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des Sciences du Cerveau de Toulouse (INSERM, CNRS, Université de Toulouse), Toulouse, France 
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Abstract  

Introduction 

Stroke causes different levels of impairment and the degree of recovery varies greatly between 

patients. The majority of recovery studies are biased towards patients with mild-to-moderate 

impairments, challenging a unified recovery process framework. Our aim was to develop a 

statistical framework to analyze recovery patterns in patients with severe and non-severe initial 

impairment and concurrently investigate whether they recovered differently. 

 

Methods 

We designed a Bayesian hierarchical model to estimate three-to-six-months upper limb Fugl-

Meyer(FM) scores after stroke. When focusing on the explanation of recovery patterns, we 

addressed confounds affecting previous recovery studies and considered patients with FM-initial-

scores<45 only. We systematically explored different FM-breakpoints between severe/non-severe 

patients(FM-initial=5–30). In model comparisons, we evaluated whether impairment-level-

specific recovery patterns indeed existed. Finally, we estimated the out-of-sample prediction 

performance for patients across the entire initial impairment range. 

 

Results 

Recovery data was assembled from eight patient cohorts(n=489). Data were best modelled by 

incorporating two subgroups(breakpoint: FM-initial=10). Both subgroups recovered a comparable 

constant amount, but with different proportional components: severely affected patients recovered 

more the smaller their impairment, while non-severely affected patients recovered more the larger 

their initial impairment. Three-to-six-months outcomes could be predicted with an R-

squared=63.5% (95%-confidence interval=51.4%–75.5%).  

 

Conclusions 

Our work highlights the benefit of simultaneously modelling recovery of severely-to-non-severely 

impaired patients and demonstrates both shared and distinct recovery patterns. Our findings 

provide evidence that the severe/non-severe subdivision in recovery modelling is not an artifact of 

previous confounds. The presented out-of-sample prediction performance may serve as benchmark 

to evaluate promising biomarkers of stroke recovery. 
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Introduction 

Almost half of stroke patients are confronted with permanent impairments, such as motor 

weakness.1 A comprehensive and more mechanistic understanding of recovery after stroke is thus 

indispensable to successfully guide clinical decision-making and neurorehabilitation treatments. 

This understanding may comprise two main dimensions: (i) the explanation and (ii) prediction of 

recovery after stroke.2,3,4,5,6 With respect to explanation, relevant questions are: what can we infer 

about motor recovery patterns at a patient group level? In what way is the initial impairment 

associated with the outcome? Is this association the same for severely and non-severely affected 

patients? With respect to prediction, we may wonder: How well can we forecast motor recovery 

for individual patients?  

 

 The dominant perspective in the field of upper limb motor recovery is that patients should 

be divided into severely and non-severely affected groups,7 when modelling stroke motor recovery 

in general and investigating biomarker and rehabilitative treatment development in particular.8,9 

Central to the emergence of this division between severe and non-severe groups has been the 

identification of a strong proportional (to lost) recovery pattern in the non-severe group: less 

severely affected stroke patients were repeatedly found to recover proportional to their initially 

lost motor function. This proportionality implied greater recovery, the more substantial the initial 

impairment10,11,12,13,14,15 and was termed “proportional recovery”.7 However, these studies in non-

severely affected patients were shown to considerably overestimate the explained variance, i.e., 

derive an excessively high estimate of how well motor recovery could be explained. Confounding 

effects, such as ceiling and mathematical coupling, led to the false belief that recovery could be 

predicted with very high certainty.16,17 De-confounding, especially by excluding patients with mild 

initial impairments and a high likelihood of achieving maximum performance at follow-up (“being 

at ceiling”), resulted in a substantially lower variance explained (e.g., 94% in 13 before and 32% 

in 18 after addressing confounds). Interestingly, a larger explained variance of 53% could be 

observed when deriving a single recovery pattern across all degrees of initial impairment, i.e., 

severely and non-severely affected patients combined, even after addressing confounds.18 The 

findings of lower explained variances for the original non-severe case in combination with the 

higher explained variance when combining severe and non-severe patients thus challenged the 

validity of the “proportional recovery” rule in regard to the explanation and prediction of stroke 
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recovery. These insights furthermore questioned the practice of treating severely and non-severely 

affected patients as distinct groups.  

 

It is the accurate prediction of recovery for new patients, who have just experienced a stroke 

and whose outcome is yet unknown, which is of most clinical value. Such prediction of outcomes 

could guide decision-making for clinicians, patients and their proxies.19 In particular, accurate 

predictions could allow clinicians to stratify patients for additional interventions based on their 

predicted potential for neurobiological recovery and could even help to demonstrate benefits of 

novel rehabilitative therapies. Here, effective treatments would, for example, consistently lead to 

a higher recovery than predicted.9,20,21 Importantly, the predictive capacity of the initial upper limb 

impairment has mostly been tested in-sample, i.e., outcome models were fitted and evaluated on 

the same sample of patients.7 As a result, effect sizes, such as the explained variance, were likely 

too optimistic.3 In addition, this (in-sample) overestimation was probably compounded by ceiling 

and mathematical coupling confounds as mentioned earlier. In contrast, an out-of-sample estimate, 

based on a strict separation of patients used for fitting and performance evaluation, combined with 

procedures to mitigate ceiling and mathematical coupling, will capture the prediction performance 

for previously unseen patients more veridically as all of these factors can otherwise lead to inflated 

estimates. 

 

 In the present study, we aimed to enhance both the explanation as well as the out-of-sample 

prediction of motor recovery after severe and non-severe stroke. Key objectives of this paper were 

firstly (i) the assessment of the validity of the severe versus non-severe separation, after carefully 

addressing ceiling effects to mitigate the risk of any biases. That is, we evaluated whether the level 

of initial impairment substantially influenced the inferred recovery pattern or whether it would be 

the same no matter the initial impairment. To compensate for the focus on moderate-to-mildly 

affected patients in numerous previous recovery studies,10,11,12,13,14,15 we additionally analyzed 

recovery patterns in severely affected patients. We hypothesized that we would identify 

impairment-specific recovery patterns, indicating biologically distinct cerebral processes after 

acute ischemic stroke for severe or non-severe impairment. Secondly, with the objective to 

progress precision neurology and individual patient-level outcome predictions, we (ii) shifted the 

focus from interpreting recovery patterns to obtaining an out-of-sample prediction performance. 
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To enhance the generalizability of our results, we assembled the largest stroke recovery data set, 

comprising information on the upper limb motor recovery of 489 stroke patients from eight 

individual studies. We chose a modelling framework that had the capacity to reflect potential 

similarities and differences between studies, as well as severely and non-severely affected patients. 

Specifically, we employed Bayesian hierarchical models22 to model long-term motor outcome 

post-stroke. 

 

 

Material & Methods 

Participants 

Analyses presented here rely on recovery data of 489 stroke patients originating from eight 

individual studies (Table 1, Figure 1).10,11,12,14,15,23,24,25  The inclusion process included a literature 

research based on keywords “poststroke”, “recovery”, “motor function”, “longitudinal”, “Fugl-

Meyer” on PubMed as well as referenced literature. Further criteria comprised: > 20 stroke 

patients, initial and follow-up FM Score of the upper limb; initial: acute and early subacute phase 

post-stroke, follow-up: 3-6 months post-stroke. Corresponding authors of eleven resulting studies 

were contacted, featuring longitudinal data on Fugl-Meyer (FM) scale-based motor function post-

stroke were contacted. Three author teams15,16,23 were able to share their data (c.f., supplementary 

materials for further details). Furthermore, individual-level data from 10 was openly available, and 

data from 24 became available after the initial literature search. Recovery data comprised 

individual-level Fugl-Meyer scores measuring upper limb motor impairment at two time instants: 

once in the early subacute stage, and once in the late subacute stage,20 three to six months after the 

cerebrovascular event (FM-UL: 0: No upper limb movement including reflexes, 66: maximal 

score, c.f., supplementary materials). The majority of included patients were recruited as part of 

studies that considered first-ever stroke patients only.26,12,13,14 Chollet et al.23 and Guggisberg et 

al.15 excluded patients with prior stroke in case of residual motor symptoms. Subjects provided 

informed consent and ethics approvals had in general been granted for all of the individual primary 

studies. The FLAME study23 had been approved by the Toulouse Ethics Committee, the SMaHRT 

study24 had been approved by the Institutional Review Board at Partners Healthcare, the study by 

Guggisberg and colleagues15 had been approved by the Geneva Ethics Committee. 
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 Study 1 

Zarahn 

et al. 

2011 

Study 2 

Byblow 

et al. 

2015 

Study 

3 

Feng et 

al. 2015 

Study 4 

Winters 

et al. 

2015 

Study 

5 

Buch et 

al. 2016 

Study 6 

Guggisberg 

et al. 2017 

Study 7 

Chollet 

et al. 

2011 

Control 

group 

Study 

8 

Lin et 

al. 2019 

Total 

number 

of 

subjects 

30 44 57 166 25 63 56 48 

Mean 

age in 

years 

(SD)  

60.3 

(9.9) 

67 

(range 

31 – 97) 

58.8 

(14.0) 

Fitters: 

66.1 

(14.1)  

Non-

Fitters: 

67.3 

(14.1)  

61 63.7 (12.4) 62.9 

(13.4) 

64.8 

(1.7) 

Sex 70 % 

male 

38 % 

male 

61 % 

male 

Fitters: 

49 % 

male 

Non-

Fitters: 

42 % 

male 

56 % 

male 

57 % male 59 % 

male 

52 % 

male 

Mean 

FM-

initial 

score 

(SD) 

37.8 

(22.0) 

26.4 

(19.0) 

17.5 

(17.9) 

25.6 

(21.8) 

37.1 

(23.1) 

31.9 (26.9) 4.44 

(4.0) 

26.7 

(24.1) 

Initial 

time 

point 

First ~2 

days 

Within 

first 2 

weeks 

First 2-7 

days 

  

Within 

first 72 

hours 

First 2 

weeks 

Within first 

2 to 4 weeks 

Within 

first 5 to 

10 days 

First ~4 

days 

Mean 

FM-end 

50.1 

(17.8) 

21.4 

(21.4) 

31.7 

(23.6) 

46.8 

(21.9) 

52.0 

(20.3) 

43.6 (24.6) 16.2 

(16.6) 

43.2 

(24.7) 
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score 

(SD) 

End 

time 

point 

~3 

months 

~3 

months 

~3 

months  

~6 

months 

~3 

months 

~3 months 90 days 

after 

initial 

~3 

months 

Table 1. Descriptive statistics of each of the eight studies included. Patient age and sex were 

extracted as summary statistics from original publications, resulting in minor differences in the 

specification of uncertainty and fitter/non-fitter distinction. The stated number of patients, as well 

as mean FM-initial and FM-end scores may differ slightly from the information stated in the 

original publications due to our data extraction technique (c.f., supplementary materials).  

 

 

 

Figure 1. Motor recovery of 489 patients across the entire range of initial impairments. Plots display distributions 

of initial (x-axis) and end (y-axis) upper limb Fugl-Meyer Scores for all individual studies. While the respective study 

is highlighted in each plot, all other studies are shown in transparent colors for comparison. Altogether, we included 

eight studies comprising data on 489 patients in total. 
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Impairment-level-aware modelling of motor stroke outcome 

To reduce confounding ceiling effects and facilitate the identification of more accurate 

recovery patterns, we employed the FM-initial cut-off established in 18 and considered all patients 

with a moderate to severe initial impairment only (i.e., FM-Initial<45, n=359). We additionally 

refrained from fitting the classic change models, i.e., linking initial impairment to recovery (FM-

end – FM-initial), to avoid effects of mathematical coupling (c.f., 16,17 for in depth discussions). 

Instead, we predicted FM-end scores directly from FM-initial scores. Altogether, we constructed 

multi-level Bayesian hierarchical linear regression models with varying intercepts and slopes.27 

This hierarchical structure could address both the differences and similarities between the eight 

individual studies, as well as two patient groups (severely and non-severely affected patients). 

Thus, on the first level, we estimated full probability distributions of intercept and slope for 

severely and non-severely affected patients in each of the eight included studies. Therefore, we 

obtained 2x8 individual sets of parameters (two severity groups within eight different studies). On 

the intermediate level, we estimated two pairs of intercepts and slopes, this time characterizing 

recovery pattern from only severely and non-severely affected patients. Information originating 

from the various studies was thus pooled. The priors of severely and non-severely affected patients 

were eventually merged through joint hyperpriors for intercepts and slopes to complement the 

hierarchical model structure (c.f. Figure 2B for precise model specifications).  
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Figure 2. Bayesian hierarchical model specifications. A. Impairment-level-unaware Bayesian model. We here 

modelled eight pairs of intercept and slope priors, thus one pair each per integrated study. These individual priors were 

linked through joint hyperpriors. B. Impairment-level-aware Bayesian models. In contrast to the impairment-level-

unaware model, we here modelled 2*8=16 pairs of intercept and slope priors, i.e., one pair for each severity group 

(severe vs. non-severe) for each of the eight different studies. These priors were linked to severity-specific hyperpriors, 

i.e., one pair of intercepts and slopes for each severity subgroup, which were eventually linked to overall hyperpriors 

for intercepts and slopes.  

 

While an FM-Initial=10 has been chosen to differentiate between severe/non-severe 

patients in previous studies,12 we here tested six breakpoints from FM-Initial=5 to FM-Initial=30 

in steps of five to create patient subgroups. This approach resulted in six individual models that 

were fitted to the data. Additionally, we implemented an “impairment-level-unaware” model, 

which did not differentiate between the two groups of severely and non-severely affected patients 

(c.f., Figure 2A). We performed Bayesian model comparisons to evaluate whether recovery 

pattern differed between severely and non-severely affected patients or whether they were the same 

for stroke patients with any degree of initial impairment. Furthermore, we also assessed which 

breakpoint was the most suitable one to assign patients to severe/non-severe groups.  
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Notably, we deliberately focused on investigating whether recovery data was best 

explained by only one or two unique recovery patterns – especially once previous confounds such 

as ceiling effects and mathematical coupling were addressed. The existence of one versus two 

recovery patterns was the research question directly emerging from previous work that primarily 

separated patients into severely and less severely affected patients (i.e., non-fitter vs. fitter).7,10,12 

However, we neither tested the existence of more than two subgroups, nor whether the assumption 

of more than two subgroups enhanced our prediction performance further (c.f., our Potential 

limitations for further considerations).  

Analyses were conducted in a nested cross-validation framework. For the outer loop, we 

first applied a leave-one-study-out scheme. Thus, we iteratively fitted the six impairment-level-

aware models and the one impairment-level-unaware model in seven out of eight studies and 

performed a Bayesian model comparison to adjudicate between those seven models. The model 

comparison itself was based on leave-one-patient-out-cross-validation (LOOCV), which 

represented the inner loop.28 The model that was assigned the highest weight in each of the eight 

model comparisons was lastly applied to the left-out, eighth study in each outer loop to obtain a 

reliable out-of-sample effect size estimate (here: R-squared). These estimates were averaged 

across all eight leave-one-study-out loops. It is important to note that the likelihood of overfitting 

was countered by employing this nested cross-validation scheme.29  

As our focus was on the interpretation of recovery pattern in this analysis, we also re-fitted 

the impairment-level-unaware and the model with the highest assigned average weight to all eight 

studies at once and interpreted resulting posteriors of intercepts and slopes with respect to 

proportional to lost, proportional to spared and constant recovery (c.f. supplementary 

materials). To interpret results in this fashion, we transformed the fitted linear model that linked 

FM-initial with FM-end, to the previously most frequently used change form, linking FM-initial 

or Potential (66 – FM-initial) to recovery (FM-end – FM-initial) (c.f., supplementary materials). 

 

Prediction of motor stroke outcome 

In contrast to the first two analyses, we were here exclusively interested in the out-of-

sample prediction and not in the extraction of the veridical recovery pattern, or quantification of 

the effect-size uncontaminated by ceiling or mathematical coupling (c.f., Limitations in the 

Discussion section for elaboration on this issue). We refrained from applying an upper boundary 
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on FM-Initial, instead including all patients (n=458), even those that were close to or at ceiling. 

We, once again, fitted hierarchical Bayesian linear regression models in a nested cross-validation 

fashion. We determined the optimal FM-initial breakpoint between groups of severely and non-

severely affected patients in Bayesian model comparisons within inner cross-validation loops. The 

model ranked first in the model comparison was then fitted to the study left out in the outer cross-

validation loop. The performance measure obtained was the averaged R-squared value across all 

eight left-out studies.  

For reasons of comparison, we also determined the out-of-sample (out-of-study) 

performance for the “impairment-level-unaware” model that did not include a hierarchical level 

for severe/non-severe patients. Lastly, we computed the out-of-sample performance for the group 

often called “fitters”,7 i.e., we fitted our Bayesian model to all patients with an FM-initial score of 

more than 10 and calculated out-of-sample R-squared effect sizes. We excluded the control group 

participants by Chollet et al. 2011 in the “fitters” only analysis, since there were only three patients 

in the range of FM-initial>10.  

 

Inference and statistical analysis  

Samples from the posterior distributions of the model parameters were drawn by the No 

U-Turn Sampler (NUTS, draws=2000, tuning=1000).30 The performance measure we used was 

the out-of-sample R-squared value.  

 

Data availability 

Data is available from the authors on reasonable request. Jupyter notebook scripts (python 

3.7, predominantly pymc3)31 will be made available: 

https://github.com/AnnaBonkhoff/to_be_added_upon_acceptance. 
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Results  

 
Impairment-level-aware modelling of motor stroke outcome 

 The impairment-level-aware Bayesian model that differentiated patient subgroups (n=359 

in total) based on an FM-initial=10, was assigned the overall highest model weight in the eight 

LOOCV-based model comparisons (average weight=0.56, 95% confidence interval (CI)=0.44 – 

0.68). This model was furthermore ranked first in six out of eight LOOCV-based model 

comparisons. Additionally, if not ranked first, the estimate from the best performing model was 

always within the confidence interval of the difference of deviances (Figure 3). Taking all of these 

results together, FM-initial=10 was the best breakpoint to model stroke outcome.  
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Figure 3. Bayesian model comparisons testing various initial Fugl-Meyer scale breakpoints: The model 

differentiating patients based on an initial Fugl-Meyer score of 10 was chosen as the most suitable model in the 

majority of cases and was also assigned the highest average model weight across all eight model comparisons. 

Model comparisons themselves were based on leave-one-out-cross-validation. The model that did not differentiate 

between patient groups with severe or non-severe initial impairment, but fitted a single regression line across all levels 

of impairment, consistently performed the worst. 

 

Second and third highest ranked models were the ones relying on FM-initial breakpoints 

of 15 and 20, achieving average model weights of 0.19 (95%CI=0.12 – 0.26) and 0.16 

(95%CI=0.08 – 0.24), respectively. The model that consistently performed the worst, i.e., being 

ranked last in all eight model comparisons, was the impairment-level-unaware Bayesian model. 

The cross-validated out-of-sample effect size, estimated for the highest ranked models in the left-

out studies, was R-squared=47.4% (95%-CI=34.6% – 60.2%). Taken together, models that took 

the level of initial impairment into account, specifically with a breakpoint of FM-initial=10, 

performed best for modelling upper limb motor outcome after stroke across all eight studies. 

Overall, there were 214 patients with FM-initial scores below and 145 above a score of 10.  

 

We re-fitted the impairment-level-unaware Bayesian model to all eight studies at once 

(Figure 4A) and could infer a combination of constant and proportional to spared recovery. 

Importantly, the interpretation with respect to constant and proportional recovery was possible 

only after transforming all formulations to their change form, i.e., exchanging FM-end as outcome 

with the change FM-end – FM-initial (c.f., supplementary materials for details). Nonetheless, in 

view of the model comparison results, the assumption of a fixed recovery pattern across patients 

of all initial impairment levels did not lead to competitive out-of-sample performance of motor 

outcome prediction. When instead interpreting the parameters of the winning model, i.e., the 

impairment-level-aware model with the FM-initial=10 breakpoint, we observed similarities, yet 

also marked differences in recovery patterns for patients with FM-initial scores below ten and 

those with scores above ten. Both patient groups were characterized by comparable amounts of 

constant recovery (8-9 points on the FM-scale). In patients with the highest degree of initial 

impairment (FM-initial≤10), this constant recovery was however combined with a proportional 

to spared function recovery component (Figure 4B). Among these severely impaired patients, this 

pattern implied that reacquisition of function was greater the more function was preserved in the 
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first place. In contrast, patients with a more moderate initial impairment (FM-initial>10) featured 

a combination of constant and proportional to lost function recovery (c.f. supplementary material 

for explicit transformations to the change formulation). In their case, recovery was greater the 

higher their initial impairment (Figure 4B). Of note, we addressed potential biases, such as ceiling 

effects and mathematical coupling, by modelling FM-end instead of a change score and only 

considering those subjects with FM-initial<45.  
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Figure 4. Motor stroke outcome is best explained by initial-impairment-dependent recovery patterns. A. 

Impairment-level-unaware model. The interpretation of intercepts and slopes of this model led to the conclusion of 

a combination of constant and proportional to spared recovery for the entirety of patients. However, this model was 

consistently outperformed by all impairment-level-aware models, indicating the benefit of assuming two subgroups 

within the entire patient cohort. B. Impairment-level-aware model employing a breakpoint of FM-initial=10 to 

differentiate between severely and non-severely affected patients. We here observed two distinct recovery patterns: 



 18 

The patient group of initially severely impaired patients (FM-initial≤10, dark-blue) recovered according to a 

combination of constant and proportional to spared recovery pattern. However, the group with initial FM-scores 

above ten (light-blue) featured a combination of constant and proportional to lost recovery (c.f., supplementary 

material for transformations to the change formulation and clarification of combinations of recovery patterns).  

 

In both A and B, the upper row illustrates the individual posterior distributions of intercepts and slopes, the middle 

row presents the joint density of both parameters, intercepts and slopes, and the bottom row highlights the actual fitted 

linear regression line (thick line: mean, thinner lines: 500 randomly sampled marginal posterior parameter fits). 

Individual patient data points, color-coded for the study of origin and slightly jittered on the vertical axis to reduce 

overlap, are shown in the background.  

 

Prediction of motor outcome after stroke 

 Considered models (six impairment-level-aware models: FM-initial breakpoints: 5, 10, 15, 

20, 25, 30; impairment-level-unaware model) were first fit to seven out of the eight studies, without 

excluding patients with mild initial impairments. Hence, we did not account for ceiling effects. 

The ensuing Bayesian model comparisons ranked the impairment-level-aware models with 

breakpoints FM-initial=15 five times and FM-initial=10 three times as the best performing ones. 

The highest ranked model after each of these model comparisons was then applied to the left-out 

eighth study to obtain an out-of-sample effect size. By these means, we could predict the individual 

Fugl-Meyer score in the chronic phase in the entire group of stroke patients (FM-initial=0-66) with 

an out-of-sample explained variance of 63.5% (R-squared, 95%CI: 51.4% - 75.5%).  

 In contrast, when instead exclusively focusing on the impairment-level-unaware model, 

the out-of-sample performance to predict the FM-end score of all patients across the entire 

impairment range amounted to only 32.1% explained variance (R-squared, 95%-CI: 15.2% - 49%). 

Since 95%-confidence intervals did not overlap, the impairment-level-aware model significantly 

outperformed the impairment-level-unaware model. When considering the group of fitters (FM-

initial>10) only and fitting an impairment-level-unaware model (i.e., the typically used model, 

assuming the same recovery pattern for all mildly to moderately affected patients),7 we obtained 

an R-squared out-of-sample prediction performance of 28.4% (95%-CI: 19.1% - 37.7%). These 

estimates have to be regarded with some caution, since the decrease in variability due to ceiling 

can underly an overestimation of the R-squared estimate of explained variance (c.f., Limitations). 
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Discussion  

 
Motor recovery of moderately-to-severely affected patients was best modelled by assuming 

two distinct subgroups of patients. When simultaneously modelling and interpreting recovery 

trajectories for these severely and non-severely affected stroke patients, we found clear similarities 

and differences in recovery patterns. Both patient groups recovered a comparable constant amount 

in FM performance of their affected upper limb. However, severely affected patients (FM-

initial≤10) additionally exhibited a proportional to spared component and non-severely affected 

patients (FM-initial>10) featured an additional proportional to lost recovery component. The 

explained variance of motor outcomes in unseen data was 49% after adjusting for confounds, such 

as ceiling effects. In further analyses, we predicted chronic motor impairment for patients across 

the entire spectrum of initial impairment and thus accepted the probable presence of ceiling effects 

due to the inclusion of patients with mild initial impairments. However, we could here generate 

predictions for all patients. We observed an out-of-sample prediction performance of an explained 

variance of 64%. These presented out-of-sample prediction performances may serve as 

benchmarks to evaluate additional, novel biomarkers of stroke recovery.  

 

Interpretation of motor recovery pattern  

 
Previous studies on recovery pattern had derived a “70% proportional recovery” for non-

severely affected patients.10,11,12,13,14,15 Nonetheless, these studies were markedly affected by 

confounds, such as ceiling effects and mathematical coupling.16,17 Addressing these confounds in 

a prior study led to a substantial decrease in explained variance for the proportional recovery 

pattern in non-severely affected patients to only 32%.18 In contrast, this study also showed that 

concurrently modelling severely and non-severely affected patients resulted in an (in-sample) 

explained variance of 53%.18 This increase indicated a benefit of extracting recovery patterns 

across all degrees of initial impairments, instead of only non-severe stroke patients, which were 

the primary focus in previous studies.10,11,12,13,14,15 However, this finding conflicted with the long-

standing notion of distinctly varying recoveries for severely and non-severely affected stroke 

patients in view of assumed differences in biological starting positions.9,19 In fact, our current 

analysis suggests that it is precisely the combination of both ideas: simultaneous modelling of 

severe and non-severe stroke patients, while allowing for impairment-level-dependent recovery 
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patterns, provides the best fit to upper limb motor impairment recovery data. The obtained out-of-

sample R-squared of 49% in the current severe-non-severe analysis surpasses the reported 32% 

for non-severe patients.18 Also, Bayesian model comparisons consistently suggested separate 

recovery patterns for severely and non-severely affected patients. Of note, we considered only 

moderately-to-severely affected patients in these analyses (FM<45) to ensure that subgroups did 

not artificially emerge due to ceiling effects and paid great attention to additionally avoid 

confounds due to mathematical coupling. With respect to the nature of recovery patterns after 

addressing these confounds affecting previous studies: severely and non-severely affected patients 

were both characterized by a similar constant amount in FM recovery, which we here determined 

to be ~8-9 points. However, they differed in the additional proportional recovery contribution. A 

proportional to spared component to recovery in severely affected patients was contrasted with a 

proportional to lost component to recovery in non-severely affected patients. Proportional to 

spared recovery implied a greater recovery in case of more preserved original motor function. 

Conceivably, for patients with initially severe motor impairments, any residual abilities to move 

limbs could facilitate the reacquisition of further motor abilities. The opposite relationship was 

true for proportional to lost, in which a patient recovered more, the greater the initial impairment. 

For patients with moderate motor impairments, neural injury is likely to be milder. Likewise, 

functional MRI data indicated categorical differences in cerebral organization after severe and 

non-severe stroke, which furthermore suggests the existence of impairment-specific recovery 

processes.32 The varying types of proportional recovery that our analyses uncover (i.e. 

proportional to spared and proportional to lost) remain to be explained; we speculate that they 

might reflect the action of biologically distinct recovery processes. Our results would also be in 

line with the assumption that impairment-adapted neurorehabilitation intervention strategies may 

be most effective: an individual with severe motor impairment may benefit from a different 

neurorehabilitation strategy than an individual with more moderate impairment. Our present work 

does not allow for direct conclusions on which specific kinds of neurorehabilitation treatment may 

be more fruitful for the more or less severe initial impairment category. Rather, our findings 

generally motivate the inclusion of both more and less severely affected patients in rehabilitation 

trials and, importantly, an initial impairment-specific analysis. We would hypothesize that some 

specific (e.g., pharmaceutical) therapies could have a substantially stronger effect in only severe 

or only non-severe stroke, perhaps improving recovery beyond that predicted by the proportional 
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recovery rule. In other words, initial impairment severity may well confound the measurement of 

therapy effects. Importantly, our insights were gleaned from analyses that enabled and exploited 

the inclusion of severely affected patients, which could eventually decrease the excess of 

conducted research on only non-severely affected patients.33  

Prediction 

Accurate models and predictions of recovery promise both better information for patients 

to plan for the future, and more efficient trials of therapies that might accelerate recovery.9 

However, to date, FM-based recovery studies mainly report in-sample effect sizes.10,11,13 Thus, 

models were fitted and evaluated by considering exactly the same sample of patients. Effect sizes 

originating from these evaluations are likely to be too high and estimates cannot be taken as faithful 

predictions for unseen, new patients.3 A recent study of recovery after stroke represents an 

important exception, as cross-validated, i.e., out-of-sample, performance estimates were 

computed.34 This study deviates from the classic recovery work7 by incorporating not only a single 

initial motor impairment measurement, but several measurements, i.e. a time series, over the first 

few weeks to predict the final motor outcome. The consideration of multiple baseline scores can 

conceivably augment the overall prediction performance by increasing the available information 

per patient. However, we here chose to rely on an approach that is closer to the original 

proportional recovery studies7 and likely clinically more feasible by requiring only one initial 

motor impairment score. The prediction models presented here relied on only a single, first FM 

measurement as input and did not necessitate repeated examinations (other than to obtain the final 

FM score). 

Altogether, we present two such prediction models and their out-of-sample performance 

estimates of long-term motor outcomes. On the one hand, we excluded mildly affected patients to 

reduce the confounding impact of ceiling. We therefore built prediction models in a subset of the 

entire data sample. We obtained an out-of-sample explained variance of 49%. On the other hand, 

we accepted the presence of confounding effects and repeated these analyses in the entire dataset 

to generate an out-of-sample estimate for all patients across the entire range of initial impairments. 

Explained variance was at 64%. Our cross-validation scheme to obtain out-of-sample estimates of 

explained variance addressed potential inflation due to models overfitting to data in both cases. 

However, the increase in explained variance, from 49% in the first to 64% in the second prediction 
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model, may be attributed, at least partially, to ceiling-induced inflation.18,35 Eventually, both of our 

performance estimates may represent helpful baselines to which models employing novel 

biomarkers can be compared.  

Potential limitations  

A first limitation can be seen in the prior decision to only test two subgroups of stroke 

patients, rather than to extend this evaluation to an arbitrary number of patient subgroups or even 

estimate the number of subgroups from the data themselves. We, however, opted for two 

impairment-severity defined groups, instead of three or more, for predominantly two reasons: 

Firstly, most of the previous literature differentiates between two groups of fitters and non-fitters 

(i.e., non-severely and severely affected patients).7,10,12 Additionally, electrophysiological 

evaluations of corticospinal tract integrity suggest precisely two recovery-relevant subgroups of 

transcranial magnetic stimulation positive and negative patients.36 Hence, our resulting primary 

aim was to explicitly test whether we could find more than one recovery pattern – even after 

addressing confounds affecting the majority of previous recovery studies – and if so, what 

breakpoint between subgroups explained our recovery data the best. On the other hand, 

investigating whether our recovery data could be explained still better by assuming more than 

those two subgroups was beyond the scope of the current work. Future work might aim to combine 

the mixture model approach, as recently presented in studies by van der Vliet and colleagues, as 

well as Selles and colleagues,34,37 and our hierarchical linear regression approach, as presented 

here. In this way, it may become possible to both automatically estimate the optimal number of 

subgroups34,37 and to interpret recovery patterns with respect to constant and proportional recovery 

contributions. Another limitation can be seen in the decision to explicitly focus on the FM scale, 

an impairment-based scale of motor synergies. While the FM scale is a clinically frequently 

employed and thus impactful scale, it has to be additionally investigated whether results generalize 

to further measures of motor function, such as the Action Research Arm, Box and Block or Wolf 

Motor Function tests. Performance in several of these tests may even be combined to more 

faithfully capture the full range of individual patients’ motor abilities and decrease ceiling effects. 

Such a strategy was already shown to be effective in the case of aphasia,38 where some clinical 

tests appear to be affected by ceiling effects as well.39 Similarly, it may be beneficial to extend the 

granularity and dynamic range of measures by adopting dynamic staircase methodologies. Given 
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that we considered continuous outcome scores in a linear regression scenario, our results are also 

not immediately comparable to classification analyses, that have, for example, tested the capacity 

of non-linear algorithms.36 The move away from linearity assumptions is also important, since, as 

is evident in scatter plots of FM-initial to FM-end, the data being fit is heteroscedastic.7 Therefore, 

future studies are warranted to directly contrast linear and non-linear modelling approaches. We 

chose to model FM-end instead of the more classic Change, FM-end – FM-initial, as our outcome 

variable. While the intercept and slope coefficients, as estimated in our linear regression 

framework, cannot directly be interpreted in the framework of proportional recovery, 

transformation to the Change formula is straight-forward and possible without any loss of 

information (c.f., supplementary materials). Lastly, while we here optimized the dataset size to 

increase the generalizability of our findings, the heterogeneity of our patient collective – that 

combines eight different studies that featured endpoints between three and six months and thus 

different time frames to recover – may be considered a limitation of the current study. It may thus 

be a future aim to conceptualize large-scale recovery studies that harmonize sample characteristics 

and data acquisition.   

Conclusion 

We here present a novel Bayesian hierarchical modelling framework for concurrently 

predicting motor outcome in severely and non-severely affected stroke patients. This approach of 

including both severely and non-severely affected patients in the same modelling framework can 

potentially help to decrease the current excess of research conducted only on non-severely affected 

patients by motivating further similar modelling analyses.33 All in all, we here i) inferred that there 

really are two distinct recovery patterns for stroke patients with different initial motor impairment 

severity levels. Thus, the frequent practice of viewing severely and non-severely impaired patients 

as distinct groups with individual recovery trajectories is supported, even when previous 

confounds are addressed. We furthermore ii) established out-of-sample motor outcome prediction 

for unseen ischemic stroke patients for the simplest case of recovery models relying on only one 

initial FM-score.  
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