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Abstract—Fluid antennas offer a novel way to achieve massive
connectivity by enabling each user to find a ‘port’ in space where
the instantaneous interference undergoes a deep null for multiple
access. While this unprecedented capability permits hundreds of
users to share the same radio channel, each user needs to switch
its best port on a symbol-by-symbol basis, which is impractical.
Motivated by this, this paper considers the scenario in which the
fluid antenna of each user updates its best port only if the fading
channel changes. We refer to this approach as slow fluid antenna
multiple access (s-FAMA). In this paper, we first investigate the
interference immunity of s-FAMA through analyzing the outage
probability. Then an outage probability upper bound is obtained,
from which we shed light on the achievable multiplexing gain of
the system and unpack the impacts of various system parameters
on the performance. Numerical results reveal that despite having
a weaker multiplexing power than the symbol-based, fast FAMA
(i.e., f -FAMA), spatial multiplexing of 4 users or more is possible
if the users’ fluid antennas have large numbers of ports.

Index Terms—Fluid antennas, Interference immunity, Massive
connectivity, Multiple access, Outage probability.

I. INTRODUCTION

One of the great promises that 5G and future mobile com-
munications networks look to deliver is massive connectivity
which is the backbone of a world with connected intelligence
[1]. At present, the de facto mobile communication technology
for realizing massive connectivity is massive multiple-input
multiple-output (MIMO) [2] whereas non-orthogonal multiple
access (NOMA) is also being sold as the technology for greater
capacity by overlapping users on the same radio channel [3].
In 5G, the base station (BS) is equipped with 64 antennas to
support 6 users per channel use by matched filter beamforming
based on the channel state information (CSI) at the BS.1 This
BS-led solution, however, is inflexible and both hardware and
software upgrades will be needed in the standard if more BS
antennas are to be commissioned to increase capacity.
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1Evidently, multiuser MIMO with 64 antennas at the transmitter can support
64 users (or more) but this requires more sophisticated precoding, e.g., dirty-
paper coding. By contrast, an excessive number of BS antennas is considered
for massive MIMO so that a relatively simple precoder can be used.

On the other hand, the high capacity of NOMA comes with
the requirement of performing multiuser power control, user
clustering and successive interference cancellation (SIC) at the
users. The use of SIC at each user imposes decoding com-
plexity and delay while the power control and user clustering
require the BS to possess the CSI. Needless to say, NOMA is
an ‘expensive’ technique, more so if more users are involved.
For this reason, the majority of literature only focused on two-
user NOMA where the complexity can be affordable.

To summarize, the state-of-the-art multiple access technolo-
gies such as massive MIMO and NOMA require tremendous
efforts at the BS to acquire the full CSI and then optimize its
transmission with the aid of CSI and with NOMA, also need
multiuser detection to tackle the inter-user interference at each
user. Looking ahead, it is of great interest to study if massive
multiple access can be accomplished without the need of heavy
processing at the BS, nor multiuser detection. The goal of this
paper is to investigate a radical multiple access approach that
does not require precoding at the BS nor multiuser detection
at the users, yet allowing several users to share the same time-
frequency channel towards massive connectivity.

A. Multiple Access via Fluid Antenna

Recently in [4], Wong et al. advocated that multiple access
can be achieved by exploiting the ups and downs of the fading
envelopes of the interference signals using the emerging fluid
antenna technology. In particular, a software-controlled, port-
switcheable antenna empowers a user the ability to tune in to
the window of opportunity in which the interference naturally
disappears in a deep fade. Fluid antenna refers to any software-
controllable fluidic, conductive or dielectric radiating structure
that can change their shape and/or position to reconfigure the
operating frequency, radiation pattern and other characteristics.
They can be realized by liquid-based radiating structures [5],
[6] or reconfigurable pixels [7]–[9]. Single-user fluid antenna
systems have been investigated in [10]–[16] where promising
performance was revealed. An overview paper which covers
different aspects of fluid antenna can be found in [17].

For multiuser communications in the downlink, the received
signal at the k-th port of fluid antenna for user u is given by

r
(u)
k = sug

(u,u)
k +

U∑
ũ=1
ũ6=u

sũg
(ũ,u)
k + η

(u)
k

︸ ︷︷ ︸
g̃

(u)
k

, (1)

where su denotes the transmitted symbol for user u, η(u)
k is the

zero-mean complex additive white Gaussian noise (AWGN) at
the k-th port for user u, g(ũ,u)

k denotes the fading channel from
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the BS antenna dedicated for transmitting user ũ’s signal to the
k-th port of user u, and g̃(u)

k denotes the overall interference
plus noise signal at a symbol instant. In this model, each BS
antenna is assigned to transmit the signal for a given user in
the downlink. In [4], it was proposed to find:

kf -FAMA
u = arg max

k

∣∣∣g(u,u)
k

∣∣∣2∣∣∣g̃(u)
k

∣∣∣2 . (2)

That is, each user should select the port such that the symbol-
level signal energy to the interference energy is maximized
for multiple access. It was reported in [4], [18] that hundreds
of users can be accommodated on the same time-frequency
radio channel, all by a single RF-chain fluid antenna at each
user without precoding at the BS nor multiuser detection at the
users. Nonetheless, (2) requires port switching on a symbol-
by-symbol basis which is extremely difficult to achieve. Even
though reconfigurable pixels-based fluid antennas could switch
ports without delay and recent work also addressed how the
ratios (2) at the ports could be estimated for each symbol [19],
there was still the complexity of observing a large number of
signals (equalling the number of ports) at each symbol instant,
which could be impractical. In [17], this approach is referred
to as fast fluid antenna multiple access (f -FAMA).

Knowing the difficulty of f -FAMA, this paper hence con-
siders a more practical scenario where the fluid antennas at the
users only update their ports if the fading channels change. In
other words, the selected ports for the users remain unchanged
until the fading channels change. In this case, we have

ks-FAMA
u = arg max

k

∣∣∣g(u,u)
k

∣∣∣2∑U
ũ=1
ũ 6=u

∣∣∣g(ũ,u)
k

∣∣∣2 , (3)

in which E[|su|2] = σ2
s ∀u (hence cancelled in the ratios) and

the noise power is dropped because the system performance is
interference-limited. This is particularly true if the number of
users, U , is large.2 This approach (3) is referred to as slow fluid
antenna multiple access (s-FAMA) which is more realistic than
f -FAMA. For s-FAMA, not only do the ports change slowly,
the average signal-to-interference ratio (SIR) at each port can
also be estimated easily using standard methods.

Comparing (2) and (3), it is clear that the information sym-
bols of the users help create the nulls of the sum-interference
in the f -FAMA case while s-FAMA needs to find a region of
space where the fading envelopes of the interferers all fall at
the same time. The concept of s-FAMA is illustrated in Fig. 1
in which a 3-user downlink network is considered. Apparently,
the opportunity s-FAMA exploits is certainly more restrictive
and will impact the interference immunity at each user.

Motivated by the practicality of s-FAMA and different from
[4], this paper aims to understand the achievable performance
of s-FAMA. To simplify our discussion,3 each user is assumed

2The mathematical analysis in this paper will be based on the interference-
limited assumption where noise is ignored. However, the presence of noise
will be considered in some of the numerical results for validation.

3If the users are not statistically identical, and/or their fluid antennas are of
different sizes, the analysis can still be conducted but gaining insight would
be more difficult. Therefore, we opt for the homogeneous user setup.

to have an N -port fluid antenna of size Wλ where λ is the
wavelength and that all the users are statistically identical. A
port refers to a physical location at which the fluid antenna
can be switched to instantly. Each user always selects its port
according to (3). Our contributions include a number of theo-
retical results for characterizing the fundamental performance
of s-FAMA. First, we derive the outage probability of a typical
user given an SIR target, γ, and then an outage probability
upper bound is found to shed light on the interference im-
munity of s-FAMA. Also, through a lower bound, we reveal
how the network capacity scales with N , γ, U and W . While
[4] analyzed the performance of f -FAMA under rich scattering
channels, s-FAMA is much less known, with the only work in
[20] studying the performance of s-FAMA in millimeter-wave
channels using computer simulations. Different from [20], this
paper focuses on rich scattering channels and aims to analyti-
cally characterize the outage probability and multiplexing gain
performance of s-FAMA, which has not been done before.

B. Summary of Results

Before proceeding to the main body of this paper, we here
state some of our principal results. This summary aims to give
the reader an overall view of the material covered in this paper
and highlight our key findings for s-FAMA systems.

• For W ≥ 1, the outage probability for a user, with an
SIR target γ, is upper bounded by

Prob(SIR < γ) <

[
1−N

(
1− 1

πW

γ

)U−1
]+

, 4

where (a)+ = max{0, a}. This result illustrates how the
interference immunity depends on the parameters N , γ, U
and W . It can be seen that N and W help bring down the
outage probability while both U and γ play major roles
in increasing the outage probability. For supporting more
users U or more ambitious γ, N will need to be increased
a lot to counter the rise in the outage probability.

• The multiplexing gain, m, is bounded by

U ≥ m ≥ min

{
NU

(
1− 1

πW

γ

)U−1

, U

}
.

Like in f -FAMA, the multiplexing gain, m, for s-FAMA
also scales linearly with the number of ports, N , but is
inversely proportional to the (U−1)-th power of the SIR
target, γ. The size W also affects the capacity scaling but
its impact is less significant if W is not too small.

The rest of the paper is organized as follows. In Section II,
we introduce the network model of s-FAMA in the downlink.
Our main results will be presented in Section III. Section IV
provides the numerical results that illustrate the performance
of s-FAMA. Finally, we conclude this paper in Section V.

4This bound is based on some approximations which will be accurate if γ
and W are large. More details will be provided when the result is derived.
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Fig. 1. The concept of s-FAMA for a 3-user network in the downlink where each BS antenna is assigned to transmit one user’s signal and it is illustrated
that user 1 can use its fluid antenna to tune in to the space where the fading envelopes of the other users are in a deep fade.

II. DOWNLINK s-FAMA
A downlink of U mobile users served by a U -antenna BS is

considered. Each BS antenna is dedicated to transmitting one
user’s signal. The BS antennas are distributed far apart so that
their channels to a given user appear completely independent.5

Each user is equipped with an N -port fluid antenna which is
assumed to always switch to its best port for maximizing the
SIR, as in (3). The port selection for user u is aimed at

ks-FAMA
u = arg max

k

E

[∣∣∣g(u,u)
k su

∣∣∣2]
E

[∣∣∣∑U
ũ=1
ũ6=u

g
(ũ,u)
k sũ

∣∣∣2]

= arg max
k

∣∣∣g(u,u)
k

∣∣∣2∑U
ũ=1
ũ 6=u

∣∣∣g(ũ,u)
k

∣∣∣2 , (4)

where the variables have been defined in (1).
The amplitude of the channel, |g(ũ,u)

k |, is assumed Rayleigh
distributed, with the probability density function (pdf)

p∣∣∣g(ũ,u)
k

∣∣∣(r) = re−
r2

σ2 , for r ≥ 0 with E[|g(ũ,u)
k |2] = 2. (5)

The average received signal-to-noise ratio (SNR) at each port
is given by Γ =

2σ2
s

σ2
η

where σ2
s = E[|su|2] and σ2

η is the noise

power. The channels {g(ũ,u)
k }∀k are considered to be correlated

as they can be arbitrarily close to each other. To model the
correlation between the channels at the ports, we parameterize
g

(ũ,u)
k , through a single correlation parameter µ, as

g
(ũ,u)
k =

(√
1− µ2x

(ũ,u)
k + µx

(ũ,u)
0

)
+ j

(√
1− µ2y

(ũ,u)
k + µy

(ũ,u)
0

)
, k = 1, . . . , N, (6)

5Spatial correlation between BS antennas will be considered in the numer-
ical results in Section IV.

where x(ũ,u)
0 , . . . , x

(ũ,u)
N , y

(ũ,u)
0 , . . . , y

(ũ,u)
N are all independent

Gaussian random variables with zero mean and variance of 1.
Using this model, the correlation among the ports is realized
through the common random variables x(ũ,u)

0 and y
(ũ,u)
0 . To

help model the spatial correlation between any two ports, we
follow the approach in [18] and set

µ =
√

2

√
1F2

(
1

2
; 1,

3

2
;−π2W 2

)
− J1(2πW )

2πW
, (7)

where aFb(·; ·; ·) denotes the generalized hypergeometric func-
tion and J1(·) is the first-order Bessel function of the first kind.
Setting µ using (7) allows all the ports to be correlated with
each other and achieves the same mean correlation coefficient
for an N -port linear structure of length Wλ [18, Theorem 1].
According to [18, Theorem 2], µ can be approximated as

µ ≈


1− π2W 2

12
, for W ≤ 0.6,

1√
πW

, for W ≥ 1.
(8)

The above approximation will be useful to link the achievable
performance of s-FAMA to the size of the fluid antenna in the
subsequent analysis. In this paper, we focus on W ≥ 1 since
it corresponds to the typical size of a handset in the 5G bands.

Note that if we consider the distance between each user and
the BS, the users should have different path loss. However,
normally, power control would be used to obtain just enough
received power at the user for a given required performance.
In other words, power control has an effect of cancelling the
path loss. With perfect power control, the system is as if the
users are all independent and identically distributed (i.i.d.) and
path loss does not exist. In what follows, we model, without
loss of generality, that all users are i.i.d. from the BS and that
BS antenna u is assigned to transmit to user u without path
loss, which is the model we adopt in this paper.
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For the s-FAMA downlink system, starting with the model
in (1), we can write the signal-to-interference plus noise ratio
(SINR) at port k as

SINRk =

E

[∣∣∣sug(u,u)
k

∣∣∣2]
E

[∣∣∣∑ũ6=u sũg
(ũ,u)
k + η

(u)
k

∣∣∣2] , (9)

which can be simplified as

SINRk =

∣∣∣g(u,u)
k

∣∣∣2 E
[
|su|2

]
E

[∣∣∣∑ũ 6=u sũg
(ũ,u)
k

∣∣∣2]+ σ2
η

(10)

=
σ2
s

∣∣∣g(u,u)
k

∣∣∣2
σ2
s

∑
ũ6=u

∣∣∣g(ũ,u)
k

∣∣∣2 + σ2
η

. (11)

After ignoring the noise power in the denominator, we then
have the SIR at port k given by

SIRk =

∣∣∣g(u,u)
k

∣∣∣2∑
ũ6=u

∣∣∣g(ũ,u)
k

∣∣∣2 . (12)

As a result, with the fluid antenna operating to maximize the
SIR over all the ports, for user u, we have

SIR = max
k

∣∣∣g(u,u)
k

∣∣∣2∑U
ũ=1
ũ6=u

∣∣∣g(ũ,u)
k

∣∣∣2

= max
k

∣∣∣∣ g(u,u)
k√
1−µ2

∣∣∣∣2∑U
ũ=1
ũ6=u

∣∣∣∣ g(ũ,u)
k√
1−µ2

∣∣∣∣2
≡ max

k

Xk

Yk
, (13)

where

Xk =

(
x

(u,u)
k +

µ√
1− µ2

x
(u,u)
0

)2

+

(
y

(u,u)
k +

µ√
1− µ2

y
(u,u)
0

)2

(14)

and

Yk =

U∑
ũ=1
ũ6=u

(x(ũ,u)
k +

µ√
1− µ2

x
(ũ,u)
0

)2

+

(
y

(ũ,u)
k +

µ√
1− µ2

y
(ũ,u)
0

)2
 . (15)

Our objective is to study the outage probability

Prob

(
SIR = max

k

Xk

Yk
< γ

)
. (16)

Our aim is to unpack the impact of different parameters on the
various system performance. Note that a key difference from
[4] is that the interference term in [4] is Rayleigh distributed
while Yk in this paper is Chi-squared distributed, which makes
the outage probability analysis so much more challenging.

III. MAIN RESULTS

In this section, we present our principal results that charac-
terize the performance of s-FAMA systems. The first result is
an SIR-based outage probability expression which reveals the
interference immunity of each user. Then an upper bound for
the outage probability is derived to help illustrate the impact of
the different system parameters. Capacity scaling of s-FAMA
in terms of multiplexing gain will also be analyzed. The results
will be presented as theorems and corollaries, each of which
presents a new analytical result and the next result is often a
natural progression of the previous one. The results also tend
to be mathematical but are the main contributions of this paper.

Theorem 1: The integral

I =

∫ ∞
0

Q1(c,
√
γβ)

(
β

a

)M−1

βe−
β2+a2

2 IM−1(aβ)dβ,

(17)
where Ik(·) is the modified Bessel function of the first kind,
and Qm(·, ·) denotes the generalized Marcum-Q function, has
the closed-form expression (18) (see top of next page) where
(a)j represents the Pochhammer symbol.

Proof: See Appendix A.
Corollary 1: Letting b = a2, I can be rewritten as

I =
1

2

∫ ∞
0

Q1(c,
√
γy)

(y
b

)M−1
2

e−
y+b

2 IM−1(
√
by)dy,

(19)
which can then be expressed as (20) (see next page).

Proof: The result can be obtained by using the substitu-
tion b = a2 and changing the variable β2 = y in (17) and then
applying (18), which completes the proof.

Theorem 2: The outage probability for an s-FAMA user
with an SIR threshold, γ, is given by (21) (see next page), in
which Γ(n) = (n− 1)! is the gamma function.

Proof: See Appendix B.
Note that as z → ∞, Ij+k(z) → ∞ and the expression in

(21) can be problematic in numerical computation. To address
this, the following corollary provides an alternative expression.

Corollary 2: The outage probability for an s-FAMA user
in (21) can be expressed as (22) (see next page).

Proof: See Appendix C.
Theorem 3: The SIR outage probability expression in (21)

is upper bounded by6

Prob (SIR < γ)

<

[
1−N

(
µ2

γ + 1

)U−1

−N
(

1− µ2

γ

)U−1
]+

, (23)

which for small µ and large γ can be simplified as

Prob (SIR < γ) <

[
1−N

(
1− µ2

γ

)U−1
]+

. (24)

6It is worth noting that the results are based on linearization in N and the
operation (·)+ is to ensure that the bound is never negative. In particular,
the result comes from a sequence of approximations and the conditions under
which the bound is accurate will be discussed at the end of Appendix D.
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I = 1−QM
(
a

√
γ

1 + γ
, c

√
1

1 + γ

)
+

(
1

1 + γ

)M
exp

[
a2

2

(
1

1 + γ
− 1

)
− c2

2(1 + γ)

]
×
M−1∑
k=0

M−k−1∑
j=0

(M − k − j)j
j!

( c
a

)j+k
(1 + γ)k(

√
γ)j−k Ik+j

(
ac
√
γ

1 + γ

)
(18)

I = 1−QM
(√

b

√
γ

1 + γ
, c

√
1

1 + γ

)
+

(
1

1 + γ

)M
e−

1
2(γ+1)

(bγ+c2)
M−1∑
k=0

M−k−1∑
j=0

(M − k − j)j
j!

(
c√
b

)j+k
(1 + γ)k(

√
γ)j−k Ik+j

(
c
√
γb

1 + γ

)
(20)

Prob (SIR < γ) =

∫ ∞
0

∫ ∞
0

r̃U−2

2UΓ(U − 1)
e−

r+r̃
2

{
QU−1

(
µ√

1− µ2

√
γr̃

γ + 1
,

µ√
1− µ2

√
r

γ + 1

)

−
(

1

γ + 1

)U−1

e
− µ2

2(1−µ2)
( γr̃+rγ+1 )×

U−2∑
k=0

U−k−2∑
j=0

(U − (j + k)− 1)j
j!

(r
r̃

) j+k
2

(γ + 1)kγ
j−k

2 Ij+k

(
µ2

1− µ2

√
γrr̃

(γ + 1)

)
N

drdr̃, (21)

Prob (SIR < γ) =

∫ ∞
0

∫ ∞
0

r̃U−2

2UΓ(U − 1)
e−

r+r̃
2

{
QU−1

(
µ√

1− µ2

√
γr̃

γ + 1
,

µ√
1− µ2

√
r

γ + 1

)

− 1

π

(
1

γ + 1

)U−1

e
− µ2

2(1−µ2)
1
γ+1 (

√
γr̃−
√
r)2

×

U−2∑
k=0

U−k−2∑
j=0

(U − (j + k)− 1)j
j!

(r
r̃

) j+k
2

(γ + 1)kγ
j−k

2

∫ π

0

cos ((j + k)θ) e
− µ2

1−µ2 ( 1
γ+1 )

√
γr̃r(1−cos θ)

dθ


N

drdr̃, (22)

For W ≥ 1, the upper bound can further be written as

Prob (SIR < γ) <

[
1−N

(
1− 1

πW

γ

)U−1
]+

. (25)

Proof: See Appendix D.
Corollary 3: As N →∞, the outage probability goes to 0.

Proof: This can be directly observed from (25).
Corollary 3 confirms that if N is allowed to be very large,

then the outage probability for an s-FAMA user can be made
arbitrarily small. However, the conclusion may be different
if the channel model is different. In [20], it was reported that
there was an irreducible outage probability floor even if N was
to increase without bound when a multi-ray channel model was
used. The discrepancies will be discussed in Section IV.

In the following, several insightful results will be derived
using the expression (25) by ignoring the (·)+ operation. This
will be valid if N is not too large and the outage probability
behaves as a linear function of N . Otherwise, this implies that
the outage probability is already very close to zero.

Corollary 4: To maintain the same protection at each user
from the interference while supporting ∆ additional users, the
number of ports for an s-FAMA user should be increased to

N ′ = N

(
γ

1− 1
πW

)∆

. (26)

Proof: Consider two cases, one with N ports and U users
and another with N ′ ports and U + ∆ users and then set the
outage probability bound (25) for the two cases to be the same.
Then (26) is obtained, which completes the proof.

As in [4], we can evaluate the average outage rate of the
s-FAMA network using

C(γ) = U(1− Prob (SIR < γ)) log2(1 + γ). (27)

This corresponds to the case in which the BS transmits a fixed
coding rate to the users and therefore, the achievable rate for
each user is discounted by the outage probability.

Theorem 4: The multiplexing gain of the s-FAMA network,
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m, is bounded by

U ≥ m ≥ min

{
NU

(
1− 1

πW

γ

)U−1

, U

}
. (28)

Proof: First, the multiplexing gain is the capacity scaling
factor given by

m =
C(γ)

log2(1 + γ)
= U(1− Prob (SIR < γ)), (29)

which is upper bounded by U . Note that if users are overlapped
on the same radio channel with interference cancellation, their
outage probability will be close to one and m ≈ 0. The use
of fluid antennas at the users serves to avoid the interference
and decrease the outage probability to an acceptable level if
N is sufficiently large. For the lower bound of m in (28), this
can be directly obtained by substituting the outage probability
upper bound (25) in (29), and recognizing that m ≤ U

The multiplexing gain lower bound in (28) reveals clearly
how the network capacity scales with the parameters N, γ,W
and U . If W is reasonably large, then

(
1− 1

πW

)U−1 ≈ 1 and
the multiplexing gain lower bound becomes

m &
NU

γU−1
. (30)

It can be estimated that if the network needs to achieve the
maximum multiplexing gain of U , then N = γU−1. Evidently,
if W is small, then the required N will be much larger.

Definition 1: We can define the multiplexing efficiency, η,
of s-FAMA, which measures the rate of increase in m/U with
respect to (w.r.t.) N in the linear region of m/U (i.e., when
m/U is a linear function of N ), by7

η ,
(m
U

) 1

N
=

(
1− 1

πW

γ

)U−1

. (31)

From the above definition, we can estimate that if W = 1
and γ = 1, then 1− 1

πW ≈ 0.68 and η becomes

η
.
= (0.68)U−1 (32)

which is 46% if U = 3 users are supported, and is reduced
to 31% if U is increased to 4 users. Clearly, it gets harder to
protect the users if the number of users increases. In addition,
as observed in (31), increasing γ (even by a little) will greatly
penalize the efficiency, to the (U − 1)-th power of γ. In other
words, it would be more efficient to support more users with
a less SIR target than less users with a harsher SIR target.

Corollary 5: The s-FAMA system can support ∆ additional
users to maintain the same overall multiplexing gain if the SIR
target can be adjusted to γ′ so that

γ′ =

(
1 +

∆

U

) 1
U−1+∆

(
1− 1

πW

) ∆
U−1+∆

γ
U−1

U−1+∆ . (33)

Proof: Using the lower bound in (28) as an estimate of
the multiplexing gain, we require

NU

(
1− 1

πW

γ

)U−1

= N(U + ∆)

(
1− 1

πW

γ′

)U−1+∆

,

(34)

7This definition differs from what is presented in [18] because m is a more
complicated function of U and γ and a slight modification is thus needed.

which after manipulations will give the result (33).
Corollary 6: To achieve the same multiplexing gain lower

bound, an s-FAMA network accommodating K times more
users (i.e., KU users) will require to set their SIR target, γ′,
as the K-th root of the original SIR target γ. That is,

γ′ ≈ γ
U−1
KU−1 ≈ K

√
γ. (35)

Proof: Substituting ∆ = (K − 1)U in (33) and recog-
nizing that

(
1 + ∆

U

) 1
KU−1 ≈ 1 and

(
1− 1

πW

) ∆
KU−1 ≈ 1, we

obtain the approximation (35), which completes the proof.
Corollary 7: To maintain the same multiplexing gain lower

bound while serving ∆ more users, the number of ports for
each user should be increased to

N ′ =
N

1 + ∆
U

(
γ

1− 1
πW

)∆

. (36)

Proof: The result is obtained if we set the multiplexing
gain lower bound (28) for the two cases to be the same.

Corollary 8: For the s-FAMA network, there is no apparent
capacity advantage of supporting more (less) users each with a
less (more) SIR target. Letting Cs-FAMA(γ)|U be the average
network outage rate lower bound of the s-FAMA network with
U users each with a target SIR γ, it can be shown that it has
roughly the same average network outage rate lower bound to
serve U ′ users each with a target SIR γ′ = U′

√
γU , i.e.,

Cs-FAMA(γ)|U ≈ Cs-FAMA( U′
√
γU )

∣∣∣
U ′
. (37)

Proof: To show the result, we write

Cs-FAMA(γ)|U
(a)
= UN

(
1− 1

πW

γ

)U−1

log2(1 + γ)

(b)
≈ UN

γU−1
log2 γ

(c)
=

U ′N

γU−1
log2 γ

U
U′

(d)
≈ U ′N

γ′U
′−1

log2 γ
′

(e)
≈ Cs-FAMA( U′

√
γU )

∣∣∣
U ′
, (38)

where (a) uses the definition of the average outage rate and
the multiplexing gain lower bound (28), (b) approximates the
expression when γ is large and W is small, (c) multiplies the
expression with U ′

U ′ and then moves U
U ′ inside the log, (d) uses

the definition γ′ = γ
U
U′ and (e) follows the definition of the

average outage rate using the said approximations earlier.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results using the analytical results,
(22) and (29), are provided to understand the performance of s-
FAMA against various different parameters. We have assumed
that all the users and channels are statistically identical and as
in the analysis, noise is ignored. TABLE I lists the parameters
and their values considered in the numerical evaluations.
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TABLE I
SIMULATION PARAMETERS

Parameter Value
Normalized size of fluid antenna, W 0.1, 0.2, 0.5, 1, 2, 5

Number of ports, N§ 10, 20, . . . , 7000
Target SIR, γ 2, 4, 5, 6, 8, 10

Number of s-FAMA users, U 3, 4, 5, 6
§

For liquid-based fluid antennas [5], [6], the radiating element
is usually moved using a digital pump and its resolution (i.e.,
the number of ports) is only limited by the number of bits
controlling the pump. For example, if 10 bits are used, then
a resolution of 1024 ports will be achieved. Furthermore, if
13 bits are used, then 8192 ports will be achieved. Even
for reconfigurable pixel-based fluid antennas [7]–[9] that use
an array of RF/MEMS on-off switches, the assumption of
hundreds or even thousands of ports can be justifiable. For
example, a typical mobile handset has dimensions of 160.8×
78.1 × 7.7mm, yet allowing a display resolution of up to
1284×2778 pixels. The future therefore is bright in allowing
thousands of RF pixels (in a way similar to display pixels).

Fig. 2. The outage probability for s-FAMA against the number of ports, N ,
for different number of users, U , when W = 5 and γ = 5.

A. Main Observations

Fig. 2 demonstrates the outage probability results against
the number of ports, N , at each user in s-FAMA systems with
different number of users, U when the SIR threshold is γ = 5
and the size of each fluid antenna is 5λ (i.e., W = 5). The
results indicate that the outage probability decreases when N
increases as expected, as a fluid antenna with higher resolution
has better ability to resolve the interference. In addition, it can
be observed that if the number of users, U , increases, it will
require so much larger N to keep the outage probability low. In
particular, it appears that for a given U , the outage probability
first decreases only very slowly as N increases. Nevertheless,
when N reaches a certain number, the outage probability will
begin to drop much more rapidly. Moreover, it appears that
the outage probability can drop to any arbitrary value if N
continues to increase, as predicted in Corollary 3.

The multiplexing gains of the same s-FAMA systems are
illustrated in Fig. 3. As expected, the results indicate that the

Fig. 3. The multiplexing gain for s-FAMA against the number of ports, N ,
for different number of users, U , when W = 5 and γ = 5.

multiplexing gain is a strictly increasing function of N while
its maximum limit is the number of users, U . The results also
reveal that with U = 3 users, we need N = 200 ports for the
fluid antenna to achieve the maximum multiplexing gain. The
required number is increased to N = 1000 ports to approach
the maximum multiplexing gain if we have U = 4 users, and to
N = 7000 ports for the case of U = 5 users. We can actually
use the multiplexing gain lower bound in (28) to predict how
many more ports are needed at the fluid antenna to achieve a
given multiplexing gain if the number of users changes.

Consider two s-FAMA systems, one with U users and N
ports and another with U ′ users and N ′ ports, both with the
same W and γ. They achieve the same multiplexing gain if

NU

(
1− 1

πW

γ

)U−1

= N ′U ′
(

1− 1
πW

γ

)U ′−1

, (39)

which can be simplified to

N ′

N
=

U

U ′

(
γ

1− 1
πW

)U ′−U
. (40)

Therefore, with W = 5 and γ = 5, if we increase the number
of users from 3 to 4, then N ′/N ≈ 4. Now, from Fig. 3, we
see that N = 40 ports are needed to get the multiplexing gain
of 2 if U = 3, and this number is increased to about N = 160
ports if U = 4, a four times increase in the number of ports,
as predicted by (40). Furthermore, if U is increased to 5, (40)
predicts that N ′/N ≈ 15 and the required number of ports to
get the same multiplexing gain is 600 which is exactly what is
observed in Fig. 3. These results confirm that the multiplexing
gain lower bound (28) is accurate in characterizing the capacity
scaling of s-FAMA as a function of the system parameters.

Another important parameter for the s-FAMA system is the
size of fluid antenna, W , which we investigate using the results
in Fig. 4. In this figure, results are provided for two configu-
rations, (U, γ,N) = (3, 5, 100) and (U, γ,N) = (5, 5, 5000).
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Fig. 4. The outage probability and multiplexing gain for s-FAMA against
the size of fluid antenna, W when γ = 5.

The two configurations were selected because they had nearly
the same outage probability performance if they have the same
W , as seen in Fig. 2. Both outage probability and multiplexing
gain results are examined. As can be observed, when W is
really small, the outage probability will be unacceptably large
and s-FAMA is not functioning and the multiplexing gain is
nearly zero. The performance of s-FAMA however improves
very quickly as W increases, faster when W < 1 than when
W > 1. Therefore, W = 1 can be interpreted as the threshold
size that one would expect to have in order for the s-FAMA
system to work well. Also, W = 2 seems to be the required
size for the two configurations to approach to the maximum
multiplexing gain. On the other hand, we can rewrite the lower
bound (28) and use it to estimate the required size for obtaining
a given multiplexing gain m so that

W ≈ 1

π

[
1− γ

( m

NU

) 1
U−1

]−1

. (41)

Using (41), we estimate that for (U, γ,N) = (3, 5, 100), W ≈
0.4475 is required to yield m = 1. Also, for m = 2, W ≈
0.5379. Additionally, for (U, γ,N) = (5, 5, 5000) and m =
2, W ≈ 0.6039. These estimations agree with the results in
Fig. 4. Note that (41) has used the approximation (8) for large
W but surprisingly it works well in estimating small W .

Results in Fig. 5 are provided to examine the performance of
s-FAMA when the SIR threshold, γ, changes. Three system
configurations are considered and each considers a different
number of users, U and has an appropriate number of ports, N ,
to have reasonable interference immunity. All have assumed
that W = 5. Apparently, as γ increases, so does the outage
probability and it does so very rapidly. This agrees with the
observation we made from the outage probability upper bound
(25) before. The results for the multiplexing gain reveal more
about the impact of the value of γ on the system performance
for different U . In particular, we can observe that with U =
3, the multiplexing gain decreases only very mildly when γ
gets larger. However, the same cannot be said for the cases
with U = 4 and U = 5, the latter of which suffers from a

Fig. 5. The outage probability and multiplexing gain for s-FAMA against
the SIR threshold, γ, for different U and N when W = 5.

faster fall when γ increases. This is reasonable because (28)
suggests that the multiplexing gain is inversely proportional to
γU−1. Though the multiplexing gain is a decreasing function
of γ, the overall network outage rate (27) is a more complex
function of γ. We study the average network outage rates of
the three configurations in Fig. 6. As we can see, for U = 4
and U = 5, the network rate first rises and then begins to fall
as γ increases. This phenomenon can be seen analytically by
observing the derivative of C(γ) w.r.t. γ, i.e.,

∂C(γ)

∂γ
=

D1 for γ ≤ N
1

U−1

(
1− 1

πW

)
,

D2 otherwise,
(42)

where D1 = U
(γ+1) ln 2 and

D2 = −
NU

(
1− 1

πW

)U−1 [
(γ + 1) ln(γ + 1)U−1 − γ

]
γU (γ + 1) ln 2

.

(43)
Notice that D1 > 0 and D2 < 0, which shows that C(γ) first
increases and then decreases with γ, and that the maximum
of C(γ) occurs at

γ∗ = N
1

U−1

(
1− 1

πW

)
. (44)

According to Fig. 6, however, (44) tends to overestimate the
optimal SIR threshold, γ, in maximizing the network rate.

Besides, we have the results in Fig. 7 to investigate how the
performance changes w.r.t. the number of users, U . Both the
outage probability and multiplexing gain are shown and four
configurations are considered for two different sizes, W =
2, 5, and two different numbers of ports, N = 500, 3000. The
results in the figure illustrate, as expected, that as U increases,
the outage probability rises for all configurations as it becomes
harder to eliminate the interference. The results also indicate
that the outage probability increases very fast as U increases.
The results for multiplexing gain by contrast exhibit a more
interesting trend. In particular, the multiplexing gain, m, first
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Fig. 6. The average network outage rate for s-FAMA against the SIR
threshold, γ, for different U and N when W = 5.

increases with U and then drops when U continues to increase.
The optimal number of users, U∗, in fact can be predicted by
analyzing the derivative of m (or its lower bound (28)), i.e.,

∂m

∂U
=

 1 for N
(

1− 1
πW

γ

)U−1

≥ 1,

E otherwise,

(45)

where

E = N

(
1− 1

πW

γ

)U−1 [
U ln

(
1− 1

πW

γ

)
+ 1

]
. (46)

It is easy to see that E < 0 and as a result, the turning point
or maximum of m occurs at the boundary of the two intervals
in (45) which then gives

U∗ =

 lnN

ln
(

γ
1− 1

πW

) + 1

 , (47)

in which bxc returns the largest integer less than or equal to
x. Substituting the parameters of the configurations into (47)
will estimate that for (W,γ,N) = (2, 5, 500) and (W,γ,N) =
(5, 5, 500), U∗ = 4 and for (W,γ,N) = (2, 5, 3000) and
(W,γ,N) = (5, 5, 3000), U∗ = 5. These estimates appear to
match very well with the results in Fig. 7.

While our analysis is reliant on the no-noise assumption for
mathematical tractability, we argue that in an s-FAMA system
with several users sharing the same channel, the performance
is dominated by the interference, rather than noise. This can be
confirmed by the results in Fig. 8 when noise is present. The
horizontal lines indicate the results predicted by Theorem 2.
The detailed parameters of the simulations are described in the
caption of the figure. As seen, the analytical result of Theorem
2 approaches that of the Monte-Carlo simulation results as the
SNR increases. It is also observed that a higher SNR would be
needed for the two results to coincide, if the number of users,
U , is greater. However, an SNR of 20dB is quite enough for the

Fig. 7. The outage probability and multiplexing gain for s-FAMA against
the number of users, U , for different W and N when γ = 5.

Fig. 8. The multiplexing gain performance for an U -user s-FAMA system
against the average SNR when the SINR threshold is set to γ = 5 (or 7dB),
and W = 2, with the number of ports, N = 100 or 1000.

no-noise assumption to be accurate. Additionally, the results
indicate that the result of Theorem 2 gets more accurate, or is
less sensitive to noise if N is larger provided the multiplexing
gain has still not reached its maximum.

B. Trade-offs

There are indeed a few trade-offs in the s-FAMA network
that are worth mentioning. First, the SINR threshold, γ, is a
quality parameter at each user that can be chosen carefully
to trade-off between individual and network performance. If
γ is higher, then the expected performance of a user will be
higher but with a given number of users, U , sharing the same
spectrum, it will be more difficult or the outage probability
will be higher. In terms of the overall network outage rate, as
γ increases, each user’s rate increases and if the fluid antenna
is powerful enough to handle the interference (i.e., sufficient
size, W , and number of ports, N ), then the network outage rate
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will increase. However, if γ becomes too large, then the outage
probability will increase and suppress the network outage rate.
That is why the network rate decreases when γ continues to
increase without bound. This is the observation we have made
from the results in Fig. 6. In fact, (44) provides an estimate
of the optimal γ that maximizes the network outage rate.

On the other hand, there is also a trade-off between the
number of users, U , and the multiplexing gain. With W and
N fixed, if U is not too large, then each user’s fluid antenna
can still tolerate the interference, and the multiplexing gain
will increase with U . As U continues to increase, each user
will begin to suffer and the outage probability rises, thereby
suppressing the multiplexing gain, as has been demonstrated
in Fig. 7. Our result (47) estimating the optimal U for
maximizing the multiplexing gain has also been confirmed.

Lastly, there is also a trade-off between the performance and
complexity of the system. For improved performance, one can
have each user using a fluid antenna with larger W and/or
N which will mean higher complexity in implementation and
signal processing. By increasing the number of ports at the
fluid antenna of each user, this poses additional challenges for
channel estimation. In theory, channel estimation is needed at
every port of the fluid antenna at each user and if N is large,
this will become infeasible, if not impossible. That said, recent
studies have attempted to use deep learning to exploit the
strong spatial correlation between the channel ports for low-
complexity port selection so that channel estimation for only
a few ports is sufficient to deliver near-optimal performance.
The single-user case was addressed in [12] while the same
was studied for s-FAMA systems recently in [21].

C. With Correlated BS Antennas

Here, we investigate the performance of s-FAMA if the BS
antennas are correlated. In this case, a new channel model will
be needed. To do so, we model the complex channel from the
ũ-th BS antenna to the k-th port of user u as

g
(ũ,u)
k = εα

(u)
0 +

√
1− ε2

(
µβ

(ũ,u)
0 +

√
1− µ2β

(ũ,u)
k

)
,

(48)
in which α(u)

0 , β
(ũ,u)
0 , β

(ũ,u)
1 , . . . , β

(ũ,u)
N are all i.i.d. complex

Gaussian random variables with zero mean and variance of 2.
The parameter µ specifies the channel correlation across the
antenna ports and should be set based on (7). Additionally,
the common random variable α(u)

0 links all the channels over
the BS antennas and the parameter 0 ≤ ε ≤ 1 controls the
amount of spatial correlation between them. We provide the
simulation results of the multiplexing gain for s-FAMA against
the BS correlation parameter ε in Fig. 9. Several observations
can be made. First of all, we can observe that as expected,
if ε increases (i.e., when the correlation at the BS antennas
becomes stronger), then the multiplexing gain drops in all the
cases. Furthermore, the s-FAMA system is more robust to the
BS antenna correlation if the number of ports, N , is larger. If
the number of users, U , is not large, high correlation at the
BS can be tolerated. For example, in the case of N = 1000,
the s-FAMA system with U = 3 or U = 4 can still achieve
high multiplexing gain even if ε is as large as 0.6. Finally, if U

Fig. 9. The multiplexing gain performance for an U -user s-FAMA system
against the correlation parameter, ε, at the BS antennas when the average SNR
is 20dB, the SINR threshold is set to γ = 5 (or 7dB), and W = 2.

is too large and N is not large enough, then the multiplexing
gain will be very small to start with and will not be too much
affected by the correlation across the BS antennas.

D. Discrepancies from Different Channel Model

Our performance analysis is based on the generalized chan-
nel correlation model by Beaulieu et al. in [22]. Evidently,
there are other models. One emerging channel model which
is popularly used for the millimeter-wave band is the multi-
ray channel model [23], [24]. Using the multi-ray model, the
channel between the ũ-th BS antenna and the k-th port of the
fluid antenna at user u can be modelled as

g
(ũ,u)
k =

√
KΩ

K + 1
ejα

(ũ,u)

e−j
2π(k−1)W
N−1 sin θ

(ũ,u)
0 cosφ

(ũ,u)
0

+

Np∑
`=1

a
(ũ,u)
` e−j

2π(k−1)W
N−1 sin θ

(ũ,u)
` cosφ

(ũ,u)
` , (49)

which consists of a specular component and Np scattered
components. For the specular component, it has an azimuth
angle-of-arrival (AoA), θ0, and an elevation AoA, φ0, while
the scattered components have the azimuth AoAs, {θ`}

Np
`=1 and

elevation AoAs, {φ`}
Np
`=1. Also, K denotes the Rice factor

(i.e., the power ratio between the specular and scattered com-
ponents), Ω denotes the average power of the channel, α(ũ,u)

is the random phase of the specular component, and a(ũ,u)
` is

the random complex coefficient of the `-th scattered path. In
addition, by definition, we also have E[

∑
` |a

(ũ,u)
` |2] = Ω

K+1 .
Fig. 10 provides the results of s-FAMA under the multi-

ray model when K = 0 and Np = 1000. We highlight some
discrepancies from our model as follows.
• For both channel models, the multiplexing gain begins to

increase with U before it drops if U becomes too large
for s-FAMA to resolve. The multiplexing gain is also
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Fig. 10. The multiplexing gain performance for an U -user s-FAMA system
using different channel models when the average SNR is set to Γ = 20dB,
and W = 5. For the multi-ray model, we set K = 0 and Np = 1000.

always upper bounded by the number of users, U , which
can be achieved if the number of ports, N , and the size
of the fluid antenna, W , are sufficiently large.

• In addition, the multiplexing gain for the generalized
channel correlation model tends to be higher than that
for the multi-ray channel. This suggests that the multi-ray
model imposes stronger correlation between the channel
ports than the generalized channel correlation model.

• It can also be observed that the number of ports, N ,
has more impact on the performance for the generalized
channel correlation model than the multi-ray model.

• The results for both channel models are in agreement if
the SINR threshold, γ, is not large, indicating that the
analytical results derived from the generalized channel
correlation model in this manuscript can be useful to
understanding the performance of s-FAMA under the
multi-ray model if γ is not large.

V. CONCLUSION

This paper has studied the performance of s-FAMA where a
fluid antenna is equipped at each user to resolve the multiuser
interference by switching its port only when the envelopes of
the channels change, as opposed to f -FAMA where the ports
are changed on a symbol-by-symbol basis. We derived exact
expressions and bounds for the outage probability and multi-
plexing gain, and investigated how the achievable performance
depends on the different system parameters such as the number
of ports, the size of the antenna, the SIR threshold, and the
number of users. The results have demonstrated that despite
a weakened interference immunity compared to f -FAMA, the
s-FAMA system can still effectively eliminate interference for
multiple access if N is sufficiently large, while being a much
more practically attractive approach.

APPENDICES

A. Proof of Theorem 1

To evaluate I, we exploit an important connection between
the generalized Marcum-Q function and confluent hypergeo-
metric functions, first established in [25] and leveraged in [26]
to obtain closed-form solutions to integrals of the type:

In(α1, α2, ω, p, µ1, µ2) ,

2

∫ ∞
0

Qµ1
(α1t, α2)tµ2 exp (−pt2)Iµ2−1(ωt)dt. (50)

Our aim is to rewrite I in terms of (50), for which closed-form
solutions can be readily obtained by applying the results of
[26]. The difference between I and (50) is that the integration
variable appears in a different argument of the Marcum-Q
function. However, we can exploit the known relationship of
the generalized Marcum-Q function [25, (2)]

Qm(a, b) = 1−Q1−m(b, a). (51)

Using (51), we can rewrite I as

I =

∫ ∞
0

(1−Q0(
√
γβ, c))

βM

aM−1
e−

β2+a2

2 IM−1(aβ)dβ

=

∫ ∞
0

βM

aM−1
e−

β2+a2

2 IM−1(aβ)dβ

−
∫ ∞

0

Q0(
√
γβ, c)

βM

aM−1
e−

β2+a2

2 IM−1(aβ)dβ. (52)

The first integral is recognized as QM (a, 0) = 1, according
to the definition of the generalized Marcum-Q function [25,
(1)], so that we have

I = 1−

e−
a2

2

aM−1

∫ ∞
0

Q0(
√
γβ, c)βMe−

β2

2 IM−1(aβ)dβ. (53)

The remaining integral can be linked to (50), yielding

I = 1− e−
a2

2

2aM−1
In(
√
γ, c, a, 1/2, 0,M). (54)

We can now apply [26, Proposition 1] to evaluate the integral
In(
√
γ, c, a, 1/2, 0,M), which gives (55) (see top of next

page). The integral In(
√
γ, c, a, 1/2,M,M) in (55) can also

be evaluated as [26, Proposition 1]

In(
√
γ, c, a, 1/2,M,M) =

2aM−1e
a2

2 QM

(
a

√
γ

1 + γ
, c

√
1

1 + γ

)
. (56)

Substituting (56) into (55) and simplifying terms, we finally
arrive at (18) in which we have also used the fact that for the
Pochhammer symbol, (−x)n = (−1)n(x− n+ 1)n.

B. Proof of Theorem 2

To prove the result, we need to work out the joint pdf of
X1, X2, . . . , XN and that of Y1, Y2, . . . , YN . Given x0 and y0

(omitting the superscript (u, u) for conciseness) and defining
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I = 1− e−
a2

2

2aM−1

{
In(
√
γ, c, a, 1/2,M,M)− 2

a1−M

(
1

1 + γ

)M
exp

[(
a2

2
− c2

2

)(
1

1 + γ

)]

×
M−1∑
k=0

M−k−1∑
j=0

(−1)j(−M + k + 1)j
j!

( c
a

)j+k
(1 + γ)k(

√
γ)j−k Ik+j

(
ac
√
γ

1 + γ

) (55)

r0 , x2
0 + y2

0 , Xk is a noncentral Chi-square random variable
with two degrees of freedom and has the pdf [27, (2.12)]

pXk|r0(x) =
1

2
e−

x+
µ2

1−µ2 r0

2 I0

(√
µ2

1− µ2

√
r0x

)
, x ≥ 0,

(57)
where I0(·) denotes the zero-order modified Bessel function
of the first kind. As {Xk} are all linked only by r0, if r0 is
given and fixed, {Xk} become independent. Hence, the joint
pdf for X1, . . . , XN conditioned on r0 is given by

pX1,...,XN |r0(x1, . . . , xN )

=

N∏
k=1

1

2
e−

xk+
µ2

1−µ2 r0

2 I0

(√
µ2

1− µ2

√
r0xk

)
. (58)

Moreover, noting that r0 is exponentially distributed with the
pdf pr0(r) = 1

2e
− r2 , we get the unconditioned joint pdf by

pX1,...,XN (x1, . . . , xN )

=

∫ ∞
0

pr0,X1,...,XN (r, x1, . . . , xN )dr

=

∫ ∞
0

e−
r
2

2N+1

N∏
k=1

e−
xk+

µ2

1−µ2 r

2 I0

(√
µ2

1− µ2

√
rxk

)
dr.

(59)

From (59), we can obtain the joint cumulative density function
(cdf) of X1, . . . , XN by (60) (see top of next page). Note that
(b) substitutes (59) into the cdf computation, (c) separates the
integrands inside the product and writes the whole as a product
of the integrals for {xk} and (d) recognizes that each integral
over xk is related to the cdf of a Rician random variable.8

Now, we denote r̃0 ,
∑
ũ6=u(x

(ũ,u)
0 )2 + (y

(ũ,u)
0 )2 and then

Yk conditioned on r̃0 is noncentral Chi-square distributed with
2(U − 1) degrees of freedom and has the pdf [27, (2.12)]

pYk|r̃0(y) =
1

2

(
y

µ2

1−µ2 r̃0

)U−2
2

e−
y+

µ2

1−µ2 r̃0

2 ×

IU−2

(√
µ2

1− µ2

√
r̃0y

)
. (61)

Using the technique similar to that derives the joint pdf of

8It is worth pointing out that this resembles the result in [10, Theorem 2]
but the first port in [10] was used entirely as a reference port and hence the
model there effectively has N−1 ports. Also, as mentioned in [18], the single
spatial correlation parameter model used in this paper is more accurate.

X1, . . . , XN , we can obtain the joint pdf of Y1, . . . , YN as

pY1,...,YN (y1, . . . , yN )

(a)
=

∫ ∞
0

pr̃0(r̃)pY1,...,YN |r̃0(y1, . . . , yN )dr̃

(b)
=

∫ ∞
0

r̃U−2e−
r̃
2

2U−1Γ(U − 1)︸ ︷︷ ︸
pr̃0 (r̃)

N∏
k=1

1

2

(
yk
µ2

1−µ2 r̃

)U−2
2

×

e−
yk+

µ2

1−µ2 r̃

2 IU−2

(√
µ2

1− µ2

√
r̃yk

)]
dr̃ (62)

in which (b) uses the fact that {Yk} are all independent when
conditioned on r̃0 and that r̃0 has a Chi-square pdf with 2(U−
1) degrees of freedom [27, (2.7)], and Γ(n) = (n− 1)!.

With the above results, the outage probability, Prob(SIR <
γ), can be evaluated by (63) (see top of next page) in which
(a) uses the results (60) and (62), (b) moves the integration
over yk inside the product, and (c) uses the fact that the total
probability of a noncentral Chi-square random variable is one.
Finally, the integral inside the product over yk is recognized
to be of the form (19) and consequently, applying the result in
Corollary 1 by setting b = µ2

1−µ2 r̃, c = µ
√
r√

1−µ2
and M = U−1,

we obtain the desired result (21) and complete the proof.

C. Proof of Corollary 2

From the definition

Iν(x) =
1

π

∫ π

0

cos(νθ)ex cos θdθ, (64)

we can show (65) (see next page). Then substituting (65) into
(21), we obtain (22) which completes the proof.

D. Proof of Theorem 3

Before we begin the proof, we have the following lemmas.
Lemma 1: We have the integral∫ ∞

0

tM−1e−atdt = a−M (M − 1)! = a−MΓ(M). (66)

Proof: The result (66) can be shown by repeatedly using
integration by parts, which completes the proof.

Lemma 2: We have the integral∫ ∞
0

e−
t
2QM (b, a

√
t)dt = 2

[
1−

(
a2

a2 + 1

)M
e
− b2

2(a2+1)

]
.

(67)
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FX1,...,XN (t1, . . . , tN )
(a)
= Prob(X1 < t1, X2 < t2, . . . , XN < tN )

(b)
=

∫ ∞
0

∫ tN

0

· · ·
∫ t1

0

e−
r
2

2N+1

N∏
k=1

e−
xk+

µ2

1−µ2 r

2 I0

(√
µ2

1− µ2

√
rxk

)
dx1 · · · dxNdr

(c)
=

∫ ∞
0

1

2
e−

r
2

[
N∏
k=1

∫ tk

0

1

2
e−

xk+
µ2

1−µ2 r

2 I0

(√
µ2

1− µ2

√
rxk

)
dxk

]
dr

(d)
=

∫ ∞
0

1

2
e−

r
2

N∏
k=1

[
1−Q1

(√
µ2

1− µ2

√
r,
√
tk

)]
dr (60)

Prob

(
X1

Y1
< γ,

X2

Y2
< γ, . . . ,

XN

YN
< γ

)
=

∫ ∞
0

· · ·
∫ ∞

0

FX1,...,XN |Y1,...,YN (γy1, . . . , γyN )pY1,...,YN (y1, . . . , yN )dy1 · · · dyN

(a)
=

∫ ∞
0

· · ·
∫ ∞

0︸ ︷︷ ︸
y1···yN

∫ ∞
r=0

1

2
e−

r
2

N∏
k=1

[
1−Q1

(√
µ2

1− µ2

√
r,
√
γyk

)]
dr×

∫ ∞
r̃=0

r̃U−2e−
r̃
2

2U−1Γ(U − 1)

N∏
k=1

1

2

(
yk
µ2

1−µ2 r̃

)U−2
2

e−
yk+

µ2

1−µ2 r̃

2 IU−2

(√
µ2

1− µ2

√
r̃yk

) dr̃dy1 · · · dyN

(b)
=

∫ ∞
0

∫ ∞
0

r̃U−2e−
r+r̃

2

2U−1Γ(U − 1)

N∏
k=1

∫ ∞
yk=0

[
1−Q1

(√
µ2

1− µ2

√
r,
√
γyk

)]
×

1

2

(
yk
µ2

1−µ2 r̃

)U−2
2

e−
yk+

µ2

1−µ2 r̃

2 IU−2

(√
µ2

1− µ2

√
r̃yk

)
dykdrdr̃

(c)
=

∫ ∞
0

∫ ∞
0

r̃U−2e−
r+r̃

2

2U−1Γ(U − 1)

N∏
k=1

[
1−

∫ ∞
yk=0

Q1

(√
µ2

1− µ2

√
r,
√
γyk

)
×

1

2

(
yk
µ2

1−µ2 r̃

)U−2
2

e−
yk+

µ2

1−µ2 r̃

2 IU−2

(√
µ2

1− µ2

√
r̃yk

)
dyk

 drdr̃ (63)

Proof: Substituting p = 1 and c = 0 in [28, (B.54)], we
have∫ ∞

0

xe−
x2

2 QM (b, ax)dx = 1−
(

a2

a2 + 1

)M
e
− b2

2(a2+1) . (68)

Now, changing the variable t = x2, we get∫ ∞
0

xe−
x2

2 QM (b, ax)dx =
1

2

∫ ∞
0

e−
t
2QM (b, a

√
t)dt. (69)

Equalling (68) and (69) then obtains the required result.
Take the outage probability in (21) and write it in the form

Prob(SIR < γ) =

∫ ∞
0

∫ ∞
0

r̃U−2

2UΓ(U − 1)
e−

r+r̃
2 ×1− (1−QU−1(·, ·) + · · · )︸ ︷︷ ︸

Z

N drdr̃. (70)

Apparently, the outage probability is a decreasing function of
N and hence Z < 1. Typically, N needs to be large to bring

down the outage probability to an acceptable level given the
multiple interferers, which implies that Z is very small. Thus,
it is possible to approximate the outage probability by

Prob(SIR < γ) ≈
∫ ∞

0

∫ ∞
0

r̃U−2

2UΓ(U − 1)
e−

r+r̃
2 ×1−N (1−QU−1(·, ·) + · · · )︸ ︷︷ ︸

Z

 drdr̃. (71)

Now, using the lower bound [29]

Iν(z) >
1

Γ(ν + 1)

(z
2

)ν
, (72)

we can obtain (73) (see top of next page) where (a) also uses
the approximation that γ + 1 ≈ γ for large γ. Using (71) and
(73), we get the upper bound of the outage probability

Prob(SIR < γ) < (1−N)A+NB −NC, (74)
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e
− µ2

2(1−µ2)
( γr̃+rγ+1 )

Ik+j

(
µ2

1− µ2

√
γr̃r

γ + 1

)
=

1

π

∫ π

0

cos((k + j)θ)e
− µ2

2(1−µ2)
1
γ+1 [γr̃+r−2

√
γr̃r cos θ]

dθ

=
1

π

∫ π

0

cos((k + j)θ)e
− µ2

2(1−µ2)
1
γ+1 [(

√
γr̃−
√
r)2+2

√
γr̃r(1−cos θ)]

dθ

=
1

π
e
− µ2

2(1−µ2)
1
γ+1 (

√
γr̃−
√
r)2
∫ π

0

cos((k + j)θ)e
− µ2

(1−µ2)
1
γ+1

√
γr̃r(1−cos θ)

dθ (65)

(
1

γ + 1

)U−1

e
− µ2

2(1−µ2)

γr̃+r
γ+1

∑
k,j

(U − 1− (k + j))j
j!

(√
r√
r̃

)j+k
γ
j+k

2 Ik+j

(
µ2

1− µ2

√
γrr̃

γ + 1

)
(a)
> e

− µ2

2(1−µ2)

γr̃+r
γ+1

∑
k,j

(U − 1− (k + j))j
j!

(√
r√
r̃

)j+k
1

γU−1− k+j
2

1

Γ(k + j + 1)

[
µ2

2(1− µ2)

√
γrr̃

γ + 1

]k+j

(b)
= e

−
[

µ2

2(1−µ2)

γ
γ+1

]
r̃
∑
k,j

(U − 1− (k + j))j
(k + j)!j!

1

γU−1− k+j
2

[
µ2

2(1− µ2)

√
γ

γ + 1

]k+j

e
−
[

µ2

2(1−µ2)
1
γ+1

]
r
rk+j (73)

where

A =

∫ ∞
0

∫ ∞
0

r̃U−2

2UΓ(U − 1)
e−

r+r̃
2 drdr̃, (75)

B =

∫ ∞
0

∫ ∞
0

r̃U−2

2UΓ(U − 1)
e−

r+r̃
2 ×

QU−1

(
µ
√
γ
√
r̃√

1− µ2
√
γ + 1

,
µ
√
r√

1− µ2
√
γ + 1

)
drdr̃, (76)

and C is given by (77) (see next page).
To evaluate A, we separate the integrals over r and r̃ and

apply Lemma 1 to express the integral over r̃, which gives

A =
1

2UΓ(U − 1)
× 2U−1Γ(U − 1)× 2 = 1. (78)

For B, we first evaluate the inner integral over r using Lemma
2 by setting b = µ√

1−µ2

√
γ
γ+1

√
r̃ and a = µ√

1−µ2

1√
γ+1

and

after some simplifications, we then get

B =
1

2U−1Γ(U − 1)

∫ ∞
0

r̃U−2e−
r̃
2 dr̃

− 1

2U−1Γ(U − 1)

 µ2

1−µ2
1

γ+1

µ2

1−µ2
1

γ+1 + 1

U−1

×

∫ ∞
0

r̃U−2e
− 1

2

1+

µ2

1−µ2
γ
γ+1

µ2

1−µ2
1
γ+1

+1

r̃
dr̃. (79)

By applying Lemma 1 to compute the first and second terms
of the above, it can be shown that

B = 1−
(

µ2

γ + 1

)U−1

. (80)

Now, we derive a closed-form expression for C as (81) (see top
of next page) where (a) expresses the integral as the product
of two integrals, one over r and another one over r̃, (b) applies
the result of Lemma 1 to evaluate the two integrals, (c) makes

some simplifications, (d) considers, for large γ and small µ,
that 1+(1−µ2)γ ≈ (1−µ2)γ, 1+γ ≈ γ and 1−µ2 +γ ≈ γ,
(e) tidies up the expression and (f) ignores the higher-order
terms which get smaller, to obtain the final expression.

As a result, the upper bound can be found as

Prob(SIR < γ)

< (1−N)(1)+

N

[
1−

(
µ2

γ + 1

)U−1
]
−N

(
1− µ2

γ

)U−1

= 1−N
(

µ2

γ + 1

)U−1

−N
(

1− µ2

γ

)U−1

. (82)

Finally, note that we have used the linearization (1− Z)N ≈
1−NZ for small Z and therefore, the upper bound (82) can
become negative when N is extremely large. As a result, the
operation (·)+ is adopted to guarantee positivity of the upper
bound, resulting in the expression (23). Then, for small µ,
we have (µ2)U−1 � (1 − µ2)U−1 and thus (24) is obtained.
Lastly, if W ≥ 1, then according to (8), we can substitute
µ2 = 1

πW into (24), to obtain the expression (25).
Overall, it can be recognized that (25) is a result of a number

of approximations. Most notably, the approximations rely on
having a large γ and small µ in (d) and (f) of (81). To have
a small µ, it means that W should not be small. In addition,
the accuracy also depends on the tightness of the bound (72).
For finite r and r̃, the bound is tight if again µ is small while
if r and r̃ are infinitely large, the corresponding term in Z, or
the left hand side of (73), will approach 0. In summary, the
result (25) should be more accurate for larger γ and W .
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