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Abstract

This thesis aims to address the issue of anatomical changes during the treatment of

head and neck cancer patients. Intensity-modulated proton therapy (IMPT) shows

advantages in delivering a conformal dose to the target while minimizing the dose

to the adjacent normal tissue. However, in the delivery of IMPT, patients not being

static can lead to dosimetric discrepancies. This thesis explores different techniques

to reduce the influence of uncertainty from anatomical changes (anatomical uncer-

tainty).

In Chapter 3, anatomical variations are incorporated to reveal the robustness of

a plan, thus improving the selection of a robust plan. The benefit is demonstrated in

all beam arrangements used in the study. In Chapter 4, a probability model is devel-

oped to simulate major anatomical deformations at each weekly time point based on

population data. For overall anatomical uncertainty prediction during treatment, the

PM reduces anatomical uncertainty from 3.72±0.46 mm (no model) to 0.81±0.56

mm on average. In Chapter 5, an individual model is developed to refine the system-

atic prediction of population data using individual progressive information. Com-

pared with no model, whose average anatomical uncertainty and gamma index are

4.47±1.23 mm and 93.87±0.83% at week 6, respectively, the refined individual

model reduces anatomical uncertainty to 1.89±1.23 mm and improves the gamma

index to 96.16±1.84% at week 6. In Chapter 6, a proposed flexible strategy creates

upfront predicted replans on the predicted individual geometries from the RIM. This

application of the RIM reduces the parotid Dmean by 0.53 Gy on average, achieving

the minimum benefit of non-delay treatment, while the dosimetric of other organs

has no significant difference with the standard replanning technique (p>0.05). This
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prediction-based replanning improves clinical workflow efficiency.

This research integrates computational methods into IMPT treatment for head

and neck patients. New perspectives for mitigating anatomical uncertainty are pro-

vided and discussed in this thesis.
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Chapter 1

Introduction

1.1 Head and neck proton therapy
Radiotherapy is often delivered as a definitive or adjuvant treatment for cancer pa-

tients. Over 75% of head and neck (H&N) patients undergo radiotherapy as part of

their treatment [1]. Because cancer cells in the H&N region are often surrounded by

sensitive organs and structures, such as parotid glands, oral cavity, brainstem and

optic chiasm, the radiation damages on these structures are unavoidable, leading

to complications such as dysphagia (swallowing difficulties) and dysgeusia (taste

changes). These complications can degrade patients’ quality of life for a long time.

Intensity-modulated proton therapy (IMPT) as the state-of-art radiotherapy tech-

nique has advantages in delivering a conformal dose to the target while minimizing

the dose to the adjacent normal tissue [2, 3, 4, 5], exploiting the steep falloff of the

Bragg peak. The potential benefits of proton therapy over photon therapy on H&N

cancer treatment have been revealed in the literature [2, 3, 5]. However, this pre-

cise delivery technique has inherent sensitivity to uncertainties, which are especially

common in H&N cancer treatment.

1.2 Uncertainties in proton therapy and evaluation
Uncertainties degrade the quality of treatment. Systematically exploring uncertain-

ties can help design congruous mitigation methods. Several studies have reported

the magnitude of uncertainties in proton therapy. This section summarises their

uncertainty evaluation method and conclusions. Uncertainties are divided into 1)
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uncertainty before planning, 2) uncertainty in planning, 3) uncertainty during treat-

ment and 4) additional uncertainty from using deformable image registration.

1.2.1 Uncertainties before planning

The uncertainty exists in contour delineation. Till today, no image modalities can

accurately pinpoint the tumour cells. Therefore, the contours of the gross tumour

volume (GTV) and the clinic treatment volume (CTV) are only the subjective judg-

ment of oncologists through the visual surrogate of the present tumour. Delineation

uncertainty reported by Rasch et al. (2010) [6] was 3.3 mm for high-risk CTV

and 4.9 mm for low-risk CTV based on co-registered MRI-CT of nasopharyngeal

carcinoma (NPC) patients. Similar 3.2 mm delineation uncertainty for CTVs was

reported by Aznar et al. (2017) using PET/CT of Hodgkin lymphoma [7].

The uncertainty also exists in tumour prescription dose and normal tissue tol-

erance. Theoretically, patient-specific prescriptions should be given based on the

characteristics of tumour cells, for example, the distribution of clonogenic and hy-

poxia tumour cells [8, 9, 10], tumour sensitivity to radiotherapy fraction [11], size

and tumour genotype [12]. However, these microscopic markers have yet to be

widely used in prescription. For organs at risk (OARs) constraints, especially se-

rial organs, the headroom of dose constraints is unknown because no clinical trial

will be allowed to explore the dose limitation with the risk that might be imposed

on patients’ quality of life. In summary, the planned dose objectives come with

uncertainty in the first place.

1.2.2 Uncertainties in planning

The uncertainty originates from the CT-based plan due to the CT imaging tech-

nique. Noise, CT artefacts, beam hardening, and density heterogeneity lead to the

inaccuracy in Hounsfield Units (HU), which will be converted to relative stopping

power (RSP) for dose calculation, specifically referred to as range uncertainty. The

magnitude of range uncertainty depends on dose calculation algorithms. Yang et

al. (2012) [13] reported that range uncertainty can be as high as 5% for lung, 2.4%

for bone and 1.6% for soft tissue in a Monte Carlo simulation (MC) based dose
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calculation algorithm. The typical value of 3.5% is generally used in H&N cancer

treatment. When the analytical dose calculation is used, an additional 2.2% uncer-

tainty will be brought in from physics and CT conversion [14]. Yepes et al. (2018)

[15] reported that an analytical dose calculation can result in a 10% overestimation

of the target dose and up to a 10 Gy underestimation of the dose to some OARs.

Even though a MC-based dose calculation is more accurate than an analytical dose

calculation, it still has uncertainty in modelling the degradation of the Bragg peak

in heterogeneous media.

1.2.3 Uncertainties during treatment

The irradiation is delivered in fractions during radiotherapy to maximise the de-

struction of tumour cells while minimising damage to healthy tissue. However,

while patients are assumed to be static at the planning stage, this fractionation in-

troduces the following uncertainties:

Firstly, the uncertainty comes from beam reproducibility and patient setup.

The magnitude adopted is centre-specific. For example, the MD Anderson Proton

Therapy Center in Houston, the Loma Linda University Medical Center and the

Roberts Proton Therapy Center at the University of Pennsylvania use 3 mm, while

the University of Florida Proton Therapy Institute uses 1.5 mm. Please note that

these margins are not fully generic and can be adjusted based on the treatment site

and location of critical structures.

Secondly, the uncertainty comes from anatomical variations (anatomical un-

certainty), including small non-rigid variations (sNRVs) and progressive changes.

As H&N cancer is the focus of this thesis, the anatomical changes in this specific

site are exclusively reviewed. For sNRVs, nasal filling, jaw movement, neck folds,

spine flexion and shoulder position changes are common during treatment [16, 17].

However, its dosimetric impacts on proton therapy plans have yet to be revealed.

For progressive changes, Wenyong et al. (2013) [18] reported that the tumour vol-

ume shrinkage of 20 nasopharynx cancer patients ranged from 20% to 60% during

the treatment. The average reduction was 36.5%. OARs also lose cells under ir-

radiation leading to complications such as dysphagia (swallowing difficulty) and
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dysgeusia (taste changes), often accompanied by weight loss and the shrinkage of

patient’s outline [19]. Bhide et al. (2010) [20] showed that the parotid volume of

20 H&N patients decreased with a reduction rate between 21.3% and 42%, and an

average of 2.3 mm medial shift occurred by the fourth week of treatment. With

these anatomical changes during the course of radiotherapy, dose degradation is

unavoidable. Kraan et al. (2013) [21] evaluated 10 oropharyngeal cancer patients

and showed that anatomical changes led to an average 2% and 2.2% reduction in

the D98% of high-risk CTV and low-risk CTV, respectively, and the maximum in-

crease in brainstem dose can reach 9.2 Gy. Wu et al. (2017) [22] showed that, in

10 oropharyngeal patients, CTV mean doses were reduced by up to 7%, while an

increase was shown in the right parotid with a range from 5% to 8%. Heukelom

et al. (2019) [23] measured the influence of dose discrepancy in terms of normal

tissue complication probability (NTCP) and concluded that anatomical changes can

lead to >5% increase in NTCP for dysphagia and other toxicities.

1.2.4 Uncertainty in deformable image registration

Image-guided radiotherapy (IGRT), which incorporates imaging techniques during

each treatment session, is often used in H&N cancer radiotherapy to identify the

target position and track anatomical changes. The generated images can be used

to analyse the target volume changes and the delivered dose. However, the images

during the treatment are acquired at different timeframes, on different machines,

and even in different modalities. Although they are aligned on a reference coordi-

nate, the pixel or voxel on the same coordinate may not necessarily represent the

same anatomical structure. Deformable image registration (DIR) is used to find

the spatial correspondence between two images. During registration, the algorithm

aims to find an optimal transformation to maximise the similarity between the two

images. DIR has been widely explored for clinical applications. Veiga et al. (2015)

[24] demonstrated the feasibility of using Niftyreg [25] as the DIR tool to calculate

the dose distribution on cone-beam CTs (CBCT) for H&N patients. In their study,

the planning CT was deformed to cone-beam CTs (reference image) to correct the

HU for dose calculation. The transformation of DIR can also be used to warp the
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dose distribution of a weekly CT to the planning CT. In an ideal DIR, the dose

distribution on a weekly CT and the warped dose distribution on the planning CT

should be the same. Heukelom et al. (2019) [23] and McCulloch et al. (2018)

[26] used the transformations between weekly CTs and the planning CT (reference

image) to warp the weekly doses in the reference frame of the planning CT and ac-

cumulate the dose. The differences between the planned and the accumulated doses

were used to explore the impact of uncertainties during the treatment, measured by

NTCP. Also, Tsiamas et al. (2018) [27] and Kranen et al. (2013) [28] exploited the

transformation of DIR to model geometric changes mathematically.

Despite its great use in the clinic, deformable image registration (DIR) also

introduces uncertainty. Nenoff et al. (2020) [29] reported that the average DIR

uncertainty, evaluated using six different DIR algorithms, was 7.9% in PTV V95

(The per cent volume that received at least 95% of the prescription dose), and the

variation between DIR methods on the accumulated dose on PTV V95 was 8.7%.

Therefore, a DIR algorithm needs to be carefully assessed before use, especially

where massive changes happen [30, 31].

1.2.5 Uncertainty evaluation methods

In the aforementioned studies, anatomical changes (changes in tumour and/or nor-

mal organ structures) and dose discrepancies were used in the uncertainty eval-

uation. Water equivalent path length (WEPL) can also evaluate uncertainty. It

has been proposed as a surrogate of dose distribution in the literature [32, 33] to

avoid the time-consuming and computational-expensive dose calculation. Kim et al.

(2017) [32] quantified the anatomical uncertainty by measuring the WEPL changes

on the distal edge of tumour volume using only one beam direction. Holloway et

al. (2017) [33] evaluated the uncertainty by measuring the WEPL changes in the

CTV with different beam angles for robust optimisation. Figure 1.1 simulates the

limitations of these methods. Figure 1.1 a) shows a beam path in which the HU

changes but retains the same WEPL on the proximal and the distal edge of the CTV.

However, the accumulated dose on the proton path is different, as shown in figure

1.1 b). Scenarios like this might happen in the nodal area, where the HUs are het-
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erogeneous. When the neck is tilted or rotated, the HUs within the target area may

exchange their position. Figure 1.1 c) shows another scenario with increased HU

values beyond the CTV distal edge, resulting in the same WEPL in the CTV but a

different accumulated dose. This potentially leads to an overdose in normal tissue,

as shown in figure 1.1 d). If only the WEPLs in the CTV were used to evaluate the

uncertainty, errors like the one described here would not be noticed. Additionally,

they did not factor in that spot weights can also affect uncertainty evaluation [34].

In Chapter 2, these problems were addressed by using the spot location from the

proton plan and adding the spot weights in uncertainty evaluation.

(a) (b)

(c) (d)

Figure 1.1: The limitations of using the WEPL of specific points or areas to evaluate the
consequences of anatomical deformations. The images shown are slices from
the planning CT, and the little spots are the proton spots delivered by the treat-
ment system, with weights indicated by the colour code. The dose is calculated
only considering the indicated red line of the spots. (a) and (b): The HU along
the beam path first increased, then decreased, resulting in the same WEPL but
different dose distributions. (c) and (d): The HU beyond the distal edges of
nodal CTV are increased by 3.5%, consequently changing the dose distribution
in the fall-off region of the distal dose.
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1.3 Uncertainty mitigation methods
Referring to the aforementioned uncertainty sources, this section focuses on uncer-

tainty mitigation methods. Before treatment, physicists make a mask using a plastic

material that becomes soft and pliable when heated in warm water to help H&N

patients reduce the movement above the shoulder during treatment. Markers are

attached to the mask to help identify the treatment isocenter. For the residual un-

certainties, the term ”robustness” is used to measure the insensitivity of a plan to

the defined uncertainty. The robustness of a treatment plan refers to two properties:

first, the CTV should receive the prescribed dose despite the errors that may occur;

and second, normal tissue constraints should be satisfied despite the potential errors

in treatment planning or delivery [35].

1.3.1 Margin expansion

The conventional way to improve the robustness of a radiotherapy plan is to use a

safety margin that expands the CTV to form the planning target volume (PTV). A

popular margin recipe used in photon therapy was introduced by van Herk et al.

(2000) [36]:

Margin = 2.5∑+1.64(σ −σp). (1.1)

Where ∑ is the standard deviation of the systematic uncertainty, σ is the total

standard deviation of the random errors combined with the beam penumbra width,

and σp is the standard deviation describing the penumbra. This recipe allows a

minimum of 95% of the prescription dose to be delivered to the CTV for 90% of

patients. However, this solution is sub-optimal for proton therapy: 1) The con-

formal expansion leads to a sub-optimal trade-off between the target coverage and

the OARs sparing. The margin is either too large, which gives extra burdens to

OARs, or not sufficient to cover the tumour. 2) Uniform dose distribution in PTV

is not achievable in reality. 3) The PTV is based on the so-called static dose cloud

approximation, which assumes that the dose distribution would not be affected by

geometric changes in patients as long as the CTV is within the PTV. However, this
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assumption is violated in IMPT [35, 37]. Lowe et al. (2020) [38] illustrated that

the PTV cannot cover the dose distortion, and as much as 8.4% dose degradation

was found in the CTV of H&N patients. 4) In 3D IMPT, the spots are required to

cover the target and weights are adjusted to get the optimal distribution. Different

spot weights can lead to the same distribution, but different robustness [34]. The

PTV concept did not exploit the advantage of this technique, and an unnecessary

compromise was made by using the PTV [35].

1.3.2 Robust optimisation

Instead of taking uncertainties into account to create a safety margin, new ap-

proaches have been suggested to explicitly include the effect of geometrical un-

certainties directly in the treatment plan optimisation [39, 40, 41] by modifying the

cost functions. Known as probabilistic treatment planning or robust optimisation,

these strategies are based on a stochastic approach that uses probability density

functions, generally normal distribution [41] or uniform distribution [42], to de-

scribe the uncertainties. The optimisation that includes setup and range uncertainty

[38] is referred to as conventional robust optimisation, in which setup uncertainty

is generally modelled by a few millimetres of rigid shift, and the range uncertainty

from HU is modelled by uniformly changing HU value, typically of the order of

a few percentages. However, except for the setup and range uncertainty, patients

also experience anatomical changes during treatment. These anatomical changes

cannot be simplified as rigid translations, and thus the conventional robust optimi-

sation cannot cover the dose degradation from anatomical changes. In very recent

studies, multiple CT images were involved in the optimiser to account for anatomi-

cal uncertainty, referred to as anatomical robust optimisation. Mesı́as et al. (2019)

[43] used the CT images of the first two weeks to account for anatomical random

changes, e.g. shoulder movement or neck tilt. Yang et al. (2020) [44] used the

image from the first adaptation to include progressive anatomical changes. They

both concluded that anatomical robust optimisation improved plan robustness to-

ward anatomical changes and reduced the number of plan adaptations for H&N pa-

tients. However, the required multiple scanning will give patients an extra dose and
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increase the workload for clinicians. Using acquired CT images during treatment

will also limit the creation of robust plans at the early planning stage. Aiming to ad-

dress these limitations, an anatomical model was built in Chapter 4 to produce the

potential deformations with corresponding probability before the treatment. This

model provided a potential solution for anatomical robust optimisation.

1.3.3 Robust evaluation

After robust optimisation, robust evaluation is still needed. Set up and range un-

certainty are included in the conventional robust evaluation, while the robust eval-

uation, including inter-fractional anatomical variations, often uses images acquired

during the course of treatment [33, 45, 46], and as such, it can only inform the plan-

ning process for a portion of the treatment delivery. Holloway et al. (2020) [33]

added the anatomical variations into robust evaluation based on CBCTs at each

fraction. The impact of different beam angles on the robustness of a plan was pre-

sented in this paper. Based on the plan evaluation, McGowan et al. (2015) [47]

proposed to create a robustness plan database to assist in finding a more robust

planning approach. However, patients have their own unique geometries, on which

the impact of uncertainty can vary. A pre-treatment robust evaluation, including

setup uncertainty, range uncertainty and anatomical uncertainty based on individual

geometry, would be more helpful in informing clinical decisions. In this thesis, the

small non-rigid variations, which are unavoidable during treatment, are included in

the patient-specific robust evaluation in Chapter 3.

1.3.4 Adaptive radiotherapy

Compared with setup and range uncertainty, anatomical uncertainty is more com-

plex and can lead to more severe dose discrepancies. Thus, current research focuses

on strategies to mitigate the influence of anatomical changes [43, 48, 49, 50, 51].

Adaptive radiotherapy is proposed to this end. Two strategies for delivering adap-

tive proton therapy are available: offline and online adaptation. Online adaptation is

a state-of-art technique intended for same-day application. However, limited by the

current computational speed, online adaptation either compromises the accuracy or
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constrains the optimiser. As a result, the online adapted plan is always inferior to

a new treatment plan. Matter et al. (2019) [49] used the analytical pencil beam

scanning algorithm to generate a plan in ten seconds. However, the analytical cal-

culation is less accurate than a MC-based algorithm. Studies using constrained MC

[50, 51] reported that the calculation time of an adapted plan online ranged from 3 to

22 minutes [50, 51, 48]. Bobić et al. (2021) [51] constrained the optimizer by only

adjusting the beamlet positions, energies and beamlet weights to produce adapted

plans. They reported a median adjustment time of 12 minutes, excluding the time

for DIR. Lalonde et al. (2021) [48] only adjusted the weight of the beamlets to pro-

duce adapted plans. Their median adjust time was also 12 minutes but included the

time for DIR. While online adaptation is considered superior to offline adaptation

because of no treatment delay, no clinical solution exists for pre-delivery quality

assurance (QA), and the reported time required to calculate the online adapted plan

is currently limiting its application in terms of total treatment time per patient [52].

Offline adaptation is often triggered by clinically meaningful criteria based on

centre-specific protocols. Tumour coverage is generally one of the criteria. Mesı́as

et al. (2019) [43] triggered a plan adaptation if 98% volume of CTV cannot be

covered by 95% of the prescription dose. In the TORPEdO trial (A phase III trial of

proton therapy versus intensity-modulated radiotherapy for multi-toxicity reduction

in oropharyngeal cancer; CRUK/18/010) conducted in the UK, they will replan

if 99% volume of CTV cannot be covered by 90% of the prescription dose and

95% of the CTV volume cannot be covered by 95% of the prescription dose [53].

Besides tumour control, radiation-induced toxicities are also a great concern in the

clinic. Brouwer et al. (2016) [54] suggested that an extra 3 Gy mean dose on the

parotids can be of clinical relevance to severe toxicity, such as xerostomia, which

can have a long-term impact on patients’ quality of life after treatment [55]. These

dose-relevant criteria require routine dose verification based on the daily or weekly

images, which is time-consuming in a busy clinical workflow. In literature, different

replan surrogates also exist, including weight loss [56], body contour changes [57],

and HU changes in parotid glands [58]. However, replanning based on dosimetric
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changes is still the gold standard in the clinic.

Even though offline adaptation is generally used in proton therapy facilities, the

process challenges clinical workflow efficiency. Whilst plans are adapted, patients

must either continue treatment with an existing sub-optimal plan or face interrup-

tions to treatment. The latter may be particularly undesirable for rapidly growing

tumours such as squamous carcinomas of the H&N [59]. Furthermore, this reac-

tive approach to plan adaptation can create an unpredictable workload for treatment

planning staff, the medical physics team who perform patient-specific plan QA, and

radiation oncologists who review and approve the plans.

Adaptive plans that can be prepared in advance would be beneficial to the clin-

ical workflow: 1) A replan can be delivered as soon as needed due to the ability

to perform patient-specific QA/verification before adaptation is required, for exam-

ple, on a predicted CT, which triggered a replan. 2) For patients, there is no gap in

treatment or delivery of a few sub-optimal fractions while a replan is calculated, ap-

proved, and verified through QA. 3) For workflow, it allows for ease of scheduling

patient-specific QA along with machine QA. To this end, we need the facilitation

of predictive anatomical models, e.g. using the predicted images of an anatomical

model to create an adaptive plan in advance, as presented in Chapter 6.

1.4 Anatomical models and their application in pro-

ton therapy
Anatomical models have been proposed in the literature as potential solutions to

uncertainty mitigation. Generally, there are two types of anatomical models: popu-

lation model and individual model.

1.4.1 Population model

A population model can explore the pattern of anatomical changes based on popula-

tion data. Panagiotis et al. (2018) [27] fed all the data acquired during the treatment

into the principal component analysis (PCA) to model the anatomical changes of

H&N patients. However, they ignored that anatomy can change progressively over
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time, and no predictive ability was shown in this model. Yu et al. (2016) [60]

used an intra-patient model to generate artificial deformations for DIR evaluation.

They applied PCA on the deformation vector fields (DVF) of each daily time point

to capture the dominant modes of deformation, called principal components (PC).

Each generated DVF can be represented by a linear combination of PCs. They as-

sumed that the probability density function (PDF) of the coefficients α of each PC

follows a standard normal distribution. However, they did not validate if the PDF

of α from their dataset was consistent with this assumption, and the probability of

each predicted DVF was not revealed. To date, it is still challenging to quantify the

probability of a certain type of anatomical deformation to arise during the treatment

course.

1.4.2 Individual model

An individual model is built based on individual patient data. One particular ap-

plication of the individual model is to create a patient-specific PTV. Thörnqvist

et al. (2013) [61] applied PCA to the motion of prostate CTVs for each patient.

13 patients, each with 9−10 CTs, were included in this study. The created union

of simulated shapes covered 95% of CTV changes when 4 PCs were used in this

patient-specific model. Xu et al. (2014) [62] also proposed two margins for prostate

cancer treatment based on a PCA model. One was the optimized PTV margin that

was iterative updated until the predefined coverage criteria were satisfied, while

the other was a dosimetric margin between the CTV and the treated volume. Both

methods showed an advantage in target coverage compared to conformal margin

expansion. However, their expanded margin cannot be obtained before treatment

because patient-specific images acquired during treatment were all included in their

model.

Another application is to use images acquired during the first F fractions and

predict the anatomical changes of the following fractions [28, 63]. Kranen et al.

(2013) [28] explored using the systematic deformation of the first F fractions for

adaptive intervention. They deformed the planning CT using: 1) the average defor-

mation from the previous 10 fractions as the single intervention strategy; and 2) the



1.5. Research aims and objectives 41

average deformation from the previous week as the weekly intervention strategy.

However, the progressive changes between fractions were not considered in their

study. Chetvertkov et al. (2016) [54] modelled the patient-specific anatomical vari-

ations using regularized PCA. They assumed a positive linear correlation between

the coefficients of PC and fractions due to the fact that anatomical changes are pro-

gressive. However, they required at least half of the total fraction for a reasonable

estimation. That is the main disadvantage of this individual model, as patients must

have already begun to deform through treatment for the model to develop. Ideally,

an anatomy predictive model that can provide accurate predictions before treatment

would benefit clinical practice the most. However, images acquired during treat-

ment are only a snapshot of the anatomy. Interfraction variations and the influence

of acute toxicities on patient eating during treatment also determine the weekly

anatomical changes. An alternative is to develop a model that captures the system-

atic anatomical changes based on population data. Each patient’s model could then

be refined as patient-specific data is acquired over the course of treatment. The

above two models were only assessed based on the misalignment of anatomical

landmarks, and no adaptive plan was created on the predicted anatomy for further

evaluation. Therefore, the application of anatomical models for adaptive radiother-

apy still needs to be explored.

1.5 Research aims and objectives
Although setup uncertainty and range uncertainty have been considered in robust

evaluation and optimisation, anatomical changes in proton therapy can still lead

to severe dosimetric discrepancies. To fully assess the anatomical uncertainty for

H&N cancer, DIR is required. Because different DIR algorithms come with dif-

ferent magnitudes of uncertainty, to which proton therapy is inherently sensitive, a

DIR needs to be carefully evaluated for a specific application. This thesis starts with

the DIR evaluation.

1. Evaluate the selected DIR algorithm for mathematical modelling. The objec-

tives of this project are:
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• Assess the DIR uncertainty using contours-related metrics.

• Develop a new uncertainty evaluation method based on weighted spot

location deviation(WSLD) and apply it for DIR uncertainty evaluation.

• Develop a workflow to assess the accumulated DIR uncertainty based

on dose distribution. Justify the use of the DIR algorithm by compar-

ing the accumulated DIR uncertainty with the accumulated anatomical

uncertainty.

The DIR evaluation validates the feasibility of using the selected algorithm to

capture anatomical deformations. In this thesis, the anatomical changes are divided

into 1) sNRVs (such as neck tilt and spine flexion) that are random and not patient-

specific and 2) progressive changes that are dependent on individual features. The

DIR is first used to capture possible sNRVs because the dosimetric impact of sNRVs

has yet to be explored. sNRVs are included in the robust evaluation to guide beam

selection based on individual geometry.

2. To explore the role of sNRVs in robust evaluation. The objectives of this

project are:

• Build a distribution of possible sNRVs based on population data.

• Assess the dosimetric discrepancies caused by sNRVs.

• Incorporate sNRVs in the robust evaluation to guide the beam arrange-

ment selection.

• Validate quantitatively that the sNRVs-based evaluation is better than

the conventional evaluation method.

When a large patient dataset is available, limiting the number of included

sNRVs to the most common ones helps to improve computational efficiency. For

that purpose, the DIR is used to build an anatomical model based on population

data. The model produces potential anatomical deformations considering the time

dependence of the progressive changes during treatment and estimates the proba-

bility of each type of deformation, referred to as the probability model (PM). The
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dosimetric influences of sNRVs from the real deformations are used as the bench-

mark to validate the PM. The PM can be used for anatomical robust optimisation.

3. To assist anatomical robust optimisation, the objectives of this project are:

• Develop a probability model (PM) based on PCA to model major defor-

mations at each weekly time point in patients.

• Quantify the probability of each type of anatomical deformation based

on population data.

• Validate the feasibility of using the PM to measure anatomical uncer-

tainty.

Anatomical robust optimisation can reduce the need for adaptive planning dur-

ing treatment. However, the robust optimisation alone may not be adequate to

account for anatomical changes during treatment [34]. An individual model was

developed for prospective offline replanning.

4. To predict the anatomical changes during the treatment for an individual, the

objectives of this project are:

• Develop an average model (AM) based on population data to predict the

systematic progressive changes of each week before treatment.

• Refine the prediction by adding patient-specific progressive information

from the data acquired during the course of treatment as the refined in-

dividual model (RIM).

• Evaluate the models using the average absolute HU differences(AAHUD),

contours, WSLD and IMPT dose distributions.

The evaluation of the RIM model demonstrated its ability to predict individual

anatomical changes. Thus, it was investigated for clinical use. The RIM model was

explored to assist with replanning in advance.

5. To maximise the use of the individual model for offline replanning. The ob-

jectives of this project are:
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• Find the best strategy to use the RIM for offline replanning; three differ-

ent strategies are compared as follows:

1) Scheduled predicted plan on the scheduled week: replans are opti-

mised on predicted images of weeks 3 and 5 and applied to weeks 3/4

and 5/6, respectively.

2) Reactive predicted plan on the flexible week: a plan is optimised on

a predicted CT, which triggers a replan, and applied flexibly as soon as

the verification CT indicates that a plan adaptation is necessary.

3) Reactive predicted plan on the scheduled week: a plan is optimised

on a predicted CT, which triggers a replan, and applied from scheduled

week 3.

• Compare the reactive predicted replan with the standard replan based on

the accumulated dose distribution.

1.6 Impact and novelty of the work
The research presented in this thesis focuses on mitigating anatomical uncertainty.

The following aspects are novel:

• Use WSLD to evaluate uncertainty: Firstly, compared to the previously pub-

lished WEPL-based uncertainty evaluation methods, the influence of spot

weight on the robustness of a plan was considered. Additionally, the radi-

ation target is generally divided into sub-targets in proton planning to exploit

multi-field optimisation. This can be reflected in the spot location of each

beam field. Using WSLD improves evaluation accuracy.

• Evaluate the dosimetric impact of sNRVs and validate the necessity of includ-

ing sNRVs in robust optimisation/evaluation. In recent literature, the dosi-

metric impact of anatomical changes was reported. However, they did not

separately report the dosimetric impact of sNRVs and progressive changes.

The underlying causes of these two types of change are different. Hence their

corresponding mitigating strategies should be different. Progressive changes
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have trends to follow. Thus, using adaptive radiotherapy can potentially bring

more benefits to patients. Whereas sNRVs are unpredictable and not patient-

specific but can lead to unacceptable discrepancies. sNRVs are more suitable

to be accounted into robust optimisation as setup uncertainty and range uncer-

tainty. The method of including sNRVs in the robust evaluation was proposed

to help select the best beam arrangement. This application can potentially

spare OARs and reduce the replanning rate.

• Build two anatomical models, the PM and the RIM, considering the time

dependence of the progressive changes in H&N patients. The PM and the

RIM aim to assist anatomical robust optimisation and predictive replanning,

respectively.

– The population-based probability model for H&N patients is proposed

for anatomical robust optimisation. The PM generates major deforma-

tions at each weekly time point during treatment. Each potential defor-

mation can be quantified by probability. The PM has the best perfor-

mance in terms of estimating anatomical uncertainty.

– Aiming at the limitations of the previous individual models, which ei-

ther required at least half fractions to provide a reasonable estimation or

ignored the progressive changes between fractions, the RIM considering

the time dependence of anatomical changes is proposed. In this model,

the systematic progressive changes of each week are applied to a new

patient before treatment, and the prediction is refined as treatment goes.

This model greatly reduces the requirement of imaging frequency and

can capture progressive changes in time.

• Develop the first application of the RIM to create replan in advance. In the

literature, the proposed models were only assessed based on the misalign-

ment of anatomical landmarks, and no potential application was evaluated

based on dose distribution. This thesis provides potential predictive replan-

ning strategies based on the refined individual model. The results show that
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the predicted plan adaptation technique achieves similar coverage of CTVs

and reduces the parotid dose compared to the standard replanning strategy.

Prediction-based replanning enables adaptive therapy to be delivered without

treatment gaps or sub-optimal fractions, as can occur during a standard re-

planning strategy. The operational logistics of a busy clinical practice may

also benefit from this improved workflow efficiency.



Chapter 2

Evaluation of Deformable Image

Registration

In this chapter, diffeomorphic deformable image registration implemented in the

NifTK was evaluated for building anatomical models.

The work in this chapter was incorporated in the following outputs:

Ying Zhang, Megan Z.Wilson,Jeffrey Liu, Jailan Alshaikhi, Gary Royle,

Stacey M.Holloway. ”Can Proton Water Equivalent Path Length calculations be

used instead of full dose recalculation for determining when to adapt a plan?”

PPRIG Proton Physics Workshop 5, National Physical Laboratory(NPL),UK. Feb

2019.

Ying Zhang, Stacey McGowan Holloway, Megan Zoë Wilson, Jailan Al-

shaikhi, Wenyong Tan, Gary Royle and Esther Bär. ”DIR-based models to predict

weekly anatomical changes in head and neck cancer proton therapy”. Physics in

Medicine & Biology 67, no. 9 (2022): 095001.

Ying Zhang, Jailan Alshaikhi, Wenyong Tan, Gary Royle and Esther Bär. ”A

probability model for anatomical robust optimisation in head and neck cancer pro-

ton therapy.” Physics in Medicine & Biology (2022).

Esther Bär, Charles-Antoine Collins-Fekete, Vasilis Rompokos, Ying Zhang,

Mark N. Gaze, Alison Warry, Andrew Poynter, Gary Royle. CT calibration for

precise proton therapy planning in children. European Society for Radiotherapy

and Oncology 2021.
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Esther Bär, Charles-Antoine Collins-Fekete, Vasilis Rompokos, Ying Zhang,

Mark N. Gaze, Alison Warry, Andrew Poynter, and Gary Royle. ”Assessment of

the impact of CT calibration procedures for proton therapy planning on paediatric

treatments.” Medical physics (2021).

Contribution of Authors: Jailan Alshikhi created the proton plans. Wenyong

Tan provided the clinical data and valuable input. Gary Royle provided valuable

input concerning the clinical importance and impact of this work. Esther Bär and

Stacey McGowan Holloway supervised the project and guided the development of

ideas, methods, results, and conclusions of this work. All other work presented

in this chapter was done by myself. Esther Bär used the methods proposed in the

chapter to evaluate the range uncertainty in CT calibration.

2.1 Introduction

In image-guided radiotherapy (IGRT), although images acquired during treatment

are aligned on a reference coordinate, the pixel or voxel on the same coordinate may

not necessarily represent the same anatomical structure. Image registration is the

process of aligning different images into the same coordinate system with matched

imaging contents. It is composed of three main components: 1) a transformation

metric, 2) a similarity metric (cost function) 3) optimiser. The optimiser drives the

algorithm to find the best result of a similarity metric, such as the maximisation of

mutual information between images, through an iterative procedure to obtain the

optimal transformation. In deformable image registration (DIR), the transforma-

tion is a spatially variant vector field. Therefore, it allows a non-uniform mapping

between images. DIR has been proposed to correct HU for CBCT, warp and ac-

cumulate dose to the reference planning CT, and model geometric changes during

treatment. However, no transformation can achieve a 100% match. DIR uncertainty

exists. Nenoff et al. (2019) [29] compared six different DIR algorithms and showed

that the variation of DIR uncertainty on the accumulated dose of PTV V95 between

the different algorithms was high (8.7%). The additional uncertainty caused by a

DIR algorithm can be up to 26.3% in PTV V95. Therefore, a DIR method needs



2.1. Introduction 49

to be carefully evaluated before applying it to a specific application, especially a

proton application, as the inherent physical characteristics of protons make the dose

distribution of a proton plan more sensitive to DIR uncertainty than that of a photon

plan.

Generally, DIR uncertainty was evaluated based on contour and dose distribu-

tion. For DIR evaluation based on contour, the contours of the floating image are

propagated to the reference frame using the transformation between two images.

The differences between the propagated and the reference contours measure DIR

uncertainty [64]. For DIR evaluation based on dose distribution, the dose calcu-

lated on a weekly CT is deformed to the planning CT using the transformation [29].

The dose-volume histogram (DVH) differences between the dose distribution on

the weekly CT and the warped dose distribution on the planning CT represent DIR

uncertainty. However, the above two methods are based on the assumption that the

contours on weekly CT are absolutely consistent with the contours on the planning

CT, which is not true in reality, as mentioned in Chapter 1.

The DIR uncertainty has yet to be thoroughly evaluated for building anatomical

models for H&N proton therapy. Aiming at this limitation, this chapter evaluates

the uncertainty of the DIR algorithm provided by Niftyreg 1. The evaluation is

conducted based on: 1) contours; 2) proton spot location. To improve the accu-

racy of uncertainty evaluation based on proton range, a new uncertainty evaluation

method based on the spot range and spot weight is developed and applied to DIR

uncertainty evaluation; 3) dose distribution. A workflow to assess the accumulated

DIR uncertainty based on the dose distribution is proposed and compared with the

accumulated anatomical uncertainty to justify the use of this DIR algorithm. This

workflow eliminates the delineation error.

1https://cmiclab.cs.ucl.ac.uk/mmodat/niftyreg
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2.2 Methods and materials

2.2.1 Deformable image registration tool

NiftyReg, which is an open-source DIR tool developed by CMIC at UCL (

http://cmic.cs.ucl.ac.uk/home/software), has been used in the CT-CBCT registra-

tion for proton therapy [24, 30]. The diffeomorphic image registration of NiftyReg

[65] was selected for this study because its deformation field is invertible, differ-

entiable, and the inverse is also differentiable. As a result, its transformation leads

to one-to-one voxel mappings, which inherently preserve the underlying topology.

Besides, the diffeomorphic setting enforces consistency under compositions of the

deformations. If the deformations are diffeomorphic, then the result of the compo-

sition will also be diffeomorphic.

The diffeomorphic image registration is a B-spline-based method implemented

in NiftyReg. Spline-based transformations assume that a set of corresponding con-

trol points can be identified in the source and target images. The control points are

adjusted until the alignment between the warped image and the reference image is

maximised. The transformation is computed through a cubic B-spline interpolation

from the lattice of control points overlaid on the reference image. The diffeomor-

phism is parameterized by a stationary velocity field (SVF) using the exponential

map [66]. DVF φφφ can be expressed as equation 2.1

φφφ = exp(vvv). (2.1)

vvv represents the SVF in the diffeomorphic image registration [65].

While in many registration approaches, the calculation of the inverse trans-

formation is computationally expensive, and invertibility cannot be guaranteed, the

inverse transformation φφφ−1 can be easily calculated in diffeomorphic image regis-

tration using equation 2.2

φφφ = exp(vvv) ⇒ φφφ
−1(x) = exp(−vvv). (2.2)

It should be noted that the rigid registration was performed based on a bony
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match before the DIR. The rigid registration area was masked by the body contour

that was large enough to cover the whole PTV.

2.2.2 Data

Five H&N patients with a planning CT (pCT) and a weekly repeat CT (rCTt), where

t (t=0,1,2,3,...) represents the week of CT scanning, were recruited. They experi-

enced weight loss of 17.21%, 4.84%, 6.98%, 4.17% and 17.8% during the treat-

ment, respectively. Contours in the pCT and rCTt were manually delineated by an

oncologist. For each patient, rCTt was deformed to pCT to produce vvvp→t , where

p stands for pCT and t stands for the week when the rCT was acquired (rCT was

rigidly registered to the pCT before the DIR). dCT is the deformed rCT using vvvp→t .

rCT, dCT and pCT share the same isocenter.

Proton plans were created for the five patients using three beam angles (60◦,

300◦, 180◦) in Eclipse version 16.1.0 (Varian Medical Systems, Palo Alto, CA),

complying with the original radiotherapy protocol. The dosimetric goals for all

plans in this study are summarised in table 2.1.

Table 2.1: Dosimetric goals of the treatment plans created in this study.

Structure Metric Dosimetric Goals
High-risk CTV D95 (The minimum dose to 95% of target volume) > 95% of prescription dose(72.6 Gy)
Low-risk CTV D95 > 95% of prescription dose(63 Gy)
High-risk CTV D2 (The minimum dose to the hottest 2% volume ) < 107% of prescription dose
Spinal cord Dmax (The max dose in the volume) <45 Gy
Brainstem Dmax <55 Gy
Chiasm Dmax <55 Gy
Optical Nerve Dmax <55 Gy
Parotid glands Dmean (The mean dose in the volume) <26 Gy
Oral cavity Dmean <40 Gy
Larynx Dmean <40 Gy
Cochlear Dmean <45 Gy

2.2.3 Deformable image registration evaluation methods

The influence of DIR uncertainty was investigated from 1) the weekly changing

trend and 2) the accumulated influence during the treatment.

As the magnitude of progressive changes in H&N patients increases during

treatment, leading to difficulty in finding the correspondence between two images,

the hypothesis is that the overall DIR uncertainty will increase along with treatment.
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The weekly changing trend of DIR uncertainty was investigated based on contour

and proton spot range.

2.2.3.1 Deformable image registration evaluation based on contour

The evaluation based on contour was used to observe the weekly changing trends.

The selected contours on rCTt were propagated using the deformation vector field

vvvp→t . The propagated contours were compared with the corresponding contours on

the pCT (gold standard) to evaluate the DIR uncertainty at each weekly time-point,

referred to as C-DIR evaluation. In the C-DIR evaluation, the mean surface distance

(MSD) was chosen to quantify the contour differences because it is a metric gener-

ally used in the DIR evaluation, and the quantification is given in millimetres, which

can be compared with voxel size to justify the acceptance of DIR error. MSD indi-

cates the average difference between the gold standard surface S and the propagated

surface S’.

MSD =
1

nS +n′S
(

nS

∑
a=1

DT (a,S′)+
n′S

∑
b=1

DT (b,S) ), (2.3)

where distance transformation (DT) calculates the minimum distance between a

point on surface S and surface S′ using

DT (a,S′) = min(‖ a−b ‖) a ∈ S, b∀S′. (2.4)

The contours included in the C-DIR evaluation were low-risk CTV, high-risk

CTV and parotid glands. These structures commonly change their shape and vol-

ume during treatment.

2.2.3.2 Deformable image registration evaluation based on proton

spot range

In this section, an estimation of the spot location within a patient, derived from the

treatment plan file and CT image information, was developed to evaluate uncer-

tainty. DIR uncertainty evaluation is one of the applications, referred to as R-DIR

evaluation.
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Figure 2.1: The calibration curve between HU and RSP.

In the pencil beam scanning technique, doses are delivered spot by spot. The

spot positions (X ,Y ) and energy/layer (Z) can be extracted from the plan files of the

Varian treatment planning system. (X ,Y ) are recorded relative to the isocenter (the

centre of the target) in the gantry coordinate system. (X ,Y ) with a beam angle can

specify a beam path. The beam energy (Z) determines the depth of a spot on the

beam path by calculating the WEPL using equation 2.5.

WEPL = ∑
i, j,k∈S

RSPi, j,k ·di, j,k, (2.5)

where S is a set of voxels which contain the beam path. RSPi, j,k is the voxel-wise

relative stopping power estimated from the CT number using a clinical calibration

curve, shown in figure 2.1. di, j,k is the path length of the beam inside voxels (i, j,k),

estimated by a ray tracing algorithm [67]. The beam-lines were assumed parallel in

this study.

The deviation of each spot (SLD) on the beam path is calculated using

σ(rrr) = |rrruncertainty−rrrreference|, (2.6)

where rrr is a spot position in the CT. rrrreference is a spot location in the reference

frame. rrrchange is the corresponding spot location under uncertainty.
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To visually analyse the uncertainty, the spot error map was developed to in-

tuitively present the deviation (in the beam direction) of each spot relative to its

original position in the pCT. Figure 4 shows an example of the spot error map of

the beam angle 60◦. The deviations are due to the anatomical changes during the

treatment. The colour bar on the right side represents the error calculated using

equation 2.6.

(a) (b)

Figure 2.2: A slice of the spot error map between the pCT and CT6. (a) is the spot error
map of the beam angle 60◦. The red area is the radiation target of beam angle
60◦. Positive values mean spots go deeper along the beam path, and negative
values mean spots stop at shallower places. (b) is the image difference between
the pCT and CT6, as the reference for the spot error map.

Because spot position and weight both affect dose distribution [34], spot

weights were added to the uncertainty evaluation to improve accuracy. The

weighted SLD (WSLD) is presented in equation 2.7. Without having to calculate

the dose distribution, the WSLD is more effective in describing the consequences

of uncertainty.

WSLD = ∑
rrr

σ(rrr) ·wr, ∑wr = 1, (2.7)

where wr is the normalized spot weight. σ(rrr) is the deviation of the corresponding

spot on the beam path as defined in equation 2.6.

To evaluate the uncertainty of the DIR algorithm, the WSLD between dCTt and

their corresponding pCT was calculated, using the pCT as the reference in equation
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2.7. dCTt is the deformed rCT in the reference frame of the pCT and should have

the exact spot locations as the pCT in an ideal DIR algorithm. The evaluation based

on WSLD was used to observe the weekly changing trends.

2.2.3.3 Deformable image registration evaluation based on accumu-

lated dose distribution

The accumulated influence of DIR uncertainty during treatment was investigated

based on dose distribution.

This study proposed to calculate the dose distribution on dCTt and add them up

as the accumulated dose of dCTs (dCTs should have the same dose distribution as

the pCT in an ideal DIR algorithm). The difference between the accumulated dose

of dCTs and the corresponding planning dose measures the accumulated influence

of DIR uncertainty during treatment, referred to as dCT-DIR evaluation. Because

dCTs use the same contours as the pCT, the delineation error was removed in the

dCT-DIR evaluation.

To justify the use of the DIR algorithm, the accumulated DIR uncertainty was

intended to compare with the accumulated anatomical uncertainty based on dose

distribution. For easy implementation, the difference between the accumulated

dose distribution of weekly CTs (weekly propagated dose distribution in the ref-

erence frame of the pCT) and the corresponding planning dose distribution was

calculated to represent the accumulated uncertainty from anatomical changes plus

DIR (A+DIR). The uncertainty evaluation results of A+DIR versus DIR should lead

us to the same conclusion as anatomical changes versus DIR. If the dose difference

caused by the DIR uncertainty is much smaller than the A+DIR uncertainty, this

error will be accepted for DIR-based modelling.

The workflow of accumulating weekly dose distributions and dCT’s dose dis-

tributions is shown in figure 2.3.

The evaluation metrics used in the dCT-DIR evaluation were: 1) the difference

between the accumulated dose of dCTs and the planning dose on the clinically-

concerned dose metrics. 2) the gamma index between the planning dose and the

accumulated dose of dCTs. 3) voxel-wise absolute dose difference between the
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Figure 2.3: The workflow of accumulating weekly dose distributions and dCT’s dose dis-
tributions.

planning dose and the accumulated dose of dCTs. Three evaluation metrics were

used as follows:

1. Difference between the accumulated dose of dCTs and the planning dose was

calculated for the clinically-concerned dose metrics, including D95 of CTVs,

Dmean of parallel organs and Dmax of serial organs.

2. Gamma-index (γ) was used to evaluate the dose distribution difference be-

tween the accumulated dose of dCTs (Dcal) and the planning dose (Dref) using

acceptance criteria [68]. It combines two important dose difference measure-

ments: absolute dose difference and distance to agreement (DTA). DTA finds

the distance between a dose point in the planning dose distribution and the

nearest point with the same dose value in the accumulated dose of dCTs. Ab-

solute dose difference is sensitive in high-dose gradient regions, while DTA
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is sensitive in low-dose gradient regions. The gamma index complements the

two measurements. The gamma index at one dose point can be calculated

using

γ(rref) = min{Γ(rcal,rref)}∀{rcal}, (2.8)

where

Γ(rcal,rref) =

√
r2(rcal,rref)

∆dM
2 +

δ 2(rcal,rref)

∆DM
2 , (2.9)

with

r(rcal,rref) = |rcal− rref|, (2.10)

and

δ (rcal,rref) = Dcal(rcal)−Dref(rref). (2.11)

In the above equations, rref is the reference point, rcal is the calculated point

on the accumulated dose of dCTs, ∆dM is the distance difference criterion

and ∆DM is the dose difference criterion. As the passing criteria, this study

used γ(rref)<1 the calculation passes, otherwise fails. The criteria used were

∆dM=2 mm and ∆DM=2%.

3. The voxel-wise absolute dose difference between the planning dose and the

accumulated dose can be visually demonstrated in the dose-deviation-volume

histogram (DDVH). The voxel-wise absolute dose difference caused by the

DIR uncertainty and the A+DIR uncertainty was compared in DDVH. The

organs included in this analysis were targets (low-risk CTV, high-risk CTV),

serial OARs (spinal cord, brainstem, chiasm), and parallel OARs (parotid

glands, oral cavity, larynx).

To quantify the DDVH, the area below the DDVH curve was calculated, rep-

resenting the mean value of the voxel-wise absolute dose difference (MADD).
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2.3 Results

2.3.1 Deformable image registration evaluation based on con-

tour

The weekly changes in MSD across the five patients are shown in figure 2.4. The

DIR uncertainty shows an increasing trend during the treatment. The maximum

MSD of all the structures involved is below 3 mm (slice thickness).

(a) (b) (c)

Figure 2.4: The weekly MSD between the deformed contours in dCTs and the correspond-
ing contours in the pCT for high-risk CTV, low-risk CTV and parotid glands.
In the box plot, the horizontal lines indicate the median value, and the asterisks
indicate the mean value.

2.3.2 Deformable image registration evaluation based on proton

spot range

The WSLD of DIR uncertainty across the test dataset is shown in figure 2.5. In

individual cases, the minimum and the maximum WSLD of 0.44 mm and 2.17 mm

were found (< slice thickness of 3 mm), respectively. The average WSLD with 95%

confidential interval (CI) across the five test patients increased from 0.86±0.14 mm

(week 1) to 1.33±0.48 mm (week 6). The weekly average was 1.03±0.23 mm,

close to the pixel size of 0.98 mm.

2.3.3 Deformable image registration evaluation based on accu-

mulated dose distribution

The differences between the planning dose and the accumulated dose of dCTt on

clinically-concerned dose metrics are shown in figure 2.6. The figure shows that the

influence of DIR uncertainty on the dose metric differences of these organs can be
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Figure 2.5: The weekly WSLD between dCTs and the corresponding pCT. The result is
estimated in average WSLD with 95% CI over the 5 test cases.

controlled within 2 Gy.

Figure 2.6: The differences between the planning dose and the accumulated dose of dCTt

on clinically-concerned dose metrics.

The gamma index was calculated between the planning dose and the accumu-

lated dose of dCTs for each patient, as shown in figure 2.7. The minimum gamma

index of 97.73% corresponds to patient 5, who had a weight loss of 17.8%. Deduced

from here, the DIR-based application on patients with larger anatomical changes

would introduce more DIR uncertainty than those with less anatomical changes.
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Figure 2.7: The gamma index between the accumulated dose from dCTs and the planning
dose for each patient.

The DDVHs that demonstrate the influence of the A+DIR uncertainty and the

DIR uncertainty are compared in figure 2.8 for organs of interest, including two tar-

get volumes: low-risk CTV and high-risk CTV; three serial OARs: chiasm, brain-

stem and spinal cord; and three parallel OARs: parotid glands, oral cavity and lar-

ynx. From visual assessment, the dosimetric discrepancy from the DIR uncertainty

was much smaller than from the anatomical uncertainty. Significant differences be-

tween the influence of the DIR uncertainty and the A+DIR uncertainty were found

on OARs.

The MADD (mean±95% confidence interval) quantified the average DDVH

area across the five patients for each organ of interest. The MADD of the A+DIR

uncertainty and the DIR uncertainty are compared in table 2.2. Anatomical uncer-

tainty can increase the MADD of parallel OARs, serial OARs and CTVs by at least

3 times, around 2 times, and around 1.5 times, respectively.

Table 2.2: The quantification of A+DIR uncertainty and DIR uncertainty using the MADD
for each organ.

Uncertainty
MADD (mean + 95 CI%) (Gy)

CTVs Parallel OARs Serial OARs
Low-risk CTV High-risk CTV Parotid glands Oral cavity Larynx Brainstem Spinal cord Chiasm

A+DIR 1.36±1.19 1.35±1.19 2.52±4.3 1.53±3.43 2.96±3.59 1.98±1.11 1.67±1.74 3.3±7.5
DIR 0.56±0.22 0.53±0.55 0.6±0.3 0.33 ±0.19 0.74±0.34 0.74±0.73 0.47±0.29 1.02±0.93
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 2.8: The comparison between the accumulated dose discrepancy from DIR uncer-
tainty and A+DIR uncertainty on DDVH across the five patients. The shaded
area is the variation between the patients.

2.4 Discussion

This chapter quantifies the DIR uncertainty for building anatomical models for

H&N proton therapy. The DIR algorithm was evaluated from three aspects: 1)

in the C-DIR evaluation, the maximum MSD (3-dimensional measurement) was

less than 3 mm (slice thickness). 2) in the R-DIR evaluation, the average WSLD

during the course of treatment was 1.03 mm, close to the pixel size (0.98 mm). 3) in

the dCT-DIR evaluation, the influence of the accumulated DIR uncertainty on the

clinically-concerned dose metrics can be controlled within 2 Gy. The gamma index

between the planning dose and the accumulated dose of dCTs was above 97.73%

(95% is the standard passing rate generally accepted [69, 70]). Furthermore, com-

pared with the MADD caused by the A+DIR uncertainty, the MADD caused by the
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DIR uncertainty was small. These results justified the rationality of accepting this

DIR uncertainty for anatomical models.

The C-DIR and the R-DIR evaluation were used to explore the weekly chang-

ing trend of the DIR uncertainty. Their results revealed that the DIR uncertainty

increases along with the treatment, validating that tissue shrinkage increases the

difficulty in finding the anatomical correspondence between two images.

In the dCT-DIR evaluation, the dose deviations caused by the DIR uncertainty

in the parallel OARs were the smallest (close to the vertical line of 0), in contrast to

the serial OARs, where the largest deviations were present (see figure 2.8). Among

the serial OARs, the dose on the chiasm is more sensitive to DIR uncertainty than

the brainstem and spinal cord because the chiasm volume is small. The workflow

proposed in the dCT-DIR evaluation eliminated the delineation uncertainty. It im-

proved the evaluation accuracy regarding the accumulated influence of the DIR on

each organ (especially on small organs, which are more sensitive to delineation er-

ror).

In the dCT-DIR evaluation based on MADD analysis, the dose deviations

caused by the DIR uncertainty were compared with the A+DIR uncertainty. Over-

all, the dosimetric discrepancy from the DIR uncertainty was smaller than from the

anatomical uncertainty on both mean value and confidence intervals. Because plans

were created to ensure target coverage, the MADD differences between the DIR

uncertainty and the A+DIR uncertainty on CTVs were smaller than those on OARs.

Spot error map is a useful tool developed for uncertainty analysis. It gave us

an intuitive visual view of the possible spot location variations, which can guide

the use of beam angles and the design of objectives in optimisation. For example,

the error map can capture the ’dangerous spots’ with high variations, which might

damage critical normal tissues. Therefore, clinicians can avoid those spot positions

or increase the weight of normal tissue protection in the optimisation procedure.

Previous studies used the WEPL changes of a beam to specific points or areas

to evaluate the uncertainty. However, the contribution of spot weights on the un-

certainty evaluation was ignored. To address this limitation, WSLD was proposed
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as a surrogate of dose distribution, ensuring computing accuracy and efficiency.

Although WSLD is an easier way to quantify the uncertainty, it is less effective

at reflecting the changes of each organ at risk because proton spots in a plan are

distributed around the radiation target.

2.5 Conclusion
This study aims to evaluate the diffeomorphic image registration of NiftyReg for

building anatomical models for H&N proton therapy. The evaluation was based on

contour, proton spot location and dose distribution. The weekly DIR uncertainty

was mostly smaller than the slice thickness. The accumulated influence of DIR

uncertainty measured by the gamma index was above 95% on average.

The WSLD was proposed to evaluate uncertainty and applied to DIR uncer-

tainty evaluation. This new evaluation based on WSLD does not rely on contour

selection and only gives a single value, making it easy to analyse. This WSLD tool

is also used to measure anatomical uncertainty and validate the anatomical model

in Chapters 4 and 5.

The workflow of evaluating the accumulated influence of DIR uncertainty re-

duced the influence of delineation error, thus improving the evaluation accuracy.

The methods and steps presented in this study can directly be applied to other DIR

algorithm evaluations.



Chapter 3

Inclusion of non-rigid variations of

head and neck patients for IMPT

plan robust evaluation

This chapter explored the way to include small non-rigid variations in the pre-

treatment robust evaluation to assist IMPT beam selection.

The work in this chapter resulted in the following outputs:

Ying Zhang, Jailan Alshaikhi, Richard Amos, Wenyong Tan, Gary Royle, Es-

ther Bär. Small Non-rigid Variations can Assist Robust IMPT Plan Selection for

Head and Neck Patients. American Society for Radiation Oncology 2021.

Ying Zhang, Jailan Alshaikhi, Richard A. Amos, Wenyong Tan, Yaru Pang,

Gary Royle and Esther Bär. ”Pre-treatment analysis of non-rigid variations can

assist robust IMPT plan selection for head and neck patients.” Medical Physics, 49

(2022):7683-7693

Contribution of Authors: Jailan Alshikhi created the proton plans. Wenyong

Tan provided the clinical data and valuable input. Richard Amos, Yaru Pang, Vir-

ginia Marin Anaya and Gary Royle provided valuable input concerning the clinical

importance and impact of this work. Esther Bär supervised the project and pro-

vided valuable input. I developed the main ideas of the study, including the design

of methods, code implementation, tool development for data processing and the

final analysis.
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3.1 Background

IMPT offers the potential to limit doses to normal tissues for H&N cancer patients

[2, 3, 4, 5, 71, 72]. However, anatomical variations in the radiation area increase

dosimetric uncertainty during treatment delivery [22, 21]. Wu et al. (2017) [22]

showed that CTV mean doses were reduced by up to 7% in 10 oropharyngeal

patients. Heukelom et al. (2019) [23] revealed that the dosimetric influence of

anatomical changes led to >5% NTCP increase for dysphagia and the other tox-

icities. While these dosimetric influences are often correlated with progressive

changes, studies have yet to reveal the dosimetric impact of small non-rigid vari-

ations (sNRVs), such as neck folds, neck tilts and spine flexions, on proton therapy

plans. These sNRVs cannot be simplified as rigid translations, and unlike progres-

sive changes that are patient-specific, sNRVs occur randomly.

Current research in H&N proton therapy delivery focuses on developing adap-

tive strategies to mitigate the influence of progressive anatomical changes. In clini-

cal practice, offline adaptive planning strategies are applied when a certain threshold

of dose to a critical structure is reached [54, 43]. This method is effective, but de-

lays in implementing adaptive re-plans exist due to the time required for imaging,

replanning, plan approval, and plan verification. Online adaptation is an aspirational

technique intended for same-day application. However, due to the current compu-

tational speed, online adaptation either compromises the accuracy or constrains the

optimiser [49, 51, 48]. The median adjustment time of 12 minutes was reported

for online adaptation based on MC simulation [51, 48]. When plans are adapted

either online or offline, the patient position may be different from the position in the

image. sNRVs not captured during imaging will still be present.

In addition to adaptive planning strategies that mitigate the dosimetric impact

of anatomical variability, evaluation of plan robustness is also used [47, 73]. Set up

and range uncertainty are taken into consideration in conventional robust evaluation.

Treatment plan evaluation, including inter-fractional anatomical variations, often

uses images acquired during the course of treatment [46, 45, 33], and as such, they

can only inform the planning process for a portion of the treatment delivery. A
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more complete robust evaluation, including the possible sNRVs before treatment, is

crucial to design a plan that is robust towards these anatomical changes. Because

sNRVs are not patient-specific, they can be included in robust evaluations to provide

additional information before treatment.

This chapter aims to: 1) build a distribution of possible sNRVs based on popu-

lation data. 2) assess the dosimetric impact of random sNRVs on the dose delivered

from IMPT plans; 3) incorporate sNRVs into the robust evaluation to account for

anatomical uncertainty before treatment. Although only sNRVs are considered in

the new robust evaluation, this study evaluates its effectiveness in indicating plan ro-

bustness to inter-fractional anatomical changes, including both sNRVs and progres-

sive changes. 4) quantitatively validate the benefit of the new evaluation method.

This new evaluation technique is compared to the conventional robust evaluation

with the gold-standard evaluation (after-treatment evaluation that used weekly re-

peated CTs) as the reference for quantification.

3.2 Methods

3.2.1 Patient data

Twenty NPC patients with weekly repeat CT and fifteen oropharynx cancer patients

with weekly CBCT who received photon therapy were recruited retrospectively.

The deformations between week 0 (planning CT) and week 1 of treatment for all

35 patients were obtained, creating a distribution of possible sNRVs based on the

method described in 3.2.2. Examples of sNRVs are shown in Appendix B.1. Four

nasopharynx patients who had weekly repeat CTs were randomly selected as the

test dataset, where the 35 sNRVs were applied to their planning CT (see section

3.2.2).

This study evaluated the robustness of IMPT plans towards the uncertainties

(see section 3.2.3) applied to the test dataset based on the following scenarios: 1)

plans with different numbers of fields from 3 fields to 5 fields; 2) plans with dif-

ferent beam angles. The different beam arrangements used are listed in the upper

part of table 3.1 and illustrated in appendix B.2. The targets (both tumour and nodal
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area) were split for different fields in these IMPT plans. All plans were robustly op-

timized using ±3 mm setup and ±3.5% range uncertainty in Eclipse version 16.1.0

(Varian Medical Systems, Palo Alto, CA). A relative biological effectiveness (RBE)

of 1.1 for proton beams was used. The dosimetric goals for all plans in this study

are summarised in the lower part of table 3.1. A plan was deemed robust (stop op-

timisation) if the goals set for the CTVs and serial organs were fulfilled for all 12

dose distributions (3 mm orthogonal shifts combined with the ±3.5% range error)

as well as the nominal scenario (the error-free distribution).

Table 3.1: Plan beam arrangements and dosimetric goals used in this paper.

Plan beam arrangements
Beam arrangements Angle
3B45 45 180 315
3B60 60 180 300
4B110 60 110 250 300
4B120 60 120 240 300
5B 60 110 180 250 300

Dosimetric goals of the treatment plans
Structure Metric Goal Under Uncertainty
High-risk CTV D95 > 95% of prescription dose (72.6 Gy)
Low-risk CTV D95 > 95% of prescription dose (63 Gy)
High-risk CTV D2 < 107% of prescription dose
Spinal cord Dmax <45 Gy
Brainstem Dmax <55 Gy
Chiasm Dmax <55 Gy
Optical Nerve Dmax <55 Gy
Structure Metric Goal in Nominal
Parotid glands Dmean <26 Gy
Oral cavity Dmean <40 Gy
Larynx Dmean <40 Gy
Cochlea Dmean <45 Gy

3.2.2 Extracting small non-rigid variations from CT images

Anatomical variations during the first week of treatment are predominately due to

sNRVs, whereas progressive changes (weight loss, tumour shrinkage) are less sig-

nificant [74, 75, 76]. Thus, the anatomical changes in the first week from a cohort

of patients can be seen as the representatives of a distribution of possible sNRVs.

The sNRVs of a cohort of patients (see section 3.2.1) were captured using

the diffeomorphic image registration. To apply the deformation between groups of

subjects, the stationary velocity fields (SVFs) of diffeomorphic image registration
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between week 0/week 1 need to be projected to an atlas space, in which all the

SVFs have the same position and resolution. The atlas was obtained from a group-

wise registration which spatially normalised a cohort of patients. The procedure

of generating the atlas is illustrated in B.3. In the procedure of the projection, the

planning CT (pCT) of each patient was the reference geometry, and the weekly

repeat CT acquired during the first treatment week (rCTt) was registered to the pCT

to produce vvvp→t , where p stands for pCT and t stands for the week when the weekly

CT was acquired (in this case t = 1). Then, each patient’s pCT was registered to the

atlas to produce vvvp→a, where a stands for atlas. vvva→p transformed the inter-patient

velocity fields vvvp→t into the atlas space using

vvva,p→t = vvva→p ◦vvvp→t ◦vvv−1
a→p, p∀P. (3.1)

P includes all the patients’ data used in this study.

Then vvva,t→p was transformed into the space of an individual patient p̃ using

vvv p̃→t ≈ vvv−1
a→ p̃ ◦vvva,p→t ◦vvva→ p̃. (3.2)

The deformation vvv p̃→t was used for warping the pCT to simulate a sNRV. Fi-

nally, in order to warp the pCT, the transformation must be directed from the pre-

dicted anatomy to the pCT. This can be simply achieved by reversing the SVFs

using

vvvt→ p̃ =−vvv p̃→t . (3.3)

The warped image CTsNRV for patient p̃ was acquired from:

φφφ t→ p̃ = exp(vvvt→ p̃), (3.4)

CTsNRV
p̃ = φφφ t→ p̃(pCT), (3.5)

with t = 1 for all the equations above. This method produced 35 CTsNRVs for each
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patient to represent the possible sNRVs.

3.2.3 Robustness evaluation

The 35 sNRV scenarios of each test patient were included in the robustness evalua-

tion using CTsNRVs. For the four test patients, the dose distributions of IMPT plans

were calculated under each robustness scenario. 1) The robust evaluation based on

the sNRV scenarios was compared with 2) the conventional evaluation that only

included rigid translations. A probability analysis was used in these two before-

treatment evaluation techniques to rank the robustness of IMPT plans for each dose

metric listed in the lower part of table 3.1 (see figure 3.1).

3.2.3.1 Robustness evaluation scenarios

For the proposed evaluation method using sNRV scenarios (1), this study simulated

the isocenter shift for each cardinal direction (xn,yn,zn) following the Gaussian

distribution with mean µ = 0 mm and standard deviation σ = 1.5 mm [45] on the

35 CTsNRVs. This was done to calculate the perturbed dose distribution caused by

the sNRVs and setup uncertainty since the CTsNRVs have the same isocenter as the

pCT. The so found 35 dose distributions for each IMPT plan were included in this

sNRV+setup evaluation.

The conventional evaluation (2) was simplified to only include the setup un-

certainty by applying the same isocenter shifts used in the sNRV+setup evaluation

to the pCT. This way, 35 perturbed dose distributions per IMPT plan were included

to evaluate the robustness of the plan.

3.2.3.2 Probability analysis for robust evaluation

The workflow for the sNRV+setup evaluation (1) and the conventional evaluation

(2) is illustrated in figure 3.1. Each considered dose metric Dx (e.g. D95) would

have the corresponding perturbed dose metrics under the uncertainty scenarios.

The nominal dose metric is subtracted from the perturbed dose metrics to form a
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Figure 3.1: The workflow of the sNRV+setup evaluation and the conventional evaluation
for each IMPT plan. Both evaluation methods produce 35 perturbed dose dis-
tributions. Each considered dose metric (Dx, e.g. D95) would have the corre-
sponding perturbed dose metrics under the uncertainty scenarios. The nominal
dose metric is subtracted from the perturbed dose metrics to form a distribution
of dose metric discrepancies (∆Dx) experienced across the uncertainty scenar-
ios. The light yellow box indicates that IMPT plans were calculated on the
uncertainty scenarios from sNRVs plus setup in the sNRV+setup evaluation.
The light purple box indicates that IMPT plans were calculated on the setup
uncertainty scenarios in the conventional evaluation. The dose distribution of
∆D95 in the conventional evaluation and the sNRV+setup evaluation was plot-
ted in the left organ box and the right organ box, respectively, as an illustration.

distribution of dose metric discrepancies ∆Dx experienced across the uncertainty

scenarios.

The upper and lower boundaries of dose metrics in the evaluation can be

demonstrated by the shaded areas in the nominal DVHs as an indicator of worst-

case scenarios. It was also suggested in the literature [77] to include a probability

approach in robust analysis. For this, the distance between the probability distri-

bution of ∆Dx under uncertainty and its ideal probability distribution (Dirac delta

function, the dose metrics do not change even under uncertainty) was calculated

using the Wasserstein distance (WD):

WD(U, I) =
∫

∞

−∞

|U(x)− I(x)|dx, (3.6)

where U and I are the probability distribution functions of ∆Dx under uncer-
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tainty and its ideal distribution, respectively. The WD measures the effort required

to convert the distribution U into the I. The smaller the WD, the more robust a plan

for this dose metric.

A two-sample t-test was used to determine if there is a significant difference

between the distribution of ∆Dx in the sNRV+setup evaluation and the conventional

evaluation. p < 0.05 was taken as the significance level.

3.2.3.3 Performance analysis of robust evaluations

To investigate the effectiveness of sNRVs in indicating the plan robustness to inter-

fractional anatomical changes before treatment, the dose discrepancy between the

accumulated dose using weekly CTs and the nominal dose was taken as the gold

standard. In the gold standard evaluation, the dose distributions of the IMPT plans

with different beam arrangements were calculated on 6 weekly CTs of each test pa-

tient. Because the accumulated dose is generally used in treatment evaluation and

related to prognostics, the weekly dose was accumulated in the reference frame of

the pCT using the DIR algorithm of Niftyreg, referred to as AccuNom. Assuming

that sNRVs are present in all treatment weeks, AccuNom should reflect that. In the

weekly dose calculation, although the isocenter was determined using the informa-

tion from the rigid registration, the setup error (both rigid and sNRVs) still existed.

Thus, the difference between AccuNom and the nominal plan, referred to as ∆Dst,

represents the influences from actual progression uncertainty and setup uncertainty

(both rigid and sNRV). ∆Dst was used in the gold standard evaluation to assess the

robustness of a plan.

Because different beam arrangements were used in this study, the robustness

of beam arrangements can be ranked, referred to as robustness ranking. In the

sNRV+setup evaluation and the conventional evaluation, the WD was used in ro-

bustness ranking for each dose metric. In the gold standard evaluation, ∆Dst was

used in robustness ranking. To quantify the performance of the sNRV+setup evalu-

ation and the conventional evaluation, the consistency C of the robustness ranking

for a dose metric between an evaluation X and the gold standard G was measured

by the weighted ranking discrepancy, defined as
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C =
√

∑
i
(RPX(Bi)−RPG(Bi))2×w(Bi), (3.7)

RPX(Bi) represents the robustness ranking position of a beam arrangement Bi in

evaluation X . X is either the sNRV+setup evaluation or the conventional evaluation.

The corresponding RPX is RPs in the sNRV+setup evaluation and RPc in the con-

ventional evaluation. RPG(Bi) represents the robustness ranking position of a beam

arrangement Bi in the gold standard evaluation. w(Bi) is the robustness weight of

beam arrangement Bi in the gold standard evaluation to give a higher weight to the

most distinguished beam arrangement. The weighting w(Bi) is calculated based on

∆Dst using

w(Bi) =
∑ j, j 6=i |∆Dst(Bi)−∆Dst(B j)|

∑i ∑ j, j 6=i |∆Dst(Bi)−∆Dst(B j)|
. (3.8)

|RPX(Bi)−RPG(Bi)| was used to identify whether the inclusion of sNRVs can

benefit all beam arrangements. If |RPs(Bi)−RPG(Bi)| ≤ |RPc(Bi)−RPG(Bi)| for

a dose metric, then this dose metric of beam arrangement Bi supports that the

sNRV+R evaluation is better for robust evaluation, compared to the conventional

evaluation. Regarding the 12 dose metrics listed in the lower part of table I for each

beam arrangement, this study calculated the percentage of dose metrics that sup-

ports the inclusion of sNRV in robust evaluation based on the results of the four test

patients.

The consistency C was used to assess the role of sNRVs in robust evaluation

based on all beam arrangements. The consistency of the robustness ranking be-

tween the sNRV+setup evaluation and the gold standard evaluation was referred to

as CsNRV+setup&G. The consistency of the robustness ranking between the conven-

tional evaluation and the gold standard evaluation was referred to as CC&G. When

CsNRV+setup&G is smaller or equal to CC&G (RsNRV ≥ 0) for a matrix, it supports the

conclusion that sNRVs play a positive role in robust evaluation. C = 0 means that

the robustness ranking in a before-treatment robust evaluation is the same as the

gold standard robust evaluation.
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3.3 Result

3.3.1 Dosimetric influences caused by small non-rigid variations

This section demonstrates the additional dosimetric discrepancies caused by the

sNRVs on an exemplary patient.

An example of the dose distribution variations caused by a sNRV is shown in

figure 3.2. The red arrows indicate the areas where the dose has fallen under 95%

of the prescription dose.

Figure 3.3 compares the sNRV+setup evaluation with the conventional eval-

uation on an exemplary patient (patient 1) based on dose metrics. The upper and

lower boundaries of dose metrics in the sNRV+setup evaluation (3.3a) and the con-

ventional evaluation (3.3b) are indicated by the shaded areas in figure 3.3a) and b)

separately. It can be observed that the additional sNRVs widen the bandwidth com-

pared to the conventional robust evaluation. The comparisons of the dose metrics

for this patient based on box plots are shown in figures 3.3c) to h). Dose metrics

for the different plans with different beam arrangements are shown in the same fig-

ures as box plots. By comparing the boxplot of c)–e) (sNRV+setup evaluation) to

f)–h) (conventional evaluation) in figure 3.3, the mean values of the CTVs’ D95

in the sNRV+setup evaluation are lower than those in the conventional evaluation

ranging from -1.57% to -0.95% (the range shows the differences between different

beam arrangements). The mean values of parotid Dmean, oral cavity Dmean and lar-

ynx Dmean are higher than the values in the conventional evaluation, ranging from

1.02 Gy to 1.82 Gy, 0.52 Gy to 0.70 Gy, and 0.84 Gy to 3.18 Gy, respectively. The

mean values of Dmax of the spinal cord, optical nerves and the chiasm between the

two evaluations only have slight differences, less than 0.6 Gy.

Figure 3.3 only partially demonstrates the Dx under uncertainty. Figure 3.4

plots the probability distribution of ∆Dx in the conventional evaluation and the

sNRV+setup evaluation on high-risk CTV D95 and parotid Dmean, respectively, for

patient 1. Figure 3.4 shows the influence caused by the sNRVs on the probability

distribution of ∆Dx from different beam arrangements. The robustness of a beam

arrangement is presented by the closeness of the probability curve of beam arrange-
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(a) (b)

(c)

Figure 3.2: An example of the dose distribution variations caused by a random sNRV. (a)
is the dose distribution on the planning CT, and (b) is the dose distribution of
the same slice on a CTsNRV. The green contours in the images are the Low-
risk CTV. The colour bar was chosen to mask out doses lower than the 95%
prescription dose of Low-risk CTV (82.4% is corresponding to the 95% pre-
scription dose of Low-risk CTV). The red arrows indicate the areas of under-
dosage caused by the sNRV. (c) presents the difference in the DVH caused by
the sNRV.

ments to the Dirac delta function. For the high-risk CTV, the 3B60 plan is the most

robust (the ∆D95 curve of the 3B60 is the closest to the Dirac delta function, indi-

cated as the dashed vertical line) in the sNRV+setup evaluation (figure 3.4b)), as

opposed to the conventional evaluation, where this beam arrangement is found to

be the less robust one (figure 3.4a)). For the parotid glands, in the conventional

evaluation (figure 3.4c)), the 4B120 is the most robust beam arrangement, while in
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.3: The comparison between the sNRV+setup evaluation and the conventional
evaluation on patient 1. (a)-(b) show the shaded DVH from the 4B120 beam
arrangement in the sNRV+setup evaluation and in the conventional evaluation,
respectively. The solid line represents the DVH of the nominal plan (N in the
legend), and the shaded area indicates the lower and upper boundary of the
dose metrics in the respective evaluation caused by the variations (V in the leg-
end). (c)-(h) visually summarise the statistics under the respective uncertainty
using box plots. The horizontal lines in the box plot indicate the median dose
metric among 36 scenarios (including the nominal scenario and 35 uncertainty
scenarios defined in robust evaluation). The bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The asterisks are used to
indicate the mean value of the dose metrics. (c), (e) and (g) are the boxplots of
Dx in the sNRV+setup evaluation. (d), (f) and (h) are the boxplots of Dx in the
conventional evaluation.
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the sNRV+setup evaluation (figure 3.4d)), the 3B60 is the most robust.

(a) (b)

(c) (d)

Figure 3.4: Probability distributions of ∆Dx in the conventional evaluation and in the
sNRV+setup evaluation on patient 1. (a) Probability distribution of ∆Dx in the
conventional evaluation on the high-risk CTV D95. (b) Probability distribution
of ∆Dx in the sNRV+setup evaluation on the high-risk CTV D95.(c) Probabil-
ity distribution of ∆Dx in the conventional evaluation on the parotid Dmean. (d)
Probability distribution of ∆Dx in the sNRV+setup evaluation on the parotid
Dmean.

3.3.2 Robust evaluation analysis

The dosimetric evaluation in table 3.2 shows the detailed numbers of the

sNRV+setup evaluation and the conventional evaluation for the exemplary pa-

tient 1. The results of the remaining three patients are listed in appendix B.4.

Among four patients (490 scenarios), a maximum difference was observed in the

sNRV+setup evaluation to the nominal dose of: 9.37% dose degradation on the

D95 of CTVs, increase in parotid Dmean by 11.87 Gy, increase in larynx Dmean by

15.04 Gy, increase in brainstem Dmax by 20.82 Gy, increase in spinal cord Dmax by
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20.96 Gy. For CTVs, 4 patients all had scenarios where the CTV D95 fell below

95%, 47 out of 490 scenarios in total. In contrast, in the conventional evaluation, a

maximum difference was observed to the nominal dose of: 7.58% dose degradation

on D95 of the CTVs, increase in parotid Dmean by 4.88 Gy, increase in larynx Dmean

by 6.13 Gy, increase in brainstem Dmax by 13.5 Gy, increase in spinal cord Dmax by

12.9 Gy.

Please note that the worst-case CTV coverage (D95) under setup uncertainty

can drop below 95% in some cases. To generate 35 scenarios in conventional robust

evaluation, the isocenter was shifted following a Gaussian distribution with mean

µ= 0 mm and standard deviation σ= 1.5 mm. This results in multiple scenarios

that can be used for statistical analysis, rather than the only 12 scenarios usually en-

countered during robust optimisation with 3mm orthogonal shifts and±3.5% range

error. While the usual 3 mm option was still used to optimise the plan, the addi-

tional shifts created with the Gaussian distribution were used for the evaluations.

Using this Gaussian distribution may result in scenarios where the shift exceeds 3

mm. However, only 4/490 scenarios were below 95%. Those scenarios only hap-

pened to patient 3 whose target volume was located close to the skin, making this

particular patient more sensitive to setup uncertainty. This comparison between the

sNRV+setup evaluation and the conventional evaluation in table 3.2 demonstrated

the additional dose discrepancy that sNRVs can lead to.

3.3.3 Performance analysis of robust evaluations.

Based on table 3.2 and the table in appendix B.4, the calculated percentages of dose

metrics satisfying |RPs(Bi)− RPG(Bi)| ≤ |RPc(Bi)− RPG(Bi)| are 91.7%, 79.2%,

75%, 75% and 75% for 3B45, 3B60, 4B110, 4B120, 5B respectively, showing that the

inclusion of sNRVs is beneficial to the robust evaluation of all beam arrangements.

Table 3.2 intuitively compares different evaluations based on the RP. The RP

difference was quantified as the consistency of robustness ranking between the two

evaluation methods in table 3.3. Table 3.3 (from the last row) shows that the worst

PsNRV for one patient is 58.33% (still > 50%) for patient 4, and PsNRV is above 75%

in 3/4 patients. Overall, PsNRV is 77.1% for all patients. The PsNRV in the last col-
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Table 3.2: The sNRV+setup evaluation, the conventional evaluation and the gold standard
evaluation for patient 1. p-values of the two-sample t-test are calculated be-
tween the distribution of ∆Dx in the sNRV+setup evaluation and in the conven-
tional evaluation. p<0.05 represents that ∆Dx in the sNRV+setup evaluation
and ∆Dx in the conventional evaluation are taken from significantly different
distributions. In the sNRV+setup evaluation and the conventional evaluation,
the beam arrangements were ranked based on the WD for each ROI matrix. In
the gold standard evaluation, the beam arrangements were ranked for each ROI
matrix based on ∆Dst. RP is the robustness ranking position of a beam arrange-
ment for a matrix.

sNRV+setup Evaluation Conventional Evaluation
p-value

Gold standard evaluation
ROI/Matrix Plan Nominal Min Max WD RPs Minmum Maximum WD RPc AccuNom ∆Dst RPG

Low-risk CTV 3B60 98.57 93.17 98.25 1.68 4 96.83 98.57 0.37 3 1e-10 97.62 -0.95 3
D95(%) 4B110 98.25 95.4 97.94 1.22 1 96.83 98.25 0.32 2 1e-9 97.62 -0.63 2

4B120 98.25 94.76 97.94 1.57 3 96.83 98.25 0.29 1 1e-11 97.3 -0.95 4
5B 98.57 95.08 98.25 1.4 2 97.14 98.57 0.39 4 1e-10 97.94 -0.63 1

High-risk CTV 3B60 97.66 94.08 97.66 0.83 1 96.14 97.66 0.46 3 0.01 97.66 0 1
D95(%) 4B110 97.66 94.35 97.66 1.08 4 96.42 97.8 0.28 1 1e-5 97.38 -0.28 3

4B120 97.66 93.25 97.66 1.05 3 96.14 97.52 0.52 4 1e-4 97.38 -0.28 3
5B 97.66 94.35 97.93 1.04 2 96.42 97.8 0.32 2 1e-5 97.38 -0.28 3

High-risk CTV 3B60 102.89 102.34 103.99 0.18 1 102.75 103.58 0.11 1 0.9 101.79 -1.1 4
D2(%) 4B110 103.44 102.34 105.37 0.45 3 103.03 104.27 0.25 4 0.64 103.17 -0.28 2

4B120 102.89 102.89 105.92 0.66 4 102.75 103.86 0.17 2 1e-6 102.89 0 1
5B 103.44 102.62 105.1 0.28 2 103.17 104.13 0.18 3 0.93 102.89 -0.55 3

Parotid 3B60 28.62 26.36 36.31 1.68 1 26.68 30.74 0.77 4 1e-3 31.48 2.86 1
Dmean(Gy) 4B110 26.11 23.89 35.07 2.04 4 24.41 27.51 0.55 3 1e-3 31.82 5.72 3

4B120 25.94 24.14 35.81 1.97 3 24.85 26.77 0.34 1 1e-4 31.1 5.16 2
5B 26.29 24.15 35.14 1.8 2 24.88 27.42 0.43 2 1e-4 32.24 5.95 4

Oral 3B60 15.17 11.98 20.57 1.6 2 12.42 18.17 1.14 3 0.24 15.56 0.38 2
Dmean(Gy) 4B110 14.33 11.38 19.06 1.56 1 11.69 17.53 1.13 2 0.26 14.7 0.37 1

4B120 15.05 11.99 20.46 1.63 4 12.36 18.01 1.08 1 0.13 15.71 0.66 4
5B 14.87 11.99 20.07 1.62 3 12.1 18.18 1.16 4 0.23 15.27 0.39 3

Larynx 3B60 26.6 24.18 31.89 1.71 1 24.09 29.39 1.05 1 0.17 28.96 2.36 1
Dmean(Gy) 4B110 32.21 27.81 47.64 4.22 3 25.66 37.63 2.55 4 1e-3 42.42 10.2 3

4B120 30.11 22.99 46.12 4.27 4 24.64 34.01 1.97 3 0.02 44.4 14.29 4
5B 26.78 24.11 35.75 2.76 2 22.31 30.6 1.72 2 1e-3 33 6.22 2

Cochlea 3B60 15.53 9.45 30.97 2.38 2 9.09 26.29 2.65 2 0.83 13.79 -1.74 4
Dmean(Gy) 4B110 20.21 10.95 35.83 2.53 4 12.53 31.56 3.01 4 0.63 18.51 -1.69 3

4B120 25.11 18.49 38.08 1.89 1 19.38 34.61 2.24 1 0.41 23.43 -1.68 2
5B 19.02 10.75 34.52 2.5 3 11.72 30.11 2.88 3 0.65 17.46 -1.56 1

Brainstem 3B60 43.02 22.42 57.93 5.83 3 34.72 55.22 4.2 4 0.57 40.84 -2.18 4
Dmax(Gy) 4B110 40.26 26.75 58.72 5.98 4 32.46 52.96 4.18 3 0.75 40.54 0.29 2

4B120 36.43 25.33 55.17 5.57 1 30.73 47.73 3.39 1 0.25 37.63 1.2 3
5B 39.51 26.06 58.4 5.79 2 32.41 52.31 4.07 2 0.71 39.71 0.21 1

Spinal 3B60 36.68 20.36 51.68 5.6 4 28.38 49.58 4.22 4 0.96 33.25 -3.43 4
Dmax(Gy) 4B110 35.11 29.63 47.5 3.54 2 30.81 44.31 2.57 2 0.34 34.92 -0.2 1

4B120 36.65 28.64 47.28 4.08 3 31.85 47.35 2.97 3 0.95 34.59 -2.07 3
5B 35.47 31.55 47.61 3.11 1 31.87 43.87 2.31 1 0.13 36.56 1.09 2

Chiasm 3B60 23.68 12.7 42.56 4.88 4 12.28 42.38 4.78 4 0.9 22.79 -0.89 3
Dmax(Gy) 4B110 22.29 11.61 41.64 4.52 2 11.29 40.09 4.57 1 0.67 21.41 -0.88 2

4B120 22.9 12 42.53 4.62 3 11.7 41.3 4.63 3 0.96 21.9 -0.99 4
5B 21.62 11.11 41.03 4.51 1 10.72 39.62 4.61 2 0.88 20.77 -0.85 1

Optic nerve left 3B60 13.97 6.37 29.86 4.05 4 6.27 28.87 3.72 4 0.56 16.44 2.47 4
Dmax(Gy) 4B110 13.6 6.32 29.38 3.75 3 6.2 27.7 3.49 3 0.52 15.3 1.7 1

4B120 13.44 6.15 28.74 3.65 2 6.14 27.44 3.47 1 0.79 15.64 2.19 3
5B 13.23 6.18 28.9 3.65 1 5.83 27.33 3.48 2 0.61 15.16 1.93 2

OPTIC NERVEV R 3B60 13.97 6.37 31.77 4.22 4 6.37 28.87 3.54 4 0.3 19.74 5.77 4
Dmax(Gy) 4B110 14.37 6.92 23.76 3.14 3 6.77 28.47 3.47 3 0.33 19.81 5.44 1

4B120 13.75 6.5 23.25 3.09 2 6.15 27.85 3.4 1 0.44 19.31 5.56 2
5B 13.42 6.24 22.81 3.06 1 6.02 27.62 3.43 2 0.4 18.99 5.57 3

umn shows that CsNRV+setup&G was always better or equal to CC&G for the parotid

glands, larynx, cochlea, spinal cord, chiasm. In the example of patient 1 from table

3.2, the WD of the sNRV+setup evaluation indicated that 3B60 was the most robust

beam arrangement for the parotid Dmean, while the conventional evaluation indi-
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cated that 4B120 was the most robust. The ∆Dst from the gold standard evaluation

validated that 3B60 indeed was the most robust beam arrangement for the parotid

Dmean.

3.4 Discussion
Dose distributions in proton therapy are more sensitive to geometric changes than

in photon therapy. However, in previously published robust evaluation methods,

the impact of anatomical changes was not considered before treatment. This study

demonstrated the dose degradation on CTVs and OARs caused by the sNRVs and

showed that including the sNRVs in the robust evaluation is beneficial.

3.4.1 The use of small non-rigid variations for robust beam se-

lection

In the validation of sNRVs’ role in robust evaluation, the dose discrepancy that

represents the influence of inter-fractional anatomical changes and isocenter shifts

was used as the gold standard. The consistency of robustness ranking showed

that CsNRV+setup&G was smaller than CC&G, especially on the low-risk CTV, parotid

glands, larynx and spinal cord, which are closely related to outline changes and neck

motions, and also on small structures that are sensitive to sNRVs such as cochlea

and chiasm, supporting that sNRVs play a positive role in robust evaluation in terms

of indicating robustness to inter-fractional anatomical changes.

No beam arrangement is insensitive to the sNRVs as anatomical changes were

not considered in robust optimisation for any beam arrangement. The method pro-

posed in this study can still assist in selecting robust beam arrangements for proton

plans without anatomical robust optimisation. In table II and table B1 in Appendix

B, the p-values between the distributions of ∆Dx in the sNRV+setup evaluation and

the conventional evaluation showed that the sNRVs mainly influenced the proba-

bility distribution of CTVs ∆D95 and parotid ∆Dmean. Because the highest priority

of the robust optimisation for the four test patients in this study was to ensure the

target coverage, similar performance of D95% based on ∆Dst was found on different

beam arrangements, with differences smaller than 2%. To best demonstrate the ad-



3.4. Discussion 80

Ta
bl

e
3.

3:
C

on
si

st
en

cy
of

ro
bu

st
ne

ss
ra

nk
in

g
be

tw
ee

n
tw

o
ro

bu
st

ev
al

ua
tio

n
m

et
ho

ds
.W

he
n

C
sN

RV
+s

et
up

&
G

is
sm

al
le

ro
re

qu
al

to
C

C
&

G
(R

sN
RV
≥

0)
,t

he
re

su
lt

su
pp

or
ts

th
e

sN
RV

+s
et

up
ev

al
ua

tio
n

an
d

th
e

nu
m

be
rs

of
C

sN
RV

+s
et

up
&

G
ar

e
hi

gh
lig

ht
ed

in
bo

ld
.

T
he

pe
rc

en
ta

ge
of

ca
se

s
th

at
su

pp
or

t
sN

RV
s

in
ro

bu
st

ev
al

ua
tio

n
is

re
fe

rr
ed

to
as

P s
N

RV
.

T
he

P s
N

RV
of

th
e

fin
al

ro
w

su
m

m
ar

iz
es

th
e

pe
rc

en
ta

ge
of

th
e

R
O

I
m

at
ri

x
th

at
su

pp
or

ts
th

e
sN

RV
s+

se
tu

p
ev

al
ua

tio
n

(R
sN

RV
≥

0)
fo

r
ea

ch
pa

tie
nt

.
T

he
P s

N
RV

of
th

e
fin

al
co

lu
m

n
su

m
m

ar
iz

es
th

e
pe

rc
en

ta
ge

of
pa

tie
nt

s
in

w
hi

ch
th

e
sN

RV
s+

se
tu

p
ev

al
ua

tio
n

is
be

tte
r

th
an

th
e

co
nv

en
tio

na
le

va
lu

at
io

n
(R

sN
RV
≥

0)
fo

r
ea

ch
R

O
I

m
et

ri
c.

P s
N

RV
(%

)
>

75
ar

e
m

ar
ke

d
by

an
as

te
ri

sk
(b

as
ed

on
th

e
la

st
co

lu
m

n,
at

le
as

tm
or

e
th

an
ha

lf
of

th
e

pa
tie

nt
s

ag
re

e,
th

us
3/

4
is

us
ed

).

R
O

I
Pa

tie
nt

1
Pa

tie
nt

2
Pa

tie
nt

3
Pa

tie
nt

4
P s

N
RV

(%
)=

∑
Pa

ti
en

t(
R

sN
RV
≥

0)
∑

Pa
ti

en
t

M
at

ri
x

C
sN

RV
+s

et
up

&
G

C
C

&
G

C
sN

RV
+s

et
up

&
G

C
C

&
G

C
sN

RV
+s

et
up

&
G

C
C

&
G

C
sN

RV
+s

et
up

&
G

C
C

&
G

L
ow

-r
is

k
C

T
V

1
2.

12
1.

15
0.

58
0

0.
87

0.
87

0.
71

50
D

95
(%

)
H

ig
h-

ri
sk

C
T

V
0.

58
1.

73
0.

58
1.

15
1.

41
1.

41
1.

73
0.

79
75
∗

D
95

(%
)

H
ig

h-
ri

sk
C

T
V

2.
43

2.
04

1.
41

1.
08

1.
46

0.
79

1.
50

1.
73

25
D

2(
%

)
Pa

ro
tid

1.
10

2.
19

0
2.

25
0.

78
1.

73
0.

72
0.

72
10

0∗
D

m
ea

n(
G

y)
O

ra
l

0
2.

19
1.

06
2.

08
1.

55
1.

55
1.

48
0

75
∗

D
m

ea
n(

G
y)

L
ar

yn
x

0
0.

71
0.

61
0.

61
0

0.
74

0
0

10
0∗

D
m

ea
n(

G
y)

C
oc

hl
ea

1.
72

1.
72

1
2.

30
0

0
0.

75
1.

73
10

0∗
D

m
ea

n(
G

y)
B

ra
in

st
em

1.
51

1.
13

0.
73

1.
99

0
0

1.
53

0.
84

50
D

m
ax

(G
y)

Sp
in

al
0.

69
0.

69
0.

62
1

0
0

1.
46

1.
73

10
0∗

D
m

ax
(G

y)
C

hi
as

m
0.

76
1

1.
92

2.
02

0
0

1.
52

1.
73

10
0∗

D
m

ax
(G

y)
O

pt
ic

ne
rv

e
le

ft
1.

25
1.

40
1.

77
2.

05
1.

73
1.

73
1.

68
0.

86
75
∗

D
m

ax
(G

y)
O

pt
ic

ne
rv

e
ri

gh
t

1.
35

1.
22

1.
10

1.
27

1.
73

1.
73

1.
54

1.
54

75
∗

D
m

ax
(G

y)
P s

N
RV

(%
)=

∑
RO

I(
R

sN
RV
≥

0)
∑

RO
I

75
∗

83
.3

3∗
91

.6
7∗

58
.3

3
77

.1
∗



3.4. Discussion 81

vantage of the sNRV+setup evaluation over the conventional evaluation, the beam

arrangement was selected based on the impact of the sNRVs on the parotid ∆Dmean

as an illustration. The parotid ∆Dmean is also closely related to toxicity such as

xerostomia which can have a long-term impact on patients’ quality of life. For ex-

ample, for patient 1, a similar parotid Dmean was achieved using 4B110 and 4B120. If

4B120 was selected based on WD, the accumulated parotid Dmean would reduce by

0.7 Gy, corresponding to 1 fraction of Dmean delivered to the parotid glands. Other

organs can be used for beam selection as well, for example, the oral cavity Dmean in

the sNRV+setup evaluation has the exact same rank as the gold standard. Also, the

rank of the chiasm Dmax in the sNRV+setup evaluation indicated the most robust

beam arrangement as the gold standard evaluation.

There were two interesting scenarios worth noticing. In different beam ar-

rangements for patient 1, even though the nominal parotid Dmean of 3B60 was the

highest, the accumulated dose was lower than 4B110 and 5B because 3B60 was the

most robust beam arrangement (the lowest WD) under the sNRV+setup uncertainty.

The ∆Dst of 3B60 showed that 3B60 controlled the ∆Dst of the parotid Dmean within 3

Gy, which corresponds to 10% NTCP difference [54] and is used to trigger a replan

to protect the parotid glands. This case indicated that beam selection based on ro-

bust evaluation can potentially reduce the replan rate, something that needs further

investigation in the future. For patient 3, even though the nominal parotid Dmean

of 4B120 was higher than in the 5B beam arrangements, the accumulated dose was

the lowest because 4B120 was the more robust beam arrangement. A message that

clearly emerges here is that the best nominal plan may not be the best plan during

treatment.

The impact of different beam angles on the robustness of a plan can be analysed

on patient-specific geometry using our method. The results can be used to create

a robustness plan database to assist in finding a more robust planning approach, as

presented by McGowan et al. (2015) [47] and Malyapa et al. (2016) [73].

3.4.2 The potential use of small non-rigid variations in clinic

The distribution of sNRVs has the potential to be used in other clinical applications.
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Firstly, this study found that the sNRV that leads to the most dose dis-

crepancy varies from patient to patient and from beam arrangement to beam ar-

rangement. For example, the robustness ranking in parotid Dmean based on the

WD of the sNRV+setup evaluation was 4B120 > 3B60 > 5B for patient 1, while

3B60 > 4B120 > 5B for patient 4. This is because individuality was considered in

the method by using the patient-specific image. This approach can help clinicians

avoid the set-ups with the sNRVs that can lead to unacceptable dose distributions

for a specific patient using a specific beam arrangement.

Secondly, the acquired sNRVs can potentially assist in better estimating the

truly delivered accumulated dose using weekly CTs. The sNRVs can be randomly

allocated to each weekly CT, with 5 sNRVs per weekly CT. These deformed weekly

CTs can be used to estimate the daily dose distribution under the influence of

sNRVs. Repeating this procedure can reveal the range of potential accumulated

doses for the whole treatment.

Thirdly, this study presented the possibility of including sNRVs from a patient

population in robust analysis, which also indicated the potential to be used in ro-

bust optimisation. Mesı́as et al. (2019) [43] included the first two weekly CTs of

patients into robust optimisation to account for the sNRVs, suggesting that sNRVs

can reduce the need for adaptation. They indicated that the first two weekly CTs

can be replaced by a series of CT images scanned before treatment. Li et al. (2015)

[34] considered weekly CTs in the robust evaluation. Yang et al. (2020) [44] added

the adaptive planning CTs into robust optimisation. However, their methods re-

lied on the acquisition of CT images during treatment, which limited the creation

of a robust plan at the early planning stage. In contrast to their patient-specific

approach, an atlas-based technique is suggested here. While this approach is not

patient-specific but based on the assumption that sNRVs are mainly random, there

are some advantages. First, this method does not require the acquisition of a series

of CT images of the same patient pre-treatment, therefore saving imaging dose and

reducing workload. Secondly, assuming that sNRVs can be reasonably represented

using this method, deformed images with the sNRVs can be prepared in advance
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and fully exploit the benefits of robust optimisation with multiple CTs. This will be

investigated in future studies.

It should be mentioned that the inclusion of a large patient cohort (many sNRV

scenarios) would require recalculating the treatment plan many times. For effi-

ciency, the included sNRVs should be limited to the most common/frequent ones.

The most common sNRVs can be found, for example, by using the anatomical mod-

els, which apply principal component analysis (PCA) to anatomical deformations

of a patient cohort to estimate the likelihood of a certain anatomical deformation

to happen (please refer to Chapter 4). By only including the most likely principal

components of the deformation in the robust evaluation, the number of recalculated

plans can be reduced while still representing well the sNRVs. This trade-off will be

explored in future work.

The concept presented here can be adapted to different scenarios. This study

did not factor in immobilization equipment and patient characteristics such as age,

size, disease staging and physical condition. All those factors are likely to influence

the possibility and the amplitude of a specific anatomical change to arise during the

treatment. While this is not yet considered in this study, the presented approach

has the potential to do so. If sufficient patient data are available to build the atlas,

the patient data can be stratified into groups based on immobilization devices and

patient characteristics before performing a robust evaluation.

3.4.3 Limitations

For the purpose of showing the feasibility, plans with different beam arrangements

were only created for the four test patients. Further validation of the method will

be conducted on a large number of patients. Another limitation of this work is that

the impact of the DIR uncertainty was ignored in the robust evaluations. This study

assumed that the DIR uncertainty would equally affect the robust evaluations for

different beam arrangements.

When validating the role of sNRVs in robust evaluation, this study did not

take the range uncertainty from Hounsfield units (HU) into account because range

uncertainty is an isolated source considered in the robust evaluation and is solely
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based on the CT calibration. It is also justified by the small dosimetric impact

from CT number range uncertainty compared to setup uncertainty and anatomical

uncertainty[33, 47]. Therefore, it should only have small influences on the results

of the comparison, which established that sNRV should be considered in the robust

evaluation as a component of random set-up errors, not just rigid setups. However,

to fully evaluate the plan, the range uncertainty should be used along with the rigid

setups and sNRVs.

3.5 Conclusion
This study aims to demonstrate the additional dose discrepancy arising from the

sNRVs and the influence of the sNRVs on robust plan evaluation. The deformations

during the first week were used to build the distribution of possible sNRVs. A maxi-

mum difference was observed in the sNRV+setup evaluation to the nominal dose of:

9.37% dose degradation on D95 of CTVs and 11.87 Gy increase on parotid (Dmean).

These dose metrics are unacceptable in the clinic and can trigger plan adaptation.

Benefiting from this atlas-based method, patients’ unique geometry was considered.

This study found that the sNRV that can lead to the maximum difference varies from

patient to patient and from beam arrangement to beam arrangement. One applica-

tion of this analysis is to help clinicians avoid worse setups.

This study also used a probability analysis to select robust plans against

sNRVs. Based on the quantitative validation, this study concluded that the sNRVs-

based evaluation is better than the conventional evaluation. The percentages of dose

metrics satisfying |RPs(Bi)−RPG(Bi)| ≤ |RPc(Bi)−RPG(Bi)| were at least 75% for

all beam arrangements, showing that the inclusion of sNRVs is beneficial to the

robust evaluation of all beam arrangements. In the measurement of the robustness

ranking consistency with the gold standard evaluation, the sNRV+setup evaluation

was better or equal to the conventional evaluation in 77.1% of cases, particularly

better on parotid glands, larynx, chiasm, cochlea, and spinal cord.

The method provided in this study can potentially provide multiple images for

anatomical robust optimisation.



Chapter 4

Probability model for head and neck

patients

This chapter built an anatomical model to assist with anatomical robust optimisation

for head and neck patients.

The work in this chapter resulted in the following outputs:

Ying Zhang, Jailan Alshaikhi, Wenyong Tan, Gary Royle and Esther Bär. ”A

probability model for anatomical robust optimisation in head and neck cancer pro-

ton therapy.” Physics in Medicine & Biology (2022).

Contribution of Authors: Jailan Alshikhi created the proton plans. Wenyong

Tan provided the clinical data and valuable input. Gary Royle provided valuable

input concerning the clinical importance and impact of this work. Esther Bär su-

pervised the project. I developed the idea of PM and model evaluation, including

developing codes and tools for data processing and the final analysis.

4.1 Background
The anatomical robust optimisation has been investigated to include small non-rigid

variations (sNRVs) and (or) progressive changes to improve the plan robustness

against anatomical uncertainty [43, 44]. However, it either requires multiple CT

scans before planning [43] or needs the images acquired during treatment [44].

While multiple scanning gives the extra imaging dose to H&N patients and affects

the efficiency of a busy proton therapy practice, the dependence on images acquired



4.1. Background 86

during the treatment also compromises the benefits of reducing the replanning rate.

The current online adaptation techniques also need to consider sNRVs in the plan-

ning optimisation because the reported time requirement (the median adjustment

time of 12 minutes based on MC simulation) [50, 51] is a burden for patients lying

on the couch and waiting for the optimisation to be finished. During this waiting

time, the patient’s position may be different from the position in the image. sNRVs

not captured during imaging will still be present.

Including sNRVs in robust evaluation/robust optimisation using the method in

Chapter 3 can be inefficient when a large patient cohort is available. Therefore, the

included sNRVs should be limited to the most common/frequent ones. To this end,

an anatomical model based on principal component analysis (PCA) becomes the

focus of this study. PCA finds the best orthogonal basis, the principle components

(PCs), whose variance of the projections of the data are ranked from the greatest

to the smallest. Thus, it is possible to restore information using a limited number

of PCs that describe the majority of anatomical deformations. The basics of PCA

were detailed in Lever et al. (2017) [78]. This type of model simulates the possible

geometric variations from a population of patient data. Thus, it removes the require-

ment of multiple scanning and the dependence on acquiring verification CTs during

treatment for anatomical robust optimisation. Anatomical robust optimisation can

be done at the planning stage using the predicted images. Several mathematical

models have been proposed to account for anatomical changes [27, 60]. Yu et al.

(2016) [60] assumed that the probability density function (PDF) of the coefficients

α of each PC follows a standard normal distribution. However, they did not vali-

date if the PDF of α from their dataset is consistent with this assumption, and the

probability of each predicted deformation vector field (DVF) was not revealed. To

date, it is still challenging to quantify the probability of a certain type of anatomical

deformation to arise during the treatment course.

This study aims to: 1) develop a probability model (PM) at each weekly time

point to address the limitations of the previous model[60]. 2) quantify the proba-

bility of each type of anatomical deformation based on population data. 3) validate
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the feasibility of the PM to measure anatomical uncertainty.

4.2 Method and material

4.2.1 Patient data

Twenty NPC patients were recruited retrospectively. Each patient underwent a plan-

ning CT (pCT) and a weekly repeat CT (rCTt), where t (t=0,1,2,3,...) represents

the week of CT scanning. Because this dataset is relatively small, the leave-one-out

strategy was used to build the model for more accurate performance. The leave-

one-out strategy was applied for 5 test patients (one patient was held out as the test

set, and the remaining patients were used as the training set to build the model, this

process was repeated 5 times).

For all 5 test patients, an original (nominal) IMPT treatment plan was generated

using Eclipse version 16.1.0 (Varian Medical Systems, Palo Alto, CA). All plans

generated throughout this study were robustly optimised with ±3 mm setup and

±3.5% range uncertainty for CTVs and OARs. A RBE of 1.1 for proton beams was

used. The dosimetric goals for all plans in this study are summarised in table 4.1.

A plan was deemed acceptable if the goals set for the CTV and serial organs were

fulfilled in the nominal scenario (the error-free distribution) as well as all 12 dose

distributions (3 mm orthogonal shifts combined with the ±3.5% range error) in a

robust evaluation. More clinical characteristics of the patients can be found in the

papers of Tan et al. [18, 79].

4.2.2 Probability model

In the clinic, the magnitude of uncertainty is estimated from population data [28, 80,

36, 81]. To capture the major deformations in a population, this study developed the

PM to statistically model the anatomical changes of the population based on PCA.

The weekly stationary velocity fields of diffeomorphic image registration

(SVFs) vvvp→t between the pCT and the rCTt of the training data were used as input

to build the PM. The procedure was divided into the following steps and repeated

for each treatment week t.
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Table 4.1: Dosimetric goals of the treatment plans created in this study

.

Structure Goal under uncertainty
High-risk-CTV D95 > 95% of prescription dose (72.6 Gy, 33 fractions)
Low-risk-CTV D95 > 95% of prescription dose (63 Gy, 33 fractions)
CTV D2 < 107% of prescription dose
Spinal cord Dmax < 45 Gy
Brainstem Dmax <55 Gy
Chiasm Dmax <55 Gy
Structure Goal in Nominal
Parotid glands Dmean <26 Gy
Oral cavity Dmean <40 Gy
Larynx Dmean <40 Gy
Proton planning information: MFO planning; spot spacing size: 5mm; energy ran-

ge:70 MeV – 250MeV; range shifter: 5cm; dose calculation algorithm: Piencel bea-
m scanning (PBS); optimisation algorithm: Nonlinear Universal Proton Optimiser.

1. The inter-fraction SVF vvvp→t of patients was projected into the atlas space as

vvva,p→t using 3.1.

2. The average SVF for treatment week t in the atlas space was calculated as the

expectation value E of the deformation vvva,p→t of the training dataset.

E(vvva,p→t) =
1

Np
∑
pi

vvvpi
a,p→t , (4.1)

where Np is the number of patients used in this model, and pi is the patient

index.

3. The random deformation of each patient at week t in the atlas space can be

calculated as follows:

vvvrand,pi
a,p→t = vvvpi

a,p→t−E(vvva,p→t). (4.2)

4. The random deformations of all training patients at week t were composed to

a random deformation matrix in the atlas space, referred to as vvvrand
a,p→t , which

was represented approximately using
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vvvrand
a,p→t = (vvvrand,1

a,p→t ,vvv
rand,2
a,p→t , · · · ,vvv

rand,Np
a,p→t )≈

[ α1,1 α1,2 · · · α1,L

α2,1 α2,2 · · · α2,L
...

... . . . ...

αNp,1 αNp,2 · · · αNp,L

][VVV 1

VVV 2
...

VVV L

]
.

(4.3)

VVV l is the PC vector, also called eigenvector. αi,l is the coefficient of the l-th

eigenvector belonging to the i-th training set. L is the number of eigenvectors

used to build the model. L was chosen to be able to represent 90% of popu-

lation variations. Each column of the α matrix represents the coefficients of

one eigenvector.

5. The the probability density function (PDF) of α of an eigenvector was an-

nealed using kernel density estimation [82]. The estimation used

pl(α) =
1

Np ·σl
√

2π

Np

∑
i=1

exp−(α−αi,l)
2/2σ2

l , (4.4)

σl =
1.06
Np

0.2

√√√√∑
Np
i (αi,l− 1

Np
∑

Np
i αi,l)2

Np−1
, (4.5)

where pl is the probability distribution of the coefficients of the l-th eigen-

vector. The comparison between the real distribution of a column of α and

the annealed distribution is shown in figure 4.1.

6. The sampled numbers from pl formed the l-th column of the α̃ matrix. Be-

cause the distribution was estimated from a limited training dataset, sam-

pling extended the coefficients to capture all the possible random anatomical

changes resulting in
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Figure 4.1: The comparison between the real distribution of a column of α and the annealed
distribution.

ṽ̃ṽvrand
a,p→t = (ṽ̃ṽvrand,1

a,p→t , ṽ̃ṽv
rand,2
a,p→t , · · · , ṽ̃ṽv

rand,Ns
a,p→t )≈

[ α̃1,1 α̃1,2 · · · α̃1,L

α̃2,1 α̃2,2 · · · α̃2,L
...

... . . . ...

α̃Ns,1 α̃Ns,2 · · · α̃Ns,L

][VVV 1

VVV 2
...

VVV L

]
.

(4.6)

Each row of the predictive matrix α̃iα̃iα̃i = (α̃i,1, α̃i,2, · · · , α̃i,L) in equation 4.6

was multiplied with VVV to form a predicted random deformation for week t,

represented by ṽ̃ṽvrand,i
a,p→t . i is the index of the predicted random deformations.

Ns is the number of samples.

7. A deformation of the PM for week t is:

vvvPM,i
a,p→t = E(vvva,p→t)+ ṽ̃ṽvrand,i

a,p→t , i∀(1∼ Ns). (4.7)

8. Each deformation vvvPM,i
a,p→t was transformed into the space of an individual pa-

tient using
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vvvPM,i
p→t = vvv−1

a→p ◦vvvPM,i
a,p→t ◦vvva→p. (4.8)

9. To warp the pCT, the transformation must be directed from the predicted

anatomy to the pCT. The deformation vvvPM,i
t→p needs to be reversed using:

vvvPM,i
t→p =−vvvPM,i

p→t . (4.9)

10. The warped image CTPM,i
t was acquired using:

φφφ
PM,i
t→p = exp(vvvPM,i

t→p ), (4.10)

CTPM,i
t = φφφ

PM,i
t→p (pCT), (4.11)

where CTPM,i
t is the i-th predicted image of week t.

Ns predicted images can be obtained for week t. Considering that eigenvec-

tors are orthogonal, the probability distribution of their coefficients is independent.

Therefore, the probability of predicted images with specific α̃iα̃iα̃i can be calculated by

the joint probability

P(α̃iα̃iα̃i) = p1(α̃i,1) · p2(α̃i,2) · ... · pL(α̃i,L),
Ns

∑
i

P(α̃iα̃iα̃i) = 1. (4.12)

4.2.3 Model evaluation

4.2.3.1 Model evaluation based on weighted spot location deviation.

The total WSLD considered the probability estimated from the extended population

was calculated using

WSLDPM
t =

Ns

∑
i=1

(WSLDCTPM,i
t ·P(αiαiαi)). (4.13)
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WSLDCTPM,i
t is the WSLD from the predicted image CTPM,i

t at week t. P(α iα i
α i) is the

probability of the predicted image CTPM,i
t . Ns is the number of samples produced

by the PM.

The WSLD was applied to evaluate the anatomical uncertainty from sNRVs,

total anatomical uncertainty, and residual anatomical uncertainty from the PM.

• The anatomical uncertainty from sNRVs and total anatomical uncertainty

simulated by the PM. The PM statistically summarised the probability of

anatomical changes for each week. The progressive changes induced by the

radiation in the first week were not significant [18]. Therefore, the WSLD

estimated by the PM in the first week of treatment represented the influence

of sNRVs such as tongue movement, shoulder positioning or small rotations.

The WSLD from later fractions was the combined influence of sNRVs and

progressive changes (total anatomical uncertainty).

• The residual anatomical uncertainty from the PM. The difference between

the estimated anatomical uncertainty from the PM and the actual anatomical

uncertainty of each week was used to evaluate the accuracy of the PM. It is

referred to as the residual anatomical uncertainty (∆WSLDres
t ) from the PM,

see equation 4.14,

∆WSLDres
t = WSLDreal

t −WSLDPM
t , (4.14)

where WSLDreal
t is the actual anatomical uncertainty calculated by the WSLD

between rCTt and the pCT, which also corresponds to the residual anatomical

uncertainty of no model. WSLDPM
t is the anatomical uncertainty at week t

estimated by the PM. Ideally, the model should approach a ∆WSLD of 0 for

each treatment week t.

4.2.3.2 Model evaluation based on dose distribution.

Anatomical deformations lead to dose variations. The dose on the deformed images

was recalculated using the original IMPT plan. Then 1) the actual dose variations
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from the training dataset were compared with 2) the dose variations simulated by

the PM. The deformations of an exemplary patient in the first week were chosen to

demonstrate the dosimetric influence of small non-rigid variations.

1) To obtain the actual dose variations, the actual deformations of 20 patients

in the first week were applied to the planning CT of the exemplary patient to obtain

20 actual sNRVs. The IMPT plan of this exemplary patient was applied to the 20

actual sNRVs to calculate the dose variations. These variations can be illustrated as

dose volume histogram (DVH) bands in the nominal DVHs of organs, referred to as

actual DVH bands. The perturbed dose metrics were calculated for each considered

dose metric Dx (e.g. D95). The perturbed dose metrics subtracted the nominal dose

metrics to obtain the dose metric discrepancy ∆Dx.

2) To obtain the dose variations simulated by the PM, 20 CTPM
1 (CT of the

PM in the first week) were selected following the joint probability distribution of

the PM for the exemplary patient. The same IMPT plan was also applied to the 20

CTPM
1 to create DVH bands, referred to as simulated DVH bands from the PM. The

dose metric discrepancy simulated by the PM was referred to as ∆Dx’.

A two-sample t-test was used to determine if there is a significant difference

between the distribution of ∆Dx and ∆Dx’. p < 0.05 was taken as the significance

level.

4.3 Results
The exemplary patient’s slice images from the planning CT and 2 predicted CTs of

the PM in the first and the sixth week are shown in figure 4.2.

4.3.1 Model evaluation based on weighted spot location devia-

tion.

The WSLD of the anatomical uncertainty is estimated from the PM. The result is

shown in average WSLD with 95% confidence interval (CI) (see figure 4.3). The

estimated anatomical uncertainty from sNRVs accounted for a range uncertainty

of 2.18±0.19 mm. The estimated total anatomical uncertainty (from sNRVs and

progressive changes) can reach 3.09±0.26 mm at week 6.
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: The exemplary patient’s slice images from the rCT1, rCT6 and 2 predicted CT
of the PM in the first week and the sixth week. (a) shows a slice image from
the rCT1 of the exemplary patient. (b)-(c) show slice images from 2 predicted
CTs of the PM in the first week. (d) shows the same slice image from the rCT6
of the exemplary patient. (e)-(f) show slice images from 2 predicted CTs of the
PM in the sixth week.

The residual anatomical uncertainty from no model and the PM (Ns = 100) are

compared in figure 4.4. In no model predicted images were replaced by the planning

CT. When the anatomical uncertainty estimated from the PM was considered, the

residual anatomical uncertainty was reduced from 4.47±1.23 mm (no model) to

1.49±1.08 mm (PM) at week 6, achieving a significant improvement as compared

to no model.

The comparison of individual cases between the actual WSLD (using rCTs)

and the estimated WSLD from the PM are listed in table 4.2.

4.3.2 Model evaluation based on dose distribution.

For the exemplary patient, the actual DVH bands in the first week and the simulated

DVH bands from the PM in the first week are shown in figure 4.5. Supporting the
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Figure 4.3: The anatomical uncertainty estimated from the PM in WSLD for each week.
The result is estimated in average WSLD with 95% CI across the 5 test cases.
The WSLD in the first week presents the uncertainty from sNRVs. The WSLD
in the following weeks evaluates the combined effect of anatomical uncertainty
from sNRVs and progressive changes (total anatomical uncertainty).

Table 4.2: The WSLD caused by the actual anatomical deformations (using rCTs) and the
WSLD estimated by the PM in each test patient and week.

Week
Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

rCTs(mm) PM(mm) rCTs(mm) PM(mm) rCTs(mm) PM(mm) rCTs(mm) PM(mm) rCTs(mm) PM(mm)
1 1.72 2.12 1.96 1.88 2.57 2.53 2.32 2.14 1.89 2.27
2 2.52 2.42 2.07 2.18 1.99 2.71 2.30 3.11 2.54 2.55
3 3.43 2.75 2.15 2.30 2.59 3.23 2.57 3.20 3.49 2.72
4 4.93 2.65 2.78 2.65 2.94 3.62 3.44 3.14 4.69 3.10
5 5.62 2.97 2.73 2.30 4.02 3.53 2.91 3.15 5.57 3.20
6 5.23 2.78 3.12 3.07 5.13 3.63 2.62 2.89 6.27 3.10

rationality of the PM, the simulated DVH bands of the PM demonstrated similar

variations as the actual DVH bands.

The maximum, minimum, mean value (µ) and standard deviation(σ ) of the

∆Dx from the actual sNRVs and the ∆Dx’ from the simulated sNRVs of the PM are

listed in table 4.3 with their p-values (between ∆Dx and ∆Dx’).

The range of dose metric variations caused by the actual anatomical defor-

mations in the first week was from -1.46 % to -0.05 % (low-risk CTV D95), from

-2.15 Gy to 6.83 Gy (parotid glands Dmean) and from -3.98 Gy to 12.59 Gy (spinal

cord Dmax) for low-risk CTV D95, parotid glands Dmean and spinal cord Dmax, re-
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Figure 4.4: The residual anatomical uncertainty in WSLD. The residual anatomical un-
certainty comes from no model, in which predicted images were replaced by
planning CT, and the PM (Ns = 100) were compared. The result indicates the
average difference with 95% CI between the estimated WSLD from models
and the actual WSLD across the 5 test dataset.

(a) (b)

Figure 4.5: Evaluation of the PM based on dose distribution. a) shows the bandwidth from
the actual DVH band in the first week. b) shows the bandwidth simulated from
the PM in the first week. The initial N in the legend represents the nominal
plan. The initial V in the legend represents the variations.

spectively. While the range of the dose metric variations simulated by the PM was

from -0.97% to 0% (low-risk CTV D95), from -2.35 Gy to 5.83 Gy (parotid glands

Dmean) and from -3.04 Gy to 12.03 Gy (spinal cord Dmax) for low-risk CTV D95,
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Table 4.3: Dose metrics discrepancy (perturbed dose metrics - nominal dose metric) from
the actual sNRVs (∆Dx) and the simulated sNRVs from the PM (∆Dx’) are listed
in maximum value, minimum value, mean value (µ) and standard deviation(σ ).
The p-values are calculated between ∆Dx and ∆Dx’.

Low-risk CTV (∆D95(%)) High-risk CTV(∆D95(%)) Parotid Glands(∆Dmean(Gy)) Brainstem(∆D2(Gy)) Spinal(∆D2(Gy))
Actual Simulated Actual Simulated Actual Simulated Actual Simulated Actual Simulated

Maximum -0.05 0 -0.19 0 6.83 5.81 8.91 4.98 12.59 12.03
Minimum -1.46 -0.97 -3.12 -5.83 -2.15 -2.35 -5.08 -5.12 -3.98 -3.04

µ -0.45 -0.43 -1.02 -0.88 1.95 1.4 -0.08 0.04 0.47 -0.15
σ 0.31 0.2 0.91 0.86 2.51 1.86 2.49 2.51 3.26 3.42

p-value 0.69 0.61 0.32 0.84 0.49

parotid glands Dmean and spinal cord Dmax, respectively. The p-values indicated

that no significant difference was found between ∆Dx and ∆Dx’ for all investigated

dose metrics.

4.4 Discussion
In this chapter, an anatomical model was developed to evaluate anatomical uncer-

tainty and quantify the probability of an anatomical deformation to arise during

treatment. The model accuracy was evaluated based on WSLD and dose distribu-

tion.

The PM can simulate the small random variations in the first treatment week

with an average error of 0.21±0.13 mm. For overall anatomical uncertainty pre-

diction, the PM can reduce anatomical uncertainty from 4.47±1.23 mm (no model)

to 1.49±1.08 mm at week 6 (see figure 5.5). The PM was considered suitable for

estimating anatomical uncertainty.

For the dose metrics in table 4.3, the simulated dose metric range of the PM in

the first week is basically within the range of the actual anatomical deformations,

and the p-values between ∆Dx and ∆Dx’ are > 0.05. supporting that the PM is

feasible to simulate the anatomical variations.

For the purpose of validating the model, only 20 patients with weekly CT imag-

ing, which is used less frequently in routine clinics than CBCT, were included to

reduce the error from HU corrections when calculating the spot location. The pro-

cedure of using CBCT images to build the model is the same, except that the DIR

error between CT and CBCT might be different and needs to be evaluated individ-

ually. The DIR error between CT and CBCT has been investigated in the literature
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[83, 84].

The inclusion of more scenarios in the model training can improve the prob-

ability estimation. In probabilistic treatment planning or robust optimisation, un-

certainty scenarios are often described using uniform distribution [42] or normal

distribution [41] in the cost function. However, it is difficult to correspond one

uncertainty scenario with a probability. This work exploited the independence be-

tween PCs to calculate the probability for each predicted CT. This can be used to

design the cost functions of anatomical robust optimisation.

In very recent studies, plan robustness against anatomical changes was inves-

tigated by anatomical robust optimisation. Mesı́as et al. (2019) [43] and Yang et

al. (2020) [44] both concluded that this method improved plan robustness toward

anatomical changes and reduced the number of plan adaptations for H&N patients.

However, Mesı́as et al. (2019) [43] required multiple scanning to produce extra CT

images before treatment for robust optimisation. It will give extra imaging dose to

the H&N patient and add a burden to a busy clinic. Yang et al. (2020) [44] used the

image from the first plan adaptation to include the progressive anatomical changes

in the second adaptive plan. However, it limits the creation of a robust plan at the

early planning stage. To overcome these limitations, the PM was developed based

on population data to capture systematic progressions and comprehensive random

deformations of H&N patients, making it possible to include anatomical changes

before treatment without extra burden [42]. For online adaptation, their results were

based on the static images acquired several minutes (the median reported adaptation

time: 12 minutes) before treatment application[48]. Considering the possibility of

small patient movements during the waiting time, sNRVs can be included in robust

optimisation for current online adaptation techniques. Such changes can, for exam-

ple, be inferred from the here suggested PM in the first treatment week.
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4.5 Conclusion
The PM used PCA to capture the major deformations of each treatment week. Ex-

ploiting the orthogonal of eigenvectors, a solution to calculate the probability of

a certain type of anatomical change was given and applied to the anatomical un-

certainty evaluation based on WSLD. In this WSLD-based evaluation, the PM can

predict the anatomical uncertainty during the course of radiotherapy with an aver-

age error of 0.81±0.56 mm. In the model evaluation based on the dose distribution,

p-values for all investigated dose metrics indicated that no significant difference

was found between the dose metrics discrepancy caused by the real deformations

and the simulated deformations of the PM in the first week.

As the PM can accurately predict anatomical uncertainty during the course

of radiotherapy, it has great potential to be used in clinical applications, such as

anatomical robust optimisation.



Chapter 5

Individual anatomical model for

head and neck patients

This chapter built anatomical models for prospective offline replanning for head and

neck patients.

The work in this chapter resulted in the following outputs:

Ying Zhang, Stacey McGowan Holloway, Megan Zoë Wilson, Jailan Al-

shaikhi, Wenyong Tan, Gary Royle and Esther Bär. ”DIR-based models to predict

weekly anatomical changes in head and neck cancer proton therapy”. Physics in

Medicine & Biology 67, no. 9 (2022): 095001.

Ying Zhang, Jailan Alshaikhi, Richard A. Amos, Wenyong Tan, Gary Royle,

Esther Bär. Systematic progression changes can assist robust IMPT plan selection
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5.1 Background

Robust optimisation can help to mitigate uncertainty in treatment delivery. How-

ever, robust optimisation alone may not be adequate to account for changes during

treatment [34]. Mitigating the dose discrepancy of progressive anatomical changes

still needs the involvement of plan adaptation. In offline replanning, patients must

either continue treatment with an existing sub-optimal plan or face interruptions to

treatment. This reactive approach of adaptive therapy triggered by clinical criteria

poses workflow challenges for busy clinical practice. While online adaptive pro-

ton therapy is considered superior to offline adaptation because the online adapted

plans are intended for same-day application, a predictive model can be exploited to

prepare an adaptive plan in advance and without the need for real-time QA, which

is one of the most challenging aspects of online adaptation.

The individual model aims to provide accurate progressive information for in-

dividuality. The produced predicted images can be used for the prospective replan-

ning. In previously proposed models, Kranen et al. (2013) [28] did not consider

any progressive anatomical changes between fractions. Chetvertkov et al. (2016)

[54] required at least half of the total fraction to provide a reasonable estimation for

progressive changes.

To build an anatomical model that can accurately and promptly provide pre-

dicted images for prospective replanning, the objectives of this study are 1) To

develop an average model (AM) based on population data to predict the weekly

systematic progression changes before treatment. 2) To refine the prediction by

adding the patient-specific progressive information from the data acquired during

the course of treatment, as the refined individual model (RIM). 3) To evaluate the

models using HU differences, contours, proton spot location deviations and IMPT

dose distributions.
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5.2 Method and material

5.2.1 Patient data

Twenty NPC patients were recruited prospectively. Each patient underwent a plan-

ning CT (pCT) and a weekly repeat CT (rCTt), where t (t=0, 1, 2, 3, ...) represents

the week of CT scanning. Contours in the pCT and weekly verification CTs were

manually delineated by an oncologist. Five patients were held separately as a test

set, and the model was built using the remaining 15 patients.

For all 5 test patients, an original (nominal) IMPT treatment plan with three

beam fields (60◦, 180◦, 300◦) was generated using Eclipse version 16.1.0 (Varian

Medical Systems, Palo Alto, CA). All plans generated throughout this study were

robustly optimised with ±3 mm setup and ±3.5% range uncertainty for CTVs and

critical OARs. A RBE of 1.1 for proton beams was used. The dosimetric goals for

all plans in this study are summarised in table 5.1. A plan was deemed acceptable

if the goals set for the CTV and serial organs were fulfilled in the nominal scenario

(the error-free distribution) as well as all 12 dose distributions (3 mm orthogonal

shifts combined with the ±3.5% range error) in a robust evaluation. More clinical

characteristics of the patients can be found in the papers of Tan et al. [18, 79].

Table 5.1: Dosimetric goals of the treatment plans created in this study

.

Structure Goal under uncertainty
High-risk-CTV D95 > 95% of prescription dose (72.6 Gy, 33 fractions)
Low-risk-CTV D95 > 95% of prescription dose (63 Gy, 33 fractions)
CTV D2 < 107% of prescription dose
Spinal cord Dmax < 45 Gy
Brainstem Dmax <55 Gy
Chiasm Dmax <55 Gy
Structure Goal in Nominal
Parotid glands Dmean <26 Gy
Oral cavity Dmean <40 Gy
Larynx Dmean <40 Gy
Proton planning information: MFO planning; spot spacing size: 5mm; energy ran-

ge:70 MeV – 250MeV; range shifter: 5cm; dose calculation algorithm: Piencel bea-
m scanning (PBS); optimisation algorithm: Nonlinear Universal Proton Optimiser.
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5.2.2 Anatomical models

The models were built at each weekly time point, considering the time dependence

of the progressive changes. The AM used the average deformation of each week

for prediction. The RIM further refined the prediction of the AM by adding the de-

formation difference at the early treatment between the actual deformation acquired

during the treatment and the average deformation. This deformation difference rep-

resents the progressive difference between individuals.

5.2.2.1 Average model

The first model implemented here was the AM. The weekly SVFs between the pCT

and the rCTs of the training data in the atlas were used as input. The produced

predicted CTs presented systematic progression changes during the course of treat-

ment. The procedure was divided into three steps and repeated for each treatment

week t.

1. The SVF of the AM for week t in the atlas space was calculated as the expec-

tation value E of the deformation vvva,p→t of the training dataset

vvvAM
a,p→t = E(vvva,p→t) =

1
Np

∑
pi

vvvpi
a,p→t , (5.1)

where Np is the number of patients used in this model, and pi is the patient

index.

2. The deformation vvvAM
a,p→t was transformed into the space of an individual pa-

tient using

vvvAM
p→t = vvv−1

a→p ◦vvvAM
a,p→t ◦vvva→p. (5.2)

3. The predicted patient-specific deformation vvvAM
t→p was used for warping the

pCT to generate the predicted anatomy. It can be simply obtained by reversing

the SVF vvvAM
p→t using

vvvAM
t→p =−vvvAM

p→t . (5.3)
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The predicted CT of the AM at treatment week t (CTAM
t ) can be acquired

using

φφφ
AM
t→p = exp(vvvAM

t→p), (5.4)

CTAM
t = φφφ

AM
t→p(pCT). (5.5)

The AM only considered systematic deformations. Random deformations

(progressive variations between patients) can be included by adding individual ran-

dom deformations using newly acquired weekly CTs of the individual patient during

the treatment to gradually refine the prediction of the following weeks, leading to

the RIM, as described in section 5.2.2.2.

5.2.2.2 Refined Individual Model

In this section, the RIM, which is based on the AM but includes the individual ran-

dom deformations of a patient, was proposed to further improve the prediction. This

study assumed that patients share the basic deformation trend during the treatment

(AM), e.g., the progressive changes are rapid at the early treatment and then slow

down, but with an individual baseline. This baseline as a constant can be corrected

in the RIM using the deformation difference between the actual deformation of the

patient acquired during the early treatment and the average deformation of the AM

and applied to the prediction of the remaining treatment course. Hence, the RIM

assumes that if the shrinkage of the parotid for one patient is visibly more severe

compared to the average at fraction i, then the parotid shrinkage of the following

fractions is more severe than the average with the same magnitude.

To build the RIM, the AM was applied to the patient’s pCT first. The procedure

to refine the prediction is as follows:

1. The accurate deformation between the pCT and rCTt during the early treat-

ment was captured, referred to as vvvt→p. The update started from week 2

because the progressive changes in the first week were less significant[74, 75,

76].
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2. The individual random deformation vvvind
t+i→p for the remaining fractions can be

obtained by

vvvind
t+i→p = vvvt→p−vvvAM

t→p , i = 1...(n− t), (5.6)

where n is the total number of treatment weeks.

3. The deformation field vvvRIM
t+i→p for the following fractions as predicted by the

RIM can be calculated as

vvvRIM
t+i→p = vvvAM

t+i→p +vvvind
t+i→p i = 1...(n− t). (5.7)

When treatment starts, individual data can be obtained and used in the RIM

to gradually update the predicted anatomy. In clinical practice, most H&N plan

adaptations occur around the 3rd or 4th week of treatment. This study picked t = 2,3

as examples. When t = 2, the model was referred to as RIM2. When t = 3, the model

was referred to as RIM3.

5.2.3 Model evaluation

5.2.3.1 Model evaluation based on CT numbers

To assess the anatomical models, the difference image between the predicted image

and the corresponding rCT was quantified using the AAHUD within the patient’s

outline.

5.2.3.2 Model evaluation based on contours

The contours in the predicted images are the propagated contours obtained by ap-

plying the deformations of the models to the contours in the pCT. The contour

differences between the predicted contours and the manually delineated contours in

rCTs (gold standard) were quantified using the 3-dimensional MSD for each week.

The contours included in the evaluation were low-risk CTV, high-risk CTV and

parotid glands. These structures commonly change their shape and volume during

treatment.
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5.2.3.3 Model evaluation based on weighted spot location deviation.

The WSLD was applied to evaluate 1) the influence of the systematic anatomical

progression on the spot position and 2) the residual anatomical uncertainty.

• The systematic progression uncertainty simulated by the AM. The AM cap-

tured the systematic progressive changes of a patient cohort. Therefore, the

WSLD estimated by the AM showed the consequence of the systematic pro-

gressive changes in the training patient cohort. pCT was used as a reference

in equation 2.6.

• The residual anatomical uncertainty from models. The difference between the

estimated anatomical uncertainty from the models and the actual anatomical

uncertainty at each week was used to evaluate the accuracy of the models.

∆WSLDres
t was calculated using equation 5.8,

∆WSLDres
t = WSLDreal

t −WSLDmodel
t , (5.8)

where WSLDreal
t is the actual anatomical uncertainty calculated by the WSLD

between rCTt and the pCT, which is also corresponding to the residual

anatomical uncertainty of no model. WSLDmodel is the anatomical uncer-

tainty estimated by a model. The best model should approach a ∆WSLDres
t of

0 for each treatment week t.

5.2.3.4 Model evaluation based on dose distribution.

The nominal plan was recalculated on the rCTs and the predicted weekly CTs. The

gamma index was used to evaluate the dose difference between the dose distribution

on a rCT and the corresponding predicted weekly CT [68]. A relatively stringent

criterion of 2 mm/2% (a stringent criterion can lead to a smaller passing rate) and

the acceptable passing rate of 95% were used in this study because they are the

paired parameters generally used [85, 86]
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5.3 Results

5.3.1 Anatomical model evaluation based on Hounsfield Units

In this section, the image difference on HU between rCT6 and the corresponding

predicted CT6 is compared from the 5 test patients. For visual assessment, figure

5.1 shows a slice of the image difference of a test patient.

Figure 5.1: Comparison between different anatomical models using a representative exam-
ple patient. (a) shows a slice from the pCT of a patient in the test dataset. (b)
shows the difference image between the pCT and rCT6, without the application
of any anatomical model. (c) is the difference image between the predicted
CT from the AM and rCT6. (d) is the difference image between the predicted
CT from the RIM2 model and rCT6. (e) is the difference image between the
predicted CT from the RIM3 model and rCT6.

The shrinkage from the pCT to rCT6 is indicated by the yellow area in fig-

ure 5.1 2b). This shrinkage leads to protons travelling further and causes a dose

discrepancy as a result. From visual assessment, with the AM, the yellow area is

reduced in 2c). The RIM predicted more accurately the anatomical changes of this

patient in the area pointed by the red arrows. The refinement from the RIM3 further

reduced this difference but overestimated the posterior shrinkage, indicated by the

black arrow.
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The weekly AAHUD (no model, AM, RIM2, and RIM3) over all test patients

with approximately 8 million voxels in total and a special case with approximately

2 million voxels are analyzed and shown in figure 5.2a) and b), respectively. Be-

cause the deformation of the 2nd or the 3rd week was used to refine the model, the

AAHUD of the RIM2 is shown from week 3 to week 6, and the AAHUD of the

RIM3 is shown from week 4 to week 6.

(a) (b)

Figure 5.2: Boxplot of the AAHUD analysis: a) shows the average AAHUD from the 5 test
cases; b) the AAHUD from a special case. The range shows the AAHUD of
different image slices. The horizontal lines in the box plot indicate the median
value, and the asterisks indicate the mean value.

In the special case (figure 5.2b)), no improvement was observed from the RIM3

compared to the RIM2, with only small HU differences between the two models.

On average, compared to no model, the AM, the RIM2, and the RIM3 reduced the

AAHUD by 13.6 HU, 18.4 HU, and 19.2 HU, respectively at week 6. The RIM3

captured more characteristics of the individual anatomical changes and had a higher

predictive ability than the RIM2.

5.3.2 Model evaluation based on contours.

The weekly MSD between the predicted contours of the models and the correspond-

ing contours in the rCTt are shown for high-risk CTV, low-risk CTV and parotid

glands in figure 5.3. When the predicted contours from the models were used, the

average MSD of the parotid glands can be reduced from 1.98 mm (no model) to 1.16

mm (AM), 1.21 mm (RIM2) and 1.19 mm (RIM3) at week 6. This study also found

a very slight improvement in low-risk CTV. The average MSD of low-risk CTV can
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be reduced from 1.39 mm (no model) to 1.28 mm (AM) and 1.34 mm(RIM3) at

week 6. No improvement was found in high-risk CTV. Although the AM is slightly

better than the RIM on the contour-based evaluation, the advantage is not significant

(<0.07 mm).

(a) (b) (c)

Figure 5.3: The weekly MSD between the predicted contours of the models and the cor-
responding contours in the rCTt for high-risk CTV, low-risk CTV and parotid
glands. In the box plot, the horizontal lines indicate the median value, and the
asterisks indicate the mean value.

5.3.3 Model evaluation based on weighted spot location devia-

tion.

In this section, the range differences were estimated using the spot location of the

treatment plans from the 5 test patients.

The WSLD originating from the systematic progression uncertainty estimated

from the AM is shown in figure 5.4. The uncertainty from the systematic progres-

sion steadily increased from 0.64±0.05 mm at week 1 to 2.07±0.20 mm at week

6.

The average WSLD from the residual anatomical uncertainties from the mod-

els and the corresponding 95% CI were compared in figure 5.5. When the un-

certainty estimated from the predicted images of the models was considered, the

residual anatomical uncertainty was reduced from 4.47±1.23 mm (no model) to

1.89±0.96 mm (RIM3), 2.24±1.13 mm (RIM2), and 2.41±1.12 mm (AM) at week

6, achieving significant improvements as compared to no model.

The comparison of individual cases regarding the residual anatomical uncer-

tainty between the four models (including no model) is listed in appendix C. The
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Figure 5.4: The systematic progression uncertainty estimated from the AM for each week.
The result is estimated in average WSLD with 95% CI across the 5 test cases.

Figure 5.5: The residual anatomical uncertainty in WSLD. The residual anatomical uncer-
tainty from the AM, the RIM2 and the RIM3 are compared. The graph shows
the average difference with 95% CI between the estimated WSLD from the
models and the actual WSLD across the 5 test dataset.

uncertainty of the DIR is also listed as a reference.

A summary of model uncertainty based on WSLD is listed in table 5.2.
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Table 5.2: Summary of model evaluation based on WSLD over all test patients.

Week
Uncertainty (Mean±95%CI) (mm)

Model (Residual anatomical uncertainty)
DIR

(No model) AM RIM2 RIM3
1 2.09±0.28 1.45±0.24 - - 0.86±0.14
2 2.29±0.20 1.39±0.18 - - 0.87±0.16
3 2.85±0.47 1.58±0.40 1.03±0.38 - 0.90±0.20
4 3.75±0.80 2.01±0.73 1.73±0.65 1.37±0.45 1.04±0.13
5 4.17±1.11 2.39±1.03 2.12±0.99 1.79±0.73 1.18±0.30
6 4.47±1.23 2.41±1.12 2.24±1.13 1.89±0.96 1.33±0.48

5.3.4 Model evaluation based on dose distribution.

Figure 5.6 shows the DVH curves for the dose distribution of a test patient (figure

5.1) at week 6 from the rCT6, the AM, the RIM2, the RIM3 and no model (using the

pCT). The DVH of the RIM3 was the closest to the DVH of the rCT6. The worst

performance in the OARs was observed without using a model.

Figure 5.6: DVH curves for the dose distribution of a test patient (figure 5.1) at week 6
from the rCT6, the AM, the RIM2, the RIM3 and no model (using the pCT).

The results of the gamma analysis between the dose distribution on rCTs and

the corresponding predicted weekly CTs from no model (predicted images were

replaced by the pCT), the AM, the RIM2 and the RIM3 were listed for each patient

in table 5.3. The number of cases of which the gamma index < 95% was reduced

from 9 (no model) to 6 (AM), to 4 (RIM2) and 2 (RIM3). The average gamma index

among 5 test patients was improved from 93.87±2.48 % (no model) to 96.16±1.84
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% (RIM3) at week 6.

Table 5.3: The gamma index between the dose distribution on rCTs and on the correspond-
ing predicted weekly CTs from no model (predicted images were replaced by
planning CT), the AM, the RIM2 and the RIM3 for each test patient and each
week. The gamma indexes below 95%, the generally accepted standard passing
rate, are highlighted in bold. The gamma indexes of week 1 and week 2 are only
listed for no model and the AM as the RIM models updated from week 3.

Id
week 1 (%) week 3 (%) week 5 (%)

No model AM No model AM RIM2 No model AM RIM2 RIM3
1 98.1 98.1 93.2 94.1 95.3 91.2 93.4 94.6 96.1
2 99.3 98.8 99.1 98.7 99.2 98.0 98.2 98.6 98.2
3 96.4 97.2 96.1 96.4 96.2 91.4 91.8 91.6 91.5
4 97.7 97.8 95.8 95.2 96.5 96.6 96.8 96.7 96.9
5 98.5 98.1 96.6 97.3 98.0 93.4 95.6 96.0 96.4
mean 98.01 98.01 96.16 96.33 97.06 94.09 95.16 95.50 95.81
CI 0.85 0.47 1.71 1.44 1.23 2.45 2.07 2.12 2.06

Id
week 2 (%) week 4 (%) week 6 (%)

No model AM No model AM RIM2 RIM3 No model AM RIM2 RIM3
1 95.3 95.6 93.4 95.5 96.6 97.5 91.2 93.9 94.6 97.5
2 99.3 99.2 98.2 97.9 98.4 98.4 97.3 97.9 98.2 97.3
3 95.0 96.7 95.5 96.9 94.8 96.0 91.5 92.4 91.4 92.2
4 97.3 97.0 95.7 94.8 96.3 96.6 97.1 96.7 97.5 97.7
5 98.2 98.2 94.1 96.7 97.5 97.3 92.2 94.9 95.6 96.0
mean 97.03 97.34 95.37 96.39 96.72 97.16 93.87 95.18 95.48 96.16
CI 1.49 1.14 1.47 0.98 1.09 0.72 2.48 1.76 2.15 1.84

5.4 Discussion
In this chapter, two different anatomical models were developed and compared.

The AM is a basic model only used to evaluate systematic anatomical uncertainty.

The RIM is a further refinement based on the AM, with the suggested use in offline

adaptive treatment planning. The model accuracy was evaluated based on AAHUD,

contours, WSLD and dose distributions.

5.4.1 Model evaluation

From the AAHUD comparison, on average, the RIM predicted the anatomical

changes with the highest accuracy compared to the AM or no model. This observed

outcome was expected because the deformation differences include the progressive

variations between patients. It is important to note that small non-rigid variations

(sNRVs), such as jaw movement and shoulder position changes, will also be in-

cluded in the deformation differences to update the model. If the magnitude of the
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sNRVs was greater than the progressive variations, the RIM can be inferior to the

AM, as shown in figure 5.2b). The particular patient shown in this case was very

slim at the start of treatment and had <5% weight loss. The sNRVs can be more

predominant, making the RIM less effective. Nevertheless, the observed differences

between the AM and the RIM were small.

The model evaluation based on contours showed that the models are more

effective in predicting the changes of parotid glands. Because patients were not

stratified based on CTV features, and CTV location and size are diverse in this

dataset, predicting the changes of the CTVs is challenging. This contour-based

model evaluation assumes that the contours are perfect on all CTs. In this study, the

inter-observer variation was eliminated as a single physician contoured the organs,

and the intra-observer variability was minimized by using a copy-and-modification

strategy[18]. In reality, intra-rater variability exists and can lead to an increase in

the evaluation metrics.

As shown in figure 5.4, the effect of anatomical progressions in the first week

of treatment was not significant, justifying the approach of refining the model

from week 2 onward. The RIM3 can reduce the anatomical uncertainty from

4.47±1.23 mm (no model) to 1.89±0.96 mm at week 6 (see figure 5.5).

In table 5.3, the average gamma indexes throughout the 5 test patients between

the dose distribution on rCTs and the corresponding predicted weekly CTs from the

AM and the RIM are all above 95% for each week, which is the standard passing

rate generally accepted [69, 70]. Also, the average gamma index was improved

from 95.18±1.76% (AM) to 96.16±1.84 (RIM3) at week 6. Combining figure 5.2

and 5.5, this study demonstrated that the RIM can be gradually refined during the

treatment and can potentially serve as a routine monitor to update the prediction and

prepare for adaptive intervention if necessary.

In comparing individual gamma values in table 5.3 and individual WSLD in

table C3 in appendix C, there is a high level of consistency of 80% in terms of se-

lecting the best prediction, validating the feasibility of using WSLD as an evaluation

tool.
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5.4.2 Study limitations

The models were built based on a relatively small sample data set of 15 patients, and

analyses were performed on 5 patients. The weight loss of these 5 patients ranged

from 4% to 18% (The weight loss of the training dataset ranged from 2% to 12%),

including patients with small and severe anatomical changes. Exploiting the current

dataset, the sensitivity of the AM towards the training data is measured based on

repeatedly sampling random training data for the same patient in the Appendix C.2.

The 95% CI of different measurements is less than 0.12 mm. However, it still cannot

totally remove the concerns of over-fitting when the model is directly applied to

another dataset. Finding the optimal parameters to build models for patients with

CBCT data is underway. It will enable a relatively large dataset to be included for

modelling, thus avoiding the risk of over-fitting. Further validation of the model

and the estimation of its sensitivity thereof will be conducted on a larger cohort

of patients. When a large dataset is available, patient stratification can be used to

improve the model’s accuracy. The model can be built based on a cohort of patients

with the same characteristics and applied to the same type of patients. The features

that might be related to the anatomical changes have been revealed [87, 88, 89, 90,

91]. Assuming the model is built based on a large dataset with patient stratification,

the accuracy of the model should be only limited by the DIR uncertainty and sNRVs

uncertainty.

Another limitation of the presented study is that the patients used to build and

evaluate the models have received photon therapy. This study assumed that patients

undergoing proton therapy would have similar anatomical changes as those who

received photon therapy. Further validation of the model will be conducted on a

cohort of patients treated with IMPT.

5.5 Conclusion

This study has presented and analysed two anatomical models for H&N patients.

The AM captures the systematic progressive changes during the treatment. The

RIM is based on the AM but then updated using the patient’s progression during
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the treatment. Based on the evaluation of CT numbers, contours, range and dose

distribution, this study concluded that the RIM gradually refined the prediction of

anatomical changes. The exploration of the potential clinical application, using the

RIM to prepare offline adaptive plans in advance, is demonstrated in Chapter 6.

In the contour-based evaluation, the average MSD of the AM was slightly bet-

ter than that of the RIM. However, the advantage was not significant. Considering

that parotid glands and low-risk CTV are closely related to outline changes, the pre-

dicted contours of these two organs were still chosen for the application of the RIM

for prospective replanning in Chapter 6.



Chapter 6

Application of refined individual

model in offline adaptive therapy

This chapter demonstrated the concept of using the refined individual model (RIM)

to prepare an adaptive plan in advance. The work in this chapter resulted in the

following outputs:

Ying Zhang, Jailan Alshaikhi, Richard Amos, Wenyong Tan, Gary Royle, Es-

ther Bär. First Application of Predictive Model to Assist Adaptive Proton Therapy.

American Society for Radiation Oncology 2021.

Ying Zhang, Jailan Alshaikhi, Richard A. Amos, Matthew Lowe, Wenyong

Tan, Esther Bär and Gary Royle. ”Improving workflow for adaptive proton ther-

apy with predictive anatomical modelling: A proof of concept.” Radiotherapy and

Oncology, 173 (2022): 93-101.

Contribution of Authors: Jailan Alshikhi created the proton plans. Wenyong

Tan provided the clinical data and valuable input. Richard A. Amos and Matthew

Lowe provided valuable input concerning the clinical importance and impact of this

work. Esther Bär and Gary Royle supervised and guided the project. All other work

was performed by myself.

6.1 Background
Anatomical models for H&N patients have been proposed in previous studies

[28, 63, 60]. Yu et al. (2016) [60] exploited the model to generate artificial defor-
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mations for DIR evaluation. Kranen et al. (2013) [28] generated CTs to represent

the systematic changes of previous fractions for plan adaptation. However, they

only assessed their model based on the misalignment of the anatomical landmarks.

The clinical application of anatomical models has not yet been fully explored and

evaluated.

The current offline adaptation technique is a reactive approach leading to an

unpredictable workload for treatment planning staff, the medical physics team who

perform patient-specific plan QA, and radiation oncologists who review and ap-

prove the plans. Also, patients must either continue treatment with an existing sub-

optimal plan or face interruptions to treatment whilst plans are adapted. Adaptive

plans that can be prepared in advance would be beneficial to the clinical workflow:

1) The adapted replan can be delivered as soon as it is needed due to the ability to

perform patient-specific QA/verification before the adaptation is required, for ex-

ample, on a predicted CT, which triggered a replan. 2) For the patient, there is no

gap in treatment or the delivery of a few sub-optimal fractions while the replan is

calculated, approved, and verified through QA. 3) For the workflow, the option to

prepare adaptive plans in advance allows for easier scheduling of patient-specific

QA around machine QA, maintenance, and other demands for beam time.

This chapter explores the use of the refined individual model (RIM) to generate

adaptive proton therapy plans in advance. Three different strategies are compared

to find a strategy that can maximise the use of the RIM, benchmarked against a

standard reactive clinical replanning technique.

6.2 Materials and methods

6.2.1 Refined individual model

In this chapter, the leave-one-out cross-validation strategy was applied to 20 NPC

patients who had a planning CT and weekly CTs during the treatment to build the

RIM. To predict a deformation for the remaining patient, the average deformation

of the training population (n=19) was applied to the patient’s planning CT. The RIM

was then updated based on the patient’s progression during treatment. This process
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was repeated for 10 randomly selected patients. It still follows that each validation

patient is independent from the training population used to create the average model.

6.2.2 Patient data

Ten validation patients were included in this study. Each patient had a planning CT

(pCT), weekly verification CTs and predicted weekly CTs. Contours in the planning

CT and weekly CTs were manually delineated by an oncologist. None of the IMPT

plans presented in this study was applied during the clinical radiotherapy treatment

of these patients. Instead, this is a retrospective study using the patients’ imaging

data. As tumour location and size are diverse in this dataset, predicting the change to

the high-risk CTV (tumour) is challenging. The RIM is most effective in predicting

the patient outline and parotid gland positions. Hence, for all OAR contours and the

low-risk CTVs (nodal area) affected by neck changes, the predicted contours from

contour propagation were used. For the high-risk CTV, the initial CTV of the plan-

ning CT was used in the predicted plan to ensure target coverage. In this study, plan

adaptation was triggered with the aim of protecting the parotid glands, following

the TORPEdO trial (A phase III trial of proton therapy versus intensity-modulated

radiotherapy for multi-toxicity reduction in oropharyngeal cancer; CRUK/18/010)

[53]. When the difference (between the original plan calculated on the planning CT

and a weekly verification CT) of Dmean to both parotid glands was larger than 3 Gy

[54], a replan was created. Detailed clinical information of this cohort of patients

can be found in [18].

For all 10 validation patients, an original (nominal) IMPT treatment plan was

generated using Eclipse version 16.1.0 (Varian Medical Systems, Palo Alto, CA).

All plans generated throughout this study were robustly optimised with ±3 mm

setup and ±3.5% range uncertainty for CTVs and critical OARs. A RBE of 1.1

for proton beams was used. The dosimetric goals and priorities for all plans in this

study are summarised in table I [92, 93, 94, 5]. Further details can be found in

Appendix D.1.

The nominal plan was recalculated on the weekly verification CTs and eval-

uated to identify the need for adaptation. Adaptation was required for 9 out of 10
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patients (exception: patient ID 1 referred to in later tables), and adapted plans were

generated using the CTs that triggered the replan.

A plan was deemed acceptable if the goals set for the CTV and serial organs

were fulfilled in the nominal scenario (the error-free distribution) as well as all 12

dose distributions (3mm orthogonal shifts combined with the ±3.5% range error)

in a robust evaluation. For dose distributions calculated on weekly CT images, the

DIR algorithm of Niftyreg was used to accumulate the dose in the reference frame

of the planning CT.

Table 6.1: Dosimetric goals of the treatment plans created in this study

.

Structure Goal under uncertainty Priority
High-risk-CTV D95 > 95% of prescription dose (72.6 Gy, 33 fractions) 2
Low-risk-CTV D95 > 95% of prescription dose (63 Gy, 33 fractions) 2
CTV D2 < 107% of prescription dose 2
Spinal cord Dmax < 45 Gy 1
Brainstem Dmax <55 Gy 1
Chiasm Dmax <55 Gy 1
Structure Goal in Nominal
Parotid glands Dmean <26 Gy 3
Oral cavity Dmean <40 Gy 3
Larynx Dmean <40 Gy 3

6.2.3 Adaptive planning using the refined individual model

Three different adaptation strategies were proposed to use the predicted images

from the RIM to create adapted proton plans. These strategies enable adaptive plans

to be created in advance of necessity, streamlining the clinical workflow and facili-

tating QA.

6.2.3.1 Scheduled predicted plan on scheduled week

The first adaptation strategy consists of generating two adapted plans after the RIM

has been updated at week 2 of treatment. This study chose to use two plan adapta-

tions following the paper of Wu et al. (2009) [95], which demonstrated very limited

gains from increasing the replanning frequency from 2 to 6. The predicted CTs of

week 3 (PD3) and 5 (PD5) were used to create two predicted plans. The plan created

on PD3 was intended for the treatment of week 3 and week 4, whereas the plan cre-

ated on PD5 was intended to be applied in week 5 and week 6. For verification, the
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predicted replans can be recalculated on the corresponding weekly CTs before de-

livery, ensuring the applicability and suitability of the plan. This adaptation strategy

is referred to as SPS adaptation.

6.2.3.2 Reactive predicted adaptation strategies

Reactive predicted adaptation strategies included 1) reactive predicted plan on a

flexible week and 2) reactive predicted plan on a scheduled week.

• Reactive predicted plan on a flexible week. The second adaptation strategy

comprised one plan adaptation. For that strategy, the nominal treatment plan

was recalculated on each of the weekly predicted images, and the resulting

dose distribution was assessed. The prospective replan was created in the

predicted image PDr where the recalculated dose distribution met the con-

ditions required to trigger plan adaptation. The adapted plan, referred to as

the reactive predicted plan, was then applied as soon as the verification CT

collected during treatment triggered plan adaptation. Note that during this

strategy, the adapted plan is not necessarily applied in the week that predicted

adaptation but rather applied flexibly whenever an adaptation is triggered in a

verification CT. For verification purposes, the predicted replan can be recal-

culated to the verification CT to confirm if the plan satisfies the dosimetric

goals. This adaptation strategy is referred to as RPF adaptation.

Because plan adaptation was triggered to protect the parotid glands, the over-

lap of the predicted contours (used in the predicted plan adaptation strategy)

and the real contours (used in the standard replanning technique, mentioned

in 6.2.3.3) for the parotid glands was measured by the Dice similarity coeffi-

cient (DSC) and compared with no model, where the contours in the planning

CT replaced the predicted contours.

DSCPG =
|PGp∩PGr|
|PGr|+ |PGp|

, (6.1)

where PGp and PGr represent the binary masks of the parotid glands in a

predicted CT and the corresponding real CT, respectively.
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Although the predicted replan was applied flexibly in this strategy, the pre-

dicted replan week can be compared with the actual replan week to evaluate

the predictive ability of the RIM.

• Reactive predicted plan on a scheduled week. Brown et al. (2016) [96] and

Wu et al. (2008) [97] showed that plan adaptations occur around the 3rd or 4th

week of treatment for H&N patients. To lighten the workload of weekly dose

monitoring, one adaptation to the fixed week can be used as an alternative

option. The TORPEdO trial[53], conducted by the Christie NHS Foundation

Trust in Manchester, UK, was designed to repeat the planning CT scan during

week 3 to evaluate the need for replanning. Therefore, this strategy applied

the reactive predicted plan from week 3. For verification purposes, the plan

can be recalculated to the verification CTs to confirm if the plan satisfies the

dosimetric goals. This adaptation strategy is referred to as RPS adaptation.

6.2.3.3 Standard replan

For comparison, the standard adaptation plan was optimised on the verification CT

which triggered a replan and applied to the treatment of the following week, repre-

senting a delay of 5 fractions before implementing the replan.

The workflows of the adaptation strategies mentioned above are shown in fig-

ure 6.1.

The dosimetric details of all plans generated for this study are summarised in

table 6.2.

6.2.4 Plan evaluation using accumulated dose metrics

For the standard replanning technique and the three proposed strategies using pre-

dicted anatomy, the dose distributions on the weekly CTs were calculated and de-

formed to the planning CT to accumulate the dose, allowing an evaluation of the

delivered dose to the patient. The accumulated dose using the standard replanning

technique is taken as the gold standard.

This study first compared the SPS and the RPF using five patient data sets

(IDs 1–5). This comparison can reveal if one additional adaptation can improve the
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(a) The workflow of the SPS strategy. In the SPS strategy, predicted plans are
created on PD3 and PD5 and applied to the treatment of week 3/4 and week
5/6 respectively.

(b) The workflow illustrating the RPF strategy. In the RPF strategy, the pre-
dicted replan is created on the predicted image which triggers a replan. The
dose distributions on the weekly verification CT are monitored all the time
during the treatment, and the predicted plan is applied whenever adaptation
is required.

(c) The workflow of the RPS strategy. The predicted replan is created on the pre-
dicted image which triggers a replan. The reactive predicted plan is applied
from week 3.

(d) The workflow of the standard adaptation. During the standard adaptation,
the adapted plan is calculated on the CT that triggers a replan and applied in
the following week, representing a delay of 5 fractions.

Figure 6.1: The workflows of the four adaptive IMPT strategies.
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Table 6.2: Dose metrics of proton plans created for the 10 patient data sets. Does metrics
are from the CTs where the plans have been optimised (the planning CT for the
nominal plan, the adaptation-triggering repeat CT for the standard replanning
and the adaptation-triggering predicted CT for the predicted adaptation). Please
note that the patient with ID 1 has no row for the standard replan and flexible
replan because no replan was triggered from the verification CT of that patient.

ID Plan
High-risk CTV Low-risk CTV D2 Spinal cord Brainstem Chiasm Parotid Oral Cavity Larynx

D95%(%) D95%(%) Dmax(Gy) Dmax(Gy) Dmax(Gy) Dmean(Gy) Dmean(Gy) Dmean(Gy)
plans of five patient for best strategy selection.

1

Nominal plan 98.75 98.86 103.05 30.55 45.69 36.5 27.36 6.8 30.93

SPS
98.85 99.02 103.24 28 46.15 33.9 28.88 6.7 28.35
98.8 98.98 103.34 29.43 46.49 34.46 29.18 7.48 28.22

2

Nominal plan 98.28 98.66 102.92 34.49 40.08 22.06 25.53 14.24 26.24
Standard replan 98.53 98.65 102.33 34.48 37.84 16.4 24.71 12.14 22.84

RPF/RPS 98.3 98.53 102.97 36.89 37.1 16.36 25.15 14.6 21.55

SPS
98.3 98.53 102.97 36.89 37.1 16.36 25.15 14.6 21.55

98.36 98.34 102.58 36.23 37.1 17.38 27.25 14.68 22.6

3

Nominal plan 98.75 98.59 102.24 33.13 39.16 23.88 22.89 10.88 11.77
Standard replan 98.7 98.54 102.24 33 39.5 23.6 23 10.76 12.28

RPF/RPS 98.54 98.65 102.15 33 38.5 23.29 22 8.94 9.47

SPS
98.55 98.67 102.29 28.2 33.3 22.51 20 9.17 10.42
98.59 98.71 102.44 27.75 34.48 22.62 21.5 9.04 10.59

4

Nominal plan 98.42 98.82 102.96 32.9 34.4 32.02 24.53 7.43 22.18
Standard replan 98.68 98.79 102.05 15.51 38.59 19.18 22 6.07 14.02

RPF/RPS 98.57 98.70 102.83 17.46 37.8 18.7 23 6.8 17.6

SPS
98.57 98.79 102.71 17.6 36.88 19.45 23.9 6.68 16.97
98.61 98.65 103.14 16.71 37.55 20.54 23 6.7 17.81

5

Nominal plan 98.82 98.67 102.02 34.56 40.75 26.21 23.63 10.65 16.08
Standard replan 98.87 98.65 101.82 35 40.56 26.4 23.85 10.6 16.28

RPF/RPS 98.65 98.71 102.27 36.4 42.5 29.3 22.5 12.46 16.33

SPS
98.73 98.63 102.18 34.7 40.44 26.26 22 12 16.13
98.71 98.76 102.89 35.43 42.34 27.03 22.5 12.26 16.17

plans of five patient to verify the result of best strategy.

6
Nominal plan 98.5 98.65 102.7 36 38.93 34.37 26.13 15.38 30

Standard replan 98.4 98.57 101.3 35 42.38 20 30.1 13.29 22.71
RPF/RPS 98.5 98.65 102.81 33 42.4 37 27.21 15 29.9

7
Nominal plan 98.6 98.27 102.58 36.53 40 26.86 27.04 13.19 19.64

Standard replan 98.75 98.68 102.46 28.15 36.5 19.07 25.58 11.1 16.84
RPF/RPS 98.68 98.55 102.76 34 42.82 26.65 27.4 11.37 17.54

8
Nominal plan 98.37 98.63 102.48 35.47 36.01 23.43 27.24 10.6 19.77

Standard replan 98.6 98.5 101.97 32.95 37.68 24.24 26.96 9.92 15.43
RPF/RPS 98.43 99.00 102.33 24.88 38.84 24.63 26.84 10.77 17.06

9
Nominal plan 98.75 98.76 102.31 11.84 42.58 42.63 22.66 8.83 9.2

Standard replan 98.57 98.37 102.88 11.75 38.46 34.33 22.6 9.86 12.3
RPF/RPS 98.74 98.79 102.47 8.74 40.17 40.82 22.67 8.3 7.93

10
Nominal 98.62 98.28 102.01 29.2 38.76 36.3 27.64 7.1 21.44

Standard replan 98.45 98.42 102.05 31.75 42.19 33.57 28.74 8.52 17.33
RPF/RPS 98.52 98.61 102.04 31.73 39.63 40.27 28 7.73 20.34

accumulated dose distributions and reveal the accuracy of the RIM. Ten patient data

sets (IDs 1–10) were then used in the reactive strategies (the RPF and the RPS) and

compared to the standard replanning technique for further investigation.

Equation 6.2 was used to calculate the dose metrics difference between the

accumulated dose and the planned dose.

∆Dx = Dxaccu− (Dxn ∗Fn +Dxr ∗Fr). (6.2)
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Dx represents a dose metric, ∆Dx is the dose metric difference between the accu-

mulated dose and the planned dose, Dxaccu is the dose metric of the accumulated

dose, Dxn is the dose metric of the nominal plan, and Fn is the number of fractions

to which the nominal plan is applied. Dxr is the dose metric of the adapted plan,

and Fr is the number of fractions to which the replan is applied. The planned dose

is represented by the sum Dxn ∗Fn +Dxr ∗Fr.

The dose metrics of the plans (nominal plan, the standard replan, the SPS, the

RPF and the RPS) that are used for plan comparison are the same as in table 6.1. A

two-sample t-test was used to determine if there is a significant difference between

the distribution of ∆Dx in two adaptation strategies, with p < 0.05 taken as the

significance level.

6.3 Results

6.3.1 Comparison between scheduled predicted plan on sched-

uled week and reactive predicted plan on flexible week

To compare the SPS and the RPF, both techniques were applied to the CT imaging

data of the five patients(IDs, 1–5). Table 6.3 shows the nominal plan and the accu-

mulated doses of the nominal plan with no adaptation, the SPS and the RPF for each

patient except patient 1. For patient 1, unlike patients 2-5, the dose recalculation on

the weekly verification CTs and predicted CTs did not trigger a replan. Therefore,

no plans were generated for the RPF.

This study found that the CTV coverage (D95) remains similar between the

SPS, the RPF and the nominal plan, with differences smaller than 1%. For the serial

organs, three strategies (no adaptation, the SPS and the RPF) all showed similar

accumulated dose metrics, with differences within tolerance (<3 Gy). The largest

differences were observed in the accumulated parotid Dmean between no adaptation

and each adaptive strategy (the SPS and the RPF). Compared to no adaptation, the

SPS and the RPF decreased the accumulated Dmean to the parotid glands by up to

3.82 Gy and 3.95 Gy, respectively.

In figure 6.2, the SPS and the RPF are compared for the five patients in terms
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Table 6.3: Nominal and accumulated dose metrics of the five patients used to compare the
SPS and the RPF. Please note that for patient 1, no replan was triggered accord-
ing to the replan criteria. The dose metrics for the parotid glands are highlighted
in bold. The asterisk in plan column indicates the numbers in the same row are
the accumulated dose.

ID Plan
High-risk CTV Low-risk CTV

D2
Spinal cord Brainstem Chiasm Parotid Oral Cavity Larynx

D95 D95 Dmax Dmax Dmax Dmean Dmean Dmean
(%) (%) (%) Gy Gy Gy Gy Gy Gy

1

Nominal plan 98.75 98.86 103.05 30.55 45.69 36.5 27.36 6.8 30.93
No Adaptation ∗ 97.93 98.89 103.17 28.56 42.39 27.5 29.61 6.9 31.14

SPS∗ 97.82 98.89 102.34 28.31 42.62 28.79 29.8 7.04 29.49

2

Nominal plan 98.28 98.66 102.92 34.49 40.08 22.06 25.53 14.24 26.24
No Adaptation∗ 96.6 95.71 102.89 33.39 40.63 22.16 31.87 17.45 32.03

RPF∗ 96.6 96.35 102.62 35.81 41.27 19.45 28.92 17.39 28.43
SPS∗ 96.4 96.67 102.62 35.49 40.71 19.58 28.72 17.4 28.12

3

Nominal plan 98.75 98.59 102.24 33.13 39.16 23.88 22.89 10.88 11.77
No Adaptation ∗ 97.97 98.89 102.07 30.59 35.69 24.58 24.53 10.76 12.36

RPF∗ 98.05 98.89 102.07 31.34 38.28 23.8 22.77 10.48 11.27
SPS∗ 98.01 98.89 102.07 30.02 36.69 22.93 22.98 10.5 11.77

4

Nominal plan 98.42 98.82 102.96 32.9 34.4 32.02 24.53 7.43 22.18
No Adaptation∗ 97.74 97.94 102.62 30.47 29.68 29.29 28.36 8.62 25.09

RPF∗ 97.82 96.98 102.07 24.36 33.89 22.04 25.03 8.31 21.39
SPS∗ 97.86 97.62 102.34 24.24 34.04 22.73 25.52 8.19 21.34

5

Nominal plan 98.82 98.67 102.02 34.56 40.75 26.21 23.63 10.65 16.08
No Adaptation∗ 98.09 98.57 102.34 39.36 42.39 28.91 28.61 12.19 19.99

RPF∗ 98.01 98.57 102.07 35.86 42.18 28.89 24.66 12.24 19.5
SPS∗ 97.97 98.57 102.07 35.04 42.57 26.87 24.79 12.24 19.9

of dose metric differences ∆Dx. The mean values across the five patients of the dose

metric differences for CTVs, parallel and serial OARs were relatively small (<0.5

Gy/%), with no clear trend as to which strategy produced plans with minimal dose

differences.

Figure 6.2: Comparison of the dose metric differences for 5 patients observed in the SPS
and the RPF. The horizontal lines in the box plot indicate the median dose
metric difference among the five patients, and the asterisks indicate the mean
difference. Dmax and Dmean are given in units of Gy.

The statistical analysis using the two-sample t-test also demonstrated that the
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difference between the SPS and the RPF was not significant (p>0.05 for all inves-

tigated dose metrics), as shown in table 6.4. Given the findings and the workload in

clinical proton therapy, it appeared that a practical solution is to continue with the

reactive predicted adaptation strategy, requiring only 1 replan.

Table 6.4: p-value of the two-sample t-test between the distribution of ∆Dx (see equation
1) in the RPF and the SPS with mean value(µ) and standard deviation(σ ). Sta-
tistically significant differences between plans (taken as p<0.05) are highlighted
in bold.

Statistics
High-risk CTV Low-risk CTV

D2
Spinal cord Brainstem Chiasm Parotid Oral Cavity Larynx

D95 D95 Dmax Dmax Dmax Dmean Dmean Dmean
(%) (%) (%) Gy Gy Gy Gy Gy Gy

p value with mean value(µ) and standard deviation(σ ) of five patients
RPF(µ±σ ) -0.904± 0.446 -0.771± 1.161 -0.138± 0.228 -0.969± 1.257 -0.543± 2.247 -2.382± 4.265 1.747± 1.237 1.098± 1.132 1.876± 1.78
SPS(µ±σ ) -0.994± 0.524 -0.589±0.904 -0.382±0.33 -0.752± 0.932 -0.342± 2.202 -2.171± 3.037 1.744± 0.705 1.099±1.131 1.819± 1.806

p value(SPS and RPF) 0.777 0.789 0.210 0.764 0.89 0.930 0.996 0.999 0.961

6.3.2 Comparison between reactive predicted adaptation strate-

gies and the standard replan technique

The predictive power of the method is shown in figure 6.3, including DSC and re-

plan week comparisons. The DSC of the parotid glands (DSCPG) between predicted

contours (used in the predicted plan adaptation) and the real contours (used in the

standard replan) are compared with no model, in which planning contours and real

contours in the standard replan are used to calculate the DSC, in figure 6.3a. Using

the reactive predicted adaptation strategies, the DSCPG was increased by 0.08.

The deviation of the actual replan week from the predicted replan week is

shown in figure 6.3b. Of note, this study did not apply the predicted plan to the

predicted week but applied it flexibly to the actual week that requires replanning. In

4/10 cases, the predicted images accurately predicted the replan week (one patient

that did not need a replan is included in this scenario). In the remaining 6/10 cases,

the predicted week and actual replan week differed by only 1 week.

In figure 6.4, the DVH differences between the dose of the nominal plan on a

predicted CT and on the corresponding triggering repeat CT are illustrated for an

exemplary patient. The DVH differences are small.

To further investigate the performance of the reactive predicted adaptation

strategies, the RPF and the RPS strategy were compared with the standard replan



6.3. Results 127

(a) (b)

Figure 6.3: The predictive ability of the RIM. (a) The comparison between the RIM and
no model on DSCPG for the ten validation patients. The horizontal lines in the
box plot indicate the median value among the 10 patients, and the asterisks
indicate the mean value. (b) shows the distribution of cases on adaptation week
difference (between real replan week in the standard replan and the predicted
replan week in the predicted plan adaptation).

Figure 6.4: The DVH comparison between the dose of the nominal plan calculated on a
predicted CT and on the corresponding triggering repeat CT for an exemplary
patient. The solid lines belong to the dose on the predicted CT. The dashed
lines belong to the dose on the triggering repeat CT.

strategy based on the results of 10 patients (IDs, 1–10). Table 6.5 includes the nom-

inal plan and the accumulated doses of the nominal plan with no adaptation, the

standard replan, the RPF and the RPS. For patients who had a standard replan on

week 3, the accumulated doses of the RPF and the RPS are the same. The results of

the RPS are only shown in patients who did not have standard replan on week 3.
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Table 6.5: Nominal and accumulated dose metrics with no adaptation, the RPF, the RPS
and the standard replanning for the ten patients. Please note that for patient 1,
no replan was triggered according to the replan criteria. The dose metrics for the
parotid glands are highlighted in bold. The asterisk in the plan column indicates
the numbers in the same row are the accumulated dose.

ID Plan
High-risk CTV Low-risk CTV

D2
Spinal cord Brainstem Chiasm Parotid Oral Cavity Larynx

D95 D95 Dmax Dmax Dmax Dmean Dmean Dmean
(%) (%) (%) Gy Gy Gy Gy Gy Gy

1
Nominal plan 98.75 98.86 103.05 30.55 45.69 36.5 27.36 6.8 30.93

No Adaptation ∗ 97.93 98.89 103.17 28.56 42.39 27.5 29.61 6.9 31.14

2

Nominal plan 98.28 98.66 102.92 34.49 40.08 22.06 25.53 14.24 26.24
No Adaptation∗ 96.6 95.71 102.89 33.39 40.63 22.16 31.87 17.45 32.03

Standard Replan∗ 97.11 96.67 101.79 35.45 40.54 20.64 29.59 16.24 26.89
RPF∗ 96.6 96.35 102.62 35.81 41.27 19.45 28.92 17.39 28.43

3

Nominal plan 98.75 98.59 102.24 33.13 39.16 23.88 22.89 10.88 11.77
No Adaptation ∗ 97.97 98.89 102.07 30.59 35.69 24.58 24.53 10.76 12.36
Standard Replan∗ 98.05 98.89 101.52 30.28 35.55 23.53 23.65 11.19 12.16

RPF∗ 98.05 98.89 102.07 31.34 38.28 23.8 22.77 10.48 11.27
RPS∗ 98.01 98.57 102.07 31.90 39.34 22.76 22.15 10.47 10.87

4

Nominal plan 98.42 98.82 102.96 32.9 34.4 32.02 24.53 7.43 22.18
No Adaptation∗ 97.74 97.94 102.62 30.47 29.68 29.29 28.36 8.62 25.09

Standard Replan∗ 97.86 97.62 101.79 23.85 32.26 27.3 26.05 8.11 20.84
RPF∗ 97.82 96.98 102.07 24.36 33.89 22.04 25.03 8.31 21.39

5

Nominal plan 98.82 98.67 102.02 34.56 40.75 26.21 23.63 10.65 16.08
No Adaptation∗ 98.09 98.57 102.34 39.36 42.39 28.91 28.61 12.19 19.99

Standard Replan∗ 97.97 98.89 101.79 37.18 42.65 26.98 26.08 11.88 18.57
RPF∗ 98.01 98.57 102.07 35.86 42.18 28.89 24.66 12.24 19.5

6

Nominal plan 98.5 98.65 102.7 36 38.93 34.37 29.65 15.38 30
No Adaptation∗ 97.38 98.57 102.89 39.86 41.68 32.99 32.95 17.14 28.37

Standard Replan∗ 97.03 98.25 101.79 37.74 41.93 32.98 30.44 16.15 27.41
RPF ∗ 96.79 97.94 102.34 38.81 43.56 31.84 31.3 16.29 28.04

7

Nominal plan 98.6 98.27 102.58 36.53 40 26.86 27.04 13.19 19.64
No Adaptation∗ 97.03 98.57 102.34 36.77 39.05 28.31 30 12.98 23.13

Standard Replan∗ 96.64 98.25 102.34 34.33 38.22 26.29 28.87 12.61 21.04
RPF∗ 96.91 98.25 102.07 36.41 39.67 28.45 28.07 12.33 21.05
RPS∗ 96.91 98.25 102.07 36.62 39.74 28.58 27.49 12.11 20.91

8

Nominal plan 98.37 98.63 102.48 35.47 36.01 23.43 27.24 10.6 19.77
No Adaptation∗ 96.44 97.62 102.34 32.27 30.41 23.88 29.25 11.86 20.77

Standard Replan∗ 96.6 97.94 102.07 33.2 31.9 22.67 28.66 11.78 19.51
RPF∗ 96.6 97.94 102.34 29.13 31.14 23.99 28.48 11.98 20.91
RPS∗ 96.8 97.94 102.07 25.85 32.59 23.42 27.27 12.17 19.73

9

Nominal plan 98.75 98.76 102.31 11.84 42.58 42.63 22.66 8.83 9.2
No Adaptation∗ 96.95 98.25 102.62 14.78 52.68 41.76 27.14 9.45 17.64

Standard Replan∗ 96.95 98.25 102.07 15.2 47.39 38.97 25.2 10.14 14.67
RPF∗ 96.75 98.57 102.07 12.14 49.15 40.14 24.86 9.2 13.68

10

Nominal 98.62 98.28 102.01 29.2 38.76 36.3 27.64 7.1 21.44
No Adaptation∗ 97.7 97.62 102.07 32.28 36.51 37.21 31.47 7.21 21.9

Standard Replan∗ 97.54 96.98 101.24 33.62 39.52 37.66 30.29 7.06 20.12
RPF∗ 97.78 97.3 101.79 32.92 35.07 38.78 30.00 7.86 21.07

In figure 6.5a), the RPF and the RPS were compared with the standard re-

planning technique and no adaptation for all 10 patients in terms of dose metric

differences ∆Dx. The mean and median differences of D95 between the accumu-

lated dose and the planned dose for the CTVs were small, with a mean difference

observed to the high-risk CTV of -1.20%, -1.23%, -1.25% and -1.24% for no adap-

tation, the standard replan, the RPF and the RPS, respectively. For parotid glands,

on average, all adapted strategies can control the accumulated mean dose within

a 3 Gy difference of the planned dose, with 2.34 Gy, 2.03 Gy and 1.81 Gy for the
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standard replan, the RPF and the RPS respectively, compared with 3.91 Gy for no

adaptation. Furthermore, the parotid Dmean using a reactive predicted adaptation

strategy was generally lower than a standard replan, with 0.31 Gy and 0.53 Gy on

average for the RPF and the RPS, respectively. To be noted here, the parotid Dmean

of the predicted replan on the PDr (either the RPF or the RPS) was observed to be

lower than that of the standard replan on the verification CT in some cases (for ex-

ample, patient 3 in table 6.2) because they were optimised on a different geometry.

In figure 6.5a) that bias is removed using the dose metrics difference.

(a) Dose metric differences of the three adaptations.

(b) Accumulated D95 and D2 for
the high-risk and low-risk
CTV.

(c) Accumulated Dmax for the se-
rial organs

(d) Accumulated Dmean for the
parallel organs

Figure 6.5: Comparison of the dose metric differences and the accumulated dose metrics
for 10 patients observed in no adaptation, the standard replan, the RPF and
the RPS. The horizontal lines in the box plot indicate the median dose metric
difference among 10 patients, and the asterisks indicate the mean difference.
(a) shows the dose metric differences. Dmax and Dmean are given in units of
Gy. (b)–(c) shows the accumulated dose metrics. The dashed lines in (b)–(c)
represent the defined clinical goals summarised in table 6.1.

Serial organs were observed to be more sensitive to geometric changes than

parallel organs. In the standard replanning technique, the differences in the spinal

cord Dmax between the accumulated dose and the planned dose range from -2.80 Gy
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to 3.41 Gy, consistent with the result reported by Noble et al. (2019) [98]. In the

brainstem, those differences range from -4.58 Gy to 7.16 Gy. In the chiasm, the

differences were observed between -9 Gy to 6.83 Gy.

Figure 6.5b)–6.5d) shows that all the accumulated dose metrics of CTVs and

OARs satisfied the clinical goals set for the plans, with one exception that the

parotid Dmean slightly exceeded the clinical goal. There are two reasons: firstly, the

parotid Dmean of the nominal plan is already close to the clinical goal, with 25.82 Gy

on average, and secondly, this cohort of patients all received chemotherapy, which

causes severe shrinkage of the parotid glands during the treatment.

Statistical analysis using the two-sample t-test demonstrated that the accumu-

lated dose difference between no adaptation and the standard replanning technique

was significant (p<0.05) only in the parotid gland Dmean and D2%. The differences

between the standard replan, the RPF, and the RPS were not significant (see table

6.6).

Table 6.6: p-value of the two-sample t-test between the distribution of ∆Dx (see equation 1)
in two adaptation strategies with mean value(µ) and standard deviation(σ ). The
capitals in parenthesis indicate no adaptation(N) and the standard replan(R). Sta-
tistically significant differences between plans (taken as p<0.05) are highlighted
in bold.

Statistics
High-risk CTV Low-risk CTV

D2
Spinal cord Brainstem Chiasm Parotid Oral Cavity Larynx

D95 D95 Dmax Dmax Dmax Dmean Dmean Dmean
(%) (%) (%) Gy Gy Gy Gy Gy Gy

No Adaptation(µ±σ ) -1.203± 0.491 -0.556± 0.96 0.007± 0.23 0.365± 3.029 -0.525±4.623 -0.767±3.267 3.913±1.773 0.945± 1.071 2.516± 3.009
Standard replan(µ±σ ) -1.236± 0.495 -0.545± 0.753 -0.466± 0.325 0.795± 2.181 -0.571± 3.715 0.848± 4.073 2.337± 0.989 0.989± 1.125 1.855± 1.248

RPF(µ±σ ) -1.252± 0.567 -0.685± 0.823 -0.295± 0.271 0.328± 2.307 -0.383± 4.036 -1.301± 3.201 2.03± 1.265 0.87± 0.867 1.846± 2.206
RPF(µ±σ ) -1.235± 0.550 -0.732± 0.786 -0.319± 0.266 0.418± 2.327 -0.237±3.969 -1.471±3.146 1.807±1.507 0.915± 0.86 1.824± 2.234

p value(N and R) 0.883 0.978 0.001 0.72 0.981 0.341 0.024 0.929 0.529
p value(R and RPF) 0.947 0.697 0.216 0.647 0.915 0.206 0.553 0.794 0.991

p value(RPF and RPS) 0.947 0.897 0.84 0.932 0.936 0.906 0.745 0.908 0.982

The weekly dose metrics changes of CTVs during the treatment are shown in

figure 6.6 for each patient. In figure 6.6, CTV coverage is basically above 95%

for all the adaptation methods, except for the variation of patient 10 at week 5.

However, because the D95 of the low-risk CT of patient 10 at week 6 is above 95%,

It can be deduced that this dose degradation is caused by small non-rigid variations

such as neck tilt, which are difficult to subtract when the RIM is updated using

individual information.

There are scenarios in which using the initial tumour contour of the planning
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(a) D95 of high-risk CTV for each patient (b) D95 of low-risk CTV for each patient

(c) Average weekly D95 of high-risk CTV
across ten patients.

(d) Average weekly D95 of low-risk CTV
across ten patients.

Figure 6.6: The weekly changes of D95 for high-risk and low-risk CTV for the 10 patients
observed in no adaptation, the standard replan, the RPF and the RPS. Patients
are represented using different markers listed in the middle. The dashed lines
present the defined clinical goals summarised in table 6.1.

CT in the predicted plan shows better coverage than using the actual tumour contour

in the standard replan, for example, patient 9 at week 5 in figure 6.6a (the position

of the blue circle is below the pink circle and the green circle), it is because larger

contours can mitigate the variations during the treatment. In the TORPEdo trial,

therapeutic target volumes are not adapted according to changes in GTV. While

in some other cases, the tumour displacement was extended outside the original

contour [18], such as in patient 2 at week 5 in figure 6.6a (the position of the blue

’+’ is above the pink ’+’ and the green ’+’). In such cases, the predicted replan

using the initial contour is inferior to the standard replan using the actual tumour

contour.

The weekly dose metrics changes of parotid glands during the treatment are

shown in figure 6.7a). This study found that the average parotid Dmean in the RPS is
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(a) Dmean difference of parotid glands for each pa-
tient

(b) Average weekly Dmean of parotid glands
across ten patients

Figure 6.7: The weekly difference Dmean between weekly Dmean and Dmean of week 0 (plan-
ning CT) during the treatment with different adaptive strategies for the ten pa-
tients.

lower than the RPF. This benefit comes from applying the reactive predicted plans

in advance for patients 3, 7 and 8. However, the reduced average parotid Dmean

comes with a slight degradation in low-risk CTV D95, see figure 6.6d). Because the

reactive predicted plans were applied in advance to the triggering week, at which

the shrinkage of low-risk CTV was less severe than in PDr, the coverage of low-

risk CTV was slightly degraded. However, this degradation was less than 1% for

patients 3, 7 and 8. While initial high-risk CTV of planning CT was both used in

the PDr of the RPF and the RPS, no significant influence was made on the radiation

coverage of high-risk CTV.

Figure 6.7b) shows that the average parotid ∆Dmean across ten patients is above

3 Gy from week 3. Therefore, week 3 can be justified as an appropriate time point

for adaptation. In this cohort of patients, 6/10 patients had plan adaptations around

the 3rd treatment week, and 2/10 patients had plan adaptations around the 4th treat-

ment week, which is consistent with the conclusion from Brown et al. (2016) [96]

and Wu et al. (2008) [97]. The complete table of the actual replan week and pre-

dicted replan week in the RPF can be found in Appendix D.
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6.4 Discussion

Adaptive proton therapy can address the dose discrepancy caused by anatomical

changes observed in H&N patients during the course of treatment. However, the

offline adaptive strategy used in radiotherapy clinics can cause treatment delays and

challenge workflow efficiency. This chapter exploits the RIM to prepare adaptive

plans in advance. The results showed that the RPS can maximise the use of the RIM

for prospective replanning, with similar CTVs coverage and reduced parotid dose

compared to the standard replan.

Previous studies[51, 95] reported that the benefits of adapting the treatment

should increase with an increasing replanning rate. However, the ∆Dx of the SPS

(using two adaptive plans) did not show significant benefits compared to the RPF

(using one adaptive plan). One reason could be that the geometric changes of this

patient cohort become stable in the last few fractions of treatment, resulting in

the second predicted plan not significantly improving the results. A second rea-

son could be that the prediction of the anatomical changes for some patients lags

one week behind the actual anatomical changes. It should be noted that the benefit

of the SPS is limited by the model accuracy, while the reactive adaptation technique

(either the RPF or the RPS) is not due to its flexible application. Accurately predict-

ing the week in which plan adaptation is an important next step in implementing a

prospective offline adaptive therapy.

The comparison between the RPF and the RPS inspires a further potential ap-

plication of anatomical models as follows: One could create predicted adaptive

plans using each predicted weekly CT; then clinicians verify each predicted plan on

CT3 and CT5 and choose the best plan for application. While this poses an extra

workload to planning and QA, automated treatment planning [99] could be used.

In the RPF and the RPS strategies, although high-risk CTV and low-risk CTV

coverage were slightly lower than the standard replan, the differences were sta-

tistically not significant (< 1%). The CTV coverage degradation observed here is

because the accurate, newly defined CTV contours were used in the standard replan,

while the initial CTV contours from the nominal plan were used in the predicted re-
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plans. This limitation can possibly be improved by using the contours in the latest

weekly repeat CT or predicted CTV contours with improved accuracy after strat-

ifying patients based on tumour features. The improved CTV contours can help

further reduce the dose of OARs since the initial volume of CTVs is generally big-

ger than the CTVs adapted during treatment [18]. These works will be explored in

the future.

In this work, the average benefit of a no-delay treatment on parotid Dmean is

0.31 Gy for the RPF and 0.53 Gy for the RPS. If the standard replan is applied to

the same day of the RPF, the benefit of no-delay treatment from standard replan is

on average 0.47 Gy (one fractional benefit is 0.09 Gy) to parotid Dmean. This ben-

efit is 0.16 Gy higher than that from the RPF, indicating that the advantages of the

RPF can enable adaptive therapy to be delivered without 3 sub-optimal fractions,

but 0.06 Gy lower than from the RPS because in the RPS the adapted plans were

applied in advance for some patients. There is one interesting scenario worth notic-

ing. For patient 6, the predicted anatomy, which was used to create a prospective

replan, suggested the need for adaptation due to a change in the mean parotid dose

of >3 Gy. However, while the parotid ∆Dmean of the nominal plan calculated on

the predicted anatomy was 3.05 Gy, the parotid ∆Dmean calculated on the triggering

verification CT of week 3 was 6.35 Gy. A dramatic shrinkage of the parotid vol-

ume between week 2 and week 3 made the RIM less effective in this case. Despite

this, when the predicted plan was applied on week 3, the parotid ∆Dmean on the

verification CT of week 3 was reduced to 3.05 Gy. In this circumstance, clinicians

might look to apply the predicted replan on week 3 and follow the standard replan

procedure to create a new replan. This limitation can potentially be improved if

patients are stratified by exploiting tumour-related features [87, 88] and outlining

change-related features [89, 90, 91] based on a larger dataset. Another scenario

worth discussing is where the dose recalculation on the predicted images indicated

a parotid ∆Dmean that did not reach the triggering threshold but was close to it, for

example, 2.75 Gy(RBE). In this case, this study suggests having an alternative plan

available in case re-planning is triggered.
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This study only considered 1-step adaptation for the proof of concept. In figure

6.7 a), the parotid ∆Dmean of some patients in week 4 is still more than 3 Gy(RBE)

because of severe shrinkage. For example, patient 2 adapted the plan on week 3

with a parotid Dmean of 25 Gy(RBE). However, when the adapted plan was applied

to week 4, the parotid Dmean increased to 32 Gy(RBE). In this case, a second adap-

tation is needed. If the model is updated every time when a new CT is acquired,

then the prediction for a second adaptation is clearly possible.

In clinical practice, plans are robustly optimised to account for setup and range

uncertainties, and while anatomical changes may not be included explicitly in the

optimisation process, it is possible that some robustness to anatomical changes is

provided by improved robustness to these setup and range uncertainties. Where the

magnitude of setup errors in the robust optimisation is reduced, plans would likely

be more sensitive to anatomical changes. As such, the application of predictive

anatomical modelling to the design of a robust plan may allow for a reduced setup

robustness margin, thereby improving dose conformity to some extent. Though

there may be a trade-off between this margin and the number of plan adaptations

required during a treatment course. Furthermore, the use of a predictive model as an

additional error scenario in the robust optimisation may be of interest though further

work is required to understand the detriment to the nominal plan of such robustness.

The predictive nature of the approach can enable improved workflow management.

It also should be noted that robust beam angle selection remains critical for avoiding

anatomical variations such as nasal filling. Such variations cannot be modelled by

deformations.

The data in this study was initially used to report the geometric and dosimetry

changes of H&N patients who have received photon therapy. The mean parotid

dose of the photon plans was 32.12 ± 11.2 Gy (mean ± standard deviation) in this

cohort of patients, whereas the mean parotid dose of the proton plans in this study

was 25.82 ± 2.33 Gy. Deduced from here, patients who underwent proton therapy

might experience less toxicity. Therefore, weight loss due to acute toxicity, such

as dysphagia and dysgeusia, could be lower, resulting in smaller magnitudes of
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anatomical changes. This study may overestimate the number of patients who can

benefit from using the predicted images of the RIM for offline adaptive therapy.

For this proof of concept, images from a cohort of 20 patients were used. This

cohort was particularly suited for this study, having weekly CTs with manually

delineated contours. In contrast, the use of weekly CBCT, which is more commonly

available, is subject to additional DIR uncertainty. Secondly, the error from HU

correction required by CBCT is removed. Weekly dose distributions can be directly

calculated, and a replan can be directly created. In addition, the weekly dose metrics

can be directly calculated using the manually delineated contours in weekly CTs.

Further model validation will be conducted on a larger cohort of IMPT patients

with CBCT. The SVFs of the DIR between CT-CBCT can be directly used to build

the model. The procedure is the same, except that the influence of the DIR uncer-

tainty needs to be re-evaluated because the estimation of deformation fields is less

accurate between CT-CBCT than CT-CT if the similarity metric of DIR is based

on intensity. Another option is correct the HU of CBCT [100, 101] before DIR to

improve the accuracy.

In the literature, anatomical models have only been used for DIR evaluation

[60] or assessed based on the misalignment of the anatomical landmarks [63, 28].

This is the first demonstration of the potential of anatomical models in adaptive ra-

diotherapy. Compared to online adaptation [50, 51, 48], this method can reduce the

treatment time by preparing complete adaptive plans in advance without the need

for real-time QA, which is one of the most challenging aspects of online adaptation.

Furthermore, by exploiting novel auto-planning techniques [99], this method may

allow for auto-replanning for adaptive IMPT.

6.5 Conclusion

This chapter explores the three strategies (the SPS, the RPF and the RPS) of using

the RIM to prepare adaptive plans in advance. The RPS reduced the parotid Dmean

by 0.53 Gy, achieving the benefit of non-delay treatment, while the dosimetric of

other organs had no significant difference with the standard replanning technique
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(p>0.05 for all investigated dose metrics). Prediction-based replanning could po-

tentially enable clinically acceptable adaptive therapy without treatment gaps or

sub-optimal fractions to be delivered due to delays in the standard adaptive strat-

egy, leading to an improved overall treatment course for patients. Furthermore, the

ability to manage the adaptive therapy workflow prospectively with the predictive

approach can increase the efficiency of a busy clinical proton therapy practice.



Chapter 7

Final remarks

Proton therapy has presented great potential in limiting the dose to normal tissues

adjacent to the target region for H&N cancer patients. However, the sharp distal

fall-off of the Bragg peak makes the dose distribution sensitive to uncertainty. With

this precise delivery technique becoming widely available, there is a clear need to

improve mitigation techniques to reduce the influence of uncertainty.

The anatomical changes commonly occur in the treatment of H&N cancer. Pre-

vious studies measured the anatomical uncertainty without discreetly categorising

it into different sources. However, the underlying causes of sNRV and progressive

changes are different. The sNRVs arise from non-rigid positioning errors, move-

ments due to discomfort and spontaneous swallowing. They are more likely to

occur randomly during the treatment. While progressive changes are due to radia-

tion damage on cells and are patient-specific. The damage to tumour cells causes

tumour shrinkage. The damage on normal cells not only leads to volume shrinkage

but also causes acute toxicity, influencing chewing, swallowing and outline chang-

ing. Therefore, these two types of anatomical changes should be treated differently

in terms of using mitigation techniques.

One approach to mitigate anatomical uncertainty is robust optimisation,

which is accompanied by robust evaluation. In the conventional robust optimisa-

tion/evaluation, only rigid setup error and range uncertainty are considered. The in-

clusion of anatomical changes in anatomical robust optimisation/evaluation [43, 45]

needs multiple scanning or relies on the acquisition of CT images during treatment.
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It either gives the extra dose to patients and increases the workload for clinicians or

limits the creation of a robust plan at the planning stage.

Offline replanning is generally used to account for anatomical uncertainty.

However, patients must either continue treatment with an existing sub-optimal plan

or face interruptions to treatment whilst plans are adapted. This reactive adaptive

strategy also challenges workflow efficiency.

The work described in this thesis has contributed to the field by addressing the

aforementioned issues using imaging computing techniques, DIR. The diffeomor-

phic image registration algorithm of Niftyreg was evaluated for building anatomical

models for H&N proton therapy. Because anatomical models were built at each

weekly time-point, the weekly changing trend and accumulated influence of the

DIR were assessed. The results justified the use of this DIR algorithm. In this

study, the uncertainty evaluation based on WSLD was proposed. WSLD gives a

single value, making it easy to analyse. Besides, it combines spot location and

spot weights, both of which affect dose distribution, thus accurately and effectively

evaluating the uncertainty without having to calculate dose distribution.

Several potential applications for mitigating anatomical uncertainty were pro-

posed in this thesis.

1. Include sNRVs into the robust evaluation to choose robust plans against

anatomical uncertainty.

2. Develop the PM to generate the predicted images with high possibilities for

anatomical robust optimisation.

3. Develop the RIM for prospective replanning. Different strategies were ex-

plored to maximise the use of RIM.

sNRVs are unavoidable during the treatment. Thus they are better to be con-

sidered in the robust evaluation/optimisation. The role of sNRVs in the robust eval-

uation was investigated in Chapter 3. This study used a probability approach to

evaluate the robustness of a plan and provided a way to quantify its performance

using robustness ranking consistency. The approach presented not only can help



140

clinicians avoid the sNRVs that can lead to unacceptable dose distributions but also

help to select the robust beam arrangement. It was the first study to reveal the dosi-

metric influences of sNRVs and incorporate them into the robust evaluation to guide

the selection of a robust IMPT plan. The study suggests that the inclusion of sNRVs

can be beneficial to robust evaluation for all beam arrangements.

When a large patient cohort is available, it would be more efficient to limit the

included sNRVs to the most common/frequent ones by using an anatomical model.

In Chapter 4, the PM captured the major deformations at each weekly time point

based on population data and has been validated as the most effective model in de-

scribing anatomical uncertainty with an error of 0.81±0.56 mm. The dose variations

simulated by the PM in the first week (simulated sNRVs) have no significant differ-

ence from those caused by the actual sNRVs. This study gives a solution to calculate

the probability of a certain type of anatomical change, which can be added to the

cost function of the optimiser. Not limited to just including sNRVs in anatomical ro-

bust optimisation, anatomical robust optimisation can also account for progressive

changes during treatment. However, both Mesı́as et al. (2019) [43] and Lalonde et

al. (2021) [48] demonstrated that the robustness of anatomical robust optimisation

comes with the price of increasing the integral dose. The anatomical robust opti-

misation using the PM needs to be explored to find the best balance between those.

The potential images for anatomical robust optimisation can be from 1) the PM of

each week, 2) the AM of each week plus the PM of the first week. The anatomi-

cal robust optimisation using the PM does not require multiple CT scanning for the

same patient pre-treatment, therefore saving imaging dose and reducing workload.

The robust optimisation alone may not be adequate to account for progres-

sive changes during the treatment. Adaptive planning is still suggested [34]. To

prospectively prepare replans for offline adaptive radiotherapy, Chapter 5 built the

RIM based on the AM and updated it using the patient’s progressive information

acquired during the treatment. The RIM effectively reduced anatomical uncertainty

and can gradually refine the prediction. In this study, the predictive ability of the

RIM was demonstrated based on CT numbers, contours, range and dose distribu-
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tion. The validation steps and the steps for clinical translation can directly be ap-

plied to more complex future models.

Due to the limited patient data size used in this thesis, the RIM cannot accu-

rately predict the replan week. To minimise the influence of the current accuracy of

the RIM, a reactive strategy was chosen to create a predicted plan in advance. The

results showed that the reactive strategy using the RIM can achieve the minimum

benefit of no-delay treatment in terms of protecting parotid glands. The benefits of

using the RIM to prepare adaptive plans are 1) improved treatment quality as there

is no gap in treatment or the delivery of a few sub-optimal fractions. 2) stream-

lined workflow as the option to prepare adaptive plans in advance allows for easier

scheduling of patient-specific QA along with machine QA, maintenance, and other

demands for beam time. 3) compared with online adaptation, which is intended for

same-day application. This application can reduce the treatment time by preparing

complete adaptive plans in advance and improve the plan quality as the plan of on-

line adaptation is never as good as offline adaptation due to limited computational

capacity and constrained optimisers.

Along with the application, the anatomical uncertainty was evaluated from

three aspects: 1) systematic progressive deformation of each week, 2) sNRVs un-

certainty of the first week and 3) total anatomical uncertainty (from sNRVs and

progressive changes) of each week.

One limitation of this study is that anatomical models were built based on

a patient cohort treated with photon radiotherapy but collected retrospectively for

proton study. However, the presented methods are easily transferable to a patient

data set having received proton therapy. Another aspect of anatomical models that

is of interest for future research is exploiting big data techniques. Either stratifying

patients based on features in the planning stage or using deep learning methods to

directly obtain the predicted geometry worth investigation[102, 103].

To summarise, the work presented in this thesis provides a better understand-

ing of anatomical uncertainty and mitigation techniques. First, the influences of

anatomical uncertainty are presented. Second, the anatomical models and the model
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evaluation methods are given, which can guide the development of more complex

future models. Third, the applications and potential applications of models are pro-

vided. The results might inspire future clinical applications.



Appendix A

Parameters used in DIR

Velocity field option was used. Other optimal parameters used for CT-CT image

registration were investigated and shown in table A.1.

Table A.1: NiftyReg parameters for CT-CT registration.

Parameters Value
Similarity Measure NMI

Control Point Spacing 5mm
Bending Energy 10%

Other optimal parameters used for CT-atlas image registration were investi-

gated and shown in table A.2.

Table A.2: NiftyReg parameters for CT-atlas CT registration.

Parameters Value
Similarity Measure NMI

Control Point Spacing 7mm
Bending Energy 1%

Other optimal parameters used for CT-CBCT image registration were investi-

gated and shown in table A.3[104].

Table A.3: NiftyReg parameters for CT-CBCT registration.

Parameters Value
Similarity Measure NMI

Control Point Spacing 5mm
Bending Energy 3%



Appendix B

Pre-treatment analysis of non-rigid

variations can assist robust IMPT

plan selection for head and neck

patients

B.1 Examples of small non-rigid variations.
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B.2 Beam arrangements illustration.

(a) (b)

(c) (d)

(e)

Figure B.1: Illustration of different beam arrangements. (a) - (e) are 3B45, 3B60, 4B110,
4B120, 5B, respectively.

B.3 Generation of average reference anatomy for sta-

tistical models
A groupwise registration algorithm was adapted from the NiftyReg package to gen-

erate an ’average’ atlas. Group-wise registration can be used to spatially normalise

a cohort of patients in a common space. Using N different patient CT images, the

iterative algorithm consists of the following 6 steps:

1. Perform rigid registration between N-1 other CT Ii and an arbitrary reference

image I∗. The warped image I
′
i = Ii(Trigid, i). The template image is updated
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as the average of all N images:

I∗ =
1
N
(I∗+

N−1

∑
i=1

I
′
i) I

′
i = Ii(Trigid) (B.1)

2. Perform affine registration. All N images are registered to I∗, producing the

affine transformations φaff,i for each iteration.

3. Update I∗ with a series of affine iterations. To enforce the mean of all the

transformations to be the identity, the mean of the non-rigid components of

the affine transformations φaff,i is removed using φ
′
aff,i = φaff,i− 1

N ∑i φaff,i. I∗

is updated using the average of the φ
′
aff,i:

I∗ =
1
N

N

∑
i=1

φ
′
aff,i(Ii) (B.2)

4. Steps ii) and iii) are repeated until there is no visual improvement of quality

in I∗.

5. Perform diffeomorphic deformable image registration. All N images Ii are

deformed to the current template image I∗ using the stationary velocity field

vi.

6. Update I∗ with a series of deformable image registration iterations. The spac-

ing of the control points for the B-Spline velocity grid is gradually stepped

down from coarse to fine (30mm to 8 mm) during the iteration. For each

iteration, remove the mean of the velocity field from each transformation

v
′
= v− 1

N ∑i vi as before. The average image is computed as:

I∗ = exp
( 1

N

N

∑
i=1

v
′
(Ii)
)

(B.3)
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B.4 Robust evaluation table for other three patients.

Table B1: The sNRV+setup evaluation, the conventional evaluation and the gold standard
evaluation for other three patients. p-values of the two-sample t-test are calcu-
lated between the distribution of ∆Dx in the sNRV+setup evaluation and in the
conventional evaluation. p<0.05 represents ∆Dx in the sNRV+setup evaluation
and ∆Dx in the conventional evaluation are taken from significantly different
distributions. In the sNRV+setup evaluation and the conventional evaluation, the
beam arrangements were ranked based on the WD for each ROI matrix. In the
gold standard evaluation, the beam arrangements were ranked for each ROI ma-
trix based on ∆Dst. RP is the robustness ranking position of a beam arrangement
for a matrix.

sNRV+setup Evaluation Conventional Evaluation
p-value

Gold standard evaluation
ROI/Matrix Plan Nominal Min Max WD RP Minmum Maximum WD RP AccuNom ∆Dst RP

patient 2
Low-risk CTV 3B45 98.25 92.22 97.94 1.6 3 96.67 98.25 0.36 4 1e-8 97.94 -0.32 3

D95(%) 3B60 98.25 93.17 98.25 1.92 4 96.03 98.25 0.3 2 1e-9 97.94 -0.32 3
4B120 98.25 93.81 98.25 0.97 1 95.71 98.25 0.36 3 1e-5 97.94 -0.32 3

5B 98.57 94.44 98.57 1.57 2 96.98 98.57 0.26 1 1e-8 98.57 0 1
High-risk CTV 3B45 98.48 95.73 98.48 0.87 2 96.56 98.48 0.4 2 1e-4 98.21 -0.28 2

D95(%) 3B60 98.48 93.8 98.21 1.03 4 96.56 98.48 0.42 3 1e-6 97.93 -0.55 4
4B120 98.48 94.9 98.21 0.89 3 96.56 98.48 0.47 4 1e-5 98.21 -0.28 2

5B 98.48 95.45 98.48 0.77 1 96.56 98.48 0.34 1 1e-4 98.21 -0.28 2
High-risk CTV 3B45 102.34 102.07 103.17 0.23 2 101.93 102.89 0.11 3 0.11 101.79 -0.55 2

D2(Gy) 3B60 102.62 102.34 103.17 0.12 1 102.48 103.03 0.03 1 0.93 102.07 -0.55 3
4B120 102.34 102.07 103.99 0.5 4 102.07 103.44 0.23 4 0.02 103.17 0.83 4

5B 102.07 101.52 103.17 0.31 3 101.93 102.2 0.04 2 1e-5 102.34 0.28 1
Parotid 3B45 21.69 19.13 29.05 1.22 1 18.72 26.57 1.05 4 0.01 24.67 2.98 1

Dmean(Gy) 3B60 24.96 22.79 31.33 1.26 2 22.48 28.43 0.76 2 1e-3 28.2 3.24 2
4B120 23.07 20.8 31.53 1.86 3 20.97 24.98 0.77 3 1e-6 27.51 4.44 3

5B 23.47 20.52 31.15 1.9 4 21.78 26.7 0.57 1 1e-4 28.6 5.12 4
Oral 3B45 27.36 22.78 31.92 1.64 4 24.79 31.63 0.88 1 0.24 27.76 0.41 4

Dmean(Gy) 3B60 12.15 9.46 16.01 1.37 2 9.59 15.67 0.93 2 0.22 12.13 -0.01 1
4B120 11.33 8.74 15.55 1.36 1 7.46 14.38 0.98 4 0.04 11.44 0.11 3

5B 12.13 9.41 15.66 1.38 3 9.5 15.63 0.95 3 0.11 12.2 0.07 2
Larynx 3B45 16.7 13.14 23.63 1.71 1 15.22 19.48 0.83 1 0.2 19.81 3.11 2

Dmean(Gy) 3B60 17.13 13.61 23.81 1.76 2 15.18 20.12 0.9 2 0.11 19.6 2.47 1
4B120 16.62 11.21 32.2 3.44 4 9.32 23.07 2.13 4 0.01 25.44 8.82 4

5B 17.76 14.44 26.44 2.42 3 15.53 21.5 0.98 3 0.01 21.17 3.41 3
Cochlea 3B45 19.01 14.96 25.91 2.29 3 15.59 24.35 1.75 1 0.24 26.63 7.62 4

Dmean(Gy) 3B60 13.33 8.24 25.87 2.39 4 7.72 20.88 2.27 4 0.45 13.75 0.42 3
4B120 21.67 18.09 29.09 1.87 1 17.98 32.11 1.99 2 0.73 21.31 -0.36 2

5B 20.7 16.57 29.46 2.26 2 15.36 27.77 2.09 3 0.65 20.52 -0.18 1
Brainstem 3B45 32.23 27.74 65.33 9.45 4 24.03 43.13 3.26 1 1e-6 35.4 3.16 4
Dmax(Gy) 3B60 39.17 30.07 59.99 5.37 2 26.57 50.67 3.95 3 0.11 38.91 -0.26 1

4B120 41.35 28.71 60.47 5.38 3 29.15 57.95 4.49 4 0.91 38.86 -2.49 3
5B 43.21 31.31 63.29 4.11 1 30.91 53.71 3.79 2 0.9 41.77 -1.44 2

Spinal 3B45 26.47 14.73 56.03 7.7 4 12.67 36.47 3.78 3 0.07 38 11.53 4
Dmax(Gy) 3B60 32.3 14.39 47.24 5.45 3 16 44 3.8 4 0.93 37.63 5.32 3

4B120 34.27 24.3 49.33 5.01 2 26.77 50.57 3.6 2 0.97 38.09 3.82 1
5B 34.62 26.32 48.42 4.57 1 26.32 44.92 3.01 1 0.58 38.92 4.3 2

Chiasm 3B45 29.45 23.11 53.5 9.33 1 15.55 44.05 5.56 4 1e-7 28.39 -1.07 3
Dmax(Gy) 3B60 27.1 23.23 51.1 10.31 2 14.8 41 4.96 2 1e-8 26.31 -0.8 2

4B120 26.06 22.68 50.93 11.29 4 14.86 41.06 5.22 3 1e-8 25.46 -0.6 1
5B 27.92 25.06 51.89 10.53 3 16.02 41.32 4.76 1 1e-8 29.22 1.3 4

Optic nerve left 3B45 20.4 9.17 48.61 4.78 2 8.7 34.9 4.94 4 0.38 21.33 0.93 3
Dmax(Gy) 3B60 23.6 11.56 49.63 4.78 1 11.1 38 4.75 2 0.62 24.1 0.51 2

4B120 25.02 12.81 50.15 5.11 4 12.42 39.02 4.87 3 0.35 25.28 0.26 1
5B 24.76 13.03 50.04 5.04 3 12.76 38.56 4.58 1 0.7 26.13 1.38 4

Optic nerve right 3B45 23.48 9.68 48.61 6.89 4 9.98 40.68 5.9 4 0.3 27.27 3.8 4
Dmax(Gy) 3B60 30.18 14.63 52.59 6.6 1 14.78 45.98 5.54 2 0.65 32.46 2.29 2

4B120 29.82 14.47 53.26 6.77 3 14.62 45.42 5.61 3 0.25 32.08 2.26 1
5B 31.78 16.37 53.09 6.67 2 16.58 46.38 5.23 1 0.67 34.58 2.81 3
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Table B1: Continued

sNRV+setup Evaluation Conventional Evaluation
p-value

Gold standard evaluation
ROI/Matrix Plan Nominal Min Max WD RP Minmum Maximum WD RP AccuNom ∆Dst RP

patient 3
Low-risk CTV 3B60 98.57 95.4 98.57 1.26 3 95.56 98.57 0.66 2 1e-5 98.25 -0.32 3

D95(%) 4B120 98.89 95.4 98.89 1.15 1 95.4 98.89 0.52 1 1e-4 98.89 0 1
5B 98.57 95.08 98.57 1.17 2 94.76 98.57 0.69 3 0.01 98.57 0 2

High-risk CTV 3B60 98.48 91.87 98.48 1.21 1 92.7 98.48 0.75 2 0.01 98.21 -0.28 2
D95(%) 4B120 98.48 89.12 98.48 1.31 2 90.91 98.48 0.82 3 0.02 98.21 -0.28 2

5B 98.48 91.87 98.48 1.33 3 93.39 98.48 0.6 1 1e-4 98.21 -0.28 2
High-risk CTV 3B60 103.72 102.89 106.75 0.6 3 102.75 104.68 0.24 2 1e-3 103.72 0 1

D2(Gy) 4B120 103.44 102.62 105.37 0.52 2 102.75 104.41 0.35 3 0.13 102.89 -0.55 3
5B 103.17 102.07 105.65 0.38 1 101.93 103.58 0.22 1 0.01 102.89 -0.28 2

Parotid 3B60 30.15 27.49 40.84 2.12 2 27.16 34.09 1.09 1 1e-3 32.88 2.72 3
Dmean(Gy) 4B120 29.75 27.1 41.62 2.12 1 26.69 34.1 1.3 3 1e-3 30.63 0.88 1

5B 28.84 26.1 40.29 2.25 3 25.55 33.1 1.26 2 1e-3 30.7 1.87 2
Oral 3B60 8.36 4.7 12.33 1.23 3 4.5 12.44 1.33 3 0.88 7.79 -0.58 2

Dmean(Gy) 4B120 8.49 5.19 11.66 0.99 1 4.96 11.56 1.1 1 0.65 7.79 -0.7 3
5B 7.31 4.03 10.91 1.12 2 3.83 10.87 1.17 2 0.93 6.76 -0.56 1

Larynx 3B60 34.1 19.34 41.66 3.1 1 22.94 40.23 2.98 2 0.77 35.14 1.04 1
Dmean(Gy) 4B120 34.57 16.73 49.62 4.69 3 21.91 40.93 3.33 3 0.21 37.32 2.75 3

5B 32.1 16.69 43.46 3.36 2 21.77 37.78 2.66 1 0.3 33.46 1.36 2
Cochlea 3B60 14.15 9.94 26.62 3.26 3 10.18 27.14 2.88 3 0.38 17.63 3.48 3

Dmean(Gy) 4B120 17.9 14.59 29.85 2.39 2 14.67 30.42 2.52 2 0.64 20.8 2.9 2
5B 18.93 15.57 30.68 2.33 1 15.67 31.21 2.5 1 0.65 21.7 2.77 1

Brainstem 3B60 40.18 36.11 53.48 4.02 3 33.98 53.68 3.19 3 0.11 43.34 3.16 3
Dmax(Gy) 4B120 47.42 43.35 58.28 2.59 1 43.62 59.42 2.52 1 0.82 49.91 2.49 1

5B 45.89 39.4 57.94 3.36 2 40.49 58.59 3.1 2 0.9 48.65 2.76 2
Spinal 3B60 29.75 23.39 41.59 3.68 3 26.35 37.75 2.45 3 0.68 32.05 2.3 3

Dmax(Gy) 4B120 44.02 39.09 50.1 1.53 1 41.62 50.12 1.33 1 0.65 46.01 1.99 1
5B 33.37 26.57 40.97 2.21 2 29.97 40.67 2.02 2 0.66 35.47 2.1 2

Chiasm 3B60 33.94 22.24 50.15 6.05 3 20.64 45.54 5 3 0.15 36.41 2.47 3
Dmax(Gy) 4B120 37.59 23.16 51.88 5.89 2 23.69 48.09 4.56 2 0.15 38.41 0.82 2

5B 36.68 22.29 50.36 5.74 1 22.68 46.48 4.45 1 0.14 36.74 0.06 1
Optic nerve left 3B60 31.63 16.55 56.31 6.71 3 17.33 49.23 5.78 3 0.35 31.37 -0.26 1

Dmax(Gy) 4B120 31.84 18.14 53.26 5.48 1 18.64 46.44 4.94 1 0.55 30.94 -0.9 3
5B 31.55 17.66 53.52 5.6 2 18.05 46.05 5.03 2 0.51 30.72 -0.83 2

Optic nerve right 3B60 35.31 20.44 56.31 7.12 3 19.71 53.51 5.93 3 0.38 34.85 -0.46 1
Dmax(Gy) 4B120 31.84 18.14 53.26 5.82 1 18.74 43.84 4.47 1 0.22 28.55 -3.29 3

5B 31.55 17.66 53.52 6 2 18.25 44.05 4.58 2 0.2 28.48 -3.07 2
patient 4

Low-risk CTV 3B60 98.57 96.03 98.25 1.04 1 97.62 98.57 0.33 3 1e-8 97.94 -0.63 2
D95(%) 4B120 98.57 96.35 98.25 1.04 2 97.78 98.57 0.2 1 1e-13 98.25 -0.32 1

5B 98.89 96.03 98.57 1.18 3 98.1 98.89 0.22 2 1e-15 98.25 -0.63 3
High-risk CTV 3B60 97.93 94.08 97.93 0.83 1 96.69 97.93 0.45 2 1e-3 97.38 -0.55 3

D95(%) 4B120 97.93 95.18 97.38 1.1 2 96.83 97.8 0.47 3 1e-9 97.66 -0.28 2
5B 97.93 95.45 97.38 1.14 3 97.11 97.93 0.3 1 1e-13 97.93 0 1

High-risk CTV 3B60 103.44 102.89 103.99 0.13 1 103.31 104.13 0.16 1 1e-3 102.62 -0.83 3
D2(Gy) 4B120 102.89 102.89 103.72 0.37 3 102.75 103.72 0.18 2 0.01 103.17 0.28 2

5B 102.89 102.62 103.72 0.25 2 102.89 103.72 0.26 3 0.85 102.89 0 1
Parotid 3B60 28.1 24.17 38.89 2.82 1 24.49 32.12 1.41 1 1e-3 32.27 4.17 1

Dmean(Gy) 4B120 26.39 23.87 38.06 3.06 3 22.35 30.73 1.57 3 1e-4 31.27 4.88 2
5B 26.27 23.86 37.73 3.01 2 22.38 30.42 1.48 2 1e-4 31.19 4.93 3

Oral 3B60 17.65 14.44 23.25 1.28 1 15.69 21.34 1.01 3 0.17 18.63 0.98 3
Dmean(Gy) 4B120 16.77 13.7 20.58 1.57 3 14.92 20.47 1 2 0.11 17.69 0.93 2

5B 16.67 13.63 20.42 1.51 2 14.78 20.36 0.97 1 0.11 17.56 0.89 1
Larynx 3B60 30.92 26.59 36.07 1.89 1 28.95 34.59 1.04 1 0.9 31.57 0.64 1

Dmean(Gy) 4B120 32.33 24.09 41.39 3.01 3 28.8 39.73 2.1 3 0.12 36.49 4.16 3
5B 28.8 22.69 34.62 2.2 2 26.51 33.41 1.24 2 0.34 31.06 2.27 2

Cochlea 3B60 18.75 15.33 28.42 2.09 1 14.04 25.52 2.33 3 0.66 18.91 0.16 1
Dmean(Gy) 4B120 20.49 17.18 27.62 2.31 3 17.04 26.75 2.11 2 0.98 20.78 0.29 2

5B 21.13 17.98 28.24 2.23 2 17.9 27.23 2.05 1 0.89 21.46 0.33 3
Brainstem 3B60 39.62 36.43 52.81 5.98 3 29.22 46.82 3.55 2 1e-6 38.38 -1.24 1
Dmax(Gy) 4B120 37.12 28.64 53.18 5.13 2 26.82 46.12 3.6 3 0.09 35.04 -2.08 3

5B 37.59 30.04 52.92 4.85 1 27.89 45.09 3.28 1 0.04 35.68 -1.91 2
Spinal 3B60 32.66 18.37 43.91 4.96 1 23.86 42.56 3.44 1 0.22 40.04 7.38 3

Dmax(Gy) 4B120 27.37 18.84 41.85 5.13 2 19.47 37.97 3.54 3 0.1 33.59 6.23 1
5B 28.22 19.74 43.03 5.26 3 20.42 38.82 3.45 2 0.09 35 6.78 2

Chiasm 3B60 37.02 39.55 59.74 16.08 3 24.92 47.62 4.1 3 1e-21 38.31 1.29 1
Dmax(Gy) 4B120 34.27 34.81 56.98 14 2 25.17 44.87 3.98 1 1e-17 37.08 2.81 3

5B 35.45 34.6 56.7 13.66 1 24.85 45.85 4.03 2 1e-16 37.88 2.43 2
Optic nerve left 3B60 38.86 23.5 56.91 6.32 3 26.36 49.76 5.48 2 0.86 38.49 -0.37 1

Dmax(Gy) 4B120 40.87 27.07 54.72 5.54 1 27.67 51.77 5.33 1 0.82 39.42 -1.45 2
5B 39.68 26.87 54.36 5.7 2 25.88 50.98 5.52 3 0.91 38.21 -1.47 3

Optic nerve right 3B60 38.86 23.5 59.41 6.68 3 25.76 51.76 5.04 3 0.34 37.62 -1.25 2
Dmax(Gy) 4B120 40.87 29.48 54.72 5.29 1 27.87 51.47 4.57 1 0.61 38.55 -2.32 3

5B 39.68 27.49 54.36 5.56 2 26.58 50.58 4.72 2 0.63 38.67 -1.01 1
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Anatomical model

C.1 Individual Cases
The WSLD for each model in each test patient and week is listed in table B1. The

bold text marks the closest WSLD number estimated from models to the real WSLD

number from rCT.

C.2 Sensitivity of model
Because the AM is the basic model, the sensitivity measurement was conducted on

the AM using WSLD. To measure the sensitivity of the AM to the training data,

we randomly selected one test patient. Then, we randomly selected 5x15 patients

from the remaining 19 patients as the training set, resulting in 5 groups of sensitivity

training data for the test patient. For each sensitivity training data set, the WSLD

in the test patient was calculated (WSLDsensitivity
AM ). The 95% CI of WSLDsensitivity

AM

is used as a measure for the sensitivity to the training data. The result shows only

small differences between the 5 groups. Because there is a 15/19 chance that the

sensitivity training data include the data used in the original training dataset, this

measure only represents the sensitivity of the model based on this cohort of patients.

Another group of patient data is required to fully measure the sensitivity of the

model to the small set of training data.
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Table B1: WSLD for each model in each test patient and week. The numbers of the models
that are the closest to the corresponding number of rCT (no model) are high-
lighted in bold as the best prediction.

ID rCT(No model)(mm) AM(mm) RIM 2(mm) RIM 3(mm)
id = 1
week1 1.72 0.57 - -
week2 2.52 0.84 - -
week3 3.43 1.18 1.78 -
week4 4.93 1.65 2.11 2.92
week5 5.62 1.70 2.18 2.95
week6 5.23 2.00 2.53 3.25
id = 2
week1 1.96 0.60 - -
week2 2.07 0.80 - -
week3 2.15 1.06 1.77 -
week4 2.78 1.34 2.00 1.91
week5 2.73 1.47 1.98 1.91
week6 3.12 1.71 2.11 2.15
id = 3
week1 2.57 0.66 - -
week2 1.99 0.86 - -
week3 2.59 1.32 1.56 -
week4 2.94 1.91 1.70 2.22
week5 4.02 1.79 1.56 2.17
week6 5.13 2.12 1.75 2.24
id = 4
week1 2.32 0.73 - -
week2 2.30 0.96 - -
week3 2.57 1.23 1.85 -
week4 3.44 1.73 1.90 2.00
week5 2.91 1.87 2.01 2.04
week6 2.62 2.12 2.13 2.22
id = 5
week1 1.89 0.65 - -
week2 2.54 1.00 - -
week3 3.49 1.53 2.12 -
week4 4.69 2.07 2.43 2.89
week5 5.57 2.10 2.49 2.88
week6 6.27 2.38 2.68 3.07
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Figure C.1: The measurement of model sensitivity for AM. The WSLD of AM was calcu-
lated 5 times based on 5 groups of training data, referred to as WSLDsensitivity

AM .
The figure shows the mean value and 95% CI of the WSLDsensitivity

AM .



Appendix D

Model application

D.1 Planning information

IMPT uses a multi-field optimization approach in which the target (both tumour,

nodes and radiation area) is split for each beam field. All beam fields are optimised

simultaneously so that their combined dose distribution covers the target volume

homogeneously. In this study, IMPT treatment plans were generated using a five-

field beam arrangement. The target split is shown in figure D.1. Beam directions

and the corresponding target region are listed in table D1 with the beam database

information.

Table D1: Beam directions and the corresponding target region. The colour is correspond-
ing to the region illustrated in figure D.1. Beam database information is listed in
the note.

Beam angle Target region
60 grey, red

110 grey, red
180 orange, red
250 orange, grey
300 orange, grey

Note: spot spacing size: 5mm; energy range: 70 MeV – 250MeV.
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Figure D.1: Target split illustration.

D.2 Results of the model’s predictive power evalua-

tion on adaptation week.
The real week that requires a replan in the standard replan and the predicted week

of replan using the predicted images of the RIM are listed in table D2.

Table D2: The real week that requires a replan in the standard replan and the predicted
week of replan using the predicted images of the RIM.

ID standard replan week predicted replan week
1 None None
2 3 3
3 4 4
4 3 4
5 3 4
6 3 4
7 4 3
8 5 6
9 3 3
10 3 4
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[29] Lena Nenoff, Cássia O.Ribeiro, Michael Matter Luana Hafner, Mirjana

Josipovic, and Johannes A. Deformable image registration uncertainty for

inter-fractional dose accumulation of lung cancer proton therapy. Radiother-

apy and Oncology, 147, 2020.

[30] Catarina Veiga, Guillaume Janssens, Ching-Ling Teng, Thomas Baudier, Lu-

cian Hotoiu, Jamie R McClelland, Gary Royle, Liyong Lin, Lingshu Yin,

James Metz, Timothy D Solberg, Zelig Tochner, Charles B Simone, James

McDonough, and Boon-Keng Kevin Teo. First clinical investigation of cone

beam computed tomography and deformable registration for adaptive pro-

ton therapy for lung cancer. International Journal of Radiation Oncology

Biology Physics, 95(1), 2016.



Bibliography 160

[31] Hualiang Zhong and Indrin J. Chetty. Caution Must Be Exercised When

Performing Deformable Dose Accumulation for Tumors Undergoing Mass

Changes During Fractionated Radiation Therapy. International Journal of

Radiation Oncology Biology Physics, 97(1):182–183, 2017.

[32] Jihun Kim, Yang Kyun Park, Gregory Sharp, Paul Busse, and Brian Winey.

Water equivalent path length calculations using scatter-corrected head and

neck CBCT images to evaluate patients for adaptive proton therapy. Physics

in Medicine and Biology, 62(1):59–72, 2017.

[33] S M Holloway, M D Holloway, and S J Thomas. A method for acquiring

random range uncertainty probability distributions in proton therapy. Physics

in Medicine & Biology, 63(1), 2017.

[34] Heng Li, Xiaodong Zhang, Peter Park, Wei Liu, Joe Chang, Zhong xing

Liao, Steve Frank, Yupeng Li, Falk Poenisch, Radhe Mohan, Michael Gillin,

and Ronald Zhu. Robust optimization in intensity-modulated proton therapy

to account for anatomy changes in lung cancer patients. Radiotherapy and

Oncology, 114(3), 2015.

[35] Jan Unkelbach, Markus Alber, Mark Bangert, Rasmus Bokrantz, Timo-

thy C.Y. Chan, Joseph O. Deasy, Albin Fredriksson, Bram L. Gorissen,

Marcel Van Herk, Wei Liu, Houra Mahmoudzadeh, Omid Nohadani, Jef-

frey V. Siebers, Marnix Witte, and Huijun Xu. Robust radiotherapy planning.

Physics in Medicine and Biology, 63(22), 2018.

[36] M Van Herk, P Remeijer, C Rasch, and J V Lebesque. The probability of cor-

rect target dosage: Dose-population histograms for deriving treatment mar-

gins in radiotherapy. International Journal of Radiation Oncology Biology

Physics, 2000.

[37] F. Albertini, E. B. Hug, and A. J. Lomax. Is it necessary to plan with safety

margins for actively scanned proton therapy? Physics in Medicine and Biol-

ogy, 2011.



Bibliography 161

[38] M Lowe, A Gosling, O Nicholas, T Underwood, E Miles, Y.-C. Chang, R A

Amos, and N G Bu. Comparing proton to photon radiotherapy plans: UK

consensus guidance for reporting under uncertainty for clinical trials. Clini-

cal Oncology, 32(7), 2020.

[39] J Unkelbach and U Oelfke. Incorporating organ movements in inverse

planning: assessing dose uncertainties by Bayesian inference. Physics in

Medicine and Biology, 50(1), 2005.

[40] B Sobotta, M So¨hn, and M Alber. Robust optimization based upon statisti-

cal theory. Medical physics, 37(8), 2010.

[41] Rom´an Bohoslavsky, Marnix G Witte, Tomas M Janssen, and Marcel van

Herk. Probabilistic objective functions for margin-less IMRT planning.

Physics in medicine and biology, 58(11), 2013.

[42] Albin Fredriksson, Anders Forsgren, and Björn Hårdemark. Minimax opti-
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