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A B S T R A C T 

We investigate the effect of observing cadence on the precision of radius ratio values obtained from transit light curves by 

performing uniform Markov chain Monte Carlo fits of 46 exoplanets observed by the Transiting Exoplanet Survey Satellite 
( TESS ) in multiple cadences. We find median impro v ements of almost 50 per cent when comparing fits to 20 and 120 s 
cadence light curves to 1800 s cadence light curves, and of 37 per cent when comparing 600 s cadence to 1800 s cadence. Such 

impro v ements in radius precision are important, for example, to precisely constrain the properties of the radius valley or to 

characterize exoplanet atmospheres. We also implement a numerical information analysis to predict the precision of parameter 
estimates for different observing cadences. We tested this analysis on our sample and found that it reliably predicts the effect of 
shortening observing cadence with errors in the predicted percentage precision of � 0 . 5 per cent for most cases. We apply this 
method to 157 TESS objects of interest that have only been observed with 1800 s cadence to predict the precision impro v ement 
that could be obtained by reobservations with shorter cadences and provide the full table of expected improvements. We report 
the 10 planet candidates that would benefit the most from reobservations at short cadence. Our implementation of the information 

analysis for the prediction of the precision of exoplanet parameters, Prediction of Exoplanet Precisions using Information in 

Transit Analysis, is made publicly available. 
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 I N T RO D U C T I O N  

he transit technique has pro v en its success with more than 3500
 xoplanets disco v ered using it. Missions like Kepler (Borucki et al.
007 , 2010 ; Borucki 2016 ) and the Transiting Exoplanet Survey
atellite ( TESS ; Ricker et al. 2015 ) have provided the exoplanet
ommunity not only with a large number of newly disco v ered
xoplanets, but also with the ability to characterize them with an 
 ver-increasing le vel of detail as we better understand how to extract
he information contained in their transits. 

The transit of an exoplanet allows us to measure the radius ratio
etween the planet and the star, R p / R ∗ (see e.g. Seager & Mall ́en-
rnelas 2003 ), from which knowing the radius of the star, one can
etermine the radius of the planet. There is a particular interest in
btaining precise measurements of this quantity, since knowledge 
bout an individual exoplanet or an exoplanet population can be 
eri ved gi ven such measurements of this quantity. F or e xample, using
ata from the Kepler mission, a drop in the number of exoplanets
ith radii in between Earth’s and Jupiter’s was disco v ered (Fulton

t al. 2017 ). This valley is known as the ‘radius valley’ and was
lready predicted before its disco v ery by several groups (see e.g.
wen & Wu 2013 ). Ho we ver, the av ailability of precise planetary
adius measurements will be essential in the correct characterization 
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position and depth) of the valley (see e.g. Van Eylen et al. 2018 ;
uber et al. 2022 ; Ho & Van Eylen 2023 ). Planetary radii are also

ssential in obtaining estimates for planetary densities, which are 
ndicative of the composition of an exoplanet (see e.g. Zeng &
acobsen 2017 ). Moreo v er, e xtremely precise measurements of
ransit depths (which are directly related to planetary radii), with 
recisions of 0.5 per cent in different bands, can be used to obtain
ransmission spectra of atmospheres and thus, infer the atmospheric 
omposition of exoplanets (see e.g. Yang, Chary & Liu 2022 ). 

In the past years, concerns have been raised about the possible
nfluence that the choice of cadences in the observation of exoplanet
ransit light curves may have in the precision of parameters derived
rom these events (see e.g. Dawson & Johnson 2012 ; Petigura 2020 ;
lexoudi 2022 ; Huber et al. 2022 ). Even before this, Kipping ( 2010 )
escribed how the use of longer cadences introduces distortions in the 
orphology of a transit light curve, affecting mostly the ingress and

gress of the transit as shown in Fig. 1 . Ho we ver, these deformations
f the light curve can be modelled by numerically integrating a light
urve to the required cadence (Kipping 2010 ). Presently, the concern
ies in how the use of longer cadences (i.e. integrating the light
urves to longer times) represents a loss of information that cannot
e reco v ered ev en though our models accurately predict the shape of
inned light curves (see e.g. Petigura 2020 ). This loss of information
ranslates into light curves arising from different parameter sets 
ecoming more alike and thus, reducing the precision with which 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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M

Figure 1. The binning of a light curve produces deformations in its 
morphology. These are most evident in the shift of the contact points and 
the lengthening of the ingress and egress here highlighted with arrows in 
the zoomed plot. These deformations are understood and can be predicted 
by models as evidenced by the light curves shown in this figure that were 
generated using PYTRANSIT . 
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e may extract information about different parameters from these
ight curves. Fig. 2 illustrates this idea with the transits of two planets
ith a different set of parameters, both with 20 s and 1800 s cadences.
he bottom plots of the figure show the difference between the light
urves produced by each of the planets in each cadence and illustrate
ow, for the shorter cadence, there is a greater difference between
he transits, while for the longer cadence the differences are smaller,
hich is what is meant by saying that information is lost. 
This idea of the information contained in a light curve has been

xplored in previous works such as Carter et al. ( 2008 ) and Price &
ogers ( 2014 ), where they implement an analytical Fisher infor-
ation analysis (information analysis henceforth) to approximate,

on-limb-darkened forms of transit light curves. The analysis of
NRAS 520, 4103–4117 (2023) 
rice & Rogers ( 2014 ) allows them to predict, for each cadence
nd particular parameter set, what is the best precision that can be
btained by fitting each of the model parameters. 
In this work, we approach the issue of cadence from two sides.

irst, we aim to provide an in-depth analysis of its effects by
erforming fits to a number of TESS -confirmed planets that were
bserved using more than one cadence and then compare the resulting
recisions in the radius ratio to understand what the impact of cadence
s. Secondly, we extend previous analytical implementations of the
nformation analysis by developing a numerical implementation of
he analysis that can be applied to the non-approximate and limb-
arkened forms of transit light curves and that can be adapted
o any fitting model. We compare the predictions of this analysis
ith the results of our previous fits to understand whether the

nformation analysis may be used as a reliable tool in the prediction
f parameter precisions and compare our method with previous
nalytical methods. 

In Section 2 , we lay out the methodology that we follow in order
o perform the homogeneous fits of a large number of light curves
s well as the process of candidate selection. We also present our
mplementation of the information analysis to exoplanet transits.
hen, in Section 3 we summarize the results obtained by our work

hat are then discussed in Section 4 , and we conclude in Section 5 . 

 M E T H O D  

.1 Candidate selection 

he selection of candidates starts with the full list of TESS -confirmed
lanets obtained from the NASA Exoplanet Archive (NEA; NASA
xoplanet Science Institute ( 2020 ), downloaded June 2022), out of
hich systems consisting of a single planet orbiting a single star

re selected, reducing the original number of 231 systems down to
05. We make this choice for computational simplicity and to reduce
he number of light curves that need to be fitted. We do not expect
hat the presence of other planets in the system and/or possibly the
resence of more than one star in the system to invalidate the results
ere presented, although these cases would require an extension of
he prediction algorithm presented below to simultaneously model

ultiple planets and account for third light contamination. Ho we ver,
his is something that should be investigated independently. For each
f these systems, we obtain the available light curves using the
IGHTKURVE PYTHON package (Lightkurve Collaboration 2018 ) to
earch for light curves in the Mikulski Archive for Space Telescopes
MAST) data archive. 1 In order to ensure the homogeneity in the
reatment applied to the light curves, only those authored by the TESS
cience Processing Operations Center or SPOC – which is in charge
f receiving raw data and extracting photometry and astrometry for
ach target and identifying and removing systematic errors among
ther tasks – are used. For a detailed description of the TESS SPOC
ipeline, see Jenkins et al. ( 2016 ) and the data release notes. 2 Once
 list of all the available light curves along with their cadences has
een obtained for all the systems, only those for which more than
 single cadence is available are selected in this step, reducing the
ist down to 83 systems. This is done because light curves released
ith a shorter cadence do not necessarily have longer cadence light

urves released by SPOC. 

art/stad408_f1.eps
https://archive.stsci.edu/index.html
https://archive.stsci.edu/tess/tess_drn.html
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Figure 2. Transit of planets with two different sets of parameters in both short (20 s) and long (1800 s) cadences. The bottom plots show the differences between 
the light curves and highlight how the longer cadence light curves have smaller difference (are more alike) and how, in this way, information that was contained 
in the shorter cadence light curve has been lost. The differences in radius ratio here would correspond to an ambiguity between the transit produced by a planet 
with a radius of ∼ 2 . 18 R ⊕ and a planet with a radius of ∼ 2 . 64 R ⊕ for a Sun-like star, an increase of radius of 21 per cent. Light curves are generated using 
PYTRANSIT and the plot is based on the ideas presented by Petigura ( 2020 ). 
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When a system has been observed in multiple cadences, since 
ome regions of the sky were observed in more TESS sectors than
thers, different cadences for a given system may have a different 
umber of available sectors. That is, out of all cadences available so
ar for TESS light curves (i.e. 20, 120, 600, and 1800 s), a target may
ave been observed with 1800 s in five sectors, with 600 s in four and
ith 120 s in just one. Therefore, we fit sectors of a given exposure
ne at a time in order to allow for a more homogeneous comparison of
ifferent cadences so that any changes in the retrieved parameters can 
e assumed, at least to the extent of the precautions taken here allow
or, to arise from cadence effects. Whether this decision may have an
nfluence in our results is explored later on by fitting a small number
f systems with the same number of sectors available for several 
adences. 

Ho we ver, the decision to fit individual sectors introduces a further
onstraint in our selection of systems due to the relatively short
uration ( ∼27 d) of a sector. In order to ensure a good fitting of
he transits, we decide that at least five transits should be present
n the light curve captured in each sector. This ef fecti vely results
n a restriction on planetary orbital periods, which are needed to be
horter than 5 d. With this final filtering of the list, we are left with a
election of 46 TESS -confirmed planets in systems with a single star
nd a single planet, with more than one cadence available and with
eriods less than 5 d. These 46 systems translate to a total of 556
ingle-sector light curves to be fitted. A list of all the selected systems
s well as the cadences available for each cadence is provided in the
itHub repository. 3 

.2 Light-cur v e processing and fitting 

re-processing of the light curve starts by applying a Savitzky–Golay 
lter (Savitzky & Golay 2002 ) to the light curve in order to remo v e
ny present trends in the data – vibration of the instrument or stellar
ariability, among others. In order to prev ent an y deformation in the
ransits by the application of the filter, two precautions are taken: 

(i) A transit mask is created using the transit duration, period, and
ransit time values from the NEA table. This mask is used to prevent
he filter from incorporating the transits into the calculation of trends
nd protects the transits from deformations. 

(ii) The window length of the filter is chosen to be five times the
umber of data points in a single transit to further discourage the
ltering of trends associated with the transits. 

Additionally, periodograms are calculated for the filtered light 
urves using a box least-squares procedure from which values for 
MNRAS 520, 4103–4117 (2023) 
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Table 1. Transit and GP variables fitted with the Bayesian model and their 
priors. N ( μ, σ 2 ) represents a normal distribution with mean μ and standard 
deviation σ , | N | ( μ, σ 2 ), represents a normal distribution of only positive 
values with mean μ and standard deviation σ and U ( a, b) represents a uniform 

distribution between a and b . Values of the form NEA x indicate that the value 
of x comes from the NEA table. Similarly, a standard deviation of the form 

NEA σx indicates that the standard deviation is taken as the error reported in 
the NEA table value. Fallback values for the period and transit time standard 
deviations in case no value is available in the NEA table are 10 −3 . 

Variable Prior 

P N ( NEA P , NEA σ 2 
P ) 

t 0 N ( NEA t 0 , NEA σ 2 
t 0 

) 
log R P / R ∗ N ( 

√ 

bls depth , 5 2 ) 
b U (0,1) 
{ u 1 , u 2 } Uninformative, as described in Kipping ( 2013 ) 
ˆ F N (0, 1 2 ) 

M ∗ | N | ( NEA M ∗, 10 2 ) 
R ∗ | N | ( NEA M ∗, NEA σ 2 

R ∗ ) 
log σ N (0, 0.1 2 ) 
log ρ N (0, 0.1 2 ) 
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he period, transit time, and depth of the transit (bls depth) are
btained. The square root of the value of the transit depth is used as
 starting guess of the planet radius ratio, but the period and transit
ime obtained from the box least squares are only used as wherever
o values for these quantities are available in the NEA table. 
The final pre-processing step consists of modelling any remaining

istortions in the data by using a Gaussian process (GP), which
nds functions that predict trends in the data (for more details
bout GPs and their application to exoplanet transits see Barros
t al. 2020 ) and outlier identification after the distortion has been
emo v ed. To do this, a Bayesian model is set up using the EXOPLANET

ackage (Kumar et al. 2019 ; Foreman-Mackey et al. 2021 ) and
YMC3 (Salvatier , W iecki & Fonnesbeck 2016 ) while the GP is
mplemented using celerite2 (F oreman-Macke y et al. 2017 ;
 oreman-Macke y 2018 ). The transit is modelled using the parame-

ers { P , t 0 , log R P /R ∗, b, u 1 , u 2 , ˆ F , M ∗, R ∗} , where P is the orbital
eriod of the planet, t 0 is a reference time for the transit (the mid-
ransit time of a reference transit), R p / R ∗ is the radius ratio between
he planet and the star, b is the impact parameter, { u 1 , u 2 } are the
arameters for a quadratic limb-darkening model, ˆ F is the mean
alue of the flux in the light curve, M ∗ is the mass of the host
tar, and R ∗ is the radius of the host star. Meanwhile, for the GP a
HOTerm 

4 is used as the kernel and its parameters { log σ , log ρ}
see documentation for the meaning of these parameters) are fitted
imultaneously with the transit to model any trends in the residuals.
he procedure here follows the basic structure described in the TESS
ase study presented in the exoplanet package. 5 

Tight priors are only placed on the period, transit time, and radius
f the star, with the rest of the variables set with either loose Gaussian
riors or uniform priors. This is to allow the information contained
ithin each light curve to determine the shape of the posteriors, rather

han it be dominated by a tight prior, so that any difference between
adences becomes apparent. As a note of caution, we chose not to fit
or eccentricity for computational efficiency given the large sample of
ight curves to be fitted. Any signatures left behind in the light curve
hould be absorbed into the posterior of the stellar density (see e.g.
awson & Johnson 2012 ; Van Eylen et al. 2019 ) so we expect any

ffect on the radius ratio determination to be negligible. Additionally,
 uniform prior between 0 and 1 is placed on the impact parameter,
eaning that grazing transits – those for which b > 1 – cannot be
odelled. This should not be an issue as there are no planets with

razing transits in the selected sample of systems according to b
alues from the NEA table. For the GP, the parameters have tight
riors to prevent overfitting. In Table 1 , all the transit variables and
heir priors are summarized. 

With the model setup, we obtain the first-maximum likelihood or
est-fitting set of parameters. Using these parameters, we subtract
he best fitting light curve and the GP to the data and then remo v e an y
oint whose residual is larger than 5 times the root mean square value
f all residuals. With the outliers remo v ed, we obtain a new second
et of best-fitting parameters, which are then used as a starting point
or the Markov Chain Monte Carlo (MCMC) sampling. 

Finally, we sample two chains with 8000 tuning samples and
000 normal samples, with the starting point given by the best-
tting parameters of the light curve without outliers. The target
ccept parameter defines the target acceptance ratio of our MCMC.
he acceptance ratio is defined as the ratio between the num-
er of accepted samples and the total number of samples. We
NRAS 520, 4103–4117 (2023) 

 Celerite2 documentation. 
 EXOPLANET documentation. 
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hoose a value of 0.97 through experimentation as we found it
roduced good fits. Seeds for each chain are generated randomly.
onvergence of the chains is checked through the ‘rhat’ param-
ter, which must be close to 1 for convergence (Vehtari et al.
021 ). 

.3 Numerical information analysis 

he information matrix technique is a mathematical formalism that
llows – under some conditions that the data must meet – predicting
he best precision one can expect to obtain in your model parameters
fter conducting an experiment but without having to perform the
xperiment or having to simulate it in detail (Wittman 2016 ). It
oes this by ‘measuring’ how much information is contained in
he combination of the data and the model. Returning to Fig. 2 ,
e can understand that the 20 s cadence model is more sensitive

o changes in the input parameters while the 1800 s model has
ost some of that sensitivity. That is, small changes in the input
arameters produce larger changes in the produced light curve with
0 s cadence than with 1800 s cadence. We could then expect
hat 20 s data should produce more precise values since small
eviations from the true parameters will quickly make the predicted
ight curve deviate from the data, while 1800 s will produce worse
recisions. The information analysis formalizes this intuitive idea by
ntroducing the concept of information, plus it takes into account the
rrors in our measurements. More than that, the information analysis
echnique also allows you to predict covariances between parameters,
otentially warning you of the need for reparametrization for a
ore efficient fitting of your parameters. For a formal description

f the information matrix formalism, see Kagan & Landsman
 1999 ). 

The condition that our data must fulfill in order for this analysis
o be valid is that errors in the data points must be Gaussian with a
ean of 0 and uncorrelated . Here, we will assume that this condition

s satisfied by our data. 
To perform the analysis itself, we define F { t k ; { p m }} as the transit

ux model, which is e v aluated at points in time t k and which depends
n a set of parameters { p m } . The standard deviation in the point at
ime k is taken to be σ k and then we can calculate the entries in the
ero-mean Gaussian-noise Information matrix using the following
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xpression: 

 ij = 

N ∑ 

k= 1 

N ∑ 

l= 1 

[
∂ 

∂ p i 

F ( t k ; p m 

) 

]
B kl 

[
∂ 

∂ p j 

F ( t l ; p m 

) 

]
, (1) 

here the deri v ati ves are with respect to model parameters, and we
um o v er all times. Here, B kl is the inv erse of the co variance matrix
f the measurements, which in this case will be just a diagonal
atrix with σ−2 

k in the diagonal. That is, B kl = δkl σ
−2 
k . Then, with

he conditions described abo v e met, we can obtain the elements of
he covariance matrix by simply inverting this matrix 

ov ( p i , p j ) = ( B 

−1 ) ij . (2) 

The diagonal of the matrix will give us the smallest possible
ariance we can expect on each of the parameters, while off-diagonal 
lements measure the covariance between the parameters. Of course, 
his is a prediction of the best precision we can obtain in the
arameters, and many factors can result in our experiment obtaining 
arger variances. 

Thus, all the difficulty of the analysis lies in calculating the 
eri v ati ves of our flux model, which are not guaranteed to be
nalytically deri v able. Calculating analytical deri v ati ves of limb-
arkened flux models is not possible, as binned light curves have 
o be calculated numerically, and calculating numerical deri v ati ves 
an be e xpensiv e computationally. Previous works that implemented 
his technique in the context of exoplanet transits (Carter et al. 
008 ; Price & Rogers 2014 ) used simplified, linear trapezoidal 
ransit models with no limb-darkening in order to be able to derive
nalytical expressions in the interest of computational efficiency. 
heir information analysis predictions of the variances agree well 
ith MCMCs run on artificially generated data based on the linear 

rapezoidal model, showing the validity of the analysis. However, the 
ntroduction of limb-darkening makes the predictions less accurate 
nd the limitations go beyond the lack of limb-darkening effects in the
odel. The parameters for which they deri ve v ariances are related

o the morphology of the light curve (e.g. duration of the ingress,
epth of the transit, or duration of the full transit among others)
hich are related in complex ways to the more physical parameters 
ormally used to describe a transit (e.g. radius ratio, stellar density, 
r impact parameter among others) and the data points – the times at
hich observations were made – have to be assumed to be perfectly 
niformly sampled which is not necessarily the case as interruptions 
re frequent in observations. In order to address the limitations of
n analytical approach to the information analysis technique, we 
ropose a fast numerical implementation such that the exact model 
hat is going to be fitted is used directly in the calculation of the

atrix – allowing the prediction of the precision of more physical 
ariables such as the impact parameter and the density of the host
tar. Moreo v er, a numerical analysis allows for the prediction of
he variances associated with the exact distribution in time of data 
oints available, including interruptions or any other deviation from 

 uniform sampling of data points. We believe that our approach 
ncreases the appeal of the technique as it mo v es it closer to the
ands-on work of observations and away from the theoretical realm, 
aking it more suitable to be used for the efficient planning of

bservations of exoplanets whose parameters want to be refined. 

.3.1 Implementation 

n order to efficiently implement the numerical information analysis 
f transit light curves, we make use again of the EXOPLANET package.
he implementation of the package with THEANO (Theano Devel- 
pment Team 2016 ), allows performing the numerical deri v ati ves
equired for the computation of the matrix and do so in a fast an
fficient manner (Dan F oreman-Macke y, private communication). 

Thus, Prediction of Exoplanet Precisions using Information in 
ransit Analysis ( PEPITA ) was developed by implementing the transit
odel described before and including methods were included for 

he calculation of the deri v ati ves, the information matrix and the
ovariance matrix. The implementation is designed in such a way that
odifications of the particular transit model are easy to implement. 
ll that is needed for the calculation of the covariance matrix is to
rovide an array of timestamps of when data points were collected
long with the errors in the measurement of each of the data points
in our case taken directly as reported in the SPOC light curve) or
 mean error that is assumed to be equal for all points, as well as
 set of parameters defining the fiducial model – the model used to
 v aluate the deri v ati ves and usually the best-fitting set of parameters.
n principle, the derived covariance matrix should make a good 
rediction regardless of the chosen fiducial model, as long as the
eal parameters are not too far from them. 

In Fig. 3 , we show the numerical derivatives calculated for HD
685 with 20 (black), 600 (orange), and 1800 s (magenta) cadences.
or clarity, we did not include 120 s deri v ati v es, since the y are
ery similar to 20 s deri v ati ves. Just by a visual inspection of
hese deri v ati ves, one can gain an understanding of why longer
adences are, in principle, worse performing in the constraining 
f transit parameters. The 1800 s deri v ati ves are smaller than the
0 s deri v ati ves, which indicates that observations made in 1800
 will be less sensitive to small changes in the model parameters
nd the precision derived from them will be worse than what can
e obtained with shorter cadences. Of course, the exact difference 
etween different cadences will depend on the set of parameters used
o calculate the deri v ati ves. In other words, 600 s deri v ati v es hav e
lmost the same shape as 20 s deri v ati ves for this particular set of
arameters, but this will not necessarily happen for other planets. 
ne should also remember that the information matrix consists of 
ot only the deri v ati ves, but also the precision (standard deviation) of
he data. The magnitude of the error bars scales as ∝ 1 / 

√ 

I with I,
he cadence of the observations, and so while shorter cadence models
ill be more sensitive, they will also suffer from larger error bars in

he data. Therefore, it is not possible to say that one cadence may be
etter than another without performing the analysis. 
Another important tak eaw ay from Fig. 3 is noticing how some

arameters produce deri v ati ves that are an order of magnitude or
arger than others or that are non-zero for wider ranges of time –
ompare, for example, the radius ratio and the impact parameter –
hich also explains why it is harder to constrain some parameters

ompared to others. 
Priors are an important part of any Bayesian model that can be used

o extract information from data, and these can too be incorporated
nto the information analysis as another source of information that 
s independent on how much information is contained in the model.
o do so, one must simply put these priors – the corresponding
tandard deviation of whatever prior distribution is being used – in 
heir corresponding position of the diagonal of a new ‘priors’ matrix
hich is then inverted so that the elements of the inverted matrix are
iven by (
M 

−1 
)

i,j 
= δi,j σ

−2 
P i,j 

(3) 

with σP n,n 
the standard deviation of the prior distribution of 

arameter n . Note that having no prior would be equi v alent to an
nfinitely large standard deviation, and so for that particular parameter 
MNRAS 520, 4103–4117 (2023) 
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Figure 3. Deri v ati ves of the transit light curve of HD 2685 with respect to model parameters. The deri v ati ves are computed for cadences of 20 (black), 600 
(orange), and 1800s (magenta) using the integration of the EXOPLANET package with THEANO . Just from the deri v ati ves, it is intuitive to see that a 1800 s light 
curve is less sensitive to changes in the parameters and will do worse in constraining them, while 600 and 20 s almost as equally sensitive and should produce 
better precisions. 
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he value of its entry in the inverted ‘priors’ matrix will just be 0.
hat is, having no priors is the same as having no additional prior

nformation. 
All that is left to do is to add this matrix to the original information
atrix, and one has a matrix describing both the information

ontained in the data plus any information conveyed by our prior
nowledge of the data. The inverse of this matrix provides us, just as
efore, with the covariance matrix whose diagonal elements will be
he variances we expect to obtain by performing the MCMC fit 

ov ( p i , p j ) = 

([
B + M 

−1 
]−1 

)
ij 

. (4) 

For the purpose of this work, we use the median values of the
osteriors obtained from the MCMC fit for the fiducial model. 
NRAS 520, 4103–4117 (2023) 
For the priors, we use the standard deviations described in Table 1
or Gaussian priors. For the impact parameter, we use 1 / 

√ 

12 , the
tandard deviation of a uniform distribution between 0 and 1. For
he limb-darkening variables, although the posterior distributions
hat we obtain from the fitting are for u 1 and u 2 , behind scenes
he exoplanet package actually samples the reparametrizations
escribed in Kipping ( 2013 ). Thus, even if the MCMC fit is
ot able to constrain at all the values of these reparametriza-
ions, it will still produce non-uniform distributions for u 1 and
 2 . These distributions correspond to a lack of extra knowledge
erived from the data and so are just the prior on u 1 and u 2 that
esults from the reparametrization of these variables. Hence, we
se the standard deviation of those distributions as the priors 
n u 1 and u 2 . 
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Figure 4. Final fits for LHS 3844 with median values and standard deviations of the posterior distributions of the radius ratio ( R p / R ∗) and impact parameter ( b ) 
for each fit. To a v oid cluttering by the data points, we fold light curves and then bin the data to the original cadence. That is, a 20 s light curve will be folded, and 
then the folded data will be binned into 20 s bins so that there is a single data point every 20 s. From the posteriors, 10 000 random samples are drawn for the 
transit parameters and light curves generated. The median of all samples is shown with a red line, while the range between the 16 and 84 percentiles is shown 
with a yellow coloured region. Individual plots like these were generated for each of the fitted light curves and manually inspected to identify any issues with 
the final fit before approving any results. 
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 RESULTS  

.1 MCMC fit results 

pon successful completion of each of the MCMC fits, a series of
anual inspections were performed on each of the fitted light curves 

efore the results were appro v ed. Light curv es were checked before
nd after the application of the Savitzky–Golay filter to ensure the 
ransit was not eliminated or distorted by the application of the filter.
oints marked as outliers and remo v ed are also checked for each of

he light curves to ensure that the pre-processing best-fitting model 
nd GP have not failed and caused valid points in the transit to be
agged as outliers. Additionally, a plot is made where the folded 

ight curve is shown before and after the application of the median
P obtained after sampling is finished. This is done to ensure that
b  
here has not been an o v erfitting of the transit by the GP. For the
ast two checks, we generate a folded light curve, where the model
ight curves obtained by choosing 10 000 random samples of the
osteriors are plotted with the median shown as a line and the range
etween the 16 and 84 percentiles shown with a colour-filled region
see Fig. 4 ) as well as a cornerplot to visually inspect the posteriors
see Fig. 5 , original cornerplots contain all variables while Fig. 5 is
 scaled-down version for clarity). In particular, Figs 4 and 5 show
ow for this planet, good fits are obtained for all cadences and fits
o the shorter cadence produce a higher precision in terms of their
adius ratio and impact parameter. 

Given that, as mentioned before, there may be several sectors for
 particular system-cadence combination, there are several choices 
vailable when deciding how to compare the precision obtained 
y the different cadences of a same system. Ideally, we would
MNRAS 520, 4103–4117 (2023) 
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Figure 5. Cornerplot of R p / R ∗ and b parameters for fits with cadences 20, 
120, 600, and 1800 s of LHS 3844. (c.f. Fig. 4 ). 
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ompare the performance of the same sector fitted with different
adences. Ho we ver, this choice would drastically reduce the number
f comparisons possible, sometimes even making comparisons
etween different cadences impossible. As such, we choose to
ompare all possible combinations between a particular system-
adence-sector combination and all other system-cadence-sector
ombinations with a different cadence. That way, the number of
omparison becomes large (more than 6000 comparisons in total),
nd although some sectors of a particular system-cadence combi-
ation may have performed slightly better or worse than others,
he deviation should average out as we compare everything with
verything. 

In Fig. 6 , we show the distribution of precision impro v ements
bserved for all possible cadence combinations out of the { 20,
20, 600, and 1800 s } cadences available for TESS observations.
e calculate the precision impro v ements as follo ws. Gi ven σ y the

tandard deviation of the posterior fit for the radius ratio of the shorter
adence ( y -axis label in the plot) and σ x that of the longer cadence
 x -axis label in the plot) the impro v ement is given by 

mprov. = 

(
1 − σy 

σx 

)
· 100 (5) 

so that a positive value of 50 means that the shorter cadence
erformed 50 per cent better than the longer cadence. 

.2 Information analysis results 

n order to display the results of the information analysis predictions,
e compare the precision as obtained from the MCMC fit to that
redicted with the information analysis. We show in Fig. 7 , the
redicted percentage precisions against the MCMC fit precisions,
s well as the residual obtained by subtracting the fit values to the
redicted values. 
NRAS 520, 4103–4117 (2023) 
.3 Multisector results 

ince fits for published parameter values are usually performed to
ore than one sector at a time, we perform multisector fits for a

mall number of systems from our selection. In Fig. 8 , we show the
CMC fit precisions obtained for a fit to a single sector as well as

or a fit to 6 sectors simultaneously for 4 systems of our selection.
e also plot the information analysis predicted precisions for the 6

ector fits. 
We find that it is hard to tell how a multisector fit will perform

xactly based on the single sector precisions, besides the expectation
hat precisions should increase with the use of more sectors. Never-
heless, we found no hints of the inclusion of several sectors at the
ame time in the Information analysis affecting its performance. 

.4 Predictions for TESS Objects of Interest (TOIs) 

iven the encouraging results of the Information analysis, we provide
s a proof of concept, the predicted radius ratio impro v ements to be
btained by the reobservation of TOIs with different cadences. 
To perform this analysis, we start with the TOIs table from the

ASA Exoplanet Archive and select only objects of interest which
re identified as planet candidates. Then, only objects with values
or log g , R ∗, and T eff (stellar ef fecti ve temperature) along with errors
vailable in the table are chosen. From these, we select only those
lanet candidates for which only 1800 s observations are available .
he values we extract from the table for each of the TOIs are the

ransit duration T , the transit depth δ, period, transit time and the
tellar radius, surface gravity and ef fecti ve temperature. 

The analysis is performed in much a similar way to what was
escribed abo v e. Ho we ver, in this case, we choose to set up the
nformation analysis by modelling the transit using the log of stellar
ensity, log ρ∗, instead of the stellar mass (with no prior on the
tellar density). Because values for the stellar density, the impact
arameter and the stellar limb-darkening parameter are needed in
rder to construct the fiducial model, we obtain these values by
ombining the available parameters as follows. 

The limb-darkening parameters are obtained using the PYTHON

IMB DARKENING TOOLKIT or PYLDTK (Husser et al. 2013 ; Parvi-
inen & Aigrain 2015 ). Since no value for stellar metallicity is
vailable, we use z = 0.25 with error 0.125 for all the TOIs.
lthough the package can also provide errors in the calculated limb-
arkening values, we still choose to use the same priors in the limb-
arkening parameters as we used in the information analysis of the
CMC fits. We choose to do this, because the calculations of these

imb-darkening parameters are very crude given the available stellar
arameters. 
Meanwhile, the impact parameter of the fiducial model is calcu-

ated by assuming a circular orbit. Under this assumption, the transit
uration ( T ) can be combined with the period ( P ), stellar gravity ( g ∗)
nd stellar radii ( R ∗) to obtain the impact parameter as 

 = 

√ 

1 −
(

g ∗π
4 P R ∗

)2 / 3 

T 2 . (6) 

Meanwhile, for the fiducial model value of ρ∗ we obtain an
xpression combining g and R ∗ by using Kepler ’s laws. With this, ρ∗
s given by 

∗ = 

3 

4 πG 

g ∗
R ∗

. (7) 

Finally, for the radius ratio, once the limb-darkening parameters
nd the impact parameters are obtained we can get an approximate
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Figure 6. Density plot of the distribution of impro v ements (see equation 5 ) observed for every combination of cadences. Values abo v e 0 indicate an impro v ement 
of precision with the use of a shorter cadence, while v alues belo w 0 indicate a worsening of the precision. Vertical grey lines indicate neither an impro v ement 
nor a worsening at a value of 0 per cent while red lines indicate the median impro v ement observ ed for a particular cadence comparison. 
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alue for the ratio by using the transit depth in combination with
he limb-darkening parameters and the impact parameter. This 
unctionality is already implemented in the exoplanet package, 
nd we make use of it. 

With the fiducial model parameters all determined, we download 
he available 1800 s cadence light curves for the TOIs. The array of
imestamps is taken to be an array of times evenly spaced by each of
he cadences between the minimum time from the downloaded 1800 
 light curve and the maximum time of the downloaded 1800 s light
urve. That is, if the first point in the 1800 s cadence is at time t , we
reate a uniform array of points separated by, for example, 20 s for
he analysis of 20 s cadence starting at t and extending up to the last
 i
oint of the 1800 s cadence. This is to ensure homogeneity between
adences. For the errors in the observations, we take the mean error
f the 1800 s data points of each planet candidate σ̄1800 s and then for
ach of the other cadences of x seconds the error ( σ x s ) is assumed to
e the same for all points and equal to 

x s = σ̄1800 s 

√ 

1800 

x 
, (8) 

his need for approximating the errors should be more carefully 
xaminated if this analysis is repeated in a more rigorous manner as
t can directly affect the predictions of the analysis. 
MNRAS 520, 4103–4117 (2023) 
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Figure 7. Predicted percentage precisions obtained using the information analysis against precisions obtained from the MCMC fits. Points on the grey diagonal 
line indicate a perfect agreement between predicted and real v alue. Meanwhile, v alues abo v e the line indicate an underprediction of the precision, while values 
below indicate an o v erprediction. Residual plots are included, with the difference between the predicted precision and the fit precisions plotted against fit 
precisions. 
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Figure 8. Precisions obtained from fit to a single sector and to 6 sectors 
simultaneously for 4 planets from our selection. Single sector values corre- 
spond to the mean precision of the individual fits to each of the 6 sectors used 
in the multisector fit, and error bars indicate the 16 and 84 percentiles. The 
grey, larger markers on the 6 sector fits show the precision predicted by the 
information analysis applied to the 6 sectors simultaneously. 

Table 2. Expected impro v ements by reobservation with either 20 or 120 s 
cadence of TOIs with only 1800 s cadence observations. The 10 TOIs with 
the highest impro v ements are shown. 

TOI 
20 s Improv. (per 

cent) 
120 s Improv (per 

cent) 
600 s Improv (per 

cent) 

1677.01 77.93 77.71 72.96 
2784.01 70.94 70.35 54.13 
3786.01 66.84 66.79 65.89 
1701.01 66.33 65.00 40.53 
2578.01 65.54 65.11 57.89 
4197.01 52.43 51.77 42.86 
5577.01 51.98 51.19 36.91 
5654.01 51.12 50.77 43.22 
3719.01 50.81 50.40 42.10 
2341.01 50.31 49.65 35.63 
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Finally, we perform the information analysis for cadences 20, 120, 
nd 1800 s, and we compare precisions in the radius ratio for each
f the cadences. 
Table 2 shows the expected improvements by reobservations 

ith either 20 or 120 s cadences for the 10 TOIs with the largest
mpro v ements. A full list is availabl in the GitHub repository 6 along
ith a JUPYTER NOTEBOOK showing the code used to make these 
 https://github.com/JulioHC00/PEPITA 

t  

k  

i

redictions. The use of our information analysis implementation 
hown there can be extended to the analysis of other planet candi-
ates/cadences. 

 DI SCUSSI ON  

he results presented in the previous section confirm our expectation 
hat the precision of the radius ratio can be impro v ed with the use
f shorter cadences. We have observed an almost doubling (Improv. 
 50 per cent ) of the precision in half of the comparisons between

0 and 120 s cadences to 1800 s cadences. 
As expected, the median improvement observed is largest when 

omparing the shortest cadences to the longest cadences (i.e. 20–
800 s). The trends seen in the rows and columns of Fig. 6 are
onsistent with the previous discussion about information being ‘lost’ 
hen a longer cadence is compared to a shorter one, and should

ncourage the use of shorter cadences wherever possible. 
It is not as clear from Fig. 6 , for example, whether 120 s cadence

bservations are preferable to 600 s with a median impro v ement of
 per cent. Ho we ver, it is worth emphasizing that the plots show
he distribution of all comparisons between 120 and 600 s cadence 
bservations. The actual impro v ement will depend on the particular
ystem being considered, as can be seen in Table 2 , where we present
redicted impro v ements for 10 different TOIs and show that these
mpro v ements depend on the particular parameters of the system.
 or e xample, while TOI 3786.01 shows a very similar impro v ement

n the radius ratio precision when reobserved with either 20, 120, or
00 s cadences (66.84, 66.79, and 65.89 per cent, respectively), TOI
701.01 shows a clear difference between the impro v ement e xpected
rom reobservations with either 20 or 120 s cadence of around 65
er cent and that expected from reobservations with 600 cadence of
round 40 per cent. 

This dependence of cadence effects in the obtained radius ratio 
recision on the particular system, highlights the need for a fast and
asily adaptable prediction method, such as the one we present here
nd made publicly av ailable. Fig. 7 sho ws o v erall median errors in our
redictions of about 1 per cent. We observe that, as the fit precision
ets worse, the predictions start to deviate more and predict better
recisions than the ones actually obtained in the fit. This can be
nderstood by considering that, as the fit precisions get worse, it
s possible that the fit is doing poorly for some reason our method
id not account for. In those cases, since the information analysis
redicts the best possible precision one should be able to obtain,
ur predictions are expected to be of better precisions than obtained
ith the fits. When fit precisions get worse than 10 per cent, we find

hat median errors for 20 s cadence predictions can reach values of
round 10 per cent error. Therefore, predictions should be treated as
n approximate lower boundary for the precision to be obtained with a
t. Whether this precision is obtained or not will depend on the fitting
ethodology. Where good fits are obtained, with precisions of a few

er cent, we expect predictions to be accurate up to � 0 . 5 per cent . 
When comparing our predictions (numerical method henceforth) 

o those obtained using the analytical methodology described in 
rice & Rogers ( 2014 ) (analytical method henceforth), by obtaining
redictions for the radius ratio standard deviation using their analysis 
nd dividing it by the median value of the radius ratio, we find
hat our numerical method produces better predictions of the radius 
atio precision, specially for larger values of percentage precision. 

oreo v er, while our methodology rarely predicts a precision worse
han the precision obtained in the fit, analytical results suffer from this
ind of error in most cases. This is rele v ant since, as discussed abo v e,
nformation analysis should predict the best attainable precision and 
MNRAS 520, 4103–4117 (2023) 
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Figure 9. Residuals from our predictions (grey) and those obtained using the 
analytical methodology presented in Price & Rogers ( 2014 ) (red). Coloured 
crosses represent a moving median of the residuals, with a bin size of 6 per cent 
around the central value. 

t  

T  

i  

f  

r  

a  

r  

f  

(  

b  

f  

T  

P  

a

5

W  

c  

s  

i  

p  

d
 

a  

p  

t  

t  

w  

m  

i  

t  

s  

s  

c
 

5  

c  

s  

o  

l  

m  

b  

m  

t
 

i  

p  

fi
t  

p  

p  

f  

r  

a  

b  

u  

l  

a  

w  

t  

i  

t  

s  

b  

m
 

a  

a  

m  

t  

p  

v  

t  

6  

A  

p  

m
 

i  

p  

v  

–  

c  

p  

t  

r  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/520/3/4103/7028800 by U
niversity C

ollege London user on 22 M
arch 2023
hus be prone to predicting a precision better than the fit precision.
hat the analytical results suffer from underprediction errors is an

ndication that some of the information contained in the light curve
ailed to be captured by the analysis. In Fig. 9 , we show the absolute
esiduals from our predictions and the predictions obtained using the
nalytical approach when compared to fit precisions of the radius
atio. Coloured crosses represent the moving median of the residuals
or a bin of size 6 per cent around the central value for our predictions
white) and analytical predictions (red). While the residuals from
oth prediction methods increase as the fit precision increases, those
rom an analytical prediction do so in a more pronounced manner.
he code used to generate the predictions using the methodology of
rice & Rogers ( 2014 ) (see equations A15 and A16 of their work) is
vailable in the GitHub repository. 

 C O N C L U S I O N  

e have performed the uniform processing and fitting of 46 TESS -
onfirmed planet transit light curves amounting to a total of 556
ingle-sector light curves to investigate the effects of cadence
n the retrieved parameters. We model transits with the set of
arameters { P , t 0 , log R P /R ∗, b, u 1 , u 2 , ˆ F , M ∗, R ∗} whose posterior
istributions are obtained using an MCMC procedure. 
We also developed an implementation of a numerical information

nalysis technique to exoplanet transits by using the EXOPLANET
NRAS 520, 4103–4117 (2023) 
ackage. PEPITA is highly adaptable to the exact set of parameters
hat are to be fitted and to the exact data points and precisions of
he data points available. Thanks to the integration of EXOPLANET

ith THEANO , the required numerical deri v ati ves can be obtained,
aking the numerical analysis possible and fast. Our numerical

mplementation differs from past analytical implementations of this
echnique in that it does not require approximations of the light-curve
hape and can be adapted to the exact model that is to be fitted while
till producing fast results. This technique is applied to the light
urves that were fitted with the MCMC. 

Median impro v ements in the radius ratio precision of almost
0 per cent are observed when comparing fits to 20 s or 120 s
adence light curves to 1800 s cadence light curves. Smaller, but
till rele v ant, median impro v ements of around 35 per cent are also
bserved when comparing fits to 600 s light curves to fits of 1800 s
ight curves. Ho we ver, it is important to highlight that these are
edian impro v ements only and that the actual impro v ement should

e considered on a case-by-case basis. When we consider fits to
ultiple sectors simultaneously, we find no significant changes in

he very limited sample considered. 
With this in mind, we check the performance of our numerical

nformation analysis by producing predictions of the radius ratio
recision obtained by the fits for each of the light curves. While we
nd that for fits where the precision of the radius ratio is worse –

hat is, for large values of percentage precision – our predictions
erform worse, we speculate that this is likely caused by the poor
erformance of those fits due to our fitting model not accounting
or certain factors that can affect the light curv e. F or e xample,
emoving stellar variability is done here with a general GP, but
 more individualized analysis of each light curve could result in
etter removal of any variability. Another possible factor that is
naccounted in our model is stellar spots, which can also affect the
ight curv e. Nev ertheless, where the fit radius ratio precision is of
 few per cent, our predictions have errors � 0 . 5 per cent . Even
hen larger errors of a few per cent are observed, these correspond

o predicting precisions better than observed, in line with how the
nformation analysis should perform. When we compare our method
o previous analytical methods, we find that not only are our errors
ignificantly smaller but also that the analytical predictions tend to
e of worse precisions than observed, indicating that the analysis has
issed some of the information contained in the light curve. 
Given the satisfactory performance of our prediction method, we

pply it to a number of TESS objects of interest with observations
vailable only with 1800 s cadence to demonstrate how our imple-
entation of the information analysis can aid in deciding which

argets should be prioritized for short cadence observations. We
resent the top 10 TOIs which would benefit most from reobser-
ations with short cadences and highlight how for some of them
here’s an added benefit by using 20 or 120 s cadences instead of
00 s cadence while for others the difference is considerably smaller.
dditionally, in Appendix A , Table A1 we include the full list of all
lanet candidate predictions and make available the script used to
ake these predictions on the GitHub repository. 
Our study has shown that shorter cadences offer better precisions

n the radius ratio obtained from transits. Thus, whenever high
recisions in this parameter are needed – constraining of the radius
alley or the characterization of exoplanet atmospheres among others
special attention should be given to the choice of cadence as the

hoice of a shorter cadence is more probable to provide the required
recision. We have not focused here on any of the particular areas
hat could benefit from the increased precisions, but we expect our
esults would be important in the context of investigations of the
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adius valley, transmission spectroscopy, and the determination of 
xoplanet densities, among others. Instead, our aim has been to 
ighlight that there are indeed benefits to be gained by considering the 
se of shorter cadences. Moreo v er, we hav e demonstrated that PEPITA

s able to accurately predict the precision in the radius ratio that can
e obtained by fits to any particular light curve. Our implementation 
as the power of serving as a tool in the planning of future mission by
roviding information about which targets should be prioritized for 
bservations with short cadences. In order to allow for such use of
EPITA , we have made it publicly available in GitHub. 7 We encourage
tudies focused on one of those areas that require high precisions,
o consider the issue of cadence in depth and perhaps to recommend
eobservations of exoplanets of interest whenever the information 
nalysis predicts that the required precision will be obtained. 
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Table A1. Predictions for all the planet candidates considered in order of 
decreasing impro v ements to the radius ratio precision. 

TOI 
20 s Improv. (per 

cent) 
120 s Improv. (per 

cent) 
600 s Improv. (per 

cent) 

1677.01 77.93 77.71 72.96 
2784.01 70.94 70.35 54.13 
3786.01 66.84 66.79 65.89 
1701.01 66.33 65.00 40.53 
2578.01 65.54 65.11 57.89 
4197.01 52.43 51.77 42.86 
5577.01 51.98 51.19 36.91 
5654.01 51.12 50.77 43.22 
3719.01 50.81 50.40 42.10 
2341.01 50.31 49.65 35.63 
3788.01 48.18 47.77 41.61 
3859.01 45.68 45.36 39.05 
1658.01 45.34 45.12 40.67 
3765.01 44.92 44.41 37.35 
3972.01 44.66 43.91 35.28 
3762.01 43.91 43.82 42.12 
3805.01 43.89 43.45 34.29 
3571.01 42.28 41.77 36.00 
5122.01 41.35 41.24 37.08 
3651.01 41.06 40.87 36.97 
3670.01 40.86 40.37 27.25 
5702.01 40.63 39.43 21.96 
5579.01 40.40 40.01 35.41 
3792.01 39.86 38.43 18.70 
3642.01 38.47 38.07 32.29 
3747.01 38.12 37.80 32.22 
2533.01 38.05 37.37 27.98 
3686.01 37.85 37.23 30.25 
3118.01 36.73 36.21 27.59 
3654.01 36.64 35.99 25.64 
1521.01 35.61 35.31 31.37 
3737.01 35.01 34.56 28.25 
5644.01 34.99 34.85 32.27 
5762.01 34.55 34.36 30.76 
1559.01 33.78 33.52 29.56 
1655.01 33.11 32.64 19.57 
3946.01 32.68 32.31 26.80 
3699.01 32.56 32.12 26.06 
2395.01 32.51 32.16 26.66 
3976.01 32.27 31.87 25.36 
302.01 31.99 31.82 28.62 
5686.01 30.82 30.28 23.28 
3999.01 30.51 30.21 25.92 
3842.01 30.37 29.77 22.39 
2790.01 30.10 29.60 23.17 
3727.01 29.55 29.28 25.29 
3755.01 28.99 28.42 20.36 
4199.01 28.83 28.35 21.44 
3795.01 28.36 27.20 13.41 
5754.01 28.33 28.21 25.84 
3920.01 28.22 28.08 25.49 
3829.01 27.98 27.62 23.62 
2033.01 27.68 27.48 23.89 
4231.01 27.33 27.01 21.76 
3763.01 26.47 25.90 18.67 
5656.01 26.26 25.21 12.57 
3573.01 26.16 26.02 23.13 
5669.01 26.03 25.60 19.59 
3703.01 25.85 25.62 21.88 
3660.01 24.22 24.06 21.01 
5458.01 23.95 23.76 21.17 
3773.01 23.89 23.73 20.69 

Table A1 – continued 

TOI 
20 s Improv. (per 

cent) 
120 s Improv. (per 

cent) 
600 s Improv. (per 

cent) 

3671.01 23.69 23.53 20.19 
5482.01 23.44 23.28 20.05 
5479.01 23.18 23.03 21.51 
3335.01 22.66 22.15 14.94 
3800.01 22.55 22.26 18.25 
3664.01 22.35 22.06 17.47 
1536.01 22.21 22.14 20.91 
4204.01 22.18 21.72 17.34 
3980.01 22.17 22.07 20.09 
5773.01 21.68 21.25 15.42 
3768.01 21.61 21.27 16.62 
3640.01 21.34 21.20 18.72 
3645.01 21.16 20.68 14.60 
3769.01 21.09 20.88 17.27 
2350.01 21.04 20.24 6.64 
5749.01 20.72 20.45 16.05 
5459.01 20.65 20.52 17.96 
2036.01 20.57 20.39 17.81 
3744.01 20.13 19.99 17.60 
5681.01 19.99 19.64 11.13 
1605.01 19.92 19.78 17.28 
3733.01 19.72 19.60 17.39 
2060.01 19.65 19.57 18.05 
3721.01 19.29 19.04 16.00 
5618.01 18.86 18.67 15.94 
5647.01 18.79 18.67 16.39 
5486.01 18.47 18.09 13.29 
3690.01 18.46 18.31 15.87 
1551.01 18.16 17.91 15.09 
3754.01 18.03 17.72 13.39 
3772.01 17.93 17.56 14.26 
3802.01 17.74 17.55 15.15 
3679.01 17.53 17.26 13.72 
5345.01 17.49 15.56 3.36 
5427.01 17.11 16.83 12.44 
1596.01 16.96 16.89 15.48 
3663.01 16.81 16.78 16.05 
5426.01 16.78 15.83 5.68 
3899.01 16.63 16.46 14.52 
981.01 16.49 14.26 5.87 
3718.01 16.40 16.05 11.30 
5646.01 15.85 14.94 5.61 
3296.01 15.79 15.61 12.88 
3652.01 15.50 15.43 14.22 
4074.01 15.48 15.25 12.27 
3698.01 15.26 15.05 12.60 
5764.01 15.05 14.93 12.74 
5468.01 14.39 14.33 12.98 
3732.01 14.19 13.89 9.65 
5592.01 13.72 13.52 11.03 
3688.01 13.57 13.41 11.12 
4646.01 13.47 13.25 9.29 
5355.01 13.17 12.94 9.12 
3720.01 13.04 12.94 11.14 
2026.01 12.64 12.31 7.96 
5668.01 12.44 12.23 9.57 
3877.01 11.89 11.80 10.40 
5760.01 11.80 11.59 8.33 
5364.01 11.38 11.29 9.77 
2791.01 11.26 11.15 9.21 
5594.01 11.10 10.89 8.06 
5636.01 11.02 10.04 2.83 
3694.01 10.89 10.32 6.28 
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Table A1 – continued 

TOI 
20 s Improv. (per 

cent) 
120 s Improv. (per 

cent) 
600 s Improv. (per 

cent) 

2987.01 10.73 10.14 6.90 
5590.01 10.56 9.38 4.91 
5649.01 10.53 10.47 9.33 
3683.01 10.47 10.26 7.73 
5502.01 10.34 9.92 5.29 
3761.01 10.25 10.21 9.30 
5690.01 10.07 10.01 8.66 
5595.01 10.00 9.47 4.33 
3696.01 9.51 9.28 6.47 
5755.01 9.34 9.07 5.93 
3981.01 9.25 9.14 7.22 
1560.01 9.25 9.15 7.79 
3988.01 9.23 8.98 5.81 
1546.01 8.58 7.25 4.46 
3668.01 8.13 8.04 6.79 
5645.01 8.05 7.75 5.26 
5625.01 7.84 7.04 1.84 

Table A1 – continued 

TOI 
20 s Improv. (per 

cent) 
120 s Improv. (per 

cent) 
600 s Improv. (per 

cent) 

5113.01 7.40 7.21 5.36 
2985.01 7.33 7.24 5.99 
3717.01 7.33 7.28 6.66 
5580.01 7.00 6.88 5.61 
5582.01 6.27 6.18 4.91 
5761.01 6.10 5.99 4.48 
5776.01 5.96 5.82 4.09 
3644.01 5.75 5.71 4.82 
1593.01 5.27 5.22 4.33 
4001.01 5.16 5.02 3.36 
3244.01 4.76 4.73 4.21 
5664.01 3.41 3.35 2.61 
5599.01 3.00 2.90 1.76 
5699.01 2.99 2.96 2.52 
5637.01 2.83 2.80 2.17 
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