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Tracking the evolution of esophageal squa-
mous cell carcinomaunderdynamic immune
selection by multi-omics sequencing

Sijia Cui1,2,7, Nicholas McGranahan3,7, Jing Gao4, Peng Chen4, Wei Jiang4,
Lingrong Yang5, Li Ma4, Junfang Liao4, Tian Xie6, Congying Xie1 ,
Tariq Enver 3 & Shixiu Wu 1,4

Intratumoral heterogeneity (ITH) has been linked to decreased efficacy of
clinical treatments. However, although genomic ITH has been characterized in
genetic, transcriptomic and epigenetic alterations are hallmarks of esophageal
squamous cell carcinoma (ESCC), the extent towhich these are heterogeneous
in ESCC has not been explored in a unified framework. Further, the extent to
which tumor-infiltrated T lymphocytes are directed against cancer cells, but
how the immune infiltration acts as a selective force to shape the clonal evo-
lution of ESCC is unclear. In this study, we performmulti-omic sequencing on
186 samples from 36 primary ESCC patients. Through multi-omics analyses, it
is discovered that genomic, epigenomic, and transcriptomic ITH are under-
pinned by ongoing chromosomal instability. Based on the RNA-seq data, we
observe diverse levels of immune infiltrate across different tumor sites from
the same tumor. We reveal genetic mechanisms of neoantigen evasion under
distinct selection pressure from the diverse immune microenvironment.
Overall, our work offers an avenue of dissecting the complex contribution of
the multi-omics level to the ITH in ESCC and thereby enhances the develop-
ment of clinical therapy.

Esophageal squamous cell carcinoma (ESCC) is one of the most pre-
valent cancer types which occurs in Eastern Asia and parts of Africa1,2.
Several large-scale sequencing studies have revealed the complex
genomic landscape of ESCC3–8. However, oncological biomarkers
might be confounded by sampling bias derived from spatial intratu-
moral heterogeneity (ITH). ITH, which supplies the fuel for clonal
evolution and drug resistance9, is pervasive across multiple levels of
molecular features. A precise understanding of ITH is crucial for the
development of effective diagnosis and biomarker design.

Recently, several studies have performedmulti-regional whole-
exome sequencing (WES), methylation profiling, or TCR sequencing

to unveil ITH in ESCC10–12. However, ESCC ITH has not been com-
prehensively characterized across multi-omics from a large cohort
of ESCC patients. Thus, an understanding of the complex interplay
between the genome, transcriptome, and methylome underpinning
ITH in ESCC and the evolution of this disease is lacking. Moreover,
the interaction between the cancer cell and its immune micro-
environment and how their cross-talk influences cancer evolution
has not been investigated. Indeed, although a strong correlation
between TCR (T cell receptor) repertoire and genomic ITH has
been found in ESCC, mechanisms of neoantigen evasion in ESCC
remain unclear.
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In this study, we prospectively collected 186 samples from 36
ESCC tumors from 36 patients (Supplementary Fig. S1). All samples
(including adjacent normal tissues) were characterized by whole-
exome sequencing (WES). We calculated CpG-rich methylation on a
genome-wide scale for all the patients by single-cytosine-resolution
DNA methylation analysis using reduced representation bisulfite
sequencing (RRBS) (Fig. 1a).We also performedRNA sequencing (RNA-
seq) for the 33 ESCC patients with high RNA quality. TheWES data was
derived from each tumor to a median of 260x depth. RRBS data pro-
videdmore than 10x sequencing coverage (median 77x) on three to six
million CpG sites genome-wide for each tumor sample. RNA-seq data
achieved a median of 44.5M high-quality reads. All the detailed
information on tri-omics sequencing data is listed in Supplementary
Data 1. One main target of our study is to investigate the tumor-

intrinsic causes that promote ITH across diverse molecular features.
We also explore the hypothesis that intratumor heterogeneity across
the diverse molecular features is associated with the selection pres-
sures from distinct tumor microenvironments in ESCC.

Results
Genomic ITH in ESCC
Genomic heterogeneity between multi-sites of a single tumor poses
major barriers to the biomarker discovery and the development of
target therapies10,13. To assess the genomic ITH in ESCC, we classified
the somatic mutations and copy-number alterations (SCNA) as clonal
(prevalent in all cancer cells) or subclonal (present in only a subset of
cancer cells). We confirmed early mutational events of somatic muta-
tions in TP53, NOTCH3, and PTPRC in ESCC (Supplementary Fig. S2a).

Fig. 1 | Fuels of Genomic ITH in ESCC. a Overview of the experimental strategy.
Each ESCC multi-sites samples of patients was performed using WES, RNASeq and
RRBS to explore the intrinsic multiple omics ITH, the extrinsic TILs ITH and the
fuels of each omic ITH. b The top panel shows the tumormutational burden (TMB)
for each tumor region (n = 186). The minimum and maximum are indicated by the
extreme points of the box plot; themedian is indicated by the thick horizontal line;
and the first and third quartiles are indicated by box edges. The second and third-
panel shows the proportion of somatic mutations and copy-number alterations
that are identified as clonal (deep blue bars) or subclonal (orange bars) in each
patient. The fourth and fifth-panel show the mutation signatures weight identified
in the ESCCcohortby using clonal and subclonal somaticmutations separately. The
bottom panel shows the summary of the genome doubling (GD), evolution pat-
terns, TIL group, and HLALOH status for each patient (n = 36). c, d The top panel

shows the predicted cellular prevalence of each clonal population for each tumor
sample from ESCC24 (c) and ESCC51 (d) patient; The same color represents the
same cell subpopulation across different tumor regions. The bottom panel shows
the inferred clonal evolution tree of each tumor sample (the circle in gray means
the corresponding clone does not exist in this sample). e Box plot represents WGII
comparison by genome doubling (GD, n = 112) and non-genome doubling (NGD,
n = 74) status across 186 tumor regions.. f, g The box plot shows the subclonal
somatic mutation proportion comparison (f) and subclonal somatic copy-number
proportion comparison (g) between GD (n = 112) and no GD status (n = 74). All Box
plot center line represents median value; lower and upper hinges represent 25th
and 75th percentiles; theminimum andmaximum are indicated by the extremes of
the box plot; P value is shown; two-sided Wilcoxon rank-sum test.
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We observed a median of 33.3% (range 6.1% to 83.4%) of somatic
mutations identified as subclonal and amedianof 55.1% (range 10.2% to
90.8%) of SCNA as subclonal (Fig. 1b).

Investigating genomic ITH canunveil the evolution history of how
mutations are chronologically accumulated. To investigate clone
architecture and the evolutionary patterns of each patient, we con-
structed the tumor phylogeny according to the mutational cellular
prevalence (Fig. 1c, d). Each node on the phylogenetic tree represents
clonal (shared by all tumor sites) or subclonal (shared by part of tumor
sites)mutation clusters and wasmapped in the evolutionary history of
each ESCC tumor. A total of 207 mutation clusters were identified
(Supplementary Fig. S3a, 6 per patient, ranging from2 to 13). There are
47% of subclones captured in a single branch of the phylogenetic tree
(Supplementary Fig. S3b). We also detected amedian of 14% (range 0.1
to 53%) of mutations exhibited a clonal illusion14, whereby they
appeared clonal within single samples yet were subclonal in the tumor
as a whole,emphasizing the importance of multi-sites sampling (Sup-
plementary Fig. S3c).

The evolutionary trees of our ESCC cohort showed two topolo-
gical patterns of evolution: the predominant pattern of evolutionwas
the branched pattern (33/36, 92%), and the minor pattern of evolu-
tion was the liner pattern 3/36 (8%). This phenomenon was also
observed in other cancer types15,16. This suggested that ESCC is a
much more intratumoral heterogeneous cancer type. For the linear
evolutionary pattern, successive clones overgrew their ancestral
clones by accumulating somatic alterations without expansion
(Fig. 1c and Supplementary Fig. S3a). While the other cases (33/36,
92%) showed a branched pattern, with diverse subclones coexisting
and only sharing part of mutations from the ancestral clone (Fig. 1d
and Supplementary Fig. S3a). This result revealed the limitation of
single sampling for the accurate assessment of genomic ITH. Com-
paring with the branched evolutionary pattern, we found that linear
evolution patterns generally showed limited intratumor hetero-
geneity, and no clonal expansion occurred during tumor progres-
sion. Although the number of patients with linear evolution patterns
was limited, we did not observe the purity or number of sites of these
patients were significantly lower than the patients with a branched
evolutionary pattern. Conceivably, monotherapies against the tumor
with the linear evolutionary pattern might show better clinical
effects.

Fuels of genomic ITH in ESCC
Chromosomal instability. Ongoing chromosomal instability (CIN)
may drive intratumoral heterogeneity14. To distinguish CIN+ from CIN
tumors, weevaluated theweightedGenome Instability Index (wGII) for
each ESCC tumor regions17. We observed that higher wGII were found
in high-ploidy (ploidy ≥ 3) than diploid tumors (Fig. 1e), which is con-
sistent with previous studies across different tumor types18. The allele
information showed that genome-doubling events were detected in
70% of ESCC patients and was shared by all the regions except four
subclonal genome doubling (GD) tumors (ESCC10, ESCC27, ESCC30,
ESCC35), which suggested that GD is frequently an early event during
ESCC tumor progression. We observed that there is a significant
association between genome doubling and subclonal copy-number
alterations (Fig. 1g, P = 4.33 × 10−8, Wilcoxon rank-sum test), but not
with regard to mutational heterogeneity (Fig. 1f, P =0.32, Wilcoxon
rank-sum test). This suggested that GD events provided the substrates
for the genomic ITH at the copy-number alterations level.

Mirrored subclonal allelic imbalance (MSAI), which resulting from
different parental alleles being gained or lost in distinct subclones, is
another cause of ITH driven by CIN14,19. We detectedMSAI in 33.3% (12/
36) patients and a total of 37 MSAI events from focal to arm level
alterations. Besides, this resulted in parallel evolution involving mul-
tiple distinct events converging on the same regions in different sub-
clones (Supplementary Fig. S4a–4c).

Mutagenic processes
To determine which mutagenic processes promote the intratumoral
heterogeneity, we systematically analyzed themutational signatures of
both clonal and subclonal stages (Fig. 1b). Using published mutational
signatures20, the number of clonal mutations significantly correlated
with the burdenofmutations related to aging (Supplementary Fig. S5a,
Signature 1a, P =0.01) and DNA mismatch repair (DMMR) processes
(Supplementary Fig. S5b, P = 9.5 × 10−4) across the ESCC cohort. We
analyzed ESCC13 separately because of the significant burden of sig-
nature 15 mutations, which correlated with defective DNA mismatch
repair. This might be attributed to the positive MSI status of ESCC1321.
In comparison to the clonal stage, the contributions of signature 3
(BRAC1/2) significantly correlated with the burden of subclonal
mutations (Supplementary Fig. S5d, P = 2.4 × 10−7). Tumors obtained
from the 36 ESCC patients got both clonal and subclonal mutations
that could also be attributed to DNA mismatch repair signatures
(Supplementary Fig. S5e) and aging processes (Supplementary
Fig. S5c), which implies that both of the processes continuously
induced the mutational events which may contribute to clonal
expansion.

Epigenomic ITH in ESCC
Although informative, the genomic alterations did not fully explain the
heterogeneity of ESCC.DNAepigenetic changes alsoplay an important
role in the tumorigenesis of ESCC13. Firstly, we calculated the methy-
lation level with 1-kb sliding bins across all the tumor regions in our
ESCC cohorts. We observed the global hypomethylation trend in ESCC
tumor compared with adjacent normal tissue (Fig. 2a and Supple-
mentary Fig. S6a, P = 4.6 × 10−10, Wilcoxon rank-sum test), which was
consistent with results from the previous studies22. The tumor’s
hypomethylated bins were significantly enriched in long interspersed
nuclear element 1 (LINE-1, L1) and endogenous retrovirus (ERV) regions
(Fig. 2c,P <0.05, Fisher’s exact test). In contrast, significantly increased
DNA methylation levels at CpG islands and promoter regions were
detected in ESCC tumors (Fig. 2b, P < 0.05, Fisher’s exact test). We
compared the relative methylation level changes between LINE-1 and
LINE-2 regions, which showed that LINE-1 tends to show significantly
stronger DNA demethylation than LINE-2 in cancer cells (Supplemen-
tary Fig. S6b,P = 4.43 × 10−13,Wilcoxon rank-sum test). L1 ismore active
and evolutionarily younger than L223. This suggested that the DNA
demethylation changes in LINE-1 regions promote the tumorigenesis
and progression of tumors, which develop an avenue contrasted to
normal tissue development.

To address the epigenetic ITH, we identified the differentially
methylated regions (DMR) with the 1-kb sliding bins between the
tumor and adjacent normal tissue (Supplementary Fig. S7a). To
quantify the methylation level heterogeneity, we calculated the aver-
age pairwise ITH (APITH) to measure the methylation ITH of tumors
(Methods). The advantage of APITH in ESCC is that its value is not
biased by the number of samples of tumor (Supplementary Fig. S6c
and Supplementary Fig. S6d). To explore the relationship between the
epigenetic ITH and the genomic ITH, we compared the APITH score
and the SNV-ITH (proportion of subclonal SNVs). We found a sig-
nificant correlation between them (Supplementary Fig. S6e, Spear-
man’s rho =0.49, P =0.0037). This confirmed the conclusion that
genetic mutations and epigenetic modifications diversify along with
similar patterns during ESCC progression10.

Fuels of epigenetic ITH
Wenext investigate themechanismunderpinning epigenetic ITH. First
of all, we calculated the Euclidean distance separately for SCNA pro-
files and theDNAmethylation levels of theDMRs.Weobserved that the
pairwise DNA methylation distances were positively correlated with
the pairwise SCNA distances (Fig. 2d, Spearman’s rho = 0.63,
P = 4.46 × 10−52). To get a whole picture of the interplay between
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genomics and DNA methylation ITH, we exhibited the phylogenetic
and phyloepigenetic trees to delineate the relationship among the
tumor samples from the same patient. We observed that phylogenetic
trees inferred from DNA methylation in several patients, such as
ESCC14 and ESCC25, closely recapitulated the phylogenetic trees from
SCNA, which is consistent with a previous study10 (Fig. 2e). Besides, we
also find several patients, such as ESCC 17 and ESCC36, got different
topologic structures (but with partial similarity) of phylogenetic and
phyloepigenetic trees (Supplementary Fig. S7b). This suggested that
there is still a potential mechanism that regulates the methylation of

ITH during the evolution of ESCC tumors. (Supplementary Fig. S7b).
We further explored the dynamics of chromosomal alterations and the
extent to which chromosomal instability may drive epigenetic ITH.
DNA-methylation at sequential CpG dinucleotides constitutes a
phased epigenetic pattern (epiallele), which provides a snapshot of
cells. The diversity of epialleleswithin the tumorprovides ameasure of
cellular subpopulations within the sample. To further identify the
relationship between epigenetic changes and SCNAs, we employed the
methclone24 and epihet25 to detect the epigenetic loci and the corre-
sponding intratumor methylation heterogeneity which was quantified

Fig. 2 | Fuels of epigenetic ITH in ESCC. aMethylation level comparison between
paired Tumor (n = 186) and adjacent normal (n = 36) samples. Two-sided paired t
test is used for comparison. b, c Enrichment of hypermethylated DMRs (b) and
hypomethylated DMRs (c) for annotated genomic elements between tumor
(n = 186) and paired normal (n = 36) samples. *P <0.05, **P <0.01, ***P <0.001; two-
sided Fisher’s exact test. d The pairwise distance of tumor samples from the same
patient is based on the DMRs and SCNA profiles. Each dot represents a pair of
tumor samples from the same patient. Spearman’s correlation coefficient (rho) and
corresponding P-value is shown (n = 452 tumor region pairs). Line of best fit shown

in blue and gray area represents 95% confidence bands. e Phylogenetic and phy-
loepigenetic trees were constructed using ESCC14 and ESCC25. f Distribution of
entropy, epipolymorphism, and discordantly methylated read (PDR) scores
between neutralnd somatic copy-number alterations regions across 36 ESCC
patients with 186 tumor regions. Box plot center line represents median value;
lower and upper hinges represent 25th and 75th percentiles; the minimum and
maximum are indicated by the extremes of the box plot; ***P <0.001, NS, no sig-
nificance, P >0.05; two-sided Wilcoxon rank-sum test.
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by PDR, entropy, or epipolymorphism. The proportion of discordant
reads (PDR), entropy, and epipolymorphism was considered to be a
measurement of epigenetic instability. We observed the SCNA regions
got an increased entropy level compared with neutral regions. Simi-
larly, SCNA regions with higher entropy also exhibited higher epipo-
lymorphism and PDR levels (Fig. 2f). In our study, we found that CIN
provides a higher level of somatic CNA (Fig. 1g). CIN provides more
copies of DNA segments, and these segments provide the potential
substrate permitting different methylation statuses of CpG sites
(Fig. 2f). We could understand this point from the eloci changes. Extra
copies will increase the entropy (Epipolymorhism or PDR) of eloci.
These results indicated a close relationship between epigenetic varia-
tions and CIN.

As LINE-1 is a well-characterized phenomenon in cancer. We fur-
ther examine the association between the methylation level of LINE-1
and chromosomal instabilities. We correlated the methylation level of
L1 and SCNA-ITH, and we found that there is a significant correlation
between L1 and SCNA-ITH (Supplementary Fig. S6f, R2 = 0.54,
P =0.00077). This suggested that the methylation level of LINE-1 ele-
ments is actually associated with CIN in ESCC. Methylation loss in late-

replicating regions makes the heterochromatic structure formation
which is called partial methylation domains (PMDs). A recent study
showed that PMD demethylation is pervasive in diverse cancer type26.
To investigate the relationship between epigenetic ITH and CIN, we
calculated the PMD APITH scores for each tumor sample and
correlated the PMD APITH score with the patient-wise RNA-ITH
value. We did not observe a significant correlation between them
(R2 = 0.32, P = 0.11).

Transcriptomic ITH in ESCC
RNA-ITH is a crucial factor that partly was determined by the status of
genomic andepigenomic alterations. To identifywhich genes aremore
vulnerable to sampling bias in ESCC due to the RNA intratumoral
heterogeneity or show higher intertumoral heterogeneity among
ESCC patients, we employed a gene classification method27, which is
based on the per-gene metric for RNA intra- and intertumoral het-
erogeneity. Genes are divided into four RNA heterogeneity quadrants
for ESCC (Fig. 3a): low intertumoral heterogeneity and high intratumor
heterogeneity (Class I = 3354 genes); both low in intra- and inter-
tumoral heterogeneity (Class II = 11622 genes); both high in intra- and

Fig. 3 | Fuels of transcriptomic ITH in ESCC. a RNA intertumor (x-axis) and RNA
intratumor heterogeneity (y-axis) are shown on the axes using density curves. The
genes are split into four classes by the mean intratumor and intertumor hetero-
geneity scores. The classes are numbered and colored. b Boxplots show the clus-
tering concordance score per gene in each class (I = 3354 genes, II = 11622 genes,
III = 5368 genes, IV = 3668 genes). Theminimumandmaximumare indicated by the
extremes of the box plot; the median is indicated by the thick horizontal line; and
the first and third quartiles are indicated by box edges; *P <0.05, **P <0.01, two-
sided Wilcoxon rank-sum test. c Correlation of gene expression ITH with copy-
number ITH. The Spearman correlation coefficient (Rs) between patient-wise RNA-
ITH scores and patient-wise SCNA-ITH scores calculated in the ESCC cohort (n = 33
ESCC patients; Rs = 0.38; P =0.027). Line of best fit shown in orange and gray area

represents 95% confidence bands. d Violin boxplots show the correlation between
subclonal chromosomal copy-number changes and gene expression across 36
ESCC patients. The minimum and maximum are indicated by the extremes of the
box plot; themedian is indicated by the thick horizontal line; and the first and third
quartiles are indicated by box edges; two-sided Wilcoxon rank-sum test. e All the
genes were classified in clonal/subclonal gain, loss, or no change types. Enrichment
was tested by RNA heterogeneity class. Odds ratios are shown using a natural log
scale. A two-sided Fisher’s exact test was performed. f The spearman correlation
between patient-wise RNA-ITH and methylation of promoter regions calculated in
the 36 ESCC cohort. Spearman’s correlation coefficient (Rs) and corresponding P-
value are shown. Line of best fit shown in brown and gray area represents 95%
confidence bands.
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intertumoral heterogeneity (Class III = 5368 genes); and high inter-
tumoral heterogeneity and low intratumor heterogeneity (Class
IV = 3668 genes). Genes in Class IV showed consistent expression
within regions and were highly variable between tumors, which pro-
vided stronger information for patients’ stratification. By using clus-
tering concordance scores of each gene, we observed that Class IV
genes outperformed other class types in stratifying ESCC tumor
regions by the patient (Fig. 3b). This indicated that genes in Class IV,
which prohibited sampling bias and maximizing the difference
between patients.

To determine the potential biological features of the four classes,
we performed Reactome pathway analysis, respectively (Supplemen-
tary Fig. S8a). Class I showed no significant enrichment, RNA splicing
pathway enriched inClass II genes, andClass III showed involvement in
an extracellular matrix organization. It should be noted that pathways
in cell proliferation, including cleavage of the damaged pyrimidine,
DNA damage stress-induced senescence, and epigenetic regulation
enriched inClass IV,which suggestedClass IV genes potentially encode
cell proliferation modules.

Moreover, we assessed the RNA-ITH scores based on the number
of sequencing regions. We observed RNA-ITH scores increased with
the number of sampling regions but became saturated at around four
samples for most tumors (Supplementary Fig. S8b). This suggested
that at least four regionswere required to accurately estimate theRNA-
ITH level in ESCC.

Fuels of transcriptomic ITH in ESCC
We next investigated the potential fuels which contribute to RNA-ITH.
Considering the association between CNV and RNA expression, we
further explored whether RNA-ITH provided the fuels for RNA-ITH.
Overall, we observed a positive correlation between the median RNA-
ITH score and SCNA-ITH (Fig. 3c, Spearman’s rho = 0.38; P =0.027).
The genomic regions with subclonal gained copies also exhibited
increased RNA expression, whereas the expression of genes decreased
within subclonal lost copies (Fig. 3d). These results suggested that
ongoing dynamic chromosomal instability contributes to the ITH of
gene expression by altering the copy numbers and dosages of genes.
To identify the basic substrates in genomic features for the four
quadrants of genes, we performed relative enrichment of clonal and
subclonal copy-number changes of genes in different RNA-ITH classes.
Class IV genes were enriched in clonal copy-number gain events (odds
ratio = 1.59; P = 1.2 × 10−6), which suggested Class IV genes may be dri-
ven by clonal DNA copy-number gains selected early in tumor evolu-
tion (Fig. 3e).

Epigeneticmodifications of the gene’s promoter are important for
regulating gene expression. To explore the DNA methylation under-
pinning the RNA-ITH, we detected the different methylated status in
the promoter of genes and the RNA expression changes in any paired
regions from the same patient. We observed that methylation of first
exons and gene promoters related to significant changes in gene
expression (P < 0.001, Wilcoxon test) (Supplementary Fig. S8c). How-
ever, no significant association was observed between methylation of
the gene body (excluding promoter regions) and corresponding gene
expression (P =0.58, Wilcoxon test). Our results indicate DNA methy-
lation also regulates the RNA-ITH by changing the methylation level of
the gene’s promoter. We next calculated the ITH of the methylation
ITH of genes’ promoters and found methylation ITH of gene’s pro-
moters positively correlated with the patient-wise RNA ITH (Fig. 3f,
Spearman’s rho =0.43; P =0.012). This suggested whole genome
epigenetic-ITH contributed more to RNA-ITH compared with SCNA-
ITH (Fig. 3c, f). We next measure and rank per gene metric for the
methylation intra- and intertumor heterogeneity, and we splited both
heterogeneity metrics by their mean value. Similar to the RNA-ITH
level, this resulted in four quadrants. Next, we examined the biological
significance of the DNA methylation ITH in each quadrant which

correlated with the gene expression ITH in the same quadrant. We
performed the Reactome pathway analysis to explore the overlapped
genes in each quadrant. We found that Q4 was significantly enriched
for pathways involved in cell proliferation and epigenetic regulation.
Moreover, we investigate the relationship between RNA-ITH and cel-
lular composition. Overall, we did not observe that RNA-ITH is asso-
ciated with any immune cell composition and tumor purity
(Supplementary Fig. S9a, S9b).

Immune infiltration drives the heterogeneity across a different
omic level
Finally, to determine how immune infiltration varies between and
within tumors across the ESCC cohort, we first implemented the
published Danaher method28 to evaluate immune infiltration in the
multi-regional ESCC RNA-Seq cohort. Using this method, we profiled
RNASeq-determined infiltrating immune cell populations of the 176
tumor regions from 33 ESCC patients, for which the RNA data is
qualified.

Unsupervised hierarchical clustering was performed for each
immune cell population using the ‘ward.D2’method on theManhattan
metric. We revealed two distinct TIL groups, which corresponded to
high and low immune infiltration levels (Fig. 4a). Of the 33 ESCC
patients with RNA-seq data, 22 patients harbored tumors with con-
sistently high (7 patients (21%)) or low (15 patients (45%)) immune
infiltration. Besides, we found that 11 patients (33%) exhibited intratu-
mor heterogeneous immune infiltration (Supplementary Fig. 11c). To
further confirm the TILs groups of our ESCC cohort, we next per-
formed ConsensusTME to estimate the TILs29, which were positively
associated with the Danaher method across different immune cell
types (Supplementary Fig. S10a). The distance between pairwise Con-
sensusTME distance between every two tumor regions strongly corre-
lated with the pairwise Danaher distance (Supplementary Fig. S10b).

Next, multiplex immunostaining on paraffin sections on the het-
erogeneous TILs patients for CD4, CD8, CD68, and FOXP3 were taken
to validate the difference between high and low immune infiltrated
regions from the same patient (Supplementary Fig. S11a). We used the
CD4+, CD8+, and FOXP3 T cell density in tumors to quantify the
immune infiltration. Consistent with the TILs groups inferred from
RNAseq data, tumor regions with high levels of immune infiltration
contained higher immune cell density as compared to regionswith low
levels of immune infiltration (Supplementary Fig. S11b).

Understanding how the immune microenvironment shape tumor
evolutionmay informstrategies to limit tumor adaption in the immune
clinical practice30,31. We first calculated the Euclidean distance of both
somatic mutations and immune infiltration score between any pair of
tumor regions from the same tumor (Fig. 4b). We observed a weak
correlation between the somatic mutations and the immune micro-
environment (Spearman’s rho = 0.35, P = 1.1 × 10−13). This result sug-
gested a potential interrelationship between the immune and
mutational landscape. Previous evidence suggested that a higher
tumor mutation burden (TMB) was likely to harbor more neoantigens
as targets for activated immune cells. Tumor with a high mutation
burden (>10 mutations per megabase) was found to get a better
response in immunotherapy of non-small cell lung cancer32. We only
observed two ESCC patients (ESCC11 and ESCC13) with at least one
tumor region with a high mutation burden (Fig. 1b). Specifically, one
tumor region with low immune infiltration of the ESCC11 has a high
tumor mutation burden. In contrast, the other tumor regions of
ESCC11 with high immune infiltration have a low tumor mutation
burden. This result further confirmed the distinct selective pressureon
the mutational landscape that existed in different TILs.

Cancer cells can avoid immune-related negative selection through
neoantigen depletion or dysfunction of antigen-presenting machinery
(APM).We hypothesized that themechanisms of immune escapemight
promote genetic clone expansion. The neoantigens from
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nonsynonymous mutations were used to explore neoantigen evasion.
By implementing a bioinformatics pipeline to identify neoantigens
from the tumours (Methods), a median of 107 predicted neoantigens
per tumour (range from 42 to 754) was detected, and neoantigen het-
erogeneity varied across the ESCC cohort (median 36% neoantigens
were found heterogeneously, range from 8 to 89%). In our cohort, we
found the neoantigen heterogeneity was significantly higher in het-
erogeneous immune infiltration (Supplementary Fig. S11f, Wilcoxon
rank-sum test, P =0.063), implying the specific selective pressure on
the neoantigen from the TILs. We next checked the genetic aberrations
of HLA-I, which were the most frequent events leading to APM defi-
ciency. Although HLA mutations could interfere with neoantigen-MHC
binding33, we did not detect non-silent mutations of HLA or B2M in our
ESCC cohort. We used the LOHHLA34 tool to analyze WES data for HLA
class I allele loss. Of 36 patients evaluated, we identified nine patients
harboring clonalHLALOHand twowith subclonalHLALOH, suggesting
HLA LOH is a prevalentmechanism of APMdeficiency in ESCC (Fig. 4c).
We foundHLA LOHwas associated with significantly higher expression
of TIL markers, indicating that HLA LOH as an immune evasion
mechanism happened under abundant TILs (Supplementary Fig. S11e).
We next identified neoantigens, which bind to the lost HLA allele across
the ESCC cohort (Supplementary Fig. S11d). We found that mutations
predicted to bind to a lost HLA allele exist in all the ESCC patients,
which highlights the importance of HLA LOH for immune evasion.

Tumor cells have utilized several means to escape TME recogni-
tion through HLA-related mechanisms. They can change the HLA
expression to downregulate the expression of MHC complexes and
therefore display fewer identifying antigens. The TME is an important
factor which affected the HLA expression in ESCC. We assessed the

relationship between HLA gene expression and infiltration of different
immune cell types in ESCC. Based on the correlation patterns between
immune cell infiltration and HLA and B2M expression, we found that
HLA expression showed a significant positive associationbetweenHLA
and B2M gene expression and the total immune infiltration, CD8
T cells, Cytotoxic cells, and T cells which indicating high HLA gene
expression is related with a relatively hot tumor microenvironment
(Supplementary Fig. 11g). This result is consistent with previous TCGA
research35. We further investigate the relationship between the ITH of
HLA gene expression and the ITH of TME. We found that the ITH
of CD8 T cells and NK cells are significantly correlated with the ITH of
HLA-A, HLA-B, and B2M expression (Fig. 4d). This result strongly sug-
gested that the transcriptomic ITH ofHLA gene expression is driven by
immune infiltration.

Comparison between Inter-heterogeneity and Intra-
heterogeneity in ESCC
The tumor heterogeneity recapitulates tumor heterogeneity in the
context of the immunemicroenvironment in ESCC, but the comparison
between inter- or intra-heterogeneity of cancer cell-intrinsic molecular
features has not been investigated. To compare the overall intertumoral
and intratumoral heterogeneity across multiple omics profile, an inte-
grative unsupervised hierarchical cluster of the multi-regional ESCC
cohorts was performedonCNA, gene expression, andDNAmethylation
data (176 tumor regions; 33 ESCC patients). We revealed there was
significant segregation among different patients and perfect clustering
concordance between regions from the same tumor, which suggested
intertumoral heterogeneity exceeds intratumoral heterogeneity across
different omic levels (Supplementary Fig. S12a). To quantify the degree

Fig. 4 | Immune infiltrate heterogeneity in ESCC. a The ESCC tumor samples
(n = 176) are clustered by the scoreof estimated immune infiltrate. The immune cell
population score is estimated using the Danaher method. Each row represents a
type of immune cell population. Each column represents a tumor region. Tumor
regions are classified as having low levels of immune infiltration (low immune) are
shown in green; Regions classified as having high levels of immune infiltration (high
immune) are shown in red. If all the tumor regions of the same patient are in the
high levels of immune infiltration, the patient is marked red. Patients who have

tumors that contain heterogeneous levels of immune infiltration are indicated in
orange. The patient who has consistently low levels of immune infiltration is indi-
cated in green. b Pairwise immune and somaticmutations distances between every
two tumor regions from the same patient are compared. Spearman’s correlation
coefficient (Rs) and corresponding P-value is shown. c Evidence of HLA LOH has
been annotated with the most likely timing of the HLA LOH event (n = 11).
d Correlation heatmap between the ITH gene score of HLA, B2M and ITH score of
tumor immune infiltration cells.
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of within- and between patient heterogeneity, we calculated the Eucli-
dean distance between any tumor sample pairs in the ESCC cohort
across the three omics levels. We identified a significant difference
between intra-patient and inter-patient tumor pairs in SCNA (Supple-
mentary Fig. S12b, P< 2.2 × 10−16, Wilcoxon rank-sum test), gene
expression (Supplementary Fig. S12c, P < 2.2 × 10−16, Wilcoxon rank-sum
test), and DNA methylation (Supplementary Fig. S12d, P< 2.2 × 10−16,
Wilcoxon rank-sum test). This suggested that each tumorhas a uniquely
identifiable omics profile on all the copy-number level, gene expression
level, and genomic methylation level.

Discussion
To investigate the potential causes and consequences of ITH in ESCC
on different molecular layers, we collected genomic, transcriptomic,
and epigenomic data to track how the ITH of tumors are sculpted. We
also integrated the multi-omics data to explore how the immune
microenvironment shapes the tumor evolution and promotes immune
evasion of the tumor.

We observed chromosomal instability might drive the ITH across
all the molecular levels. At the genomic level, our results suggested
that genome doubling is associated with subclonal copy-number
alterations. At the epigenomic level, SCNA regions showed a higher
extent of entropy and PDR levels, which suggested CIN may promote
epigenetic instability and thereby regulate the epigenetic ITH. At the
RNA level, genes with subclonal gain copies also exhibited increased
RNA expression or vice versa. This suggests that CIN drives the ITH of
gene expression by changing the copy numbers. SCNA contributed
directly to the RNA-ITH mainly by dosage effect of copy-number
alterations of corresponding genes, and the epigenome regulates the
RNA-ITH by methylation level alterations of distant genomic compo-
nents. To directly identify the immune cell heterogeneity, we calcu-
lated the standard deviation of all the immune cell type scores from
ConsensusTME as a measurement of total immune cell heterogeneity.
Wenext examined the correlation between immune-cell heterogeneity
and RNA-ITH. We observed that the immune-cell ITH negatively cor-
related with RNA-ITH (R2 = −0.27, P =0.17). Although not significant,
the result suggested the potential contribution of immune-cell ITH to
the RNA-ITH. Considering the character of relatively low purity in
ESCC, RNA-ITH does not solely capture cancer cell-intrinsic differ-
ences. The immune infiltration could also contribute to the RNA-ITH.

The overall intertumoral heterogeneity significantly out-
performed the intratumoral heterogeneity across all the three omics
levels, which suggested each tumor showed a uniquely identifiable
omics profile. We next profiled the infiltrating immune cell popula-
tions of the ESCC cohort using RNA-seq data. We found the immune
microenvironment is heterogeneous between and within ESCC
patients. 33%of ESCCpatients in our cohort showed adistinct status of
immune infiltration. The selective pressure from diverse TILs also
promoted immune evasion. We found neoantigen heterogeneity
showed significantly higher in heterogeneous TILs. HLA LOH is also an
immune evasion mechanism of the tumor. We found that 9/36
exhibited clonal HLA LOH and two with subclonal HLA LOH. Besides,
we foundHLA LOHwas associated with significantly higher expression
of TILmarkers. This suggested HLA LOH is also a potential mechanism
of immune evasion in ESCC. We also found that the infiltration of
immune cell types was almost uniformly positively associated with
HLA and B2M gene expression in ESCC. Besides, the ITH of CD8+
T cells and NK cells are associated with the ITH of HLA and B2M gene
expression. This highlights the immune infiltration that drives both
genomic and transcriptomic ITH in the ESCC cohort.

Previous lung cancer using multi-regional sequencing across
diverse omics studies comprehensively described the spatial and
temporal aspects of tumor evolution and the population character-
istics of their subclonal evolution14,27,36,37. Our results emphasize the
importanceof both the intrinsicmolecular ITH regulationmechanisms

and the selection pressures that the immune system regulates the
tumor ITH across different omics levels. Our results suggest that the
ITH of ESCC tumors is characterized by multiple independent
mechanisms, which involve both inner causes and the outer immune
microenvironment. In conclusion, a single tumor site may be insuffi-
cient for clinical diagnosis for ESCC patients38.

Material and methods
Patients and sample collection
The cohort in our studywas carefully sorted out from82 ESCCpatients
who were prospectively collected from Shenzhen Cancer Hospital
based on the eligibility criteria. All the patients underwent primary
curative resection and received no prior anticancer treatments. The
spatially separated tumor specimens were obtained from each indivi-
dual, with each region at least 0.5 cm away from the others. All the
hematoxylin and eosin slides of the ESCC tumor samples were mac-
roscopically reviewed (Tumor purity of each tumor sample was esti-
mated at least 60% by two pathologists, which makes sure all the
selected regions were comparable). All samples were immediately
frozen in liquid nitrogen and stored at −80 °C. Thin slices of snap-
frozen, OCT-embedded tissue blocks were sent for hematoxylin and
eosin (H&E) staining. Multi-regional tumors and adjacent non-tumor
esophageal tissue from36 ESCCpatientswere initially collected for the
study. All specimens were collected by surgical resection from Cancer
Hospital&Shenzhen Hospital with the written informed consent pro-
vided by the patients and the approval by the Research Ethics Com-
mittee of Cancer Hospital&Shenzhen Hospital (approval 2019-57).
Clinical information (provide in Source Data file) was collected,
including gender, age, TNMs stage, smoking and drinking. In total, 186
ESCC tumors and 36 non-cancerous matched normal tissue were
performedby the following sequencing experiments.We have consent
to publish indirect information including both gender and age. Other
clinical information which could identify patients directly are not
shown in this study. MOST approval(*BF2022123012755) had been
obtained to share genetic data outside of China.

Multi-regional whole-exome library construction and
sequencing
Genomic DNA was taken for whole-exome sequencing. The libraries
were constructed by the protocol of Agilent SureSelectXT Human All
Exon v6 (Agilent Technologies, CA, USA). First, fragmentation was
carried out by the hydrodynamic shearing system (Covaris, USA) to
generate 180–280bp fragments. Next, these short fragments went
through a series of library construction steps, such as purification, end
blunts, ‘A’ tailed, adaptor ligation, and amplification. After the PCR
reaction, the library hybridizes with the Liquid phase with a biotin-
labeled probe, then usesmagnetic beads with streptomycin to capture
the exons of genes. Captured libraries were enriched in a PCR reaction
to add index tags to prepare for hybridization. Products were purified
using the AMPure XP system (Beckman Coulter, Beverly, USA) and
quantified using the Agilent high sensitivity DNA assay on the Agilent
Bioanalyzer 2100 system. After fluorescence quantification by ABI
StepOne Plus real-time PCR system (Life technologies), the libraries
were sequenced on the Illumina HiSeq X Ten platform, with 150-bp
paired-end reads, according to the manufacturer’s instructions.

Sequence alignment and SNV calling
First, paired reads (150bp) were acquired fromHiseq and evaluated by
fastqc (version 0.11.7) (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). Then, the clean reads were aligned to the reference
human genome (build hg19), using the Burrows-Wheeler Aligner
(BWA) v0.7.15 to get the alignment file stored in BAM format39.
SAMTools40, Picard (http://broadinstitute.github.io/picard/), and
GATK (3.6.0)41 were separately used to sort BAM files, and remove
duplicated reads, local realignment, and base quality recalibration to
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generate final BAM files. Recalibration training databases included
HapMap 3.3, dbSNP build 132, Omni 2.5M chip, and Mills. Bamdst
(https://github.com/shiquan/bamdst) was performed to evaluate the
sequence coverage and depth.

BothMuTect42 (1.1.4) andVarScan243 were used to detect SNVs. To
identify somatic variants in the target exon data, we first used the
Mutect algorithm42, which detects candidate somaticmutations by the
Bayesian statistical analysis of bases and their qualities in both tumor
and normal BAM files at a given genomic locus. Variants called by
MuTect were filtered according to the filtering parameter ‘PASS’
Meanwhile, tumor and matched normal pileup files were generated
using the “samtools mpileup” command. Then VarScan2 somatic
(v2.3.9) utilized the output to identify somatic variants between tumor
andmatched normal samples. Rawsomatic variants werefiltered using
the VarScan ‘processSomatic’ subcommand with arguments –min-
tumor-freq 0.07, --max-normal-freq 0.02 and –p-value 0.05. An SNV
was detected if the mutations were called by both VarScan2 (p-
value < = 0.01) andMutectwhen variant allele frequency is greater than
5% and somatic p-value < = 0.01.

High-quality somatic variants could be obtained based on the
following filtering conditions:
(i) The total reads of the variant site were higher than 10 in both

tumor and normal samples.
(ii) VAF <0.02 and nomore than three reads in the normal samples.
(iii) VAF >0.05 and with more than five reads support variants allele

in the tumor samples.

ANNOVAR44 was utilized to annotate single-nucleotide variants,
and SNVs from the 1000 Genome database and dbSNP were removed,
but SNVs in the COSMIC database45 were retained.

Multi-regional WES provides the opportunity to increase the sen-
sitivity to detect low VAF variants46. A somatic mutation was not cap-
tured by all the tumor regions but only called in part of regions. Read
depth and allele information were obtained from the final BAM file
using bam-readcount (https://github.com/genome/bam-readcount).
Variants were considered to be present if their VAFwasmore than 0.02
or there were more than three reads supporting the variant allele.

The SNVs fromESCC40Awere selected for validation byultra-deep
WES (1200x). A strong relationshipwas observedbetween theVAF from
the exome-sequencing and the validation sequencing datasets.

We performed multi-regional whole-exome sequencing on 38
ESCC tumors and classified somatic mutations as clonal or subclonal
mutations. Thesemutations were defined as single-nucleotide variants
and copy-number alterations, which were shared by all the tumor
regions (clonal mutations) or shared by a subset of tumor regions
(subclonal)14. For the somatic SNV, we merged all the tumor region’s
SNVsanddivided them into twoparts: the SNVs sharedby all the tumor
regions are called clonal SNV, and the SNVs existed in only parts of
tumor regions are called subclonal. For the somatic SCNA, we per-
formed bedtools47 to obtain the SCNA segments shared by all the
tumor regions from one patient. The SCNA segments which were
shared by parts of tumor regions, were called subclonal SCNA.

Copy-number analysis
VarScan2 (v2.3.9) was performed to detect the copy-number status
from paired tumor and normal samples with default parameters.
Chromosomal arm copy-number alteration and the ITH status were
detected as the following steps:
(i) Clonal armgainor losswasdetected if all the samechromosomal

arms showed at least 75% gain (including amplification) or loss
across all the biopsies of the patient. And at least one biopsy
showed at least 90% gain or loss.

(ii) Subclonal arm gain or loss was detected if at least one biopsy of
the patient showed greater than 75% gain or loss of the
chromosomal arm.

Allele-specific copy number and ploidy estimates were generated
by using Sequenza48. Firstly, we converted VarScan2 output to
Sequenza format and further processed it using the Sequenza R
package to generate segmented copy-number profile and ploidy esti-
mates. The processed copy-number for each sample was divided by
the samplemean ploidy and then log2 transformed. Gain and loss were
defined as log2(2.5/2) and log2(1.5/2), respectively. Amplification was
defined as log2(4/2).

To correct purity for the copy number of each segment, we cal-
culate the expected log2ratio for each segment as follows:

log2

purity × cnseg + ð1� purityÞ× cnn

ploidy

� �
ð1Þ

The cnseg, purity, and ploidy are calculated from Sequenza. cnn is
the copy number of copy neutral region (i.e. 2).

The heterogeneity of CNAs was detected using the minimum
overlapped alteration regions. The output generated by Sequenza was
subsequently reviewed, and all gene amplifications, homozygous
deletions, and loss of heterozygosity were visually inspected using
plots of raw log2 and allele ratios. Genome doubling and wGII for each
tumor were determined as previously described17. We performed
ABSOLUTE to analyze exome sequencing data to identify the genome
doubling status of each tumor sample. Theweighted genome integrity
index (wGII) is calculated by thepercentageof SNPs across the genome
present at an aberrant copy number, relative to the normal copy
number of the tumor sample. The use of percentages helps eliminates
the bias induced by differing chromosome sizes. And the wGII score of
a sample is defined as the average of this percentage value over the 22
autosomal chromosomes.

Estimating cancer cell fraction for somatic mutations
To estimate the cancer cell fraction (CCF) for each somatic mutation.
The variant allele frequency, copy number in the corresponding
region, and the tumor purity were all taken into consideration as
previously described49.

CCF=VAF×
1=Purity

CNtumor × Purity + 2× ð1� PurityÞ ð2Þ

CCF is the cancer cell fraction, VAF is the variant allele frequency,
CNtumor is the copy number at themutation, and Purity is estimated by
Sequenza.

Subclonal deconstruction
PyClone50, which implemented the Dirichlet process clusteringmethod,
was used to infer the clonal subpopulations based on themutations and
copy numbers. We ran PyClone with 10,000 iterations and a burn-in of
1000 and default parameters. When we constructed the phylogenetic
tree basedon clonal compositions, twoprincipalswere considered:first,
the pigeonhole principle, which stated that twomutation clusters could
not be considered independently and on separate branches of an evo-
lutionary tree if the sum of the cancer cell prevalence values of the two
clusters exceeded 100% within a single tumor region. Second, a des-
cendent clone must exhibit a smaller cellular prevalence than its
ancestor within each tumor region, referred to as the “cross rule.”

Detection of MSAI (Mirrored Subclonal Allelic Imbalance)
Mirrored subclonal allelic imbalance discovery involves comparing the
BAFof the sameheterozygous SNPs acrossmultiple tumor regions and
detecting whether the BAF values always follow the same distribution
or whether their positions are reversed (mirrored). Germline SNPs
were called by using VarScan2, and only SNPs with a minimum cov-
erage of 10× were analyzed. The B allele frequency (BAF) of each SNP
was calculated as the ratio of reads of reference base to variant.
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Heterozygous SNPs and BAFs were used as input, andmirror subclone
allelic imbalances were analyzed by RECUR19 with default parameters.
We also detected a mirrored subclonal allelic imbalance arm gain or
loss as parallel evolution events, which is defined as when the opposite
parental alleles were affected in at least 75% of a chromosome arm in a
minimum of two regions.

Mutational signature analysis
Both silent and non-silent somatic SNVs were classified as either clonal
or subclonal as described, and then the mutational signatures esti-
mation of these SNVs were performed separately by using
deconstructSigs51. Signatures 1A, 2, 3, 4, 5, 6, 13, 15, 20, and 26 of the
published Signatures from Sanger COSMIC45 were considered. Both
clonal and subclonal-specificmutational signature analysis was applied
to each spatial biopsies with at least 15 mutations.

Microsatellite instability. MSI was estimated using the exome
sequence data byMSIsensor52 version 0.2 with default parameters and
filtered using a 0.05 false discovery rate threshold.

RRBS sequencing
Library construction and RRBS sequencing. The RRBS library was
constructed using 2μg of high-quality genomic DNA. Briefly, DNA was
restriction digested using theMspI enzyme, which cut the DNA at sites
CCGG, then the fragmentwas end-repaired and dA-tailing to blunt-end
products, followed by adaptor-ligation with T overhang. The ligation
products were purified by 2% agarose gel electrophoresis and size-
selected of DNA fragments 150–400bp long (including a 100 bp
adaptor). Size-selectedDNAwasbisulfite conversionwith theNEXTflex
Bisulfite-Seq Kit (Bioo Scientific, Austin, Tx, USA). Bisulfite-converted
DNAwas then amplifiedwith Illumina PCR primers PE1.0 and 2.0 for 18
cycles. The final library was enriched for fragments with adapters on
both ends, and the RRBS was performed by the Illumina HiSeq X Ten
platform.

RRBS quality control and alignment
We preprocessed the raw reads in the fastq format by in-house Perl
scripts. Clean readswere obtained by removing readswhich contained
adapter, poly-N, and low-quality bases in the read end from raw data.
Meanwhile, Q20, Q30, and GC content of clean data were evaluated
using the fastqc. Then, clean reads were mapped to the reference
genome using Bismark alignment software (version 0.18.1)53. The
mapped reads number, CpG site number, bisulfite conversion rate, and
other related details are shown in Supplementary Data 1.

Bulk purified tumor methylation level from RRBS and Multi-
dimensional scaling (MDS)
The bulk tumor methylation level can be explained as the mixture of
methylation level in the tumor cells and normal cells. To evaluate the
purified tumor cell’s methylation level from RRBS data, we calculated
the local copy-number state and the purity of sample. The purity were
evaluated using the WES dataset, and the local copy number was
estimated by HMMcopy. Considering the copy number at each CpG
site and the tumor purity, we can calculate the deconvolved tumor
methylation rate mt:

mt =
mb ρnt +nn 1� ρð Þ� �� nnmn 1� ρð Þ

ρnt
ð3Þ

The mt should be between 0 and 1, but considering the technical
and biological noise, the mt values could be outside of the ranges. We
corrected the negative methylation values up to 0 and values greater
than one were set to 1.

Next, we aggregated the multi-regional methylation data of each
patient. The CpG sites covered by all the samples of each patient were

used for further analyses. Then the genome was divided into 3-kb bins
(with ≥ 3 CpGs), and the genome-wide DNA methylation level was
measured by the mean methylation level of the 3-kb tiles. Then the
Euclidean distances between samples were calculated and input to the
cmdscale function in R to performMDS classification. Themethylation
level of the genepromoterwasdetermined by themeanvalue of all the
methylation sites located in the promoter regions.

DNA methylation variance among distinct spatial regions
We estimated the region-to-region variance with 3-kb bins. For a given
tumor, the standard deviation of methylation levels for a bin across
tumor regions was calculated. The variable bins were then ranked with
their values. Distribution enrichment of each genomic element in the
top 500 variable bins was calculated, and the significance was calcu-
lated using Fisher’s exact test.

Identification of DMRs and genomic element enrichment of
differentially methylated regions (DMRs)
The CpG sites covered by all the tumor regions and attached normal
samples were used for further DMR analysis. Differentially methylated
regions (1-kb) were identified by methylKit54. Hyper DMRs are the
genomic bins with a q-value <0.01 and a percent methylation differ-
ence larger than 25%. Hypo DMRs are the genomic bins with q-value
<0.01 and percent methylation difference less than −25%. A schema
was shown to explain the multi-regional methylation level ITH across
the ESCC cohort (Supplementary Fig. 7A). DMRs were annotated on
gene promoters (defined as 2-kb upstream and downstream of the
transcription start site), first exons, gene bodies, CpG islands, CpG
shores (2-kb genomic regions upstream and downstream of CpG
islands), and other genomic element regions (using the University of
California Santa Cruz (UCSC) table browser) using BedTools47.

Quantification of epigenetic ITH
We performed an average pairwise ITH36 (APITH) to measure the
methylation ITH for each patient. The value of APITH is not biased by
the number of multi-regional samples per tumor (Supplementary
Fig. 6C, D). For each ESCC patient with k tumor regions, we defined dij
as the epigenetic distance between a pair of samples (i, j) based on the
methylation level of 1kb-bins, and the APITH is defined as the average
across all pairs of samples:

APITH=
2

kðk � 1Þ
X

1≤ i<j ≤ k

dij ð4Þ

Epiallele shift analysis and epiallele diversity inference
We employed an updated version of methclone55 (https://github.com/
TheJacksonLaboratory/Methclone) to analyze the epiallele composi-
tion of each locus. The bam files were provided to the methclone to
calculate the dominant methylation pattern information of one locus
in the sample. To find suitable thresholds for read coverage, we
designed a series of read thresholds set to 40, 60, and80 reads.Wedid
not find significant differences among the results. So we chose a
relatively moderate threshold of 60 reads for methclone to calculate
loci. The methclone discards loci that have coverage below 60. To
evaluate intratumoral epigenetic heterogeneity, we used an open-
source R package epihet25 to calculate the proportion of discordant
reads (PDR), Epipolymorphism, and Shannon entropy.

Unsupervised clustering analysis
Unsupervised clustering analysis was performed on the copy-number,
RNA expression, and methylation level of tumor samples in the ESCC
cohort. Briefly, the Euclidean distances were calculated based on the
copy number calls, RNA expression of each gene, and the methylation
level of each bin in any pair samples. We next integrated all the three

Article https://doi.org/10.1038/s41467-023-36558-1

Nature Communications |          (2023) 14:892 10

https://github.com/TheJacksonLaboratory/Methclone
https://github.com/TheJacksonLaboratory/Methclone


omics distances to perform unsupervised hierarchical clustering.
Moreover, the distance of each omics level was also evaluated to
compare the concordance within patients and between patients.

Multi-regional RNA-Seq analysis
RNA sequencing and alignment. Total RNA was extracted and pur-
ified from fresh frozen tissues using the Trizol reagent (Invitrogen).
RNA integrity was measured on an Agilent 2100 Bioanalyzer (Agilent
Technologies). Paired samples with high RNA integrity (RNA integrity
number > 5), no contaminants, and enough amount of RNA were used
to prepare the transcriptome library. mRNA was purified from total
RNA using poly-T oligo-attached magnetic beads (Thermo Scientific)
and fragmented with an NEB Fragmentation Reagents kit (NEB). The
cDNA synthesis, end-repair, A-base addition, and ligation of the Illu-
mina index adapters were performed according to Illumina’s TruSeq
RNA protocol (Illumina). Library quality was measured on an Agilent
2100 Bioanalyzer for product size and concentration. Paired-end
libraries were sequenced by an Illumina HiSeq X Ten (2 × 150-nucleo-
tide read length), with a sequence coverage of 44M paired reads.
FASTQ data underwent quality control and were aligned to the hg19
genome using STAR56 to the human reference sequence (UCSC hg19
assembly).

RNA qualification and quantification
Transcript quantification was performed using RSEM with default
parameters57. And transcript per million (TPM) expression values were
generated. Genes were kept with an expression value of at least 1 TPM
in at least 20% (35/176) of tumor samples in the multi-region RNA-Seq
dataset, and log2(TPM+ 1) were used to represent the expression
levels. In total, 24,302 genes were applied for further analysis.

RNA heterogeneity scores
Both Intratumor RNA heterogeneity scores and Intertumor RNA het-
erogeneity scores were calculated using multi-region RNA-Seq data
(normalized count values) from ESCC, which is similar to Dhruva et al.
method27.

RNA heterogeneity quadrants
We devised the RNA heterogeneity quadrants by splitting the intra-
and inter-RNA heterogeneity using their respective mean values.

Pathway analysis
Pathway enrichment analysis was performed on genes in ESCC Q1-Q4
quadrants using the ReactomePApackage (version 1.28.0). Bonferroni-
adjusted P-value was evaluated, which was based on the threshold
P-value <0.01.

Correlated subclonal SCNA with gene expression changes
Based on the heterogeneous copy-number segments between paired
tumor regions, we explored the gene expression difference between
copy-number alterations and copy-number neutral in the corre-
sponding genes by subtracting the log2 expression value of the SCNA
neutral gene from the SCN alteration genes.We then performed a two-
sided paired t-test to evaluate the statistical significance.

To examine the enrichment of genes with different copy-number
statuses across the four heterogeneity quadrants, we first divided all
genes within individual patients into “clonal gain”, “clonal loss”, “sub-
clonal gain”, “subclonal loss” and “no changes” classes. Then we deter-
mined whether the different classes of genes across the four quadrants
are enriched or depleted by using a two-sided Fisher’s exact test.

Correlation between the differentially methylated promoter
and corresponding gene expression changes
We assessed differentially methylated promoters as follows: The
methylation levels of all the CpG sites within the promoter of any

paired tumor regions from the same patient were compared. Sites that
were differentially methylated at the significant level of 0.05 as
determined by Fisher’s exact test and had a minimum methylation
difference of 0.2 between two tumor regions were considered as dif-
ferentially methylated promoters. Then we detected the difference
between the expression values of corresponding genes in the two
tumor regions. Statistical significance was tested with a two-sided
paired t-test. Similar steps were also performed in the first exon
genomic region.

Estimating tumor immune infiltration based on RNA-seq
In this part, we performed the Danaher et al. method28 to evaluate the
scores of the immune cell population. The immune signature of this
method optimally estimated immune infiltrates compared with other
immune cell deconvolutionmethod37. ThemethodofDanaher et al. was
used to estimate immune cell populations for the tumor region samples
by the RNA-seq dataset. The immune cell populations consist of CD4+

T cells (CD4), helper T cells (TH1), regulatory T cells (Treg), dendritic
cells (dendritic), B cells (B cell), mast cells (mast), natural killer cells
(NK), natural killer CD56− cells (NK CD56−), neutrophils, macrophages,
CD45+ cells (CD45), CD8+ T cells (CD8), exhausted CD8+ T cells (CD8
exhausted), andmeasures for total T cells (T cells), total TILs (total TIL)
and cytotoxic cells (cyto). We also used ConsensusTME method29 to
validate the TILs score of each immune cell population. This method
used co-expression patterns in large tumor gene expression datasets to
obtain candidate cell type marker genes lists, eliminate numerous false
positives and provide high-confidence marker genes. This method
provides robust TILs estimation and performs excellently in all cancer-
related benchmarks to estimate the existing TILs of tumors. The
immune cell population scores of ConsensusTME were normalized to
compare with the Danaher method results by using the “ESCA” cancer
type. The immune distance was determined by using the Euclidean
distance of immune-infiltrate estimates between tumor regions.

Classifying tumor regions based on the levels of immune
infiltration
First, we clustered the samples from the ESCC cohort based on the
immune cell population estimated score using “ward.D2”. Tumor
samples were split into two different groups according to the den-
drogram. The sampleswith higher immune cell population scoreswere
considered to be tumor regionswith high levels of immune infiltration.
And the samples with lower immune cell populations were considered
to be tumor regions with low levels of immune infiltration.
If all the tumor regions of the patient were classified as immune
high/low, the patient was considered as immune high/low group. If
the high immune samples and low immune samples co-existed in the
same patient, the overall tumor was classified as a heterogeneous
immune group. The three patients (ESCC12, ESCC15, ESCC56) without
RNA-seq data were excluded from the immune infiltration analysis.

Validating tumor immune infiltration using opal
Multiplex staining was performed on 4mm formalin-fixed paraffin-
embedded sections using theOpalmultiplex IHC system (PerkinElmer;
NEL800001KT) according to the manufacturer’s instructions. Briefly,
slides were baked for 1 h at 80 °C, followed by deparaffinization with
xylene and a graded series of ethanol dilutions (100%, 95%, and 70%),
fixation with 10% neutral buffered formalin for 30minutes, microwave
antigen retrieval using the AR9 buffer (PerkinElmer; AR900250ML),
and blocking. The antibodies used in this section were CD8
(R&D,MAB1509, clone# 37006, diluted at 1:200), CD56 (R&D, AF2408,
Polyclonal, diluted at 1:150), CD4 (Abcam, ab133616, clone EPR6855,
diluted at 1:200), CD68 (Abcam, ab213363, clone EPR20545, diluted at
1:200), FOXP3 (Abcam, ab22510, clone mAbcam22510, diluted at
1:200), CK (Abcam, ab756, clone MNF116, diluted at 1:50). To visualize
immunofluorescent signaling, the following OPALTM (Perkin Elmer)
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TSA dyes were used: OPAL520, 570, 620, 650, 690. Spectral DAPI
(Perkin Elmer) was used for the nuclear counterstain. Imaging of slides
was performed on a Vectra 3.0 Automated Imaging System (Perkin
Elmer). Counterstain was done using DAPI (1:1000) and subsequently
mounted using Vectashield (Vectra; H-1000) fluorescence media.
Tyrosinase for higher-resolution imaging at 20x magnification using
Phenochart (Perkin Elmer). The number of 20x images per sample
scanned by the Vectra 3.0 microscope and used for further analysis.

HLA type and HLA LOH prediction
The HLA type for each patient was detected using POLYSOLVER33,
which uses a normal tissue BAM file as input and employs a Bayesian
classifier to determine genotype. Tumour regions with HLA LOH
events were detected using LOHHLA34.

Neoantigen binders prediction
All 9-11mer peptides that overlapped identified non-silent mutations
present in the sample were considered candidate epitopes. MHC-I
binding affinity was calculated for every mutation and corresponding
wild-type allele using netMHCpan-4.058. The mutant epitope with
percentile binding scores of ≤ 2% and equal or better affinity than the
wild-type epitope were considered putative neoepitopes. In cases of
tumor sample with HLA LOH, predicted neoepitopes associated with
the lost HLA allele were excluded (for subclonal HLA LOH, a neoepi-
topewas only excluded if all clones with the neoepitope also exhibited
loss of the corresponding HLA allele). When RNA-seq data were avail-
able, an expressed neoantigen was detected if at least five RNA-seq
reads mapped to the mutation position, and at least three contained
the mutated allele.

Statistical information
We performed all the statistical tests using R. Comparisons of dis-
tributions were done using ‘wilcox. test’ or ‘t.test’. The two-sided Stu-
dent’s t-test was used to compare the significant differences between
the two groups. To consolidate the conclusion of the correlation test
of our study, We also performed partial correlation to estimate Pear-
son (linear) correlationbetween twovariableswhile controlling forone
or more other variables (An R Package for a Fast Calculation to Semi-
partial Correlation Coefficients.). This method has been validated in
many studies. We computed the partial correlation controlling for
tumor purity using the pcor.test() function from the R package ppcor.
All data are presented as mean values ± SEM.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Rawsequencedata (WES, RRBS, andRNASeqdataset) used in the study
has been deposited at the European Genome-phenome Archive (EGA),
which is hosted by the European Bioinformatics Institute (EBI) under
the accession code EGAS00001003832. Please contact theDataAccess
Committee (DAC) for access to the data: [https://ega-archive.org/dacs/
EGAC00001002881]. Data access can beobtained through a request to
the corresponding authors. Access to the datawill be restricted to non-
commercial entities. The corresponding authorswill generally respond
to requests within five days. Once granted, the access has no time
restriction. The remaining data are available within the article, Sup-
plementary Information and Source data provided within this
paper. Source data are provided with this paper.

Code availability
Software code is available at https://github.com/JerrySijia/
ESCCMultiregion and can be freely used for educational and
researchpurposes by non-profit institution. For informationon the use

for a commercial purpose or by a commercial or for-profit organiza-
tion, please contact Professor Shixiu Wu.

References
1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. Ca

Cancer J. Clin. 60, 277–300 (2010).
2. Ferlay, J. et al. Cancer incidence andmortality worldwide: Sources,

methods andmajor patterns in GLOBOCAN 2012. Int. J. Cancer 136,
E359–E386 (2015).

3. Gao, Y. B. et al. Genetic landscape of esophageal squamous cell
carcinoma. Nat. Genet. 46, 1097–1102 (2014).

4. Lin, D. C. et al. Genomic and molecular characterization of eso-
phageal squamous cell carcinoma. Nat. Genet. 46, 467–473
(2014).

5. Song, Y. et al. Identification of genomic alterations in oesophageal
squamous cell cancer. Nature 509, 91–95 (2014).

6. Zhang, L. et al. Genomic analyses reveal mutational signatures and
frequently altered genes in esophageal squamous cell carcinoma.
Am. J. Hum. Genet. 96, 597–611 (2015).

7. Cheng, C. et al.Whole-genome sequencing reveals diversemodels
of structural variations in esophageal squamous cell carcinoma.
Am. J. Hum. Genet. 98, 256–274 (2016).

8. Cancer Genome Atlas Research N. et al. Integrated genomic char-
acterization of oesophageal carcinoma. Nature 541, 169–175 (2017).

9. Greaves, M. Evolutionary determinants of cancer.Cancer Discov. 5,
806–820 (2015).

10. Hao, J. J. et al. Spatial intratumoral heterogeneity and temporal
clonal evolution in esophageal squamous cell carcinoma. Nat.
Genet. 48, 1500–1507 (2016).

11. Yan, T. et al. Multi-region sequencing unveils novel actionable tar-
gets and spatial heterogeneity in esophageal squamous cell car-
cinoma. Nat. Commun. 10, 1670 (2019).

12. Chen, X. X. et al. Genomic comparison of esophageal squamous
cell carcinoma and its precursor lesions by multi-region whole-
exome sequencing. Nat. Commun. 8, 524 (2017).

13. Lin, D. C., Wang, M. R. & Koeffler, H. P. Genomic and epigenomic
aberrations in esophageal squamous cell carcinoma and implica-
tions for patients. Gastroenterology 154, 374–389 (2018).

14. J-H,M. et al. Tracking theevolutionof non-small-cell lungcancer.N.
Engl. J. Med. 376, 2109–2121 (2017).

15. Zhang, M. et al. Clonal architecture in mesothelioma is prognostic
and shapes the tumour microenvironment. Nat. Commun. 12,
1–12 (2021).

16. Masoodi, T. et al. Evolution and impact of subclonal mutations in
papillary thyroid cancer. Am. J. Hum. Genet. 105, 959–973 (2019).

17. Burrell, R. A. et al. Replication stress links structural and numerical
cancer chromosomal instability. Nature 494, 492–496 (2013).

18. Dewhurst, S. M. et al. Tolerance of whole-genome doubling pro-
pagates chromosomal instability and accelerates cancer genome
evolution. Cancer Discov. 4, 175–185 (2014).

19. Jakubek, Y. A., San Lucas, F. A. & Scheet, P. Directional allelic
imbalance profiling and visualization from multi-sample data with
RECUR. Bioinformatics 35, 2300–2302 (2019).

20. Alexandrov, L. B. et al. Signatures ofmutational processes in human
cancer. Nature 500, 415–421 (2013).

21. Meier, B. et al. Mutational signatures of DNA mismatch repair defi-
ciency in C. elegans and human cancers. Genome Res. 28,
666–675 (2018).

22. Alvarez, H. et al. Widespread hypomethylation occurs early and
synergizes with gene amplification during esophageal carcino-
genesis. Plos Genet. 7, e1001356 (2011).

23. Cordaux, R. & Batzer, M. A. The impact of retrotransposons on
human genome evolution. Nat. Rev. Genet. 10, 691–703 (2009).

24. Li, S. et al. Dynamic evolution of clonal epialleles revealed by
methclone. Genome Biol. 15, 472 (2014).

Article https://doi.org/10.1038/s41467-023-36558-1

Nature Communications |          (2023) 14:892 12

https://ega-archive.org/dacs/EGAC00001002881
https://ega-archive.org/dacs/EGAC00001002881
https://github.com/JerrySijia/ESCCMultiregion
https://github.com/JerrySijia/ESCCMultiregion


25. Chen, X. et al. epihet for intra-tumoral epigenetic heterogeneity
analysis and visualization. Sci. Rep. 11, 1–8 (2021).

26. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epi-
genome—biological and translational implications. Nat. Rev. Can-
cer 11, 726–734 (2011).

27. Biswas, D. et al. A clonal expression biomarker associates with lung
cancer mortality. Nat. Med. 25, 1540–1548 (2019).

28. Danaher, P. et al. Gene expression markers of Tumor Infiltrating
Leukocytes. J. Immunother. Cancer 5, 18 (2017).

29. Jimenez-Sanchez, A., Cast, O. & Miller, M. L. Comprehensive
benchmarking and integration of tumor microenvironment cell
estimation methods. Cancer Res. 79, 6238–6246 (2019).

30. McGranahan, N. et al. Clonal neoantigens elicit T cell immunor-
eactivity and sensitivity to immune checkpoint blockade. Science
351, 1463–1469 (2016).

31. Milo, I. et al. The immune system profoundly restricts intratumor
genetic heterogeneity. Sci. Immunol. 3, eaat1435 (2018).

32. Hellmann, M. D. et al. Tumor mutational burden and efficacy of
nivolumab monotherapy and in combination with ipilimumab in
small-cell lung cancer. Cancer cell 35, 329 (2019).

33. Shukla, S. A. et al. Comprehensive analysis of cancer-associated
somatic mutations in class I HLA genes. Nat. Biotechnol. 33,
1152–1158 (2015).

34. McGranahan, N. et al. Allele-specific HLA loss and immune escape
in lung cancer evolution. Cell 171, 1259–1271.e1211 (2017).

35. Schaafsma, E., Fugle, C. M., Wang, X. & Cheng, C. Pan-cancer
association of HLA gene expression with cancer prognosis and
immunotherapy efficacy. Br. J. Cancer 125, 422–432 (2021).

36. Hua, X. et al. Genetic and epigenetic intratumor heterogeneity
impacts prognosis of lung adenocarcinoma. Nat. Commun. 11,
2459 (2020).

37. Rosenthal, R. et al. Neoantigen-directed immune escape in lung
cancer evolution. Nature 567, 479–485 (2019).

38. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy
correlates with markers of immune evasion and with reduced
response to immunotherapy. Science 355, eaaf8399 (2017).

39. Li, H. & Durbin, R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 25, 1754–1760
(2009).

40. Li, H. et al. The sequence alignment/map format and SAMtools.
Bioinformatics 25, 2078–2079 (2009).

41. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce
framework for analyzing next-generation DNA sequencing data.
Genome Res. 20, 1297–1303 (2010).

42. Cibulskis, K. et al. Sensitive detection of somatic point mutations in
impure and heterogeneous cancer samples. Nat. Biotechnol. 31,
213–219 (2013).

43. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number
alteration discovery in cancer by exome sequencing. Genome Res.
22, 568 (2012).

44. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation
of genetic variants from high-throughput sequencing data.Nucleic
Acids Res. 38, e164 (2010).

45. Forbes, S. A. et al. COSMIC: exploring the world’s knowledge of
somatic mutations in human cancer. Nucleic Acids Res. 43,
805–811 (2015).

46. T-W, A. et al. Paired exome analysis of Barrett’s esophagus and
adenocarcinoma.%A Stachler MD. Nat. Genet. 47,
1047–1055 (2015).

47. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities
for comparing genomic features. Bioinformatics 26, 841–842
(2010).

48. Favero, F. et al. Sequenza: allele-specific copy number and muta-
tion profiles from tumor sequencing data. Ann. Oncol. 26,
64 (2015).

49. Nicholas, M. G. et al. Clonal status of actionable driver events and
the timing of mutational processes in cancer evolution. Sci. Transl.
Med. 7, 283ra254 (2015).

50. Roth, A. et al. PyClone: statistical inference of clonal population
structure in cancer. Nat. Methods 11, 396–398 (2014).

51. Rosenthal, R., Mcgranahan, N., Herrero, J., Taylor, B. S. & Swanton,
C. DeconstructSigs: delineating mutational processes in single
tumors distinguishes DNA repair deficiencies and patterns of car-
cinoma evolution. Genome Biol. 17, 31 (2016).

52. Niu, B. et al. MSIsensor: microsatellite instability detection using
paired tumor-normal sequence data. Bioinformatics 30,
1015–1016 (2014).

53. Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and
methylation caller for Bisulfite-Seq applications. Bioinformatics 27,
1571–1572 (2011).

54. Akalin, A. et al. methylKit: a comprehensive R package for the
analysis of genome-wide DNA methylation profiles. Genome Biol.
13, R87 (2012).

55. Barrett, J. E. et al. Quantification of tumour evolution and hetero-
geneity via Bayesian epiallele detection. BMC Bioinform. 18,
354 (2017).

56. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinfor-
matics 29, 15–21 (2013).

57. Bo, L. & Dewey, C. N. RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC Bioinform.
12, 323 (2011).

58. Massimo, A. & Morten, N. Gapped sequence alignment using arti-
ficial neural networks: application to\n the MHC class I system.
Bioinformatics 32, 511–517 (2015).

Acknowledgements
This work was financially supported by the Sanming Project of Medicine
in Shenzhen (No. ZSM201812062, No. ZSM201612063), the National
Natural Science Foundation of China (No. 81672994). We thank the
Research Ethics Committee of Cancer Hospital&Shenzhen Hospital for
the ethics.

Author contributions
Study concepts and design: Shixiu Wu and Tariq Enver. ESCC tissues
collection: PengChen and JingGao. Experimental conduction: Lingrong
Yang, Peiyu wu and Jiao Ruidi. Statistical analysis: Sijia Cui, Wei Jiang, Li
Ma, Tian Xie and Junfang Liao. Manuscript Writing and editing: Sijia Cui,
Nicholas McGranahan and Congying Xie.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-36558-1.

Correspondence and requests for materials should be addressed to
Congying Xie, Tariq Enver or Shixiu Wu.

Peer review information Nature Communications thanks Sun Kim,
De-Chen Lin, Noel (F) DeMiranda and the other anonymous reviewer(s)
for their contribution to the peer review of this work. Peer review reports
are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-023-36558-1

Nature Communications |          (2023) 14:892 13

https://doi.org/10.1038/s41467-023-36558-1
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-36558-1

Nature Communications |          (2023) 14:892 14

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Tracking the evolution of esophageal squamous cell carcinoma under dynamic immune selection by multi-omics sequencing
	Results
	Genomic ITH in ESCC
	Fuels of genomic ITH in ESCC
	Chromosomal instability
	Mutagenic processes
	Epigenomic ITH in ESCC
	Fuels of epigenetic ITH
	Transcriptomic ITH in ESCC
	Fuels of transcriptomic ITH in ESCC
	Immune infiltration drives the heterogeneity across a different omic level
	Comparison between Inter-heterogeneity and Intra-heterogeneity in ESCC

	Discussion
	Material and methods
	Patients and sample collection
	Multi-regional whole-exome library construction and sequencing
	Sequence alignment and SNV calling
	Copy-number analysis
	Estimating cancer cell fraction for somatic mutations
	Subclonal deconstruction
	Detection of MSAI (Mirrored Subclonal Allelic Imbalance)
	Mutational signature analysis
	Microsatellite instability
	RRBS sequencing
	Library construction and RRBS sequencing
	RRBS quality control and alignment
	Bulk purified tumor methylation level from RRBS and Multidimensional scaling (MDS)
	DNA methylation variance among distinct spatial regions
	Identification of DMRs and genomic element enrichment of differentially methylated regions (DMRs)
	Quantification of epigenetic ITH
	Epiallele shift analysis and epiallele diversity inference
	Unsupervised clustering analysis
	Multi-regional RNA-Seq analysis
	RNA sequencing and alignment
	RNA qualification and quantification
	RNA heterogeneity scores
	RNA heterogeneity quadrants
	Pathway analysis
	Correlated subclonal SCNA with gene expression changes
	Correlation between the differentially methylated promoter and corresponding gene expression changes
	Estimating tumor immune infiltration based on RNA-seq
	Classifying tumor regions based on the levels of immune infiltration
	Validating tumor immune infiltration using opal
	HLA type and HLA LOH prediction
	Neoantigen binders prediction
	Statistical information
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




