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Abstract
This paper details a methodology proposed for the EVA 2021 conference data chal-
lenge. The aim of this challenge was to predict the number and size of wildfires 
over the contiguous US between 1993 and 2015, with more importance placed on 
extreme events. In the data set provided, over 14% of both wildfire count and burnt 
area observations are missing; the objective of the data challenge was to estimate 
a range of marginal probabilities from the distribution functions of these missing 
observations. To enable this prediction, we make the assumption that the marginal 
distribution of a missing observation can be informed using non-missing data from 
neighbouring locations. In our method, we select spatial neighbourhoods for each 
missing observation and fit marginal models to non-missing observations in these 
regions. For the wildfire counts, we assume the compiled data sets follow a zero-
inflated negative binomial distribution, while for burnt area values, we model the 
bulk and tail of each compiled data set using non-parametric and parametric tech-
niques, respectively. Cross validation is used to select tuning parameters, and the 
resulting predictions are shown to significantly outperform the benchmark method 
proposed in the challenge outline. We conclude with a discussion of our modelling 
framework, and evaluate ways in which it could be extended.

Keywords  Extreme value theory · Semi-parametric modelling · Wildfire prediction

Mathematics Subject Classification  62

Eleanor D’Arcy, Callum J. R. Murphy-Barltrop, Rob Shooter and Emma S. Simpson are authors who 
all contributed equally to this work.

 *	 Callum J. R. Murphy‑Barltrop 
	 c.barltrop@lancaster.ac.uk

Extended author information available on the last page of the article

Extremes (2023) 26:381–398

Published online: 1 April 2023

http://orcid.org/0000-0002-3479-2902
http://crossmark.crossref.org/dialog/?doi=10.1007/s10687-023-00469-7&domain=pdf


E. D’Arcy et al.

1 3

1  Introduction

1.1 � Motivation and data description

This paper details an approach to the data challenge organised for the EVA 2021 
conference. The subject of the challenge was wildfire modelling, and two important 
sub-challenges were proposed within this setting. In particular, teams were asked to 
develop methods for predicting the number of fires (i.e., individual fires that are sep-
arated in space), as well as the amount of burnt land resulting from these fires, over 
different months for gridded locations across the continental United States (US).

In the absence of mitigation, wildfires can have devastating consequences, includ-
ing loss of life and damage to property. The northern California wildfire in October 
2017 burned approximately 150,000 acres of land, resulting in 7,000 damaged struc-
tures and 100,000 evacuations [1]. Recent increases in both the number and sever-
ity of wildfires can be linked to climate change, and in particular to anthropogenic 
warming [2]. Focusing specifically on the western US, [3] demonstrate that a high 
proportion of the observed increases in weather events leading to wildfires may be 
attributed to this aspect of climate change. Extreme events in wildfire modelling are 
especially important; the more individual wildfires that occur, the greater the poten-
tial destruction, and the impact of large wildfires (in terms of the amount of land  
area burnt) can be particularly devastating. It is therefore of interest to develop mod-
els for wildfires, and in particular wildfire extremes.

The challenge data set consists of monthly wildfire count (CNT) and burnt 
area (BA) observations from 1993 to 2015 at 3,503 grid cell locations spanning 
the contiguous US. There are 35 auxiliary variables also recorded relating to 
land cover types, climate and altitude. Observation locations are arranged on a 
0.5◦ × 0.5◦ (approximately 55 km × 55 km) regular grid of longitude and latitude 
coordinates, with observations recorded from March to September; further details 
are provided by [4].

In order to compare the predictions produced by the teams participating in 
the data challenge, several observations were removed from the data to act as 
a validation set; this contained 80,000 observations for each of CNT and BA. 
The selection of these validation points was not done completely at random, so 
there is some spatio-temporal dependence between them. This will be discussed 
further in Section  3.4, with a pictorial example given in Fig.  4. Let CNTi and 
BAi , i = 1,… ,N , denote the i-th observation of the wildfire CNT or BA data, 
respectively, where N = 563, 983 is the total number of observations across the 
training and validation sets for each variable over all sites, months and years. 
We denote the set of observation indices in the validation sets for CNT and BA 
by CNTval,BAval ⊂ {1,… ,N} , respectively, with |CNTval| = |BAval| = 80, 000 . 
An important feature is that the validation indices are not identical for the 
CNT and BA data, but there is a reasonable overlap, i.e., CNTval ≠ BAval but 
CNTval ∩ BAval ≠ � . We discuss ways to exploit this aspect in Section 2.2.

The objective of the challenge was to predict cumulative probability values for 
both CNT and BA at the times and locations in their respective validation sets. 
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The resulting estimates were then ranked using a score computed from the true 
observed values, with lower scores corresponding to more accurate probability 
predictions. These scores were weighted so that more importance is placed on the 
estimation of the extremes; see [4]. Statistical techniques that do not explicitly 
model the tail are therefore unlikely to produce the best scores.

1.2 � Data exploration

In this section, we give an overview of features of the data set that motivate our 
modelling approach. We consider the relationship between CNT and BA, as well as 
the temporal non-stationarity of each variable separately; we also investigate how 
these features vary over the spatial domain.

We begin by exploring the dependence between CNT and BA; for the bulk of the 
data, we consider Kendall’s � measure of rank correlation, whilst for the extremes 
we consider the widely-used measures � and 𝜒̄ . Consider a random vector (X, Y) 
with marginal distribution functions FX and FY , respectively. Coles et al. [5] define 
� = limu→1 �(u) , where 𝜒(u) = Pr(FY (Y) > u ∣ FX(X) > u) ∈ [0, 1] , as a measure of 
asymptotic dependence. If � ∈ (0, 1] , X and Y are said to be asymptotically depend-
ent, with � = 1 corresponding to perfect dependence. Asymptotic independence 
between X and Y is present only when � = 0 , meaning that � fails to signify the 
level of asymptotic independence. To account for this, [5] define a further measure 
that provides additional detail in this case, namely 𝜒̄ = limu→1 𝜒̄(u) ∈ (−1, 1] where

Under asymptotic dependence, 𝜒̄ = 1 , and for asymptotic independence, 𝜒̄ < 1 ; 
the further sub-cases 𝜒̄ ∈ (0, 1) and 𝜒̄ ∈ (−1, 0) correspond to positive and negative 
association, respectively, while 𝜒̄ = 0 indicates independence.

We estimate these measures separately for subsections of the US to investi-
gate spatial variability in the dependence structure between CNT and BA. We 
start by splitting the spatial domain into quadrants corresponding to the north 
east (NE; > 37.5◦ N, < 100◦W), south east (SE; ≤ 37.5◦ N, < 100◦W), south west 
(SW; ≤ 37.5◦ N, ≥ 100◦ W) and north west (NW; > 37.5◦ N, ≥ 100◦W). Kend-
all’s � measure suggests strong overall correlation between CNT and BA, with 
estimates of 0.926  (0.925,  0.927), 0.827  (0.825,  0.829), 0.858  (0.855,  0.860) and 
0.868 (0.867, 0.870) for the NE, SE, SW and NW respectively, with the values in 
brackets denoting 95% confidence intervals obtained via bootstrapping. However, 
estimates of �(u) and 𝜒̄(u) suggest this dependence diminishes in the extremes, lead-
ing to asymptotic independence. We obtain estimates (and 95% bootstrap confidence 
intervals) of �(0.999) = 0.071(0.043, 0.126), 0.038(0.017, 0.072), 0.012(0,  0.024) 
and 0.043(0.024, 0.077), and 𝜒̄(0.999) = 0.438(0.343, 0.521), 0.282(0.191, 0.392),   
0.092(−0.05, 0.179) and 0.317(0.253, 0.413), for the NE, SE, SW and NW regions 
respectively. The NE region exhibits the strongest dependence between CNT and BA 
in the bulk of the data, as well as the strongest extremal dependence. We extended 
this analysis to look at smaller spatial domains, but our conclusions did not change.

𝜒̄(u) =
2 log Pr(FY (Y) > u)

logℙ(FY (Y) > u,FX(X) > u)
− 1.
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Figure 1 shows the spatial distribution of average CNT and BA values in two dif-
ferent time groupings: in the summer months (May, June, July and August; MJJA), 
when wildfires are more likely to occur, and in the remaining cooler months (March, 
April and September; MAS). The highest average CNT values are observed in the 
east for MAS and the west for MJJA. The highest average BA values typically occur 
in the west of the US during MJJA whilst the majority of the eastern US locations 
have relatively low average BA values in both time groups, with the exception of 
Florida. This demonstrates that there is both spatial and temporal variability in the 
wildfire observations.

To further demonstrate this spatio-temporal variability, Fig.  2 illustrates the 
months when the maximum CNT and BA observations occur for each grid cell. In 
the eastern US, the maxima of each variable tend to occur in July or August (shown 
by red points) whilst in the west, the maxima typically occur in March and April 
(illustrated by lighter yellow points). As global temperatures rise with anthropogenic 
climate change, the frequency and intensity of wildfires are generally expected to 
increase [6, 7]. To investigate this, we fit a linear model between year and annual 
mean CNT and BA separately, assuming independence across annual means. We 
find significant trends for both CNT and BA. Therefore, assuming stationarity  
across the entire spatial domain over the observation period would be unreasonable.

Due to the nature of wildfires, we expect to observe relationships between both 
CNT and BA observations and certain climate variables. For example, high tem-
perature coupled with low rainfall and low wind speed are the ideal conditions for 

Fig. 1   Average CNT (a & c) and BA (b & d) across all years for each grid cell, for MAS (a & b) and for 
MJJA (c & d)
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wildfires to ignite and spread [8, 9]. No significant linear relationships exist for 
either wildfire variable with any of the climate covariates, suggesting such relation-
ships are complex in nature. Figure 3a shows the average temperature for each grid 
cell; temperature is non-stationary across the US but there is some spatial depend-
ence, with nearby locations exhibiting similar values. Some form of spatial depend-
ence exists for all climate variables. Since these variables are given as monthly 
averages, it is difficult to associate these covariates directly with the wildfire obser-
vations, which are also given as monthly aggregates.

Another factor likely to alter wildfire behaviour across the US is the type of 
land cover. For example, locations with large proportions of water or urban areas 
are typically not conducive to wildfires, whilst those with forest areas probably are. 
Eighteen land cover variables, given as proportions of each grid cell, are provided 
in the challenge data set; these are denoted lc(j) for j = 1,… , 18 and defined in [4]. 
Figure  3b illustrates the maximum land cover variable for each location. Spatial 
heterogeneity can be observed over different regions. For example, a large portion 
of the western US is taken up by shrubland (lc(11)), whereas the eastern region is 
dominated by cropland (lc(j) for j = 1, 2, 3 ) and tree-based land cover types (lc(j) for 
j = 5, 6, 7, 8 ). Unsurprisingly, many coastal locations are predominantly covered by 
water (lc(18)), and regions containing national forests (such as Kootenai and Stani-
slaus) are easily identifiable, since they are mostly made up of tree categories.

Fig. 2   Month where the maximum CNT (a) and BA (b) across all years occurs for each grid cell
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Fig. 3   Mean temperature in Kelvin (a) and the most common land cover variable (b) for each location
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1.3 � Existing methods

Various methods exist for modelling and predicting wildfire frequency and intensity. 
For example, generalised additive models (GAMs) with climatic, anthropogenic and/
or spatial covariates are commonly used; see, e.g., [10] or [11]. The latter captures 
covariate information via a fire index; many such indices have been proposed within 
the literature [12]. Each index is typically developed with country-specific consid-
erations in mind, such as land cover types and climate factors, and are often used 
by government bodies to assess risks and prioritise fire responses. In the US, the 
National Fire-Danger Rating System is the primary tool used for wildfire manage-
ment [13]. There have been attempts in the literature to use fire indices as a means 
to model extreme wildfire events [14]. However, several approaches have found that 
certain fire indices are poor predictors of wildfires. For example, [15] show that the 
Forest Fire Danger Index, typically used in Australia, is inadequate for predicting 
the behaviour of moderate to high-intensity wildfires.

Machine learning techniques have also been adopted for wildfire modelling: [16] 
and [17] use deep learning techniques; [18] present a four-stage process including a 
random forest algorithm; and [19] develops a gradient boosting model trained with 
loss functions appropriate for predicting extreme values. We take a simpler, marginal-
based approach.

The remainder of this paper is structured as follows. In Section 2, we illustrate 
how certain properties of the training data can be exploited to infer a subset of prob-
ability estimates for observations in the validation set. In Section 3, we introduce 
our marginal modelling techniques for both CNT and BA. We also discuss our tech-
nique for estimating spatial neighbourhoods and corresponding tuning parameters. 
We conclude with a discussion of our approach in Section 4.

2 � Exploiting properties of the training data set

2.1 � Re‑scaling burnt area values

In this section, we discuss various properties of the wildfire data set, and how these can be 
exploited to improve the estimation of the predictive distributions for missing observations.

To begin, observe that BA is an absolute measurement; this results in varying 
measurement scales across different locations. To better understand this, consider 
that some grid cells in the data set do not lie completely inside the continental 
US; this feature is captured by the ‘area’ variable, denoted pi , i = 1,… ,N , which 
describes the proportion of each grid cell that lies in the region of interest. BA 
observations depend upon this variable since for grid cells with smaller area values, 
there is less available land for wildfires to occur and hence lower BA values. For 
these reasons, the raw BA observations cannot be easily compared across locations.

To account for this, we propose re-scaling BA observations to ensure all observa-
tions are on a unified, relative scale. Recall that BAi , i = 1,… ,N , with N = 563, 983 , 
denotes the i-th observation of the BA data, and that BAval ⊂ {1,… ,N} is the set 
of indices for missing BA observations. We consider here the i-th observation, with 
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corresponding grid cell area pi ∈ (0, 1] . For each i ∈ {1,… ,N} , the total surface area 
of the grid cell is computed by taking the corresponding longitude and latitude coor-
dinates and applying a formula derived from Archimedes’ theorem [20]. We denote 
these surface area values by SAi . The surface area contained within the continental US 
is then computed by multiplying the total surface area by the grid cell area variable, 
i.e., SAi × pi . We denote these values by SA∗

i
 : such values will naturally vary between 

locations, especially for locations lying on a borderline. Moreover, SA∗
i
 values naturally 

decrease going from South to North of the continent, since grid cells defined using lon-
gitude and latitude suffer from unequal cell sizes [21]. We refer to this variable as the 
true surface area.

Using this variable, we derive a relative measure for BA, which we term burnt 
area proportion (BAP), i.e., for each i, define BAPi ∶= BAi∕SA

∗
i
∈ [0, 1] . This value 

denotes the proportion of the true surface area that has been burnt for each observation. 
It is arguably a better indicator of the impact and/or severity of wildfire events com-
pared to raw BA observations, since it puts the absolute magnitude in context for each 
location. Moreover, this proportion is a relative measure, meaning the data for all loca-
tions are on the same scale; this allows for a more straightforward comparison between 
neighbouring observations with different (true) surface areas.

We recall that the objective of the data challenge is to obtain probability estimates of 
the form Pr(BAi ≤ u) for all u ∈ UBA , where

and i ∈ BAval . This can be derived using the marginal distribution of BAPi , since

Consequently, we evaluate the distribution function of BAPi for all u ∈ U
i
BAP

 , where 
U
i
BAP

∶= UBA∕SA
∗
i
 , to obtain the required predictive probabilities. We introduce our 

technique for estimating this distribution function in Section 3.3.
We can also use these proportional data to deduce information about the upper tail of 

the distribution for BAPi at any i ∈ BAval . Since it is impossible to observe a BA obser-
vation which exceeds the true surface area at any location, we can immediately deduce 
that Pr(BAPi ≤ u) = 1 for any u ∈ U

i
BAP

 with u ≥ 1 . In practice, over 1% of missing BA 
observations satisfied the inequality max{Ui

BAP
} ≥ 1 , meaning a non-negligible amount 

of information can be uncovered via this preliminary step.
We considered a similar re-scaling for CNT observations; however, there did not 

appear to be any obvious relationship between the true surface area and CNT values. 
Furthermore, unlike BA, no natural upper bound arises for CNT observations, so we 
cannot deduce properties of the upper tail distribution for missing observations.

2.2 � Exploiting features of the missing data

Before introducing our marginal modelling procedures, we highlight how the train-
ing data can be used to provide information about the missing values we are required 

UBA = {0, 1, 10, 20, 30,… , 100, 150, 200, 250, 300, 400, 500, 1000,

1500, 2000, 5000, 10000, 20000, 30000, 40000, 50000, 100000},

Pr(BAi ≤ u) = Pr(BAPi × SA∗
i
≤ u) = Pr(BAPi ≤ u∕SA∗

i
).
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to estimate. This is possible since the missing values in the CNT and BA variables 
do not always occur at the same space-time locations, although there is some overlap 
in their missingness. We show that if exactly one of the CNT or BA values is known 
at a particular index, we can deduce information about the other.

Recall that we are interested in estimating the predictive distribu-
tion of CNTi for some i ∈ CNTval , i.e., Pr(CNTi ≤ u) for u ∈ UCNT , where 
u ∈ UCNT = {0, 1,… , 9, 10, 12,… , 30, 40,… , 100} . If i ∉ BAval and BAPi = 0 , we 
can immediately deduce that CNTi = 0 and Pr(CNTi ≤ u) = 1 for all u ∈ UCNT . More-
over, if i ∉ BAval and BAPi > 0 , we have that CNTi > 0 , implying Pr(CNTi ≤ 0) = 0 , 
though we are still required to estimate the predictive distribution for all u ∈ UCNT�{0} . 
The values we can infer for BAPi from CNTi , with i ∈ BAval , are analogous, so the 
detail is omitted here.

We find that CNTi = 0 for approximately 23% of the points in the CNT validation 
set, and that CNTi > 0 for an additional 15%. We can also deduce similar propor-
tions for the BAP values we are required to predict. A reasonable amount of infor-
mation can therefore be uncovered using this simple step.

We also found that for the non-missing CNT and BA observations, the probability 
of observing a zero observation exceeded 0.999 for both variables when lc(18)i > 0.94 , 
where lc(18)i denotes the proportion of each location covered by water. Therefore, for 
any i ∈ CNTval ( i ∈ BAval ) with lc(18)i > 0.94 , we set CNTi = 0 ( BAPi = 0 ), implying 
Pr(CNTi ≤ u) = 1,∀ u ∈ UCNT ( Pr(BAPi ≤ u) = 1,∀ u ∈ U

i
BAP

).
As well as improving estimates of the predictive distribution of some locations, 

the additional steps introduced in this section also increase the amount of informa-
tion available. This aids the marginal estimation procedures detailed in Sections 3.2 
and 3.3.

3 � Marginal modelling of missing values

3.1 � Neighbourhood selection

For our approach, we make the following assumption: for any observation with 
index i ∈ {1,… ,N} , there exists some spatial neighbourhood of indices, Ni , where 
all corresponding observations come from the same marginal distribution. Through 
estimation of this distribution, we can obtain predictive probabilities for missing 
CNT and BAP observations. In this section, we introduce our approach for selecting 
these neighbourhoods for CNT observations; the approach for BAP is analogous.

Consider the observation with index i ∈ {1,… ,N} , and denote the corresponding 
spatial location, month and year by si ∈ ℝ

2 , mi ∈ {3,… , 9} and yi ∈ {1993,… , 2015} , 
respectively. We define the spatial neighbourhood as

for some kCNT
1

≥ 0 , i.e., the indices of all observations occurring in the same year 
and month as observation i with a spatial distance of at most kCNT

1
 from si . The 

spatial distance ‖ ⋅ ‖ is measured in kilometres (km) using the Haversine formula; 

(1)Ni ∶=
�
j ∈ {1,… ,N} ∶ ‖si − sj‖ ≤ kCNT

1
,mj = mi, yj = yi

�
,
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in practice, these are calculated via the distm function in the R package geo-
sphere [22]. We treat kCNT

1
 as a tuning parameter and introduce a cross validation 

technique to select it in Section 3.4. We denote the CNT values corresponding to 
neighbourhood Ni by CNTNi =

{
CNTj ∶ j ∈ Ni

}
 . The definitions of kBAP

1
 and BAPNi 

for i ∈ {1,… ,N} are analogous.
More complex spatial neighbourhoods, which incorporated temporal and covariate-

based information, were also considered but ultimately resulted in worse quality mar-
ginal estimates. This is discussed in the Appendix, where we present prediction scores 
for other neighbourhoods we considered.

3.2 � A parametric approach for modelling CNT

Following [23], we assume all observations in the set CNTNi follow a zero-inflated 
negative binomial distribution for all i ∈ CNTval , i.e., for any CNT ∈ CNTNi , we 
have that

where � ∈ [0, 1] denotes a probability and g(j), j ≥ 0 , is the probability mass func-
tion of the negative binomial distribution. We estimate the parameter � and those 
of the negative binomial distribution using likelihood inference. We then evaluate 
distribution (2) for all u ∈ UCNT using the estimated parameters, resulting in the pre-
dictive distribution for the missing observation CNTi . In practice, we use the same 
tuning parameter, kCNT

1
 , for all i ∈ CNTval ; we discuss our approach to selecting this 

value in the Section 3.4.

3.3 � A semi‑parametric approach for modelling BAP

Given any i ∈ BAval , we assume all observations in the set BAPNi follow the semi-
parametric marginal distribution given in [24]. This distribution was proposed for 
modelling precipitation data, which are similar to wildfire data in the sense that 
they typically contain a large number of zero observations. These data structures are 
referred to as mixture distributions, since they are a mix of a discrete (zero observa-
tions) and a continuous (positive BAP observations) process. Values in the bulk of 
the data, including zeros, are modelled empirically, while values in the upper tail 
are modelled using a generalised Pareto distribution (GPD). This distribution is 
typically referred to in the context of the ‘peaks over threshold’ approach [25, 26], 
whereby a GPD is fitted to independent and identically distributed exceedances of a 
high threshold. This overall marginal model is given by

(2)Pr(CNT = j) =

{
𝜋 + (1 − 𝜋)g(0) if j = 0,

(1 − 𝜋)g(j) if j > 0,

(3)Pr(BAP ≤ x) =

⎧
⎪⎨⎪⎩

zi if x = 0,
1−𝜆i−zi

F∗
i
(ui)

F∗
i
(x) + zi if 0 < x ≤ ui,

1 − 𝜆i(1 − Hui
(x)) if x > ui,
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for all BAP ∈ BAPNi , where zi is the probability of observing a zero, ui is some high 
threshold to be chosen, 𝜆i = Pr(BAP > ui) , F∗

i
 is the distribution function of strictly 

positive observations, and Hui
(x) denotes the cumulative distribution function of 

the GPD, i.e., Hui
(x) = 1 −

[
1 + (�i(x − ui))∕(�i)

]−1∕�i
+

 , with x+ = max{x, 0} and 
(�i, �i) ∈ ℝ+ ×ℝ . We refer to �i and �i as the scale and shape parameters, respec-
tively. See [27] for a more detailed discussion of the peaks over threshold approach.

We set kBAP
2

∶= 1 − �i for all i ∈ BAval and treat kBAP
2

 as another tuning parameter, 
which we again estimate using cross validation; see Section 3.4. Both ui and zi can 
be estimated empirically, alongside F∗

i
 . Note that this marginal model is only valid 

when zi < 1 − 𝜆i : in such cases, the GPD scale and shape parameters are estimated 
using likelihood inference. We then evaluate the distribution described in Eq. (3) at 
the fitted parameters for all u ∈ U

i
BAP

 , resulting in the predictive distribution for the 
missing observation BAPi.

In the cases when zi ≥ 1 − �i (i.e., the marginal model is not valid), we use a fully 
empirical distribution. Such cases occur when the estimated threshold equals zero, 
corresponding to neighbourhood sets containing a significant proportion of zeros, 
indicating a low occurrence of wildfires.

3.4 � Tuning parameter selection

We now consider how to select the tuning parameters kCNT
1

, kBAP
1

 and kBAP
2

 used in 
our marginal modelling approaches. One option is to use leave-one-out cross valida-
tion and select the tuning parameter values that minimise the score used for ranking 
in the data challenge: see [4] for more information. However, the locations for the 
validation data are not randomly distributed across the spatial domain, and are gen-
erally clustered in space and time. We demonstrate this in Fig. 4, where we show the 
locations of the CNT validation data for March 1994; the resulting plots have similar 
features for BAP, as well as for different months and years. In the case of BAP data, 
this implies that for a fixed value of kBAP

1
 , there will be a larger number of missing 

values in the set BAPNi for i ∈ BAval than for i ∉ BAval , on average. The same holds 
when considering CNT data for a fixed value of kCNT

1
 . This feature of the validation 

set means that using standard leave-one-out cross validation over all training loca-
tions could lead to selecting smaller neighbourhoods than are really appropriate.

Fig. 4   Locations in the set 
CNTval for March 1994 (grey) 
and the corresponding loca-
tions of observations for tuning 
parameter selection (red)
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We instead propose to carry out the parameter selection procedure using only a 
subset of the observations in the training data. Focusing on BAP, for each i ∈ BAval 
and any combination of (kBAP

1
, kBAP

2
) values, we allow the observation indexed by

to contribute to the score, i.e., giving the spatially-nearest non-missing observation 
that occurs in the same month and year as observation i. Ties may be broken at ran-
dom, or using any rule that results in only one nearest neighbour per location. Since 
these locations can be the nearest neighbour of more than one validation location, 
some of the corresponding observations are included more than once in the score 
calculation. An alternative would have been to use each of these observations only 
once to avoid duplicates, but this means some validation locations would not be rep-
resented in the score calculation.

We consider the following candidate values for the tuning parameters: 
kBAP
1

∈ {50, 75,… , 400} , kBAP
2

∈ {0.05, 0.10,… , 0.95} . For each combination of 
candidate values, we recalculate the score function proposed in [4], summing over 
all values corresponding to our set of nearest neighbours, before finally selecting 
the parameter combination that minimises the score. The procedure in the CNT case 
is analogous, albeit without the GPD quantile parameter kBAP

2
 . In Fig. 4, we demon-

strate the locations of observations that contribute to the tuning parameter selection 
procedure for CNT in March 1994. This results in selected tuning parameter values 
of kBAP

1
= 175 , kBAP

2
= 0.5 , and kCNT

1
= 125.

We note that our final approach has similarities with the winning entry to the 
2017 EVA data challenge [28], where the authors combine data across locations 
with sufficient observations, in order to fit a generalised extreme value distribution 
for predicting precipitation extremes. They advocate the use of cross validation for 
tuning parameter selection and to compare potential modelling approaches in data 
challenges such as this, where the aim is to optimise some pre-determined metric.

4 � Discussion of limitations and possible extensions

In this paper, we have discussed a marginal modelling approach for predicting wild-
fire events across the contiguous US. This framework was applied to obtain esti-
mates of the cumulative distribution function at locations with missing entries for 
either CNT or BA. The resulting estimates were then “ranked” using a score func-
tion weighted to give higher importance to extreme observations [4]. Our method 
produced scores of 4080.559 and 3640.92 for CNT and BA, respectively, resulting 
in an overall score of 7721.479; this is a significant improvement on the proposed 
benchmark technique.

Unlike all the techniques introduced in Section 1.3, our approach does not attempt 
to specify the relationships between the auxiliary and wildfire variables. Such rela-
tionships appear to be complex and non-linear in nature, which may be explained by 

argmin
j∶mi=mj,yi=yj,j∉BA

val

‖si − sj‖,
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a variety of hypotheses. For example, the monthly aggregated format of the wild-
fire variables arguably makes it more difficult to associate them with any climate 
covariates, which are given as monthly means. Instead, our approach relies on the 
assumption that wildfire observations within spatial neighbourhoods arise from the 
same marginal distribution. We believe that this is realistic since neighbouring loca-
tions are likely to have similar auxiliary covariates, as demonstrated in Fig. 3, and a 
large wildfire event occurring at one location is likely to increase the probability of 
wildfires in neighbouring locations. Furthermore, since the values in neighbourhood 
sets vary over time for each missing CNT or BA observation, our approach accounts 
for the temporal non-stationarity discussed in Section 1.2. We also propose several 
preliminary steps in Section 2; these steps do not require expert knowledge of wild-
fires to implement. Furthermore, such steps lead to significant improvements in the 
predictive distributions obtained using our approach by increasing the amount of 
information available and bringing all BA observations onto a unified scale.

While developing our approach, we investigated the possibility of accounting for 
covariate influence on extreme CNT values via the use of GAMs (this option was 
also mentioned in Section 1.3), but found their predictive performance to be poor in 
this setting; see [29] for details on these types of models. In particular, we fitted a 
continuous GPD for each month, with the scale parameter having a GAM form [30] 
comprising spatial and climatological covariates; a continuous approximation was 
used due to having discrete CNT values. The advantage of this method is that covari-
ate effects can be directly assessed by examining the smooth functions underlying the 
models. From the fitted GAMs, the general spatial behaviour of the CNT data was 
modelled fairly well in each month, but these models did appear to suffer from overs-
moothing, even when using models with the lowest level of smoothness. On the other 
hand, we found that physically-interpretable covariate behaviour for the climatologi-
cal variables was hard to capture, making model selection difficult; the precise rea-
son for this is unclear. It is likely that the aforementioned oversmoothing combined 
with other issues, such as poor convergence of the underlying numerical optimisation 
routines and difficulties combining the fitted GAMs with models for the bulk of the 
CNT values, lead to poor model performance against the benchmark. Therefore, it 
appears that this type of approach may not be favourable in situations where the pre-
diction of unknown values is required, and is more suited to analyses where the aim 
is to account for uncertainty whilst modelling complex covariate effects. Indeed, in 
addition to the GAM-based approach mentioned in Section  1.3, [11, 31] and [32]  
have also successfully applied GAM techniques for modelling wildfire data.

One possible extension of the modelling techniques proposed in Sections  3.2 
and 3.3 would be to introduce weights into the marginal estimation procedures. 
In the current format, observations within spatial neighbourhoods are given equal 
weights, even though it is likely that locations with a closer proximity to a missing 
observation would provide more useful information than locations that are further 
away. Our current method could therefore be extended by introducing weights to 
the marginal estimation procedures, with closer observations contributing more to 
probabilistic estimates. We would expect different values of the tuning parameters 
kCNT
1

 and kBAP
1

 , defining the spatial range of the neighbourhoods, to be appropriate 
in this case, but our cross validation approach could be used analogously.
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Changes to the definition of the neighbourhoods in equation  (1) could lead to 
improvements with our approach. One drawback with our current implementation 
is that the values kCNT

1
 and kBAP

1
 are chosen to be the same across all validation loca-

tions. Although we selected these tuning parameters carefully via cross validation, 
it is possible that this is an over-simplification and allowing the values to depend 
on covariates such as location, month or year may have been more appropriate. An 
extension of our approach could allow for this possibility, e.g., by separating the 
spatial domain into smaller sections and implementing cross validation separately in 
each one. It may also be reasonable to apply clustering algorithms as a preliminary 
step, to inform the spatial regions where setting the tuning parameters (kCNT

1
, kBAP

1
) 

as constant is a reasonable assumption. Allowing these parameters to vary across 
space also has the potential to provide insight into the behaviour of wildfires across 
the spatial domain. Additionally, we considered allowing the neighbourhoods them-
selves to depend on covariate-based clusters or to cover larger time windows, but 
the results presented in the Appendix suggest the simpler spatial neighbourhood 
approach was more successful.

While the zero-inflated negative binomial distribution proposed for CNT neigh-
bourhoods is not motivated by extreme value theory, our analysis indicated the fitted 
marginal distributions performed reasonably well, including in the upper tail in the 
majority of cases. Several other distributions were tested, including fully empirical 
and discrete GPD models [33]; however, in every case, these distributions resulted 
in poorer prediction quality when ranked by the objective function given in [4]. This 
is likely due to the difficulties that arise in trying to capture behaviour in the bulk 
and tail simultaneously, and perhaps due to an insufficient amount of data in each 
of our spatial neighbourhoods for fitting the discrete GPD. In addition, alternative 
marginal distributions for BAP observations have the potential to further improve 
the predictive ability of our modelling framework.

Appendix: Spatio‑temporal neighbourhoods

As alternatives to the spatial neighbourhoods Ni , i ∈ {1,… ,N} , defined in Eq. (1), 
we also considered neighbourhoods of the form

 and 

 for some kCNT
1

≥ 0 and kCNT
y

∈ ℕ , where cj denotes a covariate-based cluster assign-
ment for each observation j ∈ Ni . Analogous neighbourhoods were also considered 
for BAP.

N
t
i
∶=

�
j ∈{1,… ,N} ∶ ‖si − sj‖ ≤ kCNT

1
,mj = mi,

yj ∈ {yi − kCNT
y

, yi − kCNT
y

+ 1,… , yi + kCNT
y

}
�
,

N
c
i
∶=

�
j ∈ {1,… ,N} ∶ ‖si − sj‖ ≤ kCNT

1
,mj = mi, yj = yi, cj = ci

�
,
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With the observation month fixed and the spatial range defined as in Ni , the 
neighbourhood Nt

i
 incorporates additional observations from neighbouring years, 

thus increasing the amount of data available for marginal estimation and adding a 
temporal element to the modelling procedure. On the other hand, the month and 
year are fixed for Nc

i
 so that only those data points with the same cluster assign-

ment as observation i are considered, thus reducing the amount of information 
available for a fixed kCNT

1
 or kBAP

1
 value. However, assuming we can define clus-

ters such that observations in the same cluster have more similar marginal tail  
properties, this additional step has the potential to improve marginal estimation.

Cluster assignments used within the Nc
i
 neighbourhoods were computed using 

divisive hierarchical clustering [34] for two different covariates: temperature 
and precipitation. We select these variables since they have been shown to be 
positively and negatively associated, respectively, to wildfire events [35, 36], and 
therefore may allow us to group together locations with similar marginal proper-
ties for CNT and BAP.

We use hierarchical clustering since this technique has been used in practice to 
approximate spatial clusters with similar wildfire properties [37–39]. The cluster-
ing procedure is as follows: 

1.	 Standardise the auxiliary variable data (temperature or precipitation) for every 
location in Ni.

2.	 Apply hierarchical clustering, using the standardised covariate data, to obtain two 
clusters, i.e., for each j ∈ Ni , cj = 1 or 2.

3.	 Compute the subset of locations with the same cluster assignment as location i, 
i.e., {j ∈ Ni ∣ cj = ci}.

In our analysis, we found that both the neighbourhoods Nt
i
 and Nc

i
 resulted in 

worse prediction scores compared to the simpler spatial neighbourhood approach 
outlined in Section 3. This is illustrated by the results in Tables 1 and 2, where 
we present the overall prediction scores, as outlined in [4], for Nt

i
 and Nc

i
 , respec-

tively; recall that we aim to minimise this score.

Table 1   Total scores obtained 
using neighbourhood Nt

i

Distance ky = 1 ky = 2 ky = 3 ky = 4 ky = 5 ky = 6

k1 = 50 8393.3 8089.3 8003.6 7991.2 7925.9 7909.3
k1 = 75 8225.5 8134.2 8161.9 8187.4 8162.6 8159.6
k1 = 100 8295.6 8222 8264.4 8293.9 8275.5 8274.1
k1 = 125 8439.9 8401.4 8457 8487.2 8474.1 8474
k1 = 150 8547 8519 8578.2 8608.6 8599.5 8600.6
k1 = 175 8624.8 8604.8 8664.5 8694.1 8687.5 8689
k1 = 200 8711.2 8696.7 8755.2 8784.2 8778.4 8781.5
k1 = 225 8779.8 8768.9 8823.8 8852.3 8848 8851.2
k1 = 250 8843.9 8838.3 8892 8919.1 8915.4 8919.4
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For these scores, we let kCNT
1

= kBAP
1

∶= k1 ∈ {50, 75,… , 250} to incorporate a 
variety of spatial distances and set kBAP

2
= 0.5 to match the existing selected tun-

ing parameter from Section 3.4. For Nt
i
 , we let kCNT

y
= kBAP

y
∶= ky ∈ {1, 2, 3, 4, 5, 6} , 

resulting in time windows of up to 13 years. Note that these scores correspond to 
the final prediction scores, i.e., when the missing data are known, and in practice, 
one would need to select the tuning parameters using the cross validation proce-
dure outlined in Section 3.4.

One can observe that all the prediction scores from Tables 1 and 2 exceed the 
final score obtained using the method described in Section 3, and in many cases, 
the scores obtained were significantly worse. The fact that these predictions were 
worse for a wide range of tuning parameter combinations gives further support to 
our main modelling approach.

In the case of temporal neighbourhoods, since the predictive scores do not 
tend to decrease with the parameter ky , our results suggest that marginal wildfire 
behaviour can vary significantly over neighbouring years.

Therefore, even though incorporating information from neighbouring years 
increases the amount of data available for model fitting, it does not appear to 
improve the quality of marginal estimates.

In the case of the cluster-based neighbourhoods, our results indicate that 
observations with similar temperature and precipitation values may not be those 
with similar wildfire behaviour. We suspect this may occur due to the complex 
nature of the relationships between the wildfire and auxiliary variables described 
in Section 4. Such relationships are unlikely to be picked up by incorporating this 
additional clustering step. Clustering also reduces the amount of data available 
for model fitting, which also appears to reduce the quality of marginal estimates.

On the whole, these results suggest that incorporating additional information, 
both from temporal windows and covariate-based clusters, does not improve the 
quality of marginal estimates for either CNT or BAP under our modelling approach. 
Combined with the principle of parsimony, we do not consider these alternative 
neighbourhoods further.

Table 2   Total scores obtained 
using neighbourhood Nc

i
 

with clusters computed using 
temperature and precipitation

Distance Temperature clusters Precipitation 
clusters

k1 = 50 11149 11161
k1 = 75 9608.8 9607.7
k1 = 100 9245.2 9309.2
k1 = 125 8651.9 8718.5
k1 = 150 8522.9 8582.1
k1 = 175 8431.5 8505.2
k1 = 200 8460.3 8489.5
k1 = 225 8470.2 8511.1
k1 = 250 8493.6 8539.5
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