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ABSTRACT: Exploiting internal alkenes embedded with an oxidizing function/leaving group as a rare and unconventional one-
carbon unit, a redox-neutral rhodium(l11)-catalyzed chemo- and regiospecific [4+1] annulation between indoles and alkenes for the
synthesis of functionalized imidazo[1,5-a]indoles has been achieved. Internal alkenes employed here can fulfil an unusual [4+1]
annulation rather than normal [4+2] annulation/C—H alkenylation. This method is characterized by excellent chemo- and regiose-
lectivity, broad substrate scope, good functional group tolerance, good to high yields and redox-neutral conditions.

Scheme 1. Redox-neutral C—H annulations employing oxidiz-

INTRODUCTION ing DGs or CPs

Transition-metal (TM)-catalyzed C—H functionalization as-
sisted by directing groups (DGs) has made remarkable ad-
vances in recent decades and become a powerful tool for the
synthesis of a broad range of valuable molecules.! In particular,
TM-catalyzed cycloaddition reactions triggered by C—H acti-
vation constitute an efficient strategy to access various hetero-
cyclic compounds.? However, stoichiometric amounts of ex-
ternal oxidants are usually required because of the oxidative
character of these C—H annulation reactions, and thus results
in unsatisfactory selectivity and compatibility of functional
groups, undesired side reactions and environmental pollution.
An emerging dominant strategy to address this issue is to em-
ploy oxidizing DGs (working as an internal oxidant), which
has been well established (Scheme 1a).® A variety of oxidizing
DGs, including N*—O,* N-OAc°® N-OH,® N-OMe/
N-OPiv;2 N-OBoc,® O-NHAc,® O-NEt,* N-N=0,?
N-NHACc,** N-N=C,** N-NMe,,*® etc, have been exploited.
By contrast, an alternative strategy to avoid using external
oxidants by incorporating the oxidizing function (typically a
leaving group which could be eliminated during the annulation)
into the coupling partners (CPs) is comparatively underdevel-
oped (Scheme 1b). This is mainly because of the relative
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scarcity of available synthons which can behave as reactive
CPs and simultaneously act as efficient internal oxidants in
C-H annulations. Nevertheless, several groups have made
their efforts in adopting the strategy of employing oxidizing
CPs to achieve cycloadditions under external-oxidant-free
conditions. For example, Loh’s group pioneered an intriguing
assembly of isoindolin-1-ones using a,a-difluoromethylene
alkynes as the oxidizing CPs, which underwent two consecu-
tive B-F eliminations to allow the annulation to occur under
redox-neutral conditions.?® The group of Glorius disclosed a
facile furnishment of isoquinolines with propargylic car-
bonates as the oxidizing CPs, in this case, external oxidants
were also not needed thanks to the B-elimination of the car-
bonate group.’” In this context, it is still highly desirable to
explore new types of oxidizing CPs to fulfil redox-neutral
cycloadditions to construct novel heterocycles.

On the other hand, indole-fused polyheterocycles play an
important role among numerous heterocycles as they are wide-
ly found in natural products and active pharmaceutical ingre-
dients.’® Therefore, TM-catalyzed C—H annulations between
indoles and CPs for the direct construction of indole-fused
polyheterocycles have captured the attention of synthetic
community.1*2 Within this field, N-carbamoyl indoles are
popular indole substrates, not only because the carbamoyl®
DG is easy to install and can display as an oxidizing DG to
avoid using external oxidants, but also because different annu-
lation modes could be provided by N-carbamoyl indoles. With
regard to CPs, alkynes/alkenes are hot CPs as they are readily
available and reactive.?? The reported external-oxidant-free
cycloadditions between N-carbamoyl indoles and al-
kynes/alkenes could be categorized into two patterns. (a) [3+2]
annulation with alkynes for the synthesis of 3H-pyrrolo[1,2-
ajindol-3-ones via Co0,2* Ru,®® Re,® RhZ¢ ¢ catalysis
(Scheme 1c); (b) [4+2] annulation with alkynes/alkenes for the
synthesis of pyrimido[1,6-a]indol-1(2H)-ones?*/3,4-
dihydropyrimido[1,6-a]indol-1(2H)-ones®**?® via Rh catalysis
(Scheme 1d). Despite the remarkable achievements made,
however, the [4+1] annulation between N-carbamoyl indoles
and alkynes/alkenes for the synthesis of imidazo[1,5-a]indoles
has never been reported to date. Moreover, it should be noted
that both annulation reactions mentioned above avoided the
use of external oxidants by taking advantage of the oxidizing
carbamoyl DG. With our interests in Rh(Ill)-catalyzed C—H
activation?»23424426 and indole compound synthesis,?” herein
we developed an unprecedented Rh(lll)-catalyzed chemo- and
regiospecific [4+1] annulation between N-carbamoyl indoles
and internal alkenes embedded with an oxidizing func-
tion/leaving group for the synthesis of functionalized imid-
azo[1,5-a]indoles (Scheme 1e). Notably, our protocol does not
require external oxidants by the strategy of employing oxidiz-
ing CPs, namely oxidizing internal alkenes, which is concep-
tually different from the aforementioned two annulations. Of
note, this transformation has the following valuable advanta-
geous features. (a) Internal alkenes embedded with an oxidiz-
ing function/leaving group are firstly used as a rare and un-
conventional one-carbon unit, which has not been disclosed
before and is unusual since internal alkenes normally act as
two-carbon partners to participate [n+2] annulations;?® (b) a
chemoselective [4+1] annulation, in which the background
reactions such as [4+2] annulation®® as well as C—H alkenyla-
tion?® are completely suppressed; (c) a regioselective [4+1]
annulation, in which both C—C and C—N bonds are formed at
the same proximal sp? hybridized carbon; (d) a mild redox-

neutral process because of the detachment of the oxidizing
function/leaving group; (e) the activation of C—H bond, the
cleavage of C-O/N-H bonds, and the construction of
C—C/C—N bonds are integrated in a single process, indicating
the high bond-cleaving/forming efficiency. Despite the elegant
assembly of the imidazo[1,5-a]indole scaffold from indoles
with hazardous diazo compounds (the group of Cui®*** and
Song®), 4-hydroxyphenylboronic acid under Ag oxidant
(Cui’s group®) or isocyanides under O, (Yu’s group®), to the
best of our knowledge, our work stands as the first example of
imidazo[1,5-a]indole synthesis via redox-neutral Rh(IlI)-
catalyzed [4+1] cycloaddition reaction employing oxidizing
internal alkenes as the one-carbon CPs and internal oxidants.
Considering the large presence of the imidazo[1,5-a]indole
nucleus in bioactive molecules (Figure 1),3 our protocol is
quite appealing as it allows the rapid and efficient synthesis of
imidazo[1,5-a]indoles from simple materials via Rh(llI)-
catalyzed chemo- and regiospecific [4+1] annulation.
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Figure 1. Representative bioactive molecules bearing the im-
idazo[1,5-a]indole motif.

RESULTS AND DISCUSSION

Optimization of the reaction conditions was carried out with
indole laa and (E)-phenyl 3-phenoxyacrylate 2aa as the mod-
el substrates (Table 1). At first, with NaOAc as the additive,
the reaction of laa and 2aa was performed with a series of
metal catalysts in DCE at 60 °C for 24 h (entries 1-6). To our
delight, when [Cp*RhCl;], was employed (entry 6), the de-
sired [4+1] annulation product 3aa was obtained in 67% yield
with excellent regioselectivity, in which the C—H activation
occurred at the indole C2 position and the C—C/C—N bonds
were formed at the same proximal sp? hybridized carbon. Next,
with [Cp*RhCl;], and NaOAc as the catalyst and additive,
respectively, various solvents were screened (entries 7-17). As
a result, except for DMF (entry 17), the [4+1] annulation could
be tolerated in a diversity of solvents. Acetone was found to be
the best solvent in which product 3aa was obtained in 88%
yield (entry 10). Interestingly, when MeOH was used as the
solvent, the transesterification product of 3aa, namely 4aa,
was observed as the final product (entry 13), while the reac-
tion in TFE gave a ratio of 1:1.9 mixture of 3aa and the trans-
esterification product of TFE in 89% combined yield, which
were inseparable by chromatography (entry 15). Subsequently,
a variety of additives were investigated in acetone (entries 18-
24), and NaOAc was proved to be the most effective additive.
Besides, an investigation on the amount of the catalyst and
additive was also carried out. The results showed that reducing
the amount of [Cp*RhCl2]> from 5 mol% to 2.5 mol% or
NaOAc from 1 to 0.1 equivalent both caused incomplete con-
version of laa, thus leading to lower yields of product 3aa
(entries 25 and 26). Of note, the detachment of the PhO group
was confirmed by the detection of PhOH during condition
optimization. At last, blank experiments were conducted (en-
tries 27 and 28). The result shows that the catalytic system of
[Cp*RhCl,]./NaOAc is crucial for the title [4+1] annulation.
Notably, the background reaction products of [4+2] annulation
and C—H alkenylation were not observed during condition
optimization, suggesting the excellent chemoselectivity of this



Table 1. Optimization of the reaction conditions®
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Entry  Catalyst Additive Solvent  Yield (%)°
1 MnBr(CO)s NaOAc DCE 0
2 Pd(OAC)2 NaOAc DCE 0
3 [Cp*IrCl2]2 NaOAc DCE 0
4 [RuClz(p-cym)]2 NaOAc DCE 0
5 CoCp2*PFs NaOAc DCE 0
6 [Cp*RhCl]2 NaOAc DCE 67
7 [Cp*RhCl]2 NaOAc Toluene 54
8 [Cp*RhCl3]2 NaOAc CH:Cl2 71
9 [Cp*RhCl:]2 NaOAc THF 82
10 [Cp*RhCI2]2 NaOAc Acetone 88
11 [Cp*RhClI2]2 NaOAc Dioxane 73
12 [Cp*RhCl2]2 NaOAc CHsCN 59
13 [Cp*RhCl]2 NaOAc MeOH 87e
14 [Cp*RhCl3]2 NaOAc EtOH 76
15 [Cp*RhCl]2 NaOAc TFE 89
16 [Cp*RhCl]2 NaOAc HFIP 27
17 [Cp*RhClz]. NaOAc DMF <10
18 [Cp*RhClI:]2 CsOAc Acetone 37
19 [Cp*RNCl2]2 KOAc Acetone 78
20 [Cp*RNCl2]2 Cu(OAc):  Acetone 12
21 [Cp*RhClI2]2 Zn(OAc)2  Acetone 54
22 [Cp*RNCl2]2 Naz2COs3 Acetone 78
23 [Cp*RhClI:]2 K2CO3 Acetone <10
24 [Cp*RhCl2]2 NaCl Acetone 0
258 [Cp*RhCl2]2 NaOAc Acetone 79
26" [Cp*RNCl]2 NaOAc Acetone 58
27 - NaOAc Acetone 0
28 [Cp*RhCl2). - Acetone 0

@Reaction conditions: 1aa (0.25 mmol), 2aa (0.3 mmol), cata-
lyst (5 mol%), additive (0.25 mmol), solvent (4.0 mL), 60 °C,
24 h. PIsolated yield. “The yield refers to the yield of trans-
esterification product 4aa. The yield refers to the combined
yield of 3aa and transesterification product of TFE, and the
ratio was determined to be 1:1.9 by *H NMR integration of the
crude products. ([Cp*RhCl,], (2.5 mol%) was used. 'NaOAc
(10 mol%) was used. DCE = 1,2-dichloroethane; THF = tetra-
hydrofuran; TFE = 2,2,2-trifluoroethanol; HFIP = 1,1,1,3,3,3-
hexafluoroisopropanol; DMF = N,N-dimethylformamide.

transformation.

With the optimal reaction conditions in hands, the scope of
indoles was explored at first with 2aa as the reaction partner
(Scheme 2). Overall, a broad range of indoles 1 carrying di-
verse substituents at R'-R® could react with 2aa to deliver the
regiospecific [4+1] annulation products 3 in moderate to high
yields. For example, halogenated indoles having F, ClI, Br, | at
C4-C6 positions underwent this reaction smoothly to give
products 3ab-3ak in 76-88% yields. Likewise, the reactions of
electron-rich indoles possessing Me, MeO, Et, EtO at C4-C7
positions also took place uneventfully to afford products 3al-

Scheme 2. Substrate scope of the indoles *°

R? R?

N [Cp*RhCly], (5 mol%) CO,Ph
R‘m COPh " NaoAc (1 equiv.) =
Z N% orR® J/ = & N
N
H

N-gR3
1 OR
PhO acetone, 60°C,24h R e
(o] (o]
1 2aa 3
R
CO,Ph CO,Ph CO,Ph
W RW @—(
N N- N N- N N-,
W OMe W OMe W OMe
o o R 0
R =H, 3aa, 88% R =F, 3ae, 88% R =F, 3ai, 86%
R =F, 3ab, 79% R =Cl, 3af, 87% R =ClI, 3aj, 84%
R =ClI, 3ac, 79% R = Br, 3ag, 80% R = Br, 3ak, 83%
R =Br, 3ad, 76% R =1, 3ah, 86%

R
CO,Ph CO,Ph CO,Ph
N_ N- N_ N- N_ N-<
W OMe ﬁ/ OMe OMe
o (o]

R

5

o
R = Me, 3ar, 78%
R = MeO, 3as, 63%

R = Me, 3al, 76%
R = MeO, 3am, 82%

R = Me, 3an, 83%
R = MeO, 3ao, 85%
R = Et, 3ap, 83%

R = EtO, 3aq, 81%

N COPh CO,Ph N CO,Ph
B D R
NWN\OMe X NW"‘\OMe N N-ome
0 o
X

g

3at, 78% =0, 3au, 79% R =CN, 3aw, 26%
X =8, 3av, 86% R = CO,Me, 3ax, 81%
R
CO,Ph CO,Ph COzPh
N 2 N 2 N z
)\ N N
NWN\OMe NTN\OR Y OMe
() [ o
R = Me, 3ay, 85% R = Et, 3bb, 88% 3bf, 73%

R =Bn, 3az, 40%

R = i-Pr, 3bc, 70%
R = CH,CO,Et, 3ba, 39% I N

R = t-Bu, 3bd, ND (ND°)

R =Bn, 3be, 83%

@Reaction conditions: 1 (0.25 mmol), 2aa (0.3 mmol),
[Cp*RACl;]2 (5 mol%), NaOAc (0.25 mmol), acetone (4.0
mL), 60 °C, 24 h. PIsolated yield. ND = not detected. “The
reaction was performed at 100 °C.

3at in 63-85% yields. Of note, indoles bearing a heterocycle
such as furan or thiophene ring at C5 position were also well
tolerated and converted into the corresponding products 3au
and 3av in 79% and 86% yields, respectively. Electron-
deficient indoles carrying CN, CO;Me at C5 position were
also suitable substrates, and the desired products 3aw and 3ax
were prepared in 26% and 81% vyields, respectively. The [4+1]
transformation was also compatible with indoles owning func-
tional groups at C3 position, which could participate in this
reaction to provide products 3ay-3ba in 39-85% vyields. Alt-
hough lower yields were observed with indoles bearing bulky
C3 substituents such as Bn and CH,COEt, the result is ration-
alized by the steric hindrance near the reaction centre. Besides,
the reactions of indoles containing diverse alkyl groups such
as Et, i-Pr and Bn at R® appeared to be reactive, and the de-
sired products 3bb, 3bc and 3be were synthesized in 70-88%
yields. By contrast, indole substrate bearing a t-Bu group at R®
failed to react to yield the corresponding product 3bd even at a
higher temperature but with most of the materials untouched.
This result could also be ascribed to the steric hindrance
caused by the huge t-Bu group. Pleasingly, N-carbamoyl pyr-
role could take part in this reaction as well, assembling 1H-
pyrrolo[1,2-c]imidazol-3(2H)-one product 3bf in 73% yield.

Next, we examined the scope of alkenes with indole laa as
the reaction partner (Scheme 3). In general, a variety of al-
kenes 2 having diverse groups at R and Ar positions could
interact with laa to furnish the [4+1] annulation products 4
highly chemo- and regioselectively with good to high yields.
For instance, the reactions of various alkyl acrylates such as
(E)-methyl/ethyl/tert-butyl/benzyl 3-phenoxyacrylates worked



Scheme 3. Substrate scope of the alkenes 2P
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well to afford products 4aa-4ad in 78-86% yields. Likewise, a
series of (E)-aryl 3-aryloxyacrylates could undergo this trans-
formation smoothly to give products 4ae-4am in 70-90%
yields.  Notably, both (E)- and (Z)-N-benzyl-3-
phenoxyacrylamide could react successfully to deliver the
desired product 4an in comparable yields, suggesting E- and
Z-configuration of the C=C bond of the alkenes are both suita-
ble.  Similarly, the reactions of (E)-3-phenoxy-N-
phenylacrylamide or (E)-N-methyl-3-phenoxy-N-
phenylacrylamide with laa underwent smoothly, providing
products 4ao and 4ap in 73% and 56% yields, respectively.
Moreover, (E)-3-phenoxy-1-phenylprop-2-en-1-one was also
tolerated, producing product 4aq in 51% yield. The reaction of
(E)-1-methyl-4-((2-phenoxyvinyl)sulfonyl)benzene with laa
under standard conditions failed to give the [4+1] annulation
product 4ar, but gave the C-H alkenylation/DG cleavage
product 4ar’ in 25% yield with the majority of the materials
untouched. Besides, (E)-methyl 3-phenoxybut-2-enoate could
not be converted into the corresponding product 4as, maybe
because of the steric hindrance caused by the Me group at-
tached to the alkene carbon. Alkenes like (E)-((3-
methoxyprop-1-en-1-yl)oxy)benzene failed to react to provide
the corresponding product 4at, indicating that alkenes 2 pos-
sessing electron-withdrawing groups rather than electron-
donating groups at the R position are suitable alkene compo-
nents for this [4+1] annulation.

Gram-scale experiments were conducted to further prove
the efficiency and practicality of this protocol. Impressively,
the Rh(lll)-catalyzed [4+1] annulation between laa and 2aa
could be easily scaled up at a 6 mmol scale, providing product
3aa in 87% yield (Scheme 4a). Moreover, our method could
also be applied to the derivatization of natural products. For
example, melatonin,® an animal hormone, underwent car-
bamoylation and the following Rh(Ill)-catalyzed [4+1] annula-
tion with 2aa smoothly to give melatonin derivative 5aa bear-
ing an imidazo[1,5-a]indole nucleus in a good yield (Scheme
4b).

A series of control experiments were performed to further

Scheme 4. Gram-scale experiments and derivatization of natu-
ral products
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probe the Rh(lll)-catalyzed [4+1] annulation. The reaction of
laa with phenyl acrylate 2aa’ under standard conditions gave
the desired product 3aa and C-H alkenylation/DG cleavage
product 3aa’ in 9% and 64% yields, respectively (Scheme 5a).
This indicates the PhO group attached to the alkene carbon of

Scheme 5. Control experiments and investigation of the leav-
ing groups and directing groups
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the alkene component 2aa is essential. The reaction of laa
with phenyl propiolate 2aa'* under standard conditions afford-
ed the desired product 3aa and aza-Michael addition product
3aa" in 7% and 10% vyields, respectively, along with the ma-
jority of the starting materials untouched (Scheme 5b). This
suggests the possibility that alkene 2aa acts as a masked al-
kyne could be excluded. In addition, an investigation of the
leaving groups was carried out. The replacement of the PhO
group in 2ab with TsO group has no impact on the yield of the
desired product 4aa (Scheme 5c). By contrast, the replacement
of the PhO group with groups such as EtO, PhS or | caused a
sharp decrease in the yield of the desired product (Scheme 5d-
5f). This indicates the PhO and TsO groups display as better
leaving groups than EtO, PhS and I. At last, an investigation of
the directing groups was conducted. As a result, the reaction of
indole laa-A or laa-B with 2aa under standard conditions
failed to deliver the corresponding [4+1] annulation product
3aa-A or 3aa-B, but both provided the C—H alkenylation/DG
cleavage product 3aa’ in low yields with partial starting mate-
rials untouched (Scheme 5g and 5h). This shows the alkoxy
groups like MeO attached to the amide N is indispensable for
the [4+1] annulation.

Mechanistic experiments were carried out to gain some in-
sights into the reaction mechanism. Treatment of laa in
CD3;0OD under standard conditions led to high deuterations at
C2, C3 and C7 positions of 1aa (Scheme 6a). This shows the
cleavage of C—H bond is reversible. Kinetic isotope effect
(KIE) study through two parallel reactions gave a low KIE
value of 1.04 (Scheme 6b), indicating the step of C—H bond
cleavage is unlikely to be the rate-limiting step. In addition,
intermolecular competition experiments between electron-rich
indole 1ao and electron-deficient indole lax resulted in a ratio
of 1/1.57 of desired products 3ao/3ax (Scheme 6c), suggesting
electron-deficient indole was favored. Thus, a concerted
metalation/deprotonation mechanism® maybe involved in the
step of C—H bond cleavage.

Scheme 6. Mechanistic experiments
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Based on the mechanistic studies and literature reports,?? a
possible reaction mechanism was proposed in Scheme 7.
Initially, the ligand exchange between [Cp*RhCl;], and
NaOAc generates the active catalyst Cp*Rh(OAc),, which
activates the C—H bond at C2 position of indole selectively to

Scheme 7. Proposed reaction mechanism
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form the rhodacycle A. The regioselective migratory insertion
of the alkene into the Rh—C bond of A gives intermediate B.
The polarization of the C=C bond by the electron-withdrawing
substituents is believed to guarantee the regioselectivity as
well as reactivity. Then, intermediate B undergoes B-OAr
elimination to afford intermediate C, which undergoes intra-
molecular aza-Michael addition to yield intermediate D. Final-
ly, the protonation of intermediate D occurs to afford the
product with concomitant regeneration of the active rhodium
catalyst. We speculated that the alkoxy groups like MeO may
enable the amide N to possess an appropriate electronic prop-
erty to coordinate with the rhodium catalyst to commence the
catalytic cycle, and may also stabilize complexes B and C by
electron donation effect to ensure the successful occurrence
the [4+1] annulation.

CONCLUSIONS

In conclusion, we have achieved the synthesis of imidazo[1,5-
alindoles via Rh(lll)-catalyzed chemo- and regiospecific [4+1]
annulation, in which internal alkenes embedded with an oxi-
dizing function/leaving group are firstly exploited as a rare
and unconventional one-carbon reaction partner, and thus can
fulfil an unusual [4+1] annulation rather than common [4+2]
annulation or C—H alkenylation. Additionally, the detachment
of the oxidizing function/leaving group allows the [4+1] annu-
lation to occur under redox-neutral conditions. This approach
exhibits excellent chemo- and regioselectivity, broad substrate
scope, good functional group tolerance and good to high yields.
Further applications of this unique one-carbon unit in TM-
catalyzed [n+1] annulations and biological studies of the in-
dole-fused polyheterocycles incorporating the privileged imid-
azo[1,5-a]indole motif is undergoing in our laboratory.

EXPERIMENTAL SECTION

General Information. If not otherwise specified, the reagents
were obtained from commercial sources and used directly
without purification. Heating source: all the reactions that
require heating were carried out in an oil bath. Analytical thin-
layer chromatography (TLC): HSGF 254 (0.15-0.2 mm thick-
ness). Detection under UV light at 254 nm. Column chroma-
tography: separations were carried out on silica gel FCP 200-
300. Yields refer to isolated compounds. Melting point appa-
ratus: a micro melting point apparatus, values are uncorrected.



Nuclear magnetic resonance (NMR) apparatus: a Brucker 400,
500 or 600 MHz instrument. Chemical shifts (8) are given in
ppm. Proton coupling patterns were recorded as singlet (s),
doublet (d), triplet (t), quartet (q), and multiplet (m). HRMS
(high-resolution mass) were measured on a Thermo Scientific
LTQ Orbitrap Discovery (Bremen, Germany). The linear ion
trap (LTQ) part of the hybrid MS system was equipped with
electrospray ionization (ESI) probe and operated in both posi-
tive and negative ion modes.

Preparation of the Indole Materials. All the indole sub-
strates were prepared according to the literature procedure and
their characterization data were in accordance with the pub-
lished ones. 4 25

Preparation of the Alkene Materials

(E)-phenyl 3-phenoxyacrylate (2aa): to a mixture of phenol
(20 mmol, 1.0 equiv) and DMAP (10 mmol, 1.0 equiv) in di-
chloromethane (20 mL) at 0 °C in an ice bath was added phe-
nyl propiolate (12 mmol, 1.2 equiv) dropwise. After addition,
the resulting mixture was stirred at room temperature for 24 h.
After removal of the solvent, the residue was purified by flash
chromatography (Petroleum/EtOAc: 64:1—Petroleum/EtOAc:
32/1) on silica gel to provide the desired product 2aa as a pale
yellow oil (1.92 g, 80% yield). *H NMR (600 MHz, CDCl3) §
8.00 (d, J = 12.2 Hz, 1H), 7.44-7.36 (m, 4H), 7.25-7.21 (m,
2H), 7.17-7.09 (m, 4H), 5.74 (d, J = 12.2 Hz, 1H); BC{*H}
NMR (126 MHz, CDCls) 8 165.8, 160.9, 155.9, 150.8, 130.2,
129.5, 125.8, 125.4, 121.9, 118.3, 101.4; HRMS (ESI) m/z:
[M - H]" Calcd for C15H1103 239.0714; Found 239.0711.

(E)-methyl 3-phenoxyacrylate (2ab): compound 2ab was
prepared as a pale yellow oil (1.49 g, 84% yield) following the
similar procedure carried out for 2aa. *H NMR (400 MHz,
CDCls) & 7.81 (d, J = 12.2 Hz, 1H), 7.41-7.33 (m, 2H), 7.22-
7.15 (m, 1H), 7.10-7.03 (m, 2H), 5.56 (d, J = 12.2 Hz, 1H),
3.73 (s, 3H); BC{*H} NMR (101 MHz, CDCls;) § 167.8, 159.3,
156.0, 130.1, 125.1, 118.1, 101.9, 51.4; HRMS (ESI) m/z: [M
+ H]* Calced for C10H1:03 179.0703; Found 179.0702.

(E)-ethyl 3-phenoxyacrylate (2ac): compound 2ac was pre-
pared as a pale yellow oil (1.64 g, 85% yield) following the
similar procedure carried out for 2aa. *H NMR (400 MHz,
CDCls) & 7.80 (d, J = 12.2 Hz, 1H), 7.42-7.32 (m, 2H), 7.22-
7.14 (m, 1H), 7.11-7.02 (m, 2H), 5.55 (d, J = 12.2 Hz, 1H),
4.19 (g, J = 7.1 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H); ¥C{*H}
NMR (101 MHz, CDCls) 8 167.4, 159.2, 156.0, 130.1, 125.1,
118.2, 102.3, 60.2, 14.5; HRMS (ESI) m/z: [M + H]* Calcd
for C11H1305 193.0859; Found 193.0861.

(E)-tert-butyl 3-phenoxyacrylate (2ad): compound 2ad was
prepared as a pale yellow oil (1.28 g, 58% yield) following the
similar procedure carried out for 2aa. *H NMR (400 MHz,
CDCl3) 6 7.70 (d, J = 12.2 Hz, 1H), 7.40-7.33 (m, 2H), 7.21-
7.15 (m, 1H), 7.06 (d, J = 7.8 Hz, 2H), 5.47 (d, J = 12.2 Hz,
1H), 1.49 (s, 9H); BC{*H} NMR (151 MHz, CDCls) & 166.7,
158.5, 156.0, 130.0, 124.9, 118.2, 104.0, 80.3, 28.4; HRMS
(ESI) m/z: [M + H]* Calcd for Ci3H1,03 221.1172; Found
221.1166.

(E)-benzyl 3-phenoxyacrylate (2ae): compound 2ae was
prepared as a pale yellow oil (2.06 g, 81% yield) following the
similar procedure carried out for 2aa. *H NMR (600 MHz,
CDCl3) & 7.85 (d, J = 12.2 Hz, 1H), 7.43-7.36 (m, 6H), 7.35-
7.31 (m, 1H), 7.23-7.16 (m, 1H), 7.12-7.04 (m, 2H), 5.61 (d, J
=12.2 Hz, 1H), 5.20 (s, 2H); *C{*H} NMR (151 MHz, CDCl5)

6 167.2,159.7, 155.9, 136.3, 130.1, 128.7, 128.3, 128.3, 125.2,
118.3, 101.9, 66.1; HRMS (ESI) m/z: [M + HJ* Calcd for
C16H1503 2551016, Found 255.1017.

(E)-2-methoxyphenyl 3-(2-methoxyphenoxy)acrylate (2af):
compound 2af was prepared as a white solid (0.726 g, 48%
yield) following the similar procedure carried out for 2ak. 'H
NMR (600 MHz, CDCls) 6 7.93 (d, J = 12.2 Hz, 1H), 7.23-
7.17 (m, 2H), 7.12 (dd, J = 7.9, 1.5 Hz, 1H), 7.07 (dd, J = 7.9,
1.6 Hz, 1H), 7.00 (dd, J = 8.2, 1.2 Hz, 1H), 6.99-6.92 (m, 3H),
5.64 (d, J = 12.3 Hz, 1H), 3.89 (s, 3H), 3.83 (s, 3H); B*C{*H}
NMR (151 MHz, CDCls) 8 165.5, 162.6, 151.5, 150.6, 144.3,
139.8, 126.8, 126.6, 123.2, 121.2, 120.9, 120.7, 113.0, 112.5,
99.8, 56.1, 56.0; HRMS (ESI) m/z: [M + H]" Calcd for
C17H1705 3011071, Found 301.1069.

(E)-m-tolyl 3-(m-tolyloxy)acrylate (2ag): compound 2ag was
prepared as a colorless oil (1.13 g, 84% yield) following the
similar procedure carried out for 2ak. *H NMR (600 MHz,
CDCls) 8 7.98 (d, J = 12.2 Hz, 1H), 7.30-7.26 (m, 2H), 7.08-
7.01 (m, 2H), 6.97-6.89 (m, 4H), 5.73 (d, J = 12.2 Hz, 1H),
2.39 (s, 3H), 2.37 (s, 3H); *C{*H} NMR (151 MHz, CDCl3) &
166.0, 160.9, 155.9, 150.7, 140.5, 139.7, 129.9, 129.2, 126.6,
126.2, 122.5, 118.9, 118.8, 115.2, 101.2, 21.5, 21.5; HRMS
(ESI) m/z: [M + H]* Calcd for Ci7H1703 269.1172; Found
269.1176.

(E)-3-chlorophenyl  3-(3-chlorophenoxy)acrylate  (2ah):
compound 2ah was prepared as a yellow oil (0.657 g, 43%
yield) following the similar procedure carried out for 2ak. 'H
NMR (600 MHz, CDCls) 6 7.93 (d, J = 12.1 Hz, 1H), 7.37-
7.28 (m, 2H), 7.24-7.19 (m, 2H), 7.19-7.12 (m, 2H), 7.06-7.00
(m, 2H), 5.76 (d, J = 12.2 Hz, 1H); B*C{*H} NMR (151 MHz,
CDCl3) 6 165.1, 160.3, 156.2, 151.1, 135.6, 134.8, 131.0,
130.3, 126.2, 125.8, 122.5, 120.2, 118.9, 116.5, 102.0; HRMS
(ESI) m/z: [M + H]* Calcd for C45H1:Cl,03 309.0080; Found
309.0080.

(E)-p-tolyl 3-(p-tolyloxy)acrylate (2ai): compound 2ai was
prepared as a white solid (0.701 g, 52% vyield) following the
similar procedure carried out for 2ak. *H NMR (600 MHz,
CDCl3) 6 7.96 (d, J = 12.2 Hz, 1H), 7.22-7.16 (m, 4H), 7.03-
6.98 (m, 4H), 5.69 (d, J = 12.2 Hz, 1H), 2.36 (s, 3H), 2.35 (s,
3H); B¥C{*H} NMR (151 MHz, CDCl3) § 166.1, 161.3, 153.7,
148.5, 135.4, 135.1, 130.6, 130.0, 121.5, 118.2, 100.9, 21.0,
20.9; HRMS (ESI) m/z: [M + H]* Calcd for Ci7H:703
269.1172; Found 269.1174.

(E)-4-methoxyphenyl 3-(4-methoxyphenoxy)acrylate (2aj):
compound 2aj was prepared as a white solid (1.20 g, 80%
yield) following the similar procedure carried out for 2ak. 'H
NMR (600 MHz, CDCls) 6 7.92 (d, J = 12.2 Hz, 1H), 7.07-
6.99 (m, 4H), 6.94-6.86 (m, 4H), 5.62 (d, J = 12.2 Hz, 1H),
3.81 (s, 3H), 3.80 (s, 3H); *C{*H} NMR (151 MHz, CDCl3) &
166.3, 162.0, 157.2, 157.1, 149.5, 144.2, 122.6, 119.7, 115.1,
114.5, 100.5, 55.8, 55.7; HRMS (ESI) m/z: [M + H]* Calcd
for C17H1705 301.1071; Found 301.1076.

(E)-4-fluorophenyl 3-(4-fluorophenoxy)acrylate (2ak): to a
mixture of 4-fluorophenol (11 mmol, 2.2 equiv), DCC (6
mmol, 1.2 equiv) and DMAP (5 mmol, 1.0 equiv) in DCM (20
mL) at 0 °C in an ice bath was added a solution of propiolic
acid (5 mmol, 1.0 equiv) in DCM (20 mL) dropwise. After
addition, the resulting mixture was stirred at room temperature
for 24 h. After removal of the solvent, the residue was purified
by flash chromatography (Petroleum/EtOAC:
64:1—Petroleum/EtOAc: 32/1) on silica gel to provide the
desired product 2ak as a white solid (0.824 g, 60% vyield). *H



NMR (600 MHz, CDCls) 8 7.91 (d, J = 12.2 Hz, 1H), 7.14-
7.02 (m, 8H), 5.67 (d, J = 12.2 Hz, 1H); BC{*H} NMR (151
MHz, CDCls) 8 165.7, 161.3, 160.3 (d, Jc.e = 244.1 Hz), 160.0
(d, Jcr = 244.4 Hz), 151.7 (d, Jck = 2.7 HZz), 146.5 (d, Jck =
2.8 HZ), 123.2 (d, Jcr =85 HZ), 120.0 (d, Jcr = 85 HZ),
116.9 (d, Jcr = 23.7 Hz), 116.2 (d, Jcr = 23.4 Hz), 101.1;
HRMS (ESI) m/z: [M + H]* Calcd for CisH11F205 277.0671;
Found 277.0674.

(E)-4-chlorophenyl  3-(4-chlorophenoxy)acrylate  (2al):
compound 2al was prepared as a white solid (0.821 g, 53%
yield) following the similar procedure carried out for 2ak. *H
NMR (400 MHz, CDCls) 8 7.92 (d, J = 12.2 Hz, 1H), 7.43-
7.30 (m, 4H), 7.13-7.00 (m, 4H), 5.72 (d, J = 12.2 Hz, 1H);
BC{*H} NMR (101 MHz, CDCl3) § 165.3, 160.6, 154.2, 149.1,
131.2, 130.9, 130.3, 129.6, 123.2, 119.6, 101.6; HRMS (ESI)
m/z: [M - H] Calcd for CisHeCl,0; 306.9934; Found
306.9940.

(E)-4-bromophenyl  3-(4-bromophenoxy)acrylate (2am):
compound 2am was prepared as a white solid (1.51 g, 76%
yield) following the similar procedure carried out for 2ak. *H
NMR (400 MHz, CDCls) 6 7.91 (d, J = 12.2 Hz, 1H), 7.57-
7.43 (m, 4H), 7.07-6.95 (m, 4H), 5.73 (d, J = 12.2 Hz, 1H);
BC{*H} NMR (101 MHz, CDCl3) § 165.2, 160.5, 154.8, 149.7,
133.2, 132.6, 123.6, 120.0, 119.0, 118.4, 101.7; HRMS (ESI)
m/z: [M + Na]* Calcd for CisH10Br.NaO; 418.8889; Found
418.8892.

(E)-4-iodophenyl 3-(4-iodophenoxy)acrylate (2an): com-
pound 2an was prepared as a white solid (1.42 g, 58% yield)
following the similar procedure carried out for 2ak. *H NMR
(600 MHz, CDCls) 8 7.91 (d, J = 12.2 Hz, 1H), 7.74-7.64 (m,
4H), 6.92-6.83 (m, 4H), 5.73 (d, J = 12.2 Hz, 1H); ®C{*H}
NMR (151 MHz, CDCls) 6 165.2, 160.3, 155.6, 150.5, 139.2,
138.6, 124.0, 120.4, 101.8, 89.9, 89.0; HRMS (ESI) m/z: [M -
H]" Calcd for Ci5Hol,05 490.8647; Found 490.8655.
(E)-N-benzyl-3-phenoxyacrylamide (E-2a0): compound E-
2a0 was prepared as a pale yellow solid (0.927 g, 37% yield)
following the similar procedure carried out for 2aa. *H NMR
(600 MHz, CDCl3) 4 7.81 (d, J = 11.8 Hz, 1H), 7.37-7.30 (m,
4H), 7.30-7.26 (m, 3H), 7.19-7.13 (m, 1H), 7.09-7.02 (m, 2H),
5.88 (s, 1H), 5.59 (d, J = 11.8 Hz, 1H), 4.49 (d, J = 5.7 Hz,
2H); BC{*H} NMR (151 MHz, CDCl3) & 166.1, 156.7, 156.2,
138.4, 130.0, 128.8, 128.0, 127.6, 124.7, 117.9, 104.3, 43.6;
HRMS (ESI) m/z: [M + H]* Calcd for Ci6H1sNO, 254.1176;
Found 254.1175.

(2)-N-benzyl-3-phenoxyacrylamide (Z-2ao0): compound Z-
2a0 was prepared as a pale yellow solid (0.889 g, 35% yield)
following the similar procedure carried out for 2aa. *H NMR
(600 MHz, CDCl3) & 7.40-7.36 (m, 2H), 7.36-7.29 (m, 5H),
7.29-7.26 (m, 1H), 7.23-7.17 (m, 1H), 7.05 (d, J = 8.3 Hz, 2H),
6.84 (d, J=7.1Hz, 1H),5.28 (d, J = 7.1 Hz, 1H), 459 (d, J =
5.8 Hz, 2H); B¥C{*H} NMR (151 MHz, CDCls) § 164.9, 156.3,
148.9, 138.7, 130.2, 128.8, 127.6, 127.4, 125.2, 117.5, 106.0,
43.5; HRMS (ESI) m/z: [M + H]" Calcd for CisHisNO-
254.1176; Found 254.1178.
(E)-3-phenoxy-N-phenylacrylamide (2ap): compound 2ap
was prepared as a white solid (1.08 g, 45% vyield) following
the similar procedure carried out for 2aa. *H NMR (600 MHz,
CDCls) & 7.88 (d, J = 11.7 Hz, 1H), 7.60-7.48 (m, 3H), 7.38-
7.33 (m, 2H), 7.33-7.28 (m, 2H), 7.20-7.14 (m, 1H), 7.13-7.08
(m, 1H), 7.07-7.03 (m, 2H), 5.76 (d, J = 11.7 Hz, 1H); BC{*H}
NMR (151 MHz, CDCls) 8 157.6, 156.2, 130.1, 129.1, 124.9,

117.9; HRMS (ESI) m/z: [M + H]* Calcd for CisH1sNO;
240.1019; Found 240.1022.
(E)-N-methyl-3-phenoxy-N-phenylacrylamide (2aqg): com-
pound 2aq was prepared as a pale yellow oil (1.99 g, 79%
yield) following the similar procedure carried out for 2aa. *H
NMR (600 MHz, CDCls) 8 7.80 (d, J = 11.6 Hz, 1H), 7.44-
7.39 (m, 2H), 7.35-7.29 (m, 3H), 7.23-7.18 (m, 2H), 7.14-7.08
(m, 1H), 7.03-6.97 (m, 2H), 5.61 (d, J = 11.6 Hz, 1H), 3.36 (s,
3H); BC{*H} NMR (151 MHz, CDClI3) & 166.6, 156.6, 156.5,
143.8, 129.9, 129.7, 127.7, 127.5, 124.4, 117.3, 103.4, 37.3;
HRMS (ESI) m/z: [M + H]* Calcd for C16H16NO, 254.1176;
Found 254.1176.

(E)-3-phenoxy-1-phenylprop-2-en-1-one (2ar): compound
2ar was prepared as a yellow oil (0.202 g, 9% vyield) following
the similar procedure carried out for 2aa. 'H NMR (600 MHz,
CDCls) 8 8.01 (d, J = 11.8 Hz, 1H), 7.93 (d, J = 7.7 Hz, 2H),
7.58-7.54 (m, 1H), 7.50-7.45 (m, 2H), 7.43-7.37 (m, 2H),
7.24-7.19 (m, 1H), 7.13 (d, J = 7.9 Hz, 2H), 6.75 (d, J = 11.8
Hz, 1H); BC{*H} NMR (151 MHz, CDCls) § 190.4, 160.2,
156.1, 138.3, 132.7, 130.1, 128.6, 128.2, 125.2, 118.0, 106.8;
LRMS (ESI) m/z: 225 [M+H]*. Compound 2ar is a known
compound and the characterization data were in accordance
with the published ones.%
(E)-1-methyl-4-((2-phenoxyvinyl)sulfonyl)benzene  (2as):
compound 2as was prepared as a white solid (1.07 g, 39%
yield) following the similar procedure carried out for 2aa. *H
NMR (600 MHz, CDCl3) 6 7.81 (d, J = 11.9 Hz, 1H), 7.79-
7.75 (m, 2H), 7.40-7.36 (m, 2H), 7.35-7.31 (m, 2H), 7.24-7.20
(m, 1H), 7.08-7.03 (m, 2H), 6.00 (d, J = 11.9 Hz, 1H), 2.43 (s,
3H); BC{*H} NMR (151 MHz, CDCl3) & 157.7, 155.5, 144.1,
139.1, 130.3, 130.0, 127.2, 125.8, 118.4, 112.2, 21.7; HRMS
(ESI) m/z: [M + HJ* Caled for CisH1505S 275.0736; Found
275.0738.

(E)-methyl 3-phenoxybut-2-enoate (2at): to a mixture of
phenol (10 mmol, 1.0 equiv) and DMAP (10 mmol, 1.0 equiv)
in dichloromethane (20 mL) at 0 °C in an ice bath was added
methyl but-2-ynoate (12 mmol, 1.2 equiv) dropwise. After
addition, the resulting mixture was stirred at 50 °C for 48 h.
After removal of the solvent, the residue was purified by flash
chromatography (Petroleum/EtOAC: 64:1—Petroleum/EtOAc:
32/1) on silica gel to provide the desired product 2at as a pale
yellow oil (0.826 g, 43% yield). *H NMR (600 MHz, CDCl3) &
7.42-7.35 (m, 2H), 7.24-7.20 (m, 1H), 7.01 (d, J = 8.0 Hz, 2H),
4.87 (s, 1H), 3.62 (s, 3H), 2.49 (s, 3H); *C{*H} NMR (151
MHz, CDCls) 6 173.1, 168.2, 153.4, 130.1, 125.8, 121.7, 95.9,
51.0, 18.6; HRMS (ESI) m/z: [M + H]" Calcd for C11H1303
193.0859; Found 193.0860.

(E)-((3-methoxyprop-1-en-1-yl)oxy)benzene (2au): to a so-
lution of (E)-3-phenoxyprop-2-en-1-01*® (3 mmol, 1.0 equiv)
in anhydrous DMF (15 mL) was added NaH (6 mmol, 2.0
equiv) by portion at 0 °C, 30 minutes later, CHszl (6 mmol, 2.0
equiv) was added dropwise at 0 °C. The resulting mixture was
stirred at room temperature for 4 h. Then water was added and
the reaction mixture was extracted with ethyl acetate, the or-
ganic extracts were washed with brine, dried over Na,SO, and
concentrated. The residue was purified by flash chromatog-
raphy (Petroleum/EtOACc: 16:1—Petroleum/EtOAc: 8/1) on
silica gel to provide 2au as a colorless oil (0.406 g, 82%). 'H
NMR (600 MHz, CDCl3) 6 7.36-7.30 (m, 2H), 7.11-7.06 (m,
1H), 7.01 (d, J = 8.2 Hz, 2H), 6.70 (d, J = 12.2 Hz, 1H), 5.51-
5.40 (m, 1H), 3.94 (d, J = 7.3 Hz, 2H), 3.35 (s, 3H); B*C{*H}
NMR (151 MHz, CDCls) 8 156.9, 146.3, 129.8, 123.4, 117.2,



108.0, 69.3, 57.6; HRMS (ESI) m/z: [M + H]" Calcd for
C10H130, 165.0910; Found 165.0909.

(Z2)-methyl 3-(tosyloxy)acrylate (Z-2av): this compound was
prepared  according to the literature  procedure
and the characterization data were in accordance with the publ
ished ones.*

(E)-methyl 3-(tosyloxy)acrylate (E-2av): this compound was
prepared  according to the literature  procedure
and the characterization data were in accordance with the publ
ished ones.*

(E)-methyl 3-ethoxyacrylate (2aw): this compound was pre-
pared according to the literature procedure
and the characterization data were in accordance with the publ
ished ones.®®

(2)-methyl 3-(phenylthio)acrylate (2ax): this compound was
prepared  according to the literature  procedure
and the characterization data were in accordance with the publ
ished ones.*

ethyl (E)-3-iodoacrylate (2ay): this compound is a known
compound** and was obtained from commercial sources and
used directly without purification.

Preparation of 2-Deuterium Indole and 1aa-D. 2-Deuterium
indole (96% Deuteration) was prepared according to the re-
ported procedure®? and the characterization data match pub-
lished data.*® 1aa-D was synthesized from 2-Deuterium indole
with 96% D incorporation following the reported method?*®
and the characterization data match published data.?>

General Procedure for the Rhodium-Catalyzed Chemo-
and Regiospecific [4+1] Annulation between Indoles and
Alkenes. To a mixture of indoles 1 (0.25 mmol, 1.0 equiv),
[Cp*RhCI2], (5 mol%) and NaOAc (0.25 mmol, 1.0 equiv) in
a 25 mL Schlenk tube was added a solution of alkenes 2 (0.3
mmol, 1.2 equiv) in acetone (4.0 mL). Then the tube was
capped with septa, and the resulting mixture was stirred at 60
°C in an oil bath for 24 h. After removal of the solvent, the
residue was purified by flash chromatography on silica gel to
give the desired products.

phenyl  2-(2-methoxy-3-o0x0-2,3-dihydro-1H-imidazo[1,5-
aJindol-1-yl)acetate (3aa): The reaction mixture was subject-
ed directly to flash chromatography (Petroleum/EtOAcC:
16:1—Petroleum/EtOAc: 8/1) on silica gel to provide the
product as a yellow amorphous solid (74.2 mg, yield 88%),
mp 128-129 °C. *H NMR (600 MHz, CDCl3) § 8.00 (d, J=8.1
Hz, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.46-7.38 (m, 2H), 7.37-
7.31 (m, 1H), 7.30-7.26 (m, 2H), 7.16-7.08 (m, 2H), 6.47 (s,
1H), 5.38-5.30 (m, 1H), 4.01 (s, 3H), 3.31 (dd, J = 16.5, 6.2
Hz, 1H), 3.08 (dd, J = 16.5, 7.2 Hz, 1H); ®C{*H} NMR (151
MHz, CDCls) & 168.5, 152.5, 150.4, 134.8, 132.8, 131.0,
129.7, 126.3, 124.2, 1235, 121.5, 121.4, 113.0, 100.2, 65.1,
55.3, 37.9; HRMS (ESI) m/z: [M + H]* Calcd for C19H17N204
337.1183; Found 337.1177.

phenyl 2-(8-fluoro-2-methoxy-3-o0xo0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3ab): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOACc: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a white amorphous solid (70.0 mg, yield
79%), mp 122-123 °C. 'H NMR (500 MHz, CDCls) § 7.77 (d,
J = 8.1 Hz, 1H), 7.44-7.39 (m, 2H), 7.30-7.26 (m, 2H), 7.14-
7.08 (m, 2H), 6.96 (ddd, J = 10.0, 8.1, 0.5 Hz, 1H), 6.59 (dd, J
=1.5,0.7 Hz, 1H), 5.38-5.32 (m, 1H), 4.01 (s, 3H), 3.33 (dd, J
= 16.6, 6.1 Hz, 1H), 3.10 (dd, J = 16.6, 7.2 Hz, 1H); BC{*H}

NMR (126 MHz, CDCls) 8 168.4, 156.0 (d, Jc-r = 249.0 Hz),
152.1, 150.4, 134.8, 133.0 (d, Jcr = 9.9 Hz), 129.8, 126.5,
125.2 (d, Jcr = 7.4 Hz), 121.6, 121.4, 109.2 (d, Jc-r = 3.9 Hz),
108.9 (d, Jc.r = 18.8 Hz), 96.2, 65.2, 55.2, 37.7; HRMS (ESI)
m/z: [M + H]" Calcd for CigHisFN.O4 355.1089; Found
355.1083.

phenyl 2-(8-chloro-2-methoxy-3-oxo-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3ac): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAcC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a white amorphous solid (73.6 mg, yield
79%), mp 78-79 °C. *H NMR (600 MHz, CDCls) & 7.88 (d, J
= 7.8 Hz, 1H), 7.45-7.39 (m, 2H), 7.30-7.24 (m, 3H), 7.12 (d,
J =7.7 Hz, 2H), 6.61 (s, 1H), 5.40-5.33 (m, 1H), 4.01 (s, 3H),
3.33(dd, J =16.6, 6.1 Hz, 1H), 3.11 (dd, J = 16.6, 7.2 Hz, 1H);
BC{*H} NMR (151 MHz, CDCls) § 168.4, 152.0, 150.3, 135.3,
131.6, 131.5, 129.8, 126.5, 125.0, 123.3, 121.4, 111.5, 98.7,
65.2, 55.2, 37.7; HRMS (ESI) m/z: [M + H]" Calcd for
C19H15C|N204 3710793, Found 371.0792.

phenyl 2-(8-bromo-2-methoxy-3-oxo-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3ad): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAcC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a pale yellow amorphous solid (79.4 mg,
yield 76%), mp 97-98 °C. *H NMR (500 MHz, CDCl3) § 7.93
(d, J = 8.1 Hz, 1H), 7.46-7.39 (m, 3H), 7.30-7.26 (m, 1H),
7.23-7.17 (m, 1H), 7.15-7.10 (m, 2H), 6.58 (dd, J = 1.5, 0.7
Hz, 1H), 5.41-5.31 (m, 1H), 4.01 (s, 3H), 3.33 (dd, J = 16.6,
6.1 Hz, 1H), 3.11 (dd, J = 16.6, 7.2 Hz, 1H); BC{*H} NMR
(126 MHz, CDCls) 6 168.4, 152.0, 150.4, 135.4, 133.4, 131.3,
129.8, 126.5, 125.3, 121.5, 114.9, 112.1, 100.4, 65.2, 55.2,
37.7; HRMS (ESI) m/z: [M + H]* Calcd for CigH16BrN2O4
415.0288; Found 415.0283.

phenyl 2-(7-fluoro-2-methoxy-3-oxo-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3ae): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAcC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a white amorphous solid (78.1 mg, yield
88%), mp 119-120 °C. *H NMR (600 MHz, CDCl3) 6 7.91 (dd,
J =88, 45 Hz, 1H), 7.46-7.37 (m, 2H), 7.30-7.26 (m, 1H),
7.24 (dd, J=9.0, 2.2 Hz, 1H), 7.11 (d, J = 7.7 Hz, 2H), 7.09-
7.05 (m, 1H), 6.45 (s, 1H), 5.37-5.28 (m, 1H), 4.00 (s, 3H),
3.33(dd, J =16.6, 6.1 Hz, 1H), 3.09 (dd, J = 16.6, 7.3 Hz, 1H);
BC{*H} NMR (151 MHz, CDCl3) § 168.5, 159.7 (d, Jcr =
240.2 Hz), 152.2, 150.4, 136.5, 133.7 (d, Jcr = 10.3 Hz),
129.8, 127.4, 126.4, 121.4, 113.8 (d, Jc.r = 9.6 Hz), 112.3 (d,
Je.e = 25.9 Hz), 107.1 (d, Jcr = 24.4 Hz), 100.2 (d, Jcr = 4.2
Hz), 65.2, 55.3, 37.7; HRMS (ESI) m/z: [M + H]* Calcd for
C19H16FN204 355.1089; Found 355.1088.

phenyl 2-(7-chloro-2-methoxy-3-oxo-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3af): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAcC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a pale yellow amorphous solid (80.4 mg,
yield 87%), mp 87-88 °C. 'H NMR (600 MHz, CDCls) & 7.89
(d, 3 =8.6 Hz, 1H), 7.55 (s, 1H), 7.45-7.38 (m, 2H), 7.31-7.26
(m, 2H), 7.10 (d, J = 8.2 Hz, 2H), 6.42 (s, 1H), 5.36-5.30 (m,
1H), 4.00 (s, 3H), 3.33 (dd, J = 16.6, 6.0 Hz, 1H), 3.09 (dd, J =
16.6, 7.3 Hz, 1H); *C{*H} NMR (151 MHz, CDCl5) § 168.4,
152.0, 150.3, 136.2, 133.9, 129.8, 129.3, 129.2, 126.5, 124.5,
121.4, 121.2, 113.9, 99.8, 65.2, 55.2, 37.7; HRMS (ESI) m/z:
[M + H]* Calcd for C1gH16CIN,O4 371.0793; Found 371.0791.



phenyl 2-(7-bromo-2-methoxy-3-oxo-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3ag): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAcC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a white amorphous solid (83.4 mg, yield
80%), mp 112-113 °C. 'H NMR (600 MHz, CDCls) § 7.84 (d,
J = 8.6 Hz, 1H), 7.72 (d, J = 1.6 Hz, 1H), 7.45-7.38 (m, 3H),
7.30-7.26 (m, 1H), 7.10 (d, J = 7.7 Hz, 2H), 6.42 (s, 1H), 5.37-
5.31 (m, 1H), 4.00 (s, 3H), 3.33 (dd, J = 16.6, 6.1 Hz, 1H),
3.08 (dd, J = 16.6, 7.4 Hz, 1H); BC{*H} NMR (151 MHz,
CDCl3) & 168.4, 152.0, 150.3, 136.0, 134.4, 129.8, 129.6,
127.2,126.5,124.2, 121.4, 116.8, 114.3, 99.6, 65.2, 55.2, 37.7;
HRMS (ESI) m/z: [M + H]* Calcd for C19H16BrN,O4 415.0288;
Found 415.0278.

phenyl 2-(7-iodo-2-methoxy-3-oxo0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3ah): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAcC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a yellow viscous oil (99.2 mg, yield 86%).
'H NMR (600 MHz, CDCl3) § 7.93 (d, J = 1.1 Hz, 1H), 7.74
(d, 3 = 8.5 Hz, 1H), 7.60 (dd, J = 8.5, 1.4 Hz, 1H), 7.45-7.38
(m, 2H), 7.30-7.26 (m, 1H), 7.10 (d, J = 7.8 Hz, 2H), 6.40 (s,
1H), 5.37-5.31 (m, 1H), 4.00 (s, 3H), 3.33 (dd, J = 16.6, 6.1
Hz, 1H), 3.08 (dd, J = 16.6, 7.3 Hz, 1H); BC{*H} NMR (151
MHz, CDCls;) & 168.4, 152.0, 150.3, 135.6, 135.0, 132.7,
130.4, 130.1, 129.8, 126.5, 121.4, 114.7, 99.3, 87.5, 65.2, 55.1,
37.7; HRMS (ESI) m/z: [M + H]* Calcd for CigHi6IN2O4
463.0149; Found 463.0141.

phenyl 2-(6-fluoro-2-methoxy-3-oxo-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3ai): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAc: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a yellow amorphous solid (75.9 mg, yield
86%), mp 116-117 °C. *H NMR (600 MHz, CDCls3) § 7.68 (dd,
J=8.7,1.7 Hz, 1H), 7.50 (dd, J = 8.7, 5.0 Hz, 1H), 7.44-7.38
(m, 2H), 7.30-7.26 (m, 1H), 7.11 (d, J = 7.9 Hz, 2H), 7.05-
7.00 (m, 1H), 6.45 (s, 1H), 5.36-5.29 (m, 1H), 4.00 (s, 3H),
3.33(dd, J=16.5, 6.1 Hz, 1H), 3.08 (dd, J = 16.5, 7.3 Hz, 1H);
BC{*H} NMR (151 MHz, CDCIl3) § 168.5, 160.6 (d, Jcr =
242.1 Hz), 152.0, 150.4, 135.0 (d, Jc-r = 3.9 Hz), 130.9 (d, Jc-r
=13.1 Hz), 129.8, 129.0, 126.4, 122.2 (d, Jc-r = 9.9 Hz), 121 .4,
112.0 (d, Jc.r = 24.3 Hz), 100.3 (d, Jc.r = 27.5 Hz), 100.1, 65.2,
55.2, 37.8; HRMS (ESI) m/zz. [M + H]* Calcd for
C19H16FN204 355.1089; Found 355.1085.

phenyl 2-(6-chloro-2-methoxy-3-oxo-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3aj): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAcC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a pale yellow amorphous solid (77.5 mg,
yield 84%), mp 99-100 °C. *H NMR (600 MHz, CDCl3) § 7.99
(s, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.44-7.38 (m, 2H), 7.30-7.26
(m, 1H), 7.24 (dd, J = 8.4, 1.3 Hz, 1H), 7.11 (d, J = 8.2 Hz,
2H), 6.45 (s, 1H), 5.37-5.31 (m, 1H), 4.01 (s, 3H), 3.33 (dd, J
= 16.6, 6.0 Hz, 1H), 3.08 (dd, J = 16.6, 7.4 Hz, 1H); “C{*H}
NMR (151 MHz, CDCls) 6 168.4, 151.9, 150.3, 135.3, 131.2,
130.2, 129.8, 126.5, 124.2, 122.3, 121.4, 113.2, 100.1, 65.2,
55.2, 37.7; HRMS (ESI) m/zz [M + H]* Calcd for
C19H16CIN20O4 371.0793; Found 371.0785.

phenyl 2-(6-bromo-2-methoxy-3-oxo-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3ak): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOACc: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-

vide the product as a pale yellow amorphous solid (85.7 mg,
yield 83%), mp 115-116 °C. 'H NMR (600 MHz, CDCls) &
8.15 (s, 1H), 7.45-7.39 (m, 3H), 7.37 (dd, J = 8.4, 1.7 Hz, 1H),
7.29-7.26 (m, 1H), 7.10 (d, J = 7.6 Hz, 2H), 6.45 (d, J = 0.6
Hz, 1H), 5.36-5.28 (m, 1H), 4.00 (s, 3H), 3.33 (dd, J = 16.6,
6.0 Hz, 1H), 3.08 (dd, J = 16.6, 7.4 Hz, 1H); BC{*H} NMR
(151 MHz, CDCls) § 168.4, 151.9, 150.3, 135.2, 131.6, 131.5,
129.8, 126.9, 126.5, 122.6, 121.4, 117.7, 116.1, 100.2, 65.2,
55.2, 37.7; HRMS (ESI) m/zz [M + H]* Calcd for
C19H16BrN»0O,4 415.0288; Found 415.0277.

phenyl 2-(2-methoxy-8-methyl-3-ox0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3al): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAcC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a white amorphous solid (66.3 mg, yield
76%), mp 77-78 °C. *H NMR (600 MHz, CDCls) & 7.83 (d, J
= 8.1 Hz, 1H), 7.46-7.40 (m, 2H), 7.30-7.27 (m, 1H), 7.26-
7.22 (m, 1H), 7.13 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 7.3 Hz,
1H), 6.51 (s, 1H), 5.38-5.31 (m, 1H), 4.01 (s, 3H), 3.33 (dd, J
= 16.5, 5.8 Hz, 1H), 3.09 (dd, J = 16.5, 7.3 Hz, 1H), 2.52 (s,
3H); BC{*H} NMR (151 MHz, CDCl3) § 168.7, 152.6, 150.4,
134.2, 132.5, 131.0, 130.7, 129.7, 126.4, 124.3, 123.9, 121.5,
110.6, 98.8, 65.1, 55.4, 38.0, 18.8; HRMS (ESI) m/z: [M +
H]* Calcd for CyH19N204 351.1339; Found 351.1330.

phenyl 2-(2,8-dimethoxy-3-ox0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3am): The reaction mix-
ture was subjected directly to flash chromatography (Petrole-
um/EtOAc: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a pale yellow amorphous solid (75.4 mg,
yield 82%), mp 102-103 °C. 'H NMR (600 MHz, CDCls) &
7.60 (d, J = 8.1 Hz, 1H), 7.45-7.38 (m, 2H), 7.29-7.27 (m, 1H),
7.27-7.25 (m, 1H), 7.15-7.09 (m, 2H), 6.71 (d, J = 8.0 Hz, 1H),
6.62-6.57 (m, 1H), 5.37-5.32 (m, 1H), 4.00 (s, 3H), 3.94 (s,
3H), 3.29 (dd, J = 16.5, 6.4 Hz, 1H), 3.08 (dd, J = 16.5, 7.0 Hz,
1H); BC{*H} NMR (151 MHz, CDCls) § 168.5, 153.3, 152.5,
150.4, 133.1, 132.1, 129.7, 126.4, 125.3, 123.0, 121.5, 106.1,
103.8, 97.5, 65.1, 55.6, 55.3, 38.0; HRMS (ESI) m/z: [M +
H]Jr Calcd for CooH19N20s5 367.1288; Found 367.1279.

phenyl 2-(2-methoxy-7-methyl-3-oxo0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3an): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a yellow viscous oil (72.9 mg, yield 83%).
!H NMR (600 MHz, CDCls) § 7.86 (d, J = 8.3 Hz, 1H), 7.44-
7.39 (m, 2H), 7.37 (s, 1H), 7.30-7.26 (m, 1H), 7.16 (d, J = 8.3
Hz, 1H), 7.11 (d, J = 8.2 Hz, 2H), 6.39 (s, 1H), 5.35-5.29 (m,
1H), 4.00 (s, 3H), 3.31 (dd, J = 16.4, 6.3 Hz, 1H), 3.07 (dd, J =
16.4, 7.2 Hz, 1H), 2.45 (s, 3H); *C{*H} NMR (151 MHz,
CDCls) 6 168.6, 152.6, 150.4, 134.9, 133.2, 133.1, 129.7,
129.2, 126.4, 125.6, 121.5, 121.4, 112.7, 100.0, 65.1, 55.4,
38.0, 21.7; HRMS (ESI) m/z: [M + H]" Calcd for CzH19N2O4
351.1339; Found 351.1331.

phenyl 2-(2,7-dimethoxy-3-ox0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3a0): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAc: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a yellow amorphous solid (77.9 mg, yield
85%), mp 117-118 °C. 'H NMR (600 MHz, CDCls) § 7.86 (d,
J = 8.8 Hz, 1H), 7.44-7.39 (m, 2H), 7.29-7.26 (m, 1H), 7.14-
7.09 (m, 2H), 7.04 (d, J = 2.4 Hz, 1H), 6.96 (dd, J = 8.8, 2.4
Hz, 1H), 6.40 (d, J = 0.8 Hz, 1H), 5.34-5.27 (m, 1H), 3.99 (s,
3H), 3.85 (s, 3H), 3.31 (dd, J = 16.4, 6.2 Hz, 1H), 3.07 (dd, J =



16.4, 7.3 Hz, 1H); B*C{*H} NMR (151 MHz, CDCl3) § 168.6,
156.6, 152.6, 150.4, 135.7, 133.8, 129.7, 126.4, 125.7, 121.5,
113.7, 113.3, 104.1, 100.2, 65.2, 55.9, 55.4, 37.9; HRMS (ESI)
m/z: [M + H]" Calcd for CyxHi9N,Os 367.1288; Found
367.1281.

phenyl 2-(7-ethyl-2-methoxy-3-oxo-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3ap): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAcC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a yellow viscous oil (75.7 mg, yield 83%).
'H NMR (600 MHz, CDCls) § 7.89 (d, J = 8.3 Hz, 1H), 7.44-
7.38 (m, 3H), 7.30-7.26 (m, 1H), 7.19 (d, J = 8.3 Hz, 1H), 7.12
(d, J =79 Hz, 2H), 6.42 (d, J = 0.4 Hz, 1H), 5.36-5.30 (m,
1H), 4.00 (s, 3H), 3.31 (dd, J = 16.4, 6.3 Hz, 1H), 3.07 (dd, J =
16.4, 7.2 Hz, 1H), 2.75 (9, J = 7.6 Hz, 2H), 1.28 (t, J = 7.6 Hz,
3H); B¥C{*H} NMR (151 MHz, CDCls) § 168.6, 152.6, 150.4,
139.8, 135.0, 133.1, 129.7, 129.4, 126.4, 124.7, 121.5, 120.1,
112.8, 100.1, 65.1, 55.4, 38.0, 29.2, 16.4; HRMS (ESI) m/z:
[M + H]* Calcd for Cz1H2:N,04 365.1496; Found 365.1488.
phenyl 2-(7-ethoxy-2-methoxy-3-o0xo-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3aq): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAcC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a yellow amorphous solid (76.9 mg, yield
81%), mp 131-132 °C. 'H NMR (600 MHz, CDCls) § 7.85 (d,
J = 8.8 Hz, 1H), 7.44-7.38 (m, 2H), 7.28 (d, J = 7.5 Hz, 1H),
7.11(d, J=8.1Hz, 2H), 7.03 (d, J = 1.8 Hz, 1H), 6.95 (dd, J =
8.8, 2.0 Hz, 1H), 6.39 (s, 1H), 5.34-5.26 (m, 1H), 4.06 (g, J =
7.0 Hz, 2H), 3.99 (s, 3H), 3.31 (dd, J = 16.4, 6.2 Hz, 1H), 3.07
(dd, J = 16.4, 7.2 Hz, 1H), 1.44 (t, J = 7.0 Hz, 3H); BC{*H}
NMR (151 MHz, CDCls) 8 168.6, 155.9, 152.6, 150.4, 135.6,
133.8, 129.7, 126.4, 125.7, 121.5, 113.8, 113.7, 105.0, 100.2,
65.2, 64.1, 55.5, 37.9, 15.1; HRMS (ESI) m/z: [M + H]* Calcd
for C21H21N205 3811445, Found 381.1436.

phenyl 2-(2-methoxy-6-methyl-3-oxo0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3ar): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAcC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a yellow viscous oil (68.7 mg, yield 78%).
'H NMR (600 MHz, CDCls) 6 7.81 (s, 1H), 7.45 (d, J = 8.1 Hz,
1H), 7.44-7.39 (m, 2H), 7.30-7.26 (m, 1H), 7.14-7.08 (m, 3H),
6.42 (s, 1H), 5.36-5.30 (m, 1H), 4.00 (s, 3H), 3.30 (dd, J =
16.4, 6.3 Hz, 1H), 3.07 (dd, J = 16.4, 7.2 Hz, 1H), 2.49 (s, 3H);
BC{*H} NMR (151 MHz, CDCls) § 168.6, 152.6, 150.4, 134.5,
134.1, 131.4, 130.5, 129.7, 126.4, 125.1, 121.5, 121.0, 113.2,
100.1, 65.1, 55.4, 38.0, 21.8; HRMS (ESI) m/z: [M + H]*
Calcd for CoH19N204 351.1339; Found 351.1333.

phenyl 2-(2,6-dimethoxy-3-ox0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3as): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAc: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a yellow amorphous solid (58.1 mg, yield
63%), mp 107-108 °C. 'H NMR (600 MHz, CDCls) § 7.49 (d,
J = 2.3 Hz, 1H), 7.44 (d, J = 8.7 Hz, 1H), 7.43-7.39 (m, 2H),
7.29-7.26 (m, 1H), 7.13-7.09 (m, 2H), 6.91 (dd, J = 8.7, 2.4
Hz, 1H), 6.39 (d, J = 1.4 Hz, 1H), 5.35-5.29 (m, 1H), 4.00 (s,
3H), 3.88 (s, 3H), 3.30 (dd, J = 16.4, 6.2 Hz, 1H), 3.07 (dd, J =
16.4, 7.2 Hz, 1H); B*C{*H} NMR (151 MHz, CDCl3) § 168.6,
157.7, 152.6, 150.4, 133.2, 131.9, 129.7, 126.4, 126.4, 122.0,
121.5, 113.5, 100.1, 96.5, 65.1, 55.9, 55.3, 38.0; HRMS (ESI)
m/z: [M + H]" Calcd for CzHisN2Os 367.1288; Found
367.1278.

phenyl 2-(2-methoxy-5-methyl-3-ox0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3at): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAcC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a white amorphous solid (68.6 mg, yield
78%), mp 87-88 °C. *H NMR (600 MHz, CDCls) & 7.44-7.40
(m, 2H), 7.39 (d, J = 7.8 Hz, 1H), 7.30-7.27 (m, 1H), 7.19-
7.15 (m, 1H), 7.14-7.09 (m, 3H), 6.49 (d, J = 1.5 Hz, 1H),
5.34-5.27 (m, 1H), 4.01 (s, 3H), 3.30 (dd, J = 16.3, 6.3 Hz,
1H), 3.08 (dd, J = 16.4, 7.0 Hz, 1H), 2.91 (s, 3H); B*C{*H}
NMR (151 MHz, CDCls) 8 168.6, 153.1, 150.4, 135.8, 133.5,
131.6, 129.7, 126.7, 126.4, 125.0, 123.9, 121.5, 118.8, 100.7,
65.0, 54.8, 38.1, 20.9; HRMS (ESI) m/z: [M + H]* Calcd for
C20H19N204 351.1339; Found 351.1332.

phenyl 2-(7-(furan-2-yl)-2-methoxy-3-oxo0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3au): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAcC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a yellow amorphous solid (79.0 mg, yield
79%), mp 120-121 °C. 'H NMR (600 MHz, CDCls) § 7.97 (d,
J = 8.5 Hz, 1H), 7.88 (s, 1H), 7.66 (dd, J = 8.5, 1.5 Hz, 1H),
7.48 (d, J = 1.6 Hz, 1H), 7.45-7.38 (m, 2H), 7.30-7.26 (m, 1H),
7.15-7.07 (m, 2H), 6.65 (d, J = 3.3 Hz, 1H), 6.49 (dd, J = 3.3,
1.8 Hz, 1H), 6.47 (s, 1H), 5.36-5.29 (m, 1H), 4.00 (s, 3H),
3.32 (dd, J = 16.5, 6.2 Hz, 1H), 3.09 (dd, J = 16.5, 7.2 Hz, 1H);
BC{*H} NMR (151 MHz, CDCl3) § 168.5, 154.4, 152.2, 150.4,
141.9, 135.5, 133.2, 130.1, 129.7, 126.8, 126.4, 121.4, 120.7,
116.7, 113.2, 111.8, 104.6, 100.5, 65.1, 55.3, 37.8; HRMS
(ESI) m/z: [M + H]* Calcd for Cz3H19N,Os 403.1288; Found
403.1286.

phenyl 2-(2-methoxy-3-oxo-7-(thiophen-2-yl)-2,3-dihydro-
1H-imidazo[1,5-a]indol-1-yl)acetate (3av): The reaction
mixture was subjected directly to flash chromatography (Pe-
troleum/EtOAC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to
provide the product as a yellow amorphous solid (89.9 mg,
yield 86%), mp 132-133 °C. 'H NMR (600 MHz, CDCls) &
7.97 (d, J = 8.4 Hz, 1H), 7.81 (s, 1H), 7.61 (dd, J = 8.4, 1.5 Hz,
1H), 7.46-7.38 (m, 2H), 7.33-7.31 (m, 1H), 7.30-7.26 (m, 2H),
7.12 (d, J = 7.7 Hz, 2H), 7.09 (dd, J = 5.0, 3.7 Hz, 1H), 6.49 (s,
1H), 5.38-5.32 (m, 1H), 4.01 (s, 3H), 3.34 (dd, J = 16.5, 6.2
Hz, 1H), 3.10 (dd, J = 16.5, 7.3 Hz, 1H); BC{*H} NMR (151
MHz, CDCls) & 168.5, 152.3, 150.4, 144.9, 135.6, 133.4,
130.4, 130.3, 129.8, 128.2, 126.4, 124.7, 123.1, 122.9, 121.5,
118.8, 113.3, 100.4, 65.2, 55.3, 37.9; HRMS (ESI) m/z: [M +
H]* Calcd for C23H19N204S 419.1060; Found 419.1060.
phenyl 2-(7-cyano-2-methoxy-3-oxo0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (3aw): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAcC: 8:1—Petroleum/EtOAc: 4/1) on silica gel to pro-
vide the product as a white amorphous solid (23.4 mg, yield
26%), mp 121-122 °C. 'H NMR (600 MHz, CDCls) § 8.06 (d,
J = 8.4 Hz, 1H), 7.93 (s, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.45-
7.39 (m, 2H), 7.31-7.26 (m, 1H), 7.10 (d, J = 8.1 Hz, 2H), 6.56
(s, 1H), 5.42-5.35 (m, 1H), 4.02 (s, 3H), 3.38 (dd, J=16.8, 5.8
Hz, 1H), 3.12 (dd, J = 16.8, 7.5 Hz, 1H); BC{*H} NMR (151
MHz, CDCls) & 168.3, 151.3, 150.3, 136.9, 132.6, 132.6,
129.8, 127.3, 126.5, 126.5, 121.4, 119.6, 113.8, 107.0, 100.2,
65.3, 55.0, 37.4; HRMS (ESI) m/z: [M + H]* Calcd for
C20H15N304 362.1135; Found 362.1127.

methyl 2-methoxy-3-0x0-1-(2-0x0-2-phenoxyethyl)-2,3-
dihydro-1H-imidazo[1,5-a]indole-7-carboxylate (3ax): The
reaction mixture was subjected directly to flash chromatog-



raphy (Petroleum/EtOAc: 8:1—Petroleum/EtOAc: 4/1) on J = 8.1 Hz, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.44-7.39 (m, 2H),
silica gel to provide the product as a pale yellow amorphous 7.36-7.32 (m, 1H), 7.30-7.26 (m, 2H), 7.15-7.10 (m, 2H), 6.48
solid (79.6 mg, yield 81%), mp 126-127 °C. *H NMR (600 (s, 1H), 5.39-5.29 (m, 1H), 4.29-4.17 (m, 2H), 3.34 (dd, J =
MHz, CDCls) § 8.33 (s, 1H), 8.04 (dd, J = 8.5, 1.3 Hz, 1H), 16.6, 6.1 Hz, 1H), 3.05 (dd, J = 16.6, 7.4 Hz, 1H), 1.38 (t, J =
8.00 (d, J = 8.5 Hz, 1H), 7.45-7.38 (m, 2H), 7.30-7.26 (m, 1H), 7.1 Hz, 3H); C{*H} NMR (151 MHz, CDCls) § 168.6, 152.6,
7.10 (d, J = 8.2 Hz, 2H), 6.55 (s, 1H), 5.40-5.33 (m, 1H), 4.01 150.4, 135.0, 132.8, 131.0, 129.7, 126.4, 124.2, 123.5, 121.5,
(s, 3H), 3.94 (s, 3H), 3.35 (dd, J = 16.6, 6.1 Hz, 1H), 3.10 (dd, 113.1, 100.2, 73.1, 55.5, 37.9, 13.9; HRMS (ESI) m/z: [M +
J = 16.6, 7.3 Hz, 1H); B¥C{*H} NMR (151 MHz, CDCls) & H]* Calcd for C2H19N204 351.1339; Found 351.1330.

168.4, 167.4, 151.8, 150.3, 135.9, 133.5, 132.5, 129.8, 126.5, phenyl 2-(2-isopropoxy-3-oxo-2,3-dihydro-1H-imidazo[1,5-

125.6, 1255, 124.0, 121.4, 1+12-7: 100.9, 65.2,55.1,52.3, 37.7; aJindol-1-yl)acetate (3bc): The reaction mixture was subject-
HRMS (ESI) m/z: [M + HJ* Calcd for CpH1eN,05 395.1238; ed directly to flash chromatography (Petroleum/EtOAC:

Found 395.1232. 16:1—Petroleum/EtOAc: 12/1) on silica gel to provide the
phenyl 2-(2-methoxy-9-methyl-3-0x0-2,3-dihydro-1H- product as a colorless viscous oil (63.7 mg, yield 70%). H
imidazo[1,5-a]indol-1-yl)acetate (3ay): The reaction mixture NMR (600 MHz, CDCls) & 8.00 (d, J = 8.1 Hz, 1H), 7.59 (d, J
was subjected directly to flash chromatography (Petrole- = 7.8 Hz, 1H), 7.44-7.38 (m, 2H), 7.36-7.32 (m, 1H), 7.30-

um/EtOAcC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro- 7.26 (m, 2H), 7.12 (d, J = 7.8 Hz, 2H), 6.48 (s, 1H), 5.37-5.29
vide the product as a white amorphous solid (74.8 mg, yield (m, 1H), 4.46-4.37 (m, 1H), 3.39 (dd, J = 16.9, 5.9 Hz, 1H),
85%), mp 122-123 °C. 'H NMR (600 MHz, CDCls) § 7.96 (d, 3.00 (dd, J = 16.9, 7.7 Hz, 1H), 1.39 (d, J = 6.2 Hz, 3H), 1.36
J = 8.0 Hz, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.42-7.37 (m, 2H), (d, J=6.2 Hz, 3H); BC{*H} NMR (151 MHz, CDCls) § 168.7,
7.37-7.33 (m, 1H), 7.32-7.28 (m, 1H), 7.27-7.26 (m, 1H), 153.0, 150.4, 135.3, 132.8, 131.0, 129.7, 126.4, 124.1, 123.4,
7.10-7.05 (m, 2H), 5.48-5.41 (m, 1H), 3.97 (s, 3H), 3.20-3.14 1215, 121.4,113.1, 100.1, 79.1, 55.8, 37.7, 21.2, 21.1; HRMS
(m, 2H), 2.31 (s, 3H); *C{*H} NMR (151 MHz, CDCls) & (ESI) m/z: [M + H]* Calcd for C:H21N»04 365.1496; Found
168.8, 152.5, 150.5, 133.9, 131.0, 129.8, 129.7, 126.3, 124.3, 365.1487.

123.2,121.4,119.4, 113.1, 109.2, 64.9, 54.8, 37.2, 8.6; HRMS phenyl 2-(2-(benzyloxy)-3-0x0-2,3-dihydro-1H-
(ESI) m/z: [M + H]" Caled for CaoHi19N204 351.1339; Found imidazo[1,5-a]indol-1-yl)acetate (3be): The reaction mixture
351.1333. was subjected directly to flash chromatography (Petrole-
phenyl 2-(9-benzyl-2-methoxy-3-ox0-2,3-dihydro-1H- um/EtOAc: 16:1—Petroleum/EtOAc: 12/1) on silica gel to
imidazo[1,5-a]indol-1-yl)acetate (3az): The reaction mixture provide the product as a white amorphous solid (85.3 mg,
was subjected directly to flash chromatography (Petrole- yield 83%), mp 83-84 °C. *H NMR (600 MHz, CDCl;) & 8.01
um/EtOAc: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro- (d, J =8.1 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.54-7.47 (m,

vide the product as a white amorphous solid (42.4 mg, yield 2H), 7.44-7.39 (m, 3H), 7.39-7.33 (m, 3H), 7.30-7.27 (m, 1H),
40%), mp 187-188 °C. *H NMR (600 MHz, CDCls) § 7.99 (d, 7.26-7.24 (m, 1H), 7.00 (d, J = 7.9 Hz, 2H), 6.43 (s, 1H), 5.20-
J =8.1 Hz, 1H), 7.49 (d, J = 7.9 Hz, 1H), 7.39-7.32 (m, 5H), 5.14 (m, 2H), 5.13-5.07 (m, 1H), 3.08 (dd, J = 16.7, 5.7 Hz,
7.30-7.26 (m, 4H), 7.25-7.21 (m, 1H), 6.96 (d, J = 7.7 Hz, 2H), 1H), 2.84 (dd, J = 16.7, 7.7 Hz, 1H); *C{*H} NMR (151 MHz,
5.19 (dd, J = 7.9, 3.7 Hz, 1H), 4.16 (d, J = 16.5 Hz, 1H), 4.10 CDCls) 6 168.6, 152.8, 150.3, 135.1, 135.1, 132.8, 131.0,
(d, J = 16.9 Hz, 1H), 3.91 (s, 3H), 2.75 (dd, J = 16.6, 7.9 Hz, 130.1, 129.6, 129.3, 128.8, 126.3, 124.2, 123.5, 121.5, 113.1,
1H), 2.68 (dd, J = 16.5, 3.8 Hz, 1H); *C{*H} NMR (151 MHz, 100.2, 79.4, 55.8, 37.4; HRMS (ESI) m/z: [M + H]* Calcd for
CDCl3) & 168.6, 152.3, 150.5, 139.1, 133.1, 131.1, 130.7, C2sH21N,04 413.1496; Found 413.1487.

129.6, 129.1, 128.8, 127.0, 126.2, 124.4, 123.3, 121.4, 119.8, phenyl 2-(2-methoxy-5-methyl-3-0x0-2,3-dihydro-1H-
113.1, 112.7, 64.8, 54.8, 37.0, 30.4; HRMS (ESI) m/z: [M + pyrrolo[1,2-climidazol-1-yl)acetate (3bf): The reaction mix-
H]" Calcd for CasH23N204 427.1652; Found 427.1643. ture was subjected directly to flash chromatography (Petrole-
ethyl 2-(2-methoxy-3-0x0-1-(2-0x0-2-phenoxyethyl)-2,3- um/EtOAc: 16:1—Petroleum/EtOAc: 10/1) on silica gel to
dihydro-1H-imidazo[1,5-a]indol-9-yl)acetate (3ba): The provide the product as a colorless viscous oil (55.1 mg, yield
reaction mixture was subjected directly to flash chromatog- 73%). *H NMR (600 MHz, CDCls) § 7.44-7.36 (m, 2H), 7.28-

raphy (Petroleum/EtOAc: 8:1—Petroleum/EtOAc: 4/1) on 7.25 (m, 1H), 7.12-7.04 (m, 2H), 6.03 (dd, J = 3.0, 1.0 Hz, 1H),
silica gel to provide the product as a yellow viscous oil (41.7 5.98 (dd, J = 3.0, 1.3 Hz, 1H), 5.19-5.12 (m, 1H), 3.95 (s, 3H),
myg, yield 39%). *H NMR (600 MHz, CDCls) 6 7.98 (d, J = 8.0 3.18 (dd, J = 16.3, 6.4 Hz, 1H), 2.97 (dd, J = 16.2, 6.8 Hz, 1H),
Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.40-7.34 (m, 3H), 7.32- 2.46 (s, 3H); BC{*H} NMR (151 MHz, CDCl3) § 168.7, 152.6,
7.28 (m, 1H), 7.26-7.21 (m, 1H), 7.06 (d, J = 7.9 Hz, 2H), 150.4, 129.7, 128.9, 126.3, 126.3, 121.5, 113.8, 103.8, 64.8,
5.55-5.47 (m, 1H), 4.16 (9, J = 7.1 Hz, 2H), 3.98 (s, 3H), 3.81- 54.6, 38.3, 11.5; HRMS (ESI) m/z: [M + H]* Calcd for

3.71 (m, 2H), 3.34 (dd, J = 16.7, 48 Hz, 1H), 3.20 (dd, J =  CisHi/N,O, 301.1183; Found 301.1175.
16.7, 7.1 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H); “C{*H} NMR methyl  2-(2-methoxy-3-0x0-2,3-dihydro-1H-imidazo[1,5-
(151 MHz, CDCl3) 3 170.7, 168.9, 152.2, 150.5, 132.7, 131.9, aJindol-1-yl)acetate (4aa): The reaction mixture was subject-

130.8, 129.6, 126.3, 124.5, 123.4, 1215, 119.4, 1131, 1062, ¢q directly to flash chromatography (PetroleunV/EtOAC:
64.9, 61.5, 54.9, 36.9, 30.1, 14.3; HRMS (ESI) m/z: [M + H] 16:1—Petroleum/EtOAc: 8/1) on silica gel to provide the

Caled for C23H23N.Os 423.1551; Found 423.1541. product as a yellow viscous oil (58.2 mg, yield 85%). *H NMR
phenyl 2-(2-ethoxy-3-o0x0-2,3-dihydro-1H-imidazo[1,5- (600 MHz, CDCl3) 6 7.96 (d, J =8.1 Hz, 1H), 7.56 (d, J=7.9
alindol-1-yl)acetate (3bb): The reaction mixture was subject- Hz, 1H), 7.34-7.29 (m, 1H), 7.27-7.24 (m, 1H), 6.40 (s, 1H),

ed directly to flash chromatography (Petroleum/EtOAc: 5.24-5.18 (m, 1H), 3.96 (s, 3H), 3.78 (s, 3H), 3.09 (dd, J =
16:1—Petroleum/EtOAc: 12/1) on silica gel to provide the 16.4, 5.8 Hz, 1H), 2.81 (dd, J = 16.4, 7.7 Hz, 1H); *C{*H}
product as a pale yellow amorphous solid (76.7 mg, yield NMR (151 MHz, CDCls) 6 170.3, 152.6, 135.1, 132.8, 130.9,
88%), mp 113-114 °C. 'H NMR (600 MHz, CDCls) § 8.00 (d, 124.1, 123.5, 121.4, 113.0, 100.0, 65.1, 55.4, 52.3, 37.5;



HRMS (ESI) m/z: [M + H]* Calcd for C14H15N,04 275.1026;
Found 275.1020.

ethyl 2-(2-methoxy-3-o0x0-2,3-dihydro-1H-imidazo[1,5-
alindol-1-yl)acetate (4ab): The reaction mixture was subject-
ed directly to flash chromatography (Petroleum/EtOAc:
16:1—Petroleum/EtOAc: 8/1) on silica gel to provide the
product as a yellow viscous oil (60.8 mg, yield 84%). 'H NMR
(600 MHz, CDCl3) 6 7.95 (d, J = 8.1 Hz, 1H), 7.56 (d, J=7.9
Hz, 1H), 7.33-7.28 (m, 1H), 7.26-7.23 (m, 1H), 6.39 (d, J =
0.9 Hz, 1H), 5.24-5.16 (m, 1H), 4.27-4.19 (m, 2H), 3.95 (s,
3H), 3.07 (dd, J = 16.3, 5.8 Hz, 1H), 2.80 (dd, J = 16.3, 7.6 Hz,
1H), 1.28 (t, J = 7.2 Hz, 3H); BC{*H} NMR (151 MHz,
CDCls) 6 169.8, 152.5, 135.2, 132.8, 130.9, 124.0, 123.4,
121.4, 112.9, 99.9, 65.0, 61.3, 55.4, 37.7, 14.3; HRMS (ESI)
m/z: [M + H]" Calcd for CisHi7N,O, 289.1183; Found
289.1175.

tert-butyl 2-(2-methoxy-3-o0x0-2,3-dihydro-1H-imidazo[1,5-
alindol-1-yl)acetate (4ac): The reaction mixture was subject-
ed directly to flash chromatography (Petroleum/EtOAc:
16:1—Petroleum/EtOAc: 8/1) on silica gel to provide the
product as a yellow viscous oil (61.3 mg, yield 78%). 'H NMR
(600 MHz, CDCls3) 6 7.96 (d, J = 8.1 Hz, 1H), 7.56 (d, J=7.8
Hz, 1H), 7.33-7.28 (m, 1H), 7.27-7.22 (m, 1H), 6.38 (d, J =
0.5 Hz, 1H), 5.20-5.15 (m, 1H), 3.95 (s, 3H), 2.97 (dd, J =
16.2, 6.1 Hz, 1H), 2.74 (dd, J = 16.2, 7.2 Hz, 1H), 1.47 (s, 9H);
13C{*H} NMR (151 MHz, CDCls) § 169.1, 152.5, 135.4, 132.8,
130.9, 123.9, 123.3, 121.3, 112.9, 99.7, 81.9, 65.0, 55.6, 38.9,
28.1; HRMS (ESI) m/z: [M + H]+ Calcd for Ci7H21N204
317.1496; Found 317.1487.

benzyl  2-(2-methoxy-3-0x0-2,3-dihydro-1H-imidazo[1,5-
alindol-1-yl)acetate (4ad): The reaction mixture was subject-
ed directly to flash chromatography (Petroleum/EtOAc:
16:1—Petroleum/EtOAc: 8/1) on silica gel to provide the
product as a yellow viscous oil (74.9 mg, yield 86%). 'H NMR
(600 MHz, CDCls3) 6 7.96 (d, J =8.1 Hz, 1H), 7.54 (d,J=7.8
Hz, 1H), 7.41-7.34 (m, 5H), 7.34-7.30 (m, 1H), 7.28-7.25 (m,
1H), 6.30 (s, 1H), 5.27-5.17 (m, 3H), 3.89 (s, 3H), 3.13 (dd, J
=16.3, 6.0 Hz, 1H), 2.86 (dd, J = 16.3, 7.5 Hz, 1H); BC{*H}
NMR (151 MHz, CDCls) 8 169.7, 152.5, 135.4, 135.0, 132.8,
130.9, 128.8, 128.7, 124.1, 123.4, 121.4, 113.0, 100.0, 67.1,
65.0, 55.4, 37.8; HRMS (ESI) m/z: [M + H]* Calcd for
CooH19N»04 351.1339; Found 351.1330.

2-methoxyphenyl 2-(2-methoxy-3-0x0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (4ae): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAc: 16/1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a yellow viscous oil (64.2 mg, yield 70%).
'H NMR (600 MHz, CDCl3) § 7.99 (d, J = 8.1 Hz, 1H), 7.58
(d, J = 7.8 Hz, 1H), 7.36-7.31 (m, 1H), 7.29-7.26 (m, 1H),
7.26-7.23 (m, 1H), 7.06 (dd, J = 7.8, 1.6 Hz, 1H), 7.02-6.99
(m, 1H), 6.99-6.96 (m, 1H), 6.52 (d, J = 0.8 Hz, 1H), 5.36-
5.29 (m, 1H), 4.02 (s, 3H), 3.84 (s, 3H), 3.40 (dd, J = 16.4, 5.5
Hz, 1H), 3.08 (dd, J = 16.4, 8.0 Hz, 1H); BC{*H} NMR (151
MHz, CDCls) & 168.0, 152.6, 151.1, 139.4, 135.0, 133.0,
131.0, 127.5, 124.2, 123.5, 122.7, 121.5, 121.0, 113.1, 112.6,
100.4, 65.3, 55.9, 55.5, 37.5; HRMS (ESI) m/z: [M + H]*
Calcd for CooH19N20s 367.1288; Found 367.1279.

m-tolyl  2-(2-methoxy-3-0x0-2,3-dihydro-1H-imidazo[1,5-
alindol-1-yl)acetate (4af): The reaction mixture was subject-
ed directly to flash chromatography (Petroleum/EtOAcC:
16/1—Petroleum/EtOAc: 8/1) on silica gel to provide the
product as a yellow viscous oil (71.9 mg, yield 82%). *H NMR

(600 MHz, CDCl3) 6 7.99 (d, J = 8.1 Hz, 1H), 7.59 (d, J = 7.8
Hz, 1H), 7.36-7.32 (m, 1H), 7.31-7.26 (m, 2H), 7.08 (d, J =
7.5 Hz, 1H), 6.95-6.87 (m, 2H), 6.48 (s, 1H), 5.38-5.30 (m,
1H), 4.01 (s, 3H), 3.31 (dd, J = 16.4, 6.2 Hz, 1H), 3.07 (dd, J =
16.4, 7.3 Hz, 1H), 2.37 (s, 3H); *¥*C{*H} NMR (151 MHz,
CDCls) 6 168.6, 152.5, 150.4, 140.0, 134.9, 132.9, 131.0,
129.4, 127.2, 124.2, 123.6, 122.0, 121.5, 118.4, 113.1, 100.3,
65.2, 55.4, 37.9, 21.5; HRMS (ESI) m/z: [M + H]* Calcd for
C20H19N204 3511339, Found 351.1328.

3-chlorophenyl 2-(2-methoxy-3-ox0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (4ag): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAc: 16/1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a pale yellow amorphous solid (71.7 mg,
yield 77%), mp 121-122 °C. 'H NMR (600 MHz, CDCls) &
7.99 (d, J = 8.1 Hz, 1H), 7.59 (d, J = 7.9 Hz, 1H), 7.37-7.31
(m, 2H), 7.30-7.26 (m, 2H), 7.17-7.13 (m, 1H), 7.02 (dd, J =
8.1, 1.2 Hz, 1H), 6.47 (s, 1H), 5.37-5.30 (m, 1H), 4.00 (s, 3H),
3.30 (dd, J = 16.5, 6.3 Hz, 1H), 3.09 (dd, J = 16.5, 7.1 Hz, 1H);
BC{*H} NMR (151 MHz, CDCls) § 168.2, 152.5, 150.8, 135.0,
134.6, 132.8, 131.0, 130.5, 126.7, 124.3, 123.6, 122.2, 121.5,
119.9, 113.1, 100.3, 65.2, 55.2, 37.9; HRMS (ESI) m/z: [M +
H]* Calcd for C19H16CIN2O, 371.0793; Found 371.0786.
p-tolyl  2-(2-methoxy-3-o0x0-2,3-dihydro-1H-imidazo[1,5-
alindol-1-yl)acetate (4ah): The reaction mixture was subject-
ed directly to flash chromatography (Petroleum/EtOAC:
16:1—Petroleum/EtOAc: 8/1) on silica gel to provide the
product as a yellow viscous oil (64.4 mg, yield 74%). *H NMR
(600 MHz, CDCl3) 6 7.99 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 7.8
Hz, 1H), 7.37-7.32 (m, 1H), 7.30-7.26 (m, 1H), 7.21 (d, J =
8.2 Hz, 2H), 7.03-6.97 (m, 2H), 6.47 (s, 1H), 5.39-5.30 (m,
1H), 4.00 (s, 3H), 3.31 (dd, J = 16.4, 6.3 Hz, 1H), 3.07 (dd, J =
16.5, 7.3 Hz, 1H), 2.36 (s, 3H); ®C{*H} NMR (151 MHz,
CDCl3) & 168.8, 152.5, 148.2, 136.1, 134.8, 132.8, 131.0,
130.2, 124.2, 123.5, 121.5, 121.1, 113.1, 100.2, 65.1, 55.3,
37.9, 21.0; HRMS (ESI) m/z: [M + H]* Calcd for CzoH19N,04
351.1339; Found 351.1332.

4-methoxyphenyl 2-(2-methoxy-3-o0xo0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (4ai): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAcC: 16/1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a yellow viscous oil (68.4 mg, yield 75%).
'H NMR (600 MHz, CDCl3) 3 7.99 (d, J = 8.1 Hz, 1H), 7.58
(d, J = 7.8 Hz, 1H), 7.37-7.31 (m, 1H), 7.29-7.26 (m, 1H),
7.06-6.99 (m, 2H), 6.93-6.90 (m, 2H), 6.47 (s, 1H), 5.38-5.29
(m, 1H), 4.00 (s, 3H), 3.81 (s, 3H), 3.30 (dd, J = 16.4, 6.2 Hz,
1H), 3.06 (dd, J = 16.4, 7.2 Hz, 1H); *C{*H} NMR (151 MHz,
CDCl3) & 168.9, 157.7, 152.5, 143.9, 134.9, 132.8, 131.0,
124.2, 1235, 122.2, 121.5, 114.7, 113.1, 100.2, 65.1, 55.7,
55.4, 37.9; HRMS (ESI) m/z: [M + H]" Calcd for C2H19N2Os
367.1288; Found 367.1277.

4-fluorophenyl 2-(2-methoxy-3-o0x0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (4aj): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAcC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a white amorphous solid (74.9 mg, yield
85%), mp 86-87 °C. *H NMR (600 MHz, CDCls) & 7.99 (d, J
= 8.1 Hz, 1H), 7.59 (d, J = 7.9 Hz, 1H), 7.37-7.31 (m, 1H),
7.30-7.26 (m, 1H), 7.14-7.02 (m, 4H), 6.46 (d, J = 0.7 Hz, 1H),
5.37-5.29 (m, 1H), 4.00 (s, 3H), 3.30 (dd, J = 16.5, 6.3 Hz,
1H), 3.08 (dd, J = 16.5, 7.1 Hz, 1H); *C{*H} NMR (151 MHz,
CDCl3) 6 168.6, 160.6 (d, Jc.r = 245.2 Hz), 152.5, 146.2 (d, Jc.



r =29 Hz), 134.7, 132.8, 131.0, 124.3, 123.6, 122.9 (d, Jcr =
8.5 Hz), 121.5, 116.4 (d, Jcr = 23.5 Hz), 113.1, 100.2, 65.1,
55.2, 37.8; HRMS (ESI) m/zz [M + H]* Calcd for
C19H16FN20O4 355.1089; Found 355.1083.

4-chlorophenyl 2-(2-methoxy-3-o0x0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (4ak): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAc: 16/1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a white amorphous solid (79.4 mg, yield
86%), mp 93-94 °C. *H NMR (600 MHz, CDCl3) § 7.99 (d, J
= 8.0 Hz, 1H), 7.59 (d, J = 7.9 Hz, 1H), 7.40-7.32 (m, 3H),
7.30-7.26 (m, 1H), 7.10-7.02 (m, 2H), 6.46 (d, J = 0.7 Hz, 1H),
5.37-5.29 (m, 1H), 3.99 (s, 3H), 3.30 (dd, J = 16.5, 6.3 Hz,
1H), 3.08 (dd, J = 16.5, 7.1 Hz, 1H); *C{*H} NMR (151 MHz,
CDCls) 6 168.3, 152.5, 148.8, 134.7, 132.8, 131.8, 131.0,
129.8, 124.3, 123.6, 122.8, 121.5, 113.1, 100.3, 65.1, 55.2,
37.9; HRMS (ESI) m/z: [M + H]" Calcd for Ci9H16CIN2O4
371.0793; Found 371.0791.

4-bromophenyl 2-(2-methoxy-3-0x0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (4al): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAc: 16/1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a yellow viscous oil (93.7 mg, yield 90%).
'H NMR (600 MHz, CDCl3) § 7.98 (d, J = 8.1 Hz, 1H), 7.58
(d, J =79 Hz, 1H), 7.52 (d, J = 8.7 Hz, 2H), 7.37-7.31 (m,
1H), 7.30-7.26 (m, 1H), 7.00 (d, J = 8.7 Hz, 2H), 6.45 (s, 1H),
5.36-5.28 (m, 1H), 3.99 (s, 3H), 3.29 (dd, J = 16.5, 6.3 Hz,
1H), 3.08 (dd, J = 16.5, 7.0 Hz, 1H); *C{*H} NMR (151 MHz,
CDCls) 6 168.2, 152.4, 149.4, 134.6, 132.8, 131.0, 124.3,
123.6, 123.2, 1215, 119.5, 113.1, 100.2, 65.1, 55.2, 37.8;
HRMS (ESI) m/z: [M + H]* Calcd for C19H16BrN,O4 415.0288;
Found 415.0284.

4-iodophenyl 2-(2-methoxy-3-0x0-2,3-dihydro-1H-
imidazo[1,5-a]indol-1-yl)acetate (4am): The reaction mix-
ture was subjected directly to flash chromatography (Petrole-
um/EtOAc: 16/1—Petroleum/EtOAc: 8/1) on silica gel to pro-
vide the product as a yellow viscous oil (94.4 mg, yield 82%).
'H NMR (600 MHz, CDCls) § 8.01-7.96 (m, 1H), 7.74-7.68
(m, 2H), 7.58 (d, J = 7.9 Hz, 1H), 7.37-7.32 (m, 1H), 7.29-
7.26 (m, 1H), 6.91-6.85 (m, 2H), 6.45 (d, J = 0.8 Hz, 1H),
5.36-5.29 (m, 1H), 3.99 (s, 3H), 3.29 (dd, J = 16.5, 6.3 Hz,
1H), 3.08 (dd, J = 16.5, 7.0 Hz, 1H); *C{*H} NMR (151 MHz,
CDCl3) & 168.2, 152.5, 150.2, 138.8, 134.6, 132.8, 131.0,
124.3, 123.6, 121.5, 113.1, 100.3, 90.5, 65.1, 55.2, 37.9;
HRMS (ESI) m/z: [M + H]* Calcd for CioH16IN2O4 463.0149;
Found 463.0143.
N-benzyl-2-(2-methoxy-3-0x0-2,3-dihydro-1H-imidazo[1,5-
aJindol-1-yl)acetamide (4an): The reaction mixture was sub-
jected directly to flash chromatography (Petroleum/EtOAC:
8:1—Petroleum/EtOAc: 4/1) on silica gel to provide the prod-
uct as a white amorphous solid ((2)-N-benzyl-3-
phenoxyacrylamide: 39.4 mg, yield 45%; (E)-N-benzyl-3-
phenoxyacrylamide: 38.4 mg, yield 44%), mp 130-131 °C. H
NMR (600 MHz, CDCls) 8 7.90 (d, J = 8.0 Hz, 1H), 7.52 (d, J
= 7.8 Hz, 1H), 7.32-7.26 (m, 4H), 7.26-7.22 (m, 3H), 6.30 (s,
1H), 6.16 (s, 1H), 5.39-5.31 (m, 1H), 4.47 (d, J = 5.7 Hz, 2H),
3.85 (s, 3H), 2.94 (dd, J = 14.9, 6.2 Hz, 1H), 2.60 (dd, J = 14.9,
7.3 Hz, 1H); B¥C{*H} NMR (151 MHz, CDCls) § 168.6, 152.3,
137.9, 135.3, 132.8, 130.9, 128.9, 128.0, 127.8, 124.0, 123 .4,
121.4, 112.9, 100.0, 64.7, 55.3, 43.9, 39.6; HRMS (ESI) m/z:
[M + H]* Calcd for CzoH20N303 350.1499; Found 350.1490.

2-(2-methoxy-3-o0x0-2,3-dihydro-1H-imidazo[1,5-a]indol-1-
yl)-N-phenylacetamide (4ao0): The reaction mixture was sub-
jected directly to flash chromatography (Petroleum/EtOAC:
8:1—Petroleum/EtOAc: 4/1) on silica gel to provide the prod-
uct as a yellow amorphous solid (61.2 mg, yield 73%), mp
134-135 °C. 'H NMR (600 MHz, CDCl3) & 8.10 (s, 1H), 7.86
(d, 3 =8.0 Hz, 1H), 7.59 (d, J = 7.8 Hz, 2H), 7.49 (d, J = 7.8
Hz, 1H), 7.37-7.31 (m, 2H), 7.26-7.22 (m, 1H), 7.22-7.18 (m,
1H), 7.16-7.11 (m, 1H), 6.39 (s, 1H), 5.46-5.40 (m, 1H), 3.84
(s, 3H), 3.07 (dd, J = 15.0, 6.4 Hz, 1H), 2.72 (dd, J = 15.0, 7.5
Hz, 1H); BC{*H} NMR (151 MHz, CDCls) § 167.2, 152.4,
137.7, 135.2, 132.8, 130.8, 129.2, 124.8, 124.1, 1235, 121.5,
120.2, 112.8, 100.3, 64.7, 55.2, 40.5; HRMS (ESI) m/z: [M +
H]* Calcd for C19H1gN305 336.1343; Found 336.1338.
2-(2-methoxy-3-0x0-2,3-dihydro-1H-imidazo[1,5-a]indol-1-
yl)-N-methyl-N-phenylacetamide (4ap): The reaction mix-
ture was subjected directly to flash chromatography (Petrole-
um/EtOAcC: 8:1—Petroleum/EtOAc: 4/1) on silica gel to pro-
vide the product as a pale yellow amorphous solid (49.3 mg,
yield 56%), mp 125-126 °C. 'H NMR (600 MHz, CDCls) &
7.92 (d, J = 7.8 Hz, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.40-7.35
(m, 2H), 7.33-7.31 (m, 1H), 7.29-7.27 (m, 1H), 7.25-7.22 (m,
1H), 7.16-7.12 (m, 2H), 6.42 (d, J = 0.7 Hz, 1H), 5.46-5.39 (m,
1H), 3.87 (s, 3H), 3.35 (s, 3H), 2.84 (dd, J = 16.2, 6.0 Hz, 1H),
2.44 (dd, J = 16.2, 7.7 Hz, 1H); *C{*H} NMR (151 MHz,
CDCls) 6 169.0, 152.0, 143.2, 136.1, 132.8, 130.9, 130.2,
128.4,127.3,123.8, 123.3, 121.3, 112.9, 99.9, 64.5, 55.3, 37.8,
37.5; HRMS (ESI) m/z: [M + H]* Calcd for CuoH2N3O3
350.1499; Found 350.1492.
2-methoxy-1-(2-oxo-2-phenylethyl)-1H-imidazo[1,5-
alindol-3(2H)-one (4aq): The reaction mixture was subjected
directly to flash chromatography (Petroleum/EtOAcC:
16:1—Petroleum/EtOAc: 8/1) on silica gel to provide the
product as a yellow amorphous solid (40.7 mg, yield 51%),
mp 128-129 °C. 'H NMR (600 MHz, CDCls) § 8.02-7.94 (m,
3H), 7.63-7.59 (m, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.52-7.47 (m,
2H), 7.33-7.29 (m, 1H), 7.26-7.22 (m, 1H), 6.39 (s, 1H), 5.56-
5.50 (m, 1H), 3.95 (s, 3H), 3.84 (dd, J = 17.5, 5.2 Hz, 1H),
3.35 (dd, J = 17.5, 8.2 Hz, 1H); B¥C{*H} NMR (151 MHz,
CDCl3) & 196.5, 152.5, 136.3, 136.0, 133.9, 132.9, 130.9,
128.9, 128.2, 123.9, 123.4, 121.4, 112.9, 100.5, 64.8, 55.0,
41.8; HRMS (ESI) m/z: [M + H]+ Calcd for CigHi17N2O3
321.1234; Found 321.1226.

(E)-2-(2-tosylvinyl)-1H-indole (4ar'): The reaction mixture
was subjected directly to flash chromatography (Petrole-
um/EtOAC: 8:1—Petroleum/EtOAc: 4/1) on silica gel to pro-
vide the product as a white amorphous solid (18.5 mg, yield
25%), mp 161-162 °C. 'H NMR (600 MHz, DMSO-ds) &
11.55 (s, 1H), 7.80 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 15.3 Hz,
1H), 7.58 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 7.8 Hz, 2H), 7.36
(dd, J = 8.2, 0.7 Hz, 1H), 7.23 (d, J = 15.3 Hz, 1H), 7.22-7.18
(m, 1H), 7.05-6.99 (m, 2H), 2.40 (s, 3H); *C{*H} NMR (151
MHz, DMSO-ds) 6 144.2, 138.2, 138.1, 132.1, 131.7, 130.2,
127.7, 127.1, 125.1, 124.5, 121.4, 120.0, 111.6, 109.8, 21.1;
HRMS (ESI) m/z: [M + H]* Calcd for C17H1sNO,S 298.0896;
Found 298.0891.

phenyl  2-(9-(2-acetamidoethyl)-2,7-dimethoxy-3-0x0-2,3-
dihydro-1H-imidazo[1,5-a]indol-1-yl)acetate (5aa): The
reaction mixture was subjected directly to flash chromatog-
raphy (Petroleum/EtOAc: 2:1—Petroleum/EtOAc: 1/1) on
silica gel to provide the product as a pale yellow amorphous
solid (84.0 mg, yield 74%), mp 111-112 °C. *H NMR (600



MHz, DMSO-de) & 8.01 (t, J = 5.7 Hz, 1H), 7.68 (d, J = 8.8
Hz, 1H), 7.44-7.36 (m, 2H), 7.28-7.23 (m, 1H), 7.22 (d, J =
2.2 Hz, 1H), 7.04 (d, J = 7.9 Hz, 2H), 6.94 (dd, J = 8.8, 2.3 Hz,
1H), 5.49 (dd, J = 6.6, 3.9 Hz, 1H), 3.87 (s, 3H), 3.81 (s, 3H),
3.48 (dd, J = 16.6, 3.8 Hz, 1H), 3.34-3.26 (m, 2H), 3.24 (dd, J
= 16.7, 6.9 Hz, 1H), 2.91-2.80 (m, 2H), 1.80 (s, 3H); °C{'H}
NMR (151 MHz, DMSO-ds) 5 169.3, 168.4, 155.8, 151.5,
150.1, 133.9, 132.1, 129.6, 126.0, 124.7, 121.5, 112.5, 112.5,
110.2, 102.6, 64.1, 55.5, 54.2, 38.7, 35.5, 23.6, 22.6; HRMS
(ESI) m/z: [M + H]* Calcd for CasHsNsOs 452.1816; Found
452.1815.

Gram-scale preparation of compound 3aa. To a mixture of
laa (6 mmol, 1.0 equiv), [Cp*RhClI.], (5 mol%) and NaOAc
(6 mmol, 1.0 equiv) in a 100 mL round-bottom flask was add-
ed a solution of 2aa (7.2 mmol, 1.2 equiv) in acetone (40.0
mL). Then the flask was capped with septa, and the resulting
mixture was stirred at 60 °C in an oil bath for 24 h. After re-
moval of the solvent, the residue was purified by flash chro-
matography (Petroleum/EtOAC: 16:1—Petroleum/EtOAc: 8/1)
on silica gel to provide the desired product 3aa as a yellow
amorphous solid (1.75 g, yield 87%).

Control experiments. To a mixture of laa (0.25 mmol, 1.0
equiv), [Cp*RhCl;]2 (5 mol%), NaOAc (0.25 mmol, 1.0 equiv)
in a 25 mL Schlenk tube was added a solution of 2aa" (0.3
mmol, 1.2 equiv) in acetone (4.0 mL). Then the tube was
capped with septa, and the resulting mixture was stirred at 60
°C in an oil bath for 24 h. After removal of the solvent, the
residue was purified by flash chromatography (Petrole-
um/EtOAc: 16:1—Petroleum/EtOAc: 8/1) on silica gel to give
the product 3aa (7.9 mg, yield 9%) and 3aa" (41.9 mg, yield
64%).

(E)-phenyl 3-(1H-indol-2-yl)acrylate (3aa'): yellow amor-
phous solid (41.9 mg, yield 64%), mp 157-158 °C. 'H NMR
(600 MHz, DMSO-ds) 8 11.72 (s, 1H), 7.85 (d, J = 15.9 Hz,
1H), 7.60 (d, J = 8.0 Hz, 1H), 7.47-7.43 (m, 2H), 7.42 (d, J =
8.2 Hz, 1H), 7.31-7.27 (m, 1H), 7.25-7.21 (m, 3H), 7.08-7.02
(m, 1H), 7.01 (s, 1H), 6.76 (d, J = 15.9 Hz, 1H); “C{*H}
NMR (151 MHz, DMSO-dg) & 165.1, 150.6, 138.3, 136.7,
133.6, 129.5, 127.8, 125.8, 124.4, 121.9, 121.4, 119.9, 114.3,
111.6, 109.5; HRMS (ESI) m/z: [M + H]* Calcd for
C17H12NO, 264.1019; Found 264.1013.

Control experiments. To a mixture of laa (0.25 mmol, 1.0
equiv), [Cp*RhCl;]2 (5 mol%), NaOAc (0.25 mmol, 1.0 equiv)
in a 25 mL Schlenk tube was added a solution of 2aa" (0.3
mmol, 1.2 equiv) in acetone (4.0 mL). Then the tube was
capped with septa, and the resulting mixture was stirred at 60
°C in an oil bath for 24 h. After removal of the solvent, the
residue was purified by flash chromatography (Petrole-
um/EtOAcC: 16:1—Petroleum/EtOAc: 8/1) on silica gel to give
the product 3aa (6.0 mg, yield 7%) and 3aa" (8.1 mg, yield
10%).

(E)-phenyl 3-(N-methoxy-1H-indole-1-
carboxamido)acrylate (3aa'): yellow viscous oil (8.1 mg,
yield 10%). *H NMR (600 MHz, CDCls) & 8.44 (d, J = 13.7
Hz, 1H), 8.11 (d, J = 8.3 Hz, 1H), 7.79 (d, J = 3.8 Hz, 1H),
7.62 (d, J=7.7 Hz, 1H), 7.43-7.39 (m, 2H), 7.39-7.36 (m, 1H),
7.33-7.29 (m, 1H), 7.26-7.23 (m, 1H), 7.19-7.14 (m, 2H), 6.70
(d, J = 3.8 Hz, 1H), 5.89 (d, J = 13.7 Hz, 1H), 3.78 (s, 3H);
BC{*H} NMR (151 MHz, CDCl3) § 165.4, 150.8, 148.3, 138.9,
136.7, 130.0, 129.6, 126.1, 125.9, 124.9, 123.9, 121.8, 121.2,
115.5, 109.3, 98.8, 62.9; HRMS (ESI) m/z: [M + H]* Calcd
for C]_gH17N204 3371183, Found 337.1183.
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