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Abstract

When an explosive burns, gaseous products are formed as a result. The interaction

of the burning solid and gas is not well understood. More specifically, the process

of the gaseous product heating the explosive is yet to be explored in detail. The

present work does much to fill that gap using mathematical modelling: this aims to

track the temperature profile in the explosive and the response of the gas.

This work begins by modelling single step reactions using the simple Arrhenius

model. An alternative asymptotic approach is also employed. There is close agree-

ment between results from the full reaction-diffusion problem and the asymptotic

problem. The model is then extended to include three step reaction kinetics, where

we again apply asymptotic analysis. Further work includes of gas being incorpo-

rated in the existing model with temperature and pressure distributions considered.

We also consider the effects of the gas on the solid explosive temperature. This

is achieved by first allowing the gas to heat the boundaries of the solid. Later we

incorporate internal heating of the solid by the gas into the model. An asymptotic

approach is also considered here and successfully captures the behaviours of inter-

est. Finally, we address a second heating method; mechanical stimulus provided by

a wedge-like squeezing of an explosive material. Here sensitive effects within thin

shear layers are predicted. The study finds major events take place in thin boundary

layers, a highlight which holds for mechanical as well as thermal events.



Impact Statement

The impact of the research undertaken in this thesis is intended to address human

safety concerns, in particular the storage and safe handling of explosives. High

Explosives (HEs) store energy which can have disastrous effects if released acci-

dentally. Thus safe handling and storage of HEs is a matter of utmost concern.

When a HE is subjected to significant heating it reacts, i.e. it burns to form gaseous

products. The interaction of the burning solid and gaseous products formed is not

well understood. More specifically, the process of the gaseous product heating ex-

plosives is yet to be explored in detail. The present work, in collaboration with the

Atomic Weapons Establishment (AWE), does much to fill that gap using mathe-

matical modelling: this aims to track the temperature and volume profiles, as well

as pressure distributions in the explosive and the gas response. HEs provide a low

mass source of massive energy release, but this stored energy can pose a major haz-

ard and even cause disaster if accidentally released. There is a long and sad history

of serious accidents that have resulted from both mechanical and thermal abnormal

and unexpected loadings of diverse severities. Therefore, safety is paramount in the

handling and storage of explosives. Understanding the circumstances in which an

explosive can ignite, burn and detonate is essential if we are to predict the severity

of likely hazards and understand the associated risks. Understanding the time to

detonation of an explosive is essential if we are to avoid disasters from occurring.

The work presented in this thesis successfully tracks the heat flow within an explo-

sive material over time. One of the most significant contributions of the research

outlined herein, however, is a model which aims to fill the gap in understanding of

solid-gas interaction by considering the heating effects of the gas within the solid
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explosive. This model tracks the temperatures of both the solid and gas and allows

for feedback and internal heating of the solid by the gas which is produced.

Another significant contribution of the work presented here is an alternative

approach to solving these otherwise numerically difficult and expensive problems,

using asymptotic methods. This methodology allows us to solve problems which

would otherwise be extremely computationally expensive. The method also works

successfully on the physical parameters supplied by AWE which standard numerical

methods did not handle well due to the extreme nature of the physical parameters.
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(purple dashed), ρ̄G (green dashed) and T̄G (red) respectively. Here

we have used the same parameters as in figure 8.22 with n = 0.0342. 152

8.24 Solutions of equations (8.60)–(8.67) for α . Here we have used

the same parameters as in figure 8.23 with T̄G(0) = 2,0.8,0.6 and

ū(0) = 1,0.4,0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.25 Solutions of equations (8.60)–(8.62) for ū (black), α (blue) and T̄G
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figure 8.25 as well as c1 = 0.01 and c1 = 0.02. . . . . . . . . . . . . 154

9.1 Numerical solutions of equations (9.1)–(9.5) with mild parameters.

Here λH = 1, TG = 10 and we have zoomed in on the behaviour of

the pressure at early time t in figure 9.1a. Figure 9.1b focuses on

behaviour at boundary for the final values of u and α . . . . . . . . . 157

9.2 Numerical solutions of equations (9.6)–(9.11) with mild parame-

ters. Here λH = 1 and TG(0) = 10. . . . . . . . . . . . . . . . . . . 159



List of Figures 19

9.3 Numerical solutions of equations (9.12)–(9.19) with mild parame-

ters given in table 8.1. . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.4 Numerical solutions of equations (9.12)–(9.19) with physical pa-

rameters given in table 9.1. . . . . . . . . . . . . . . . . . . . . . . 162

10.1 Sketch of the squeezed wedge configuration with material (fluid)

contained between moving and fixed walls able to flow in x and y

directions. The wedge angle is of order δ . Sketch is not to scale. . . 170

10.2 Solution structure for slender cases. JH is region of either classical

source flow or a void. PRESENT is region of current study espe-

cially for large X downstream where UWL (upper wall layer), core

and LWL (lower wall layer) emerge with thickness of order X−1, X ,

1 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10.3 Solution g,g′,g′′ of equation (10.14) in the lower wall layer (LWL). 172

10.4 Solution θ of Equation (10.27) for varying values of Pr. . . . . . . 178

10.5 Solutions θ2,θ
′
2 of equation (10.33) for Pr = 0.7. . . . . . . . . . . 180



List of Tables

2.1 Physical parameters used in model. . . . . . . . . . . . . . . . . . . 32

4.1 Additional parameters used in ODTX model for HMX explosive

assuming multi-step kinetics as in [1], converted into SI units. . . . 58

4.2 Mild parameters used in analysis of chapter 4, 4.1. . . . . . . . . . . 60

5.1 Initial conditions used in discrete scheme analysis. Values supplied

by AWE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.1 Mild parameters used in model. . . . . . . . . . . . . . . . . . . . . 119

8.2 Range of λH values and their corresponding λ̄ values for otherwise

mild parameters (ρS = 1800, Cv = 1255 and A = 200). . . . . . . . 125

9.1 Physical parameters used in model. . . . . . . . . . . . . . . . . . . 161



Chapter 1

Introduction

1.1 Motivation & Literature Review

When a fuel of some sort is burnt, it combines with oxygen in a chemical reaction

to release energy. Most of this energy is released in the form of heat, although some

energy is released as sound. Other products released from such chemical reactions

are often gases. Reactions of this form are known as combustion reactions, which

are also referred to as burning or deflagration. The rate of the reaction affects the

type of burn; for example, rapid reactions usually lead to explosions and slower

reactions often lead to burns.

Explosives may be classified as either low or High Explosives (HEs), depend-

ing on burn rate. HEs themselves, which are of most interest to this thesis, can be

further categorised into primary, secondary and tertiary HEs. Most primary explo-

sives readily detonate through thermal stimulus as they are extremely sensitive. The

detonation of primary explosives is often used as a detonation device for secondary

explosives [2]. Similarly secondary explosives can be used to detonate tertiary ex-

plosives. Unfortunately, however, understanding the time to detonation of the sec-

ondary explosive is much more complex as there are often large time delays due to

their insensitivity to heat or shock. A detailed discussion on the technology of ex-

plosives can be found in [2, 3], where the physical processes involved in explosives

are explored in detail. This includes an insight into the chemical processes which

occur as well as the mechanics of the burning process and detonation. We should
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mention in passing here that parts of our Introduction are based on the joint paper

[4] by the author with Smith and Curtis.

Combustion reactions are used in everyday applications such as heating, cook-

ing, vehicles, manufacturing and to produce electricity. Unfortunately, combustion

processes are not always possible to manage safely [2], [3] and their behaviours

are tough to predict. This is an extremely important problem when considering and

dealing with the combustion of explosives.

The high cost and danger of experimentation has necessitated the modelling

of scenarios of potential danger. The combustion process may be modelled using

the heat conduction equation, also referred to as the diffusion equation, together

with a reaction term. The present work, following the works of [5–9] for example,

begins by including a one-step Arrhenius reaction. Following the work of [1], we

extend the model to include a more physically realistic three-step reaction. The

great flexibility and power of hydrocode packages implementing finite element and

difference methods [10, 11] has made them the natural choice to address this need.

However, the use of these codes has often revealed that localised effects arise that

are hard to resolve with standard computation meshes; often shear bands or local

regions of extreme heating are observed. The question thus arose: could mathemat-

ical analysis and/or new sophisticated adaptive methods offer further advances both

in understanding the governing physics and chemistry, and in achieving improved

computational models?

Let us attempt to summarise our current understanding of the processes hap-

pening in a reacting high explosive. HEs may be distinguished from other types by

their capability to detonate rather than burn if sufficient stimulus is applied to them.

Under lesser stimuli, they may burn [12] and the resulting reaction can diminish, re-

main steady, or grow to more violent deflagration or even to detonation, where the

stored explosive energy is released in times typically of the order of nanoseconds.

What is governing these very diverse outcomes?

It is established that, when a HE is subject to significant heating as a result

of either mechanical dissipation caused by accidental severe deformation or direct
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heating from a heat source, it begins to react. The solid material reacts, i.e. burns to

form high pressure gaseous products [5, 13–16]. As the reaction proceeds more and

more gas is formed. The porosity of the explosive increases and as more and more

surface area becomes exposed the reaction can accelerate and propagate with the in-

creasing porosity and permeability [17] until all the explosive is consumed or until

some mechanism releases the pressure and the reaction is quenched. Violent reac-

tion or even disastrous detonation can be achieved in some cases. We believe that

it is fair to say that the interplay between the burning (and thereby disintegrating)

solid matrix and gaseous products is still ill-understood. Plainly there are confined

locations where flames may be interacting with flames from nearby surfaces, proba-

bly in highly complex ways. A recent paper [18] on gas effects, a paper which came

to our notice after completion of the present study explores solid-gas interaction.

Baer and Nunziato [19] and subsequent workers have explored the two-phase

problem of reacting solid and gaseous products from a macroscopic continuum

viewpoint, but detailed treatments of the internal burning process and of how the

hot gas heats the explosive up are lacking. The problem is compounded by the

complexity of modern heterogeneous explosives in which crystals of pure HE are

embedded in polymer binders, which themselves can be reactive. The creation and

propagation of flames in this type of explosive have not been modelled in detail;

the computational costs would be prohibitive even were this possible. Therefore,

burn models in current use are generally empirically based macroscopic models

rather than being based upon first principles. Their calibration often depends on

the experiment or geometry being modelled. That being so, we asked ourselves the

question [4]: ‘Would it be possible to gain deeper understanding of the physical

processes at work in real HEs by looking at scenarios with idealised geometries

lending themselves to analytical modelling?’

We believe this is a question worthy of attention and the present work reports

one research line taken in attempting to answer. We additionally comment that the

recent advances in additive manufacturing of explosives provide enhanced motiva-

tion for the investigation of idealised explosive geometries [20], which are becom-
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ing realisable in practice while being potentially more amenable to mathematical

modelling [7, 9, 21, 22]. The modelling to be used herein is based on a continuum

assumption.

The primary objective of this research is to gain a fundamental understanding

of how explosives burn. This can be achieved by investigating idealised problems in

which the important parameters can be easily identified. Thus the work here begins

by modelling a one-dimensional slab of inert explosive material.

The HERMES (High Explosive Response to MEchanical Stimulus) model

which is well described in [23], does not depend explicitly on temperature; it mod-

els the onset and progression of an explosive reaction. It is well known however

that the combustion process of explosives is temperature driven, and this in itself

is motivation for building the current model independently. AWE are interested in

improving capabilities and alternative ways to predict the violence of reactions in

which gas is included by looking at alternative approaches. The HERMES code

cannot predict well mechanical responses arising from thermal origins, whereas the

work presented here is a step towards doing so.

Modelling the combustion of explosives is a topic which has been studied for

several decades and has received a lot of attention in recent years, see [7, 21, 22,

24]. It is widely accepted that the combustion process occurs in several stages

which need to be studied. In particular the process of burning to detonation, or the

deflagration-to-detonation transition (DDT) [19, 25] is one which is not yet fully

understood due to the complex chemistry involved. Understanding the DDT process

is highly important for the development, as well as the safe handling and storage of

explosives [2, 3, 21]. Again, the present thesis aims to contribute towards filling the

gap here.

There have been various theories on the mechanisms which drive the DDT pro-

cess; Groocock et al [12] suggest the formation of shock waves ultimately result in

detonation, see also [24, 26, 27]. McGuire and Tarver [1] use a thermal conduction

model to predict the time to detonation compared with reciprocal temperature. It is

well documented in the literature [28] that the time to detonation using a single-step
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Arrhenius reaction model or two-step reaction models cannot be predicted accu-

rately. The authors of [1] use experimental data to predict the time to detonation for

several confined explosives, namely HMX, RDX, TATB and TNT. The reaction of

explosives can be broken down into three processes, which are: endothermic reac-

tions, slightly exothermic reactions and extremely exothermic reactions. McGuire

and Tarver [1] model these processes using a three step chemical decomposition

model for four explosives. The times to detonation are compared and are accurately

predicted and verified against experimental results.

In the background also, several works, including [1, 28, 29] for example, have

modelled the one-dimensional time to explosion (ODTX). Breshears [7] agreed with

Tarver et al [1], with their chemical reaction model capturing the fundamentals of

ODTX experiments. Supporting literature is in [30–35]. Baer and Nunziato [19]

developed a multiphase mixture model of solid grains and gas to describe the com-

bustion process. The authors of [19] modelled the DDT process in reactive granular

materials, with a specific focus on HMX. Numerical results in this work using the

method of lines were found to be in agreement with experimental observations. The

effects of particle size of the grains as porosity were also briefly explored. See also

the background papers [13, 36–54]. Curtis [55] investigated a spigot air gap model.

It is notable that the current slab model of the present thesis could be used to fur-

ther the work in [55], thus acting as a potential application of the current model.

Howe et al [29] investigated the multiphase treatment of ODTX in HMX spheres

with constant boundary temperature. The time taken for each sample to explode

is recorded. A recent paper by Curtis, which is yet to be published, on two-phase

effects is one of the papers we will be examining in order to consider the later stages

of any significant fluid flow involved (see also Baer and Nunziato [19]).

Certain major features of the thesis should be emphasised at this point. Thus,

partly to repeat, the main work we have done (to be described herein) that is novel is

exemplified by the present studies on interactive gas effects, on an alternative ther-

momechanical approach, on understanding the likely influences of complex chem-

istry and on the usage of a new asymptotic treatment created during the current
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research. The work of the thesis is something of a new departure but it has also

been put into the context of existing literature and research efforts above, for ex-

ample concerning the improvement of capabilities in industry and also concerning

gaps in understanding described earlier. The major issues surrounding the topic of

interest here are likewise raised earlier, in regard to gaseous products heating explo-

sives and the influences of several reactants in particular as well as the quantitative

determination of such important features. The relationship between the different

papers cited above in our survey of relevant literature is rather mixed and patchy

in some respects but it seems clear that the ones of prime concern for the present

thesis are [1, 5, 6, 56]. Furthermore the current work is believed to shed valuable

new light on the significant research gaps described earlier, for example by means

of the use of a novel asymptotic approach and by the development of a novel model

for gaseous products and interaction. The resulting help to industry (AWE) is via

the new codes concerned with temperature and reactants, and comparisons, with

several other helpful aspects being detailed near the beginning of the introduction.

The thesis work makes use of numerical simulations and asymptotic analysis in

attempting to predict the temperatures and the time scales involved, including reac-

tant effects and, later on, gaseous interactions. The maximum temperature reached

and the time taken to reach that maximum from given initial conditions are of spe-

cial interest. The aspects of explosions that are to be modelled thus include the

(high) temperatures attained and any reactant behaviour as well as gaseous produc-

tion and feedback. The main justification for, and perhaps the need for, asymptotic

analysis here rather than simulation packages such as Comsol [57] lies in the ex-

treme values which turn out to be present for certain key parameters, such as 10−25

or so when written in reasonable non-dimensional terms. The physical processes

being examined in the thesis centre on the triggering of reactions which become

ultimately very strong ones whose effects on temperature are to increase its rate of

change very positively.

To end this part of the introduction we propose the basic research questions

that will determine or at least guide the author’s work following on directly from
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the present thesis. The research questions will clearly draw upon the work accom-

plished to date as described in this thesis. These questions or issues address the

following:

• the evolution of the temperature under various different conditions;

• the influence of reactants and their properties;

• gaseous interaction effects on the evolution;

• the time scales and other physical scales involved.

Our aims, then, include gaining further insight, providing comparisons or alterna-

tives for direct computation and adding to the portfolio of methodologies available

in this area [58].

1.2 Structure of thesis
The general structure of the thesis is divided into three main parts. Part I consisting

of chapters 2–4, which considers the basic reaction-diffusion model with alternative

asymptotic treatment. The work in part I has been published in [4].

Part II of the thesis is made up of chapter 5–9 and focusses on the incorporation

of gas into the model. Finally part III, which can be considered a stand-alone piece

of work, considers an alternative method of stimulus, namely mechanical heating.

Starting with part I, chapter 2 describes the model of interaction evolving be-

tween thermal diffusion effects in one spatial dimension and a single reactant [5–9],

along with a computational study. Here reference is made to ODTX (One dimen-

sional time to explosion methods) [6, 19, 25, 28] and HMX (octogen explosive)

for which the values of certain parameters in the model turn out to be significantly

small or large. This leads on to an investigation of asymptotic properties presented

in chapter 3 accompanied by comparisons with the direct computations. Chapter 4

then addresses the evolution between thermal diffusion and three reactants [1] com-

putationally followed by corresponding asymptotic analysis and comparisons. Part

II of the thesis focusses on the incorporation of gas into the existing model. In this
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part of the thesis, we begin by introducing the treatment of gas as a discrete model

before extending this to a continuous framework in chapter 5. Next in chapter 6 we

consider the effects of feedback in the system by allowing the temperature of the

gas produced to heat the explosive externally. In chapter 7 we consider an alterna-

tive model to that presented in chapter 6 by allowing feedback from the gas both

internally and externally. This is achieved through allowing the densities of both the

solid and gas to vary. We seek insight from asymptotic treatment here. Based on

this, chapter 8 allows for internal heating within the system. Here we work purely

in an asymptotic framework while in chapter 9 we repeat the analysis for the fully

dimensional problem using both mild and physical parameters.

Part III of the thesis considers work which is, in one sense, separate to the

previous two parts. Here chapter 10 briefly considers mechanical stimulus as op-

posed to the thermal heating which has been considered throughout the thesis. In

another sense, however, there is close connection to the previous parts. We find that

the main behaviour takes place in the thin boundary layers, despite the mechanical

treatment as opposed to the thermal one presented in parts I and II. The aim here

is that the overall large-scale model is eventually to involve not only fluid dynam-

ics bus also heat production, reaction and interaction; to some extent chapter 10 is

preparation for such a large-scale model. Finally, general conclusions and future

work are presented in chapter 11.
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Chapter 2

One-reactant problem and

computational properties

The problem area of concern here arises as follows. A simple configuration is con-

sidered, with a slab of solid explosive confined at one end with a burning surface at

the other end. A layer of hot gas is adjacent to the burning surface, itself confined

by a non-conducting wall opposite to the burning surface. See figure 2.1. Modelling

the wall as non-conducting is believed to be more relevant in practice than the fixed

temperature case, although in the present work we take the constant temperature

case because it is simpler and clearer. When the hot gas is assigned a temperature

value that is in the vicinity of the activation temperature for the explosive, this acts

as a trigger for the ignition of the explosive. Classical heat conduction [30, 59, 60]

in the explosive is one feature with a significant role in the model here.

We then enhance the model by considering the effects of adding a reaction term

to the heat conduction equation [61]. To begin modelling the reaction-diffusion

process, we consider the simple and well-known Arrhenius reaction equation [2].

The Arrhenius equation [1] is used to calculate the effect of a change in tem-

perature on reaction rates. It is commonly used to calculate chemical reactions,

particularly in heat induced problems such as ours. The combustion of explosives

depends heavily on chemical processes which take place. Heating and impact both

can trigger a reaction process which leads to significant burning, and they are the

main two reasons why an explosive combusts. Once the temperature reaches a cer-
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Figure 2.1: Schematic of the solid explosive (left) and hot gas (right).

tain level, commonly known loosely as the critical temperature, the reaction process

becomes significantly large. When the reaction has started, the speed of the reaction

increases as the temperature increases. The Arrhenius reaction equation has been

used in several explosives models including [5] and is given by

k = Aexp(−E/Ru), (2.1)

where k is the reaction rate constant which expresses the relationship between the

concentration of reactants and reaction rate, u is the temperature, E is the activa-

tion energy required for the reaction, R is the universal gas constant and A is the

frequency factor, which is also known as the pre-exponential constant.

Following the works of [5, 61, 62], for example, we consider a variation of

(2.1). Namely, we consider the reaction α with rate such that k →
∂α

∂ t
(1−α) which mim-

ics the general form (2.1) but varies with time t and represents a finite amount of
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combustible material. The reaction rate is restricted by the term (1−α), which rep-

resents the fraction of unreacted material remaining. In other words 0 ≤ α(x, t)≤ 1

for all spatial positions x ∈ D and t ∈ T where α = 0 is the initial state (unreacted)

and α = 1 is the final state (fully reacted). Here T = [0,Tmax], where Tmax is the pe-

riod of time over which we model the event, and D is the bounded spatial domain,

which can be taken as [−1,1] without loss of generality by working with x/a and

κ/a2 for a domain [−a,a], where the diffusion coefficient κ is defined below. We

use the reflected geometry to avoid the requirement to impose a zero flux condition

for simplicity. However, if we did adhere to x ≥ 0 we would need to impose that

condition, but might reduce the computational time.

We now consider the reaction-diffusion PDE

ρcv
∂u
∂ t

= κ
∂ 2u
∂x2 +ρΩ

∂α

∂ t
, (2.2)

with the reaction term given by

∂α

∂ t
= A(1−α)exp

(
− E

Ru

)
, (2.3)

where the constant Ω is the heat of reaction. Equations (2.2) and (2.3) combine to

form a non–linear coupled system of PDEs for u(x, t) and α(x, t).

Here ρ , cv, κ , Ω, R, E and A are dimensional parameters with realistic values

and units listed in table 2.1. The typical boundary and initial conditions are

Table 2.1: Physical parameters used in model.

Parameter with units Symbol Value
Conductivity (W/m/K) κ 0.44
Specific Heat (J/kg/K) cv 1255.0
Density (kg/m3) ρ 1800.0
Heat of Reaction (J/kg) Ω 5.0208e6
Molar Gas Constant (J/mol/K) R 8.314
Activation Energy (J/mol) E 2.2e5
Pre-exponential Constant (s−1) A 5.011872336e19
Wall temperature °K B 570
Initial solid temperature °K C 293
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u(−1, t) = u(1, t) = B, for 0 < t ≤ Tmax, (2.4a)

u(x,0) =C, for x ∈ D, (2.4b)

where quite realistic temperature values are B = 570 (activation temperature),

C = 293 (room temperature) say. This spatially symmetric scenario with constant

boundary and initial temperatures is to be generalized later, whereas the initial value

of α is taken to be zero in all the present studies.

Given the extremely large dimensional values appearing in table 2.1 and in

the conditions 2.4a,2.4b we turn to a non-dimensional form of the governing equa-

tions and conditions and note a need for caution concerning numerical results at

this stage. To deal with the parameters, then, we introduce the non-dimensional

variables t̄ and ū that satisfy

t = A−1t̄, u =
E
R

ū, (2.5a)

having recognised the fact that A is likely to be responsible for main changes in u

and α happening on different time scales and that E
R is relatively large. There is no

need to scale α since it is already non-dimensional and O(1).

The substitutions lead to the non-dimensional system of PDEs

∂ ū
∂ t̄

= κ̄
∂ 2ū
∂x2 + Ω̄

∂α

∂ t̄
, (2.6a)

∂α

∂ t̄
= (1−α)exp

(
−1

ū

)
, (2.6b)

where from table 2.1 the non-dimensional parameters present now are κ̄ := κ

ρcvA ≈

10−25 ≪ 1, and Ω̄ := ΩR
cvE ≈ 0.15. The boundary and initial conditions also need

scaling and are given by

ū(−1, t) = ū(1, t) = B̄, for 0 < t̄ ≤ Tmax, (2.7a)

ū(x,0) = C̄, for x ∈ D, (2.7b)

where B̄ := RB
E ≈ 0.02 and C̄ := RC

E ≈ 0.01. We note that the initial condition for
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α remains unchanged of course and that quite extreme parameter values are still

present, particularly the κ̄ value.

Numerical solutions were sought first, using a semi-implicit scheme of second-

order accuracy in x, t. This adopts three-point backward differencing in t and three-

point centred differencing in x. The discretisation replaces (2.2)–(2.3) by

−µU j−1,i+1 +(3+2µ)U j,i+1 −µU j+1,i+1 = 4U j,i −U j,i−1 + . . .

· · ·+2∆t
AΩ

cv
(1−2α j,i +α j,i−1)exp

(
− E

R(2U j,i −U j,i−1)

)
, (2.8a)

α j,i+1 =
2A∆t exp

(
−E

RU j,i+1

)
+4α j,i −α j,i−1

3+2A∆t exp
(

−E
RU j,i+1

) , (2.8b)

and it acts similarly on the form (2.6a),(2.6b). Here i, j refer to time t and space x

respectively, with grid sizes ∆t, ∆x, the arrays U j,i, α j,i represent discretised u, α and

µ = r 2∆t
(∆x)2 , where r = κ

ρcv
. We remark that, to keep the scheme quasi-linear at each

new time step, lagging of terms in the exponential effects in (2.8a), (2.8b) is present.

For example in the exponential effect in (2.8a) the expression (2U j,i−U j,i−1) is used

in place of U j,i+1 and preserves the desired second-order accuracy. The parameter

values involved are of much interest. The fairly realistic values in practice shown in

table 2.1 are potentially quite extreme values; indeed we investigate the influences

of a quite wide range of values of the parameters below.

In fact cautiously obtaining and then considering the computational solutions

is felt to be very desirable for mild, less mild and realistic cases. We defer further

discussion of the realistic cases such as in table 2.1 until later chapters. Figures 2.2-

2.6 show the numerical results for mild cases. They exhibit a number of interesting

features. There is analytically a classical similarity solution [56] with spatial thick-

ness of order t1/2 holding in each thin edge layer at small time astride each wall,

a property which is captured satisfactorily by the current numerical scheme. One

can see evidence of thin edge layers emerging also as κ or κ̄ is decreased. These

layers however continue to apply over a considerable time range. The numerical

results further produce overshoots in temperature which become more pronounced
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and linger more (see figure 2.6) as κ̄ is decreased for example, whereas α increases

monotonically towards unity in every case. We see in addition some pronounced

differences in the apparent time scales typical of the temperature and α in the re-

sults. These are to be considered analytically later. The results in figures 2.2–2.6

are only showing spatially symmetric cases but non-symmetric ones, presented in

figure 2.7, display similar trends.

Figure 2.2: The finite difference solution to u (figure (a)) and α (figure (b)) in the coupled
system of PDEs (2.2) and (2.3) using a second–order implicit scheme. We
chose Tmax = 10 with ∆x = 0.05 and ∆t = 0.01. Here ρ,cv,κ,Ω,A,E,R are
set to unity. Also B = 45 and C = 15 (in non-dimensional terms, Ω̄ = 1, κ̄ =
1, B̄ = 1 and C̄ = 15). On the bottom left (figure (c)) we plot the solution for
small time t = 0 to t = 1 to show the rise of the temperature, u. Notice how
the inclusion of a reaction term causes the temperature profile to surpass the
temperature value at the boundary before plateauing (figure (d)).

We found the realistic case with the values of table 2.1 to be a very difficult one

to compute reliably in view of, for example, a sensitivity observed in the results for

α as the spatial step was varied. In contrast, when we use milder parameter values



36

-1 -0.5 0 0.5 1

Spatial Range

0

0.2

0.4

0.6

0.8

1

1.2

u

-1 -0.5 0 0.5 1

Spatial Range

0

0.2

0.4

0.6

0.8

1

a
lp

h
a

Figure 2.3: Solutions to u and α over the spatial range x for fixed values of t. Here we have
used the same parameters and temperature conditions as in figure 2.2.

such as E = 10 and A = 200 with the boundary and initial conditions (2.4a)-(2.4b)

with B = 45, C = 15 then the finite difference approximation of α is insensitive to

the same choices of spatial step. The profiles of these solutions are given in figure

2.4. A further set of results for even milder values of the parameters is presented in

figures 2.5, 2.6, pointing to the use of asymptotic analysis below.

To address the very small parameter κ̄ that features in the scaled PDE, we add

a different approach. It can be shown through asymptotic expansions of ū and α

that by equating the coefficients of like powers of κ̄ and taking O(1) terms only, the

term ∂ 2ū
∂x2 is unlikely to have any substantial effect for a long time, except near the

boundaries, since the reaction term dominates. Hence, asymptotically, the problem

can now be viewed as the interaction of two problems: a problem in thin wall layers

at both ends of the domain and a problem in a core.

The view just mentioned in regard to the emergence of two problems accom-
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Figure 2.4: The numerical finite difference solutions to u (left) and α (right) satisfying
the PDEs (2.2)–(2.3) using a second–order semi implicit scheme with mild
physical parameters. Here ρ = 1800, cv = 1255, κ = 0.44, Ω = 5.0108×106,
A = 200, E = 10, R = 8.314, B = 45 and C = 15. In non-dimensional terms,
Ω̄ ≈ 3319.505, κ̄ ≈ 9.7×10−10, B̄ ≈ 37.413 and C̄ ≈ 12.471.

panied by distinct regions is especially supported by the numerical results for the

single-reactant cases shown in figures 2.5-2.7, where figure 2.7 admits spatial non-

symmetry. The physics represented here as κ is decreased is associated with the

relatively low diffusion in the system, over the main time scale of the reaction frac-

tion, which indicates that only the initial temperature distribution affects the core

temperature and reaction significantly over that time scale. The results in the fig-

ures, which are for parameter values even milder than those introduced in figures

2.2-2.4, confirm clearly the appearance of a core in the majority of the domain and

thin wall layers near the boundaries even for values of κ for example that are small

but, in a sense, not extremely so. This suggests that an asymptotic approach (as de-

scribed in the following chapter) will be fruitful over a wide range of the parameter

space.
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Figure 2.5: The numerical results for u and α satisfying equations (2.2)–(2.3) with very
mild parameter values E = R = A = ρ = Ω = cv = B = C = 1 and κ =
0.1,0.01,0.001 (top to bottom). In non-dimensional terms, Ω̄ = 1, B̄ = 1, κ̄ =
0.1,0.01,0.001 (top to bottom) and C̄ = 1.
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Figure 2.6: The numerical results for u at x = 0 satisfying equations (10.2)–(2.3) with
very mild parameter values E = R = A = ρ = Ω = cv = B = C = 1 and
κ = 0.1,0.01,0.001 (top to bottom). Overshoot is clearly seen for all cases
here and lasts longest for the lowest κ value.
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Figure 2.7: The numerical results for u, α for the non-symmetric case satisfying equations
(2.2)–(2.3) with very mild parameter values E = R = A = ρ = Ω = cv = 1
and κ = 0.1,0.01,0.001 (top to bottom). The temperature u, with boundary
conditions u(−1, t) = 2 and u(1, t) = 1, is shown for fixed values of t = 0 to
t = 4 in steps of 1/2, where the red vertical arrows indicate time increasing.
Here the initial temperature is given by C(x) = x+2.
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Figure 2.8: The solutions α (top) and u (bottom) in the core satisfying equation (3.5).



2.1. Summary of chapter 42

2.1 Summary of chapter
The work presented in this chapter is believed to fill some of the gap in understand-

ing concerned with interaction between solid material and chemical reaction during

combustion, through detailed study of thermal and reactant properties. Single step

reactions have been modelled first using a simple Arrhenius model. We introduced

the physical parameters involved in the system as well as milder versions of these

parameters for computational ease. In order to deal with the relatively small and

extremely large parameter values we non-dimensionalised the coupled system and

worked with the scaled variables ū and t̄.

Numerical solutions using a semi-implicit finite difference scheme which is

second-order accurate were presented for the system of equations using mild pa-

rameter values. The analysis in this chapter confirms the appearance of a core re-

gion which occupies the majority of the domain as well as thin wall layers near the

boundaries. This is explored further in the next chapter.



Chapter 3

Asymptotic analysis and comparisons

Guided by the numerical solution features above we seek extra insight by taking

an asymptotic approach that in principle handles effectively the extreme parameter

values. A core region, denoted by the subscript c, covering most of the domain can

be anticipated along with thin wall layers close to the boundaries. That distinction

in spatial scale is found to persist for a considerable amount of time before change

occurs. The initial condition on the temperature is taken to be constant for now but

this is generalised later on.

3.1 Effects of κ̄

The main evidently small parameter is κ̄ . Treating it as an asymptotically small

parameter leads to two major time scales appearing as follows. The first time scale

has t̄ of O(1). Here in the core where −1 < x < 1 the variables ū, α are expected to

be of order unity and so the expansions

ū = uc + . . . , (3.1a)

α = αc + . . . (3.1b)

are called for. Terms of equal orders in the non-dimensional governing equations

2.6 then yield a reduced system for the leading order quantities, namely

∂ ūc

∂ t̄
= Ω̄

∂αc

∂ t̄
, (3.2)
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where
∂αc

∂ t̄
= (1−αc)exp

(
− 1

ūc

)
. (3.3)

The leading equation above admits the simple result that ūc− Ω̄αc is a function of x

only but the initial condition of a constant u across the domain then establishes that

function is constant. Therefore applying the initial conditions that ūc(x,0) = C̄ and

αc(x,0) = 0 yields the relation

ūc(x, t̄) = Ω̄αc(x, t̄)+C̄, (3.4)

for all t̄ of O(1). We see in (3.4) that the temperature rises through local burning.

Hence equation (3.3) becomes one for αc alone,

dαc

dt̄
= (1−αc)exp

(
− 1

Ω̄αc +C̄

)
. (3.5)

Note that since the initial condition αc(x,0) = 0 is independent of x, (3.2) as it

stands is also independent of x and essentially represents a non-linear ODE for αc

that is valid for −1 < x < 1−. We remark in passing here that x-dependence in the

initial conditions at t = 0 which can be reflected in C̄ in (3.4), (3.5) and similarly

α(x,0) being given functions of x will be discussed later. Clearly the diffusive term

involving a double x-derivative is negligible in the core at this level and no boundary

condition is applied. The ODE (3.5) is non-trivial to solve and so we use ODE45

in MATLAB to integrate numerically. The core reaction αc may then be substituted

back into (3.4) to determine the leading order temperature ūc in the core.

In figure 2.8 we plot the core solutions ūc and αc that satisfy (3.3) and (3.2),

respectively, using the mild parameter values E = 10 and A = 200 as well as C = 15

which is required for the initial condition of ūc. The asymptotic analysis is still

formally valid using these mild parameters since the corresponding value of κ̄ is

still exceptionally small. We use mild parameters for now so that in a sense we may

check (see figure 3.1) the asymptotic analysis against the finite difference solutions

given in chapter 2, before proceeding to employ the full parameter values of table

2.1. Further details on the effects of treating Ω̄ as a large parameter are given in a
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subsection below. It is worth noting that the characteristics of the core with mild

parameters and physical parameters are likely to be different because the parameters

change not only the boundary layer but also the behaviour of the core. Results for

other parameter values are given in the next subsection.

Wall layers are necessary partly because the core equations have no spatial

dependence and represent in effect only initial value problems. As a result, the

loss of the derivative term in x means that the underlying boundary conditions in

(2.7a) cannot be satisfied in the core, in the general case. We seek an accompanying

solution to the core solutions by considering the system (2.6) near the boundaries.

To handle the extreme parameter κ̄ we set, in the left-hand thin wall layer,

x =−1+ κ̄
1/2x̄ (3.6)

and expand

ū = ūe(x̄, t̄)+ . . . , (3.7a)

α = αe(x̄, t̄)+ . . . . (3.7b)

Substitution into (2.6) implies that the governing equations are

∂ ūe

∂ t̄
=

∂ 2ūe

∂ x̄2 + Ω̄
∂αe

∂ t̄
, (3.8a)

∂αe

∂ t̄
= (1−αe)exp

(
− 1

ūe

)
, (3.8b)

in the wall layer. (For the most realistic cases described earlier the edge layer is

remarkably thin, having an approximate non-dimensional thickness of order 10−12

from (3.6). The validity of the continuum model may become questionable there for

such cases. Further discussion on this is presented in 11.) It is notable that since at

present the core problem is independent of x, the solutions at the inside edges of the

wall layers are valid across the entire core. In other words, the solutions ūe and αe

satisfying (3.8) coincide with the core solutions at x̄ = ∞ effectively. We therefore
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Figure 3.1: Comparison of core (round markers) and full solutions for varying κ =
1,0.1,0.01 (represented by the dot–dashed black, solid blue and dashed red
lines, respectively).

(a) ūe (b) αe

Figure 3.2: The wall-layer solutions ūe and αe satisfying (3.8) using a second-order numer-
ical scheme with the mild parameters E = 20; A = 200; C = 15 and B = 45.
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subject (3.8) to the boundary conditions

ūe(∞, t̄) = ūc, αe(∞, t̄) = αc.

It also holds that

ūe(0, t̄) = B̄, (3.9)

and, as before, the boundary solution for αe at the wall can be determined by solving

the second equation in (3.8) using the condition (3.9). That

αe(0, t̄) = 1− exp
(
−t̄ exp

(
− 1

B̄

))
, (3.10)

at the wall. We also have the initial conditions

ūe(x̄,0) = C̄, αe(x̄,0) = 0, 0 < x̄ < ∞.

Again we note that there is a similarity solution for small times t̄ near x̄= 0, [56]. To

solve the system (3.8) we use the finite difference schemes of chapter 2. Typically

we took 0≤ x̄≤ 1000, to ensure the spatial domain was large enough to demonstrate

the true solution behaviour. In figure 3.2 we plot the numerical solutions to ūe and

αe using the mild parameters E = 20; A = 200; C = 15 and B = 45. In figure 3.3 we

compare the full non–asymptotic solutions given in figure 2.4 (top) with the present

asymptotic wall solutions (bottom). Note that to compare these solutions directly

we must scale u and Tmax in figure 2.4 by R
E and A respectively. We observe that the

solutions not on the boundary (which is ultimately what we are interested in, since

we do not know them a priori) match almost perfectly.

At sufficiently large times t̄ the wall layer solution acquires a similarity form.

This is because the core temperature and αe both asymptote to constants then, in

particular with the core temperature being C̄+ Ω̄ and αe being unity to a first ap-

proximation, and on the other hand the sidewall temperature B̄ is taken to be con-

stant. So in the wall layer ūe is expected to be of O(1) and αe is anticipated as
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Figure 3.3: Comparison of solutions u and α for the full system (top) corresponding to
equations (2.2), (2.3) and the wall-layer (bottom) solutions corresponding to
equation (3.8).

being unity with only an exponentially small correction in view of (3.8b). The or-

ders of magnitude involved then suggest that the x̄ scale grows as t̄1/2, leading to

the expression

ūe = f1(ξ )+ . . . , αe = 1+ f2(ξ )+ . . . (3.11)

where ξ = x̄/t̄1/2 is of order unity and the function f2 is exponentially small. Sub-

stituting into (3.8) we obtain the equation −1
2ξ f ′1 = f ′′1 for f1(ξ ), with no influence

retained now from the reaction effects. The equation is a classical thermal one and

yields the solution

f1(ξ ) = (C̄+ Ω̄− B̄)I−1
∫

ξ̂

0
exp
(
−1

4
ξ̂

2
)

dξ̂ + B̄. (3.12)

Here I = π1/2.
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The second major time scale arises because on a longer time scale the wall

layers penetrate into the core and become one with it. The wall layer thickness

increases like t̄1/2 and so makes its presence felt in the core over a long time scale

t̄ of order κ̄−1, from the scalings above, specifically in (3.7a). The evolution at that

stage takes the form

ū = O(1), α = 1+ ε, (3.13)

x = O(1), t̄ = κ̄
−1t̂ (3.14)

over the entire domain, where ‘ε’ denotes an exponentially small term. The govern-

ing equation (2.6a) thus reduces to the classical thermal one

∂ ū
∂ t̂

=
∂ 2ū
∂x2 (3.15)

while (2.6b) gives only effects of higher order. The boundary and initial conditions

for (3.15) are

ū = B̄ at x =±1 for t̂ > 0, (3.16)

ū = C̄+ Ω̄ at t̂ = 0+ for |x|< 1. (3.17)

The problem can be transformed to one solved in Carslaw and Jaeger [56], showing

similarity behaviour near each wall at early times but a steady state of ū equal to

B̄ being approached at late times. The initial (core) temperature can clearly be

substantially larger than the steady-state temperature over this time scale. Moreover

the complete behaviour of the temperature ū is seen to be on a different (longer) time

scale than the reaction rate α .

3.2 Effects of other parameters (Ω̄, C̄, B̄).

Although κ̄ is by far the most extreme parameter the small typical values of the

scaled initial temperature C̄ and the scaled reaction constant Ω̄ still play important

roles in the core of the interaction. Numerical solutions obtained for (Ω̄, C̄) values
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of (1,0.1), (0.1,1), (0.1,0.1), (10,1), (1,1) are shown in figure 3.4(a)-(e) respec-

tively.

Suppose first that C̄ is small and Ω̄ is O(1). Then in the core equation (3.5)

the right-hand side, when plotted as a function of αc, is exponentially small of

order c = exp(−1/C̄) at zero αc but rises rapidly as αc increases to O(C̄) and it

asymptotes towards unity as αc increases further. The influence of the (1−αc)

term then gradually reduces the right-hand side over a slower scale. The function

dt̄/dαc therefore decreases rapidly from its initial exponentially large value at zero

αc to unity when αc becomes larger than O(C̄) but still small. Clearly αc as a

function of time begins small, of order C̄, and remains so for a considerable time.

This slow effect on the reaction when the initial temperature is small makes sense

physically. The main evolution of αc into an O(1) quantity occurs when time t̄ is

exponentially large,

t̄ = exp
(

1
C̄

)
+ ¯̄t (3.18)

with ¯̄t being of O(1) and the governing equation then becoming

dαc

d ¯̄t
= (1−αc)exp

(
− 1

Ω̄αc

)
. (3.19)

See figure 3.4(a). The march back in time corresponds to αc being small, such that

(3.19) gives, after some working,

αc ∼ Ω̄
−1(ln | ¯̄t |)−1 (3.20)

which confirms the slow progress of the evolution. The march forward in time is

effectively displayed in figure 3.4(a), giving rise to αc tending to unity at large ¯̄t.

Secondly, if on the other hand C̄ is of order unity but Ω̄ is small as in figure

3.4(b) then the contribution Ω̄αc in (3.5) simply plays a negligible part throughout

the interaction. The governing equation reduces to a linear ODE for αc to leading

order and the form

αc = 1− exp(−ct̄) (3.21)
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Figure 3.4: Core solutions ūc (red) and αc (blue) corresponding to equation (3.19) as pa-
rameters (Ω̄,C̄) = (1,0.1),(0.1,1),(0.1,0.1),(10,1),(1,1), (left to right - top
to bottom). In the bottom figure, the arrows represents the highest and mid-
values of the temperature ūc.

describes the solution, where c = exp(−1/C̄) is now a given O(1) constant in the

present case of C̄ being uniform. The time scale in terms of t̄ thus remains of order

unity. The low reaction rate here means physically that the core temperature remains

constant to leading order.

Thirdly, if C̄ and Ω̄ are both small as in figure 3.4(c) and of order ∆, say ∆( ¯̄C, ¯̄
Ω)

respectively, then again consideration of the graph of the function dt̄/dαc is helpful.

Its initial value is large, being 1/c, and the function remains large and positive

through the entire interaction, reaching an exponentially large minimum value of

¯̄
Ω∆

−1( ¯̄C+ ¯̄
Ω)−2 exp(∆−1( ¯̄C+ ¯̄

Ω)−1), (3.22)
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at the value

αc = 1− ∆( ¯̄C+ ¯̄
Ω)2

¯̄
Ω

, (3.23)

i.e. near the end of the reaction. Hence the time t̄ taken for the reaction to be

completed such that αc grows from zero to unity is exponentially large again. The

physical sense is similar to that in the case of (3.18)-(3.20) concerning relatively

slow reaction.

By contrast, if either or both of C̄ and Ω̄ is or are large then the representative

scale t̄ remains O(1), with αc given by 1− exp(−t̄) and the scaled temperature ūc

given by

ūc = C̄+ Ω̄(1− exp(−t̄)). (3.24)

An example is shown in figure 3.4(d). The maximum temperature C̄ + Ω̄ is ap-

proached at times t̄ which are large but not as large as in the cases of (3.18)-(3.20)

and (3.23).

The effect of the sidewall temperature B̄ is felt only in the wall layer, at least

for times t̄ of order unity because the core is unaffected to leading order by diffusion

in x. This is discussed further now. The case of relatively small B̄, corresponding

to a relatively low temperature imposed at the wall, is also of some mathematical

concern although of little likely relevance to real application. Since any ū of O(1)

leads to αe tending to unity at large t̄ the similarity solution (3.11)-(3.12) still holds

then for most ξ values but with the inner boundary condition of ū(= f1 to leading

order) equalling 0+ at ξ = 0+ and ū tending linearly to zero with ξ . Hence if

B̄ = εB̂ say with ε being small and B̂ of order unity then there is a sublayer close

to the wall where ξ , ū are both O(ε) and ū is affected by the low wall temperature.

The second stage where t̂ is O(1) is perhaps clearer to analyse. Here the majority

of the domain is governed by (3.15)-(3.17) but subject to ū → 0+ as x →−1+ and

similarly as x → 1− . So the behaviour

ū ∼ (x+1)β (t̂) at x =−1+ (3.25)

is expected near the left-hand wall where β is an order-unity function of t̂ deter-
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mined by the forward-marching solution of (23)-(25). Essentially the same response

occurs at the right-hand wall. The function β (t̂), and indeed the entire ū(x, t̂) so-

lution, tends to zero at large times t̂, while at small times β (t̂) is large, varying as

t̂−1/2. Near the wall on the other hand a sublayer is present in which

ū = ε û+ . . . , α = α̂ + . . . , with x =−1+ ε x̂ (3.26)

where α̂ is non-trivial because of the low wall temperature. The governing equa-

tions (2.6a),(2.6b) in this sublayer reduce to

∂ 2û
∂ x̂2 = 0, (3.27a)

κ̄
∂ α̂

∂ t̂
= (1− α̂)exp

(
− 1

ε û

)
. (3.27b)

Here (3.27a) gives, on matching with (3.25),

û = â(t̂)+ x̂β (t̂), (3.28)

with â = B̂ independently of t̂ due to the wall condition. The balance in (3.27b)

which is akin to those operating in (3.18) - (3.24) is associated with a critical size

of ε being

ε =−G/(ln κ̄), (3.29)

with G being an O(1) positive constant and a critical temperature being reached at

which

û = G−1 + εu1 + . . . (3.30)

where (3.27b) becomes at leading order

∂ α̂

∂ t̂
= (1− α̂)exp(G2u1(x̂, t̂)). (3.31)

The form (3.31) containing O(1) quantities ensures, when combined with

(3.28),(3.30), that α̂ tends to unity as time increases over the present scale.
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3.3 Comparisons
The asymptotic description in the previous two subsections appears to capture all

the major trends of the full solutions as κ or κ̄ is decreased and hence the major

trends for the realistic case also in which κ and κ̄ are extremely small. The main

quantitative comparisons are shown by means of the arrows displayed in figure

3.4(e) as well as the round markers in figure 3.1, for the same case. To clarify, the

arrows in figure 3.4(e), which indicate the maximum temperature value reached and

the time taken for the temperature to attain the average of its maximum and its initial

value, tend to confirm the agreement seen in figure 3.1. See also the comparisons

presented in figure 3.3. Overall the analysis is seen to ‘work’ for values of κ̄ below

about 0.01 say and hence for the extremely small κ̄ values of the realistic setting.

Further it is notable that the maximum temperature attained can be predicted

in analytical form very readily from the core responses: the maximum is

ūmax = Ω̄+C̄ (3.32)

in non-dimensional terms. This is because of the result (3.4) in the core when αc

tends to unity at the completion of the reaction. In dimensional terms (3.32) yields

uc,max = 3840°K (3.33)

for the maximum, based on the parameters (C̄, Ω̄, E/R) being (0.01, 0.15, 24000) as

representative values from table 2.1. The predicted maximum temperature in (3.32),

(3.33) is independent of the imposed wall temperatures and is of much potential

interest.

3.4 Summary of chapter
Motivated by the insights gained from chapter 2, in this chapter we considered an

alternative approach to the numerical one presented in chapter 2 to solve the system.

A treatment by direct numerical simulation of the fully coupled system involved

has been complemented by a treatment founded on asymptotic analysis, with the
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predictions from the two approaches being found to agree closely in quantitative

terms.

We also examined here the effects of the main parameter which was identified,

κ̄ , as well as other parameters of interest, namely; Ω̄,C̄, B̄.

Finally, we note that under this framework, the long-term behaviour of ū is

observed on a different (longer) time scale than the reaction rate α .



Chapter 4

Computational properties for three

reactants

A multi-kinetic reaction process is now introduced into the model to provide an

improved representation of the physical and chemical processes that may occur in

practice. See [2] for further detail of the model. Following the work of [1], [6] for

example we consider here a three–step reaction to model better the endothermic and

exothermic chemical processes.

It is widely accepted within the literature that the chemical process can be

described by following three processes which dictate the time to detonation. These

are given by equations (4.1)–(4.4) below and can be described as follows

A toB to2C → D.

Here A is the explosive product and the process A→B is described by equation (4.2)

which captures the endothermic state of the reaction process. Similarly B → 2C

represents the slightly exothermic state of the reaction and is modelled by equation

(4.3). Finally 2C → D represents the exothermic process within the reaction, given

by equation (4.4) where the squared term is a result of the 2C which represents

two products being created in the reaction process. D is the final product, given by

equation (4.5).
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The diffusion process with a three-step reaction present is described by

ρcv
∂u
∂ t

= κ
∂ 2u
∂x2

+NAQ1Z1 exp
(
− E1

Ru

)
+NBQ2Z2 exp

(
− E2

Ru

)
+N2

CQ3Z3 exp
(
− E3

Ru

)
. (4.1)

Coupled with (4.1) are the following ODEs governing the rates of change of the

reactions NA, NB, NC respectively,

ṄA =−NAZ1

ρ
exp
(
− E1

Ru

)
, (4.2)

ṄB =
NAZ1

ρ
exp
(
− E1

Ru

)
− NBZ2

ρ
exp
(
− E2

Ru

)
, (4.3)

ṄC =
NBZ2

ρ
exp
(
− E2

Ru

)
−

N2
CZ3

ρ
exp
(
− E3

Ru

)
, (4.4)

and

NA +NB +NC +ND = 1. (4.5)

Here the dots denote derivatives with respect to time. The constants Q1–Q3 in the re-

actant equations stand for the heats of reaction whereas E1–E3 are the corresponding

activation energy constants of the reactions and Z1–Z3 are the corresponding pre-

exponential constants. Table 4.1 presents a list of realistic values for the parameters

here.

The boundary and initial conditions for u(x, t) are set as in (2.4a), while the

initial conditions on the reactants are

(NA,NB,NC) = (1,0,0) at t = 0. (4.6)

That leaves our task then as solving (4.1)-(4.4) subject to (2.4a), (4.6). No boundary

conditions need to be set on the reactant quantities because of the absence of spatial

derivatives in the balances (4.2)-(4.4). The value of NA at the boundary where u= uA
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can be obtained directly from integration of (4.2) and application of (4.6) as

NA = exp

(
− Z1

ρ

t

exp
(

E1
RuA

)). (4.7)

Hence NB is given by solving (4.3) combined with (4.7) to yield

NB =
Aexp

(
−A t

exp(C) +D
)

Bexp(C)−Aexp(D)
− Aexp(D)

Bexp(C)−Aexp(D)
exp
(
−B

t
exp(D)

)
, (4.8)

where A = Z1
ρ

, B = Z2
ρ

, C = E1
RuA

and D = E2
RuA

. This is shown graphically in figure

4.1, while NC then stems from (4.4) with (4.7), (4.8), giving the numerical solution

presented in figure 4.2. These two figures are for the relatively mild parameter

values shown in table 4.2 together with the boundary condition uA = 45 which again

is comparatively mild.

The computational approach of chapter 2 was extended and adapted for the

present task. Second-order accuracy in time and space and appropriate lagging

were notable features again. Results are plotted in figure 4.3. More realistic cases

will be re-addressed in section 11 after the discussion of analytical properties in the

following section.

Table 4.1: Additional parameters used in ODTX model for HMX explosive assuming
multi-step kinetics as in [1], converted into SI units.

Parameter with units Symbol Value
Heat of first reaction (J/kg) Q1 −4.2e5
Heat of second reaction (J/kg) Q2 1.26e6
Heat of third reaction (J/kg) Q3 5.04e6
Activation Energy of first reaction (J/mol) E1 2.21e5
Activation Energy of second reaction (J/mol) E2 1.85e5
Activation Energy of third reaction (J/mol) E3 1.43e5
First Pre-exponential Constant (kg m−3 s−1) Z1 1.4e24
Second Pre-exponential Constant (kg m−3 s−1) Z2 1.9e19
Third Pre-exponential Constant (kg m−3 s−1) Z3 1.5e15
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Figure 4.1: The numerical approximation (using ODE45 in MATLAB) compared with the
analytical solution of Equation (4.3)
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Figure 4.2: The numerical approximation (using ODE45 in MATLAB) of Equation (4.4)
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Figure 4.3: The numerical solutions u, NA, NB and NC satisfying (4.1)–(4.4), using a
second–order numerical scheme, with the relatively mild parameters supplied
in table 4.2.

Table 4.2: Mild parameters used in analysis of chapter 4, 4.1.

Parameter with units Symbol Value
Heat of first reaction (J/kg) Q1 −10
Heat of second reaction (J/kg) Q2 20
Heat of third reaction (J/kg) Q3 30
Activation Energy of first reaction (J/mol) E1 70
Activation Energy of second reaction (J/mol) E2 60
Activation Energy of third reaction (J/mol) E3 50
First Pre-exponential Constant (kg m−3 s−1) Z1 300
Second Pre-exponential Constant (kg m−3 s−1) Z2 200
Third Pre-exponential Constant (kg m−3 s−1) Z3 100
Pre-exponential Constant (s−1) A 200
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4.1 Analytical solutions and comparisons for three

reactants

Turning to asymptotic analysis for the multi-kinetics interactions we observe that

in effect Qn, Zn terms here replace the ρΩ and A terms in the one reactant case

in chapter 2 and the N’s here correspond to the reactant α in the single reactant

case. We use the same scalings as before in chapter 3, that is we set t = A−1t̄ and

u = E
R ū and expand the solution. In addition, to account for the new parameters

Zn = AZ̄nρ and En = EĒn, we choose E2 as a representative value of E to try to

ensure Z̄n ∼ O(1), Ēn ∼ O(1), Nn ∼ O(1) and x ∼ O(1) to begin. We have again

used mild values of En, Zn and A in the first instance, see table 4.2 for exact values.

With the scalings above, the controlling equations become

∂ ū
∂ t̄

= κ̄
∂ 2ū
∂x2 +NAΩ̄1 exp

(
− Ē1

ū

)
+NBΩ̄2 exp

(
− Ē2

ū

)
+N2

CΩ̄3 exp
(
− Ē3

ū

)
,

(4.9)

dNA

dt̄
=−NAZ̄1 exp

(
− Ē1

ū

)
, (4.10)

dNB

dt̄
= NAZ̄1 exp

(
− Ē1

ū

)
−NBZ̄2 exp

(
− Ē2

ū

)
, (4.11)

dNC

dt̄
= NBZ̄2 exp

(
− Ē2

ū

)
−N2

CZ̄3 exp
(
− Ē3

ū

)
, (4.12)

where κ̄ = κ

ρcvA which when using the full parameter values gives us κ̄ ≈ 3.8863e−

27 and Ω̄n =QnZ̄n

(
R

cvE2

)
, for n= 1,2,3. When using relatively mild parameter val-

ues we have instead A= 200, κ̄ = 9.7388−10. Thus κ̄ is the most extreme parameter

in both cases, using the full parameter values and milder values. Hence we base our

asymptotic analysis on κ̄ << 1 as before in chapter 3. We proceed by again separat-

ing the problem into a core and wall layers with equations describing the behaviour

in each.

The core problem is reduced for small κ̄ to equation (4.9) with a negligible ∂ 2ū
∂x2

term, as before in chapter 3. Hence, it follows that the quasi-ODE

dū
dt̄

= NAΩ̄1 exp
(
− Ē1

ū

)
+NBΩ̄2 exp

(
− Ē2

ū

)
+N2

CΩ̄3 exp
(
− Ē3

ū

)
, (4.13)
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holds in the core, and we have the following ODEs for the reactants NA, NB and NC,

dNA

dt̄
=−NAZ̄1 exp

(
− Ē1

ū

)
, (4.14)

dNB

dt̄
= NAZ̄1 exp

(
− Ē1

ū

)
−NBZ̄2 exp

(
− Ē2

ū

)
, (4.15)

dNC

dt̄
= NBZ̄2 exp

(
− Ē2

ū

)
−N2

CZ̄3 exp
(
− Ē3

ū

)
. (4.16)

Equations (4.13)-(4.16) can readily be solved numerically subject to the following

initial conditions at t̄ = 0,

NA(x,0) = 1, (4.17a)

NB(x,0) = NC(x,0) = 0, (4.17b)

ū(x,0) = C̄, C̄ =
RC
E2

for x ∈ D. (4.17c)

In figure 4.4, the ODEs (4.13)-(4.16) have been solved using the relatively mild

parameter values in table 4.1.

In the wall layers the same scaling as that in chapter 3 applies, so that x =

−1+ κ̄1/2x̄ at the left-hand wall and similarly at the right-hand wall. This reduces

equation (4.9) to the form

∂ ū
∂ t̄

=
∂ 2ū
∂x2 +NAΩ̄1 exp

(
− Ē1

ū

)
+NBΩ̄2 exp

(
− Ē2

ū

)
+N2

CΩ̄3 exp
(
− Ē3

ū

)
, (4.18)

independently of κ̄ . To solve the reduced system comprising (4.18) with (4.10)-

(4.12) computationally we developed a finite difference scheme based closely on

those of chapters 2–4. Results for the wall layer are presented in figure 4.5 where

we have used the relatively mild parameter values of table 4.2.

Comparisons given in figure 4.6 between the above asymptotic solution and

the full numerical solution tend to indicate fair agreement for the milder parame-

ter range of Table 4.2. These comparisons also indicate significant computational

savings using the asymptotic approach.

Further analysis of the core proves to be helpful. Thus (4.13)-(4.16) imply that
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Figure 4.4: The numerical solutions (using ODE45 in MATLAB) to ū, NA, NB and NC satis-
fying Equations (4.13)-(4.16) in the core with relatively mild parameter values
supplied in Table 4.2.

a certain non–trivial linear combination of the left–hand sides sums to zero and so

on integration ū can be expressed in terms of the reactions in the form

ū = a1(1−NA)−a2NB −a3NC +C̄. (4.19)

Here the initial conditions in (4.17), which include C̄, determine the constant of

integration and the constant coefficients are given by

an = ∑
(n,3)

Ω̄n

Z̄n
(4.20)

for n = 1,2,3. We are left with four equations (4.14)-(4.16), (4.19) for NA, NB, NC,

ū. Sample solutions of this nonlinear system presented in figure 4.7 show (NA, NB,

NC) starting as (1,0,0) in line with (4.17) and eventually tending to (0,0,0) at suf-
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Figure 4.5: The wall solutions ū, NA, NB and NC satisfying (4.18), with the mild parameters
supplied in Table 4.2. Note that the x̄ range has been truncated to facilitate a
numerical implementation.

(a) Wall layer solution with mild parameters (b) Full numerical solution with mild parame-
ters

Figure 4.6: Finite difference solutions to the full non–asymptotic problem shown (right)
and the asymptotic wall problem (left) using the mild parameters in table 4.2.
For the non–asymptotic problem we set T̄max = 1. In order to compare the
solutions directly we multiply the non asymptotic u by R

E .
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ficiently large times, with ū increasing monotonically along with other interesting

behaviour during the evolution.
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Figure 4.7: The numerical approximation to Equations (4.5), (4.14)-(4.16), (4.19). Here
the values D̄ = 1, dt = 0.005, Ω̄1 = 1, Ω̄2 = 2, Ω̄3 = 3, Z̄1 = 0.5, Z̄2 = 1,
Z̄3 = 1.5, Ē1 = 1.5, Ē2 = 1, and Ē3 = 0.5 have been used.

A phase-plane view is also useful here. It follows from treating NB, NC as func-

tions of NA by virtue of eliminating t̄ explicitly from (4.14)-(4.16) through division

to yield the two equations

dNB

dNA
=−1+ Z̄21NBN−1

A exp
(

Ē12

ū

)
, (4.21)

dNC

dNA
=−Z̄21NBN−1

A exp
(

Ē12

ū

)
+ Z̄31N2

CN−1
A exp

(
Ē13

ū

)
, (4.22)

with constants Z̄21 = Z̄2/Z̄1, Z̄31 = Z̄3/Z̄1, Ē12 = Ē1−Ē2, Ē13 = Ē1−Ē3. The system

is uncoupled in the sense that (4.21) together with (4.19) acts to determine NB and

then (4.22) with (4.19) determines NC in principle. The value of NA is taken to start

at unity and decrease monotonically to zero. Solutions of (4.21), (4.22) with (4.19)

are displayed in figure 4.8 as NB(NA), NC(NA), ū(NA) plots and in figure 4.9 in the
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NB −NC plane. Subsequently from these solutions ū can be found from (4.19) and

the time-dependence can be found by addressing (4.14) as an equation for t̄ as a

function of NA.
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Figure 4.8: The numerical approximation to Equations (4.19), (4.21), (4.22) for two cases;
case 1 is where Z̄21 = 0.4 and Z̄31 = 0.16 displayed by the solid lines (blue, red
and black) and case 2 is where Z̄21 = 0.2 and Z̄31 = 0.04 displayed by the green
lines. In both cases D̄ = 1, Ē12 = 0.46, Ē13 = 1, a1 = 0.5, a2 = 0.53 a3 = 0.43
and dNA = 0.000005. The dashed lines represent an accuracy check where the
effective numerical step dNA is halved.

There are seven independent parameters in the phase plane of (4.21), (4.22),

namely

(a1,a2,a3,C̄, Ē12, Z̄21, Z̄31)/(Ē13), (4.23)

or combinations thereof, and in the numerical work leading to the above figures we

took those parameters to be very mild in value. The alternative of singling out Ē12

instead of Ē13 would also cover the entire parameter space at issue but in a different

way and with equivalent results. We set Ē13 equal to unity in the numerical study

without loss of generality because here only the ratios of coefficients matter. By
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Figure 4.9: The numerical approximation to Equations (4.19), (4.21), (4.22) for two cases;
case 1 is where Z̄21 = 0.4 and Z̄31 = 0.16 represented by the solid blue line
and case 2 is where Z̄21 = 0.2 and Z̄31 = 0.04 represented by the solid red line.
In both cases D̄ = 1, Ē12 = 0.46, Ē13 = 1, a1 = 0.5, a2 = 0.53 a3 = 0.43 and
dNA = 0.000005. Here the dashed black line demonstrates an accuracy check
where dNA has been halved.

contrast, typical numerical values of the parameters for the realistic case mentioned

earlier turn out to be

(0.498,0.533,0.427,1,0.462,1.36e−5,1.070e−9), (4.24)

approximately. The small values of Z̄21, Z̄31 here suggest consideration of an

asymptotic analysis, guided by the insight provided in the single reactant case of

chapter 3. Taking ε = Z̄21 as small and Z̄31 as of order ε2 we find that there are

at least three distinct parts of the NA range to discuss for (4.21), (4.22). For the
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majority of the range where NA is of order unity the solution expands as

NB = NB0 + εNB1 + . . . , (4.25)

NC = εNC1 + . . . , (4.26)

ū = ū0 + ε ū1 + . . . , (4.27)

where ū0 = (1−NA)(a1 − a2) + C̄. Substitution into (4.19), (4.21), (4.22) gives

successively

NB0 = 1−NA, (4.28)

dNB1

dNA
= (1−NA)N−1

A exp
(

Ē12

(a1 −a2)(1−NA)+C̄

)
, (4.29)

dNC1

dNA
=−dNB1

dNA
, (4.30)

ū1 =−a2NB1 −a3NC1. (4.31)

The numerical value of ū0 at NA = 0.5 is 0.985, which is suitably close to the com-

putational finding in figure 4.8. The trends of (4.28)-(4.30) are similarly close to

those in the figure; for example the perturbation in NB about the straight line (4.28)

is nearly equal and opposite to the curve of NC indicated by (4.30). The next signif-

icant part of the range (apart from a benign region where NA is of order ε) occurs

when NA is exponentially small such that

NA = exp
(
−r
ε

)
with NB of O(1). (4.32)

Here the variable r is typically O(1). Integration of (4.21) and matching to (4.25)

with (4.28) at small r, gives us the solution

NB = exp(−c1r), (4.33)

at leading order, where c1 = exp
(

Ē12
a1−a2+C̄

)
is an O(1) constant. The NB solution

therefore tends to zero as NA tends to zero over this scale (when r tends to infinity),
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in the form Nc1ε

A , a form which agrees with the balance in (4.21). The corresponding

NC however is given by 1−NB and so tends to unity then. This leads to the final

part of the NA range in which NA is even smaller, specifically

NA = exp
(
− s

ε2

)
with NC of O(1). (4.34)

Here we find that the leading–order solution matching to that of the previous part of

the range at small s values is

NC =
c5

(s+ c5)
, (4.35)

where c5 = exp
(
− Ē13

a1−a2+C̄

)
approximately is an O(1) positive constant. The NC

solution now tends to 0+ as NA tends to zero over this scale (when s tends to in-

finity), in the form c5/(−ε2 ln(NA)), a form which is in balance with (4.22). The

slowness of the approach of NC to zero here compared with that for NB is notable.

The trends in (4.32)-(4.35) are consistent with the computational results for NB,

NC in figure 4.8 at small NA values. The associated time dependence follows from

inversion of (4.14); for instance the first part of the NA range ends with

NA ∝ exp
(
− Z̄1t̄

c6

)
as t̄ → ∞, (4.36)

with c6 = exp
(
− Ē1

a1−a2+C̄

)
being a known O(1) positive constant.

The analytical trends above are consistent with the full computational prop-

erties. In addition the result (4.19) implies that the maximum of ū is a1 + C̄; in

dimensional terms this gives for representative realistic conditions

ūc,max = 4685 degrees K, (4.37)

which again is of potential interest.
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4.2 Summary of chapter
In this chapter the model presented in chapter 2 was extended to include three step

reactions and again the combination of simulation and asymptotic analysis, pre-

sented in chapter 3, was applied, yielding close agreement between results from

the full reaction-diffusion problem and those from the asymptotic problem using a

mild set of parameters. This concludes the part of the thesis containing work on the

reaction-diffusion problem with a focus on heat flow. The next part of the thesis

considers the effects of gas produced on the system.
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Chapter 5

Gas Treatment

The treatment of gas effects generated in the present explosive context forms an

important part of our future work. The current purely thermal analytical models

in use at AWE and elsewhere do not account for the treatment of gas produced;

once gas has been formed it is neglected. In a physically realistic case on the other

hand, the hot gas which is produced by the reaction drives the temperature. The

current work sets out to incorporate the treatment of gas which is produced into our

model. Some of the detailed modelling and analysis required to account for gas

produced has been done below. We show some preliminary results in this chapter

and in later chapters. First we consider a simple discrete model of gas flow and

thermal gas-solid interactions, then extend to a continuous model. We also consider

the combustion case in later sections.

Here we use discrete physical reasoning with the aim of constructing a basic

model. Consider two gases occupying the two regions above in figure 5.1, one gas

in each compartment. The line separating the gases is treated as an infinitely thin

membrane which prevents mixing or interaction of the two gases from taking place.

Here P1,0 denotes the initial pressure, V1,0 denotes the initial volume occupied by

the gas, and T1,0 denotes the initial temperature. The first subscript refers to gas 1 or

gas 2 and the second subscript refers to the initial time, t = 0. We assume that the

pressure P1,0 > P2,0. The mass of the first gas is defined by M1 = ρ1,0V1,0, where ρ

represents the density, and the mass of the second gas is defined by M2 = ρ2,0V2,0.
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Region1 Region2

M1 = ρ1,0V1,0
V1,0,P1,0,T1,0

M2 = ρ2,0V2,0
V2,0,P2,0,T2,0

Figure 5.1: Gases occupying two regions separated by an interface. Here region 1 repre-
sents gas which already exists at time t and region 2 represents newly created
gas.

After some time, the interface is removed and the gas mixes uniformly. This

results in M1 spreading slightly and M2 compressing slightly, since P1,0 > P2,0. This

distributes the pressure and temperature such that P1,1 = P2,1 and T1,1 = T2,1, but

V1,1 >V2,1 as the volumes become unequal in general.

Since the total volume of gas is preserved however, we have

V1,0 +V2,0 =V1,1 +V2,1, (5.1)

i.e. the total volume of gas at the initial stage (first stage) in figure 5.1 is equal to

the total volume of gas in the next stage (second stage); the total volume does not

change.

We use the ideal gas equation next, describing the behaviour of a gas under

certain conditions, to model the gas motion in each volume in the first instance.

Thus

PV = nRT,

where P is the pressure, V is the volume, R is the universal gas constant, T is the

temperature and n, the number of moles of gas is given by n = mass
molecular weight or

equivalently n = M
Mw

. In the schematic 5.1 above, the ideal gas law describing the
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gas, occupying the first region can be written as

P1,0V1,0 = n1RT1,0, (5.2)

where n1 = M1
Mw1

in the initial stage. Similarly the state of the second gas, also

depicted in figure 5.1, can be described by

P2,0V2,0 = n2RT2,0, (5.3)

where n2 =
M2

Mw2
.

In the second stage, we have one pressure P and one temperature T for both

gases and the constant R remains the same. Hence we have

PV1,1 = n1RT, (5.4)

PV2,1 = n2RT (5.5)

for the first and second gas respectively. We may assume, for now, that n1 = n2 and

therefore following from equations (5.2)-(5.3) we have

PV1,1

T
=

P1,0V1,0

T1,0
, (5.6)

PV2,1

T
=

P2,0V2,0

T2,0
(5.7)

for the first and second gas respectively. We make the assumption that the amount

of heat in the box confining the gases in figure 5.1 is preserved. Assuming the

specific heat, ci, remains constant, the heat generated by the first gas is described

by c1M1(T −T1,0), where c1 is the specific heat of the first gas and (T −T1,0) is the

rise in temperature. Similarly the heat generated by the second gas is described by

c2M2(T −T2,0). Assuming there is no heat added, the total heat generated is zero,

giving

c1M1(T −T1,0)+ c2M2(T −T2,0) = 0. (5.8)

We now have six equations, (5.1)-(5.5) and (5.8), for the six unknowns; V1,1, V2,1,P,
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T , P1,0 and P2,0. We can determine P1,0 and P2,0 by rearranging equations (5.2) and

(5.3) respectively such that

P1,0 =
n1RT1,0

V1,0
, (5.9)

P2,0 =
n2RT2,0

V2,0
. (5.10)

From equations (5.4) and (5.5) we have

n1R =
PV1,1

T
, and n2R =

PV2,1

T
. (5.11)

We can write R(n1,0 + n2,0) =
PV1,1

T +
PV2,1

T ; making use also of equation (5.1) this

can be written as
P
T

=
R(n1 +n2)

(V1,0 +V2,0)
. (5.12)

From equation (5.8) we obtain the temperature solution

T =
c1M1T1,0 + c2M2T2,0

(c1M1 + c2M2)
. (5.13)

Clearly this solution is a weighted average, the weighting being the heat capacity.

By substituting (5.13) into equation (5.12), we get an expression for the pressure P

given by

P =
R(n1 +n2)(c1M1T1,0 + c2M2T2,0)

(V1,0 +V2,0)(c1M1 + c2M2)
. (5.14)

The volumes V1,1 and V2,1 follow as

V1,1 =
n1RT

P
=

n1(V1,0 +V2,0)

n1 +n2
,

V2,1 =
n2RT

P
=

n2(V1,0 +V2,0)

n1 +n2
,

from equations (5.11) and (5.12).
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Region1 Region 2

M1,i = ρ1,iV1,i
V1,i,P1,i,T1,i

M2,i = ρ2,iV2,i
V2,i,P2,i,T2,i

Figure 5.2: Gases occupying two regions separated by an interface at an initial stage i.

Region1 Region 2

M1,i+1
V1,i+1,
P1,i+1,
T1,i+1

M2,i+1
V2,i+1,
P2,i+1,
T2,i+1

Figure 5.3: Gases occupying two regions separated by an interface at a stage i+1.

5.1 Discrete Model

The discrete scheme, derived in the discrete physical reasoning above, may be ini-

tialised using the initial conditions given in table 5.1.

We may update the quantities as follows:

M1,i = ρ1A

(∫ x0

−x0

∂α

∂ t
dx

)
∆t, (5.15)

where ∆t is small, α is the extent of reaction (see details in the earlier chapter 2), A is

the specific surface area and x0 is the boundary of the domain. Hence V1,i =M1,i/ρ1.

We may now update T1,i using the following expression for T1,i = TAV,i,

TAV,i =

∫ x0
−x0

∂α

∂ t u(x, t)dx∫ x0
−x0

∂α

∂ t dx
,
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Table 5.1: Initial conditions used in discrete scheme analysis. Values supplied by AWE.

Parameter Initial Value
V1,0 0.01×10−6

ρ1,0 1800
M1,0 1800×0.01×10−6

T1,0 2000
n1,0 34.2×10−3

P1,0 5.6868×1010

V2,0 0.1×10−6

ρ2,0 372
M2,0 0.2×1860×0.1×10−6

T2,0 600
n2,0 34.2×10−3

P2,0 1.7060×109

where u(x, t) is the temperature in the solid, and hence,

T2,i+1 =
c1M1,iTAV,i + c2M2,iT2,i

c1M1,i + c2m2,i
,

=
M1,iTAV,i +M2,iT2,i

M1,i +M2,i
,

for c1 = c2. Thus we may update the quantities in our discrete scheme using the

following relations:

M2,i+1 = M1,i +M2,i, (5.16)

V2,i+1 =V1,i +V2,i, (5.17)

n2,i+1 = n1,i +n2,i, (5.18)

ρ2,i+1 =
M2,i+1

V2,i+1
, (5.19)

T2,i+1 =
M1,iTAV,i +M2,iT2,i

M1,i +M2,i
, (5.20)

P2,i+1 =
n2,i+1RT2,i+1

V2,i+1
. (5.21)

where V1,i = M1,i/ρ1 and M1,i is given by equation (5.15).

Numerical solutions of the discrete system above are presented in figure 5.4,

showing volume V2, temperature TG, mass M2 and pressure P2 versus time and tem-
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perature U and reaction fraction α versus x. The apparent near-saturation after rapid

temporal evolution of the solutions is notable. The numerical solutions presented

here are the gas quantities from region 2 of figure 5.2, where these quantities have

been introduced by the reaction and have mixed with those from region 1.
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Figure 5.4: Discrete model solutions to equations (5.16)–(5.21) using mild parameters.
Here TG represents T2(i+ 1) and U and α represent the solid temperature and
extent of reaction.

5.2 Analysis for Differential Scheme
In this section we build on the analysis in section 5.1 and extend the model from

discrete form to differential form. The box on the top right hand side of figure 5.5

represents the original quantities at time t. We may calculate the quantities in the top

left hand side box of figure 5.5, which represent the change in quantities, using the

equations described below. To begin, the total mass of gas created, which we later
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Region1 Region2

∆M,∆V,
TAV ,PAV

PG(t),VG(t),TG(t)

PG(t +∆t),
VG(t +∆t),
TG(t +∆t)

Figure 5.5: Gas and solid occupying two regions separated by an interface. The lower box
on the right hand side is calculated by combining the top two boxes.

use to calculate the volume of new gas created and hence the average temperature

and pressure of the gas, can be calculated using

∆M(t) = ρ1A
[∫ x0

−x0

∂α

∂ t
dx
]

∆t. (5.22)

Hence the volume of new gas created in the time ∆t uses equation (5.22) such that

∆V (t) =
∆M(t)

ρ1
, (5.23)

and the average temperature of gas being generated in the solid is given by

TAV (t) =

∫ x0
−x0

∂α

∂ t u(x, t)dx∫ x0
−x0

∂α

∂ t dx
. (5.24)
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Finally, the average pressure of the gas within the solid is given by

PAV (t) =
∆nRTAV (t)

∆V (t)
, (5.25)

which is derived from the ideal gas law. Recall that α represents the extent of

reaction and u represents the temperature of the solid. The quantities shown in the

bottom right hand side box of figure 5.5 are calculated by combining the existing

quantities (shown on the top right hand side of figure 5.5) with those created (shown

on the top left hand side of figure 5.5). The volume of gas at time t+∆t can be found

using

VG(t +∆t) = ∆V (t)+VG(t), (5.26)

and the temperature at time t +∆t is given by

TG(t +∆t) =
c1m1(t)TAV (t)+ c2m2(t)TG(t)

c1m1(t)+ c2m2(t)
, (5.27)

where we assume c1 = c2 to begin and m1 and m2 are given by m1(t) = ρ1∆V (t),

and m2(t) = ρ2VG(t). The pressure of the gas at time t +∆t is given by

PG(t +∆t) =
n(t +∆t)RTG(t +∆t)

VG(t +∆t)
. (5.28)

Finally, we have the following system of eight equations to solve for the eight

unknowns, ∆M(t),∆V (t),TAV (t),PAV (t),VG(t +∆t),m2(t),TG(t +∆t),PG(t +∆t), at
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each time step.

m1(t) = ∆M(t) = ρ1A

(∫ x0

−x0

∂α

∂ t
dx

)
∆t, (5.29)

∆V (t) =
∆M(t)

ρ1
, (5.30)

TAV (t) =

∫ x0
−x0

∂α

∂ t u(x, t)dx∫ x0
−x0

∂α

∂ t dx
, (5.31)

PAV (t) =
∆nRTAV (t)

∆V (t)
, (5.32)

VG(t +∆t) = ∆V (t)+VG(t), (5.33)

m2(t) = M(t) = ρ2VG(t), (5.34)

TG(t +∆t) =
m1(t)TAV (t)+m2(t)TG(t)

m1(t)+m2(t)
, (5.35)

PG(t +∆t) =
n(t +∆t)RTG(t +∆t)

VG(t +∆t)
. (5.36)

We note here that we can anticipate the ∆t terms will usefully be replaced by dt

terms leading to derivatives. This will be taken up in the next model which is

described in section 5.3. In the set of equations above, PAV is redundant, i.e. it is not

needed for any further calculations, nor is it a quantity in which we are interested at

the moment. Similarly PG(t +∆t) is not required for further calculations, but it is a

quantity we are interested in calculating. We also have

m2(t +∆t) = m2(t)+m1(t),

= M(t)+∆M(t),

and

n2(t +∆t) = n(t)+∆n(t),

which can be updated such that n(t)= M(t)
Mw i.e. the number of moles of gas at a given

time t is equal to the mass M(t) at time t over the molecular weight MW which is

constant. Similarly, ∆n(t) = ∆M(t)
Mw , that is the change in n at time t, given by ∆n(t)
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is equal to the change in mass at time t, ∆M(t) over the molecular weight MW . In

this model and the previous model, we have treated n1(t) and n2(t) as constants.

Figure 5.6 shows the solutions to equations (5.29)–(5.36), where we are calculating
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Figure 5.6: Sequential scheme solutions to gas equations (5.29)–(5.36) in section 5.2.

the gas quantities but not yet incorporating any feedback into the system. Beginning

from left to right, top to bottom, we observe that the volume of gas VG exceeds the

maximum volume 2 by a small amount. A similar overshoot is found analytically in

subsequent sections. We also notice a dip in the gas temperature TG. The pressure

of gas PG drops rapidly whilst the temperature of the solid u appears to vary only

on the boundaries. The extent of reaction α increases to unity as expected. Finally

the average temperature of the solid peaks at approximately 2000K as a result of the

maximum solid temperature u, after which it drops down to 45K (the solid boundary

condition).
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5.3 Continuous Gas model

We now consider the issue of turning the gas-effect discrete form from section 5.2

into a differential-equations formulation. This is achieved simply by taking the

limit, in the discrete formulation, as the discrete time step tends a strictly vanish-

ingly small element dt. This limit process yields the system

dVG(t)
dt

= A
∫ x0

−x0

∂α

∂ t
dx, (5.37)

dM(t)
dt

= ρ1
dVG(t)

dt
, (5.38)

TAV (t) =

∫ x0
−x0

∂α

∂ t u(x, t)dx∫ x0
−x0

∂α

∂ t dx
, (5.39)

PAV (t) =
∆nRTAV (t)

∆V (t)
, (5.40)

m1(t) = ρ1
dVG

dt
∆t, (5.41)

m2(t) = ρ2VG(t), (5.42)

dTG(t)
dt

=
1

m2(t)

(
TAV (t)−TG(t)

)
dM(t)

dt
, (5.43)

PG(t) =
nRTG(t)
VG(t)

, (5.44)

where we compute VG(t) at small time using the numerical approximation below,

since at t = 0, VG(t) = 10−7

VG(t) =
dVG(t −∆t)

dt
∆t +VG(t −∆t),

and equation (5.43) follows from equation (5.35). In (5.41) m1 represents a small

increment and in (5.40) likewise, ∆n and ∆V are small increments.

As in section 5.2, PAV , PG and m1 are redundant. We may solve equation (5.43)

for TG (in terms of other quantities) both numerically and analytically using the clas-

sical integrating factor method as follows. We begin by rewriting equation (5.43)

as
dTG

dt
= k2(t)− k1(t)TG(t), (5.45)



5.3. Continuous Gas model 84

where k1(t) =
dM(t)

dt
m2(t)

and k2(t) = k1(t)TAV (t), where TAV (t) is given by equa-

tion(5.39). Thus we have

dTG

dt
+ k1(t)TG(t) = k2(t). (5.46)

Multiplying through by the integrating factor µ(t) = exp(
∫ t

0 k1(t)dt) gives

µ(t)
dTG

dt
+µ(t)k1(t)TG(t) = µ(t)k2(t),

(µ(t)TG(t))′= µ(t)k2(t),

µ(t)TG(t)+ c =
∫ t

0
µ(t)k2(t)dt,

TG(t) =
∫ t

0 µ(t)k2(t)dt − c
µ(t)

.

Applying the initial condition TG(0) to the above yields c =−TG(0) and thus

TG(t) =
∫ t

0 µ(t)k2(t)dt +TG(0)
µ(t)

. (5.47)

This solution (5.47) is shown in figure 5.7 (left). Alternatively, we may approxi-

mate TG(t) using a finite difference approximation, presented in figure 5.7 (right).

To approximate TG at time t, we take the weighted average of the previous time

points and approximate the derivative using a backwards difference in time. After

discretising equation (5.43) then expanding and simplifying, we are left with

TG(t) =

TG(t −1)

(
1
∆t −

dM(t)
dt

2m2(t)

)
+

dM(t)
dt

m2(t)
TAV (t)(

1
∆t +

dM(t)
dt

2m2(t)

) .

We observe close agreement in figure 5.7 between the results of the methods

used. Similarly, we may solve for VG(t) using more than one method. The

methods used are outlined immediately below and results are displayed in figure

5.8. Firstly, we may integrate equation (5.37) numerically. The result of this
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Figure 5.7: Comparison of TG(t) solutions using the integrating factor method (left) and
the finite difference approximation (right). Here TG(0) = 50.

method is shown in figure 5.8 on the left. Secondly, we may approximate VG(t)

by VG(t) =
dVG(t−1)

dt ∆t +VG(t − 1), which we initialise using the initial condition

VG(0) = 0.1× 10−6. This is shown in the middle plot of figure 5.8. Lastly, we

may integrate such that VG(t) = A
∫ x0
−x0

α(x, t)dx+VG(0) shown in figure 5.8 on the

right. We observe close agreement between the results of the three methods used to

compute VG(t) in figure 5.8.
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Figure 5.8: Comparison of VG(t) solutions to equation (5.37) using three different meth-
ods; numerical integration, finite difference approximation and analytical inte-
gration (outlined above).

We now solve equations (5.37)–(5.44), where (5.37) and (5.43) have been

solved (above) using a finite difference approximation. The numerical solutions
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are presented in figure 5.9, with the results being given in SI units.
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Figure 5.9: Solutions of the differential equations (5.37)–(5.44) solved using mild parame-
ter values.

5.4 Summary of chapter
The progress made in this chapter has been concentrated on introducing the treat-

ment of gas into the model. We began by considering a discrete formulation as a

starting point and later converted this to a continuous framework. Comparison of

the discrete and continuous schemes has been made for the same physical scenario

in the gas treatment. As the discretisation is made finer the two models should

converge to the continuous result. The next step to improve the model is to incorpo-

rate feedback between gas and solid, an aspect which we consider in the following

chapter.



Chapter 6

Feedback

In this chapter we introduce some feedback between the gas and the solid. The

gas which is produced by the reaction is at a temperature different from that which

is heating the solid on the boundaries. We expect the gas produced to be hotter

than the boundary temperatures and therefore we anticipate an accelerated reaction

rate. To incorporate some feedback, we begin by using the temperature of the gas

calculated in our continuous scheme (equation (5.47)) as a boundary condition on

the solid problem. This heats the solid on the boundaries as the temperature of the

gas varies with time t. This is implemented by prescribing the temperature of the

gas TG(t) as the solid boundary condition(s).

To examine the effects of the gas we may compare figure 5.9 with figure 6.1

where mild parameters have been used in both cases; the solutions here were ob-

tained using the numerical techniques of the previous chapters. We observe the

temperatures of both the gas and the solid become much higher when feedback

is incorporated. The pressure of the gas is also much higher. The volume of gas

remains virtually unchanged as expected.

When including feedback from the gas temperature in the solid calculations

with physical parameter values, as shown in figure 6.2, the numerical scheme breaks

down (so far). Concerning this breakdown we now examine the effects on the vol-

ume of gas, VG, of gradually increasing the pre-exponential constant parameter A.

From figure 6.3 it is clear to see that for milder values of A the numerical scheme

copes well. However as A tends to its true value, the numerical scheme breaks down
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Figure 6.1: Differential equations solutions with feedback from gas to solid using mild
parameters.

and ∆t requires increasing refinement. There is qualitatively little change between

the second and third column of results in figure 6.3 for varying ∆t and hence we

focus our attention on refining the spatial discretisation, ∆x.

In figure 6.4 we observe the effects of the spatial discretisation on the solution,

resulting in convergence with finer spatial discretisation. Figure 6.5 provides a fo-

cussed view of the results shown in figure 6.4. Comparing the bottom plot in figure

6.4 with the plot in the third row, second column of figure 6.3 (where we have used

the same ∆t, E and A values, but ∆x has changed) we observe great improvement in

the solution. Unfortunately, for the true value of A ≈ 5×1019 we would need to re-

fine both the spatial and temporal discretisations ∆x,∆t beyond standard computing

capabilities.
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Figure 6.2: Differential equations solutions with feedback from gas to solid using physical
parameters.
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Figure 6.3: The volume of gas VG for varying ∆t and parameter value A representing the
pre-exponential constant. Here ∆t varies from ∆t = 0.0001,0.00001,0.000001
(left to right column) and A varies from A = 200,2000,20000 (top to bottom
row). Here we have fixed E = 10 and ∆x = 0.002.
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6.1 Moving Boundary
As the solid burns, more and more gas is created until eventually the entire domain

becomes filled with gas once all of the solid explosive has been burnt up. This is

demonstrated in the schematic 6.6.

x =−1 x = 1x =−c x = c

Gas Solid Gas

Figure 6.6: Gases occupying two regions (for the symmetric case) with a solid explosive,
separated by an interface at some stage i.

Here the entire domain over which the problem is modelled is shown by x =

±1 and x = ±c represents the boundaries of the solid. The gas which is created

occupies the space between x=±1 and x=±c. These boundaries c(t) are functions

of time t since the position of the boundaries of the solid move as the reaction

progresses and the solid is burnt up. To model this we transform the problem using

the following simple transformation: x = cx̄. Under this transformation x̄ ∈ (−1,1)

and x ∈ (−c,c). Applying this transformation to the double x derivative in the

governing equations

ρcv
∂u
∂ t

= κ
∂ 2u
∂x2 +ρΩ

∂α

∂ t
,

∂α

∂ t
= A(1−α)exp

(
− E

Ru

)
,

gives

ρcv
∂u
∂ t

=
κ

c2
∂ 2u
∂ x̄2 +ρΩ

∂α

∂ t
,

∂α

∂ t
= A(1−α)exp

(
− E

Ru

)
. (6.1)

At time t = 0, x = x̄ and the position of the boundary is given by c(0) = ±1.
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At a given time t, we chose to calculate the position of the boundary c(t) using

c(t) = 1− VG(t)
2

. (6.2)

We may now update the continuous scheme presented in section 5.3 such that the

governing equations become

dVG(t)
dt

= A
∫ c

−c

∂α

∂ t
dx, (6.3)

dM(t)
dt

= ρ1
dVG(t)

dt
, (6.4)

TAV (t) =

∫ c
−c

∂α

∂ t u(x, t)dx∫ c0
−c0

∂α

∂ t dx
, (6.5)

dTG(t)
dt

=
1

m2(t)

(
TAV (t)−TG(t)

)
dM(t)

dt
. (6.6)

Here we have used m1(t) = ρ1
dVG
dt ∆t and m2(t) = ρ2VG(t). We may use equa-

tions (6.3)–(6.6) to calculate the average pressure of gas which is given by PAV (t) =
nRTAV (t)

VG(t)
, as well as the pressure of the gas, given by

PG(t) =
nRTG(t)
VG(t)

. (6.7)

We note that in the updated system presented in this section, the integrals are evalu-

ated over (−c,c) since this is now the domain which is spanned by the solid explo-

sive.

In the results in figure 6.7, we observe that despite the extremely high tem-

perature of the gas, shown by the figure labelled TG, the low diffusivity of heat in

the solid means that the temperature u of the solid prevents the temperature of the

gas from penetrating the solid. Thus we can conclude that the initial temperature of

the solid affects the majority of the solid slab’s temperature. We also observe from

figure 6.7 that the position of the moving boundary c (which we expect to start at

x = ±1 and eventually reach the centre of the slab x = 0 once all of the solid has

been burnt) does not reach x = 0 as expected. This, along with the fact that the vol-
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Figure 6.7: Differential equations solutions to equations (6.2)–(6.7), where t = tmax in the

plots representing U and α .

ume of gas VG shown here does not reach 2, suggests there could be an issue with

the way in which the problem is being modelled.

In figure 6.8 we plot U∗(x, t), where

U∗(x, t) =

u(x, t), for x ∈ [−c(t),c(t)],∀t

TG(t), otherwise.
(6.8)

Figure 6.8 shows the boundaries of the solid tending towards zero from the left and

right as the solid is burnt. The temperature of the gas increases as the solid is being

used up. Figure 6.9 represents the extent of the reaction α∗ at fixed times where
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Figure 6.8: Plot of U∗ where U∗ =U∗(x, t). Temperatures of gas (black dashed lines) and
solid (blue solid lines) at fixed times t = 0.02,0.04,0.06.

α
∗(x, t) =

α(x, t), for x ∈ [−c(t),c(t)],∀t

1, otherwise.
(6.9)

Here we plot α∗(x, t)= 1 to represent a fully reacted product, i.e. there is no reaction

in the gas region.
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6.2 Asymptotic Analysis

Motivated by the numerical inaccuracy and difficulties faced in the previous section

(section 6.1), we seek an alternative approach using asymptotic analysis. Recall the

governing equations

ρcv
∂u
∂ t

= κ
∂ 2u
∂x2 +ρΩ

∂α

∂ t
, (6.10)

∂α

∂ t
= A(1−α)exp

(
− E

Ru

)
; (6.11)

after applying the transformations u = E
R ū and t = A−1t̄ and neglecting the diffusion

term as justified in previous chapters, equation (6.10) becomes ∂ ū
∂ t̄ = Ω̄

∂α

∂ t̄ . The
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latter is equivalent to

ū = Ω̄α +C̄, (6.12)

in the core region (which occupies the majority of the slab), since we omit spatial

dependence. We also apply the transformations C̄ = R
EC, where C is the initial

temperature condition, and Ω̄ = ΩR
CvE to the governing equations. This implies that

equation (6.11) becomes

dα

dt̄
= (1−α)exp

(
− 1

Ω̄α +C̄

)
, (6.13)

after substituting equation (6.12). Considering the gas effects of the system, the

continuous equations derived in section 5.3, now scaled and without spatial depen-

dence, become

dVG(t)
dt̄

= A
∫ c

−c

∂α

∂ t̄
dx, (6.14)

= 2A
∂α

∂ t̄
c(t), (6.15)

dM(t)
dt̄

= ρ1
dVG(t)

dt̄
, (6.16)

= 2ρ1A
∂α

∂ t̄
c(t). (6.17)

Note here that as ∂α

∂ t̄ → 0 over time, both dVG(t)
dt̄ → 0 and dM(t)

dt̄ → 0 which implies

that VG and MG approach their maximum values. The average temperature of the

solid becomes

TAV (t) =

∫ c
−c

∂α

∂ t̄ u(t)dx∫ c
−c

∂α

∂ t̄ dx
, (6.18)

=
2∂α

∂ t̄ u(t)c(t)

2c(t)∂α

∂ t̄

(6.19)

= u(t). (6.20)
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Moreover, the following approximations can be used numerically to calculate the

quantities in the gas

VG(t) =
dVG(t −∆t)

dt̄
∆t +VG(t −∆t), (6.21)

m2(t) = ρ2VG(t), (6.22)

can be used to calculate various quantities in the gas. For example, we may calculate

the average pressure in the solid using

PAV (t) =
nRTAV (t)

VG(t)
,

although this quantity is not needed for any further calculations here but could be

of interest in terms of applications for example. The temperature of the gas is given

by the following equation

dTG(t)
dt̄

=
1

m2(t)

(
TAV (t)−TG(t)

)
dM(t)

dt̄
, (6.23)

=
2ρ1A∂α

∂ t̄ c(t)u(t)
ρ2VG(t)

−
2ρ1A∂α

∂ t̄ c(t)TG(t)
ρ2VG(t)

. (6.24)

Note that equation (6.23) may be integrated analytically by restating the equation

as

dTG(t)
dt̄

=
c1

∂α

∂ t̄ c(t)u(t)− c1
∂α

∂ t̄ c(t)TG(t)
VG(t)

,

giving the linear ordinary differential equation

dTG(t)
dt̄

+ k1(t)TG(t) = k2(t), (6.25)
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where c1 = 2ρ1A
ρ2

, k1(t) = c1
∂α

∂ t̄ c(t)
VG(t+∆t) and k2(t) = k1(t)u(t). After some work, we

obtain

TG(t) =

∫ t̄
0 exp

(∫ t̄
0 c1

∂α

∂ t̄ c(t)
VG(t)

dt̄
)

c1
∂α

∂ t̄ c(t)u(t)
VG(t)

dt̄ +TG(0)

exp
(∫ t̄

0 c1
∂α

∂ t̄ c(t)
VG(t)

dt̄
) (6.26)

which may be integrated numerically. We may also calculate the pressure of the gas

using

PG(t) =
nRTG(t)
VG(t)

. (6.27)
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Figure 6.10: Solutions to equations (6.12)-(6.27).
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6.3 Summary of chapter
In this chapter we considered the effects of incorporating feedback between the

solid and gas. We began by tracking the temperature of the gas and using this as

the solid boundary condition once the gas temperature has exceeded the prescribed

solid boundary condition. Next in section 6.1, we considered the effects of a mov-

ing boundary on the system. As the solid explosive burns, gas occupies the region

as the boundaries of the solid move inward (from x =±1 to x = 0). We observe (fig-

ure 6.7) that the model does not successfully capture the behaviour of the system as

expected. Finally, we explored an asymptotic approach, presented in section 6.2, to

the problem with the moving boundary. We maintain the solid-gas feedback at the

boundaries in this methodology. Although this approach proved more computation-

ally efficient, the flaws of the model namely the volume of gas not reaching VG = 2

as expected (presented in figure 6.10), are still present and cannot be resolved using

this approach. We have V ′
G(t) = 2Aα ′(t)c(t) in (6.15). Here c(t) = (1− VG

2 ) from

(6.2). Hence we obtain
dVG

dα
= A(2−VG). (6.28)

The solution of this ODE subject to VG = 0 at α = 0 (i.e. time zero) is

VG = 2(1− exp(−Aα)). (6.29)

Hence at large times (α tending to unity) we find

VG → 2(1− exp(−Aα)). (6.30)

This is always less than 2. In fact we can go further – if we put A = 1 into (6.30)

then we are predicting VG tending to 1.27 approximately: this value looks very close

to the maximum value of VG in figure 6.10. We can conclude that VG not reaching

2 is truly a feature of the model in chapter 6 and it is a limitation of that model.

The above findings act as a springboard for the new modelling addressed in the next

chapter.



Chapter 7

Gas model 2 - varying density

The aim of this chapter is to understand the interplay between the gas and the solid.

As the interaction takes place, hot gas is produced within the solid. Our first model,

presented in chapter 6, accounts for hot gas affecting the temperature only at the

sides of the solid. As described in chapter 6, this model proved to be unsuccessful.

The logical next step is to allow the gas temperature to penetrate the entirety of

the solid. One way to do this is to allow internal heating through porous effects.

Alternatively, density reduction is another approach which we can consider.

In chapter 6, we attempted to include some feedback from gas to solid using

a moving boundary approach. The results from this method were non-physical. In

the present chapter we introduce varying densities which we then extend to include

the ideal gas law in the system. To seek an internal or overall feedback effect on

the solid explosive we will associate a gradual reduction in the solid density, ρS(t),

with an increase in the amount of gas. We then modify the density of the solid,

keeping the spatial domain fixed between −1 ≤ x ≤ 1. As the reaction occurs, we

modify the density, which leads to altered governing equations, and thus, with mass

conservation, the equation for density will be solved in parallel with the equations

for temperature u and reaction α .

7.1 Full problem
In this section we explore the effects of varying the densities of the solid and gas.

At this stage we do not account for feedback of varying densities on the solid tem-
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perature u or reaction rate α . We consider a fixed density of gas to begin with where

ρG = constant. This leads to the same equations as those presented in chapter 6

VG(t) = A
∫ x0

−x0

α(x, t)dx, (7.1)

VS(t) = 2−VG(t), (7.2)

dTG(t)
dt

=
1

m2(t)

(
TAV (t)−TG(t)

)
dM(t)

dt
, (7.3)

PG(t) =
nRTG(t)
VG(t)

, (7.4)

ρG = 372, (7.5)

ρS(t) =
MT −ρG(t)VG(t)

VS(t)
, (7.6)

where m2(t) = MG(t) = ρG(t)VG(t + ∆t) = ρG(t)
(

dVG
dt ∆t +VG(t)

)
and dM

dt =

ρS(t)
(

dVG
dt

)
. Here we have ρG =constant and equation (7.6) is derived from the

conservation of mass law

ρS(t)VS(t)+ρG(t)VG(t) = MT , (7.7)

where MT represents the total mass (3600). The density of the solid has been re-

defined such that ρ1 = ρS. Numerical results for the above system are presented

in figure 7.1 We observe from figure 7.1 that the density of the solid increases, as

opposed to decreasing as we would expect. We can assume for now that this is a

direct result of setting the gas density ρG to be constant.
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Figure 7.1: Plots of varying density, treating ρG as constant and updating ρS(t) using the
conservation of mass equation (7.6).

7.2 Varying density of gas

We now consider varying the density of the gas such that ρG = ρG(t). Using the

relationship of the ideal gas law

PG(t) = c1ρ
γ

G(t), (7.8)

where γ = 1.4 and c1 is a constant to be determined, equation (7.8) can be rearranged

to give an expression for ρG(t) such that

ρG(t) =
(

PG(t)
c1

) 1
γ

. (7.9)

Alternatively, we may use of our ideal gas law PV = nRT , and substitute this into

(7.8) to get equation (7.9). Hence, our system of equations, with both densities of
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the solid and gas varying, becomes

VG(t) = A
∫ x0

−x0

α(x, t)dx, (7.10)

VS(t) = 2−VG(t), (7.11)

dTG(t)
dt̄

=
1

m2(t)

(
TAV (t)−TG(t)

)
dM(t)

dt̄
, (7.12)

PG(t) =
nRTG(t)
VG(t)

, (7.13)

ρG(t) =
(

PG(t)
c1

) 1
γ

, (7.14)

ρS(t) =
MT −ρG(t)VG(t)

VS(t)
, (7.15)

where m2(t) and and dM
dt are the same as in section 7.1. Solving this system yields

the results shown in figure 7.2. We note here that in figure 7.2, neither the density

of the gas ρG(t) nor the density of the solid ρS(t) are behaving as expected. We

would expect to see an increase in ρG(t) as ρS(t) decreases. In light of this, we now

consider writing a decreasing function to vary the density of the solid ρS(t) with the

aim of improving the modelling. We choose

ρS(t) = ρS(0)

 1

1+ t2

t2
max

 , (7.16)

with no spatial dependence in the model for simplicity and enhanced insight. Up-

dating the density of the gas using (7.7) gives

ρG(t) =
MT −ρS(t)VS(t)

VG(t)
. (7.17)

The results of the algebraic decreasing function for ρS(t) are shown in figure 7.3.

We note that in figure 7.3, the density of the gas ρG(t) seems to immediately in-

crease to ρG = 1800 and remain constant for all t thereafter. This suggests that

perhaps the density of the solid is not decreasing fast enough. To remedy this, we
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Figure 7.2: Varying densities ρG updated using equation (7.9) (ideal gas law) and ρS up-
dated using equation (7.6) (conservation of mass).

implement the simple exponentially decreasing function

ρS(t) = ρS(0)e−t (7.18)

and update ρG(t) using equation (7.17) as before. Results of this are shown in

figure 7.4. From figures 7.3 and 7.4, we note that varying ρS(t) in the specified

ways (algebraically and exponentially) has little to no effect of the density of the

gas ρG(t), which remains virtually constant. These figures also verify the existence

of a ‘core’ region in which any change in ρG(t) maintains the order of the parameter

κ̄ i.e. κ̄ remains small and thus we still see a visible core which is independent of

κ̄ . We observe that the volumes of both the solid and gas, VS(t),VG(t), displayed in

figures 7.3 and 7.4, are largely unaffected by the densities. The above sections have
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Figure 7.3: Varying densities ρG(t) and ρS(t) where ρS(t) is updated using the algebraic
function (7.16) and ρG(t) is updated using equation (7.17).

shown the incorporation of feedback into the system is not straightforward, a point

which serves as motivation for the following section.

Finally, we note here that in all of the cases presented above, the density of the

solid ρS(t) remains constant in the solid calculation i.e. we have not incorporated

feedback into the solid temperature or reaction rate yet.
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Figure 7.4: Varying densities ρG(t) and ρS(t) where ρS(t) is updated using equation (7.18)
and ρG(t) is updated using equation (7.17).

7.3 Solid Feedback

In the previous section 7.2, we considered the effects of varying the densities of the

solid and gas on the system without incorporating this as feedback in the solid. In

reality, the density of the solid affects the temperature calculations of the solid and

thus the reaction rate also. In this section we will investigate the effect that varying

the densities of the solid and gas has on the solid calculations. Incorporating this

feedback into the system of equations in section 7.2 leaves the following equations
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to be solved

ρS(t)cv
∂u
∂ t

= κ
∂ 2u
∂x2 +ρS(t)Ω

∂α

∂ t
, (7.19)

∂α

∂ t
= A(1−α)exp

(
− E

Ru

)
, (7.20)

VG(t) = A
∫ x0

−x0

α(x, t)dx, (7.21)

VS(t) = 2−VG(t), (7.22)

dTG(t)
dt

=
1

m2(t)

(
TAV (t)−TG(t)

)
dM(t)

dt
, (7.23)

PG(t) =
nRTG(t)
VG(t)

, (7.24)

ρG(t) =
(

PG(t)
c1

) 1
γ

, (7.25)

ρS(t) =
MT −ρG(t)VG(t)

VS(t)
, (7.26)

TAV (t) =

∫ x0
−x0

∂α

∂ t u(t)dx∫ x0
−x0

∂α

∂ t dx
, (7.27)

MT = MS +MG, (7.28)

where MT represents the total mass of the system, while MS and MG represent the

masses of the solid and gas respectively. Here (7.19) now includes the density of

the solid ρS(t) as a function of time whereas before, in section 7.2, this was treated

as constant. Figure 7.5 shows the quantities calculated in the solid; starting from

the top row, left to right, we can see the temperature of the solid u, plotted over

the spatial range x and the extent of reaction α also plotted over the spatial range

x. We observe that the temperature u increases slightly on the boundaries due to

numerical error. From the top right plot we see that the volume of solid VS which

starts at VS = 2 tends to zero as time (x-axis) goes on. This implies that the volume of

solid, which initially occupies the whole domain, is replaced instead by gas (shown

below in figure 7.6).

On the bottom row of figure 7.5, proceeding from left-to-right again, we see

that the density of the solid ρS increases over time. To repeat, this is not realistic.
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Figure 7.5: Solution to system of equations (7.19), (7.20), (7.22), and (7.26) – (7.28) using
mild parameter values.

This agrees with what we observed in the previous section 7.2, figure 7.1. From

the bottom-right plot, we observe that the mass of the system is conserved; as VS

tends to zero, at large times, the denominator in equation (7.26) approaches zero

and noting the numerator does not tend to zero, we have the result ρS → ∞.

In figure 7.6, we observe that VG → 2 as t increases, which corresponds to VS

tending to zero in figure 7.5. We also observe from figure 7.6 that ρG decreases,

possibly as a result of ρS increasing in figure 7.5. On the bottom left, we see the

temperature of the gas TG, (which is closely related to the temperature of the solid

u in figure 7.5), plateau at approximately TG = 2000. Finally, on the bottom-right

plot, the pressure of gas PG, drops sharply at small time t. Here in figure 7.6 we are

showing the same time range throughout the four sub-figures and the main density

and pressure variations seem to be within a much shorter time scale.
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Figure 7.6: Solution to system of equations (7.21), (7.23)–(7.25) using mild parameter val-
ues.

7.4 Core problem

Motivated by the previous section 7.3, the model presented in this section is an

improvement of that in section 6.2 in two main ways; firstly the volume of gas VG(t)

now tends to 2, which is more physically realistic and secondly here we incorporate

the varying densities into the model. Using the ideal gas law and conservation of

mass, as in section 7.3 we now have the following system of equations (7.29)–(7.37)
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applying in the core where diffusion can be neglected.

ρS(t̄)Cv
∂ ū
∂ t̄

= ρS(t̄)Ω
∂α

∂ t̄
, (7.29)

=⇒ ū = Ω̄α +C̄, (7.30)

dα

dt̄
= (1−α)exp

(
−1

ū

)
, (7.31)

VG(t̄) = 2Ax0α(x, t̄), (7.32)

VS(t̄) = 2−VG(t̄), (7.33)

dTG(t̄)
dt̄

=
1

m2(t̄)

(
ū(t̄)−TG(t̄)

)
dM(t)

dt̄
, (7.34)

PG(t̄) =
nRTG(t̄)
VG(t̄)

, (7.35)

ρG(t̄) =
(

PG(t̄)
c1

) 1
γ

, (7.36)

ρS(t̄) =
MT −ρG(t̄)VG(t̄)

VS(t̄)
, (7.37)

where m2(t̄) = ρG(t̄)VG(t̄) and dM(t̄)
dt̄ = ρS(t̄)

dVG(t̄)
dt̄ . Here the bars denote scaled

quantities. These have been scaled as before in earlier chapters. The numerical

solution to equations (7.29)–(7.37) is shown in figure 7.7. In figure 7.7 the same

time range is displayed throughout the four sub-figures. As stated earlier, the main

density and pressure variations are within much shorter time scales. We chose to

solve equation (7.34) using a finite difference approximation, presented in figure

7.7; however we note this can be solved for TG using any one of three methods:

1. Integrating factor method - restating the equation in the correct form and solv-

ing analytically/numerically as usual.

2. Finite difference approximation - by discretising the equation as usual.

3. Substitution (discussed below).

These have been included for completeness and verification of numerical results

used. Since we have an analytical expression for the temperature of the solid ū

in the core, we may manipulate equations (7.29)–(7.37) to reduce the system to a
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Figure 7.7: Solutions to equations (7.29)-(7.37) solved using mild parameter values.

single non-linear equation for TG(α) which can be solved numerically. Equation

(7.38) is obtained by substituting (7.32)–(7.33) and (7.35)–(7.37) into (7.34). This

gives the expression

dTG

dα
= (Ω̄α +C̄−TG)

(
MT −2Ac3α1−1/γT 1/γ

G

2c3(1−Aα)α1−1/γT 1/γ

G

)
, (7.38)

where c3 =
(

nR
2Ac1

)1/γ

, c1 =
PG(0)

ρG(0)γ and γ = 1.4. From equation (7.38), we can see

that as t → ∞, α → 1 and thus TG → Ω̄+C̄. As previously alluded to, the numerator

in equation (7.26) may also tend to zero. To verify the numerator of equation (7.26)

does not tend to zero it can be compared to the numerator in equation (7.38) such
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that

MT −2Ac3α
1−1/γT 1/γ

G = MT −ρG(t)VG(t),

and hence ρGVG → 2c3(Ω̄+ C̄) as t → ∞ and c3 = constant. Below we have plot-

ted this alternative method, using equation (7.38), for computing TG using a root

finder (fzero which uses a combination of bisection, secant and inverse quadratic

interpolation methods to solve non-linear equations) implemented in MATLAB.
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Figure 7.8: Solutions to equation (7.34) solved using a root finder, finite difference approx-
imations and integrating factor methods (left to right, top to bottom).

In figure 7.8 the time range shown in the Integrating factor plot (bottom-right)

is significantly shorter than that of the other two plots. This is because the analytical

method becomes too sensitive for large times and becomes unstable. One clear

benefit of the substitution method presented above is that we may consider small
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α and thus small time t. From this we note that for VG(0) = 0 both PG(0) and

ρG(0) are infinite, initially. We can use equation (7.38) to solve for PG(t) and ρG(t)

analytically for small times in order to overcome the initial infinite values. From

(7.38), for α ≪ 1 we get

dTG

dα
= (C̄−TG)

MT

2c3α1−1/γT 1/γ

G

(7.39)

If we take the expansion TG = b0 +b1αq + . . . for α ≪ 1 then we get

qb1α
q−1 = (C̄−b0)

MT

2c3α1−1/γb1/γ

0

. (7.40)

Equating powers of α gives

α
q−1 =

1
α1−1/γ

, =⇒ q = 1/γ, (7.41)

qb1 = (C̄−b0)
MT

2c3b1/γ

0

, (7.42)

where b0 represents the initial gas temperature and C̄ represents the initial solid

temperature. Hence, we have that initially, at small α and t,

PG =
nRTG

VG
=

nRb0

2Aα
, (7.43)

ρG =

(
PG

c1

) 1
γ

=

(
nRb0

2Ac1α

)q

= c3b
1
γ

0 α
− 1

γ (≫ 1). (7.44)

Comparisons of the full and core problems, using mild parameters, plotted in the

same coordinates are shown below. We observe a high level of agreement between

the two figures.
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Figure 7.9: Comparison of full problem (figure (a) top) and core problem (figure (b) bot-
tom) using mild parameter values.
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7.5 Summary of chapter
In this chapter we improved and extended the model presented in chapter 6. We be-

gan by varying only the density of the solid and maintaining a constant gas density.

This, although not physically accurate, provided a good starting point to consider

varying both the density of the solid and gas. In section 7.1, we considered vary-

ing the density of the gas using the ideal gas law whilst varying the solid density

through conservation of mass. This yielded some unexpected behaviour, for exam-

ple an increase in the solid density, which led us to force the density of the solid to

decrease and density of the gas to increase using strategically constructed algebraic

expressions. This was a way in which we could test our model to ensure that the

volumes were reaching the expected levels.

In section 7.3 we incorporated the varying densities into the solid calculations

by allowing the density to vary within the solid temperature equation. This in turn

had an effect on the extent of reaction and as a result the entire system of equations.

Finally, we allowed the densities to vary within the solid calculations in the

asymptotic framework which is an extension of the model presented in section 6.2,

chapter 6. A comparison of the full and asymptotic problems is presented, demon-

strating close qualitative agreement between the two. This provides verification of

the asymptotic approach which is easier to solve numerically and can occasionally

produce analytical solutions.

In the next chapter we discuss internal heating of the solid by considering a

constant gas temperature to begin with. We then vary the gas temperature with

time and later consider the effects of parameters on the system using an asymptotic

approach.



Chapter 8

Internal Heating

In this chapter we focus on heating the solid internally. Previously, in chapter 7 we

only considered heating effects of the gas on the solid at the boundaries by allowing

the gas temperature to heat the boundaries of the solid. Now we consider heating the

solid internally as well as at the boundaries of the solid. The governing equations

presented in earlier chapters only included one heating term, specifically the heat

from the reaction represented by the term Ω
∂α

∂ t̄ in equation (7.19). In reality, there

is heat being produced by the gas released from the reaction which penetrates the

solid. This additional heat source can be represented by the term rG say, where

rG = λAH(TG(t)− u(t)). Here λA, [63] is the specific surface area of the gas/solid

interface and H is the Robin heat transfer coefficient. Incorporating this additional

heating term into the system, our governing equations become

ρScv
∂u
∂ t

= κ
∂ 2u
∂x2 +ρSΩ

∂α

∂ t
+λAH(TG(t)−u(t)), (8.1)

∂α

∂ t
= A(1−α)exp

(
− E

Ru

)
. (8.2)

The effect of internal heating is assumed to be spatially uniform throughout the

solid. These form the basis for the studies in sections 8.1 - 8.4 below which consider,

in succession, internal heating with constant gas temperature, internal heating with

varying gas temperature, effects of the parameter λ̄

(
= λAH

ρscv

)
, derived later, and

finally, internal heating with both varying gas temperature as well as solid and gas

densities. Section 8.5 provides a summary. We begin by treating the density of the
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solid, ρS, as constant and solve the system for u and α using mild parameter values

given by table 8.1

Table 8.1: Mild parameters used in model.

Parameter with units Symbol Value
Conductivity (W/m/K) κ 0.44
Specific Heat (J/kg/K) cv 1255.0
Heat of Reaction (J/kg) Ω 5.0208e6
Molar Gas Constant (J/mol/K) R 8.314
Activation Energy (J/mol) E 10
Pre-exponential Constant (s−1) A 200
Initial solid temperature °K C 15
Number of moles of gas ( M

mw) n 0.0342
Specific surface area×Heat transfer coefficient λH 1

8.1 Internal heating with constant gas temperature
First, motivated by the numerical and analytical findings in chapters 2 onwards we

consider the (simpler) reduced problem in the core by scaling, such that equations

(8.1) and (8.2) above become

∂ ū
∂ t̄

= Ω̄
∂α

∂ t̄
+ λ̄ (T̄G − ū(t)), (8.3)

∂α

∂ t̄
= (1−α)exp

(
−1

ū

)
, (8.4)

respectively, where Ω̄ = ΩR
CvE , λ̄ = λAH

ρSCvA and T̄G = R
E TG. We set T̄G = constant for all

time and derive a numerical scheme for (8.3)–(8.4). For the first time step, following

the initial condition, we derive the first order accurate finite difference scheme as

follows

∂ ū
∂ t̄

=
ū(t̄)− ū(t̄ −∆t̄)

∆t̄
,

which after some manipulating gives

ū(t̄) =
ū(t̄ −∆t̄)+ λ̄∆t̄ T̄G +∆t̄Ω̄(1−α(t̄)exp

(
− 1

ū( ¯t−∆t̄)

)
1+ λ̄∆t̄

.
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Here we have substituted (8.4) into (8.3) and taken λAH = 1 as an example such

that λ̄ = 2× 10−9, see table 8.2. We have also, as in previous sections lagged the

exponential term such that ū(t̄) is evaluated at the previous time step as ū(t̄ −∆t̄) in

the exponential. Similarly, we derive a first order scheme for α such that we get

α(t̄) =
α( ¯t −∆t̄)+∆t̄ exp

(
− 1

ū(t̄)

)
1+∆t̄ exp

(
− 1

ū(t̄)

) .

We note here that the exponential term is not lagged since ū(t̄) has already been

computed. Once we have used the first order schemes for α and ū to initiate the

numerical schemes, we may then implement second-order accurate schemes for ū

and α , which are given by

ū(t̄) =
4ū(t̄ −∆t̄)− ū(t̄ −2∆t̄)+2∆t̄λ̄TG +2∆t̄Ω̄(1−α(t̄))exp

(
− 1

ū(t̄−∆t̄)

)
3+2∆t̄λ̄

,

α(t̄) =
2∆t̄ exp

(
− 1

ū(t̄−∆t̄)

)
+4α(t̄ −∆t̄)−α(t̄ −2∆t̄)

3+2∆t̄ exp
(
− 1

ū(t̄−∆t̄)

) .

We may solve equations (8.3) and (8.4) using the numerical schemes above, and

hence calculate the volumes of both gas and solid in the core region using

VG(t) = 2Ax0α, (8.5)

VS(t) = 2−VG(t), (8.6)

as derived in section 7.4 of chapter 7. At this stage, we do not compute the gas

pressure or densities since these rely on the gas temperature T̄G which we have set

to be constant; calculating these quantities with a constant gas temperature would

not provide meaningful results. We observe from figure 8.1 the temperature of

the solid is lower than expected (lower than those presented in figure 7.9a). This

could be a result of a low (constant) gas temperature. Taking a range of values for

TG = 10,100,500,1000 we observe in figure 8.2 the way in which the temperature

of the gas affects the temperature profile of the solid through internal heating. We
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Figure 8.1: Solutions of equations (8.3) – (8.6), for a fixed gas temperature T̄G = (R/E)TG

where TG = 10 and mild parameter values with λH = 1.

see from figure 8.2 that although the temperature of gas TG was increased from

TG = 10 to TG = 1000, the temperature peak barely changed. This suggests that

we may need to consider varying the temperature of the gas over time such that

TG = TG(t). The extent of reaction α and volumes of both gas VG, and solid VS, are

unaffected by the temperature of the gas TG, which is due to the fact that the volumes

depend on α . Although α depends on the temperature of the solid u, which depends

on the temperature of the gas TG, the influence of TG on α (and thus VG and VS) is

negligible and does not change qualitatively from figure 8.1.
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Figure 8.2: Solutions of solid temperature ū for range of TG values ranging from TG = 10
(top left), TG = 100 (top right), TG = 500 (bottom left) and TG = 1000 (bottom
right). Here λH = 1 is fixed and thus λ̄ ≈ 10−9.

8.2 Internal heating with varying gas temperature

In the previous section we investigated the effects of internal heating on the solid,

and thus the effects on the extent of reaction and volumes of both gas and solid,

by considering a constant temperature of gas. We now consider varying the tem-

perature of the gas with time such that T̄G = T̄G(t). This leads to a system of three

equations to solve, specifically

∂ ū
∂ t̄

= Ω̄
∂α

∂ t̄
+ λ̄ (T̄G(t̄)− ū(t̄)), (8.7)

∂α

∂ t̄
= (1−α)exp

(
−1

ū

)
, (8.8)

dT̄G

dt̄
=

ρS

ρGVG(t)
(ū(t̄)− T̄G(t̄))

dVG(t)
dt̄

, (8.9)
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where as in section 8.1 we have set the densities of both solid and gas as constants.

In chapter 7 we derived equation (7.34) which we restate here as equation (8.9)

which contributes to the internal heating of the solid.

Equation (8.9) follows from (7.34) where TAV (t) = ū(t) in the core and here ρS

and ρG are constants. A first-order accurate scheme is derived using a backwards

difference in time, which when rearranged gives the following schemes to update

α(t), ū(t) and T̄G(t) respectively

α(t̄) =
α( ¯t −∆t̄)+∆t̄ exp

(
− 1

ū(t̄−∆t̄)

)
1+∆t̄ exp

(
− 1

ū(t̄−∆t̄)

) ,

ū(t̄) =
ū(t̄ −∆t̄)+∆t̄λ̄ T̄G +∆t̄Ω̄(1−α(t̄)exp

(
− 1

ū( ¯t−∆t̄)

)
1+∆t̄λ̄

,

T̄G(t̄) =
T̄G(t̄ −∆t̄)+ ∆t̄ρS

ρGVG(t)
dVG
dt̄ ū(t̄)

1+ ∆t̄ρS
ρGVG(t)

dVG
dt̄

.

A second-order accurate scheme, which is implemented after the first time point,

(derived using similar methods) for α(t), ū(t) and T̄G(t) is given below.

α(t̄) =
2∆t̄ exp

(
− 1

ū(t̄−∆t̄)

)
+4α(t̄ −∆t̄)−α(t̄ −2∆t̄)

3+2∆t̄ exp
(
− 1

ū(t̄−∆t̄)

) ,

ū(t̄) =
4ū(t̄ −∆t̄)− ū(t̄ −2∆t̄)+2∆t̄λ̄ T̄G +2∆t̄Ω̄(1−α(t̄))exp

(
− 1

ū(t̄−∆t̄)

)
3+2∆t̄λ̄

,

T̄G(t̄) =
4T̄G(t̄ −∆t̄)− T̄G(t̄ −2∆t̄)+ 2∆t̄ρS

ρGVG(t)
dVG
dt̄ ū(t̄)

3+ 2∆t̄ρS
ρGVG(t)

dVG
dt̄

.

We observe in figure 8.3 that the temperatures of the gas and solid are identical as

is expected in the core region. From figure 8.3, we may conclude that the internal

heating effects on the temperature of the solid thus far are negligible since figure

8.3 closely agrees with figure 7.9b which does not include an internal heating term.

However, the agreement between figure 8.3 and figure 7.9b confirms that the method

of incorporating internal heating into the system of equations has been successful

and suggests the numerical schemes have been implemented well. The negligible
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Figure 8.3: Solutions of equations (8.7)–(8.9) for mild parameter values. Here we have set
λH = 1 and T̄G(0) = 10.

effect of internal heating here (figure 8.3) could potentially be a result of the small

λ̄ term in equation (8.7), where λ̄ ≪ 1(≈ O(10−9)) for λH = 1. We may test the

effect of the parameter λ̄ on the system by varying the numerator λH in λ̄ whilst

keeping the denominator ρSCvA fixed. Table 8.2 lists a range of λH values and their

corresponding λ̄ values. In reality the factor λH would need to be much larger than

1010 in order to balance the denominator of λ̄ when using the physical parameter

values, specifically that of A = 1019 which dominates. In practice however, we

cannot pick and choose the value of the specific surface area λA and hence the

value of the coefficient λH, which means the term λ̄ is small and internal heating

is negligible in the current framework.

Taking the largest λH value of 1010 which results in λ̄ = 2×10−3, the effect

on the internal heating of the solid is shown below in figure 8.4. Comparing figures
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Table 8.2: Range of λH values and their corresponding λ̄ values for otherwise mild param-
eters (ρS = 1800, Cv = 1255 and A = 200).

λH λ̄

1 2×10−9

10 2×10−8

100 2×10−7

103 2×10−6

104 2×10−5

105 2×10−4

106 2×10−3

...
...

1010 22.13
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Figure 8.4: Solutions of equations (8.7)–(8.9) for ū, α and T̄G respectively. Here we have
used mild parameter values and set λH = 1010.
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8.3 and 8.4, we observe that for larger λH values, and hence larger λ̄ values, the

temperatures of the gas and solid are lower than those with small λH values. To
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Figure 8.5: Solutions of equations (8.7)–(8.9) for ū, α and T̄G respectively. Here we have
used mild parameters with varying λH values starting at λH = 1 (blue) and
increasing to λH = 107 (red) up to λH = 1010 (green).

explore the relationship between λH values and temperature profiles, figure 8.5

displays the temperatures ū and T̄G as well as the extent of reaction α for increasing

λH values. Here the green line corresponds to the largest λH value (shown in figure

8.4). We note that α remains unchanged for varying values of λ̄ .

Taking equations (8.7)–(8.9) for extremely mild parameter values, namely Ω̄=
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1, λ̄ = 1 and ρS = ρG = 1 gives the system

∂ ū
∂ t̄

=
∂α

∂ t̄
+ T̄G(t)− ū(t), (8.10)

∂α

∂ t̄
= (1−α)exp

(
−1

ū

)
, (8.11)

dT̄G

dt̄
=

∂α

∂ t̄
α(t̄)

(ū(t̄)− T̄G(t̄)) , (8.12)

where we have set dVG(t)
dt̄ = 2A∂α

∂ t̄ and VG(t̄) = 2Aα . Hence, the numerical solution

of equations (8.10)–(8.12), obtained using finite difference schemes, is presented in

figures 8.6a-8.6b for different ratios of ρS/ρG. We observe from figures 8.6a-8.6b
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(b) Ω̄ = 1, λ̄ = 1 and ρS/ρG = 5

Figure 8.6: Solutions of equations (8.10)–(8.12) for different ρS/ρG ratios.

that as the ratio ρS/ρG increases, the temperature profiles ū and T̄G approach each

other and peak quicker than for lower ρS/ρG ratios. The profile of the extent of

reaction α remains virtually unchanged. This motivates the analytical study below.

8.3 Asymptotic behaviour fr extreme values of λ̄

Following the brief investigation on the effects of the coefficient λ̄ in the previous

section, we now consider the asymptotic behaviour of λ̄ and the resulting effect on
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the system of equations which we restate below for convenience.

∂ ū
∂ t̄

= Ω̄
∂α

∂ t̄
+ λ̄ (T̄G(t̄)− ū(t̄)), (8.13)

∂α

∂ t̄
= (1−α)exp

(
−1

ū

)
, (8.14)

dT̄G

dt̄
=

ρS

ρGVG(t)
(ū(t̄)− T̄G(t̄))

dVG(t)
dt̄

. (8.15)

For the following cases which are presented in this section, we fix the quantities

Ω̄ = 1, ρS = 1800 and ρG = 372 such that the ratio ρS
ρG

≈ 5. We also have here

from previous working that
dVG
dt

VG
=

dα

dt
(α+ε) but with the non-negative constant ε being

introduced to avoid a possible singularity at time zero where VG ≈ 0. However, if

the temperatures T̄G and ū are equal at time zero then ε can be taken to be zero.

In figures 8.7 and 8.8, we demonstrate the effects of increasing and decreasing

(respectively) the parameter λ̄ . We find in figures 8.7 and 8.8, that for small λ̄ the

effects of internal heating are negligible and for small λ̄ values the temperatures of

both solid and gas increase. For comparison, we show in figure 8.9 the effects of

varying λ̄ (by gradually increasing λ̄ ), on the temperatures ū and T̄G as well as the

extent of reaction α . Here λ̄ = λH
ρSCvA , where ρS,Cv,and A are fixed and in order to

vary λ̄ the constant λH is changed.

8.3.1 λ̄ ≪ 1

To investigate the asymptotic behaviour of the coefficient λ̄ we consider first the

effects of λ̄ ≪ 1. There are two time scales t̄ which arise if λ̄ is small, t̄ = O(1)

and t̄ = O
(

1
λ̄

)
; these are discussed in the sections below.

8.3.1.1 t̄ = O(1)

Firstly, t̄ = O(1); we may solve the system (8.13)–(8.15) for small λ̄ by setting

λ̄ = 0 in equation (8.7) since to leading order we neglect the λ̄ term, such that, after
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Figure 8.7: Solutions of equations (8.13)–(8.15) for ū, α and T̄G respectively. Here we
have used mild parameters with varying λ̄ values starting at λ̄ = 1 (blue) and
decreasing to λ̄ = 0.1 (purple). The parameter Ω̄ = 1 is fixed, as is the ratio
ρS/ρG = 5.

some work, we obtain

ū = Ω̄α +C̄, (8.16)

∂α

∂ t̄
= (1−α)exp

(
−1

ū

)
, (8.17)

dT̄G

dt̄
=

ρS

ρGVG(t)

(
Ω̄α +C̄− T̄G(t̄)

) dVG(t)
dt̄

, (8.18)

where C̄ represents the initial solid temperature. The forms (8.16), (8.17) are exactly

as in chapter 2. Since, in this case, ρS = 1800 and ρG = 372 are constants, equation
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Figure 8.8: Solutions of equations (8.13)–(8.15) for ū, α and T̄G respectively. Here we
have used mild parameters with varying λ̄ values starting at λ̄ = 1 (blue) and
increasing to λ̄ = 5 (green). The parameter Ω̄ = 1 is fixed, as is the ratio
ρS/ρG = 5.

(8.18) becomes after some manipulation

dT̄G

dα
=

5
α
(Ω̄α +C̄− T̄G). (8.19)

where the ratio ρS/ρG = 5 in equation (8.18), VG(t) = 2A(α + ε) but with ε set

to zero since we are now focussing on the case of T̄G, ū being equal initially and
dVG(t)

dt̄ = 2A∂α

∂ t̄ . We will use the value 5 for the density ratio ρS/ρG for convenience

and also to provide more explicit results.

We can solve equation (8.19) both analytically and numerically. Solving ana-



8.3. Asymptotic behaviour fr extreme values of λ̄ 131

0 2 4 6 8 10

tbar

1

1.1

1.2

1.3

1.4

T
Gb

a
r

0 2 4 6 8 10

tbar

1

1.1

1.2

1.3

1.4

u
b

a
r

0 2 4 6 8 10

tbar

0

0.2

0.4

0.6

0.8

1

Figure 8.9: Solutions of full problem, given by equations (8.7)–(8.9) for TG, u and α re-
spectively. Here we have used very mild parameter values, Ω = R =Cv = E =
A = 1 and the ratio ρS/ρG ≈ 5 as well as TG(0) = u(0) = 1 initially. The blue
line corresponds to λ̄ = 5, the red λ̄ = 10 and the yellow λ̄ = 20.

lytically, using the integrating factor method, yields the solution

T̄G = C̄+
5
6

Ω̄α. (8.20)

To solve (8.19) numerically, we derive the following first and second-order accurate

finite difference schemes

T̄G(α) =
T̄G(α −∆α)+5∆α(Ω̄+ C̄

α
)

1+ 5∆α

α

,

T̄G(α) =
4T̄G(α −∆α)− T̄G(α −2∆α)+ 5

α
2∆α(Ω̄α +C̄)+2∆t̄λ̄

3+ 5
α

2∆α
.

Comparing the analytical solution given by (8.20) with the numerical solution, pre-
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sented in figure 8.10, we observe very close agreement between the two. One way
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Figure 8.10: Solutions of equations (8.16)–(8.18), with comparison of analytical (8.20) and
numerical solutions of equation (8.19); close agreement is demonstrated be-
tween the two methods. Here we have used mild parameter values, including
T̄G = 1 initially and set λ̄ = 0.

in which we may verify the relationship given by equation (8.20) is demonstarted

in figure 8.11. Here we observe that at early times the relationship between TG and

α is linear.

8.3.1.2 t̄ = O
(

1
λ̄

)
The second time scale which arises when considering the effects of λ̄ ≪ 1 is t̄ =

O
(

1
λ̄

)
. Over a longer time scale α → 1 which implies that ∂α

∂ t̄ → 0 and hence the
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Figure 8.11: Solutions of equations (8.14)–(8.15) for λ̄ = 1 (red) and λ̄ = 0.1 (blue).

system (8.13)–(8.15) becomes

∂ ū
∂ t̄

= λ̄ (T̄G(t̄)− ū(t̄)) , (8.21)

dT̄G

dt̄
=

5
α
(ū(t̄)− T̄G(t̄))

∂α

∂ t̄
, (8.22)

since ρS/ρG = 5, VG(t) = 2Aα and dVG(t)
dt̄ = 2A∂α

∂ t̄ . Therefore since ∂α

∂ t̄ is negligible,

T̄G is constant and equal to

T̄G =
5Ω̄

6
+C̄, (8.23)

throughout this time scale. The solution of (8.21) then gives

ū =
5Ω̄

6
+C̄+ exp(−λ̄ t̄)

Ω̄

6
, (8.24)
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showing that the solid temperature gradually reduces to the gas temperature over

the present long time scale. This trend agrees with that seen in figure 8.7 as λ̄ is

decreased.
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Figure 8.12: Solutions of equations (8.23)–(8.24) for T̄G and ū respectively. Here we have
used mild parameter values, including T̄G = 1 initially and set λ̄ = 1.

8.3.2 λ̄ ≫ 1

On the other hand, if we now consider λ̄ ≫ 1 the first time scale which arises is

t̄ ∼ 1
λ̄

in the first instance, with say t̄ = λ̄−1t∗. The second time scale which occurs

is t̄ = O(1). These are discussed in the subsections below.
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Figure 8.13: Solution of ū− T̄G from equations (8.23)–(8.24). Here we have used mild
parameter values, including T̄G = 1 initially and set λ̄ = 1,0.5,0.4,0.2,0.1
(blue, red, yellow, purple, green).

8.3.2.1 t̄ = λ̄−1t∗

The first time scale which arises is a short time scale. Let t̄ = λ̄−1t∗ and

ū = s+ λ̄
−1u∗1 + . . . ,

T̄G = s+ λ̄
−1T ∗

G1 + . . . ,

α = λ̄
−1

α
∗+ . . .
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then equations (8.13)–(8.15) become

∂u∗1
∂ t∗

= Ω̄
∂α∗

∂ t∗
+(T ∗

G1 −u∗1), (8.25)

∂α∗

∂ t∗
= k, (8.26)

∂T ∗
G1

∂ t∗
=

5
α∗ (u

∗
1 −T ∗

G1)
∂α∗

∂ t∗
, (8.27)

where k = exp
(
−1

s

)
and s is some constant. Equation (8.26) can be solved analyti-

cally to give

α
∗ = kt∗. (8.28)

Hence, equations (8.25)–(8.27) become

∂u∗1
∂ t∗

= Ω̄k+(T ∗
G1 −u∗1), (8.29)

∂T ∗
G1

∂ t∗
=

5
t∗
(u∗1 −T ∗

G1), (8.30)

Taking the difference between (8.29) and (8.30) gives

∂u∗1
∂ t∗

−
∂T ∗

G1
∂ t∗

= Ω̄k+(T ∗
G1 −u∗1)−

5
t∗
(u∗1 −T ∗

G1),

= Ω̄k− (u∗1 −T ∗
G1)(1+

5
t∗
).

If we now let ψ = (u∗1 −T ∗
G1) this implies ∂u∗1

∂ t∗ −
∂T ∗

G1
∂ t∗ = ψt∗ and hence we get

ψt∗ = Ω̄k−ψ(1+
5
t∗
). (8.31)

Equation (8.31) can now be solved analytically to give

ψ = exp(−t∗)t∗−5
Ω̄k

[∫ t∗

0
exp(t∗)t∗5dt∗+ c1

]
, (8.32)

where c1 = 0 (since u∗0 = T ∗
G0 =⇒ ψ0 = 0). We note here that from equation (8.31),

ψ → Ω̄k as t∗ → ∞. Figure 8.14 shows the profile of ψ against t∗.

Figure 8.17 demonstrates the close agreement between the solutions given by
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Figure 8.14: ψ vs t∗

ψ = u∗1 −T ∗
G1 and ū− T̄G for small time. We observe from Figure 8.16 that as λ̄

gets larger, the solutions converge i.e. u∗1 −T ∗
G1 → ū− T̄G as λ̄ → ∞. The results in

figure 8.16 show clearly there is an inner time scale if λ̄ is large.

Equation (8.29) can be rewritten as

∂u∗1
∂ t∗

= Ω̄k−ψ,

and substituting in the expression for ψ given by (8.32) gives

∂u∗1
∂ t∗

= Ω̄k− Ω̄k
exp(t∗)t∗5

∫ t∗

0
exp(t∗)t∗5dt∗. (8.33)
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Figure 8.15: Solutions of equation (8.32) for ψ = u∗1 −T ∗
G1 represented by the lines with

circles, compared with ū− T̄G from equations (8.7) and (8.9) represented by
the solid lines. Here we have used the fixed ratio ρS/ρG ≈ 5 and set λ̄ = 1.

By rewriting equation (8.33) as

∂u∗1
∂ t∗

= Ω̄k− Ω̄k
g

f (8.34)

where g = et∗t∗5 and f =
∫ t∗

0 et∗t∗5dt∗ we can now apply L’Hôpital’s Rule

limt∗→∞
f
g = limt∗→∞

f ′
g′ such that

lim
t∗→∞

∫ t∗
0 et∗t∗5dt∗

et∗t∗5 = lim
t∗→∞

et∗t∗5

et∗t∗4(t∗+5)
,

= 1.
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Figure 8.16: Solutions of equation (8.32) for ψ = u∗1 −T ∗
G1 represented by the lines with

circles, compared with the full solution λ̄ (ū− T̄G) from equations (8.7) and
(8.9) represented by the solid lines. Here we have used the fixed ratio ρS/ρG ≈
5 and set λ̄ = 1,10,100 depicted by the red, blue and green lines respectively.

Hence we may solve equation (8.33) analytically by rewriting it as

∂u∗1
∂ t∗

= Ω̄k− Ω̄k
t∗5

(
t∗5 −5t∗4 +20t∗3 −60t∗2 +120t∗−120+120e−t∗

)
, (8.35)

where we have used integration by parts. Integrating both sides with respect to t∗

gives, apart from an added constant of integration,

u∗1 = 5Ω̄k
(

4
t∗

− 6
t∗2 +

8
t∗3 −

6
t∗4 + log(t∗)

)
−120Ω̄k

∫ t∗

e−t∗t∗−5dt∗
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where the integral term can be written as

∫ t∗

e−t∗t∗−5dt∗ = e−t∗
(

log(t∗)
24

+
1

24t∗
− 1

24t∗2 +
1

12t∗3 −
1

4t∗4

)
+

1
24

∫ t∗

e−t∗ log(t∗)dt∗.

Hence we have, with B1 being a constant to be determined,

u∗1 = 5Ω̄k

(
4
t∗

− 6
t∗2 +

8
t∗3 −

6
t∗4 + log t∗

)

−120Ω̄k

[
e−t∗

(
log(t∗)

24
+

1
24t∗

− 1
24t∗2 +

1
12t∗3 −

1
4t∗4

)

+
1
24

∫ t∗

e−t∗ log(t∗)dt∗.

]
+B1.

(8.36)

For t∗ ≪ 1, taking the expansion e−t∗ ∼ (1− t∗+ t∗2

2 − t∗3

6 + t∗4

24 + . . .) gives

u∗1 ∼ 5Ω̄k
( 4

t∗
− 6

t∗2 +
8

t∗3 −
6

t∗4 + log t∗
)

−120Ω̄k

[
(1− t∗+

t∗2

2
− t∗3

6
+

t∗4

24
+ . . .)

(
log(t∗)

24
+

1
24t∗

− 1
24t∗2 +

1
12t∗3 −

1
4t∗4

)

+
1

24

∫ t∗

0
e−t∗ log(t∗)dt∗

]
+B1

(8.37)

which, when expanded and simplified, gives

u∗1 ∼ Ω̄k
(125

12
− 15t∗

4
+

25t∗2

24
− 5t∗3

24
+5t log(t∗)− 5

2
t∗2 log(t∗)+

5
6

t∗3 log(t∗)− 5
24

t∗4 log(t∗)

+
∫ t∗

0
e−t∗ log(t∗)

)
+B1.

(8.38)

Comparing coefficients of this expression for u∗1 above with equation (8.36) gives

B1 =−125
5 Ω̄k, satisfying u∗1(0) = 0. Therefore from equation (8.36), we have

u∗1 ∼ 5Ω̄k
(

log(t∗)− 25
12

−Γ

)
, (8.39)
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as t∗ tends to infinity, where Γ =
∫

∞

0 e−t∗ log(t∗)dt∗(≈−0.577216).
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Figure 8.17: Comparison of asymptotic solution given by (8.39) (black dashed line) and
numerical solution of equation (8.29)–(8.30) (blue). Here we have used very
mild parameters. The parameter Ω̄ = C̄ = 1 is fixed, as is the ratio ρS/ρG = 5
and we have set TG(0) = u(0) = s = 1.

Similarly, substituting the expression for ψ , given by equation (8.32), equation

(8.30) may be rewritten as

dT ∗
G1

dt∗
=

5
t∗

ψ,

or equivalently

dT ∗
G1

dt∗
=

5
t∗

Ω̄k
et∗t∗5

∫ t∗

0
et∗t∗5dt∗. (8.40)
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We may now solve equation (8.40) using integration by parts which gives,

dT ∗
G1

dt∗
=

5Ω̄k
t∗6

(
t∗5 −5t∗4 +20t∗3 −60t∗2 +120t∗−120+120e−t∗

)
. (8.41)

Integrating both sides yields,

T ∗
G1 = 5Ω̄k

(
log(t∗)+

5
t∗

− 10
t∗2 +

20
t∗3 −

30
t∗4 +

24
t∗5

)
+600Ω̄k

∫ t∗

e−t∗t∗−6dt∗+B2,

(8.42)

where B2 is an unknown constant of integration and

∫ t∗

e−t∗t∗−6dt∗ = e−t∗
(

ln(t∗)
120

+
1

120t∗
− 1

120t∗2 +
1

60t∗3 −
1

20t∗4 +
1

5t∗5

)
+ . . .

· · ·+ 1
120

∫ t∗

e−t∗ ln(t∗)dt∗.

Hence we have

T ∗
G1 == 5Ω̄k

(
log(t∗)(1− e−t∗)+ t∗−1(5− e−t∗)+ t∗−2(e−t∗ −10)+2t∗−3(10− e−t∗)+ . . .

· · ·+6t∗−4(e−t∗ −5)+24t∗−5(1− e−t∗)−
∫ t∗

0
e−t∗ log(t∗)dt∗

)
+B2.

(8.43)

To determine the constant c2 we begin by rewriting equation (8.43) such that

T ∗
G1 = 5Ω̄k

(
log(t∗)+

5
t∗

− 10
t∗2 +

20
t∗3 −

30
t∗4 +

24
t∗5

)
+ . . .

· · ·+5Ω̄ke−t∗
(
− log(t∗)− t∗−1 + t∗−2 −2t∗−3 +6t∗−4 −24t∗−5

)
+ . . .

· · ·−5Ω̄k
∫ t∗

0
e−t∗ log(t∗)dt∗+B2

then taking the expansion e−t∗ ∼ (1− t∗+ t∗2

2 − t∗3

6 + t∗4

24 + . . .) for small t∗ (t∗ ≪ 1)
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yields

T ∗
G1 ∼ 5Ω̄k log(t∗)+ . . .

· · ·+5Ω̄k(1− t∗+
t∗2

2
− t∗3

6
+

t∗4

24
+ . . .)

(
− log(t∗)− t∗−1 + t∗−2 −2t∗−3 +6t∗−4 −24t∗−5

)
+ . . .

. . .−5Ω̄k
∫ t∗

0
e−t∗ log(t∗)dt∗+B2.

Comparing coefficients gives B2 =−125
12 . As t∗ → ∞ we get

T ∗
G1 ∼ 5Ω̄k

(
log(t∗)− 25

12
−Γ

)
, (8.44)

where Γ =
∫

∞

0 e−t∗ log(t∗)dt∗(≈−0.577216).

In the next stage we let t∗ = λ̄ t̄ in the expression for u∗ such that equation

(8.39) becomes

u∗1 ∼ 5Ω̄k
(

log(λ̄ t̄)− 25
12

−Γ

)
,

and hence ū becomes

ū ∼ s+
5Ω̄k

λ̄

(
log(λ̄ t̄)− 25

12
−Γ

)
, (8.45)

which gives logarithmic growth at early times t̄. Similarly, substituting t∗ = λ̄ t̄ in

the expression for T ∗
G1, equation (8.44) becomes

T ∗
G1 ∼ 5Ω̄k

(
log(λ̄ t̄)− 25

12
−Γ

)
,

and hence T̄G becomes

T̄G = s+
5Ω̄k

λ̄

(
log(λ̄ t̄)− 25

12
−Γ

)
, (8.46)
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8.3.2.2 t̄ = O(1)

A second, longer time scale arises when λ̄ ≫ 1, that is t̄ = O(1), α = O(1) and

ū = O(1), T̄G = O(1). Taking the expansions

ū = s+ λ̄
−1 log(λ̄ )c3 + λ̄

−1ū1 + . . . ,

T̄G = s+ λ̄
−1 log(λ̄ )c4 + λ̄

−1T̄G1 + . . . ,

α = α1 + λ̄
−1

α2 + . . .

where s is a constant (initial condition of u or TG, both are equal initially), c3 = c4 =

5Ω̄k from equation (8.45) and equation (8.46), we find from equations (8.7)–(8.9)

0 = Ω̄
∂α1

∂ t̄
+(T̄G1 − ū1) , (8.47)

∂α1

∂ t̄
= (1−α1)exp

(
−1

s

)
, (8.48)

dT̄G1

dt̄
=

5
α1

(ū1 − T̄G1)
∂α1

∂ t̄
. (8.49)

Solving equation (8.48) analytically gives

α1 = 1− e−kt̄ , (8.50)

where k = exp
(
−1

s

)
, and s is constant. Equation (8.47) can be rearranged for ū1

which gives

ū1 = T̄G1 + Ω̄ke−kt̄ . (8.51)

Taking the difference gives

ū1 − T̄G1 = Ω̄ke−kt̄ , (8.52)

which agrees with equation (8.31) when compared for large time. We observe from

equation (8.51) that ū1 and T̄G1 are different, however as t̄ → ∞ we get ū1 ≈ T̄G1

since we see exponential decay from the exponential term in equation (8.51).
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Equation (8.49) can be solved by integrating directly such that

dT̄G1

dt̄
= 5(ū1 − T̄G1)

∂α1
∂ t̄
α1

,

and substituting equation (8.51) into the above gives

dT̄G1

dt̄
= 5Ω̄

k2e−2kt̄

1− e−kt̄ , (8.53)

which, upon integration gives

T̄G1 = 5Ω̄k
(

log(1− e−kt̄)+ e−kt̄ −1
)
+B3, (8.54)

where B3 is a constant of integration to be determined. Substituting equation (8.54)

into equation (8.51) gives

ū1 = Ω̄ke−kt̄ +5Ω̄k
(

log(1− e−kt̄)+ e−kt̄ −1
)
+B3.

Expanding for small t̄ gives

ū1 = Ω̄k+5Ω̄k log(kt̄)+B3,

= Ω̄k+5Ω̄k(log(k)+ log(t̄))+B3

which we match with equation (8.39) such that we get B3 = 5Ω̄k
(
−25

12 −Γ− log(k)
)
−

Ω̄k.

Alternatively, we may transform equation (8.49) such that we get

dT̄G1

dα1
=

5Ω̄k
α1

(1−α1) (8.55)

integrating with respect to α1 gives T̄G1(α1)

T̄G1(α1) = 5Ω̄k (log(α1)−α1)+B4, (8.56)
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where α1 is given by equation (8.50). Expanding for small t̄ in equation (8.50) then

gives us

α1 ∼ kt̄ +O(t̄2), (8.57)

which implies that equation (8.56) becomes, for small t̄

T̄G1 ∼ 5Ω̄k (log(kt̄)− kt̄)+B4, (8.58)

where from matching with (8.44), (8.46) we find B4 = 5Ω̄k
(
−25

12 −Γ− log(k)
)
−

Ω̄k and Γ =−0.5772 as before.
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Figure 8.18: Solutions of equations (8.50), (8.51) and (8.58) for α1, ū1 and T̄G1 respectively.
Here k = e−1/s and we have used mild parameter values, including s = Ω̄ =
1. Here the dashed blue lines represent the solutions to ū and T̄G derived
from equation (8.54) and the red line represent the solutions to ū and T̄G from
equation (8.58).
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Comparing results from t = O(1) with the full problem for λ = 5,10,20 we

get the results in figure 8.19. We predict that the difference ū− T̄G from the full core
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Figure 8.19: Solutions of full system given by equations (8.7)–(8.9) for α , ū and T̄G respec-
tively. Here we have used mild parameter values, including s = Ω̄ = 1. Here
the blue lines represent the solutions with λ̄ = 5, the red lines λ̄ = 10 and the
yellow lines show the solutions when λ̄ = 20.

problem (equations (8.7)–(8.9)) can be given by subtracting the following

ū = s+ λ̄
−1 log(λ̄ )c3 + λ̄

−1ū1 + . . . ,

T̄G = s+ λ̄
−1 log(λ̄ )c4 + λ̄

−1T̄G1 + . . . ,

such that

ū− T̄G = λ̄
−1(ū1 − T̄G1),
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where from equation (8.51) we have

ū− T̄G = λ̄
−1

Ω̄ke−kt̄ . (8.59)

Comparing equation (8.59) with ū− T̄G from equations (8.7)–(8.9) gives the follow-

ing comparison below in figure 8.20 for varying values of λ̄ .

We see in figure 8.20 that the agreement between the full solutions and the

reduced-system solutions improves as λ̄ is increased, as should be expected.
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Figure 8.20: Difference ū− T̄G against t̄. Here we have used mild parameter values, includ-
ing k = e−1/s where s = Ω̄ = 1. The dashed lines with circles represent our
prediction for ū− T̄G from the reduced system given by equation (8.59) and
the solid lines represent the true values of ū− T̄G from the full system given
by equations (8.7)–(8.9). Here the colours red, blue and green represent the
values λ̄ = 5,10,20 respectively.
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8.4 Varying densities

In section 8.2, we varied the temperature of the gas and investigated the feedback ef-

fect of this on the solid. In this section we consider varying the densities of both the

solid and gas as well as varying the gas temperature for the fully non-dimensional

case in the core region. We remove any dimensionality from the governing equa-

tions by introducing the following scaled variables

TG(t) =
E
R

T̄G(t̄),

VG(t) = AV̄G(t̄),

VS(t) = AV̄S(t̄),

ρS(t) =
(

E
Ac1

)1/γ

ρ̄S(t̄)

u(t) =
E
R

ū(t̄),

ρG(t) =
(

E
Ac1

)1/γ

ρ̄G(t̄),

PG(t) =
E
A

P̄G(t̄).

Substituting the above into our system of equations yields the non-dimensional sys-

tem

∂ ū
∂ t̄

= Ω̄
∂α

∂ t̄
+ λ̄ (T̄G(t)− ū(t)), (8.60)

∂α

∂ t̄
= (1−α)exp

(
−1

ū

)
, (8.61)

dT̄G

dt̄
=

ρ̄S(t̄)
ρ̄G(t̄)V̄G(t)

(ū(t)− T̄G(t̄))
dV̄G(t)

dt̄
, (8.62)

V̄G(t̄) = 2α, (8.63)

V̄S(t̄) = 2−V̄G(t̄), (8.64)

P̄G(t̄) =
nT̄G(t̄)
V̄G(t̄)

, (8.65)

ρ̄G(t̄) = P̄G(t̄)
1
γ , (8.66)

ρ̄S(t̄) = M̄T − ρ̄G(t̄)V̄G(t̄)
V̄S(t̄)

, (8.67)

where M̄T = MT

V̄S(t̄)A
(

E
Ac1

) 1
γ

.

To solve the system (8.60)–(8.67) we can take equations (8.61) and (8.63)–

(8.67) and substitute these into equation (8.62) which, after some manipulation,
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gives

dT̄G

dt̄
=

ū− T̄G

α
1− 1

γ T̄
1
γ

G c3

(
MT

2(1−α)Ac2
−

α
1− 1

γ T̄
1
γ

G c3

(1−α)

)
dα

dt̄
. (8.68)

This can be rewritten in terms of α as

dT̄G

dα
=

ū− T̄G

α
1− 1

γ T̄
1
γ

G c3

(
MT

2(1−α)Ac2
−

α
1− 1

γ T̄
1
γ

G c3

(1−α)

)
, (8.69)

where c2 =
(

E
Ac1

) 1
γ and c3 =

(n
2

) 1
γ . Finally we have

dT̄G

dα
=

ū− T̄G

(1−α)

(
MT

2Ac2c3α
1− 1

γ T̄
1
γ

G

−1

)
. (8.70)

The results of the solution to equation (8.70) are presented in figure 8.21, where we

have used mild parameter values.
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Figure 8.21: Solutions of equations (8.60)–(8.61), (8.65)–(8.66) and (8.70) for ū (black),
α(blue), P̄G (purple dashed), ρ̄G (green dashed) and T̄G (red) respectively.
Here we have used mild parameters including Ω̄ = 0.16, λ̄ = 1, E = A = n =
c2 = c1 = 1 and MT = 5. We have taken the initial values to be T̄G(0) = 6,
ū(0) = 3 and α(0) = 0.1.

Moving from mild parameter values towards realistic physical values, we ob-
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tain the results displayed in figure 8.22.
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Figure 8.22: Solutions of equations (8.60)–(8.61), (8.65)–(8.66) and (8.70) for ū (black),
α (blue), P̄G (purple dashed), ρ̄G (green dashed) and T̄G (red) respectively.
Here we have used the same parameters as those used in figure 8.21 with
E = 2.2×105 and MT = 3600. We have also used the same initial values.

Next, we investigate the effect of particular parameters individually, first by

considering the effect of reducing the parameter n which represents the number

of moles of gas. We use the physical parameter value of the activation energy E

(shown in figure 8.22) and reduce the value of n. Results of this are displayed in

figure 8.23.

Continuing our investigation of parameter value effects, we now consider how

reducing the extent of reaction α affects the solution. This is depicted in figure 8.24

and again in figure 8.25 for various values of λ̄ .

In figure 8.26 the effective temperature T2 plotted is given by

T2 =
( 1

MT
(2A∗c2c3α

1− 1
γ )
)γ

. (8.71)
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Figure 8.23: Solutions of equations (8.60)–(8.67) for ū (black), α (blue), P̄G (purple
dashed), ρ̄G (green dashed) and T̄G (red) respectively. Here we have used
the same parameters as in figure 8.22 with n = 0.0342.

0 1 2 3 4 5 6 7 8 9 10

time

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8.24: Solutions of equations (8.60)–(8.67) for α . Here we have used the same pa-
rameters as in figure 8.23 with T̄G(0) = 2,0.8,0.6 and ū(0) = 1,0.4,0.3.
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Figure 8.25: Solutions of equations (8.60)–(8.62) for ū (black), α (blue) and T̄G (red). Here
we have used the same parameters as in figure 8.24 with T̄G(0) = 0.2, ū(0) =
0.1 in both cases presented. We have repeated the same set up using λ̄ = 1
and λ̄ = 0.01.
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Figure 8.26: Solutions of equation (8.70), for ū (green), T̄G (black) and T2 (red). Here we
have used the same initial conditions for ū, T̄G as those in figure 8.25 as well
as c1 = 0.01 and c1 = 0.02.
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8.5 Summary of chapter
In this chapter we considered the effects of internal heating on the problem using

an asymptotic framework. Specifically, we considered the core region of the prob-

lem. To begin, we took the temperature of the gas TG to be constant which resulted

in little to no effect on the solid temperature ū and hence on the extent of reaction

α . There was also little improvement from the previous chapter (chapter 7) on the

profile of the volume of gas VG. Hence we proceeded to consider a variable gas

temperature by taking TG = TG(t). We noticed some improvement in the tempera-

ture profiles however the dominant driver of the profiles was shown to be λ̄ . Thus

in the next section 8.3 we investigated the effects of λ̄ on the system. We found

various time scales arose for both small and large λ̄ . When varying the parameter

λ̄ we observe no qualitative change in the evolution of the reaction term α .

Next we considered varying the densities of the solid ρS and gas ρG. In this

section we considered a fully non-dimensional system by scaling the variables in

the system of equations. This resulted in a single equation to be solved which

highlighted interesting behaviours within the system.

There are interesting follow-on questions: for example two heating contribu-

tions Q say, could be present, probably hotter but possibly colder than the explosive,

depending on the temperature of the gas.

In the next chapter we consider the effects of internal heating on the full phys-

ical problem, initially using mild parameter values.



Chapter 9

Full problem - internal heating

In this chapter we investigate the effects of internal heating on the full problem. To

begin we use mild parameters and consider a constant temperature of gas TG in the

first instance.

9.1 Constant Gas Temperature
In the case of constant gas temperature TG we also assume constant densities ρS and

ρG. Hence the resulting equations to solve are

ρSCV
∂u
∂ t

= κ
∂ 2u
∂x2 +ΩρS

∂α

∂ t
+λH(TG −u(t)), (9.1)

∂α

∂ t
= A(1−α)exp

(
− E

Ru

)
, (9.2)

dVG

dt
= A

∫ x0

−x0

∂α

∂ t
dx, (9.3)

VS(t) = 2−VG(t), (9.4)

PG(t) =
nRTG

VG(t)
. (9.5)

We also note here that the pressure of the gas PG is driven by the temperature of the

gas TG. Since we are treating TG as constant, the resulting PG is nonsensical but has

been plotted for completeness.

In figure 9.1a we have displayed the final temperature of the solid u and final

extent of reaction α for a fixed gas temperature TG = 10. Figure 9.1b shows these

final values near the boundary. Similar considerations apply to figures 9.2–9.4b. We
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Figure 9.1: Numerical solutions of equations (9.1)–(9.5) with mild parameters. Here λH =
1, TG = 10 and we have zoomed in on the behaviour of the pressure at early
time t in figure 9.1a. Figure 9.1b focuses on behaviour at boundary for the final
values of u and α .
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note however that the temperature profile of the solid remains unchanged for TG =

1,10,100 and hence we conclude that the temperature of the gas (whilst constant)

has little to no effect on the temperature of the solid (and thus the volumes and

pressure). We also observe from figure 9.1a a sharp decline in pressure at very early

time. As noted earlier, this profile is not physically realistic.

9.2 Variable Gas Temperature
In this section we consider how a variable gas temperature, TG(t), might impact the

solutions of the system of equations. Here we maintain constant densities ρS and

ρG but vary the temperature of gas with respect to time such that TG = TG(t). Hence

our system of equations given in section 9.1 becomes

ρSCV
∂u
∂ t

= κ
∂ 2u
∂x2 +ΩρS

∂α

∂ t
+λH(TG(t)−u(t)), (9.6)

∂α

∂ t
= A(1−α)exp

(
− E

Ru

)
, (9.7)

dVG

dt
= A

∫ x0

−x0

∂α

∂ t
dx, (9.8)

VS(t) = 2−VG(t), (9.9)

dTG

dt
=

ρS

ρGVG(t)
(u(t)−TG(t))

dVG(t)
dt

, (9.10)

PG(t) =
nRTG(t)
VG(t)

. (9.11)

We observe little to no difference between figures 9.1a and 9.2 other than a

profile for TG in figure 9.2. This could be a result of using mild parameters or using

fixed densities in the analysis. We explore the effects of fixed densities by varying

the densities over time in the following section.
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Figure 9.2: Numerical solutions of equations (9.6)–(9.11) with mild parameters. Here
λH = 1 and TG(0) = 10.

9.3 Varying densities

In this section we consider varying both the densities of the solid and gas along

with the temperature of the gas as before in the previous section 9.2. We use mild

parameter values in the first instance and later consider the effects of the physical

parameter values on the system.

Taking TG = TG(t) as before in section 9.2, with ρG = ρG(t) and ρS = ρS(t)
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now, yields the following system of equations

ρS(t)CV
∂u
∂ t

= κ
∂ 2u
∂x2 +ΩρS(t)

∂α

∂ t
+λH(TG(t)−u(t)), (9.12)

∂α

∂ t
= A(1−α)exp

(
− E

Ru

)
, (9.13)

dVG

dt
= A

∫ x0

−x0

∂α

∂ t
dx, (9.14)

VS(t) = 2−VG(t), (9.15)

dTG

dt
=

ρS(t)
ρG(t)VG(t)

(u(t)−TG(t))
dVG(t)

dt
, (9.16)

PG(t) =
nRTG(t)
VG(t)

, (9.17)

ρG(t) =
(

PG(t)
c1

) 1
γ

, (9.18)

ρS(t) =
MT −ρG(t)VG(t)

VS(t)
. (9.19)

9.3.1 Mild parameters

Here we solve the system 9.12–9.19 using the mild parameter values given in table

8.1. We also use the initial conditions given by u(0) = 15,TG(0) = 10,VG(0) =

1× 10−7,ρG(0) = 372 and ρS(0) = 1800. The initial condition for VS is given by

equation (9.15) using the initial conditions for VG given above. Similarly the initial

condition for PG is given by equation (9.17) using the initial conditions for TG and

VG given above.

9.3.2 Physical parameters

In this subsection we repeat the analysis from the previous subsection 9.3.1 using

physical parameter values here. Solving equations (9.12)–(9.19) with the physical

parameter values given in table 9.1 gives the results in figure 9.4a–.9.4b

We observe from figure 9.4a relatively low solid temperature u and little change

in the density of solid ρS over the time span. This could be a result of the reaction

not reaching full extent, as demonstrated in the plot for α . Since α has not reached

α = 1 i.e. fully reacted, the resulting quantities u and ρS have not peaked. Due

to the extremely large physical parameters present in table 9.1 the system would
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Figure 9.3: Numerical solutions of equations (9.12)–(9.19) with mild parameters given in
table 8.1.

Table 9.1: Physical parameters used in model.

Parameter with units Symbol Value
Conductivity (W/m/K) κ 0.44
Specific Heat (J/kg/K) cv 1255.0
Heat of Reaction (J/kg) Ω 5.0208e6
Molar Gas Constant (J/mol/K) R 8.314
Activation Energy (J/mol) E 2.2e5
Pre-exponential Constant (s−1) A 5.011872336e19
Initial solid temperature °K C 293
Number of moles of gas ( M

mw) n 0.0342
Specific surface area×Heat transfer coefficient λH 1
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Figure 9.4: Numerical solutions of equations (9.12)–(9.19) with physical parameters given
in table 9.1.
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require a much longer time period before the reaction process has significant effect

on the system. Similarly in figure 9.4b we observe a low gas temperature TG and

extremely small gas volume VG.

9.4 Summary of chapter

In this chapter we investigated the effects of internal heating on the full problem

using the physical parameters. We began by considering a constant gas temperature

which resulted in physically unrealistic results, in particular for the pressure and

temperature of gas. This initial investigation using a constant gas temperature al-

lowed us to verify the numerical scheme worked well for the problem and was able

to handle the large physical parameters involved.

Next we considered a variable gas temperature, as is physically realistic, how-

ever we maintained constant densities of both solid and gas. This approach proved

to be more insightful with regards to the numerical treatment of the problem and

the temperatures reached (of the gas in particular) were more realistic than previous

analysis. Since the densities were kept constant in this section, the feedback within

the solid was neglected and hence the internal temperature of the solid u was not

accurately calculated.

In the final section of this chapter we allowed densities of both solid and gas

to vary over time. Since this affects the solid calculations, we began by consider-

ing mild parameters. We observed an increase in gas temperature by allowing the

densities to vary. When considering the physical parameters with internal heating

and varying densities, we were able to solve the system accurately however due

to computational run-time, it was difficult to obtain insightful results. The time

and computational memory required for the extent of reaction α to reach unity is

beyond that of standard computers. Given the results demonstrated in subsection

9.3.1 however, we are confident that if allowed to run for long enough, the results

using the physical parameter values would be accurate.

The trends in the numerical results in the present chapter are consistent with

the analytical trends described near the end of chapter 8.
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As a broad conclusion, gas feedback has bee included but in the parameter

range studied here, it has produced only small effects.
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Chapter 10

Heating of material in squeezed

wedge flow

The work presented in this part of the thesis could be regarded as separate from

the previous work, but on the other hand there is a close connection to some of

the previous chapters. The intention here is to begin the build-up of an overall

large-scale model involving fluid dynamics together with heat production, reaction

and interaction; this chapter 10 is thus in preparation for such a large-scale model.

There is very little available in the literature on the particular Jefferey-Hamel flow

problem which we consider in this part of the thesis. However the paper by Riley

[64] considers heating in similar geometry and hence provides useful insights.

Having looked at purely thermal boundary layers, where hot gas provides the

initial heating source, we now consider a situation where a mechanical stimulus

causes the dissipation and hence heating. This chapter considers the explosive re-

action as a result of heat arising from a mechanical insult or impact. Specifically,

explosive material which is able to move inside a hollow slender wedge is addressed

with the contained material being squeezed by the inward movement of one of the

two walls of the wedge, as depicted in figure 10.1. The fixed wall of the wedge is

taken as the x-axis in Cartesian coordinates.

The modelling is based on considering a viscous fluid within the wedge rather

than a precise HE, along with a spatial assumption of two-dimensionality in coor-

dinates x, y in the horizontal and vertical directions respectively: again see figure
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10.1. The present approach begins with an unsteady version in section 10.1 of the

classical steady Jeffery-Hamel flow solution [65], which holds inside a diverging

channel with a fluid source present and constitutes an exact solution of the Navier-

Stokes equations with appropriate boundary conditions. We consider the boundary-

layer limit since the contained material is confined in a relatively thin wedge of

small angle; the boundary layer form has the advantage of being readily able to

incorporate non-simple wall shapes and non-simple wall velocities for example,

in addition to being more tractable in general. Here, in the case of a flat-walled

wedge, the Jeffery-Hamel solution can hold very close to the origin or pivot of the

wedge at (x,y) = (0,0), in contrast with our concern which is on the broader scale

at increased distance x where extreme temperatures are found to be generated, ac-

cording to section 10.2. This is followed by analysis, results and further discussion

in sections 10.3–10.6.

10.1 The Fluid Flow and Temperature

We start with the continuity, Navier-Stokes and thermal equations written in dimen-

sional form,

ux + vy = 0,

ut +uux + vuy =−px +ν∇
2u,

vt +uvx + vvy =−py +ν∇
2v,

θ̂t +uθ̂x + vθ̂y = (Pr)−1
ν∇

2
θ̂ .

For now we are omitting dissipation but this will be incorporated later. Here u, v are

the flow velocities in the x, y directions in turn, t denotes time, p is the fluid pressure

variation and θ̂ is the temperature, while ν is the kinematic viscosity of the fluid

and Pr is the Prandtl number. Suppose that the typical normal (y−)velocity W of the

upper wall of the wedge and the typical x−length L are given for the slender wedge.

We assume the ratio δ = ν

WL is small, this ratio representing an inverse Reynolds
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number in effect, and substitute the scales

x = LX , y = δLY, t = LδW−1T,

ν =WV, u = δ
−1WU, p = δ

−2W 2P, (10.1)

and

temperatureθ̂ = θREPθ , (10.2)

(here ‘θREP’ is a reference temperature such as an imposed wall temperature) into

the Navier-Stokes equations. From this we obtain the boundary-layer equations for

the fluid flow:

U = ΨY , V =−ΨX , (10.3)

UT +UUX +VUY =−PX +UYY , (10.4)

0 =−PY , implying P = P(X ,T ). (10.5)

The relevant boundary conditions include

U = 0, V = E(T )X at Y = F(X ,T ), (10.6)

U =V = 0 at Y = 0. (10.7)

Here the prime case of interest has the straight-walled wedge shape

F(X ,T ) = Xα(t) together with E(T ) =
dα̂

dT
, (10.8)

where the scaled angle α(T ) is prescribed as a function of time T and its derivative

is expected to be negative in order to represent a squeezing of the contained material.

In addition we have, for the temperatures produced by the flow of the material, the

equation with dissipation included

θT +UθX +V θY = (Pr)−1
θYY +CΦ+ r, (10.9)
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where the constant Pr is the Prandtl number, to repeat, estimated values of which

are to be described below. The constant C is a non-dimensionalisation factor and

the definition of the scaled dissipation Φ is to be given in ssection 10.3, while r is a

reaction term similar to that introduced in chapter 2. The role of r will be discussed

later. The thermal boundary conditions are

ϑ = ϑUW (x, t) at the upper wall Y = F(X ,T ), (10.10)

ϑ = ϑAXIS(x, t) at the axis Y = 0. (10.11)

The contributions on the right hand sides of (10.10), (10.11) are prescribed tempera-

tures at the walls in the present model. Alternatives to the given wall and axis values

ϑ(x, t) imposed in (10.10), (10.11) are constraints of no heat transfer ϑY = 0 or a

Robin condition or although perhaps less likely to be relevant, a radiative condition

where the heat transfer rate involves the fourth power of the absolute temperature.

The formulation (10.3)-(10.9) applies in a viscous/inviscid interaction region

surrounding the origin. We would anticipate that for small X the solution becomes

quasi-steady, with the time dependence in (10.4), (10.9) becoming secondary there

because X-derivatives are relatively large; this possibly yields the classical Jeffery-

Hamel flow response, depending on whether there is a source of fluid at the origin

or not. An alternative situation at small X corresponds to the presence of a dynam-

ically negligible void or gap between the origin and the material. In either case the

main flow forcing of interest in this study is the forcing due to the movement (the

squeezing) of the upper wall of the wedge.
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Figure 10.1: Sketch of the squeezed wedge configuration with material (fluid) contained
between moving and fixed walls able to flow in x and y directions. The wedge
angle is of order δ . Sketch is not to scale.
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Figure 10.2: Solution structure for slender cases. JH is region of either classical source
flow or a void. PRESENT is region of current study especially for large X
downstream where UWL (upper wall layer), core and LWL (lower wall layer)
emerge with thickness of order X−1, X , 1 respectively.
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10.2 Downstream Response

The material (fluid) is expected to flow away from the origin, in the positive X

direction. We find that for large positive X an interesting multi-structure arises as

indicated in figure 10.2 and described as follows.

First, a quasi-inviscid core emerges in which the typical (Y,V,U) vlaues grow

like distance X . Hence in (10.4) the viscous term UYY is O(X−1), which is seen to

become negligible in comparison with the inertia terms which are O(X), and thus

after some manipulation the solution by John Curtis [66] is then found. The main

detail required for the analysis below is the property that the dominant velocity

component U grows linearly with X and is positive.

Second, there has to be a comparatively thin lower-wall layer (LWL) along

Y = 0 to satisfy the no-slip condition, in view of the slip that is present in the

inviscid core solution. Here the slip velocity due to the core is given by

U = kX (for X ≫ 1), (10.12)

where k is a known positive constant. The wall layer then, which surprisingly hap-

pens to be the same as for a front stagnation point on an air-foil, takes the form

Ψ ∼ Xg(Y )+ . . .(for X ≫ 1), (10.13)

as suggested by (10.12) in conjunction with (10.3), (10.4), with ψ being the scaled

stream function associated with U = dψ/dY , V = −dψ/dX . Substitution into

(10.3)-(10.5) is found to lead to the classical (Hiemenz flow) solution [65], sat-

isfying the nonlinear ordinary differential equation

(g′)2 −gg′′ = k2 +g′′′ subject to g′(∞) = k, g(0) = g′(0) = 0, (10.14)

where the prime denotes the operator d/dY . The numerical solution derived by

use of a shooting method is presented in figure 10.3 and is in agreement with the

classical result. It is significant that the thickness of this wall layer remains O(1)
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Figure 10.3: Solution g,g′,g′′ of equation (10.14) in the lower wall layer (LWL).

even though the gap grows spatially downstream.

Third, an upper wall layer (UWL) is also induced close to the moving wall of

(10.8). An argument based on orders of magnitude suggests that near the upper wall

Y − α̂X is O(Xm) say, with the power m being less than unity, while V is O(X) from

the moving-wall boundary condition (10.6) and the stream function ψ is O(1) by

virtue of (10.3). Balancing effects in the boundary layer equations (10.4) implies

that m =−1. This indicates that the appropriate scales and expansions are

Y = Xα(T )+X−1Y ∗,(U,V,Ψ) = (XU∗,XV ∗,Ψ∗)+ . . . . (10.15)

After substituting (10.15) into (10.3)–(10.5) we find the linear governing equation

−B(T )U∗
Y ∗ =U∗

Y ∗Y ∗, (10.16)
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to leading order, where B(T ) = dα̂/dT is used for convenience. Since only deriva-

tives with respect to Y ∗ are present in (10.16), the upper-wall layer solution is thus

U∗(Y ∗) = 1− exp(−B(T )Y ∗)A (10.17)

where the positive constant A is known from the core solution: cf (10.12). Thus we

have A = k. We remark that Y ∗ tends to −∞ as the wall layer matches with the core

and repeat that B(T ) is taken to be negative for the squeezing effect due to the upper

wall of the wedge.

The next section, section 10.3 below, establishes that the largest dissipation

occurs in the upper wall layer (UWL). So we need to treat the scaled dissipation

Φ and then the equation (10.9) for the scaled temperature θ in a similar way to

(10.15). Section 10.4 below tackles the temperature part of the model in the UWL.

Then section 10.5 examines the lower wall layer (LWL) and section 10.6 provides

a summary.

10.3 The Dissipation in the Lower and Upper Wall

Layers
Concerning thermal effects induced by the fluid motion, the scaled dissipation Φ is

defined in classical tensor notation e.g. [65] by

Φ

2µ
= ei jei j where ei j =

1
2
(

∂ui

∂x j
+

∂u j

∂xi
), (10.18)

where µ denotes the viscosity of the material. Hence for our two-dimensional

wedge configuration we have

Φ

2µ
= u2

x +
1
2
(uy +νx)

2 +ν
2
y (10.19)

and therefore in the thin-wedge setting of (10.1), (10.2) this becomes

Φ

2µ
=

1
2

W 2
δ
−4L−2

(
∂U
∂Y

)2

+h.o.t. (10.20)
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since the ratio δ is small; h.o.t. denotes higher order terms.

We then consider X becoming large downstream, based on the findings for the

flow in section 10.2. Here in the lower wall layer (LWL) the asymptotic behaviour

is U ∼ Xg′(Y ) from (10.13) whereas in the upper wall layer (UWL) U ∼ XU∗, to

leading order. In consequence the ∂U
∂Y contribution induced is Xg′′(Y ) in the LWL

but X2 dU∗

dY ∗ in the UWL. The latter clearly dominates when X is large.

Hence the maximum of the scaled dissipation Φ is encountered within the

UWL and it has a value given by

Φ

2µ
∼ 1

2
W 2

δ
−4L−2

(
∂U∗

∂Y ∗

)2

X4, (10.21)

from (10.20) combined with (10.15). This suggests we should focus first on the

thermal response in the UWL, as follows.

10.4 The Resulting Temperature in the Upper Wall

Layer

In section 10.3 we found that Φ ∼ ΓX4 as X → ∞, where the function Γ is given by

Γ(Y ∗,T ) = µW 2
δ
−4L−2

(
∂U∗

∂Y ∗

)2

, (10.22)

in the UWL. Here ∂U∗

∂Y ∗ is given by AB(T )exp(−B(T )Y ∗) from (10.17) and so since

B(T ) is negative the function Γ decays exponentially in the outer reaches of the

wall layer where Y ∗ →−∞, i.e. on approach to the core. We now wish to consider

the thermal equation (10.9) when X is large with time T of order unity and with

the reaction r taken to be zero as a main case. The behaviour of U,V,Y is given

by (10.15). The governing equations (10.3)–(10.9) with (10.15) suggest that the

temperature in the wall layer must therefore expand in the form

θ = X2
θ
∗(Y ∗,T )+ . . . , (10.23)
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due to the forcing term involving Φ in (10.9); the substantial growth of temperature

with distance downstream according to (10.23) is notable.

Substitution of (10.23) into (10.9) shows that the main balance occurs between

the contributions of order X4 and these yield the equation

−B(T )
∂θ ∗

∂Y ∗ = (Pr)−1 ∂ 2θ ∗

∂Y ∗2 +CΓ (10.24)

for θ ∗(Y ∗,T ). We observe that a significant cancellation between V ∗ and αU∗ is

involved in the derivation of (10.24). The boundary conditions now become

θ
∗ = 0 at Y ∗ = 0, (10.25)

θ
∗ → 0 as Y ∗ → ∞. (10.26)

The zero thermal values in the boundary conditions here arise because of the large

scaling of θ in (10.23) compared with (10.10) and the reasonable assumption (given

the exponential decay of Γ at large negative Y ∗) of less large temperatures in the

inviscid core outside the wall layer(s). The final task here in the UWL then is to

solve (10.24)–(10.26). We now proceed to solve Equation (10.24) subject to the

boundary conditions (10.25)-(10.26). For completeness we show much of the detail

below. We begin by dividing (10.25) through by −B(T ) such that we have

∂θ ∗

∂Y ∗ =
(Pr)−1

−B(T )
∂ 2θ ∗

∂Y ∗2 +
CΓ

−B(T )
,

or equivalently
∂θ ∗

∂Y ∗ = k1(Y )
∂ 2θ ∗

∂Y ∗2 + k2(Y ),

where k1(Y ) =− 1
PrB(T ) and k2(Y ) =−CΓ(Y )

B(T ) . If we let ∂θ

∂Y = ν̂(Y ) such that ∂ 2θ

∂Y 2 =

∂ ν̂

∂Y . Dividing through by −k1(Y ) gives

− ν̂(Y )
k1(Y )

+
∂ ν̂

∂Y
=−k2(Y )

k1(Y )
.

Now, using the integrating factor method, we let µ̂(Y ) = exp
(∫

− 1
k1(Y )

dY
)
=
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exp
(
−
∫ 1

k1(Y )
dY
)

and multiply both sides of the above by µ̂(Y ) such that

exp
(
−
∫ 1

k1(Y )
dY
)

∂ ν̂

∂Y
−exp

(
−
∫ 1

k1(Y )
dY
)

ν̂(Y )
k1(Y )

=−exp
(
−
∫ 1

k1(Y )
dY
)k2(Y )

k1(Y )
.

Substituting −exp
(
−
∫ 1

k1(Y )
dY
)
/k1(Y ) = d

dY

(
exp
(
−
∫ 1

k1(Y )
dY
))

gives

exp
(
−
∫ 1

k1(Y )
dY
)

∂ ν̂

∂Y
+

d
dY

(
exp
(
−
∫ 1

k1(Y )
dY
))

ν̂(Y ) =−exp
(
−
∫ 1

k1(Y )
dY
)k2(Y )

k1(Y )
,

and applying the product rule to the left hand side

d
dY

(
exp
(
−
∫ 1

k1(Y )
dY
)

ν̂(Y )
)
=−exp

(
−
∫ 1

k1(Y )
dY
)k2(Y )

k1(Y )
.

Now we integrate with respect to Y and dividing through by µ̂(Y ) gives

ν̂(Y ) = exp
(∫ 1

k1(Y )
dY
)(

−
∫

exp
(
−
∫ 1

k1(Y )
dY
)k2(Y )

k1(Y )
dY + c1

)
.

Recall, we made the substitution ∂θ

∂Y = ν̂(Y ), and so we have

∂θ

∂Y
= exp

(∫ 1
k1(Y )

dY
)(

−
∫

exp
(
−
∫ 1

k1(Y )
dY
)k2(Y )

k1(Y )
dY + c1

)
,

which, integrating with respect to Y , gives

θ(Y ) =
∫

exp
(∫ 1

k1(Y )
dY
)(

−
∫

exp
(
−
∫ 1

k1(Y )
dY
)k2(Y )

k1(Y )
dY + c1

)
dY + c2.

From the boundary conditions (10.25)-(10.26) we have that θ = 0 at Y = 0 and θ →

0 as Y → ∞; hence we can obtain c2 = 0 and c1 provided the limits on the integral

are set where c1 is a constant of integration. See also the numerical solution below

(figure 10.4) where we used a finite difference method instead of the integrating

factor method.

Alternatively, we may solve (10.24)-(10.26) by normalising (10.24) such that
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substituting (10.22) into (10.24) gives

−B(T )
∂θ ∗

∂Y ∗ = (Pr)−1 ∂ 2θ ∗

∂Y ∗2 +CBAB(T )2 exp(−2B(T )Y ∗)

where B = µW 2δ−4L−2. If we let θ ∗ = aθ and Y ∗ = bY and substitute into the

above we get

−B(T )
a
b

∂θ

∂Y
=

1
Pr

a
b2

∂ 2θ

∂Y 2 +CBAB(T )2 exp(−2B(T )bY ).

Dividing through by a
b2 gives

−B(T )b
∂θ

∂Y
=

1
Pr

∂ 2θ

∂Y 2 +
b2

a
CBAB(T )2 exp(−2B(T )bY ).

Taking B(T )b = 1 implies b = 1
B(T ) , substitution into the above yields

−∂θ

∂Y
=

1
Pr

∂ 2θ

∂Y 2 +
CBA

a
exp(−2Y ),

which when setting CBA
a = 1 gives a =CBA and finally we have

−∂θ

∂Y
=

1
Pr

∂ 2θ

∂Y 2 + exp(−2Y ). (10.27)

The equation of interest is therefore in a convenient normalized form.

Results are shown in figure 10.4. As regards Pr = 0.1, the trend of the scaled

temperature θ to zero as Y tends to infinity is found to occur on a larger Y scale,

consistent with reduced diffusion for such a low Prandtl number. The same point

applies to Pr = 0.01 although in that case the magnitude of the variation of θ is

diminished for the entire Y range.
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Figure 10.4: Solution θ of Equation (10.27) for varying values of Pr.

10.5 The Temperature in the Lower Wall Layer

An analysis based on order of magnitude similar to that in section 10.3 shows that in

the LWL the dissipation function grows like X2, say Φ ∼ Γ2X2 as X → ∞, because

of the form of the fluid dynamical behaviour in (10.13). Here the function Γ is given

by

Γ2(Y,T ) = µW 2
δ
−4L−2g′′(Y )2, (10.28)

in the LWL, with the prime again denoting a Y -derivative. Here g(Y ) is the Heimenz

solution of figure 10.5 and it gives Γ2 decaying exponentially in the outer reaches

of the LWL where Y → ∞, i.e. on approach to the core. The governing equations

including (10.9) suggest that the temperature in the LWL expands as

θ = X2
θ2(Y,T )+ . . . , (10.29)
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due to the forcing term involving Φ in (10.9). The comparatively large size of the

temperature is noticeable again.

The growth of temperature according to (10.29) in the LWL is of the same

order as that in the UWL (see (10.23)), which is perhaps surprising in view of the

larger dissipation in the UWL. The explanation for this lies in the balancing within

(10.9) of the diffusion term which is of order θ/Y 2 and the dissipation term which

in non-dimensional form has the order U2/Y 2 from (10.20). Hence the expectation

is that θ must be O(U2): this is exactly O(X2) for both the LWL and the UWL

since both layers are subject to the slip velocity defined in (10.12).

Substitution of (10.29) into (10.9) gives the linear differential equation

2g′θ2 −gθ
′
2 = (Pr)−1

θ
′′
2 +C2Γ2 (10.30)

for the scaled temperature θ2(Y,T ). The boundary conditions now become

θ2 = 0 at Y = 0, (10.31)

θ2 → 0 as Y → ∞. (10.32)

The zero thermal values here arise because of the large scaling of θ in (10.29) com-

pared with (10.10) and the reasonable assumption (given the exponential decay of

Γ2 at large Y ) of less large temperatures in the inviscid core outside the wall layer(s).

The task here in the LWL then is to solve (10.30)-(10.32), which is effectively an

ordinary differential equation problem. Normalising (10.30) such that C2Γ2 = 1 by

letting θ2 = aθ ∗
2 we obtain

2g′aθ
∗
2 −gaθ

∗
2
′ =

a
Pr

θ
∗
2
′′+C2Bg′′(Y )2,

where Γ2 = Bg′′(Y )2 and B = µW 2δ−4L−2. Dividing through by a gives

2g′θ ∗
2 −gθ

∗
2
′ =

1
Pr

θ
∗
2
′′+

C2B
a

g′′(Y )2,



10.6. Summary of chapter 180

then we take C2B
a = 1 which implies a =C2B and hence

2g′θ ∗
2 −gθ

∗
2
′ =

1
Pr

θ
∗
2
′′+g′′(Y )2. (10.33)

We used the solution of (10.14) for g and then solved (10.33). Both (10.14) and

(10.33) were solved numerically using a shooting method and the solutions of the

latter are displayed in figure 10.5 below for a fairly wide range of Prandtl numbers.
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Figure 10.5: Solutions θ2,θ
′
2 of equation (10.33) for Pr = 0.7.

10.6 Summary of chapter
This part of the thesis, consisting of only the present chapter, considered mechan-

ical stimulus as a means of heating. From the work presented in this chapter we

observed that overall, the structure of the flow and heating problem appears to be

both logical and sensible.
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There are however certain details of the work presented in this chapter which

are incomplete. These include the constant factors C, C2 in particular. We also note

that here we have only examined the reaction contribution r being zero and future

work could explore the case of r being nonzero. The role of such a reaction, similar

to that involving the reaction fraction alpha in chapters 2, 3, or several reactions

examined in chapter 4, should be of much interest in future investigations. It would

provide a means for a full two-way interaction between the material flow and the

material temperature by way of nonlinear feedback effects.

From the analysis presented in this chapter, we conclude from (10.15) the flow

thickness in the lower wall layer is Y = O(1), consistent with the Heimenz solution

at leading order. In the upper wall layer the flow thickness is of order X−1 which

is approximately 1% of the wedge thickness (O(X) where X is some large number

number which we take to be 10 as a representative value).

The thermal thickness on the other hand can be obtained from equation (10.24).

We adjust Y ∗ according to the magnitude of Pr. Suppose Pr is large, then Y ∗ ∼ 1
Pr of

the flow thickness in the upper wall layer, for example Pr = 60 would give Y ∗ ∼ 1
60 .

In the lower wall layer, from equation (10.30) we scale Y with Pr in a similar way.

When considering the thermal and mechanical cases and how these compare

with crystal sizes of 50µm we must first take into account the size of the wedge.

Since we are dealing with small angles, we consider a wedge which is somewhat

larger in length (x) than in width (y). Take for example 10cm as the Y -coordinate

(vertical) width of the wedge, then the flow thickness of the upper wall layer is 1%

of that (thus giving 1mm or 10−3m) which is 1000 microns. This is 20 times the

maximum crystal size. If we take Pr = 20 say, then the thermal flow thickness is

reduced by a factor of 1/20 which takes the 1mm estimate down to 50 microns.

Hence, provided Pr < 20, the current analysis is outside the range where we need

to consider crystals.
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Chapter 11

General Conclusions

In this chapter we review the main findings of the work presented in the thesis. We

conclude by highlighting areas of potential further research. We first draw conclu-

sions on part I of the thesis consisting of chapters 2–4.

In chapter 2 we considered the one reactant problem and its computational

properties. We introduced the non-dimensional system based on the scaled parame-

ters ū and t̄ which when investigated highlighted the emergence of boundary layers.

We proceeded in chapter 3 to consider non-dimensional variables for simplic-

ity. We included a variation of the Arrhenius reaction equation into our model in

the first instance. Our numerical scheme coped well with the non-linear system of

equations. However, when considering the actual physical parameters, the numer-

ical method was unable to produce sensible/informative results. This is due to the

extreme nature of the parameters involved. To address this, we introduced mild

parameters in place of the physical ones. We compared the results of the mild pa-

rameter case with the corresponding asymptotic case and observed excellent agree-

ment between the two. Chapter 4 extended the model presented in chapters 2–3 by

including multiple reactants. Here, we first solved the full equations with mild pa-

rameters and then turned to asymptotics following the promising results of chapter

3. Again, we observed excellent agreement between the full problem and reduced

asymptotic problem for mild parameter values.

The verification of the asymptotic model described above makes tractable the

solution of the reaction diffusion problem over the parameter ranges of real concern
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without the need for the extremely fine spatial resolution to capture the behaviour

near the wall that is needed in direct treatment of the full problem. This has impor-

tant implications for the application of the model to real problems, where often it is

desired to perform parametric studies within a reasonable timescale. Such studies

can be greatly hampered by the computational times needed, so this is a significant

potential benefit of the work.

In the second part of the thesis (part II) we introduced the effects of gas into

the model. We began first by introducting in chapter 5 gas via a discrete scheme

which we then extended to a continuous framework. The model developed here

unrealistically assumes the gas which is created in the system immediately leaves,

having no effect whatsoever on the temperature of the solid. Chapter 6 aimed to

address this by allowing feedback in the system. In the first instance, we allowed

feedback only at the boundaries of the solid by taking the gas temperature as the

solid boundary condition once it exceeds the prescribed boundary condition. We

also considered the effects of a moving boundary on the system in chapter 6. This

model allows the gas produced to fill the space which was once occupied by solid

explosive through a moving boundary. The results of this model however, insuffi-

ciently capture the behaviour of the physical problem. This is mainly because the

position of the boundary (calculated by (6.2)) did not tend to zero as expected and

thus the volume of gas did not tend to 2 (i.e. fill the whole domain).

To further address the lack of feedback in the system, chapter 7 considered the

effects of varying the densities of both solid and gas such that the solid matrix calcu-

lation of temperature takes these into account. This model proved to be a significant

improvement of the previous one described in chapter 6. This model was also con-

sidered in an asymptotic framework. Finally, to consider the effects of gas on the

system, we considered, in chapter 8, internal heating. Here we built on the previous

model in chapter 7 by allowing for internal heating as well as boundary heating by

the gas produced. The results of this model agree closely with those presented in

previous chapters; however one key difference is that due, to the internal heating

by the gas produced in the system, the temperature of the solid reaches the peak
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temperature, albeit the same as without internal heating, much quicker than before.

The extent of reaction also reaches its maximum much sooner. The analysis in this

chapter also identified some key parameters, namely λ̄

(
= λH

ρSCvA

)
which we inves-

tigated in detail. Finally in chapter 9, for completeness, we repeated the analysis

done in chapters 7–8 for the full problem with both mild and physical parameters.

The third and final part of the thesis consisted only of chapter 10. In this chap-

ter we considered an alternative heating method: mechanical stimulus produced by

a squeezing wedge. This chapter serves as a starting point for future work. We also

conclude that much like with thermal stimulus, the majority of the behaviour in the

mechanical system takes place within the thin boundary layers as well.

11.1 Future work
Here we briefly outline the main areas of future potential research which may fol-

low on from the work presented in the thesis. The first and perhaps most obvious

extension of this work could be to repeat the analysis presented in chapters 7–9 but

with three reactants present as explored in chapter 4.

Second, the model of interaction evolving between thermal diffusion effects

and a number of reactants has been considered for one spatial dimension only. The

present approach, especially the asymptotic treatment but to some extent the direct

treatment also, indicates that reliable predictions for two- and three-dimensional

configurations should be quite possible [20].This second avenue of future work

could therefore explore the extension of the model to higher dimensions. Using

the asymptotic methodology developed throughout the present work, the potential

for savings in computational resources is possibly even greater for two-and three-

dimensional cases, which, of course, are prevalent in reality.

Finally, in the wedge problem described in chapter 9, a clear area of future

work is considering the presence of a reaction term where ‘r’ is non-zero. The form

of the reaction term required would most likely be based on that discussed in the

first few chapters of the present thesis.



Appendix A

Further features of the core problem

This addresses the core problem (in altered notation)

dα

dt∗
= (1−α)exp(−1/(δ +Wα)) (A.1)

subject to α = 0 at t∗ = 0. ((2))

When δ is small but W is of order unity, the RHS of (A.1) increases very

rapidly when plotted against α . This increase takes place where α becomes O(δ );

so there the RHS of (A.1) is O(ε) say where ε = exp(−1/δ ) is very small.

The corresponding time scale t∗ is t∗ = O(δ−1 exp(−1/δ )), very small, from

(A.1). Hence dt∗/dα is very large, about exp(1/δ ), whereas α is about O(D) here.

On integration with respect to α therefore t∗ is about O(exp(1/δ )) and so is large.

It follows that the curve of α versus t∗ shows slow evolution at first, remaining

low for a long time until t∗ reaches O(exp(1/δ )), at which stage α begins to rise,

heading towards 1 eventually.

When does the change occur? Well, it is when α becomes O(1) but

t∗ = exp(1/δ )+ t∗∗. (A.2)

Then we have the equation

dα/dt∗∗ = (1−α)exp(−1/Wα), (A.3)
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from (A.1).

Equation ((A.3) can be integrated in principle to give t∗∗(α) and thus α(t∗∗).

We expect that (A.3) also yields the property that α tends to 1 as t∗∗ tends to infinity.

((4))

Further, the match with the previous stage takes place as t∗∗ tends to − infinity:

then (A.3) gives us dα/dt∗∗ = exp(−1/Wα) approximately and hence α = W −

1(ln(mod(t∗∗))−1 approximately as t∗∗ tends to − infinity. ((5)) The slow evolution

prior to the present stage is evident in the logarithmically-like slow decay in ((5)).

Here the two time scales t∗ of order exp(1/δ ) and order unity involved in this

scenario appear to reflect well the features of the direct solutions of the core problem

(A.1), ((2)) calculated for decreasing δ in chapter 3. In addition it is notable that the

core α evolves slowly as well as the wall layer α doing so. Consequently the direct

numerical solution of the wall layer described in chapter 3 strictly has to continue

for a long time t∗ of order exp(1/δ ) in order for the entire wall layer properties to

emerge.
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