeld, C.; Studer, A. Sulfonium Ylides by (3+2) Cycloaddition of Arynes with Vinyl Sulfides: Stereoselective Synthesis of Highly Substituted Alkenes. *Angew. Chem., Int. Ed.* **2016**, *55*, 14435–14438.

(41) Kraus, H.; Français, A.; O'Brien, M.; Frost, J.; Diéguez-Vázquez, A.; Polara, A.; Baricordi, N.; Horan, R.; Hsu, D.-S.; Tsunoda, T.; Ley, S. V. Synthesis of Spongistatin 2 Employing a New Route to the EF Fragment. *Chem. Sci.* **2013**, *4*, 1989–1994.

(42) Sevov, C. S.; Hartwig, J. F. Iridium-Catalyzed Intermolecular Asymmetric Hydroheteroarylation of Bicycloalkenes. *J. Am. Chem. Soc.* **2013**, *135*, 2116–2119.

(43) Maresh, J. J.; Giddings, L.-A.; Friedrich, A.; Loris, E. A.; Panjikar, S.; Trout, B. L.; Stöckigt, J.; Peters, B.; O'Connor, S. E. Strictosidine Synthase: Mechanism of a Pictet–Spengler Catalyzing Enzyme. *J. Am. Chem. Soc.* **2007**, *130*, 710–723.