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Key Points 

Question: Do individuals with schizophrenia have measurable differences in retinal 

morphology? 

 

Findings: In this retrospective cohort analysis of 101,416 patients (485 with schizophrenia), 

those with schizophrenia had significantly thinner ganglion cell-inner plexiform layers. 

Retinovascular differences were mostly attributable to higher medical comorbidity among those 

with schizophrenia.  

 

Meaning: These data indicate that individuals with schizophrenia have reduced thickness of the 

inner retina, which may indicate heightened neurodegeneration.  
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Abstract 

Importance: The potential association of schizophrenia with distinct retinal changes is of 

clinical interest but has been challenging to investigate due to lack of sufficiently large and 

detailed cohorts. 

 

Objective: To investigate the association between retinal biomarkers from multimodal imaging 

(oculomics) and schizophrenia in a large real-world population. 

 

Design: This cross-sectional analysis used data from the AlzEye study, a retrospective cohort 

where ophthalmic data of patients attending Moorfields Eye Hospital has been linked with 

hospital admissions across England between January 2008 and April 2018.  

 

Setting: A secondary care ophthalmic hospital, incorporating a principal central site, four district 

hubs and five satellite clinics in and around London, United Kingdom.  

 

Participants: A total of 154,830 patients aged 40 years and over and had retinal imaging during 

the study period.  

 

Main outcome and measure:  Retinovascular and optic nerve indices were computed from 

color fundus photography. Macular retinal nerve fiber layer (RNFL) and ganglion cell-inner 

plexiform layer (mGC-IPL) thicknesses were extracted from optical coherence tomography. 

Linear mixed effects models were used to examine the association between schizophrenia and 

retinal biomarkers.  
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Results: A total of 485 individuals (747 eyes) with schizophrenia (mean age 64.9  12.2 years, 

53.2% female) and 100,931 individuals (165,400 eyes) without schizophrenia (mean age 65.9  

13.7, 51.2% female) were included following image quality control and exclusion of potentially 

confounding conditions. Individuals with schizophrenia were more likely to be hypertensive 

(83.9% vs 48.0%) and have diabetes mellitus (75.1% vs 27.6%). The schizophrenia group had 

thinner mGC-IPL (-4.05 microns, 95% CI: -5.40,-2.69, p=5.4×10-9), which persisted when 

investigating only those without diabetes mellitus (-3.99 microns, 95% CI: -6.67,-1.30, p=0.004) 

or just those aged 55 years and younger (-2.90 microns, 95% CI: -5.55,-0.24, p=0.033). On 

adjusted analysis, retinal fractal dimension, among vascular variables was reduced in individuals 

with schizophrenia (-0.14 units, 95% CI: -0.22,-0.05, p=0.001) although this was not present 

when excluding those with diabetes mellitus.  

 

Conclusions and relevance: Patients with schizophrenia have measurable differences in neural 

and vascular integrity of the retina. Differences in retinal vasculature were mostly secondary to 

the higher prevalence of diabetes and hypertension in patients with schizophrenia. The role of 

oculomic biomarkers as adjunct outcomes in patients with schizophrenia warrants further 

investigation.  

[349 words] 
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Introduction 

Schizophrenia, a chronic heterogenous neuropsychiatric disorder with an estimated global 

prevalence of 23 million people in 20191, is increasingly recognised as a multisystemic disease2 

with bidirectional dysregulation. Features of endocrine dysfunction, such as impaired glucose 

tolerance, are present at the first episode of psychosis3,4 and shared genetic mechanisms have 

been implicated in diabetes mellitus and psychosis5. Treatment with antipsychotics and 

unhealthy lifestyle practices contribute to a high prevalence of metabolic syndrome among 

individuals with schizophrenia6. Following diagnosis, affected individuals are also more likely to 

experience cardiovascular disease and premature cognitive decline7–9 with some researchers 

positing an association between schizophrenia and accelerated senescence10.  

 

The eye provides a promising non-invasive route to elucidating multisystem dysregulation in 

mammals. As an embryological extension of the primitive forebrain, the eye represents an easily 

accessible window to direct quantitative imaging of central nervous system tissue through the 

retinal ganglion cells, nerve fibre layer (i.e. ganglion cell axons) and optic nerve. In addition, 

shared characteristics between retinal vascular morphology and other microvascular systems, 

such as those found in the heart, kidney and brain, reinforce the hypothesis that retinal imaging-

based oculomics can stratify individuals by risk of cardiovascular disease, renal failure and 

cerebrovascular disease11–16. Retinal changes have also been observed in individuals with 

schizophrenia. Two recent meta-analyses concluded that there was evidence for thinner 

peripapillary retinal nerve fiber layer and macular ganglion cell and inner plexiform layer (mGC-

IPL) and enlarged cup-to-disc ratio (CDR) but acknowledged an inconsistency in results and low 

statistical power17,18. For example, across six reports, significant mGC-IPL thinning was found in 
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schizophrenia but only when evaluating right eyes. Optic cup volume is significantly larger in 

schizophrenia spectrum disorders (SSD) but cup-to-disc area ratio is similar to controls. 

Preliminary reports also indicate changes in the density of retinal microvasculature in 

schizophrenia19–21. However, most reports exclude participants with other systemic diseases, 

such as diabetes mellitus and hypertension (both of which impair retinal structure and function), 

yet these medical comorbidities are highly prevalent in SSD, challenging the generalizability of 

any findings.  

 

In this analysis drawing on the AlzEye cohort, we investigated associations between 

schizophrenia and retinal morphology using cross-sectional multimodal imaging in a cohort of 

101,416 patients (n=485 with schizophrenia) in London, United Kingdom (UK). We 

hypothesized that individuals with schizophrenia would have enlarged CDR and reduced inner 

retinal thicknesses, above that which could be explained by the presence of hypertension and 

diabetes mellitus.  
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Methods 

Design, participants and setting 

This analysis used data from the AlzEye project, a retrospective cohort study with individual-

level linkage between ophthalmic data and hospital admissions across England of 353,157 

participants (154,830 with retinal imaging) who attended Moorfields Eye Hospital NHS 

Foundation Trust (MEH) between January 1st 2008 and April 1st 2018 (described previously22). 

In brief, participants were aged 40 years or over and had attended MEH, a secondary ophthalmic 

institution serving an ethnically diverse region of London, UK. Ophthalmic data was 

deterministically linked with the Hospital Episode Statistics (HES) Admitted Patient Care 

Database, a repository of all hospital admissions under the National Health Service (NHS) within 

England23, which captures > 97% of all hospital admissions in England24. HES is coded using the 

10th revision of the International Classification of Diseases (ICD)25. The primary objective was 

to assess whether prevalent schizophrenia was associated with a larger CDR and thinner mGC-

IPL and RNFL compared to controls. We additionally investigated whether retinal vascular 

morphology differed in those with schizophrenia.  

 

Variables 

The dependent variables were retinal morphological features derived from macula-centred colour 

fundus photography (CFP) and optical coherence tomography (OCT) (Figure 1). OCT is a non-

contact imaging modality, which measures back-scattered light and echo time delay (analogous 

to ultrasound but using light) to generate cross-sectional images of tissue with histological-like 

resolution (axial resolution ~5 microns). Retinal vascular morphometric characteristics, 

including fractal dimension, and CDR were extracted from 45-degree CFPs using two deep 
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learning-based tools - the Vessel Assessment and Measurement Platform for Images of the 

REtina (VAMPIRE) and AutoMorph26,27. For retinal sublayers, we only examined mGC-IPL and 

RNFL, defined according to the International Nomenclature for OCT panel28. Thicknesses were 

estimated using the Topcon Advanced Boundary Segmentation Tool (TABS, version 1.6.2.6), a 

software leveraging dual-scale gradient information for automated segmentation of retinal 

sublayers 29. All retinal images were acquired using Topcon (Topcon Corporation, Tokyo, Japan) 

devices. Across the study period, five different Topcon devices were used but approximately 

80% were collected on a single device, distribution of devices among cases and controls was 

similar and the same software version of TABS was used on all images (eTable1). Images from 

both eyes, where available, were used.  

 

The primary exposure was schizophrenia, defined as an HES episode with ICD code F20. HES-

based diagnostic codes for schizophrenia in the UK have previously been validated and 

demonstrated 90% agreement when compared to a psychiatrist-based hierarchical lifetime 

diagnosis using longitudinal psychopathology and diagnostic information from individual health 

records in London, UK30. We used the most recent HES admission codes for defining whether an 

individual had schizophrenia as this demonstrated a positive predictive value of 91%. For image 

selection, we then chose the earliest “good” or “usable” quality image following a HES episode 

with a diagnostic code for schizophrenia to reduce the potential bias imparted by ophthalmic 

treatment (e.g. retinal laser). Further information on how image quality is categorised can be 

found in AutoMorph’s description26. Among those who had multiple images on that same date, 

we chose the image with the highest image quality score, as outputted by AutoMorph. Controls 

were individuals in the cohort similarly attending MEH and had received retinal imaging during 
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the study period but who did not have an ICD code of schizophrenia (further details available in 

our previous report22). Secondary exposure variables were age, sex, hypertension (ICD: I10, 

I15), diabetes mellitus (ICD: E10, E11) and socioeconomic status (SES). SES was estimated 

using the index of multiple deprivation (IMD), a composite score linked to postcode covering 

income, employment, education, health, and barriers to housing and services, crime and living 

environment31. Given some previous evidence of similar retinal findings in mood disorders, we 

excluded individuals with ICD codes for bipolar affective disorder (F30-F31), SSD (other than 

schizophrenia, F21-F29) and unipolar depression (F32-F33) 30,32,33  

 

Statistical analysis 

Continuous variables were compared between groups using the Wilcoxon-Mann-Whitney test 

and categorical variables through the U-Statistic test34. We fitted linear mixed effects models 

using maximum likelihood estimation in line with the Advised Protocol for OCT Study 

Terminology and Elements (APOSTEL) recommendations35. These models included random 

effects on the intercept to account for the multilevel structure of eyes within individuals, and 

were adjusted for age, sex, diabetes mellitus, hypertension, socioeconomic status and image 

quality. Sex, diabetes mellitus and hypertension were coded as categorical variables for 

modelling. We adjusted for image quality as this has been found previously to be associated with 

certain retinal vascular features36. Degrees of freedom were estimated using Satterthwaite’s 

approximation37. We performed two subgroup analyses. Firstly, given the high prevalence of 

diabetes mellitus among individuals with schizophrenia and its impact on retinal vasculature, and 

to mitigate the risk of residual confounding conferred by comparing individuals with mild 

diabetes mellitus to those with more severe disease or those who had received retinal laser 
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treatment, we performed all analyses on a subgroup excluding individuals with diabetes mellitus. 

Secondly, to examine the association in younger individuals with schizophrenia, we performed 

an additional analysis stratifying individuals in the cohort to those <55 and ≥55 years of age. 

Statistical significance was set at p<0.05. All analyses were conducted in R version 4.1.0 (R 

Core Team, 2021. R Foundation for Statistical Computing, Vienna, Austria) and used the USP,  

lmer  and lmerTestpackage38–40. 

 

Reporting is in line with the guidelines set by the Strengthening the Reporting of Observational 

Studies in Epidemiology (STROBE) and its extension, the REporting of studies Conducted using 

Observational Routinely-collected health Data (RECORD) statements41,42. 

 

Approvals 

Data from this project were derived from the AlzEye study, which received institutional and 

ethical review board approval including an exemption of informed consent (REC reference: 

18/LO/1163).  
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Results 

Of the initial sample of 154,830, 485 individuals (747 eyes) with schizophrenia and 100,931 

individuals (165,400 eyes) without had macula-centered images deemed of sufficient image 

quality and met our inclusion criteria (Figure 2). Individuals with schizophrenia had a similar 

distribution of age and sex to those without the condition but were more likely to have 

hypertension (83.9% versus 48.0%, p<0.001), diabetes mellitus (75.1% versus 27.6%, p<0.001) 

and lived in areas of greater deprivation (Table 1). On unadjusted analysis, individuals with 

schizophrenia had significantly reduced fractal dimension, vessel density, tortuosity density and 

increased arteriolar and venular calibre (all p<0.001). In addition, they had reduced mGC-IPL 

and RNFL thickness. The schizophrenia group had slightly larger CDR (0.47  0.09 versus 0.46 

 0.09, p<0.001) but a similar prevalence of glaucoma (Table 1).  

 

 

 

Adjusting for age, sex, SES and image quality, schizophrenia was associated with reduced mGC-

IPL thickness, reduced fractal dimension, reduced vessel density, greater tortuosity density and 

enlarged CDR (Table 2). There was no association between schizophrenia and RNFL. When 

additionally adjusting for hypertension and diabetes mellitus, there was no association between 

schizophrenia and retinovascular characteristics except VAMPIRE-based fractal dimension (-

0.14,  95% CI: -0.22, -0.05], p = 0.001). Individuals with schizophrenia maintained a larger CDR 

(0.01, [0.00, 0.02], p=0.041) and thinner mGC-IPL (-4.05 microns, 95% CI: -5.40, -2.69, p=5.4 × 

10-9). Increasing age was associated with thinner mGC-IPL in both the schizophrenia and control 

groups. In those with schizophrenia, mGC-IPL was 3.20 microns (95% CI: -4.40, -1.99, p= 3.4 × 

10-7) thinner while in those without schizophrenia, the mGC-IPL was 2.54 microns (95% CI: -
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2.62, -2.46, p <2.0 × 10-16, eTable 2) thinner per ten years of age. On adjusted analysis, we found 

no significant difference in RNFL between those with schizophrenia and those without.  

 

Restricting the analysis to individuals without diabetes mellitus left a sample of 121 individuals 

(192 eyes) with schizophrenia and 73,574 controls (122,673 eyes, eTable 3). A strong 

association persisted between mGC-IPL and schizophrenia (-3.99 microns, 95% CI: -6.67, -1.30, 

p=0.004); the schizophrenia group no longer had enlarged CDR. No retinovascular indices were 

associated with schizophrenia in this subgroup.  

 

We next stratified the cohort into those aged <55 and ≥55 years (eTable 4). Regardless of age, 

mGC-IPL was reduced in those with schizophrenia; however, the effect estimate was more 

extreme for older patients (younger group: -2.90 microns, 95% CI: -5.55, -0.24, p=0.033, older 

group: -4.43 microns, 95% CI: -6.00, -2.85, p=3.6 × 10-8, Table 3). Reduced fractal dimension 

(VAMPIRE system) was seen in those with schizophrenia in both the older (-0.11 per SD 

increase, 95% CI: -0.20, -0.01, p=0.027) and younger (-0.23 per SD increase, 95% CI: -0.41, -

0.04, p=0.016) subgroups.  
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Discussion 

Among the AlzEye cohort of 101,416 individuals who had eye imaging of sufficient quality for 

analysis, people with schizophrenia had thinner mGC-IPL and slightly enlarged CDR compared 

to those without schizophrenia after adjustment for multiple demographic and medical factors, 

suggesting retinal neural atrophy. However, associations with retinovascular morphology could 

be explained by the increased prevalence of hypertension and diabetes mellitus among those with 

schizophrenia. Our report is the largest to date to examine multimodal retinal oculomics in 

individuals with schizophrenia and supports evidence of heightened retinal neurodegeneration in 

this disease that accelerates with advanced age.  

 

Retinoneural associations with schizophrenia 

We report evidence of reduced thickness of the inner retinal layers, which would be consistent 

with a neurodegenerative process in schizophrenia. The effect size for mGC-IPL thickness was 

similar to what has been reported in the literature on Alzheimer’s disease43,44 and prominent even 

when people with diabetes mellitus were excluded. A link between schizophrenia and mGC-IPL 

has been proposed but with inconsistent evidence thus far. In a meta-analysis of seven studies 

comprising 453 participants, thinner mGC-IPL was associated with schizophrenia but only in 

right eyes17. In another meta-analysis of three studies comprising 169 participants with SSD, 

mGC-IPL thickness was reduced but significance was lost when excluding one published report 

and the overall quality of evidence was deemed to be very low18.  
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There are several biologically plausible reasons for the thinner mGC-IPL we observed in 

schizophrenia. Firstly, mGC-IPL thinning may result from a central neurodegeneration which, 

through retrograde trans-synaptic degeneration (RTSD), manifests as inner retinal thinning, such 

as that found in multiple sclerosis, ischaemic stroke and chiasmal compression45–47. Some have 

advocated RTSD as the mechanism for inner retinal thinning in Alzheimer’s disease and other 

forms of dementia, diseases which are more common in people with schizophrenia, however 

conclusive evidence for this in schizophrenia is lacking7,48–50.Our subgroup analysis showed a 

more modest reduction in mGC-IPL among younger individuals with schizophrenia compared to 

those older in the cohort corroborating evidence from other disciplines of accelerated 

neurodegeneration. Affected individuals have progressive gray and white matter volume loss, 

beyond that of healthy controls51 and gene expression patterns suggest accelerated molecular 

ageing52. Even in the absence of confounding anti-psychotic therapy, individuals with 

schizophrenia show exaggerated cognitive decline53. Further evidence for a neurodegenerative 

phenomenon in schizophrenia comes from data on a different biomarker for neurodegeneration, 

neurofilaments, which were significantly increased in the blood of affected individuals54,55. 

Findings on retinoneural structure in those presenting with a first episode of psychosis have thus 

far been conflicting. While some have found no observable differences in retinal sublayer 

thicknesses56, others have identified reductions in total retinal thickness and visual cortex gray 

matter volume in small samples57. Future work should assess the relationship between mGC-IPL 

thinning and other indices of accelerated ageing in schizophrenia, such as gene expression and 

blood neurofilament protein levels.  
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Alternatively, mGC-IPL thinning may result from bidirectional multisystemic associations with 

schizophrenia. Chronic psychosis is associated with a greater prevalence of systemic 

comorbidities, such as hypertension, which influence mGC-IPL thickness58 and adjustment for 

medical comorbidities and age diminishes effect estimates between retinal thickness and 

schizophrenia59. Furthermore, schizophrenia has well-established epidemiological and genetic 

co-distribution with metabolic dysfunction3–5 and there is increasing evidence that retinal 

thinning may pre-date overt diabetes mellitus60,61. In our sensitivity analysis, we excluded all 

patients with diabetes mellitus during the study period to mitigate this; however it is conceivable 

that individuals within our population had early or undiagnosed metabolic syndrome. The 

finding that individuals with first-episode psychosis exhibit an initially accelerated but self-

limiting decline in retinal thinning and brain gray matter has also led some to hypothesise a 

pharmacological aetiology for degeneration62. Finally, even certain health behaviours and 

lifecourse exposures, which may be more frequent in schizophrenia, are linked with reduced 

mGC-IPL. For example, alcohol misuse is highly prevalent among those with schizophrenia 63 

and is known to lead to thinner mGC-IPL64.   

 

Retinovascular associations with schizophrenia 

We noted an apparent association between schizophrenia and reduced fractal dimension, 

increased tortuosity and increased vascular calibre; however these differences were mostly 

accounted for by diabetes mellitus and hypertension. Appaji and Rao also noted increased 

tortuosity and wider venules, but found increased retinal fractal dimension and narrower 

arterioles32,65,66. The reasons likely relate to our contrasting study populations. While our cohort 
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consisted of older patients (mean age 64.9 years) attending an ophthalmic hospital, Appaji et al 

studied younger participants (early 30s) in a community setting and excluded those with 

significant medical comorbidity. Retinal metrics are known to differ between those with chronic 

disease and those recovering from a first episode of psychosis56. Recent investigations using 

OCT angiography (OCTA), a newer modality providing visualization of retinal vessel density 

and perfusion, highlight the complex relationship between disease duration and retinovascular 

indices. While several reports have shown reduced microvascular vessel density in 

schizophrenia19,20,67, another has shown increased superficial vessel density in early-course 

patients68 leading some to hypothesise that layer-specific changes may occur as disease 

progresses21. Further analyses should investigate the association between retinovascular and 

retinal layer changes. Incorporating longitudinal analyses would shed light on the temporal 

dynamics of retinovascular changes in psychosis.  

 

A novel aspect of our work was the use of state-of-the-art retinal image analysis tools for fully 

automated extraction of retinovascular features in schizophrenia. We used two separate deep 

learning-based models - the VAMPIRE fractal dimension estimation module, based on a robustly 

validated U-Net segmentation algorithm developed by the Universities of Dundee and 

Edinburgh69,70 and AutoMorph, an openly available fully automated pipeline for the extraction of 

retinal features26. Rejection rate based on image quality was similar to previous reports using 

retinal imaging71,72. Given the challenges in the agreement between different segmentation 

tools27, we can have greater confidence in our findings on retinal fractal dimension where results 

by two independent fully automated segmentation systems.  
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This study should be considered within the broader limitations of retrospective observational 

research. Firstly, there are likely confounders which we could not adjust due to a lack of data. 

For example, smoking is more prevalent among individuals with psychosis73 and is known to 

affect retinal vasculature74. Secondly, our case definition of schizophrenia was based on ICD 

codes from hospital admissions data which may be prone to misclassification bias. However, our 

strategy for identifying individuals with schizophrenia was such that any misclassification bias 

would likely underestimate our effect measure30. Thirdly, the average age and prevalence of 

medical comorbidities, such as diabetes mellitus, of individuals with schizophrenia was 

relatively high in our study and as such our findings may not reflect the situation in younger 

patients without other systemic diseases presenting with a first episode of psychosis19. However, 

given the corroboration of our results with other studies where similar associations were found in 

younger groups and those with medical comorbidities excluded, the possibility of a unique 

sample effect seems unlikely.  

 

In conclusion, we show that individuals with schizophrenia have both altered retinovascular 

indices and thinner mGC-IPL. While the former was accounted for by comorbid diabetes 

mellitus and hypertension, we found independent associations with thinner inner retinal features 

similar to those observed in other neurodegenerative conditions, such as multiple sclerosis and 

Alzheimer’s disease75. The absence of some of these findings in younger individuals presenting 

with a first episode of psychosis supports a neurodegenerative mechanism which could relate to a 

primary degenerative phenomenon or secondary to metabolic impairment. Longitudinal analyses, 

which incorporate multimodal imaging and ancillary investigations of neurodegeneration, such 

as the blood neurofilament protein concentration and gene expression, are needed to elucidate the 
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developmental course of these changes19,56. Further investigations are warranted into whether 

oculomic biomarkers could help characterise disease course, predict treatment response or even 

risk-stratify those patients most at risk of developing cognitive decline, cardiovascular disease 

and other devastating sequelae of schizophrenia.   
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Figure Legends 

Figure 1: Retinal images representing optical coherence tomography with the retinal nerve fibre 

layer and macular ganglion cell-inner plexiform layer indicated (A), the nine regions of the 

ETDRS grid centred on the fovea (B) and an example colour fundus photograph (C). Note that 

for variables from optical coherence tomography,  only measurements from the inner ETDRS 

regions were included.  

C: Centre, II: inner inferior, IN: inner nasal, IS: inner superior, IT: inner temporal, mGC-IPL: 

macular ganglion cell-inner plexiform layer, OI: outer inferior, ON: outer nasal, OS: outer 

superior, OT: outer temporal. RNFL: retinal nerve fibre layer.  

 

Figure 2: Flow chart of included patients with patient-level and image-level inclusion and 

exclusion criteria detailed.  
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Tables 

 

 Characteristic Schizophrenia 
(n=485) 

No schizophrenia 
(n=100, 931) 

p-value1 

Demographics Age (years) 64.9  12.2 65.9  13.7 0.08 

Female sex (n (%)) 258 (53.2) 53,253 (51.2) 0.37 

Socioeconomic status (1=most deprived) 4.1  2.3 5.3  2.6 <0.001 

Comorbidity Hypertension (n (%)) 407 (83.9) 49,971 (48.0) <0.001 

Diabetes mellitus (n (%)) 364 (75.1) 28,762 (27.6) <0.001 

Glaucoma (n (%)) 38 (7.8) 7,602 (7.3) 0.71 

Age-related macular degeneration (n (%)) 19 (3.9) 5,322 (5.3) 0.18 

Cataract (n (%)) 123 (25.4) 20,383 (20.2) 0.007 

CFP  Image quality 0.59  0.34 0.51  0.35 <0.001 

Cup-disc ratio3 0.47  0.09 0.46  0.09 <0.001 

Arteriolar calibre (μm) 65.1  8.4 63.6  8.0 <0.001 

Venular calibre (μm) 73.5  10.1 72.0  9.2 <0.001 

Fractal dimension 1.46  0.06 1.47  0.05 <0.001 

Fractal dimension (VAMPIRE)4 1.51  0.03 1.52  0.03 <0.001 

Vessel density 0.072  0.013 0.073  0.012 0.027 

Distance tortuosity 3.48  1.3 3.41  1.2 0.58 

Tortuosity density 0.71  0.04 0.70  0.04 <0.001 

OCT RNFL (μm) 26.6  18.5 26.7  13.4 <0.001 

mGC-IPL (μm) 77.4  16.8 82.4  16.1 <0.001 

 

Table 1: Baseline and summary statistics for the cohort. Results are shown at the level of the individual - those from retinal 

imaging represent the means of the two eyes.  Except where indicated, all characteristic results are shown as mean  standard 

deviation. 

1 p-values were obtained using the Mann-Whitney-Wilcoxon test for continuous variables and the U-Statistic permutation test of independence for 
categorical variables. 
2Socioeconomic status was missing for no individuals with schizophrenia and 343 individuals without schizophrenia.  
3 Optic nerve measurements were available for 450 individuals with schizophrenia and 93,045 without.   
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4 Note that for VAMPIRE, data from 443 individuals with schizophrenia and 105,413 controls were available.  
CFP: Colour fundus photography, OCT: optical coherence tomography, mGC-IPL: macular ganglion cell-inner plexiform layer, RNFL: retinal 

nerve fibre layer
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Table 2: Adjusted associations between prevalent schizophrenia and retinal oculomic biomarkers from colour fundus photography and optical coherence tomography. All characteristics from colour 
fundus photography are derived from AutoMorph except where indicated.  

 

    Model 11 Model 22 Non-diabetic subgroup3 

 Modality Characteristic Regression coefficient p-value Regression coefficient p-value Regression coefficient p-value 

CFP CDR (ratio) 0.01 (0.01, 0.02) 6.0 × 10-4 0.01 (0.00, 0.02) 0.041 0.01 (0.00, 0.03) 0.08 

Arteriolar calibre (per SD) 0.11 (0.03, 0.19) 0.010 0.04 (-0.04, 0.12) 0.34 0.09 (-0.07, 0.25) 0.28 

Venular calibre (per SD) 0.08 (0.00, 0.16) 0.048 0.02 (-0.06, 0.10) 0.65 0.13 (-0.02, 0.29) 0.10 

Fractal dimension (per SD) -0.17 (-0.24, -0.11) 2.4 × 10-7 -0.05 (-0.11, 0.02) 0.14 -0.11 (-0.24, 0.02) 0.10 

Fractal dimension (VAMPIRE) (per SD) -0.27 (-0.35, -0.19) 1.1 × 10-10 -0.14 (-0.22, -0.05) 0.001 -0.05 (-0.21, 0.11) 0.56 

Vessel density (per SD) -0.15 (-0.22, -0.09) 1.3 × 10-7 -0.06 (-0.12, 0.01) 0.11 -0.09 (-0.23, 0.05) 0.21 

Distance tortuosity (per SD) 0.02 (-0.05, 0.09) 0.60 0.00 (-0.01, 0.15) 0.96 -0.04 (-0.21, 0.07) 0.55 

Tortuosity density (per SD) 0.12 (0.05, 0.20) 0.002 0.07 (-0.02, 0.14) 0.08 0.05 (-0.11, 0.20) 0.55 

OCT RNFL (μm) -0.37 (-1.49, 0.75) 0.52 -0.29 (-1.41, 0.84) 0.61 -1.02 (-3.22, 1.18) 0.36 

mGC-IPL (μm) -4.87 (-6.22, -3.51)  2.1 × 10-12 -4.05 (-5.40, -2.69) 5.4 × 10-9 -3.99 (-6.67, -1.30) 0.004 

 
1Adjusted for age, sex, socioeconomic status, and image quality. 
2Adjusted for age, sex, socioeconomic status, diabetes mellitus, hypertension and image quality. 
3 For AutoMorph and TABS, this was 121 individuals with schizophrenia and 75,627 without. For VAMPIRE, this was 104 (165 eyes) individuals with schizophrenia and 67,416 (111,915 eyes) 

controls. Adjustment is the same as for model 2 without diabetes mellitus.  

CDR: cup-disc ratio, CFP: colour fundus photography, mGC-IPL: macular ganglion cell-inner plexiform layer, OCT: optical coherence tomography, RNFL: retinal nerve fibre layer, SD: standard 
deviation



33 
 

 

    Younger subgroup1 Older subgroup2 

 Modality Characteristic Regression coefficient p-value Regression coefficient p-value 

CFP CDR (ratio) 0.01 (0.00, 0.03) 0.19 0.01 (0.00, 0.02) 0.12 

Arteriolar calibre (per SD) 0.17 (0.00, 0.34) 0.046 0.01 (-0.09, 0.10) 0.87 

Venular calibre (per SD) 0.09 (-0.08, 0.25) 0.31 -0.01 (-0.10, 0.08) 0.89 

Fractal dimension (per SD) 0.14 (-0.01, 0.28) 0.06 -0.09 (-0.16, -0.01) 0.025 

Fractal dimension (VAMPIRE) (per SD) -0.23 (-0.41, -0.04) 0.016 -0.11 (-0.20, -0.01) 0.027 

Vessel density (per SD) 0.08 (-0.07, 0.23) 0.28 -0.08 (-0.16, -0.01) 0.037 

Distance tortuosity (per SD) -0.02 (-0.17, 0.13) 0.79 0.00 (-0.09, 0.08) 0.95 

Tortuosity density (per SD) -0.01 (-0.26, 0.06) 0.23 0.11 (0.02, 0.20) 0.017 

OCT RNFL (μm) -0.08 (-2.11, 1.96) 0.94 -0.48 (-1.82, 0.86) 0.48 

mGC-IPL (μm) -2.90 (-5.55, -0.24) 0.033 -4.43 (-6.00, -2.85) 3.6 × 10-8 

Table 3. Adjusted associations between prevalent schizophrenia and retinal oculomic biomarkers from colour fundus photography and optical 
coherence tomography stratified by age. All characteristics from colour fundus photography are derived from AutoMorph except where indicated. 

Models were Adjusted for age, sex, socioeconomic status, diabetes mellitus, hypertension and image quality. 

 
1For AutoMorph and TABS, this was 111 individuals (181 eyes) with schizophrenia and 24,847 (44,159) without.  For 

VAMPIRE, this was 100 (166 eyes) with schizophrenia and 23,657 (41,984 eyes) 

controls. 
2For AutoMorph and TABS, this was 342 individuals (566 eyes) with schizophrenia and 66,761 (121,241 eyes) without.  For 

VAMPIRE, this was 308 individuals (466 eyes) with schizophrenia and 67,760 (106,958 

eyes) controls. 
 

CDR: cup-disc ratio, CFP: colour fundus photography, mGC-IPL: macular ganglion cell-inner plexiform layer, OCT: optical coherence 

tomography, RNFL: retinal nerve fibre layer, SD: standard deviation 
 

 


