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Abstract 

As a tradition of the telecom industry, researchers have developed previous mobile communication 

standards mainly for enhancing transmission and network Key Performance Indicators (KPI) by 

improving spectrum efficiency and utilizing more radio resources. However, how to use a wide 

range of technological solutions to address a diverse set of user requirements effectively remains an 

open problem. The future Sixth-Generation (6G) systems have the potential to solve this problem 

by taking advantage of pervasive intelligence and computing capabilities to support everyone-



centric customized services anywhere and anytime. In this paper, from a user’s perspective, we 

define a novel concept of Service Requirement Zone (SRZ) to characterize the comprehensive 

service requirements of each task for any user. Then, from a system’s perspective, we further 

propose the User Satisfaction Ratio (USR) as a fair quantifiable measure to evaluate the overall 

service capability of Artificial Intelligence (AI) architectures in supporting a variety of tasks with 

different SRZs. Through extensive simulations, we investigate and compare three AI service 

architectures with centralized or distributed computing resources. Our results show that the 

proposed network AI architecture can consistently offer higher USR performance than the cloud AI 

and the edge AI architectures, considering different task scheduling algorithms, network conditions, 

and operation scenarios. 

 

I. Introduction 

Over the last decade, the global development and application of Internet of Things (IoT) have 

accelerated the digitalization of the physical world and human society. To fully exploit the 

commercial values of massive data from IoT devices, we can use Artificial Intelligence (AI) 

algorithms to integrate user requirements, domain knowledge, operation procedures, and business 

models for different application scenarios. To improve user satisfaction in public services, data from 

user devices and public facilities can be utilized by self-learning algorithms to meet each user’s 

personalized preferences and requirements [1]. For manufacturing applications, data from industrial 

automated control devices in assembly lines can be analyzed by AI algorithms to improve efficiency, 

productivity, and safety, and to reduce cost, energy consumption, and carbon emissions. Eventually, 

a digital world will emerge, where all kinds of distributed IoT devices/things will contribute to and 

benefit from a collaborative, adaptive, and intelligent network architecture [2].  

 

The Sixth Generation (6G) systems will be different from the Fifth Generation (5G) systems in three 

important aspects. First, in terms of goals, 5G targets at radical improvements of several Key 

Performance Indicators (KPIs), such as data rate, spectrum efficiency, energy efficiency, service 

coverage, device density, and air-interface delay, by at least ten times comparing to the Fourth 

Generation (4G) systems. 5G continues to provide different “standard” services, such as enhanced 

Mobile BroadBand (eMBB), Ultra Reliable Low Latency Communications (URLLC), and massive 

Machine Type Communications (mMTC), for different groups of users, just like 4G did the same 

for urban, sub-urban, and rural users. This is the traditional “user-centric” service model which 

could only provide a statistically satisfactory performance for typical users. However, the goal of 

6G is to guarantee Quality of Experience (QoE) in all application scenarios and network conditions 

to meet specific requirements of various tasks from many users. Built upon the digital world, 6G 

will seek to provide “everyone-centric customized” services according to each task’s individual, 

integrated, and dynamic requirements [3]. Advanced IoT and AI technologies will further accelerate 

the evolution towards this ambitious goal of 6G, thus achieving the finest service granularity for 

satisfying every user with a personalized QoE. 

 

Second, in terms of approaches, 5G improves a set of KPIs by committing more resources, such as 

frequency spectrum, transmission power, antenna arrays, denser cells, cloud computing, and 

complex algorithms. This “technology-driven” approach cannot suit the new and evolving 

applications, as KPIs are hard to satisfy without understanding the dynamic user requirements and 



traffic flows. As delay-sensitive broadband applications such as Virtual Reality/Augmented Reality 

(VR/AR) interactive games and autonomous driving grow explosively, 5G is unable to deliver 

massive data on time over a limited network bandwidth and therefore cloud computing cannot 

guarantee satisfactory QoE. In contrast, 6G will adopt an intelligent and sustainable “service-

oriented” approach, which exploits ubiquitous sensing, communication, computing, storage, and 

control resources, as well as pervasive AI algorithms from cloud, to network, and to edge [4-10]. 

The service capabilities will continue all the way to user devices and things, and agilely address 

sudden changes due to reasons such as user behaviors, application scenarios and operation 

conditions. Heterogenous resources and AI algorithms will be fully shared and orchestrated to 

customize service provisioning, optimize network operation, and achieve customer well-being at 

different locations and time scales [11, 12].  

 

Third, in terms of impacts, 5G is playing the key role in the digital transformation, while 6G is 

envisioned to lead the direction of the intelligent transformation of future services, applications, and 

businesses across multiple domains and sectors. This vision will be realized not only by improving 

transmission KPIs for different application scenarios, but more importantly, by ubiquitous sensing, 

communication, computing, storage, control, and AI resources from the cloud to the edge. In 

addition, 6G will create novel cross-domain innovation ecosystems by enabling effective integration 

and collaboration of different types of data from different business domains, industrial sectors, 

application scenarios, and geographic locations. As the main battlefields of intelligent 

transformation, these ecosystems will simultaneously consider different requirements from multiple 

perspectives, develop feasible solutions with various objectives, and produce huge amounts of social 

and economic benefits. Novel digital infrastructures, application cases, collaboration paradigms, 

and business models will be deployed as the cornerstone for establishing our intelligent society [13, 

14].  

 

This paper proposes a new network AI architecture to fulfill the vision of 6G. Our key contributions 

are:  

(i) To better specify the integrated service requirements of an arbitrary task from any 

user, we develop the concept of Service Requirement Zone (SRZ) in the multi-

dimensional service space with multiple KPIs; 

(ii) To better characterize the QoE of all served users in a 6G system according to 

their SRZs, we define User Satisfaction Ratio (USR) as a measure to evaluate the 

overall service capability of the system;  

(iii) To better provide pervasive intelligence in 6G, we propose the network AI 

architecture, which integrates basic service functions, such as sensing, 

communication, computing, storage, control, and intelligent algorithms, to 

provide the native AI capability for serving the neighborhood;  

(iv) We verify the performance of the proposed network AI architecture through 

extensive simulation studies, together with the cloud AI and edge AI 

architectures. Results show that the network AI architecture consistently achieve 

the highest USR under different network conditions.  



 

The rest of this paper is organized as follows. Section II introduces the concept of SRZ for every 

task from any user. Then, Section III defines the performance metric of USR for 6G systems with 

pervasive intelligence. The network AI architecture is proposed in Section IV. Section V shows 

extensive simulation results under dynamic task and system parameters, together with our detailed 

analysis. Finally, Section VI concludes this paper and identifies future research directions. 

 

II. Service Requirement Zone 

Radar charts with multiple KPIs have been widely used to indicate the technology advancements 

and capability enhancements from an aggregated system’s perspective [4, 14]. Unlike this traditional 

approach, we apply radar charts to represent the multi-dimensional Service Requirement Zone (SRZ) 

of every task to capture the user’s service preferences and requirements. From a typical user’s 

perspective, some system KPIs are irrelevant to his/her individual service experience, e.g., device 

density, peak data rate, and network capacity. However, many service KPIs are critical for his/her 

QoE since they jointly determine the personalized SRZ.  

 

As an illustrative example, Fig. 1 shows eight service KPIs that define an eight-dimensional SRZ 

on an octagonal radar chart, i.e., the brown zone. Assume a user is playing a highly interactive 

VR/AR online game with a group of virtual friends. The SRZ of this task requests a low end-to-end 

service delay, a standard energy consumption, instant storage and caching of a large amount of user 

data, a high transmission data rate, normal security and privacy protection, an ultra-reliable and 

stable experience during the service process, rich domain-specific knowledge and capability for 3D 

graphic rendering, as well as a reasonable cost. In order to guarantee QoE, 6G systems should satisfy 

this personalized SRZ under complex application scenarios and dynamic operation conditions. In 

other words, 6G will extend network slicing technology to the finest granularity, i.e., from a specific 

application to every task of any user, thus requiring intelligent algorithms to orchestrate necessary 

network resources for providing everyone-centric customized services anywhere and anytime.  

 

 

Fig. 1 Service Requirement Zone. 



 

III. User Satisfaction Ratio 

The SRZs of various tasks can be used as the QoE targets for service provisioning and performance 

optimization in 6G. From the perspective of network operator and service provider, we propose the 

User Satisfaction Ratio (USR) as an effective measure to evaluate the overall capability of a 6G 

system in serving a large number of tasks with different SRZs simultaneously.  

 

Referring to the SRZ in Fig. 1, if the achieved system performance results in multiple dimensions 

are all located within the brown zone, the corresponding user will feel very satisfied. Otherwise, 

this service has failed. As its name implies, the USR is calculated as the ratio between the number 

of satisfied tasks and the total number of served tasks. It is an effective, fair, and general performance 

metric for evaluating a system’s overall service capability in guaranteeing QoE for a variety of tasks 

at the same time, not regarding any specific user locations, application scenarios, or network 

operation conditions.  

 

Consider different systems with a similar amount of network resources. The higher the USR is, the 

more intelligent a system is in utilizing limited resources for efficiently serving many tasks with 

various SRZs. 5G today is mainly focused on improving separate and objective KPIs at the supply 

side, such as signal strength, service coverage, device density, and spectrum and energy efficiencies. 

However, 6G seeks to satisfy every user’s personal and subjective requirements denoted by SRZs 

at the demand side. In 6G, network resources in multiple domains are effectively integrated to jointly 

enhance everyone’s QoE and the system’s USR.  

 

The calculation of USR is based on the binary, hard decision according to every task’s SRZ, i.e., 

whether or not the system has satisfied the specified KPIs simultaneously. To loosen the restriction, 

two approaches could be applied to extend the definitions of SRZ and USR from the user side and 

the system side, respectively. First, we can assign different coefficients to prioritize the KPIs that 

are more important to particular tasks or users. Hence, the weighed SRZ is obtained by considering 

the varying degrees of importance of different KPIs. Second, we can introduce the soft-decision 

method to keep the decimals when the achieved system performance results are compared with a 

prespecified SRZ. Hence, the stepped USR is derived by taking into account the actual levels of 

satisfaction on different KPIs.  

 

IV. Three AI Architectures and the System Model 

1. The Cloud AI and Edge AI Architectures  

In the era of 5G, the cloud AI architecture has been widely adopted to provide centralized computing 

services, such as data analysis, AI training and inference. The conventional “cloud-pipe-terminal” 

structure decouples the data sensing functions at user terminals, the communication functions in 

mobile networks (a.k.a. the pipe), and the computing functions or the AI-enabled analytical services 

on the cloud [12]. This is simply a combination of the existing infrastructures of Data Technology 

(DT), Communication Technology (CT), and Information Technology (IT).  

 

In order to solve the problem of low speed, large delay, poor privacy, and high carbon emissions in 



centralized AI applications on the cloud, the edge AI architecture extends the computing capability 

from the cloud to the locations physically closer to end users. Although the costs for deploying edge 

clouds (also called cloudlets) widely in the neighborhood are very high, this “cloud-edge-terminal” 

structure is getting popular in various application scenarios with high added values. This is because 

it is much more effective in supporting computing-intensive, delay-constrained, security-assured, 

and privacy-sensitive applications, such as interactive VR/AR games, autonomous driving, and 

intelligent manufacturing.  

 

(a) Deployments of Cloud, Edge, and Network AI Architectures. 

 

(b) System Model. 

Fig.2 Three AI Architectures and the System Model. 

 

As shown in Fig. 2 (a), central, local, and edge clouds are connected by high-speed, expensive bearer 

networks, which are just the traffic pipes with huge bandwidth. Strictly speaking, these computing 



resources are deployed as Over-The-Top (OTT) services and not part of the mobile networks. They 

are considered as affiliated AI resources for enhancing the AI capabilities at different network 

locations. Cross-domain resource coordination and service orchestration require in-depth domain 

knowledge and rich experiences, and hence are very complicated and time-consuming. This would 

generate a series of management and technical problems such as redundant deployment costs, 

circuitous data paths, and frequent desynchronized cooperation. It is very difficult for the cloud AI 

and edge AI architectures to guarantee end-to-end QoE for sophisticated AI services in dynamic 

application environments and mobile network conditions. 

 

2. The Network AI Architecture with Multi-tier mNodes 

To address those challenging issues, two-level digital twins and edge-cloud cybertwins are proposed 

in the cyber space [8] and the service network [9], respectively, to fulfill the vision of 6G. In this 

paper, we propose the network AI architecture with multi-tier, multi-function Nodes (mNodes) to 

shift the classic design paradigm that assumes communication networks as the pipe only for data 

transmission.  

 

As the key 6G network element, the mNode will integrate basic service functions, such as sensing, 

communication, computing, storage, control, and AI algorithms, to provide the native AI capability 

inside the mobile network for QoE-guaranteed, everyone-centric customized services. They will be 

deployed in multiple network tiers and locations for enhancing, and gradually replacing, the current 

4G/5G Node Base-stations (xNBs) and Gateways (GWs) in the Radio Access Network (RAN) and 

the Core Network (CN), respectively. Depending on specific application scenarios, some tasks may 

have stringent SRZs due to bandwidth, delay, security, privacy, or energy constraints and should be 

served as locally as possible by nearby mNodes. 

 

In Fig. 2 (a), the proposed network AI architecture consists of three key units and constructs a 

comprehensive, distributed, and pervasive AI environment for 6G. First, the AI infrastructure is 

composed of mobile networks and multi-tier mNodes with heterogeneous resources. Second, the 

Network AI Logic and Control (NALC) unit controls all the integrated resources and functions 

inside the AI infrastructure, thus providing realtime or semi-realtime (from milliseconds to tens of 

milliseconds) task scheduling and resource allocation for QoE guarantee. It also conducts the 

monitoring and management of customized service procedure and lifetime satisfaction for every 

task of any user in dynamic mobile environments and wireless channel conditions. Third, the 

Network AI Management and Orchestration (NAMO) unit contains an elastic and extensible AI as 

a Service (AIaaS) platform, which supports AI service orchestration and automatic management for 

diverse 6G applications. For the cases that other IT vendors are willing to contribute additional 

cloud and edge computing resources, the NAMO can help to coordinate and utilize all the resources 

to provide complex services across different AI architectures. In summary, the network AI 

architecture can either serve various tasks independently, or complement with the cloud AI and edge 

AI architectures to satisfy sophisticated user requirements with the challenging SRZ targets.  

 

3. System Model 

To study a typical 6G system with dispersive computing resources and pervasive intelligence, Fig. 



2 (b) shows a general system model for different AI architectures. Let us consider a series of tasks, 

each having a customized SRZ, arriving at the system with rate λ tasks per second. These tasks are 

generated randomly by either end users enjoying mobile internet services or various devices/things 

embedded in industrial IoT applications. As discussed, simply deploying more computing resources 

as the affiliated AI capabilities in access networks and bearer networks, while keeping sensing, 

communication, computing, storage, and control functions separated (as in previous generations of 

mobile networks), would generate significant management and technical problems. Therefore, 

without loss of generality, we consider a three-tier network AI architecture with three types of 

mNodes, which are represented by blue rectangular boxes. The number of mNodes, the computing 

power (FLOPS: floating-point operations per second), and the network data rate (bytes per second) 

in the ith-tier are denoted by 𝑁𝑖, 𝐶𝑖, and 𝑅𝑖, respectively. Above them sits a cloud, which has the 

highest data rate 𝑅𝑐  and the strongest computing power 𝐶𝑐 . This system model can be easily 

simplified to represent the cloud AI and edge AI architectures by setting 𝑁𝑖 = 0 for i≥1 and i≥2, 

respectively.  

 

For an arbitrary task T, the corresponding service provisioning procedure is determined by the 

specific task scheduling algorithm. Upon the arrival of task T, its SRZ is first checked by a nearby 

1st-tier mNode at the edge, which analyzes the possibility of satisfying that SRZ with the network 

resources available in the vicinity. If local resources are sufficient, task T will be immediately served 

by this mNode. If not, a more powerful 2nd-tier mNode will be initiated to lead the effort of 

identifying feasible network resources in a bigger neighborhood. If regional resources are still not 

sufficient, an even stronger 3rd-tier mNode will be called upon to perform multi-domain resource 

orchestration over a much wider area. In some cases, task T is so complex that a large amount of 

network resources will be used to collect and process not only local and regional data, but also 

global data. If task T can be split into multiple subtasks [15], then multiple mNodes in the horizontal 

or vertical directions can share their resources and capabilities to collectively serve task T. 

Otherwise, task T cannot be split and has to be uploaded to the cloud over the multi-tier network, 

thus increasing the end-to-end transmission delay, energy consumption, and total cost. Traditional 

cloud AI architecture relies on remote super-powerful computing resources, while recent edge AI 

architecture takes advantage of local light-weight computing resources. As the next stage, the 

network AI architecture incorporates both cloud and edge AI to allocate multi-tier, pervasive 

intelligence in 6G systems.  

 

V. System Parameters and Simulation Results 

Different from the DeFog benchmarks built on representative applications (https://github.com/qub-

blesson/DeFog), the simulation study of different AI architectures is based on real world experiences 

and best practices in typical CT and IT networks. Table 1 lists all the parameters about tasks, three 

AI architectures, and two task scheduling algorithms, together with reasonable values for extensive 

computer simulations. On the demand side, different users continuously generate λ tasks per second. 

Assume a non-splittable task T have a size of 𝑍  bytes and a computing requirement of 𝑈 

teraFLOPS. To demonstrate the key results within this limited paper, only delay and energy 

consumption are chosen as the illustrative KPIs for constructing a two-dimensional SRZ for every 

task. If task T is served by an mNode in the hth tier, the overall service delay DT consists of 

communication delay and computation delay, and can be expressed as   

https://github.com/qub-blesson/DeFog
https://github.com/qub-blesson/DeFog


𝐷𝑇 = ∑
𝑍

𝑅𝑖

ℎ

𝑖=1

+
𝑈

𝐶ℎ
, (1) 

where the effective computing power 𝐶ℎ includes the combined effects of queueing, execution, 

and storage delays at the service mNode. Similarly, the total energy consumption 𝐸𝑇 consists of 

transmission energy consumption and computation energy consumption, and can be expressed as 

𝐸𝑇 = ∑ 𝛼𝑖

𝑍

𝑅𝑖

ℎ

𝑖=1

+ 𝐶ℎ
2𝑈, (2) 

where 𝛼𝑖 and  denote the average transmission power over the ith hop and the constant related to 

the service mNode’s computing hardware structure, respectively. For analysis, we set 𝛼𝑖 = 0.1  

Watts and  = 1 × 10−33 in this study. The condition for user satisfaction is therefore 𝐷𝑇𝐷0 and 

𝐸𝑇𝐸0 , where 𝐷0  and 𝐸0  are the upper bounds of service delay and energy consumption, as 

specified by the SRZ of task T. Without loss of generality, the values of Z, U, 𝐷0, and 𝐸0 are 

randomly generated according to different Gaussian distributions.  

 

For a sequence of tasks, Fig. 3 shows their customized SRZs as rectangular zones bounded by the 

actual values of 𝐷0 and 𝐸0, i.e., two dashed lines. The service results of the delay and energy 

consumption performance are denoted by three markers for different AI architectures. Taking Task 

1 as an example, both the network AI and edge AI architectures can achieve satisfied QoEs since 

their markers are located inside the SRZ. On the contrary, the cloud AI architecture fails to provide 

acceptable delay performance. 

Fig. 3 Service Results of Representative Tasks with Different SRZs. 

 

On the supply side, the cloud AI, edge AI, and network AI architectures are evaluated with the same 

total computing power of 14M teraFLOPS. For a fair comparison, they are composed of a cloud and 

a three-tier network for serving tasks with different SRZs. For the cloud AI architecture, all tasks 

are transmitted over the network and served in the cloud. There is no computing overhead for task 

scheduling and system resource management, so the effective computing power is 𝐶 = 𝐶𝑐 =

14𝑀 teraFLOPS.  

 

The edge AI architecture allocates a small amount of computing power among 1000 1st-tier mNodes 

at the edge and the rest of computing power in the cloud. Assuming a 20% computing overhead for 

task scheduling and system resource management, the resulting effective computing power is equal 

to 𝐶 = 𝑁1 × 𝐶1 + 𝐶𝑐 = 11.12𝑀 teraFLOPS . In Table 1, two task scheduling algorithms are 

considered in performance evaluation. Under Fair Equal Scheduling (FES), all tasks are split in a 

random manner with half going to the edge and half to the cloud for services. While The-Closer-

The-Better (TCTB) algorithm follows the Pareto principle, or the 80/20 rule, so that 80% and 20% 



of all the tasks go to the edge and the cloud, respectively. The use of FES and TCTB algorithms will 

demonstrate the fundamental differences among the three AI architectures and provide standard 

benchmarks for developing more sophisticated algorithms for dynamic operation scenarios and 

complex network conditions. 

Table 1.  Simulation Parameters. 

 Parameter   Value 

User Task: 

Demand Side 

Task Density/Arrival Rate  [1000, 3000] (tasks per second) 

Delay Bound 𝐷0 E[𝐷0]=1600 (seconds), Var(𝐷0)=50 

Energy Bound 𝐸0 E[𝐸0]=1.85(kW·h), Var(𝐸0)=0.05 

Task Size Z 
E[Z]∈[4.8 × 108, 7.2 × 108](bytes) 

Var(Z)=1 × 106 

Computing Requirement U 
E[U]∈[0.4 × 104, 1.0 × 104] (teraFLOPS) 

Var(U)=1 × 102 

6G System: 

Supply Side 

                      Cloud AI Edge AI Network AI 

Computing Overhead 0 
2880000 

(teraFLOPS) 

3640000 

(teraFLOPS) 

Effective Computing Power 
14000000 

(teraFLOPS) 

11120000 

(teraFLOPS) 

10360000 

(teraFLOPS) 

Cloud 

Computing 

Power 𝐶𝑐 

14000000 

(teraFLOPS) 

10000000 

(teraFLOPS) 

7000000 

(teraFLOPS) 

Data Rate 𝑅𝑐 2500 (Mbps) 

3𝑟𝑑-tier mNode 

Number 𝑁3 0 0 10 

Computing 

Power 𝐶3 
- - 

112000 

(teraFLOPS) 

Data rate 𝑅3 E[𝑅3] ∈[1600, 2500] (Mbps), Var(𝑅3)=100 

2 𝑛𝑑-tier mNode 

Number 𝑁2 0 0 100 

Computing 

Power 𝐶2 
- - 

11200 

(teraFLOPS) 

Data Rate 𝑅2 E[𝑅2] ∈[400, 625] (Mbps), Var(𝑅2)=25 

1 𝑠𝑡-tier mNode 

Number 𝑁1 0 1000 1000 

Computing 

Power 𝐶1 
- 

1120 

(teraFLOPS) 

1120 

(teraFLOPS) 

Data Rate 𝑅1 E[𝑅1] ∈[56, 87.5] (Mbps), Var(𝑅1)=7 

Algorithms: 

Supply Side 

Fair Equal Scheduling (FES) 100% 50% : 50% 25:25:25:25 % 

The Closer The Better (TCTB) 100% 80% : 20% 80: 10: 5: 5 % 

 

The network AI system comprises of more mNodes with different capabilities in three network tiers, 

thus the computing overhead due to system and algorithm complexity is assumed higher, let us say 

3.64M teraFLOPS. The total effective computing power is derived as 𝐶 = 𝑁1 × 𝐶1 + 𝑁2 × 𝐶2 +

𝑁3 × 𝐶3 + 𝐶𝑐 = 10.36𝑀 teraFLOPS. Usually, a higher-tier mNode covers a larger geographical or 

logical area in the network and therefore is more capable of serving more tasks. Specifically, as 

network tier increases, we assume that the number of mNodes decreases exponentially while the 



computing power of each mNode increases exponentially. The FES algorithm randomly assigns 

each task to a network tier or the cloud, thus a portion of 25% tasks are served in each network tier 

and the cloud. The TCTB algorithm gives much higher priorities to lower network tiers, so the 

proportions of task assignments to the 1st-tier, 2nd-tier, 3rd-tier, and cloud are reasonably set as 80%, 

10%, 5%, and 5%, respectively.  

 

(a) Impact of Task Density when Task Computing Requirement U~N (7 × 103, 102). 

 

(b) Impact of Task Computing Requirement when Task Density λ=1000. 

Fig. 4 USR versus Task Density and Computing Requirement. 

 

As defined, the overall USR can be derived by comparing the number of satisfied tasks against the 

total number of served tasks. When the Gaussian distributions of task size and network data rates 

are fixed, i.e., Z~N (6 × 108, 106), R1~N (70, 7), R2~N (500, 25), and R3~N (2000, 100), Fig. 4 

illustrate the USR performance of the three AI architectures under dynamic task densities and 

computing requirements. In Fig. 4 (a), the task density has a linear impact on the decline of the USR 

curves under different AI architectures. For TCTB, when λ is equal to 1500, 2000, and 2500 tasks 

per second, respectively, the network AI architecture can achieve 5.1%, 8.1%, and 13.0% higher 

USR than the edge AI architecture, while 315.0%, 406.2%, and 457.1% higher USR than the cloud 



AI architecture, respectively.  

 

In Fig. 4 (b), the USR curve of cloud AI has two knee points at about U=4800 and U=6600 

teraFLOPS. The transition region between them has a steep slope, which implies that the energy 

consumptions for executing all the tasks in the cloud increase very rapidly when the average 

computing requirement increases. Under both TCTB and FES algorithms, the green and blue curves 

of edge AI and network AI are much less sensitive to this change, which is due to the multi-tier 

mNodes deployed in the neighborhood. The turning points for TCTB and FES curves are around 

U=6800 teraFLOPS and U=7200 teraFLOPS respectively, where the gradients climb roughly from 

0.31 to 0.43. 

 

(a) Impact of Task Size when Network Data Rate R1~N (70, 7). 

 

(b) Impact of Network Data Rate when Task Size Z~N (6 × 108, 106). 

Fig. 5 USR versus Task Size and Network Data Rate. 

 

In Fig. 5 (a), for fixed task density λ=1000 and task computing requirement U~N (7 × 103, 102), 

when task size increases, the USR curve of cloud AI degrades dramatically because long-distance 

transmissions of bigger tasks become more time- and energy-consuming, thus adversely impacting 

the USR. On the contrary, the USR curves of edge AI and network AI are much less sensitive to task 



size changes, thanks to the computing resources deployed at the edge and in the network. Compared 

with FES, TCTB is more effective in satisfying more SRZs simultaneously by transmitting most 

tasks to local and regional mNodes. The turning points of TCTB curves are around Z=6 ×108 bytes 

where the gradients are doubled from 0.17 to 0.35. 

 

Fig. 5 (b) demonstrates the influence of network data rates on the USR performance. Specifically, 

we assume R1, R2 and R3 have different Gaussian distributions with dynamic mean values, but at a 

fixed ratio of E[R1]:E[R2]:E[R3]=7:50:200. So, only E[R1] is shown as the X-axis in the figure. Very 

interestingly, these curves are like the mirror flips of those in Fig. 5 (a), because higher network data 

rates and smaller task sizes both imply lower transmission delays. Therefore, increasing network 

data rates and reducing task size have almost equivalent impact on the USR performance. When 

network data rate is high, e.g., E[R1]>85 Mbps, the USR curve of cloud AI gets very close to the 

curves of edge AI and network AI, just like the case when the average task size E[Z]<4.95×108 

bytes in Fig. 5 (a). 

 

VI. Conclusions  

Unlike existing 4G/5G systems that offer standard mobile services for different application 

scenarios, 6G systems should be able to tailor customized services to meet everyone’s individual 

requirements. From a user’s perspective, this paper first proposed the concept of SRZ to characterize 

each task’s combined performance requirements. Next, from a system’s perspective, the concept of 

USR was introduced to evaluate the system’s overall capability of satisfying personalized SRZs of 

different tasks. Then, the cloud, edge, and network AI architectures were studied and compared 

under dynamic task densities, task sizes, computing requirements, network data rates, and two task 

scheduling algorithms. By deploying multi-tier mNodes, the proposed network AI architecture can 

achieve the highest USR in all network conditions and operation scenarios. In contrast, the 

centralized cloud AI architecture has difficulties in meeting stringent delay and energy consumption 

bounds, thus not suitable for delay-sensitive broadband applications such as interactive games, 

intelligent manufacturing, and autonomous driving.  

 

As to future work, the following open problems require further discussions and investigations from 

the community: 

(1) Statistic Models of SRZs: we should study the combined service requirements of 

different types of realistic tasks in various application scenarios and operation conditions. 

We will research the new KPIs related to QoE, pervasive intelligence, and social 

benefits. Priorities should be considered for mission-critical tasks and elderly users.  

(2) Service Capacity of 6G Systems: we should develop the practical mechanism of 

mapping customized SRZs onto heterogenous system resources and AI capabilities 

across multiple tiers and domains. Theoretical analysis of system service capacity is 

crucial for improving service efficiency, resource utilization, and everyone-centric QoE.  

(3) Cross-domain Service Provision: we should complete the design of NALC and NAMO 

by developing a series of effective interfaces, protocols and algorithms for multi-tier, 



cross-domain resource allocation, multi-node collaborations, task scheduling, behavior 

monitoring, security guarantee, mobility management, and performance optimization. 

(4) Implementation of 6G Network AI Architecture: we should conduct a series of real 

experiments with multi-tier mNodes deployed in the 6G system for supporting different 

SRZs. Specifically, we will investigate some important practical issues such as training 

data splitting, AI model and algorithm dependency, and system complexity.  
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