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Abstract

This paper details a methodology proposed for the EVA 2021 conference data chal-
lenge. The aim of this challenge was to predict the number and size of wildfires
over the contiguous US between 1993 and 2015, with more importance placed on
extreme events. In the data set provided, over 14% of both wildfire count and burnt
area observations are missing; the objective of the data challenge was to estimate
a range of marginal probabilities from the distribution functions of these missing
observations. To enable this prediction, we make the assumption that the marginal
distribution of a missing observation can be informed using non-missing data from
neighbouring locations. In our method, we select spatial neighbourhoods for each
missing observation and fit marginal models to non-missing observations in these
regions. For the wildfire counts, we assume the compiled data sets follow a zero-
inflated negative binomial distribution, while for burnt area values, we model the
bulk and tail of each compiled data set using non-parametric and parametric tech-
niques, respectively. Cross validation is used to select tuning parameters, and the
resulting predictions are shown to significantly outperform the benchmark method
proposed in the challenge outline. We conclude with a discussion of our modelling
framework, and evaluate ways in which it could be extended.
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1 Introduction
1.1 Motivation and data description

This paper details an approach to the data challenge organised for the EVA 2021
conference. The subject of the challenge was wildfire modelling, and two important
sub-challenges were proposed within this setting. In particular, teams were asked to
develop methods for predicting the number of fires (i.e., individual fires that are sep-
arated in space), as well as the amount of burnt land resulting from these fires, over
different months for gridded locations across the continental United States (US).

In the absence of mitigation, wildfires can have devastating consequences, includ-
ing loss of life and damage to property. The northern California wildfire in October
2017 burned approximately 150,000 acres of land, resulting in 7,000 damaged struc-
tures and 100,000 evacuations [1]. Recent increases in both the number and sever-
ity of wildfires can be linked to climate change, and in particular to anthropogenic
warming [2]. Focusing specifically on the western US, [3] demonstrate that a high
proportion of the observed increases in weather events leading to wildfires may be
attributed to this aspect of climate change. Extreme events in wildfire modelling are
especially important; the more individual wildfires that occur, the greater the poten-
tial destruction, and the impact of large wildfires (in terms of the amount of land
area burnt) can be particularly devastating. It is therefore of interest to develop mod-
els for wildfires, and in particular wildfire extremes.

The challenge data set consists of monthly wildfire count (CNT) and burnt
area (BA) observations from 1993 to 2015 at 3,503 grid cell locations spanning
the contiguous US. There are 35 auxiliary variables also recorded relating to
land cover types, climate and altitude. Observation locations are arranged on a
0.5° x 0.5° (approximately 55 km X 55 km) regular grid of longitude and latitude
coordinates, with observations recorded from March to September; further details
are provided by [4].

In order to compare the predictions produced by the teams participating in
the data challenge, several observations were removed from the data to act as
a validation set; this contained 80,000 observations for each of CNT and BA.
The selection of these validation points was not done completely at random, so
there is some spatio-temporal dependence between them. This will be discussed
further in Section 3.4, with a pictorial example given in Fig. 4. Let CNT; and
BA,, i=1,...,N, denote the i-th observation of the wildfire CNT or BA data,
respectively, where N = 563,983 is the total number of observations across the
training and validation sets for each variable over all sites, months and years.
We denote the set of observation indices in the validation sets for CNT and BA
by CNT BA" C {1,...,N}, respectively, with |CNT"¥| = |BA"| = 80, 000.
An important feature is that the validation indices are not identical for the
CNT and BA data, but there is a reasonable overlap, i.e., CNT"" # BA** but
CNT" n BA™! # (. We discuss ways to exploit this aspect in Section 2.2.

The objective of the challenge was to predict cumulative probability values for
both CNT and BA at the times and locations in their respective validation sets.
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The resulting estimates were then ranked using a score computed from the true
observed values, with lower scores corresponding to more accurate probability
predictions. These scores were weighted so that more importance is placed on the
estimation of the extremes; see [4]. Statistical techniques that do not explicitly
model the tail are therefore unlikely to produce the best scores.

1.2 Data exploration

In this section, we give an overview of features of the data set that motivate our
modelling approach. We consider the relationship between CNT and BA, as well as
the temporal non-stationarity of each variable separately; we also investigate how
these features vary over the spatial domain.

We begin by exploring the dependence between CNT and BA; for the bulk of the
data, we consider Kendall’s = measure of rank correlation, whilst for the extremes
we consider the widely-used measures y and jy. Consider a random vector (X, Y)
with marginal distribution functions Fy and Fy, respectively. Coles et al. [5] define
x =lim,_; y(u), where y(u) = Pr(Fy(Y) > u | Fy(X) > u) € [0, 1], as a measure of
asymptotic dependence. If y € (0, 1], X and Y are said to be asymptotically depend-
ent, with y = 1 corresponding to perfect dependence. Asymptotic independence
between X and Y is present only when y = 0, meaning that y fails to signify the
level of asymptotic independence. To account for this, [5] define a further measure
that provides additional detail in this case, namely y = lim,_,; y(u) € (-1, 1] where

2log Pr(Fy(Y) > u)
log P(Fy(Y) > u, Fy(X) > u)

7(u) =

Under asymptotic dependence, 7 = 1, and for asymptotic independence, y < 1;
the further sub-cases y € (0,1) and 7 € (—1,0) correspond to positive and negative
association, respectively, while 7 = 0 indicates independence.

We estimate these measures separately for subsections of the US to investi-
gate spatial variability in the dependence structure between CNT and BA. We
start by splitting the spatial domain into quadrants corresponding to the north
east (NE; > 37.5°N, < 100°W), south east (SE; < 37.5°N, < 100°W), south west
(SW; <37.5°N, > 100°W) and north west (NW; > 37.5°N, > 100°W). Kend-
all’s 7 measure suggests strong overall correlation between CNT and BA, with
estimates of 0.926 (0.925, 0.927), 0.827 (0.825, 0.829), 0.858 (0.855, 0.860) and
0.868 (0.867, 0.870) for the NE, SE, SW and NW respectively, with the values in
brackets denoting 95% confidence intervals obtained via bootstrapping. However,
estimates of y(u) and jy(u) suggest this dependence diminishes in the extremes, lead-
ing to asymptotic independence. We obtain estimates (and 95% bootstrap confidence
intervals) of y(0.999) = 0.071(0.043,0.126), 0.038(0.017,0.072), 0.012(0, 0.024)
and 0.043(0.024, 0.077), and #(0.999) = 0.438(0.343,0.521), 0.282(0.191, 0.392),
0.092(—0.05,0.179) and 0.317(0.253, 0.413), for the NE, SE, SW and NW regions
respectively. The NE region exhibits the strongest dependence between CNT and BA
in the bulk of the data, as well as the strongest extremal dependence. We extended
this analysis to look at smaller spatial domains, but our conclusions did not change.
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Figure 1 shows the spatial distribution of average CNT and BA values in two dif-
ferent time groupings: in the summer months (May, June, July and August; MJJA),
when wildfires are more likely to occur, and in the remaining cooler months (March,
April and September; MAS). The highest average CNT values are observed in the
east for MAS and the west for MJJA. The highest average BA values typically occur
in the west of the US during MJJA whilst the majority of the eastern US locations
have relatively low average BA values in both time groups, with the exception of
Florida. This demonstrates that there is both spatial and temporal variability in the
wildfire observations.

To further demonstrate this spatio-temporal variability, Fig. 2 illustrates the
months when the maximum CNT and BA observations occur for each grid cell. In
the eastern US, the maxima of each variable tend to occur in July or August (shown
by red points) whilst in the west, the maxima typically occur in March and April
(illustrated by lighter yellow points). As global temperatures rise with anthropogenic
climate change, the frequency and intensity of wildfires are generally expected to
increase [6, 7]. To investigate this, we fit a linear model between year and annual
mean CNT and BA separately, assuming independence across annual means. We
find significant trends for both CNT and BA. Therefore, assuming stationarity
across the entire spatial domain over the observation period would be unreasonable.

Due to the nature of wildfires, we expect to observe relationships between both
CNT and BA observations and certain climate variables. For example, high tem-
perature coupled with low rainfall and low wind speed are the ideal conditions for
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Fig. 1 Average CNT (a & ¢) and BA (b & d) across all years for each grid cell, for MAS (a & b) and for
MIJA (¢ & d)
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Fig.2 Month where the maximum CNT (a) and BA (b) across all years occurs for each grid cell

wildfires to ignite and spread [8, 9]. No significant linear relationships exist for
either wildfire variable with any of the climate covariates, suggesting such relation-
ships are complex in nature. Figure 3a shows the average temperature for each grid
cell; temperature is non-stationary across the US but there is some spatial depend-
ence, with nearby locations exhibiting similar values. Some form of spatial depend-
ence exists for all climate variables. Since these variables are given as monthly
averages, it is difficult to associate these covariates directly with the wildfire obser-
vations, which are also given as monthly aggregates.

Another factor likely to alter wildfire behaviour across the US is the type of
land cover. For example, locations with large proportions of water or urban areas
are typically not conducive to wildfires, whilst those with forest areas probably are.
Eighteen land cover variables, given as proportions of each grid cell, are provided
in the challenge data set; these are denoted Ic(j) for j =1, ..., 18 and defined in [4].
Figure 3b illustrates the maximum land cover variable for each location. Spatial
heterogeneity can be observed over different regions. For example, a large portion
of the western US is taken up by shrubland (Ic(11)), whereas the eastern region is
dominated by cropland (Ic(j) for j = 1,2, 3) and tree-based land cover types (Ic(j) for
Jj=15,6,7,8). Unsurprisingly, many coastal locations are predominantly covered by
water (Ic(18)), and regions containing national forests (such as Kootenai and Stani-
slaus) are easily identifiable, since they are mostly made up of tree categories.
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Fig.3 Mean temperature in Kelvin (a) and the most common land cover variable (b) for each location
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1.3 Existing methods

Various methods exist for modelling and predicting wildfire frequency and intensity.
For example, generalised additive models (GAMs) with climatic, anthropogenic and/
or spatial covariates are commonly used; see, e.g., [10] or [11]. The latter captures
covariate information via a fire index; many such indices have been proposed within
the literature [12]. Each index is typically developed with country-specific consid-
erations in mind, such as land cover types and climate factors, and are often used
by government bodies to assess risks and prioritise fire responses. In the US, the
National Fire-Danger Rating System is the primary tool used for wildfire manage-
ment [13]. There have been attempts in the literature to use fire indices as a means
to model extreme wildfire events [14]. However, several approaches have found that
certain fire indices are poor predictors of wildfires. For example, [15] show that the
Forest Fire Danger Index, typically used in Australia, is inadequate for predicting
the behaviour of moderate to high-intensity wildfires.

Machine learning techniques have also been adopted for wildfire modelling: [16]
and [17] use deep learning techniques; [18] present a four-stage process including a
random forest algorithm; and [19] develops a gradient boosting model trained with
loss functions appropriate for predicting extreme values. We take a simpler, marginal-
based approach.

The remainder of this paper is structured as follows. In Section 2, we illustrate
how certain properties of the training data can be exploited to infer a subset of prob-
ability estimates for observations in the validation set. In Section 3, we introduce
our marginal modelling techniques for both CNT and BA. We also discuss our tech-
nique for estimating spatial neighbourhoods and corresponding tuning parameters.
We conclude with a discussion of our approach in Section 4.

2 Exploiting properties of the training data set
2.1 Re-scaling burnt area values

In this section, we discuss various properties of the wildfire data set, and how these can be
exploited to improve the estimation of the predictive distributions for missing observations.

To begin, observe that BA is an absolute measurement; this results in varying
measurement scales across different locations. To better understand this, consider
that some grid cells in the data set do not lie completely inside the continental
US; this feature is captured by the ‘area’ variable, denoted p;, i =1, ..., N, which
describes the proportion of each grid cell that lies in the region of interest. BA
observations depend upon this variable since for grid cells with smaller area values,
there is less available land for wildfires to occur and hence lower BA values. For
these reasons, the raw BA observations cannot be easily compared across locations.

To account for this, we propose re-scaling BA observations to ensure all observa-
tions are on a unified, relative scale. Recall that BA;, i =1, ..., N, with N = 563,983,
denotes the i-th observation of the BA data, and that BA" c {1,...,N} is the set
of indices for missing BA observations. We consider here the i-th observation, with
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corresponding grid cell area p; € (0, 1]. For eachi € {1, ..., N}, the total surface area
of the grid cell is computed by taking the corresponding longitude and latitude coor-
dinates and applying a formula derived from Archimedes’ theorem [20]. We denote
these surface area values by SA;. The surface area contained within the continental US
is then computed by multiplying the total surface area by the grid cell area variable,
ie., SA; X p;. We denote these values by SA!: such values will naturally vary between
locations, especially for locations lying on a borderline. Moreover, SA* values naturally
decrease going from South to North of the continent, since grid cells defined using lon-
gitude and latitude suffer from unequal cell sizes [21]. We refer to this variable as the
true surface area.

Using this variable, we derive a relative measure for BA, which we term burnt
area proportion (BAP), i.e., for each i, define BAP; := BA; /SA;.k € [0, 1]. This value
denotes the proportion of the true surface area that has been burnt for each observation.
It is arguably a better indicator of the impact and/or severity of wildfire events com-
pared to raw BA observations, since it puts the absolute magnitude in context for each
location. Moreover, this proportion is a relative measure, meaning the data for all loca-
tions are on the same scale; this allows for a more straightforward comparison between
neighbouring observations with different (true) surface areas.

We recall that the objective of the data challenge is to obtain probability estimates of
the form Pr(BA; < u) for all u € Uy,, where

Uz, = 10,1, 10,20, 30, ..., 100, 150, 200, 250, 300, 400, 500, 1000,
1500, 2000, 5000, 10000, 20000, 30000, 40000, 50000, 100000},

and i € BA. This can be derived using the marginal distribution of BAP,, since
Pr(BA; < u) = Pr(BAP; X SAT < u) = Pr(BAP; < u/SAY).

‘ Consequently, we evaluate the distribution function of BAP; for all u € Z/{jB AP where
Uy,p := Ups/SA], to obtain the required predictive probabilities. We introduce our
technique for estimating this distribution function in Section 3.3.

We can also use these proportional data to deduce information about the upper tail of
the distribution for BAP; at any i € BA'*. Since it is impossible to observe a BA obser-
vation which exceeds the true surface area at any location, we can immediately deduce
that Pr(BAP; < u) = 1forany u € Z/{jB 4p With u > 1. In practice, over 1% of missing BA
observations satisfied the inequality max{{fy,,} > 1, meaning a non-negligible amount
of information can be uncovered via this preliminary step.

We considered a similar re-scaling for CNT observations; however, there did not
appear to be any obvious relationship between the true surface area and CNT values.
Furthermore, unlike BA, no natural upper bound arises for CNT observations, so we

cannot deduce properties of the upper tail distribution for missing observations.

2.2 Exploiting features of the missing data

Before introducing our marginal modelling procedures, we highlight how the train-
ing data can be used to provide information about the missing values we are required
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to estimate. This is possible since the missing values in the CNT and BA variables
do not always occur at the same space-time locations, although there is some overlap
in their missingness. We show that if exactly one of the CNT or BA values is known
at a particular index, we can deduce information about the other.

Recall that we are interested in estimating the predictive distribu-
tion of CNT; for some i€ CNT™, ie., Pr(CNT; <u) for u € Upyy, where
u € Upyr =1{0,1,...,9,10,12,...,30,40, ..., 100}. If i & BA™ and BAP, =0, we
can immediately deduce that CNT; = 0 and Pr(CNT; < u) = 1for all u € Uyy. More-
over, if i ¢ BA"™ and BAP; > 0, we have that CNT; > 0, implying Pr(CNT; < 0) =0,
though we are still required to estimate the predictive distribution for all u € U\ {0}.
The values we can infer for BAP; from CNT;, with i € BA" are analogous, so the
detail is omitted here.

We find that CNT; = 0 for approximately 23% of the points in the CNT validation
set, and that CNT; > 0 for an additional 15%. We can also deduce similar propor-
tions for the BAP values we are required to predict. A reasonable amount of infor-
mation can therefore be uncovered using this simple step.

We also found that for the non-missing CNT and BA observations, the probability
of observing a zero observation exceeded 0.999 for both variables when Ic(18); > 0.94,
where lc(18); denotes the proportion of each location covered by water. Therefore, for
any i € CNT,, (i € BA,,;) withlc(18); > 0.94, we set CNT; = 0 (BAP; = 0), implying
Pr(CNT; < u) = 1,V u € Uy (Pr(BAP; S u) = 1,V u € Uy, ).

As well as improving estimates of the predictive distribution of some locations,
the additional steps introduced in this section also increase the amount of informa-
tion available. This aids the marginal estimation procedures detailed in Sections 3.2
and 3.3.

3 Marginal modelling of missing values
3.1 Neighbourhood selection

For our approach, we make the following assumption: for any observation with
index i € {1, ..., N}, there exists some spatial neighbourhood of indices, M, where
all corresponding observations come from the same marginal distribution. Through
estimation of this distribution, we can obtain predictive probabilities for missing
CNT and BAP observations. In this section, we introduce our approach for selecting
these neighbourhoods for CNT observations; the approach for BAP is analogous.

Consider the observation with index i € {1,..., N}, and denote the corresponding
spatial location, month and year by s; € R2, m; € {3,...,9}and y; € {1993, ...,2015},
respectively. We define the spatial neighbourhood as

Noi={je{l,...N}: lls; —s;ll skICNT,mj =m;,y; =y} 1)

for some k]CNT > 0, i.e., the indices of all observations occurring in the same year
and month as observation i with a spatial distance of at most kICNT from s;. The
spatial distance || - || is measured in kilometres (km) using the Haversine formula;
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in practice, these are calculated via the distm function in the R package geo-
sphere [22]. We treat kICNT as a tuning parameter and introduce a cross validation
technique to select it in Section 3.4. We denote the CNT values corresponding to
neighbourhood \V; by CNTV: = {CNT; : j € N;}. The definitions of kA" and BAPN:
fori € {1,...,N}are analogous.

More complex spatial neighbourhoods, which incorporated temporal and covariate-
based information, were also considered but ultimately resulted in worse quality mar-
ginal estimates. This is discussed in the Appendix, where we present prediction scores
for other neighbourhoods we considered.

3.2 A parametric approach for modelling CNT

Following [23], we assume all observations in the set CNT? follow a zero-inflated
negative binomial distribution for all i € CNT", i.e., for any CNT € CNTNt, we
have that

[ z+(-mg0) ifj=0,
Pr(CNT =j) = { (1 -mg()  ifj>0, @

where 7 € [0, 1] denotes a probability and g(j), j > 0, is the probability mass func-
tion of the negative binomial distribution. We estimate the parameter 7 and those
of the negative binomial distribution using likelihood inference. We then evaluate
distribution (2) for all u € Uy using the estimated parameters, resulting in the pre-
dictive distribution for the missing observation CNT;. In practice, we use the same
tuning parameter, k™, for all i € CNT*'; we discuss our approach to selecting this
value in the Section 3.4.

3.3 A semi-parametric approach for modelling BAP

Given any i € BA" we assume all observations in the set BAPV: follow the semi-
parametric marginal distribution given in [24]. This distribution was proposed for
modelling precipitation data, which are similar to wildfire data in the sense that
they typically contain a large number of zero observations. These data structures are
referred to as mixture distributions, since they are a mix of a discrete (zero observa-
tions) and a continuous (positive BAP observations) process. Values in the bulk of
the data, including zeros, are modelled empirically, while values in the upper tail
are modelled using a generalised Pareto distribution (GPD). This distribution is
typically referred to in the context of the ‘peaks over threshold’ approach [25, 26],
whereby a GPD is fitted to independent and identically distributed exceedances of a
high threshold. This overall marginal model is given by

Z[ ifx=0,
Pr(BAP <x) =4 T=Fi(0)+7 if0<x<u, 3)
1 =41 -H, () if x> u;,
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for all BAP € BAPV., where z is the probability of observing a zero, u; is some high
threshold to be chosen, 4; = Pr(BAP > u,), F is the distribution function of strictly
positive observations, and H, (x) denotes the cumulatlve distribution function of
the GPD, ie., H,()=1- 1+ o - u)/ )77, with x, = max(x,0} and
(0,6) € R, XR. We refer to o; and &; as the scale and shape parameters, respec-
tively. See [27] for a more detailed discussion of the peaks over threshold approach.

We set kA" :=1 — 4, for all i € BA*! and treat k¥*” as another tuning parameter,
which we again estimate using cross validation; see Section 3.4. Both ; and z; can
be estimated empirically, alongside F. Note that this marginal model is only valid
when z; < 1 — A;: in such cases, the GPD scale and shape parameters are estimated
using likelihood inference. We then evaluate the distribution described in Eq. (3) at
the fitted parameters for all u € U’B . p> resulting in the predictive distribution for the
missing observation BAP;.

In the cases when z; > 1 — 4, (i.e., the marginal model is not valid), we use a fully
empirical distribution. Such cases occur when the estimated threshold equals zero,
corresponding to neighbourhood sets containing a significant proportion of zeros,
indicating a low occurrence of wildfires.

3.4 Tuning parameter selection

We now consider how to select the tuning parameters k", k¥47 and kB4 used in
our marginal modelling approaches. One option is to use leave-one-out cross valida-
tion and select the tuning parameter values that minimise the score used for ranking
in the data challenge: see [4] for more information. However, the locations for the
validation data are not randomly distributed across the spatial domain, and are gen-
erally clustered in space and time. We demonstrate this in Fig. 4, where we show the
locations of the CNT validation data for March 1994; the resulting plots have similar
features for BAP, as well as for different months and years. In the case of BAP data,
this implies that for a fixed value of kBAP there will be a larger number of missing
values in the set BAPV: for i € BA than for i  BA™!, on average. The same holds
when considering CNT data for a fixed value of k1CN T, This feature of the validation
set means that using standard leave-one-out cross validation over all training loca-
tions could lead to selecting smaller neighbourhoods than are really appropriate.

Fig.4 Locations in the set 50
CNT" for March 1994 (grey)
and the corresponding loca- 45

tions of observations for tuning
parameter selection (red)
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We instead propose to carry out the parameter selection procedure using only a
subset of the observations in the training data. Focusing on BAP, for each i € BA"
and any combination of (k¥4”, k¥4”) values, we allow the observation indexed by

arg min I|s
j: m,»=m]»,y,»=y7»,j¢BA"“’

i_sjlla

to contribute to the score, i.e., giving the spatially-nearest non-missing observation
that occurs in the same month and year as observation i. Ties may be broken at ran-
dom, or using any rule that results in only one nearest neighbour per location. Since
these locations can be the nearest neighbour of more than one validation location,
some of the corresponding observations are included more than once in the score
calculation. An alternative would have been to use each of these observations only
once to avoid duplicates, but this means some validation locations would not be rep-
resented in the score calculation.

We consider the following candidate values for the tuning parameters:
kPP € (50,75, ...,400}, k54F € {0.05,0.10, ...,0.95}. For each combination of
candidate values, we recalculate the score function proposed in [4], summing over
all values corresponding to our set of nearest neighbours, before finally selecting
the parameter combination that minimises the score. The procedure in the CNT case
is analogous, albeit without the GPD quantile parameter k5**. In Fig. 4, we demon-
strate the locations of observations that contribute to the tuning parameter selection
procedure for CNT in March 1994. This results in selected tuning parameter values
of kaP =175, kaP = 0.5, and kICNT = 125.

We note that our final approach has similarities with the winning entry to the
2017 EVA data challenge [28], where the authors combine data across locations
with sufficient observations, in order to fit a generalised extreme value distribution
for predicting precipitation extremes. They advocate the use of cross validation for
tuning parameter selection and to compare potential modelling approaches in data
challenges such as this, where the aim is to optimise some pre-determined metric.

4 Discussion of limitations and possible extensions

In this paper, we have discussed a marginal modelling approach for predicting wild-
fire events across the contiguous US. This framework was applied to obtain esti-
mates of the cumulative distribution function at locations with missing entries for
either CNT or BA. The resulting estimates were then “ranked” using a score func-
tion weighted to give higher importance to extreme observations [4]. Our method
produced scores of 4080.559 and 3640.92 for CNT and BA, respectively, resulting
in an overall score of 7721.479; this is a significant improvement on the proposed
benchmark technique.

Unlike all the techniques introduced in Section 1.3, our approach does not attempt
to specify the relationships between the auxiliary and wildfire variables. Such rela-
tionships appear to be complex and non-linear in nature, which may be explained by
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a variety of hypotheses. For example, the monthly aggregated format of the wild-
fire variables arguably makes it more difficult to associate them with any climate
covariates, which are given as monthly means. Instead, our approach relies on the
assumption that wildfire observations within spatial neighbourhoods arise from the
same marginal distribution. We believe that this is realistic since neighbouring loca-
tions are likely to have similar auxiliary covariates, as demonstrated in Fig. 3, and a
large wildfire event occurring at one location is likely to increase the probability of
wildfires in neighbouring locations. Furthermore, since the values in neighbourhood
sets vary over time for each missing CNT or BA observation, our approach accounts
for the temporal non-stationarity discussed in Section 1.2. We also propose several
preliminary steps in Section 2; these steps do not require expert knowledge of wild-
fires to implement. Furthermore, such steps lead to significant improvements in the
predictive distributions obtained using our approach by increasing the amount of
information available and bringing all BA observations onto a unified scale.

While developing our approach, we investigated the possibility of accounting for
covariate influence on extreme CNT values via the use of GAMs (this option was
also mentioned in Section 1.3), but found their predictive performance to be poor in
this setting; see [29] for details on these types of models. In particular, we fitted a
continuous GPD for each month, with the scale parameter having a GAM form [30]
comprising spatial and climatological covariates; a continuous approximation was
used due to having discrete CNT values. The advantage of this method is that covari-
ate effects can be directly assessed by examining the smooth functions underlying the
models. From the fitted GAMs, the general spatial behaviour of the CNT data was
modelled fairly well in each month, but these models did appear to suffer from overs-
moothing, even when using models with the lowest level of smoothness. On the other
hand, we found that physically-interpretable covariate behaviour for the climatologi-
cal variables was hard to capture, making model selection difficult; the precise rea-
son for this is unclear. It is likely that the aforementioned oversmoothing combined
with other issues, such as poor convergence of the underlying numerical optimisation
routines and difficulties combining the fitted GAMs with models for the bulk of the
CNT values, lead to poor model performance against the benchmark. Therefore, it
appears that this type of approach may not be favourable in situations where the pre-
diction of unknown values is required, and is more suited to analyses where the aim
is to account for uncertainty whilst modelling complex covariate effects. Indeed, in
addition to the GAM-based approach mentioned in Section 1.3, [11, 31] and [32]
have also successfully applied GAM techniques for modelling wildfire data.

One possible extension of the modelling techniques proposed in Sections 3.2
and 3.3 would be to introduce weights into the marginal estimation procedures.
In the current format, observations within spatial neighbourhoods are given equal
weights, even though it is likely that locations with a closer proximity to a missing
observation would provide more useful information than locations that are further
away. Our current method could therefore be extended by introducing weights to
the marginal estimation procedures, with closer observations contributing more to
probabilistic estimates. We would expect different values of the tuning parameters
kN and kBAP, defining the spatial range of the neighbourhoods, to be appropriate
in this case, but our cross validation approach could be used analogously.
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Changes to the definition of the neighbourhoods in equation (1) could lead to
improvements with our approach. One drawback with our current implementation
is that the values kK™ and kP are chosen to be the same across all validation loca-
tions. Although we selected these tuning parameters carefully via cross validation,
it is possible that this is an over-simplification and allowing the values to depend
on covariates such as location, month or year may have been more appropriate. An
extension of our approach could allow for this possibility, e.g., by separating the
spatial domain into smaller sections and implementing cross validation separately in
each one. It may also be reasonable to apply clustering algorithms as a preliminary
step, to inform the spatial regions where setting the tuning parameters (k"7 k47)
as constant is a reasonable assumption. Allowing these parameters to vary across
space also has the potential to provide insight into the behaviour of wildfires across
the spatial domain. Additionally, we considered allowing the neighbourhoods them-
selves to depend on covariate-based clusters or to cover larger time windows, but
the results presented in the Appendix suggest the simpler spatial neighbourhood
approach was more successful.

While the zero-inflated negative binomial distribution proposed for CNT neigh-
bourhoods is not motivated by extreme value theory, our analysis indicated the fitted
marginal distributions performed reasonably well, including in the upper tail in the
majority of cases. Several other distributions were tested, including fully empirical
and discrete GPD models [33]; however, in every case, these distributions resulted
in poorer prediction quality when ranked by the objective function given in [4]. This
is likely due to the difficulties that arise in trying to capture behaviour in the bulk
and tail simultaneously, and perhaps due to an insufficient amount of data in each
of our spatial neighbourhoods for fitting the discrete GPD. In addition, alternative
marginal distributions for BAP observations have the potential to further improve
the predictive ability of our modelling framework.

Appendix: Spatio-temporal neighbourhoods

As alternatives to the spatial neighbourhoods M, ie{l,...,N}, defined in Eq. (1),
we also considered neighbourhoods of the form

N = {e{l,... N}t lIsi = sl <k m; = m,

Y €y = kML y =k 1y YT
and

N = (e (Lo NY 2 llsy = sill < kO my = myy; = v = ¢ ),

for some kICN T > 0and kaT € N, where ¢ denotes a covariate-based cluster assign-
ment for each observation j € N,. Analogous neighbourhoods were also considered
for BAP.
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With the observation month fixed and the spatial range defined as in N, the
neighbourhood J\/f incorporates additional observations from neighbouring years,
thus increasing the amount of data available for marginal estimation and adding a
temporal element to the modelling procedure. On the other hand, the month and
year are fixed for NV so that only those data points with the same cluster assign-
ment as observation i are considered, thus reducing the amount of information
available for a fixed k™ or kPA” value. However, assuming we can define clus-
ters such that observations in the same cluster have more similar marginal tail
properties, this additional step has the potential to improve marginal estimation.

Cluster assignments used within the A neighbourhoods were computed using
divisive hierarchical clustering [34] for two different covariates: temperature
and precipitation. We select these variables since they have been shown to be
positively and negatively associated, respectively, to wildfire events [35, 36], and
therefore may allow us to group together locations with similar marginal proper-
ties for CNT and BAP.

We use hierarchical clustering since this technique has been used in practice to
approximate spatial clusters with similar wildfire properties [37-39]. The cluster-
ing procedure is as follows:

1. Standardise the auxiliary variable data (temperature or precipitation) for every
location in V..

2. Apply hierarchical clustering, using the standardised covariate data, to obtain two
clusters, i.e., for each j € /\/'i, ¢ = lor?2.

3. Compute the subset of locations with the same cluster assignment as location i,

ie,{jeN; ¢ =¢)

In our analysis, we found that both the neighbourhoods A and A resulted in
worse prediction scores compared to the simpler spatial neighbourhood approach
outlined in Section 3. This is illustrated by the results in Tables 1 and 2, where
we present the overall prediction scores, as outlined in [4], for j\ﬁl and /\/f , respec-
tively; recall that we aim to minimise this score.

Table 1 Total scores obtained .
Dist: k=1 k=2 k=3 k=4 k=5 k=6
using neighbourhood A} istanee % > ) > > >

k=50 8393.3 8089.3 8003.6 7991.2 79259 7909.3
k=175 8225.5 81342 81619 8187.4 8162.6 8159.6
k=100 8295.6 8222 8264.4 82939 82755 8274.1
k=125 84399 8401.4 8457 8487.2 8474.1 8474

k=150 8547 8519 8578.2 8608.6 8599.5 8600.6
k=175 8624.8 8604.8 8664.5 8694.1 8687.5 8689

k, =200 8711.2 8696.7 87552 87842 87784 8781.5
k=225 8779.8 87689 8823.8 88523 8848 8851.2
k=250 88439 8838.3 8892 8919.1 89154 8919.4
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For these scores, we let k<N = kBAP 1=k, € {50,75,...,250} to incorporate a
variety of spatial distances and set k¥4 = 0.5 to match the existing selected tun-
ing parameter from Section 3.4. For NV, we let k"™ = k%47 1=k, € {1,2,3,4,5,6},
resulting in time windows of up to 13 years. Note that these scores correspond to
the final prediction scores, i.e., when the missing data are known, and in practice,
one would need to select the tuning parameters using the cross validation proce-
dure outlined in Section 3.4.

One can observe that all the prediction scores from Tables 1 and 2 exceed the
final score obtained using the method described in Section 3, and in many cases,
the scores obtained were significantly worse. The fact that these predictions were
worse for a wide range of tuning parameter combinations gives further support to
our main modelling approach.

In the case of temporal neighbourhoods, since the predictive scores do not
tend to decrease with the parameter k,, our results suggest that marginal wildfire
behaviour can vary significantly over neighbouring years.

Therefore, even though incorporating information from neighbouring years
increases the amount of data available for model fitting, it does not appear to
improve the quality of marginal estimates.

In the case of the cluster-based neighbourhoods, our results indicate that
observations with similar temperature and precipitation values may not be those
with similar wildfire behaviour. We suspect this may occur due to the complex
nature of the relationships between the wildfire and auxiliary variables described
in Section 4. Such relationships are unlikely to be picked up by incorporating this
additional clustering step. Clustering also reduces the amount of data available
for model fitting, which also appears to reduce the quality of marginal estimates.

On the whole, these results suggest that incorporating additional information,
both from temporal windows and covariate-based clusters, does not improve the
quality of marginal estimates for either CNT or BAP under our modelling approach.
Combined with the principle of parsimony, we do not consider these alternative
neighbourhoods further.

Table 2 Total scores obtained

. . : Distance Temperature clusters  Precipitation
using neighbourhood A} clusters
with clusters computed using -
temperature and precipitation k=50 11149 11161

=
k=175 9608.8 9607.7
k; =100 9245.2 9309.2
k=125 8651.9 8718.5
k; =150 8522.9 8582.1
k=175 8431.5 8505.2
k; =200 8460.3 8489.5
ky =225 8470.2 8511.1
k; =250 8493.6 8539.5
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