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Abstract

This thesis aims to address the issue of anatomical changes during the treatment of
head and neck cancer patients. Intensity-modulated proton therapy (IMPT) shows
advantages in delivering a conformal dose to the target while minimizing the dose
to the adjacent normal tissue. However, in the delivery of IMPT, patients not being
static can lead to dosimetric discrepancies. This thesis explores different techniques
to reduce the influence of uncertainty from anatomical changes (anatomical uncer-

tainty).

In Chapter 3, anatomical variations are incorporated to reveal the robustness of
a plan, thus improving the selection of a robust plan. The benefit is demonstrated in
all beam arrangements used in the study. In Chapter 4, a probability model is devel-
oped to simulate major anatomical deformations at each weekly time point based on
population data. For overall anatomical uncertainty prediction during treatment, the
PM reduces anatomical uncertainty from 3.72+0.46 mm (no model) to 0.814+0.56
mm on average. In Chapter 5, an individual model is developed to refine the system-
atic prediction of population data using individual progressive information. Com-
pared with no model, whose average anatomical uncertainty and gamma index are
4.47£1.23 mm and 93.871+0.83% at week 6, respectively, the refined individual
model reduces anatomical uncertainty to 1.8941.23 mm and improves the gamma
index to 96.16+1.84% at week 6. In Chapter 6, a proposed flexible strategy creates
upfront predicted replans on the predicted individual geometries from the RIM. This
application of the RIM reduces the parotid Dyean by 0.53 Gy on average, achieving
the minimum benefit of non-delay treatment, while the dosimetric of other organs

has no significant difference with the standard replanning technique (p>0.05). This
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prediction-based replanning improves clinical workflow efficiency.
This research integrates computational methods into IMPT treatment for head
and neck patients. New perspectives for mitigating anatomical uncertainty are pro-

vided and discussed in this thesis.
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RPF Reactive predicted plan on flexible week.
RPS Reactive predicted plan on scheduled week.

RSP Relative stopping power.

SLD Spot location deviation.
SNRVs Small non-rigid variations.
SPS Scheduled predicted plan on scheduled week.

SVF Stationary velocity field.

Vo5 The percent volume that received at least 95% of the prescription dose.
Vas—p Vi—sp In the atlas space.

Vp—a The SVF between pCT and the atlas.

vp—: The SVF that registered rCT; to pCT.

v;—p The SVF that registered pCT to rCT;.

WD Wasserstein distance.

WEPL Water equivalent path length.
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WSLD Weighted spot location deviation.

AWSLD/® The difference between the estimated anatomical uncertainty from a

model and actual anatomical uncertainty at treatment week t in WSLD.
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Chapter 1

Introduction

1.1 Head and neck proton therapy

Radiotherapy is often delivered as a definitive or adjuvant treatment for cancer pa-
tients. Over 75% of head and neck (H&N) patients undergo radiotherapy as part of
their treatment [1]. Because cancer cells in the H&N region are often surrounded by
sensitive organs and structures, such as parotid glands, oral cavity, brainstem and
optic chiasm, the radiation damages on these structures are unavoidable, leading
to complications such as dysphagia (swallowing difficulties) and dysgeusia (taste
changes). These complications can degrade patients’ quality of life for a long time.
Intensity-modulated proton therapy (IMPT) as the state-of-art radiotherapy tech-
nique has advantages in delivering a conformal dose to the target while minimizing
the dose to the adjacent normal tissue [2, 3, 4, 5], exploiting the steep falloff of the
Bragg peak. The potential benefits of proton therapy over photon therapy on H&N
cancer treatment have been revealed in the literature [2, 3, 5]. However, this pre-
cise delivery technique has inherent sensitivity to uncertainties, which are especially

common in H&N cancer treatment.

1.2 Uncertainties in proton therapy and evaluation

Uncertainties degrade the quality of treatment. Systematically exploring uncertain-
ties can help design congruous mitigation methods. Several studies have reported
the magnitude of uncertainties in proton therapy. This section summarises their

uncertainty evaluation method and conclusions. Uncertainties are divided into 1)
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uncertainty before planning, 2) uncertainty in planning, 3) uncertainty during treat-

ment and 4) additional uncertainty from using deformable image registration.

1.2.1 Uncertainties before planning

The uncertainty exists in contour delineation. Till today, no image modalities can
accurately pinpoint the tumour cells. Therefore, the contours of the gross tumour
volume (GTV) and the clinic treatment volume (CTV) are only the subjective judg-
ment of oncologists through the visual surrogate of the present tumour. Delineation
uncertainty reported by Rasch et al. (2010) [6] was 3.3 mm for high-risk CTV
and 4.9 mm for low-risk CTV based on co-registered MRI-CT of nasopharyngeal
carcinoma (NPC) patients. Similar 3.2 mm delineation uncertainty for CTVs was
reported by Aznar et al. (2017) using PET/CT of Hodgkin lymphoma [7].

The uncertainty also exists in tumour prescription dose and normal tissue tol-
erance. Theoretically, patient-specific prescriptions should be given based on the
characteristics of tumour cells, for example, the distribution of clonogenic and hy-
poxia tumour cells [8, 9, 10], tumour sensitivity to radiotherapy fraction [11], size
and tumour genotype [12]. However, these microscopic markers have yet to be
widely used in prescription. For organs at risk (OARs) constraints, especially se-
rial organs, the headroom of dose constraints is unknown because no clinical trial
will be allowed to explore the dose limitation with the risk that might be imposed
on patients’ quality of life. In summary, the planned dose objectives come with

uncertainty in the first place.

1.2.2 Uncertainties in planning

The uncertainty originates from the CT-based plan due to the CT imaging tech-
nique. Noise, CT artefacts, beam hardening, and density heterogeneity lead to the
inaccuracy in Hounsfield Units (HU), which will be converted to relative stopping
power (RSP) for dose calculation, specifically referred to as range uncertainty. The
magnitude of range uncertainty depends on dose calculation algorithms. Yang et
al. (2012) [13] reported that range uncertainty can be as high as 5% for lung, 2.4%

for bone and 1.6% for soft tissue in a Monte Carlo simulation (MC) based dose
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calculation algorithm. The typical value of 3.5% is generally used in H&N cancer
treatment. When the analytical dose calculation is used, an additional 2.2% uncer-
tainty will be brought in from physics and CT conversion [14]. Yepes et al. (2018)
[15] reported that an analytical dose calculation can result in a 10% overestimation
of the target dose and up to a 10 Gy underestimation of the dose to some OARs.
Even though a MC-based dose calculation is more accurate than an analytical dose
calculation, it still has uncertainty in modelling the degradation of the Bragg peak

in heterogeneous media.

1.2.3 Uncertainties during treatment

The irradiation is delivered in fractions during radiotherapy to maximise the de-
struction of tumour cells while minimising damage to healthy tissue. However,
while patients are assumed to be static at the planning stage, this fractionation in-
troduces the following uncertainties:

Firstly, the uncertainty comes from beam reproducibility and patient setup.
The magnitude adopted is centre-specific. For example, the MD Anderson Proton
Therapy Center in Houston, the Loma Linda University Medical Center and the
Roberts Proton Therapy Center at the University of Pennsylvania use 3 mm, while
the University of Florida Proton Therapy Institute uses 1.5 mm. Please note that
these margins are not fully generic and can be adjusted based on the treatment site
and location of critical structures.

Secondly, the uncertainty comes from anatomical variations (anatomical un-
certainty), including small non-rigid variations (sSNRVs) and progressive changes.
As H&N cancer is the focus of this thesis, the anatomical changes in this specific
site are exclusively reviewed. For sSNRVs, nasal filling, jaw movement, neck folds,
spine flexion and shoulder position changes are common during treatment [16, 17].
However, its dosimetric impacts on proton therapy plans have yet to be revealed.
For progressive changes, Wenyong et al. (2013) [18] reported that the tumour vol-
ume shrinkage of 20 nasopharynx cancer patients ranged from 20% to 60% during
the treatment. The average reduction was 36.5%. OARs also lose cells under ir-

radiation leading to complications such as dysphagia (swallowing difficulty) and
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dysgeusia (taste changes), often accompanied by weight loss and the shrinkage of
patient’s outline [19]. Bhide et al. (2010) [20] showed that the parotid volume of
20 H&N patients decreased with a reduction rate between 21.3% and 42%, and an
average of 2.3 mm medial shift occurred by the fourth week of treatment. With
these anatomical changes during the course of radiotherapy, dose degradation is
unavoidable. Kraan ef al. (2013) [21] evaluated 10 oropharyngeal cancer patients
and showed that anatomical changes led to an average 2% and 2.2% reduction in
the D98% of high-risk CTV and low-risk CTV, respectively, and the maximum in-
crease in brainstem dose can reach 9.2 Gy. Wu et al. (2017) [22] showed that, in
10 oropharyngeal patients, CTV mean doses were reduced by up to 7%, while an
increase was shown in the right parotid with a range from 5% to 8%. Heukelom
et al. (2019) [23] measured the influence of dose discrepancy in terms of normal
tissue complication probability (NTCP) and concluded that anatomical changes can

lead to >5% increase in NTCP for dysphagia and other toxicities.

1.2.4 Uncertainty in deformable image registration

Image-guided radiotherapy (IGRT), which incorporates imaging techniques during
each treatment session, is often used in H&N cancer radiotherapy to identify the
target position and track anatomical changes. The generated images can be used
to analyse the target volume changes and the delivered dose. However, the images
during the treatment are acquired at different timeframes, on different machines,
and even in different modalities. Although they are aligned on a reference coordi-
nate, the pixel or voxel on the same coordinate may not necessarily represent the
same anatomical structure. Deformable image registration (DIR) is used to find
the spatial correspondence between two images. During registration, the algorithm
aims to find an optimal transformation to maximise the similarity between the two
images. DIR has been widely explored for clinical applications. Veiga et al. (2015)
[24] demonstrated the feasibility of using Niftyreg [25] as the DIR tool to calculate
the dose distribution on cone-beam CTs (CBCT) for H&N patients. In their study,
the planning CT was deformed to cone-beam CTs (reference image) to correct the

HU for dose calculation. The transformation of DIR can also be used to warp the
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dose distribution of a weekly CT to the planning CT. In an ideal DIR, the dose
distribution on a weekly CT and the warped dose distribution on the planning CT
should be the same. Heukelom ef al. (2019) [23] and McCulloch et al. (2018)
[26] used the transformations between weekly CTs and the planning CT (reference
image) to warp the weekly doses in the reference frame of the planning CT and ac-
cumulate the dose. The differences between the planned and the accumulated doses
were used to explore the impact of uncertainties during the treatment, measured by
NTCP. Also, Tsiamas et al. (2018) [27] and Kranen et al. (2013) [28] exploited the
transformation of DIR to model geometric changes mathematically.

Despite its great use in the clinic, deformable image registration (DIR) also
introduces uncertainty. Nenoff et al. (2020) [29] reported that the average DIR
uncertainty, evaluated using six different DIR algorithms, was 7.9% in PTV Vs
(The per cent volume that received at least 95% of the prescription dose), and the
variation between DIR methods on the accumulated dose on PTV V95 was 8.7%.
Therefore, a DIR algorithm needs to be carefully assessed before use, especially

where massive changes happen [30, 31].

1.2.5 Uncertainty evaluation methods

In the aforementioned studies, anatomical changes (changes in tumour and/or nor-
mal organ structures) and dose discrepancies were used in the uncertainty eval-
uation. Water equivalent path length (WEPL) can also evaluate uncertainty. It
has been proposed as a surrogate of dose distribution in the literature [32, 33] to
avoid the time-consuming and computational-expensive dose calculation. Kim et al.
(2017) [32] quantified the anatomical uncertainty by measuring the WEPL changes
on the distal edge of tumour volume using only one beam direction. Holloway et
al. (2017) [33] evaluated the uncertainty by measuring the WEPL changes in the
CTV with different beam angles for robust optimisation. Figure 1.1 simulates the
limitations of these methods. Figure 1.1 a) shows a beam path in which the HU
changes but retains the same WEPL on the proximal and the distal edge of the CTV.
However, the accumulated dose on the proton path is different, as shown in figure

1.1 b). Scenarios like this might happen in the nodal area, where the HUs are het-
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erogeneous. When the neck is tilted or rotated, the HUs within the target area may
exchange their position. Figure 1.1 ¢) shows another scenario with increased HU
values beyond the CTV distal edge, resulting in the same WEPL in the CTV but a
different accumulated dose. This potentially leads to an overdose in normal tissue,
as shown in figure 1.1 d). If only the WEPLs in the CTV were used to evaluate the
uncertainty, errors like the one described here would not be noticed. Additionally,
they did not factor in that spot weights can also affect uncertainty evaluation [34].
In Chapter 2, these problems were addressed by using the spot location from the

proton plan and adding the spot weights in uncertainty evaluation.
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Figure 1.1: The limitations of using the WEPL of specific points or areas to evaluate the
consequences of anatomical deformations. The images shown are slices from
the planning CT, and the little spots are the proton spots delivered by the treat-
ment system, with weights indicated by the colour code. The dose is calculated
only considering the indicated red line of the spots. (a) and (b): The HU along
the beam path first increased, then decreased, resulting in the same WEPL but
different dose distributions. (c) and (d): The HU beyond the distal edges of
nodal CTV are increased by 3.5%, consequently changing the dose distribution
in the fall-off region of the distal dose.
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1.3 Uncertainty mitigation methods

Referring to the aforementioned uncertainty sources, this section focuses on uncer-
tainty mitigation methods. Before treatment, physicists make a mask using a plastic
material that becomes soft and pliable when heated in warm water to help H&N
patients reduce the movement above the shoulder during treatment. Markers are
attached to the mask to help identify the treatment isocenter. For the residual un-
certainties, the term “robustness” is used to measure the insensitivity of a plan to
the defined uncertainty. The robustness of a treatment plan refers to two properties:
first, the CTV should receive the prescribed dose despite the errors that may occur;
and second, normal tissue constraints should be satisfied despite the potential errors

in treatment planning or delivery [35].

1.3.1 Margin expansion

The conventional way to improve the robustness of a radiotherapy plan is to use a
safety margin that expands the CTV to form the planning target volume (PTV). A
popular margin recipe used in photon therapy was introduced by van Herk et al.

(2000) [36]:

Margin =2.5) +1.64(c — 0)). (1.1)

Where Y is the standard deviation of the systematic uncertainty, o is the total
standard deviation of the random errors combined with the beam penumbra width,
and o), is the standard deviation describing the penumbra. This recipe allows a
minimum of 95% of the prescription dose to be delivered to the CTV for 90% of
patients. However, this solution is sub-optimal for proton therapy: 1) The con-
formal expansion leads to a sub-optimal trade-off between the target coverage and
the OARs sparing. The margin is either too large, which gives extra burdens to
OARs, or not sufficient to cover the tumour. 2) Uniform dose distribution in PTV
is not achievable in reality. 3) The PTV is based on the so-called static dose cloud
approximation, which assumes that the dose distribution would not be affected by

geometric changes in patients as long as the CTV is within the PTV. However, this
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assumption is violated in IMPT [35, 37]. Lowe et al. (2020) [38] illustrated that
the PTV cannot cover the dose distortion, and as much as 8.4% dose degradation
was found in the CTV of H&N patients. 4) In 3D IMPT, the spots are required to
cover the target and weights are adjusted to get the optimal distribution. Different
spot weights can lead to the same distribution, but different robustness [34]. The
PTV concept did not exploit the advantage of this technique, and an unnecessary

compromise was made by using the PTV [35].

1.3.2 Robust optimisation

Instead of taking uncertainties into account to create a safety margin, new ap-
proaches have been suggested to explicitly include the effect of geometrical un-
certainties directly in the treatment plan optimisation [39, 40, 41] by modifying the
cost functions. Known as probabilistic treatment planning or robust optimisation,
these strategies are based on a stochastic approach that uses probability density
functions, generally normal distribution [41] or uniform distribution [42], to de-
scribe the uncertainties. The optimisation that includes setup and range uncertainty
[38] is referred to as conventional robust optimisation, in which setup uncertainty
is generally modelled by a few millimetres of rigid shift, and the range uncertainty
from HU is modelled by uniformly changing HU value, typically of the order of
a few percentages. However, except for the setup and range uncertainty, patients
also experience anatomical changes during treatment. These anatomical changes
cannot be simplified as rigid translations, and thus the conventional robust optimi-
sation cannot cover the dose degradation from anatomical changes. In very recent
studies, multiple CT images were involved in the optimiser to account for anatomi-
cal uncertainty, referred to as anatomical robust optimisation. Mesias et al. (2019)
[43] used the CT images of the first two weeks to account for anatomical random
changes, e.g. shoulder movement or neck tilt. Yang e al. (2020) [44] used the
image from the first adaptation to include progressive anatomical changes. They
both concluded that anatomical robust optimisation improved plan robustness to-
ward anatomical changes and reduced the number of plan adaptations for H&N pa-

tients. However, the required multiple scanning will give patients an extra dose and
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increase the workload for clinicians. Using acquired CT images during treatment
will also limit the creation of robust plans at the early planning stage. Aiming to ad-
dress these limitations, an anatomical model was built in Chapter 4 to produce the
potential deformations with corresponding probability before the treatment. This

model provided a potential solution for anatomical robust optimisation.

1.3.3 Robust evaluation

After robust optimisation, robust evaluation is still needed. Set up and range un-
certainty are included in the conventional robust evaluation, while the robust eval-
uation, including inter-fractional anatomical variations, often uses images acquired
during the course of treatment [33, 45, 46], and as such, it can only inform the plan-
ning process for a portion of the treatment delivery. Holloway et al. (2020) [33]
added the anatomical variations into robust evaluation based on CBCTs at each
fraction. The impact of different beam angles on the robustness of a plan was pre-
sented in this paper. Based on the plan evaluation, McGowan et al. (2015) [47]
proposed to create a robustness plan database to assist in finding a more robust
planning approach. However, patients have their own unique geometries, on which
the impact of uncertainty can vary. A pre-treatment robust evaluation, including
setup uncertainty, range uncertainty and anatomical uncertainty based on individual
geometry, would be more helpful in informing clinical decisions. In this thesis, the
small non-rigid variations, which are unavoidable during treatment, are included in

the patient-specific robust evaluation in Chapter 3.

1.3.4 Adaptive radiotherapy

Compared with setup and range uncertainty, anatomical uncertainty is more com-
plex and can lead to more severe dose discrepancies. Thus, current research focuses
on strategies to mitigate the influence of anatomical changes [43, 48, 49, 50, 51].
Adaptive radiotherapy is proposed to this end. Two strategies for delivering adap-
tive proton therapy are available: offline and online adaptation. Online adaptation is
a state-of-art technique intended for same-day application. However, limited by the

current computational speed, online adaptation either compromises the accuracy or
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constrains the optimiser. As a result, the online adapted plan is always inferior to
a new treatment plan. Matter ef al. (2019) [49] used the analytical pencil beam
scanning algorithm to generate a plan in ten seconds. However, the analytical cal-
culation is less accurate than a MC-based algorithm. Studies using constrained MC
[50, 51] reported that the calculation time of an adapted plan online ranged from 3 to
22 minutes [50, 51, 48]. Bobic et al. (2021) [51] constrained the optimizer by only
adjusting the beamlet positions, energies and beamlet weights to produce adapted
plans. They reported a median adjustment time of 12 minutes, excluding the time
for DIR. Lalonde et al. (2021) [48] only adjusted the weight of the beamlets to pro-
duce adapted plans. Their median adjust time was also 12 minutes but included the
time for DIR. While online adaptation is considered superior to offline adaptation
because of no treatment delay, no clinical solution exists for pre-delivery quality
assurance (QA), and the reported time required to calculate the online adapted plan

is currently limiting its application in terms of total treatment time per patient [52].

Offline adaptation is often triggered by clinically meaningful criteria based on
centre-specific protocols. Tumour coverage is generally one of the criteria. Mesias
et al. (2019) [43] triggered a plan adaptation if 98% volume of CTV cannot be
covered by 95% of the prescription dose. In the TORPEdO trial (A phase III trial of
proton therapy versus intensity-modulated radiotherapy for multi-toxicity reduction
in oropharyngeal cancer; CRUK/18/010) conducted in the UK, they will replan
if 99% volume of CTV cannot be covered by 90% of the prescription dose and
95% of the CTV volume cannot be covered by 95% of the prescription dose [53].
Besides tumour control, radiation-induced toxicities are also a great concern in the
clinic. Brouwer et al. (2016) [54] suggested that an extra 3 Gy mean dose on the
parotids can be of clinical relevance to severe toxicity, such as xerostomia, which
can have a long-term impact on patients’ quality of life after treatment [55]. These
dose-relevant criteria require routine dose verification based on the daily or weekly
images, which is time-consuming in a busy clinical workflow. In literature, different
replan surrogates also exist, including weight loss [56], body contour changes [57],

and HU changes in parotid glands [58]. However, replanning based on dosimetric
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changes is still the gold standard in the clinic.

Even though offline adaptation is generally used in proton therapy facilities, the
process challenges clinical workflow efficiency. Whilst plans are adapted, patients
must either continue treatment with an existing sub-optimal plan or face interrup-
tions to treatment. The latter may be particularly undesirable for rapidly growing
tumours such as squamous carcinomas of the H&N [59]. Furthermore, this reac-
tive approach to plan adaptation can create an unpredictable workload for treatment
planning staff, the medical physics team who perform patient-specific plan QA, and
radiation oncologists who review and approve the plans.

Adaptive plans that can be prepared in advance would be beneficial to the clin-
ical workflow: 1) A replan can be delivered as soon as needed due to the ability
to perform patient-specific QA/verification before adaptation is required, for exam-
ple, on a predicted CT, which triggered a replan. 2) For patients, there is no gap in
treatment or delivery of a few sub-optimal fractions while a replan is calculated, ap-
proved, and verified through QA. 3) For workflow, it allows for ease of scheduling
patient-specific QA along with machine QA. To this end, we need the facilitation
of predictive anatomical models, e.g. using the predicted images of an anatomical

model to create an adaptive plan in advance, as presented in Chapter 6.

1.4 Anatomical models and their application in pro-

ton therapy

Anatomical models have been proposed in the literature as potential solutions to
uncertainty mitigation. Generally, there are two types of anatomical models: popu-

lation model and individual model.

1.4.1 Population model

A population model can explore the pattern of anatomical changes based on popula-
tion data. Panagiotis et al. (2018) [27] fed all the data acquired during the treatment
into the principal component analysis (PCA) to model the anatomical changes of

H&N patients. However, they ignored that anatomy can change progressively over
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time, and no predictive ability was shown in this model. Yu et al. (2016) [60]
used an intra-patient model to generate artificial deformations for DIR evaluation.
They applied PCA on the deformation vector fields (DVF) of each daily time point
to capture the dominant modes of deformation, called principal components (PC).
Each generated DVF can be represented by a linear combination of PCs. They as-
sumed that the probability density function (PDF) of the coefficients o of each PC
follows a standard normal distribution. However, they did not validate if the PDF
of o from their dataset was consistent with this assumption, and the probability of
each predicted DVF was not revealed. To date, it is still challenging to quantify the
probability of a certain type of anatomical deformation to arise during the treatment

course.

1.4.2 Individual model

An individual model is built based on individual patient data. One particular ap-
plication of the individual model is to create a patient-specific PTV. Thornqvist
et al. (2013) [61] applied PCA to the motion of prostate CTVs for each patient.
13 patients, each with 9—10 CTs, were included in this study. The created union
of simulated shapes covered 95% of CTV changes when 4 PCs were used in this
patient-specific model. Xu et al. (2014) [62] also proposed two margins for prostate
cancer treatment based on a PCA model. One was the optimized PTV margin that
was iterative updated until the predefined coverage criteria were satisfied, while
the other was a dosimetric margin between the CTV and the treated volume. Both
methods showed an advantage in target coverage compared to conformal margin
expansion. However, their expanded margin cannot be obtained before treatment
because patient-specific images acquired during treatment were all included in their
model.

Another application is to use images acquired during the first F fractions and
predict the anatomical changes of the following fractions [28, 63]. Kranen et al.
(2013) [28] explored using the systematic deformation of the first F fractions for
adaptive intervention. They deformed the planning CT using: 1) the average defor-

mation from the previous 10 fractions as the single intervention strategy; and 2) the
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average deformation from the previous week as the weekly intervention strategy.
However, the progressive changes between fractions were not considered in their
study. Chetvertkov et al. (2016) [54] modelled the patient-specific anatomical vari-
ations using regularized PCA. They assumed a positive linear correlation between
the coefficients of PC and fractions due to the fact that anatomical changes are pro-
gressive. However, they required at least half of the total fraction for a reasonable
estimation. That is the main disadvantage of this individual model, as patients must
have already begun to deform through treatment for the model to develop. Ideally,
an anatomy predictive model that can provide accurate predictions before treatment
would benefit clinical practice the most. However, images acquired during treat-
ment are only a snapshot of the anatomy. Interfraction variations and the influence
of acute toxicities on patient eating during treatment also determine the weekly
anatomical changes. An alternative is to develop a model that captures the system-
atic anatomical changes based on population data. Each patient’s model could then
be refined as patient-specific data is acquired over the course of treatment. The
above two models were only assessed based on the misalignment of anatomical
landmarks, and no adaptive plan was created on the predicted anatomy for further
evaluation. Therefore, the application of anatomical models for adaptive radiother-

apy still needs to be explored.

1.5 Research aims and objectives

Although setup uncertainty and range uncertainty have been considered in robust
evaluation and optimisation, anatomical changes in proton therapy can still lead
to severe dosimetric discrepancies. To fully assess the anatomical uncertainty for
H&N cancer, DIR is required. Because different DIR algorithms come with dif-
ferent magnitudes of uncertainty, to which proton therapy is inherently sensitive, a
DIR needs to be carefully evaluated for a specific application. This thesis starts with

the DIR evaluation.

1. Evaluate the selected DIR algorithm for mathematical modelling. The objec-

tives of this project are:
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* Assess the DIR uncertainty using contours-related metrics.

* Develop a new uncertainty evaluation method based on weighted spot

location deviation(WSLD) and apply it for DIR uncertainty evaluation.

* Develop a workflow to assess the accumulated DIR uncertainty based
on dose distribution. Justify the use of the DIR algorithm by compar-
ing the accumulated DIR uncertainty with the accumulated anatomical

uncertainty.

The DIR evaluation validates the feasibility of using the selected algorithm to
capture anatomical deformations. In this thesis, the anatomical changes are divided
into 1) SNRVs (such as neck tilt and spine flexion) that are random and not patient-
specific and 2) progressive changes that are dependent on individual features. The
DIR is first used to capture possible SNRVs because the dosimetric impact of SNRV's
has yet to be explored. sSNRVs are included in the robust evaluation to guide beam

selection based on individual geometry.

2. To explore the role of sSNRVs in robust evaluation. The objectives of this

project are:

* Build a distribution of possible SNRVs based on population data.
* Assess the dosimetric discrepancies caused by sSNRVs.

* Incorporate sSNRVs in the robust evaluation to guide the beam arrange-

ment selection.

» Validate quantitatively that the sSNRVs-based evaluation is better than

the conventional evaluation method.

When a large patient dataset is available, limiting the number of included
sNRVs to the most common ones helps to improve computational efficiency. For
that purpose, the DIR is used to build an anatomical model based on population
data. The model produces potential anatomical deformations considering the time
dependence of the progressive changes during treatment and estimates the proba-

bility of each type of deformation, referred to as the probability model (PM). The
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dosimetric influences of sSNRVs from the real deformations are used as the bench-

mark to validate the PM. The PM can be used for anatomical robust optimisation.
3. To assist anatomical robust optimisation, the objectives of this project are:

* Develop a probability model (PM) based on PCA to model major defor-

mations at each weekly time point in patients.

* Quantify the probability of each type of anatomical deformation based

on population data.

 Validate the feasibility of using the PM to measure anatomical uncer-

tainty.

Anatomical robust optimisation can reduce the need for adaptive planning dur-
ing treatment. However, the robust optimisation alone may not be adequate to
account for anatomical changes during treatment [34]. An individual model was

developed for prospective offline replanning.

4. To predict the anatomical changes during the treatment for an individual, the

objectives of this project are:

* Develop an average model (AM) based on population data to predict the

systematic progressive changes of each week before treatment.

* Refine the prediction by adding patient-specific progressive information
from the data acquired during the course of treatment as the refined in-

dividual model (RIM).

* Evaluate the models using the average absolute HU differences(AAHUD),
contours, WSLD and IMPT dose distributions.

The evaluation of the RIM model demonstrated its ability to predict individual
anatomical changes. Thus, it was investigated for clinical use. The RIM model was

explored to assist with replanning in advance.

5. To maximise the use of the individual model for offline replanning. The ob-

jectives of this project are:
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* Find the best strategy to use the RIM for offline replanning; three differ-
ent strategies are compared as follows:
1) Scheduled predicted plan on the scheduled week: replans are opti-
mised on predicted images of weeks 3 and 5 and applied to weeks 3/4
and 5/6, respectively.
2) Reactive predicted plan on the flexible week: a plan is optimised on
a predicted CT, which triggers a replan, and applied flexibly as soon as
the verification CT indicates that a plan adaptation is necessary.
3) Reactive predicted plan on the scheduled week: a plan is optimised
on a predicted CT, which triggers a replan, and applied from scheduled

week 3.

* Compare the reactive predicted replan with the standard replan based on

the accumulated dose distribution.

1.6 Impact and novelty of the work

The research presented in this thesis focuses on mitigating anatomical uncertainty.

The following aspects are novel:

* Use WSLD to evaluate uncertainty: Firstly, compared to the previously pub-
lished WEPL-based uncertainty evaluation methods, the influence of spot
weight on the robustness of a plan was considered. Additionally, the radi-
ation target is generally divided into sub-targets in proton planning to exploit
multi-field optimisation. This can be reflected in the spot location of each

beam field. Using WSLD improves evaluation accuracy.

* Evaluate the dosimetric impact of SNRV's and validate the necessity of includ-
ing sNRVs in robust optimisation/evaluation. In recent literature, the dosi-
metric impact of anatomical changes was reported. However, they did not
separately report the dosimetric impact of sSNRVs and progressive changes.
The underlying causes of these two types of change are different. Hence their

corresponding mitigating strategies should be different. Progressive changes
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have trends to follow. Thus, using adaptive radiotherapy can potentially bring
more benefits to patients. Whereas sNRVs are unpredictable and not patient-
specific but can lead to unacceptable discrepancies. SNRVs are more suitable
to be accounted into robust optimisation as setup uncertainty and range uncer-
tainty. The method of including sSNRVs in the robust evaluation was proposed
to help select the best beam arrangement. This application can potentially

spare OARs and reduce the replanning rate.

* Build two anatomical models, the PM and the RIM, considering the time
dependence of the progressive changes in H&N patients. The PM and the
RIM aim to assist anatomical robust optimisation and predictive replanning,

respectively.

— The population-based probability model for H&N patients is proposed
for anatomical robust optimisation. The PM generates major deforma-
tions at each weekly time point during treatment. Each potential defor-
mation can be quantified by probability. The PM has the best perfor-

mance in terms of estimating anatomical uncertainty.

— Aiming at the limitations of the previous individual models, which ei-
ther required at least half fractions to provide a reasonable estimation or
ignored the progressive changes between fractions, the RIM considering
the time dependence of anatomical changes is proposed. In this model,
the systematic progressive changes of each week are applied to a new
patient before treatment, and the prediction is refined as treatment goes.
This model greatly reduces the requirement of imaging frequency and

can capture progressive changes in time.

* Develop the first application of the RIM to create replan in advance. In the
literature, the proposed models were only assessed based on the misalign-
ment of anatomical landmarks, and no potential application was evaluated
based on dose distribution. This thesis provides potential predictive replan-

ning strategies based on the refined individual model. The results show that
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the predicted plan adaptation technique achieves similar coverage of CTVs
and reduces the parotid dose compared to the standard replanning strategy.
Prediction-based replanning enables adaptive therapy to be delivered without
treatment gaps or sub-optimal fractions, as can occur during a standard re-
planning strategy. The operational logistics of a busy clinical practice may

also benefit from this improved workflow efficiency.



Chapter 2

Evaluation of Deformable Image

Registration

In this chapter, diffeomorphic deformable image registration implemented in the
NifTK was evaluated for building anatomical models.

The work in this chapter was incorporated in the following outputs:

Ying Zhang, Megan Z.Wilson,Jeffrey Liu, Jailan Alshaikhi, Gary Royle,
Stacey M.Holloway. “Can Proton Water Equivalent Path Length calculations be
used instead of full dose recalculation for determining when to adapt a plan?”
PPRIG Proton Physics Workshop 5, National Physical Laboratory(NPL),UK. Feb
2019.

Ying Zhang, Stacey McGowan Holloway, Megan Zo& Wilson, Jailan Al-
shaikhi, Wenyong Tan, Gary Royle and Esther Bér. "DIR-based models to predict
weekly anatomical changes in head and neck cancer proton therapy”. Physics in
Medicine & Biology 67, no. 9 (2022): 095001.

Ying Zhang, Jailan Alshaikhi, Wenyong Tan, Gary Royle and Esther Bir. ”A
probability model for anatomical robust optimisation in head and neck cancer pro-
ton therapy.” Physics in Medicine & Biology (2022).

Esther Bir, Charles-Antoine Collins-Fekete, Vasilis Rompokos, Ying Zhang,
Mark N. Gaze, Alison Warry, Andrew Poynter, Gary Royle. CT calibration for
precise proton therapy planning in children. European Society for Radiotherapy

and Oncology 2021.
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Esther Bir, Charles-Antoine Collins-Fekete, Vasilis Rompokos, Ying Zhang,
Mark N. Gaze, Alison Warry, Andrew Poynter, and Gary Royle. ”Assessment of
the impact of CT calibration procedures for proton therapy planning on paediatric

treatments.” Medical physics (2021).

Contribution of Authors: Jailan Alshikhi created the proton plans. Wenyong
Tan provided the clinical data and valuable input. Gary Royle provided valuable
input concerning the clinical importance and impact of this work. Esther Bér and
Stacey McGowan Holloway supervised the project and guided the development of
ideas, methods, results, and conclusions of this work. All other work presented
in this chapter was done by myself. Esther Bir used the methods proposed in the

chapter to evaluate the range uncertainty in CT calibration.

2.1 Introduction

In image-guided radiotherapy (IGRT), although images acquired during treatment
are aligned on a reference coordinate, the pixel or voxel on the same coordinate may
not necessarily represent the same anatomical structure. Image registration is the
process of aligning different images into the same coordinate system with matched
imaging contents. It is composed of three main components: 1) a transformation
metric, 2) a similarity metric (cost function) 3) optimiser. The optimiser drives the
algorithm to find the best result of a similarity metric, such as the maximisation of
mutual information between images, through an iterative procedure to obtain the
optimal transformation. In deformable image registration (DIR), the transforma-
tion is a spatially variant vector field. Therefore, it allows a non-uniform mapping
between images. DIR has been proposed to correct HU for CBCT, warp and ac-
cumulate dose to the reference planning CT, and model geometric changes during
treatment. However, no transformation can achieve a 100% match. DIR uncertainty
exists. Nenoff ef al. (2019) [29] compared six different DIR algorithms and showed
that the variation of DIR uncertainty on the accumulated dose of PTV V95 between
the different algorithms was high (8.7%). The additional uncertainty caused by a
DIR algorithm can be up to 26.3% in PTV V5. Therefore, a DIR method needs
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to be carefully evaluated before applying it to a specific application, especially a
proton application, as the inherent physical characteristics of protons make the dose
distribution of a proton plan more sensitive to DIR uncertainty than that of a photon

plan.

Generally, DIR uncertainty was evaluated based on contour and dose distribu-
tion. For DIR evaluation based on contour, the contours of the floating image are
propagated to the reference frame using the transformation between two images.
The differences between the propagated and the reference contours measure DIR
uncertainty [64]. For DIR evaluation based on dose distribution, the dose calcu-
lated on a weekly CT is deformed to the planning CT using the transformation [29].
The dose-volume histogram (DVH) differences between the dose distribution on
the weekly CT and the warped dose distribution on the planning CT represent DIR
uncertainty. However, the above two methods are based on the assumption that the
contours on weekly CT are absolutely consistent with the contours on the planning

CT, which is not true in reality, as mentioned in Chapter 1.

The DIR uncertainty has yet to be thoroughly evaluated for building anatomical
models for H&N proton therapy. Aiming at this limitation, this chapter evaluates
the uncertainty of the DIR algorithm provided by Niftyreg . The evaluation is
conducted based on: 1) contours; 2) proton spot location. To improve the accu-
racy of uncertainty evaluation based on proton range, a new uncertainty evaluation
method based on the spot range and spot weight is developed and applied to DIR
uncertainty evaluation; 3) dose distribution. A workflow to assess the accumulated
DIR uncertainty based on the dose distribution is proposed and compared with the
accumulated anatomical uncertainty to justify the use of this DIR algorithm. This

workflow eliminates the delineation error.

Thttps://cmiclab.cs.ucl.ac.uk/mmodat/niftyreg
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2.2 Methods and materials

2.2.1 Deformable image registration tool

NiftyReg, which is an open-source DIR tool developed by CMIC at UCL (
http://cmic.cs.ucl.ac.uk/home/software), has been used in the CT-CBCT registra-
tion for proton therapy [24, 30]. The diffeomorphic image registration of NiftyReg
[65] was selected for this study because its deformation field is invertible, differ-
entiable, and the inverse is also differentiable. As a result, its transformation leads
to one-to-one voxel mappings, which inherently preserve the underlying topology.
Besides, the diffeomorphic setting enforces consistency under compositions of the
deformations. If the deformations are diffeomorphic, then the result of the compo-
sition will also be diffeomorphic.

The diffeomorphic image registration is a B-spline-based method implemented
in NiftyReg. Spline-based transformations assume that a set of corresponding con-
trol points can be identified in the source and target images. The control points are
adjusted until the alignment between the warped image and the reference image is
maximised. The transformation is computed through a cubic B-spline interpolation
from the lattice of control points overlaid on the reference image. The diffeomor-
phism is parameterized by a stationary velocity field (SVF) using the exponential

map [66]. DVF ¢ can be expressed as equation 2.1

¢ =exp(v). (2.1)

v represents the SVF in the diffeomorphic image registration [65].

While in many registration approaches, the calculation of the inverse trans-
formation is computationally expensive, and invertibility cannot be guaranteed, the
inverse transformation ¢ ~! can be easily calculated in diffeomorphic image regis-

tration using equation 2.2
¢ =cxp(v) = ¢ '(x)=exp(—v). (2.2)

It should be noted that the rigid registration was performed based on a bony
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match before the DIR. The rigid registration area was masked by the body contour

that was large enough to cover the whole PTV.

2.2.2 Data
Five H&N patients with a planning CT (pCT) and a weekly repeat CT (rCT;), where

t (t=0,1,2,3,...) represents the week of CT scanning, were recruited. They experi-
enced weight loss of 17.21%, 4.84%, 6.98%, 4.17% and 17.8% during the treat-
ment, respectively. Contours in the pCT and rCT; were manually delineated by an
oncologist. For each patient, rtCT, was deformed to pCT to produce v,_.;, where
p stands for pCT and t stands for the week when the rCT was acquired (rCT was
rigidly registered to the pCT before the DIR). dCT is the deformed rCT using v, ;.
rCT, dCT and pCT share the same isocenter.

Proton plans were created for the five patients using three beam angles (60°,
300°, 180°) in Eclipse version 16.1.0 (Varian Medical Systems, Palo Alto, CA),
complying with the original radiotherapy protocol. The dosimetric goals for all

plans in this study are summarised in table 2.1.

Table 2.1: Dosimetric goals of the treatment plans created in this study.

Structure Metric Dosimetric Goals

High-risk CTV  Dgs (The minimum dose to 95% of target volume) > 95% of prescription dose(72.6 Gy)
Low-risk CTV ~ Dgs > 95% of prescription dose(63 Gy)
High-risk CTV D, (The minimum dose to the hottest 2% volume ) < 107% of prescription dose
Spinal cord Dmax (The max dose in the volume) <45 Gy

Brainstem Diax <55 Gy

Chiasm Dmax <55 Gy

Optical Nerve ~ Dpax <55 Gy

Parotid glands  Dpean (The mean dose in the volume) <26 Gy

Oral cavity Dmean <40 Gy

Larynx Dmean <40 Gy

Cochlear Dmean <45 Gy

2.2.3 Deformable image registration evaluation methods

The influence of DIR uncertainty was investigated from 1) the weekly changing
trend and 2) the accumulated influence during the treatment.

As the magnitude of progressive changes in H&N patients increases during
treatment, leading to difficulty in finding the correspondence between two images,

the hypothesis is that the overall DIR uncertainty will increase along with treatment.
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The weekly changing trend of DIR uncertainty was investigated based on contour

and proton spot range.

2.2.3.1 Deformable image registration evaluation based on contour

The evaluation based on contour was used to observe the weekly changing trends.
The selected contours on rCT; were propagated using the deformation vector field
V. The propagated contours were compared with the corresponding contours on
the pCT (gold standard) to evaluate the DIR uncertainty at each weekly time-point,
referred to as C-DIR evaluation. In the C-DIR evaluation, the mean surface distance
(MSD) was chosen to quantify the contour differences because it is a metric gener-
ally used in the DIR evaluation, and the quantification is given in millimetres, which
can be compared with voxel size to justify the acceptance of DIR error. MSD indi-
cates the average difference between the gold standard surface S and the propagated

surface S’.

!
ns g

1
MSD = DT (a,S')+ Y DT(b,S)), (2.3)
v, (L PT(@S)+ Y. DT(b.5))

where distance transformation (DT) calculates the minimum distance between a

point on surface S and surface S’ using

DT (a,S") =min(||la—b||) ac S, bvS. (2.4)

The contours included in the C-DIR evaluation were low-risk CTV, high-risk
CTYV and parotid glands. These structures commonly change their shape and vol-

ume during treatment.

2.2.3.2 Deformable image registration evaluation based on proton
spot range

In this section, an estimation of the spot location within a patient, derived from the
treatment plan file and CT image information, was developed to evaluate uncer-
tainty. DIR uncertainty evaluation is one of the applications, referred to as R-DIR

evaluation.



2.2. Methods and materials 53

CT Calil ion Curve: Stopping Power Proton
T T T T T

Stopping Power

o I I I I I 1 I I I
41000 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500
HU Value(HU)

Figure 2.1: The calibration curve between HU and RSP.

In the pencil beam scanning technique, doses are delivered spot by spot. The
spot positions (X,Y) and energy/layer (Z) can be extracted from the plan files of the
Varian treatment planning system. (X,Y’) are recorded relative to the isocenter (the
centre of the target) in the gantry coordinate system. (X,Y) with a beam angle can
specify a beam path. The beam energy (Z) determines the depth of a spot on the

beam path by calculating the WEPL using equation 2.5.

WEPL= Y RSP i d;;x, (2.5)
i,j,keS

where S is a set of voxels which contain the beam path. RSP; ;  is the voxel-wise
relative stopping power estimated from the CT number using a clinical calibration
curve, shown in figure 2.1. d; ; x is the path length of the beam inside voxels (i, j, k),
estimated by a ray tracing algorithm [67]. The beam-lines were assumed parallel in

this study.

The deviation of each spot (SLD) on the beam path is calculated using

G(r ) = |r uncertainty — T° reference|7 (2.6)

where r is a spot position in the CT. Freference 1S @ spot location in the reference

frame. rcphange 18 the corresponding spot location under uncertainty.
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To visually analyse the uncertainty, the spot error map was developed to in-
tuitively present the deviation (in the beam direction) of each spot relative to its
original position in the pCT. Figure 4 shows an example of the spot error map of
the beam angle 60°. The deviations are due to the anatomical changes during the

treatment. The colour bar on the right side represents the error calculated using

equation 2.6.
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Figure 2.2: A slice of the spot error map between the pCT and CTg. (a) is the spot error
map of the beam angle 60°. The red area is the radiation target of beam angle
60°. Positive values mean spots go deeper along the beam path, and negative
values mean spots stop at shallower places. (b) is the image difference between
the pCT and CTg, as the reference for the spot error map.

Because spot position and weight both affect dose distribution [34], spot
weights were added to the uncertainty evaluation to improve accuracy. The
weighted SLD (WSLD) is presented in equation 2.7. Without having to calculate
the dose distribution, the WSLD is more effective in describing the consequences

of uncertainty.

WSLD =) o(r)-w,, Y wr=1, 2.7)

where w, is the normalized spot weight. o(r) is the deviation of the corresponding
spot on the beam path as defined in equation 2.6.
To evaluate the uncertainty of the DIR algorithm, the WSLD between dCT; and

their corresponding pCT was calculated, using the pCT as the reference in equation
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2.7. dCT; is the deformed rCT in the reference frame of the pCT and should have
the exact spot locations as the pCT in an ideal DIR algorithm. The evaluation based

on WSLD was used to observe the weekly changing trends.

2.2.3.3 Deformable image registration evaluation based on accumu-

lated dose distribution

The accumulated influence of DIR uncertainty during treatment was investigated
based on dose distribution.

This study proposed to calculate the dose distribution on dCT; and add them up
as the accumulated dose of dCTs (dCTs should have the same dose distribution as
the pCT in an ideal DIR algorithm). The difference between the accumulated dose
of dCTs and the corresponding planning dose measures the accumulated influence
of DIR uncertainty during treatment, referred to as dCT-DIR evaluation. Because
dCTs use the same contours as the pCT, the delineation error was removed in the
dCT-DIR evaluation.

To justify the use of the DIR algorithm, the accumulated DIR uncertainty was
intended to compare with the accumulated anatomical uncertainty based on dose
distribution. For easy implementation, the difference between the accumulated
dose distribution of weekly CTs (weekly propagated dose distribution in the ref-
erence frame of the pCT) and the corresponding planning dose distribution was
calculated to represent the accumulated uncertainty from anatomical changes plus
DIR (A+DIR). The uncertainty evaluation results of A+DIR versus DIR should lead
us to the same conclusion as anatomical changes versus DIR. If the dose difference
caused by the DIR uncertainty is much smaller than the A+DIR uncertainty, this
error will be accepted for DIR-based modelling.

The workflow of accumulating weekly dose distributions and dCT’s dose dis-
tributions is shown in figure 2.3.

The evaluation metrics used in the dCT-DIR evaluation were: 1) the difference
between the accumulated dose of dCTs and the planning dose on the clinically-
concerned dose metrics. 2) the gamma index between the planning dose and the

accumulated dose of dCTs. 3) voxel-wise absolute dose difference between the
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Figure 2.3: The workflow of accumulating weekly dose distributions and dCT’s dose dis-
tributions.

planning dose and the accumulated dose of dCTs. Three evaluation metrics were

used as follows:

1. Difference between the accumulated dose of dCTs and the planning dose was
calculated for the clinically-concerned dose metrics, including Dgs of CTVs,

Dmean Of parallel organs and Dy, of serial organs.

2. Gamma-index () was used to evaluate the dose distribution difference be-
tween the accumulated dose of dCTs (D.,1) and the planning dose (Dy.f) using
acceptance criteria [68]. It combines two important dose difference measure-
ments: absolute dose difference and distance to agreement (DTA). DTA finds
the distance between a dose point in the planning dose distribution and the
nearest point with the same dose value in the accumulated dose of dCTs. Ab-

solute dose difference is sensitive in high-dose gradient regions, while DTA
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is sensitive in low-dose gradient regions. The gamma index complements the

two measurements. The gamma index at one dose point can be calculated

using
’}/(rref> - min{r(rcah rref) }v{rcal}; (28)
where
r? (rcala I're:f) 52(rcal; rref)
['(real, eef) = + , 2.9
( cal ref) \/ AdM2 ADM2 ( )
with
r(rcalyrref) = |rcal - rref’7 (2.10)
and
O (real; Tref) = Dear(Tear) — Dref(rref) . (2.11)

In the above equations, r¢ is the reference point, r¢,; is the calculated point
on the accumulated dose of dCTs, Ad)y is the distance difference criterion
and ADy, is the dose difference criterion. As the passing criteria, this study
used Y(rref) <1 the calculation passes, otherwise fails. The criteria used were

Ady=2 mm and ADy;=2%.

. The voxel-wise absolute dose difference between the planning dose and the
accumulated dose can be visually demonstrated in the dose-deviation-volume
histogram (DDVH). The voxel-wise absolute dose difference caused by the
DIR uncertainty and the A+DIR uncertainty was compared in DDVH. The
organs included in this analysis were targets (low-risk CTV, high-risk CTV),
serial OARs (spinal cord, brainstem, chiasm), and parallel OARs (parotid

glands, oral cavity, larynx).

To quantify the DDVH, the area below the DDVH curve was calculated, rep-

resenting the mean value of the voxel-wise absolute dose difference (MADD).
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2.3 Results

2.3.1 Deformable image registration evaluation based on con-

tour

The weekly changes in MSD across the five patients are shown in figure 2.4. The
DIR uncertainty shows an increasing trend during the treatment. The maximum

MSD of all the structures involved is below 3 mm (slice thickness).
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Figure 2.4: The weekly MSD between the deformed contours in dCTs and the correspond-
ing contours in the pCT for high-risk CTV, low-risk CTV and parotid glands.
In the box plot, the horizontal lines indicate the median value, and the asterisks
indicate the mean value.

2.3.2 Deformable image registration evaluation based on proton
spot range

The WSLD of DIR uncertainty across the test dataset is shown in figure 2.5. In

individual cases, the minimum and the maximum WSLD of 0.44 mm and 2.17 mm

were found (< slice thickness of 3 mm), respectively. The average WSLD with 95%

confidential interval (CI) across the five test patients increased from 0.864-0.14 mm

(week 1) to 1.33£0.48 mm (week 6). The weekly average was 1.03+£0.23 mm,

close to the pixel size of 0.98 mm.

2.3.3 Deformable image registration evaluation based on accu-

mulated dose distribution

The differences between the planning dose and the accumulated dose of dCT; on
clinically-concerned dose metrics are shown in figure 2.6. The figure shows that the

influence of DIR uncertainty on the dose metric differences of these organs can be
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Figure 2.5: The weekly WSLD between dCTs and the corresponding pCT. The result is
estimated in average WSLD with 95% CI over the 5 test cases.

controlled within 2 Gy.

151 il ]

d_ o ABC

M
1

i

li

Dose(Gy)

'
-
T

L

D D D D D D D D |

15 95 95 mean mean mean max max max |

1 1 1 1 1 1
Low-risk CT i risk CTV parotid gl ca¥i | aynX  grainste™ ginal € piasm

Figure 2.6: The differences between the planning dose and the accumulated dose of dCT;
on clinically-concerned dose metrics.

The gamma index was calculated between the planning dose and the accumu-
lated dose of dCTs for each patient, as shown in figure 2.7. The minimum gamma
index of 97.73% corresponds to patient 5, who had a weight loss of 17.8%. Deduced
from here, the DIR-based application on patients with larger anatomical changes

would introduce more DIR uncertainty than those with less anatomical changes.
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Figure 2.7: The gamma index between the accumulated dose from dCTs and the planning
dose for each patient.

The DDVHs that demonstrate the influence of the A+DIR uncertainty and the
DIR uncertainty are compared in figure 2.8 for organs of interest, including two tar-
get volumes: low-risk CTV and high-risk CTV; three serial OARs: chiasm, brain-
stem and spinal cord; and three parallel OARs: parotid glands, oral cavity and lar-
ynx. From visual assessment, the dosimetric discrepancy from the DIR uncertainty
was much smaller than from the anatomical uncertainty. Significant differences be-
tween the influence of the DIR uncertainty and the A+DIR uncertainty were found

on OARs.

The MADD (mean+95% confidence interval) quantified the average DDVH
area across the five patients for each organ of interest. The MADD of the A+DIR
uncertainty and the DIR uncertainty are compared in table 2.2. Anatomical uncer-
tainty can increase the MADD of parallel OARs, serial OARs and CTVs by at least

3 times, around 2 times, and around 1.5 times, respectively.

Table 2.2: The quantification of A+DIR uncertainty and DIR uncertainty using the MADD
for each organ.

MADD (mean + 95 CI%) (Gy)

Uncertainty CTVs Parallel OARs Serial OARs
Low-risk CTV  High-risk CTV | Parotid glands Oral cavity =~ Larynx | Brainstem Spinalcord  Chiasm
A+DIR 1.36+1.19 1.35£1.19 2.524+4.3 1.53+3.43 2.96+3.59 | 1.98£1.11 1.67+£1.74  3.3+7.5
DIR 0.56+0.22 0.53+0.55 0.6+0.3 0.33 £0.19 0.74£0.34 | 0.74+0.73 0.47+£0.29 1.02+0.93
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Figure 2.8: The comparison between the accumulated dose discrepancy from DIR uncer-
tainty and A+DIR uncertainty on DDVH across the five patients. The shaded
area is the variation between the patients.

2.4 Discussion

This chapter quantifies the DIR uncertainty for building anatomical models for
H&N proton therapy. The DIR algorithm was evaluated from three aspects: 1)
in the C-DIR evaluation, the maximum MSD (3-dimensional measurement) was
less than 3 mm (slice thickness). 2) in the R-DIR evaluation, the average WSLD
during the course of treatment was 1.03 mm, close to the pixel size (0.98 mm). 3) in
the dCT-DIR evaluation, the influence of the accumulated DIR uncertainty on the
clinically-concerned dose metrics can be controlled within 2 Gy. The gamma index
between the planning dose and the accumulated dose of dCTs was above 97.73%
(95% is the standard passing rate generally accepted [69, 70]). Furthermore, com-

pared with the MADD caused by the A+DIR uncertainty, the MADD caused by the
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DIR uncertainty was small. These results justified the rationality of accepting this

DIR uncertainty for anatomical models.

The C-DIR and the R-DIR evaluation were used to explore the weekly chang-
ing trend of the DIR uncertainty. Their results revealed that the DIR uncertainty
increases along with the treatment, validating that tissue shrinkage increases the

difficulty in finding the anatomical correspondence between two images.

In the dCT-DIR evaluation, the dose deviations caused by the DIR uncertainty
in the parallel OARs were the smallest (close to the vertical line of 0), in contrast to
the serial OARs, where the largest deviations were present (see figure 2.8). Among
the serial OARs, the dose on the chiasm is more sensitive to DIR uncertainty than
the brainstem and spinal cord because the chiasm volume is small. The workflow
proposed in the dCT-DIR evaluation eliminated the delineation uncertainty. It im-
proved the evaluation accuracy regarding the accumulated influence of the DIR on
each organ (especially on small organs, which are more sensitive to delineation er-

Ior).

In the dCT-DIR evaluation based on MADD analysis, the dose deviations
caused by the DIR uncertainty were compared with the A+DIR uncertainty. Over-
all, the dosimetric discrepancy from the DIR uncertainty was smaller than from the
anatomical uncertainty on both mean value and confidence intervals. Because plans
were created to ensure target coverage, the MADD differences between the DIR

uncertainty and the A+DIR uncertainty on CTVs were smaller than those on OARs.

Spot error map is a useful tool developed for uncertainty analysis. It gave us
an intuitive visual view of the possible spot location variations, which can guide
the use of beam angles and the design of objectives in optimisation. For example,
the error map can capture the ’dangerous spots’ with high variations, which might
damage critical normal tissues. Therefore, clinicians can avoid those spot positions

or increase the weight of normal tissue protection in the optimisation procedure.

Previous studies used the WEPL changes of a beam to specific points or areas
to evaluate the uncertainty. However, the contribution of spot weights on the un-

certainty evaluation was ignored. To address this limitation, WSLD was proposed
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as a surrogate of dose distribution, ensuring computing accuracy and efficiency.
Although WSLD is an easier way to quantify the uncertainty, it is less effective
at reflecting the changes of each organ at risk because proton spots in a plan are

distributed around the radiation target.

2.5 Conclusion

This study aims to evaluate the diffeomorphic image registration of NiftyReg for
building anatomical models for H&N proton therapy. The evaluation was based on
contour, proton spot location and dose distribution. The weekly DIR uncertainty
was mostly smaller than the slice thickness. The accumulated influence of DIR
uncertainty measured by the gamma index was above 95% on average.

The WSLD was proposed to evaluate uncertainty and applied to DIR uncer-
tainty evaluation. This new evaluation based on WSLD does not rely on contour
selection and only gives a single value, making it easy to analyse. This WSLD tool
is also used to measure anatomical uncertainty and validate the anatomical model
in Chapters 4 and 5.

The workflow of evaluating the accumulated influence of DIR uncertainty re-
duced the influence of delineation error, thus improving the evaluation accuracy.
The methods and steps presented in this study can directly be applied to other DIR

algorithm evaluations.



Chapter 3

Inclusion of non-rigid variations of
head and neck patients for IMPT

plan robust evaluation

This chapter explored the way to include small non-rigid variations in the pre-
treatment robust evaluation to assist IMPT beam selection.

The work in this chapter resulted in the following outputs:

Ying Zhang, Jailan Alshaikhi, Richard Amos, Wenyong Tan, Gary Royle, Es-
ther Bir. Small Non-rigid Variations can Assist Robust IMPT Plan Selection for
Head and Neck Patients. American Society for Radiation Oncology 2021.

Ying Zhang, Jailan Alshaikhi, Richard A. Amos, Wenyong Tan, Yaru Pang,
Gary Royle and Esther Bér. Pre-treatment analysis of non-rigid variations can
assist robust IMPT plan selection for head and neck patients.” Medical Physics, 49
(2022):7683-7693

Contribution of Authors: Jailan Alshikhi created the proton plans. Wenyong
Tan provided the clinical data and valuable input. Richard Amos, Yaru Pang, Vir-
ginia Marin Anaya and Gary Royle provided valuable input concerning the clinical
importance and impact of this work. Esther Bir supervised the project and pro-
vided valuable input. I developed the main ideas of the study, including the design
of methods, code implementation, tool development for data processing and the

final analysis.
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3.1 Background

IMPT offers the potential to limit doses to normal tissues for H&N cancer patients
[2, 3,4, 5,71, 72]. However, anatomical variations in the radiation area increase
dosimetric uncertainty during treatment delivery [22, 21]. Wu et al. (2017) [22]
showed that CTV mean doses were reduced by up to 7% in 10 oropharyngeal
patients. Heukelom et al. (2019) [23] revealed that the dosimetric influence of
anatomical changes led to >5% NTCP increase for dysphagia and the other tox-
icities. While these dosimetric influences are often correlated with progressive
changes, studies have yet to reveal the dosimetric impact of small non-rigid vari-
ations (sNRVs), such as neck folds, neck tilts and spine flexions, on proton therapy
plans. These sNRVs cannot be simplified as rigid translations, and unlike progres-

sive changes that are patient-specific, SNRVs occur randomly.

Current research in H&N proton therapy delivery focuses on developing adap-
tive strategies to mitigate the influence of progressive anatomical changes. In clini-
cal practice, offline adaptive planning strategies are applied when a certain threshold
of dose to a critical structure is reached [54, 43]. This method is effective, but de-
lays in implementing adaptive re-plans exist due to the time required for imaging,
replanning, plan approval, and plan verification. Online adaptation is an aspirational
technique intended for same-day application. However, due to the current compu-
tational speed, online adaptation either compromises the accuracy or constrains the
optimiser [49, 51, 48]. The median adjustment time of 12 minutes was reported
for online adaptation based on MC simulation [51, 48]. When plans are adapted
either online or offline, the patient position may be different from the position in the

image. SNRVs not captured during imaging will still be present.

In addition to adaptive planning strategies that mitigate the dosimetric impact
of anatomical variability, evaluation of plan robustness is also used [47, 73]. Set up
and range uncertainty are taken into consideration in conventional robust evaluation.
Treatment plan evaluation, including inter-fractional anatomical variations, often
uses images acquired during the course of treatment [46, 45, 33], and as such, they

can only inform the planning process for a portion of the treatment delivery. A
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more complete robust evaluation, including the possible SNRVs before treatment, is
crucial to design a plan that is robust towards these anatomical changes. Because
sNRVs are not patient-specific, they can be included in robust evaluations to provide
additional information before treatment.

This chapter aims to: 1) build a distribution of possible sSNRVs based on popu-
lation data. 2) assess the dosimetric impact of random sNRV's on the dose delivered
from IMPT plans; 3) incorporate SNRVs into the robust evaluation to account for
anatomical uncertainty before treatment. Although only sSNRVs are considered in
the new robust evaluation, this study evaluates its effectiveness in indicating plan ro-
bustness to inter-fractional anatomical changes, including both sSNRV's and progres-
sive changes. 4) quantitatively validate the benefit of the new evaluation method.
This new evaluation technique is compared to the conventional robust evaluation
with the gold-standard evaluation (after-treatment evaluation that used weekly re-

peated CTs) as the reference for quantification.

3.2 Methods

3.2.1 Patient data

Twenty NPC patients with weekly repeat CT and fifteen oropharynx cancer patients
with weekly CBCT who received photon therapy were recruited retrospectively.
The deformations between week 0 (planning CT) and week 1 of treatment for all
35 patients were obtained, creating a distribution of possible SNRVs based on the
method described in 3.2.2. Examples of sSNRVs are shown in Appendix B.1. Four
nasopharynx patients who had weekly repeat CTs were randomly selected as the
test dataset, where the 35 sNRVs were applied to their planning CT (see section
3.2.2).

This study evaluated the robustness of IMPT plans towards the uncertainties
(see section 3.2.3) applied to the test dataset based on the following scenarios: 1)
plans with different numbers of fields from 3 fields to 5 fields; 2) plans with dif-
ferent beam angles. The different beam arrangements used are listed in the upper

part of table 3.1 and illustrated in appendix B.2. The targets (both tumour and nodal
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area) were split for different fields in these IMPT plans. All plans were robustly op-
timized using £3 mm setup and £3.5% range uncertainty in Eclipse version 16.1.0
(Varian Medical Systems, Palo Alto, CA). A relative biological effectiveness (RBE)
of 1.1 for proton beams was used. The dosimetric goals for all plans in this study
are summarised in the lower part of table 3.1. A plan was deemed robust (stop op-
timisation) if the goals set for the CTVs and serial organs were fulfilled for all 12
dose distributions (3 mm orthogonal shifts combined with the +3.5% range error)
as well as the nominal scenario (the error-free distribution).

Table 3.1: Plan beam arrangements and dosimetric goals used in this paper.

Plan beam arrangements
Beam arrangements Angle

3Bys 45 180 315

3Bgo 60 180 300

4B110 60 110 250 300

4B 120 60 120 240 300

5B 60 110 180 250 300

Dosimetric goals of the treatment plans
Metric Goal Under Uncertainty

Structure

High-risk CTV
Low-risk CTV
High-risk CTV

Dgs > 95% of prescription dose (72.6 Gy)
Dys > 95% of prescription dose (63 Gy)
D, < 107% of prescription dose

Spinal cord Dmax <45 Gy
Brainstem Dmax <55 Gy
Chiasm Dmax <55 Gy
Optical Nerve Dmax <55 Gy
Structure Metric Goal in Nominal
Parotid glands Diean <26 Gy
Oral cavity Dpean <40 Gy
Larynx Dmean <40 Gy
Cochlea Dean <45 Gy

3.2.2 Extracting small non-rigid variations from CT images

Anatomical variations during the first week of treatment are predominately due to
sNRVs, whereas progressive changes (weight loss, tumour shrinkage) are less sig-
nificant [74, 75, 76]. Thus, the anatomical changes in the first week from a cohort
of patients can be seen as the representatives of a distribution of possible SNRVs.
The sNRVs of a cohort of patients (see section 3.2.1) were captured using
the diffeomorphic image registration. To apply the deformation between groups of

subjects, the stationary velocity fields (SVFs) of diffeomorphic image registration
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between week O/week 1 need to be projected to an atlas space, in which all the
SVFs have the same position and resolution. The atlas was obtained from a group-
wise registration which spatially normalised a cohort of patients. The procedure
of generating the atlas is illustrated in B.3. In the procedure of the projection, the
planning CT (pCT) of each patient was the reference geometry, and the weekly
repeat CT acquired during the first treatment week (rCT;) was registered to the pCT
to produce v,,_,;, where p stands for pCT and t stands for the week when the weekly
CT was acquired (in this case t = 1). Then, each patient’s pCT was registered to the
atlas to produce v,_,,, where a stands for atlas. v, transformed the inter-patient

velocity fields v, into the atlas space using

—1
Va,p—t = Va—p OVp—: V4 p, pVP. (3.1

P includes all the patients’ data used in this study.

Thenv,,,, was transformed into the space of an individual patient p using

~ 1
VI;_>, Nva_>ﬁ Ova’p_nova_”;. (32)

The deformation vj;_,, was used for warping the pCT to simulate a SNRV. Fi-
nally, in order to warp the pCT, the transformation must be directed from the pre-
dicted anatomy to the pCT. This can be simply achieved by reversing the SVFs

using

Visp = —Vp—t- (3.3)

The warped image CT"RV for patient 5 was acquired from:

¢t—>ﬁ = eXP(Vt—>ﬁ)7 (3.4)
CTF ™Y = ¢,,5(pCT), (3.5)

with t = 1 for all the equations above. This method produced 35 CT*NRVs for each
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patient to represent the possible SNRVs.

3.2.3 Robustness evaluation

The 35 sNRV scenarios of each test patient were included in the robustness evalua-
tion using CT™RVs. For the four test patients, the dose distributions of IMPT plans
were calculated under each robustness scenario. 1) The robust evaluation based on
the sNRV scenarios was compared with 2) the conventional evaluation that only
included rigid translations. A probability analysis was used in these two before-
treatment evaluation techniques to rank the robustness of IMPT plans for each dose

metric listed in the lower part of table 3.1 (see figure 3.1).

3.2.3.1 Robustness evaluation scenarios

For the proposed evaluation method using sNRV scenarios (1), this study simulated
the isocenter shift for each cardinal direction (x,,y,,z,) following the Gaussian
distribution with mean g = O mm and standard deviation 6 = 1.5 mm [45] on the
35 CT*NRVs, This was done to calculate the perturbed dose distribution caused by
the SNRVs and setup uncertainty since the CT™RVs have the same isocenter as the
pCT. The so found 35 dose distributions for each IMPT plan were included in this

sNRV+setup evaluation.

The conventional evaluation (2) was simplified to only include the setup un-
certainty by applying the same isocenter shifts used in the sSNRV+setup evaluation
to the pCT. This way, 35 perturbed dose distributions per IMPT plan were included

to evaluate the robustness of the plan.

3.2.3.2 Probability analysis for robust evaluation

The workflow for the SNRV+setup evaluation (1) and the conventional evaluation
(2) is illustrated in figure 3.1. Each considered dose metric Dx (e.g. Dgs) would
have the corresponding perturbed dose metrics under the uncertainty scenarios.

The nominal dose metric is subtracted from the perturbed dose metrics to form a
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IMPT plans
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Planning CT * sNRVs+setup f \
I C Uncertainty Evaluation [> 4 ik
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78 SR Conventional dCTas TS T
Each dose metric Evaluation L Each dose metric
sNRVs
Figure 3.1: The workflow of the sSNRV+setup evaluation and the conventional evaluation

for each IMPT plan. Both evaluation methods produce 35 perturbed dose dis-
tributions. Each considered dose metric (DX, e.g. Dgs) would have the corre-
sponding perturbed dose metrics under the uncertainty scenarios. The nominal
dose metric is subtracted from the perturbed dose metrics to form a distribution
of dose metric discrepancies (ADx) experienced across the uncertainty scenar-
ios. The light yellow box indicates that IMPT plans were calculated on the
uncertainty scenarios from sNRVs plus setup in the SNRV+setup evaluation.
The light purple box indicates that IMPT plans were calculated on the setup
uncertainty scenarios in the conventional evaluation. The dose distribution of
ADys in the conventional evaluation and the sSNRV+setup evaluation was plot-
ted in the left organ box and the right organ box, respectively, as an illustration.

distribution of dose metric discrepancies ADx experienced across the uncertainty

scenarios.

The upper and lower boundaries of dose metrics in the evaluation can be

demonstrated by the shaded areas in the nominal DVHs as an indicator of worst-

case scenarios. It was also suggested in the literature [77] to include a probability

approach in robust analysis. For this, the distance between the probability distri-

bution of ADx under uncertainty and its ideal probability distribution (Dirac delta

function, the dose metrics do not change even under uncertainty) was calculated

using the Wasserstein distance (WD):

(o]

WD(U, 1) = / U (x) — I(x) dx, (3.6)

—o0

where U and I are the probability distribution functions of ADx under uncer-
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tainty and its ideal distribution, respectively. The WD measures the effort required
to convert the distribution U into the I. The smaller the WD, the more robust a plan
for this dose metric.

A two-sample t-test was used to determine if there is a significant difference
between the distribution of ADx in the SNRV+setup evaluation and the conventional

evaluation. p < 0.05 was taken as the significance level.

3.2.3.3 Performance analysis of robust evaluations

To investigate the effectiveness of SNRVs in indicating the plan robustness to inter-
fractional anatomical changes before treatment, the dose discrepancy between the
accumulated dose using weekly CTs and the nominal dose was taken as the gold
standard. In the gold standard evaluation, the dose distributions of the IMPT plans
with different beam arrangements were calculated on 6 weekly CTs of each test pa-
tient. Because the accumulated dose is generally used in treatment evaluation and
related to prognostics, the weekly dose was accumulated in the reference frame of
the pCT using the DIR algorithm of Niftyreg, referred to as Accunom. Assuming
that SNRVs are present in all treatment weeks, Accunom should reflect that. In the
weekly dose calculation, although the isocenter was determined using the informa-
tion from the rigid registration, the setup error (both rigid and sNRVs) still existed.
Thus, the difference between Accunom and the nominal plan, referred to as ADy,
represents the influences from actual progression uncertainty and setup uncertainty
(both rigid and sNRV). ADg was used in the gold standard evaluation to assess the
robustness of a plan.

Because different beam arrangements were used in this study, the robustness
of beam arrangements can be ranked, referred to as robustness ranking. In the
sNRV+setup evaluation and the conventional evaluation, the WD was used in ro-
bustness ranking for each dose metric. In the gold standard evaluation, ADg was
used in robustness ranking. To quantify the performance of the SNRV+setup evalu-
ation and the conventional evaluation, the consistency C of the robustness ranking
for a dose metric between an evaluation X and the gold standard G was measured

by the weighted ranking discrepancy, defined as
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C= \/Z(RPX (B:) — RP(B;))? x w(B:), (3.7)

1

RPx (B;) represents the robustness ranking position of a beam arrangement B; in
evaluation X. X is either the sSNRV+setup evaluation or the conventional evaluation.
The corresponding RPy is RP; in the sSNRV+setup evaluation and RPF, in the con-
ventional evaluation. RP;(B;) represents the robustness ranking position of a beam
arrangement B; in the gold standard evaluation. w(B;) is the robustness weight of
beam arrangement B; in the gold standard evaluation to give a higher weight to the
most distinguished beam arrangement. The weighting w(B;) is calculated based on

ADy; using

Zj,j;éi |ADy;(B;) — ADg (Bj>|
B;) = .
w(B) YiYj j+i|ADs (Bi) — ADy (B;)|

|RPx (B;) — RP;(B;)| was used to identify whether the inclusion of sSNRVs can

(3.8)

benefit all beam arrangements. If |RP(B;) — RP(B;)| < |RP.(B;) — RPg(B;)| for
a dose metric, then this dose metric of beam arrangement B; supports that the
sNRV+R evaluation is better for robust evaluation, compared to the conventional
evaluation. Regarding the 12 dose metrics listed in the lower part of table I for each
beam arrangement, this study calculated the percentage of dose metrics that sup-
ports the inclusion of SNRV in robust evaluation based on the results of the four test

patients.

The consistency C was used to assess the role of SNRVs in robust evaluation
based on all beam arrangements. The consistency of the robustness ranking be-
tween the SNRV+setup evaluation and the gold standard evaluation was referred to
as CsNRvsetup&G- The consistency of the robustness ranking between the conven-
tional evaluation and the gold standard evaluation was referred to as Ccgg. When
CsNRV+setup&G 18 smaller or equal to Ccgg (Rgnry = 0) for a matrix, it supports the
conclusion that SNRVs play a positive role in robust evaluation. C = 0 means that
the robustness ranking in a before-treatment robust evaluation is the same as the

gold standard robust evaluation.
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3.3 Result

3.3.1 Dosimetric influences caused by small non-rigid variations

This section demonstrates the additional dosimetric discrepancies caused by the
sNRVs on an exemplary patient.

An example of the dose distribution variations caused by a sSNRV is shown in
figure 3.2. The red arrows indicate the areas where the dose has fallen under 95%
of the prescription dose.

Figure 3.3 compares the sSNRV+setup evaluation with the conventional eval-
uation on an exemplary patient (patient 1) based on dose metrics. The upper and
lower boundaries of dose metrics in the SNRV+setup evaluation (3.3a) and the con-
ventional evaluation (3.3b) are indicated by the shaded areas in figure 3.3a) and b)
separately. It can be observed that the additional SNRV's widen the bandwidth com-
pared to the conventional robust evaluation. The comparisons of the dose metrics
for this patient based on box plots are shown in figures 3.3c) to h). Dose metrics
for the different plans with different beam arrangements are shown in the same fig-
ures as box plots. By comparing the boxplot of c)—e) (sSNRV+setup evaluation) to
f)-h) (conventional evaluation) in figure 3.3, the mean values of the CTVs’ Dgs
in the sSNRV+setup evaluation are lower than those in the conventional evaluation
ranging from -1.57% to -0.95% (the range shows the differences between different
beam arrangements). The mean values of parotid Dyean, oral cavity Diean and lar-
ynxX Dpean are higher than the values in the conventional evaluation, ranging from
1.02 Gy to 1.82 Gy, 0.52 Gy to 0.70 Gy, and 0.84 Gy to 3.18 Gy, respectively. The
mean values of Dy« of the spinal cord, optical nerves and the chiasm between the
two evaluations only have slight differences, less than 0.6 Gy.

Figure 3.3 only partially demonstrates the Dx under uncertainty. Figure 3.4
plots the probability distribution of ADx in the conventional evaluation and the
sNRV+setup evaluation on high-risk CTV Dgs and parotid Dyean, respectively, for
patient 1. Figure 3.4 shows the influence caused by the SNRVs on the probability
distribution of ADx from different beam arrangements. The robustness of a beam

arrangement is presented by the closeness of the probability curve of beam arrange-
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Figure 3.2: An example of the dose distribution variations caused by a random sNRV. (a)
is the dose distribution on the planning CT, and (b) is the dose distribution of
the same slice on a CT*NRV, The green contours in the images are the Low-
risk CTV. The colour bar was chosen to mask out doses lower than the 95%
prescription dose of Low-risk CTV (82.4% is corresponding to the 95% pre-
scription dose of Low-risk CTV). The red arrows indicate the areas of under-
dosage caused by the sSNRV. (c) presents the difference in the DVH caused by
the SNRV.

ments to the Dirac delta function. For the high-risk CTV, the 3Bg( plan is the most
robust (the ADg5 curve of the 3Bg is the closest to the Dirac delta function, indi-
cated as the dashed vertical line) in the sSNRV+setup evaluation (figure 3.4b)), as
opposed to the conventional evaluation, where this beam arrangement is found to
be the less robust one (figure 3.4a)). For the parotid glands, in the conventional

evaluation (figure 3.4c)), the 4By¢ is the most robust beam arrangement, while in
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Figure 3.3: The comparison between the sSNRV+setup evaluation and the conventional

evaluation on patient 1. (a)-(b) show the shaded DVH from the 4By beam
arrangement in the SNRV+setup evaluation and in the conventional evaluation,
respectively. The solid line represents the DVH of the nominal plan (N in the
legend), and the shaded area indicates the lower and upper boundary of the
dose metrics in the respective evaluation caused by the variations (V in the leg-
end). (c)-(h) visually summarise the statistics under the respective uncertainty
using box plots. The horizontal lines in the box plot indicate the median dose
metric among 36 scenarios (including the nominal scenario and 35 uncertainty
scenarios defined in robust evaluation). The bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The asterisks are used to
indicate the mean value of the dose metrics. (c), (¢) and (g) are the boxplots of
Dx in the sSNRV+setup evaluation. (d), (f) and (h) are the boxplots of Dx in the
conventional evaluation.
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the SNRV+setup evaluation (figure 3.4d)), the 3B¢g is the most robust.
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Figure 3.4: Probability distributions of ADx in the conventional evaluation and in the
sNRV+setup evaluation on patient 1. (a) Probability distribution of ADx in the
conventional evaluation on the high-risk CTV Dgs. (b) Probability distribution
of ADx in the SNRV+setup evaluation on the high-risk CTV Dgs.(c) Probabil-
ity distribution of ADx in the conventional evaluation on the parotid Dpean. (d)
Probability distribution of ADx in the SNRV+setup evaluation on the parotid

Dmean .

3.3.2 Robust evaluation analysis

The dosimetric evaluation in table 3.2 shows the detailed numbers of the
sNRV+setup evaluation and the conventional evaluation for the exemplary pa-
tient 1. The results of the remaining three patients are listed in appendix B.4.
Among four patients (490 scenarios), a maximum difference was observed in the
sNRV+setup evaluation to the nominal dose of: 9.37% dose degradation on the
Dgs of CTVs, increase in parotid Dpean by 11.87 Gy, increase in larynx Dpyean by
15.04 Gy, increase in brainstem Dp,ax by 20.82 Gy, increase in spinal cord Dp,x by
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20.96 Gy. For CTVs, 4 patients all had scenarios where the CTV Dgs fell below
95%, 47 out of 490 scenarios in total. In contrast, in the conventional evaluation, a
maximum difference was observed to the nominal dose of: 7.58% dose degradation
on Dgs of the CTVs, increase in parotid Dyean by 4.88 Gy, increase in larynx Dpean
by 6.13 Gy, increase in brainstem Dpy,x by 13.5 Gy, increase in spinal cord Dy by
12.9 Gy.

Please note that the worst-case CTV coverage (Dgs) under setup uncertainty
can drop below 95% in some cases. To generate 35 scenarios in conventional robust
evaluation, the isocenter was shifted following a Gaussian distribution with mean
u= 0 mm and standard deviation 6= 1.5 mm. This results in multiple scenarios
that can be used for statistical analysis, rather than the only 12 scenarios usually en-
countered during robust optimisation with 3mm orthogonal shifts and 4+-3.5% range
error. While the usual 3 mm option was still used to optimise the plan, the addi-
tional shifts created with the Gaussian distribution were used for the evaluations.
Using this Gaussian distribution may result in scenarios where the shift exceeds 3
mm. However, only 4/490 scenarios were below 95%. Those scenarios only hap-
pened to patient 3 whose target volume was located close to the skin, making this
particular patient more sensitive to setup uncertainty. This comparison between the
sNRV+setup evaluation and the conventional evaluation in table 3.2 demonstrated

the additional dose discrepancy that sSNRVs can lead to.

3.3.3 Performance analysis of robust evaluations.

Based on table 3.2 and the table in appendix B.4, the calculated percentages of dose
metrics satisfying |RP(B;) — RP;(B;)| < |RP:(B;) — RPg(B;)| are 91.7%, 79.2%,
75%, 715% and 75% for 3B4s, 3Bgg, 4B110, 4B 120, 5B respectively, showing that the
inclusion of sSNRVs is beneficial to the robust evaluation of all beam arrangements.

Table 3.2 intuitively compares different evaluations based on the RP. The RP
difference was quantified as the consistency of robustness ranking between the two
evaluation methods in table 3.3. Table 3.3 (from the last row) shows that the worst
Psnry for one patient is 58.33% (still > 50%) for patient 4, and Pyngry is above 75%

in 3/4 patients. Overall, Pgnry 1S 77.1% for all patients. The Pgngry 1n the last col-
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Table 3.2: The sNRV+setup evaluation, the conventional evaluation and the gold standard
evaluation for patient 1. p-values of the two-sample t-test are calculated be-
tween the distribution of ADx in the sSNRV+setup evaluation and in the conven-
tional evaluation. p<0.05 represents that ADx in the sNRV+setup evaluation
and ADx in the conventional evaluation are taken from significantly different
distributions. In the SNRV+setup evaluation and the conventional evaluation,
the beam arrangements were ranked based on the WD for each ROI matrix. In
the gold standard evaluation, the beam arrangements were ranked for each ROI
matrix based on ADg. RP is the robustness ranking position of a beam arrange-
ment for a matrix.

sNRV-+setup Evaluation

Conventional Evaluation

Gold standard evaluation

ROI/Matrix Plan Nominal Min  Max WD RP, | Minmum Maximum WD RP,. | PV | Accunem ADy  RPg
Lowrisk CTV | 3Bgy 9857 93.17 9825 168 4 | 9683 9857 037 3 | lel0 | 9762 095 3
Dos(%) 4Bip 9825 954 9794 122 1 | 96.83 9825 032 2 | le9 | 9762 063 2
4By 9825 9476 9794 157 3 | 96583 9825 029 1 | lelll | 973  -095 4

SB 9857 9508 9825 14 2 | 97.14 9857 039 4 | lel0 | 9794 063 1

Hightisk CTV | 3Bgy  97.66 9408 97.66 083 1 | 96.14 9766 046 3 | 001 | 9766 0 I
Dos(%) 4Byg  97.66 9435 97.66 108 4 | 96.42 97.8 028 1 | le5 | 9738 028 3
4By 97.66 9325 97.66 105 3 | 96.14 9752 052 4 | led4 | 9738 028 3

SB 9766 9435 9793 104 2 | 9642 97.8 032 2 | le5 | 9738 028 3

Hightisk CTV | 3Bg 10289 10234 10399 0.8 1 | 10275 10358 011 1 | 09 | 10179 -1 4
Ds(%) 4By 10344 10234 10537 045 3 | 10303 10427 025 4 | 064 | 103.17 -028 2
4Bp  102.89 10289 10592 0.66 4 | 10275 10386 017 2 | le6 | 10289 0 1

5B 10344 10262 1051 028 2 | 103.17 10413 018 3 | 093 | 102890 -055 3

Parotid 3Bg 2862 2636 3631 168 1 | 2668 3074 077 4 | le3 | 3148 286 1
Dinean(GY) 4Byp 2611 2389 3507 204 4 | 2441 2751 055 3 | le3 | 3182 572 3
4By 2594 2414 3581 197 3 | 2485 2677 034 1 | led | 311 516 2

SB 2629 2415 3514 18 2 | 2488 2742 043 2 | led | 3224 595 4

Oral 3Bg 1517 1198 2057 16 2 | 1242 1817 114 3 | 024 | 1556 038 2
Dinean(GY) 4By 1433 1138 1906 156 1 | 11.69 1753 113 2 | 026 147 037 1
4B 1505 1199 2046 163 4 | 1236 1801 108 1 | 013 | 1571 066 4

SB 1487 1199 2007 162 3 12.1 1818 116 4 | 023 | 1527 039 3

Larynx 3Bg 266  24.18 3189 171 1 | 24.09 2939 105 1 | 017 | 2896 236 1
Dinean(Gy) 4Byo 3221 2781 4764 422 3 | 25.66 37.63 255 4 | le3 | 4242 102 3
4B 3011 2299 46.12 427 4 | 24.64 3401 197 3 | 002 | 444 1429 4

SB 2678 2411 3575 276 2 | 2231 306 172 2 | le3 33 622 2

Cochlea 3Bg 1553 945 3097 238 2 | 9.9 2629 265 2 | 083 | 1379 174 4
Dinean(Gy) 4Bpp 2021 1095 3583 253 4 | 1253 3156 301 4 | 063 | 1851 -1.69 3
4By 2511 1849 3808 1.89 1 | 1938 3461 224 1 | 041 | 2343 168 2

5B 1902 1075 3452 25 3 | 1172 3011 288 3 | 065 | 1746 -1.56 1

Brainstem 3Bg 4302 2242 5793 583 3 | 3472 5522 42 4 | 057 | 4084 218 4
Dumax(Gy) 4Byp 4026 2675 5872 598 4 | 3246 5296 418 3 | 075 | 4054 029 2
4By 3643 2533 5517 557 1 | 3073 4773 339 1 | 025 | 3763 12 3

SB 3951 2606 584 579 2 | 3241 5231 407 2 | 071 | 3971 021 1

Spinal 3Bg 3668 2036 5168 56 4 | 2838 1958 422 4 | 096 | 3325 343 4
Dynax(Gy) 4B 3511 2963 475 354 2 | 3081 4431 257 2 | 034 | 3492 02 1
4By 3665 28.64 4728 408 3 | 3185 4735 297 3 | 095 | 3459 207 3

SB 3547 3155 4761 311 1 | 3187 4387 231 1 | 013 | 3656 109 2

Chiasm 3B 2368 127 4256 488 4 | 1228 1238 478 4 | 09 2279 089 3
Dinax(Gy) 4Bpo 2229 1161 4164 452 2 | 1129 4009 457 1 | 067 | 2141 088 2
4By 229 12 425 462 3 117 413 463 3 | 096 | 219 09 4

5B 2162 1111 4103 451 1 | 1072 3962 461 2 | 088 | 2077 085 1

Opticnerve left | 3Bgy 1397 637 2986 405 4 | 627 2887 372 4 | 056 | 1644 247 4
Dinax(Gy) 4Byo 136 632 2938 375 3 6.2 277 349 3 | 052 153 17 1
4By 1344 615 2874 365 2 | 6.14 2744 347 1 | 079 | 1564 219 3

5B 1323 618 289 365 1 5.83 2733 348 2 | 061 | 1516 193 2
OPTICNERVEVR | 3B 1397 637 3177 422 4 | 637 2887 354 4 | 03 1974 577 4
Dinax(Gy) 4By 1437 692 2376 3.4 3 | 677 2847 347 3 | 033 | 1981 544 1
4By 1375 65 2325 309 2 | 615 2785 34 1 | 044 | 1931 556 2

SB 1342 624 2281 306 1 6.02 2762 343 2 | 04 1899 557 3

umn shows that CiNrv4setupsaG Was always better or equal to Ccg for the parotid

glands, larynx, cochlea, spinal cord, chiasm. In the example of patient 1 from table

3.2, the WD of the sNRV+setup evaluation indicated that 3Bgy was the most robust

beam arrangement for the parotid Dpean, while the conventional evaluation indi-
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cated that 4B 59 was the most robust. The ADg from the gold standard evaluation

validated that 3Bgy indeed was the most robust beam arrangement for the parotid

Dmean .

3.4 Discussion

Dose distributions in proton therapy are more sensitive to geometric changes than
in photon therapy. However, in previously published robust evaluation methods,
the impact of anatomical changes was not considered before treatment. This study
demonstrated the dose degradation on CTVs and OARs caused by the sSNRVs and

showed that including the sSNRVs in the robust evaluation is beneficial.

3.4.1 The use of small non-rigid variations for robust beam se-

lection

In the validation of sNRVs’ role in robust evaluation, the dose discrepancy that
represents the influence of inter-fractional anatomical changes and isocenter shifts
was used as the gold standard. The consistency of robustness ranking showed
that CsNrvsetup&G Was smaller than Ceg g, especially on the low-risk CTV, parotid
glands, larynx and spinal cord, which are closely related to outline changes and neck
motions, and also on small structures that are sensitive to SNRVs such as cochlea
and chiasm, supporting that SNRVs play a positive role in robust evaluation in terms
of indicating robustness to inter-fractional anatomical changes.

No beam arrangement is insensitive to the SNRVs as anatomical changes were
not considered in robust optimisation for any beam arrangement. The method pro-
posed in this study can still assist in selecting robust beam arrangements for proton
plans without anatomical robust optimisation. In table II and table B1 in Appendix
B, the p-values between the distributions of ADx in the SNRV+setup evaluation and
the conventional evaluation showed that the SNRVs mainly influenced the proba-
bility distribution of CTVs ADgs and parotid ADpean. Because the highest priority
of the robust optimisation for the four test patients in this study was to ensure the
target coverage, similar performance of Dgs¢, based on ADg was found on different

beam arrangements, with differences smaller than 2%. To best demonstrate the ad-
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vantage of the SNRV+setup evaluation over the conventional evaluation, the beam
arrangement was selected based on the impact of the SNRVs on the parotid ADpean
as an illustration. The parotid ADpean is also closely related to toxicity such as
xerostomia which can have a long-term impact on patients’ quality of life. For ex-
ample, for patient 1, a similar parotid Dyean Was achieved using 4B g and 4B 5. If
4B 170 was selected based on WD, the accumulated parotid Dyean would reduce by
0.7 Gy, corresponding to 1 fraction of Dpean delivered to the parotid glands. Other
organs can be used for beam selection as well, for example, the oral cavity Dyean in
the sSNRV+setup evaluation has the exact same rank as the gold standard. Also, the
rank of the chiasm Dy, in the SNRV+setup evaluation indicated the most robust
beam arrangement as the gold standard evaluation.

There were two interesting scenarios worth noticing. In different beam ar-
rangements for patient 1, even though the nominal parotid Dyean of 3Bgg was the
highest, the accumulated dose was lower than 4B and 5B because 3Bgy was the
most robust beam arrangement (the lowest WD) under the sSNRV+setup uncertainty.
The ADy; of 3Bgo showed that 3Bg( controlled the ADy; of the parotid Dyean Within 3
Gy, which corresponds to 10% NTCP difference [54] and is used to trigger a replan
to protect the parotid glands. This case indicated that beam selection based on ro-
bust evaluation can potentially reduce the replan rate, something that needs further
investigation in the future. For patient 3, even though the nominal parotid Dpyean
of 4B 59 was higher than in the 5B beam arrangements, the accumulated dose was
the lowest because 4B 79 was the more robust beam arrangement. A message that
clearly emerges here is that the best nominal plan may not be the best plan during
treatment.

The impact of different beam angles on the robustness of a plan can be analysed
on patient-specific geometry using our method. The results can be used to create
a robustness plan database to assist in finding a more robust planning approach, as

presented by McGowan et al. (2015) [47] and Malyapa et al. (2016) [73].

3.4.2 The potential use of small non-rigid variations in clinic

The distribution of sSNRVs has the potential to be used in other clinical applications.
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Firstly, this study found that the sNRV that leads to the most dose dis-
crepancy varies from patient to patient and from beam arrangement to beam ar-
rangement. For example, the robustness ranking in parotid Dpean based on the
WD of the sNRV+setup evaluation was 4B 59 > 3Bgy > 5B for patient 1, while
3Bgo > 4B120 > 5B for patient 4. This is because individuality was considered in
the method by using the patient-specific image. This approach can help clinicians
avoid the set-ups with the SNRVs that can lead to unacceptable dose distributions

for a specific patient using a specific beam arrangement.

Secondly, the acquired sSNRVs can potentially assist in better estimating the
truly delivered accumulated dose using weekly CTs. The sNRVs can be randomly
allocated to each weekly CT, with 5 sSNRVss per weekly CT. These deformed weekly
CTs can be used to estimate the daily dose distribution under the influence of
sNRVs. Repeating this procedure can reveal the range of potential accumulated

doses for the whole treatment.

Thirdly, this study presented the possibility of including SNRV's from a patient
population in robust analysis, which also indicated the potential to be used in ro-
bust optimisation. Mesias et al. (2019) [43] included the first two weekly CTs of
patients into robust optimisation to account for the sSNRVs, suggesting that sSNRVs
can reduce the need for adaptation. They indicated that the first two weekly CTs
can be replaced by a series of CT images scanned before treatment. Li et al. (2015)
[34] considered weekly CTs in the robust evaluation. Yang et al. (2020) [44] added
the adaptive planning CTs into robust optimisation. However, their methods re-
lied on the acquisition of CT images during treatment, which limited the creation
of a robust plan at the early planning stage. In contrast to their patient-specific
approach, an atlas-based technique is suggested here. While this approach is not
patient-specific but based on the assumption that SNRVs are mainly random, there
are some advantages. First, this method does not require the acquisition of a series
of CT images of the same patient pre-treatment, therefore saving imaging dose and
reducing workload. Secondly, assuming that SNRVs can be reasonably represented

using this method, deformed images with the SNRVs can be prepared in advance
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and fully exploit the benefits of robust optimisation with multiple CTs. This will be
investigated in future studies.

It should be mentioned that the inclusion of a large patient cohort (many SNRV
scenarios) would require recalculating the treatment plan many times. For effi-
ciency, the included sNRVs should be limited to the most common/frequent ones.
The most common sNRVs can be found, for example, by using the anatomical mod-
els, which apply principal component analysis (PCA) to anatomical deformations
of a patient cohort to estimate the likelihood of a certain anatomical deformation
to happen (please refer to Chapter 4). By only including the most likely principal
components of the deformation in the robust evaluation, the number of recalculated
plans can be reduced while still representing well the SNRVs. This trade-off will be
explored in future work.

The concept presented here can be adapted to different scenarios. This study
did not factor in immobilization equipment and patient characteristics such as age,
size, disease staging and physical condition. All those factors are likely to influence
the possibility and the amplitude of a specific anatomical change to arise during the
treatment. While this is not yet considered in this study, the presented approach
has the potential to do so. If sufficient patient data are available to build the atlas,
the patient data can be stratified into groups based on immobilization devices and

patient characteristics before performing a robust evaluation.

3.4.3 Limitations

For the purpose of showing the feasibility, plans with different beam arrangements
were only created for the four test patients. Further validation of the method will
be conducted on a large number of patients. Another limitation of this work is that
the impact of the DIR uncertainty was ignored in the robust evaluations. This study
assumed that the DIR uncertainty would equally affect the robust evaluations for
different beam arrangements.

When validating the role of sSNRVs in robust evaluation, this study did not
take the range uncertainty from Hounsfield units (HU) into account because range

uncertainty is an isolated source considered in the robust evaluation and is solely
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based on the CT calibration. It is also justified by the small dosimetric impact
from CT number range uncertainty compared to setup uncertainty and anatomical
uncertainty[33, 47]. Therefore, it should only have small influences on the results
of the comparison, which established that sSNRV should be considered in the robust
evaluation as a component of random set-up errors, not just rigid setups. However,
to fully evaluate the plan, the range uncertainty should be used along with the rigid

setups and sNRVs.

3.5 Conclusion

This study aims to demonstrate the additional dose discrepancy arising from the
sNRVs and the influence of the SNRVs on robust plan evaluation. The deformations
during the first week were used to build the distribution of possible sSNRVs. A maxi-
mum difference was observed in the sSNRV+setup evaluation to the nominal dose of:
9.37% dose degradation on Dgs5 of CTVs and 11.87 Gy increase on parotid (Dmean)-
These dose metrics are unacceptable in the clinic and can trigger plan adaptation.
Benefiting from this atlas-based method, patients’ unique geometry was considered.
This study found that the SNRV that can lead to the maximum difference varies from
patient to patient and from beam arrangement to beam arrangement. One applica-
tion of this analysis is to help clinicians avoid worse setups.

This study also used a probability analysis to select robust plans against
sNRVs. Based on the quantitative validation, this study concluded that the SNRVs-
based evaluation is better than the conventional evaluation. The percentages of dose
metrics satisfying |RP;(B;) — RP;(B;)| < |RP.(B;) — RP;(B;)| were at least 75% for
all beam arrangements, showing that the inclusion of sNRVs is beneficial to the
robust evaluation of all beam arrangements. In the measurement of the robustness
ranking consistency with the gold standard evaluation, the SNRV+setup evaluation
was better or equal to the conventional evaluation in 77.1% of cases, particularly
better on parotid glands, larynx, chiasm, cochlea, and spinal cord.

The method provided in this study can potentially provide multiple images for

anatomical robust optimisation.



Chapter 4

Probability model for head and neck

patients

This chapter built an anatomical model to assist with anatomical robust optimisation
for head and neck patients.

The work in this chapter resulted in the following outputs:

Ying Zhang, Jailan Alshaikhi, Wenyong Tan, Gary Royle and Esther Bir. ”A
probability model for anatomical robust optimisation in head and neck cancer pro-
ton therapy.” Physics in Medicine & Biology (2022).

Contribution of Authors: Jailan Alshikhi created the proton plans. Wenyong
Tan provided the clinical data and valuable input. Gary Royle provided valuable
input concerning the clinical importance and impact of this work. Esther Bér su-
pervised the project. I developed the idea of PM and model evaluation, including

developing codes and tools for data processing and the final analysis.

4.1 Background

The anatomical robust optimisation has been investigated to include small non-rigid
variations (sNRVs) and (or) progressive changes to improve the plan robustness
against anatomical uncertainty [43, 44]. However, it either requires multiple CT
scans before planning [43] or needs the images acquired during treatment [44].
While multiple scanning gives the extra imaging dose to H&N patients and affects

the efficiency of a busy proton therapy practice, the dependence on images acquired
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during the treatment also compromises the benefits of reducing the replanning rate.
The current online adaptation techniques also need to consider sNRVs in the plan-
ning optimisation because the reported time requirement (the median adjustment
time of 12 minutes based on MC simulation) [50, 51] is a burden for patients lying
on the couch and waiting for the optimisation to be finished. During this waiting
time, the patient’s position may be different from the position in the image. SNRV's

not captured during imaging will still be present.

Including sNRVs in robust evaluation/robust optimisation using the method in
Chapter 3 can be inefficient when a large patient cohort is available. Therefore, the
included sNRVs should be limited to the most common/frequent ones. To this end,
an anatomical model based on principal component analysis (PCA) becomes the
focus of this study. PCA finds the best orthogonal basis, the principle components
(PCs), whose variance of the projections of the data are ranked from the greatest
to the smallest. Thus, it is possible to restore information using a limited number
of PCs that describe the majority of anatomical deformations. The basics of PCA
were detailed in Lever ef al. (2017) [78]. This type of model simulates the possible
geometric variations from a population of patient data. Thus, it removes the require-
ment of multiple scanning and the dependence on acquiring verification CTs during
treatment for anatomical robust optimisation. Anatomical robust optimisation can
be done at the planning stage using the predicted images. Several mathematical
models have been proposed to account for anatomical changes [27, 60]. Yu et al.
(2016) [60] assumed that the probability density function (PDF) of the coefficients
a of each PC follows a standard normal distribution. However, they did not vali-
date if the PDF of o from their dataset is consistent with this assumption, and the
probability of each predicted deformation vector field (DVF) was not revealed. To
date, it is still challenging to quantify the probability of a certain type of anatomical

deformation to arise during the treatment course.

This study aims to: 1) develop a probability model (PM) at each weekly time
point to address the limitations of the previous model[60]. 2) quantify the proba-

bility of each type of anatomical deformation based on population data. 3) validate
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the feasibility of the PM to measure anatomical uncertainty.

4.2 Method and material

4.2.1 Patient data

Twenty NPC patients were recruited retrospectively. Each patient underwent a plan-
ning CT (pCT) and a weekly repeat CT (rCT;), where t (t=0,1,2,3,...) represents
the week of CT scanning. Because this dataset is relatively small, the leave-one-out
strategy was used to build the model for more accurate performance. The leave-
one-out strategy was applied for 5 test patients (one patient was held out as the test
set, and the remaining patients were used as the training set to build the model, this

process was repeated 5 times).

For all 5 test patients, an original (nominal) IMPT treatment plan was generated
using Eclipse version 16.1.0 (Varian Medical Systems, Palo Alto, CA). All plans
generated throughout this study were robustly optimised with +3 mm setup and
43.5% range uncertainty for CTVs and OARs. A RBE of 1.1 for proton beams was
used. The dosimetric goals for all plans in this study are summarised in table 4.1.
A plan was deemed acceptable if the goals set for the CTV and serial organs were
fulfilled in the nominal scenario (the error-free distribution) as well as all 12 dose
distributions (3 mm orthogonal shifts combined with the +3.5% range error) in a
robust evaluation. More clinical characteristics of the patients can be found in the

papers of Tan et al. [18, 79].

4.2.2 Probability model

In the clinic, the magnitude of uncertainty is estimated from population data [28, 80,
36, 81]. To capture the major deformations in a population, this study developed the

PM to statistically model the anatomical changes of the population based on PCA.

The weekly stationary velocity fields of diffeomorphic image registration
(SVFs) v;,_,; between the pCT and the rCT; of the training data were used as input
to build the PM. The procedure was divided into the following steps and repeated

for each treatment week ¢.
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Table 4.1: Dosimetric goals of the treatment plans created in this study

Structure Goal under uncertainty

High-risk-CTV  Dgs > 95% of prescription dose (72.6 Gy, 33 fractions)
Low-risk-CTV  Dgs > 95% of prescription dose (63 Gy, 33 fractions)

CTvV D, < 107% of prescription dose
Spinal cord Dmax < 45 Gy

Brainstem Dmax <55 Gy

Chiasm Dmax <55 Gy

Structure Goal in Nominal

Parotid glands ~ Dpean <26 Gy

Oral cavity Dmean <40 Gy

Larynx Dmean <40 Gy

Proton planning information: MFO planning; spot spacing size: Smm; energy ran-
ge:70 MeV - 250MeV; range shifter: Scm; dose calculation algorithm: Piencel bea-
m scanning (PBS); optimisation algorithm: Nonlinear Universal Proton Optimiser.

. The inter-fraction SVF v,,_,; of patients was projected into the atlas space as

Va,p—sr using 3.1.

. The average SVF for treatment week ¢ in the atlas space was calculated as the

expectation value E of the deformation v, ,,_,, of the training dataset.

1 ,
— YW 4.1
Np pl a,p~>t7 ( )

E(Va,p%t) =

where N, is the number of patients used in this model, and pi is the patient

index.

. The random deformation of each patient at week ¢ in the atlas space can be

calculated as follows:

rand, pi i
va,p—g = Vg,p—)t - E("a,p—n)- 4.2)

. The random deformations of all training patients at week ¢ were composed to
a random deformation matrix in the atlas space, referred to as vfj"gd_n, which

was represented approximately using
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V, is the PC vector, also called eigenvector. ;; is the coefficient of the /-th
eigenvector belonging to the i-th training set. L is the number of eigenvectors
used to build the model. L. was chosen to be able to represent 90% of popu-
lation variations. Each column of the o matrix represents the coefficients of

one eigenvector.

. The the probability density function (PDF) of o of an eigenvector was an-

nealed using kernel density estimation [82]. The estimation used

1 Ny 2 /n 2
Zexpi(aiai,[) /261 , (4.4)

o) =——"—
Pi(@) N,-01vV21m (=

N, N,
1.06 | X" (ong— 5 X 0i)?
Or=%702
N, N,—1

, 4.5)

where p; is the probability distribution of the coefficients of the /-th eigen-
vector. The comparison between the real distribution of a column of o and

the annealed distribution is shown in figure 4.1.

. The sampled numbers from p; formed the /-th column of the & matrix. Be-
cause the distribution was estimated from a limited training dataset, sam-
pling extended the coefficients to capture all the possible random anatomical

changes resulting in
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Figure 4.1: The comparison between the real distribution of a column of & and the annealed

distribution.

01 Qi - o Vy
~rand __ sn~rand,l srand,2 ~rand,Ns\ 0,1 o - 0L Vs
Vap—t = (Va,p—m a,p—tr" " Vapot ) ~

On,1 0N - O Vi

4.6)
Each row of the predictive matrix & = (& 1,@;2,---,@; ) in equation 4.6

was multiplied with V' to form a predicted random deformation for week z,
represented by ﬁiﬁ?fkf,. i is the index of the predicted random deformations.

N; is the number of samples.

. A deformation of the PM for week ¢ is:

' ~rand,i .
vﬁ,l\,fit = EWapt) +Vapo, V(1 ~N). 4.7)

. _PMi
. Each deformation v, "

a,p»¢ Was transformed into the space of an individual pa-

tient using



4.2. Method and material 91

PM,i _ 1 PM,i
Vpost =Vassp ©Va,pist OVa—sp- (4.8)

9. To warp the pCT, the transformation must be directed from the predicted

anatomy to the pCT. The deformation vfi/[,’f needs to be reversed using:

PM, i PM, i
Visp ="V 4.9)

10. The warped image CTfM’i was acquired using:

0%, =exp(vsy), (4.10)

CT™ = 975 (pCT), (4.11)
where CT}DM’i is the i-th predicted image of week ¢.

N; predicted images can be obtained for week 7. Considering that eigenvec-
tors are orthogonal, the probability distribution of their coefficients is independent.
Therefore, the probability of predicted images with specific &; can be calculated by

the joint probability

P(&y) = p1(&;1) - p2(i2) ...  pL(GL), Y P(@)=1. (4.12)

4.2.3 Model evaluation

4.2.3.1 Model evaluation based on weighted spot location deviation.

The total WSLD considered the probability estimated from the extended population

was calculated using

Ny i
WSLDPM = ¥ (WSLDCT . P(gy)). (4.13)
i=1
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WSLDET " is the WSLD from the predicted image CT, ™' at week 7. P(a) is the
probability of the predicted image CTfM’i. Nj is the number of samples produced
by the PM.

The WSLD was applied to evaluate the anatomical uncertainty from sNRVs,

total anatomical uncertainty, and residual anatomical uncertainty from the PM.

* The anatomical uncertainty from sNRVs and total anatomical uncertainty
simulated by the PM. The PM statistically summarised the probability of
anatomical changes for each week. The progressive changes induced by the
radiation in the first week were not significant [18]. Therefore, the WSLD
estimated by the PM in the first week of treatment represented the influence
of sSNRVs such as tongue movement, shoulder positioning or small rotations.
The WSLD from later fractions was the combined influence of sSNRVs and

progressive changes (total anatomical uncertainty).

* The residual anatomical uncertainty from the PM. The difference between
the estimated anatomical uncertainty from the PM and the actual anatomical
uncertainty of each week was used to evaluate the accuracy of the PM. It is
referred to as the residual anatomical uncertainty (AWSLD}**) from the PM,

see equation 4.14,

AWSLD' = WSLD!* - WSLD™, (4.14)

where WSLD™# is the actual anatomical uncertainty calculated by the WSLD
between rCT; and the pCT, which also corresponds to the residual anatomical

PM
Dl

uncertainty of no model. WSL is the anatomical uncertainty at week ¢

estimated by the PM. Ideally, the model should approach a AWSLD of 0 for

each treatment week t.

4.2.3.2 Model evaluation based on dose distribution.

Anatomical deformations lead to dose variations. The dose on the deformed images

was recalculated using the original IMPT plan. Then 1) the actual dose variations
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from the training dataset were compared with 2) the dose variations simulated by
the PM. The deformations of an exemplary patient in the first week were chosen to
demonstrate the dosimetric influence of small non-rigid variations.

1) To obtain the actual dose variations, the actual deformations of 20 patients
in the first week were applied to the planning CT of the exemplary patient to obtain
20 actual sNRVs. The IMPT plan of this exemplary patient was applied to the 20
actual SNRVs to calculate the dose variations. These variations can be illustrated as
dose volume histogram (DVH) bands in the nominal DVHs of organs, referred to as
actual DVH bands. The perturbed dose metrics were calculated for each considered
dose metric Dx (e.g. Dgs). The perturbed dose metrics subtracted the nominal dose
metrics to obtain the dose metric discrepancy ADX.

2) To obtain the dose variations simulated by the PM, 20 CT'™ (CT of the
PM in the first week) were selected following the joint probability distribution of
the PM for the exemplary patient. The same IMPT plan was also applied to the 20
CTIIDM to create DVH bands, referred to as simulated DVH bands from the PM. The
dose metric discrepancy simulated by the PM was referred to as ADX’.

A two-sample t-test was used to determine if there is a significant difference
between the distribution of ADx and ADx’. p < 0.05 was taken as the significance

level.

4.3 Results

The exemplary patient’s slice images from the planning CT and 2 predicted CTs of

the PM in the first and the sixth week are shown in figure 4.2.

4.3.1 Model evaluation based on weighted spot location devia-

tion.

The WSLD of the anatomical uncertainty is estimated from the PM. The result is
shown in average WSLD with 95% confidence interval (CI) (see figure 4.3). The
estimated anatomical uncertainty from sNRVs accounted for a range uncertainty
of 2.184+0.19 mm. The estimated total anatomical uncertainty (from sNRVs and

progressive changes) can reach 3.094+0.26 mm at week 6.
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(b)

(d) (®)

Figure 4.2: The exemplary patient’s slice images from the rCTy, rCTg and 2 predicted CT
of the PM in the first week and the sixth week. (a) shows a slice image from
the rCT; of the exemplary patient. (b)-(c) show slice images from 2 predicted
CTs of the PM in the first week. (d) shows the same slice image from the rCTyg
of the exemplary patient. (e)-(f) show slice images from 2 predicted CTs of the
PM in the sixth week.

The residual anatomical uncertainty from no model and the PM (N; = 100) are
compared in figure 4.4. In no model predicted images were replaced by the planning
CT. When the anatomical uncertainty estimated from the PM was considered, the
residual anatomical uncertainty was reduced from 4.47+1.23 mm (no model) to
1.49£1.08 mm (PM) at week 6, achieving a significant improvement as compared

to no model.

The comparison of individual cases between the actual WSLD (using rCTs)

and the estimated WSLD from the PM are listed in table 4.2.

4.3.2 Model evaluation based on dose distribution.

For the exemplary patient, the actual DVH bands in the first week and the simulated

DVH bands from the PM in the first week are shown in figure 4.5. Supporting the
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Figure 4.3: The anatomical uncertainty estimated from the PM in WSLD for each week.
The result is estimated in average WSLD with 95% CI across the 5 test cases.
The WSLD in the first week presents the uncertainty from sNRVs. The WSLD
in the following weeks evaluates the combined effect of anatomical uncertainty
from sNRVs and progressive changes (total anatomical uncertainty).

Table 4.2: The WSLD caused by the actual anatomical deformations (using rCTs) and the
WSLD estimated by the PM in each test patient and week.

Week Patient 1 Patient 2 Patient 3 Patient 4 Patient 5
rCTs(mm) PM(mm) | rCTs(mm) PM(mm) | rCTs(mm) PM(mm) | rCTs(mm) PM(mm) | rCTs(mm) PM(mm)
1 1.72 2.12 1.96 1.88 2.57 2.53 2.32 2.14 1.89 2.27
2 2.52 242 2.07 2.18 1.99 2.71 2.30 3.11 2.54 2.55
3 3.43 2.75 2.15 2.30 2.59 3.23 2.57 3.20 3.49 2.72
4 4.93 2.65 2.78 2.65 2.94 3.62 3.44 3.14 4.69 3.10
5 5.62 2.97 2.73 2.30 4.02 3.53 291 3.15 5.57 3.20
6 5.23 2.78 3.12 3.07 5.13 3.63 2.62 2.89 6.27 3.10

rationality of the PM, the simulated DVH bands of the PM demonstrated similar
variations as the actual DVH bands.

The maximum, minimum, mean value (i) and standard deviation(o) of the
ADx from the actual sSNRVs and the ADx’ from the simulated SNRVs of the PM are
listed in table 4.3 with their p-values (between ADx and ADX’).

The range of dose metric variations caused by the actual anatomical defor-
mations in the first week was from -1.46 % to -0.05 % (low-risk CTV Dys), from
-2.15 Gy to 6.83 Gy (parotid glands Dpean) and from -3.98 Gy to 12.59 Gy (spinal

cord Dpax) for low-risk CTV Dys, parotid glands Dyean and spinal cord Dy, re-



4.3. Results

(0]

o

| ——PM

D

N

AWSLD"™®*(mm)(real-model)
- w

95% CI no model
95% CI of PM

- —e— No model

week

96

Figure 4.4: The residual anatomical uncertainty in WSLD. The residual anatomical un-
certainty comes from no model, in which predicted images were replaced by
planning CT, and the PM (N, = 100) were compared. The result indicates the
average difference with 95% CI between the estimated WSLD from models

and the actual WSLD across the 5 test dataset.
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Figure 4.5: Evaluation of the PM based on dose distribution. a) shows the bandwidth from
the actual DVH band in the first week. b) shows the bandwidth simulated from
the PM in the first week. The initial N in the legend represents the nominal
plan. The initial V in the legend represents the variations.

spectively. While the range of the dose metric variations simulated by the PM was
from -0.97% to 0% (low-risk CTV Dgs), from -2.35 Gy to 5.83 Gy (parotid glands
Diean) and from -3.04 Gy to 12.03 Gy (spinal cord Dpax) for low-risk CTV Dys,
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Table 4.3: Dose metrics discrepancy (perturbed dose metrics - nominal dose metric) from
the actual SNRVs (ADx) and the simulated SNRVs from the PM (ADx’) are listed
in maximum value, minimum value, mean value () and standard deviation(o).
The p-values are calculated between ADx and ADx’.

Low-risk CTV (ADgs5(%)) | High-risk CTV(ADgs5(%)) | Parotid Glands(ADyean(Gy)) | Brainstem(AD»(Gy)) | Spinal(AD2(Gy))
Actual Simulated Actual Simulated Actual Simulated Actual  Simulated | Actual Simulated
Maximum | -0.05 0 -0.19 0 6.83 5.81 8.91 4.98 12.59 12.03
Minimum | -1.46 -0.97 -3.12 -5.83 -2.15 -2.35 -5.08 -5.12 -3.98 -3.04
u -0.45 -0.43 -1.02 -0.88 1.95 1.4 -0.08 0.04 0.47 -0.15
o 0.31 0.2 0.91 0.86 2.51 1.86 2.49 2.51 3.26 342
p-value 0.69 0.61 0.32 0.84 0.49

parotid glands Dpean and spinal cord Dpyax, respectively. The p-values indicated
that no significant difference was found between ADx and ADx’ for all investigated

dose metrics.

4.4 Discussion

In this chapter, an anatomical model was developed to evaluate anatomical uncer-
tainty and quantify the probability of an anatomical deformation to arise during
treatment. The model accuracy was evaluated based on WSLD and dose distribu-
tion.

The PM can simulate the small random variations in the first treatment week
with an average error of 0.214£0.13 mm. For overall anatomical uncertainty pre-
diction, the PM can reduce anatomical uncertainty from 4.4741.23 mm (no model)
to 1.4941.08 mm at week 6 (see figure 5.5). The PM was considered suitable for
estimating anatomical uncertainty.

For the dose metrics in table 4.3, the simulated dose metric range of the PM in
the first week is basically within the range of the actual anatomical deformations,
and the p-values between ADx and ADx’ are > 0.05. supporting that the PM is
feasible to simulate the anatomical variations.

For the purpose of validating the model, only 20 patients with weekly CT imag-
ing, which is used less frequently in routine clinics than CBCT, were included to
reduce the error from HU corrections when calculating the spot location. The pro-
cedure of using CBCT images to build the model is the same, except that the DIR
error between CT and CBCT might be different and needs to be evaluated individ-

ually. The DIR error between CT and CBCT has been investigated in the literature
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[83, 84].

The inclusion of more scenarios in the model training can improve the prob-
ability estimation. In probabilistic treatment planning or robust optimisation, un-
certainty scenarios are often described using uniform distribution [42] or normal
distribution [41] in the cost function. However, it is difficult to correspond one
uncertainty scenario with a probability. This work exploited the independence be-
tween PCs to calculate the probability for each predicted CT. This can be used to

design the cost functions of anatomical robust optimisation.

In very recent studies, plan robustness against anatomical changes was inves-
tigated by anatomical robust optimisation. Mesias et al. (2019) [43] and Yang et
al. (2020) [44] both concluded that this method improved plan robustness toward
anatomical changes and reduced the number of plan adaptations for H&N patients.
However, Mesias et al. (2019) [43] required multiple scanning to produce extra CT
images before treatment for robust optimisation. It will give extra imaging dose to
the H&N patient and add a burden to a busy clinic. Yang et al. (2020) [44] used the
image from the first plan adaptation to include the progressive anatomical changes
in the second adaptive plan. However, it limits the creation of a robust plan at the
early planning stage. To overcome these limitations, the PM was developed based
on population data to capture systematic progressions and comprehensive random
deformations of H&N patients, making it possible to include anatomical changes
before treatment without extra burden [42]. For online adaptation, their results were
based on the static images acquired several minutes (the median reported adaptation
time: 12 minutes) before treatment application[48]. Considering the possibility of
small patient movements during the waiting time, SNRVs can be included in robust
optimisation for current online adaptation techniques. Such changes can, for exam-

ple, be inferred from the here suggested PM in the first treatment week.
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4.5 Conclusion

The PM used PCA to capture the major deformations of each treatment week. Ex-
ploiting the orthogonal of eigenvectors, a solution to calculate the probability of
a certain type of anatomical change was given and applied to the anatomical un-
certainty evaluation based on WSLD. In this WSLD-based evaluation, the PM can
predict the anatomical uncertainty during the course of radiotherapy with an aver-
age error of 0.8140.56 mm. In the model evaluation based on the dose distribution,
p-values for all investigated dose metrics indicated that no significant difference
was found between the dose metrics discrepancy caused by the real deformations
and the simulated deformations of the PM in the first week.

As the PM can accurately predict anatomical uncertainty during the course
of radiotherapy, it has great potential to be used in clinical applications, such as

anatomical robust optimisation.



Chapter 5

Individual anatomical model for

head and neck patients

This chapter built anatomical models for prospective offline replanning for head and

neck patients.
The work in this chapter resulted in the following outputs:

Ying Zhang, Stacey McGowan Holloway, Megan Zo& Wilson, Jailan Al-
shaikhi, Wenyong Tan, Gary Royle and Esther Bir. "DIR-based models to predict
weekly anatomical changes in head and neck cancer proton therapy”. Physics in

Medicine & Biology 67, no. 9 (2022): 095001.

Ying Zhang, Jailan Alshaikhi, Richard A. Amos, Wenyong Tan, Gary Royle,
Esther Bér. Systematic progression changes can assist robust IMPT plan selection

for head and neck patients. European Society for Radiotherapy and Oncology 2022.

Contribution of Authors: Jailan Alshikhi created the proton plans. Stacey Mc-
Gowan Holloway and Megan Zo¢ Wilson helped with the idea of building the AM.
Wenyong Tan provided the clinical data and valuable input. Gary Royle provided
valuable input concerning the clinical importance and impact of this work. Esther
Bér supervised the project. I developed the idea of RIM and model evaluation,

including developing codes and tools for data processing and the final analysis.
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5.1 Background

Robust optimisation can help to mitigate uncertainty in treatment delivery. How-
ever, robust optimisation alone may not be adequate to account for changes during
treatment [34]. Mitigating the dose discrepancy of progressive anatomical changes
still needs the involvement of plan adaptation. In offline replanning, patients must
either continue treatment with an existing sub-optimal plan or face interruptions to
treatment. This reactive approach of adaptive therapy triggered by clinical criteria
poses workflow challenges for busy clinical practice. While online adaptive pro-
ton therapy is considered superior to offline adaptation because the online adapted
plans are intended for same-day application, a predictive model can be exploited to
prepare an adaptive plan in advance and without the need for real-time QA, which

is one of the most challenging aspects of online adaptation.

The individual model aims to provide accurate progressive information for in-
dividuality. The produced predicted images can be used for the prospective replan-
ning. In previously proposed models, Kranen et al. (2013) [28] did not consider
any progressive anatomical changes between fractions. Chetvertkov et al. (2016)
[54] required at least half of the total fraction to provide a reasonable estimation for

progressive changes.

To build an anatomical model that can accurately and promptly provide pre-
dicted images for prospective replanning, the objectives of this study are 1) To
develop an average model (AM) based on population data to predict the weekly
systematic progression changes before treatment. 2) To refine the prediction by
adding the patient-specific progressive information from the data acquired during
the course of treatment, as the refined individual model (RIM). 3) To evaluate the
models using HU differences, contours, proton spot location deviations and IMPT

dose distributions.
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5.2 Method and material

5.2.1 Patient data

Twenty NPC patients were recruited prospectively. Each patient underwent a plan-
ning CT (pCT) and a weekly repeat CT (rCT;), where t (t=0, 1, 2, 3, ...) represents
the week of CT scanning. Contours in the pCT and weekly verification CTs were
manually delineated by an oncologist. Five patients were held separately as a test

set, and the model was built using the remaining 15 patients.

For all 5 test patients, an original (nominal) IMPT treatment plan with three
beam fields (60°, 180°, 300°) was generated using Eclipse version 16.1.0 (Varian
Medical Systems, Palo Alto, CA). All plans generated throughout this study were
robustly optimised with +3 mm setup and £3.5% range uncertainty for CTVs and
critical OARs. A RBE of 1.1 for proton beams was used. The dosimetric goals for
all plans in this study are summarised in table 5.1. A plan was deemed acceptable
if the goals set for the CTV and serial organs were fulfilled in the nominal scenario
(the error-free distribution) as well as all 12 dose distributions (3 mm orthogonal
shifts combined with the +£3.5% range error) in a robust evaluation. More clinical

characteristics of the patients can be found in the papers of Tan et al. [18, 79].

Table 5.1: Dosimetric goals of the treatment plans created in this study

Structure Goal under uncertainty
High-risk-CTV  Dgs5 > 95% of prescription dose (72.6 Gy, 33 fractions)
Low-risk-CTV ~ Dgs > 95% of prescription dose (63 Gy, 33 fractions)

CTvV D, < 107% of prescription dose
Spinal cord Dmax < 45 Gy

Brainstem Dmax <55 Gy

Chiasm Dmax <55 Gy

Structure Goal in Nominal

Parotid glands ~ Dypean <26 Gy

Oral cavity Dmean <40 Gy

Larynx Dmean <40 Gy

Proton planning information: MFO planning; spot spacing size: Smm; energy ran-
ge:70 MeV — 250MeV; range shifter: Scm; dose calculation algorithm: Piencel bea-
m scanning (PBS); optimisation algorithm: Nonlinear Universal Proton Optimiser.
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5.2.2 Anatomical models

The models were built at each weekly time point, considering the time dependence
of the progressive changes. The AM used the average deformation of each week
for prediction. The RIM further refined the prediction of the AM by adding the de-
formation difference at the early treatment between the actual deformation acquired
during the treatment and the average deformation. This deformation difference rep-

resents the progressive difference between individuals.

5.2.2.1 Average model

The first model implemented here was the AM. The weekly SVFs between the pCT
and the rCTs of the training data in the atlas were used as input. The produced
predicted CTs presented systematic progression changes during the course of treat-
ment. The procedure was divided into three steps and repeated for each treatment

week t.

1. The SVF of the AM for week ¢ in the atlas space was calculated as the expec-

tation value E of the deformation v, ,,_,, of the training dataset

AM
oo =EVapst) Zva st (5.1)

I’pz

|4

where N, is the number of patients used in this model, and pi is the patient

index.

2. The deformation vﬁ}l\f _,; was transformed into the space of an individual pa-

tient using

AM -1 AM
Vit =Valp OVapost ©Va—p- (5.2)

3. The predicted patient-specific deformation vg/[p was used for warping the

pCT to generate the predicted anatomy. It can be simply obtained by reversing

the SVF v?ﬁft using

AM _ _,AM (5.3)
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The predicted CT of the AM at treatment week ¢ (CT{*M) can be acquired
using

o, =exp(v ), (5.4)

CTM = ¢, (pCT). (5.5)

The AM only considered systematic deformations. Random deformations
(progressive variations between patients) can be included by adding individual ran-
dom deformations using newly acquired weekly CTs of the individual patient during
the treatment to gradually refine the prediction of the following weeks, leading to

the RIM, as described in section 5.2.2.2.

5.2.2.2 Refined Individual Model

In this section, the RIM, which is based on the AM but includes the individual ran-
dom deformations of a patient, was proposed to further improve the prediction. This
study assumed that patients share the basic deformation trend during the treatment
(AM), e.g., the progressive changes are rapid at the early treatment and then slow
down, but with an individual baseline. This baseline as a constant can be corrected
in the RIM using the deformation difference between the actual deformation of the
patient acquired during the early treatment and the average deformation of the AM
and applied to the prediction of the remaining treatment course. Hence, the RIM
assumes that if the shrinkage of the parotid for one patient is visibly more severe
compared to the average at fraction i, then the parotid shrinkage of the following
fractions is more severe than the average with the same magnitude.

To build the RIM, the AM was applied to the patient’s pCT first. The procedure

to refine the prediction is as follows:

1. The accurate deformation between the pCT and rCT; during the early treat-
ment was captured, referred to as v;,,. The update started from week 2
because the progressive changes in the first week were less significant[74, 75,

76].
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ind

2. The individual random deformation v/%5_,

for the remaining fractions can be
obtained by

ind AM .
v;‘r-lfi—”):vt—)p_v[%p , 1= 1(l’l—t), (56)

where #n 1s the total number of treatment weeks.

3. The deformation field vﬂ?&_} , for the following fractions as predicted by the

RIM can be calculated as

RIM AM ind :
Vitisp = Vitisp +vt+i—>p 1= l(l’l - t)' (5.7)

When treatment starts, individual data can be obtained and used in the RIM
to gradually update the predicted anatomy. In clinical practice, most H&N plan
adaptations occur around the 3rd or 4th week of treatment. This study picked 7 =2,3
as examples. When t = 2, the model was referred to as RIM,. When t = 3, the model

was referred to as RIM3.

5.2.3 Model evaluation

5.2.3.1 Model evaluation based on CT numbers

To assess the anatomical models, the difference image between the predicted image
and the corresponding rCT was quantified using the AAHUD within the patient’s

outline.

5.2.3.2 Model evaluation based on contours

The contours in the predicted images are the propagated contours obtained by ap-
plying the deformations of the models to the contours in the pCT. The contour
differences between the predicted contours and the manually delineated contours in
rCTs (gold standard) were quantified using the 3-dimensional MSD for each week.
The contours included in the evaluation were low-risk CTV, high-risk CTV and
parotid glands. These structures commonly change their shape and volume during

treatment.
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5.2.3.3 Model evaluation based on weighted spot location deviation.

The WSLD was applied to evaluate 1) the influence of the systematic anatomical

progression on the spot position and 2) the residual anatomical uncertainty.

* The systematic progression uncertainty simulated by the AM. The AM cap-
tured the systematic progressive changes of a patient cohort. Therefore, the
WSLD estimated by the AM showed the consequence of the systematic pro-
gressive changes in the training patient cohort. pCT was used as a reference

in equation 2.6.

* The residual anatomical uncertainty from models. The difference between the
estimated anatomical uncertainty from the models and the actual anatomical
uncertainty at each week was used to evaluate the accuracy of the models.

AWSLD}*® was calculated using equation 5.8,

AWSLD!'®® = WSLD[** — wsLDmode! (5.8)

where WSLD™# is the actual anatomical uncertainty calculated by the WSLD
between rCT; and the pCT, which is also corresponding to the residual
anatomical uncertainty of no model. WSLD™%! js the anatomical uncer-
tainty estimated by a model. The best model should approach a AWSLD}*® of

0 for each treatment week ¢.

5.2.3.4 Model evaluation based on dose distribution.

The nominal plan was recalculated on the rCTs and the predicted weekly CTs. The
gamma index was used to evaluate the dose difference between the dose distribution
on a rCT and the corresponding predicted weekly CT [68]. A relatively stringent
criterion of 2 mm/2% (a stringent criterion can lead to a smaller passing rate) and
the acceptable passing rate of 95% were used in this study because they are the

paired parameters generally used [85, 86]
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5.3 Results

5.3.1 Anatomical model evaluation based on Hounsfield Units

In this section, the image difference on HU between rCTg and the corresponding
predicted CTg is compared from the 5 test patients. For visual assessment, figure

5.1 shows a slice of the image difference of a test patient.

pCT
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Figure 5.1: Comparison between different anatomical models using a representative exam-
ple patient. (a) shows a slice from the pCT of a patient in the test dataset. (b)
shows the difference image between the pCT and rCTg, without the application
of any anatomical model. (c) is the difference image between the predicted
CT from the AM and rCTg. (d) is the difference image between the predicted
CT from the RIM, model and rCTg. (e) is the difference image between the
predicted CT from the RIM3 model and rCTg.

The shrinkage from the pCT to rCTg is indicated by the yellow area in fig-
ure 5.1 2b). This shrinkage leads to protons travelling further and causes a dose
discrepancy as a result. From visual assessment, with the AM, the yellow area is
reduced in 2¢). The RIM predicted more accurately the anatomical changes of this
patient in the area pointed by the red arrows. The refinement from the RIM3 further
reduced this difference but overestimated the posterior shrinkage, indicated by the

black arrow.
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The weekly AAHUD (no model, AM, RIM,, and RIM3) over all test patients
with approximately 8 million voxels in total and a special case with approximately
2 million voxels are analyzed and shown in figure 5.2a) and b), respectively. Be-
cause the deformation of the 2nd or the 3rd week was used to refine the model, the
AAHUD of the RIM; is shown from week 3 to week 6, and the AAHUD of the

RIM3 is shown from week 4 to week 6.
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(a) (b)

Figure 5.2: Boxplot of the AAHUD analysis: a) shows the average AAHUD from the 5 test
cases; b) the AAHUD from a special case. The range shows the AAHUD of
different image slices. The horizontal lines in the box plot indicate the median
value, and the asterisks indicate the mean value.

In the special case (figure 5.2b)), no improvement was observed from the RIM3
compared to the RIM», with only small HU differences between the two models.
On average, compared to no model, the AM, the RIM,, and the RIMj3 reduced the
AAHUD by 13.6 HU, 18.4 HU, and 19.2 HU, respectively at week 6. The RIM3
captured more characteristics of the individual anatomical changes and had a higher

predictive ability than the RIM;.

5.3.2 Model evaluation based on contours.

The weekly MSD between the predicted contours of the models and the correspond-
ing contours in the rCT; are shown for high-risk CTV, low-risk CTV and parotid
glands in figure 5.3. When the predicted contours from the models were used, the
average MSD of the parotid glands can be reduced from 1.98 mm (no model) to 1.16
mm (AM), 1.21 mm (RIM) and 1.19 mm (RIM3) at week 6. This study also found

a very slight improvement in low-risk CTV. The average MSD of low-risk CTV can
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be reduced from 1.39 mm (no model) to 1.28 mm (AM) and 1.34 mm(RIM3) at
week 6. No improvement was found in high-risk CTV. Although the AM is slightly
better than the RIM on the contour-based evaluation, the advantage is not significant

(<0.07 mm).

Low-risk CTV High-risk CTV Parotid glands
*—No model *—No model
AM “ AM
“—RIM_2 +—RIM_2
“RIM_3 2+ RIM_3

MSD(mm)

2
i TN
*—No model Wl
05 “AM 1 . 05
" ! .

“—RIM_2
~RIM_3

Figure 5.3: The weekly MSD between the predicted contours of the models and the cor-
responding contours in the rCT; for high-risk CTV, low-risk CTV and parotid
glands. In the box plot, the horizontal lines indicate the median value, and the
asterisks indicate the mean value.

5.3.3 Model evaluation based on weighted spot location devia-
tion.

In this section, the range differences were estimated using the spot location of the
treatment plans from the 5 test patients.

The WSLD originating from the systematic progression uncertainty estimated
from the AM is shown in figure 5.4. The uncertainty from the systematic progres-
sion steadily increased from 0.64+0.05 mm at week 1 to 2.07£0.20 mm at week
6.

The average WSLD from the residual anatomical uncertainties from the mod-
els and the corresponding 95% CI were compared in figure 5.5. When the un-
certainty estimated from the predicted images of the models was considered, the
residual anatomical uncertainty was reduced from 4.47+1.23 mm (no model) to
1.894+0.96 mm (RIM3), 2.2441.13 mm (RIM3), and 2.414+1.12 mm (AM) at week
6, achieving significant improvements as compared to no model.

The comparison of individual cases regarding the residual anatomical uncer-

tainty between the four models (including no model) is listed in appendix C. The
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Figure 5.4: The systematic progression uncertainty estimated from the AM for each week.
The result is estimated in average WSLD with 95% CI across the 5 test cases.
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Figure 5.5: The residual anatomical uncertainty in WSLD. The residual anatomical uncer-
tainty from the AM, the RIM; and the RIM3 are compared. The graph shows
the average difference with 95% CI between the estimated WSLD from the
models and the actual WSLD across the 5 test dataset.

uncertainty of the DIR is also listed as a reference.

A summary of model uncertainty based on WSLD is listed in table 5.2.
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Table 5.2: Summary of model evaluation based on WSLD over all test patients.

Uncertainty (Mean£95%CI) (mm)
Week Model (Residual anatomical uncertainty)

(No model) AM RIM; RIM3 DIR
1 2.09+0.28 1.45+0.24 - - 0.86+0.14
2 2.294+0.20 1.394+0.18 - - 0.87+£0.16
3 2.85+0.47 1.58+0.40 1.03+0.38 - 0.90+0.20
4 3.75+0.80 2.01+0.73 1.73+0.65 1.37+0.45 1.04+0.13
5 4.17+1.11 2.394+1.03 2.12+0.99 1.79+0.73 1.18+0.30
6 4.47+1.23 2.414+1.12 2.2441.13 1.89+0.96 1.33+0.48

5.3.4 Model evaluation based on dose distribution.

Figure 5.6 shows the DVH curves for the dose distribution of a test patient (figure
5.1) at week 6 from the rCTg, the AM, the RIM;, the RIM3 and no model (using the
pCT). The DVH of the RIM3 was the closest to the DVH of the rCTg. The worst

performance in the OARs was observed without using a model.
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Figure 5.6: DVH curves for the dose distribution of a test patient (figure 5.1) at week 6
from the rCTg, the AM, the RIM,, the RIM3 and no model (using the pCT).

The results of the gamma analysis between the dose distribution on rCTs and
the corresponding predicted weekly CTs from no model (predicted images were
replaced by the pCT), the AM, the RIM; and the RIM3 were listed for each patient
in table 5.3. The number of cases of which the gamma index < 95% was reduced
from 9 (no model) to 6 (AM), to 4 (RIM,) and 2 (RIM3). The average gamma index
among 5 test patients was improved from 93.87+2.48 % (no model) to 96.16+-1.84
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% (RIM3) at week 6.

Table 5.3: The gamma index between the dose distribution on rCTs and on the correspond-
ing predicted weekly CTs from no model (predicted images were replaced by
planning CT), the AM, the RIM; and the RIMj3 for each test patient and each
week. The gamma indexes below 95%, the generally accepted standard passing
rate, are highlighted in bold. The gamma indexes of week 1 and week 2 are only
listed for no model and the AM as the RIM models updated from week 3.

1d week 1 (%) week 3 (%) week 5 (%)

No model AM No model AM RIM, No model AM RIM; RIMj;
1 98.1 98.1 |93.2 94.1 95.3 91.2 934 946 96.1
2 99.3 98.8 | 99.1 98.7 99.2 98.0 982 98.6 982
3 96.4 97.2 |96.1 96.4 96.2 914 91.8 916 915
4 97.7 97.8 |95.8 95.2 96.5 96.6 96.8 96.7 96.9
5 98.5 98.1 | 96.6 97.3 98.0 934 956 96.0 964
mean | 98.01 98.01 | 96.16 96.33 97.06 94.09 95.16 95.50 95.81
CI 0.85 047 | 1.71 1.44 1.23 2.45 2.07 212 2.06
1d week 2 (%) week 4 (%) week 6 (%)

Nomodel AM | Nomodel AM  RIM; RIM3 | Nomodel AM  RIM; RIMj;
1 95.3 956 |934 955 96.6 975 |91.2 939 946 975
2 99.3 99.2 |98.2 979 984 984 |973 979 982 973
3 95.0 96.7 |955 969 948 960 |91.5 924 914 922
4 97.3 97.0 |95.7 948 963 966 |97.1 96.7 97.5 97.7
5 98.2 98.2 |94.1 96.7 97,5 973 |92.2 949 956 96.0
mean | 97.03 97.34 | 95.37 96.39 96.72 97.16 | 93.87 95.18 9548 96.16
CI 1.49 1.14 | 1.47 098 1.09 0.72 |248 1.76 215 1.84

5.4 Discussion

In this chapter, two different anatomical models were developed and compared.
The AM is a basic model only used to evaluate systematic anatomical uncertainty.
The RIM is a further refinement based on the AM, with the suggested use in offline
adaptive treatment planning. The model accuracy was evaluated based on AAHUD,

contours, WSLD and dose distributions.

5.4.1 Model evaluation

From the AAHUD comparison, on average, the RIM predicted the anatomical
changes with the highest accuracy compared to the AM or no model. This observed
outcome was expected because the deformation differences include the progressive
variations between patients. It is important to note that small non-rigid variations
(sNRVs), such as jaw movement and shoulder position changes, will also be in-

cluded in the deformation differences to update the model. If the magnitude of the
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sNRVs was greater than the progressive variations, the RIM can be inferior to the
AM, as shown in figure 5.2b). The particular patient shown in this case was very
slim at the start of treatment and had <5% weight loss. The sSNRVs can be more
predominant, making the RIM less effective. Nevertheless, the observed differences

between the AM and the RIM were small.

The model evaluation based on contours showed that the models are more
effective in predicting the changes of parotid glands. Because patients were not
stratified based on CTV features, and CTV location and size are diverse in this
dataset, predicting the changes of the CTVs is challenging. This contour-based
model evaluation assumes that the contours are perfect on all CTs. In this study, the
inter-observer variation was eliminated as a single physician contoured the organs,
and the intra-observer variability was minimized by using a copy-and-modification
strategy[18]. In reality, intra-rater variability exists and can lead to an increase in

the evaluation metrics.

As shown in figure 5.4, the effect of anatomical progressions in the first week
of treatment was not significant, justifying the approach of refining the model
from week 2 onward. The RIMj3 can reduce the anatomical uncertainty from

4.4741.23 mm (no model) to 1.894+0.96 mm at week 6 (see figure 5.5).

In table 5.3, the average gamma indexes throughout the 5 test patients between
the dose distribution on rCTs and the corresponding predicted weekly CTs from the
AM and the RIM are all above 95% for each week, which is the standard passing
rate generally accepted [69, 70]. Also, the average gamma index was improved
from 95.18+1.76% (AM) to 96.164-1.84 (RIM3) at week 6. Combining figure 5.2
and 5.5, this study demonstrated that the RIM can be gradually refined during the
treatment and can potentially serve as a routine monitor to update the prediction and

prepare for adaptive intervention if necessary.

In comparing individual gamma values in table 5.3 and individual WSLD in
table C3 in appendix C, there is a high level of consistency of 80% in terms of se-
lecting the best prediction, validating the feasibility of using WSLD as an evaluation

tool.
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5.4.2 Study limitations

The models were built based on a relatively small sample data set of 15 patients, and
analyses were performed on 5 patients. The weight loss of these 5 patients ranged
from 4% to 18% (The weight loss of the training dataset ranged from 2% to 12%),
including patients with small and severe anatomical changes. Exploiting the current
dataset, the sensitivity of the AM towards the training data is measured based on
repeatedly sampling random training data for the same patient in the Appendix C.2.
The 95% CI of different measurements is less than 0.12 mm. However, it still cannot
totally remove the concerns of over-fitting when the model is directly applied to
another dataset. Finding the optimal parameters to build models for patients with
CBCT data is underway. It will enable a relatively large dataset to be included for
modelling, thus avoiding the risk of over-fitting. Further validation of the model
and the estimation of its sensitivity thereof will be conducted on a larger cohort
of patients. When a large dataset is available, patient stratification can be used to
improve the model’s accuracy. The model can be built based on a cohort of patients
with the same characteristics and applied to the same type of patients. The features
that might be related to the anatomical changes have been revealed [87, 88, 89, 90,
91]. Assuming the model is built based on a large dataset with patient stratification,
the accuracy of the model should be only limited by the DIR uncertainty and SNRV's

uncertainty.

Another limitation of the presented study is that the patients used to build and
evaluate the models have received photon therapy. This study assumed that patients
undergoing proton therapy would have similar anatomical changes as those who
received photon therapy. Further validation of the model will be conducted on a

cohort of patients treated with IMPT.

5.5 Conclusion

This study has presented and analysed two anatomical models for H&N patients.
The AM captures the systematic progressive changes during the treatment. The

RIM is based on the AM but then updated using the patient’s progression during
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the treatment. Based on the evaluation of CT numbers, contours, range and dose
distribution, this study concluded that the RIM gradually refined the prediction of
anatomical changes. The exploration of the potential clinical application, using the
RIM to prepare offline adaptive plans in advance, is demonstrated in Chapter 6.

In the contour-based evaluation, the average MSD of the AM was slightly bet-
ter than that of the RIM. However, the advantage was not significant. Considering
that parotid glands and low-risk CTV are closely related to outline changes, the pre-
dicted contours of these two organs were still chosen for the application of the RIM

for prospective replanning in Chapter 6.



Chapter 6

Application of refined individual

model in offline adaptive therapy

This chapter demonstrated the concept of using the refined individual model (RIM)
to prepare an adaptive plan in advance. The work in this chapter resulted in the
following outputs:

Ying Zhang, Jailan Alshaikhi, Richard Amos, Wenyong Tan, Gary Royle, Es-
ther Bér. First Application of Predictive Model to Assist Adaptive Proton Therapy.
American Society for Radiation Oncology 2021.

Ying Zhang, Jailan Alshaikhi, Richard A. Amos, Matthew Lowe, Wenyong
Tan, Esther Bir and Gary Royle. “Improving workflow for adaptive proton ther-
apy with predictive anatomical modelling: A proof of concept.” Radiotherapy and
Oncology, 173 (2022): 93-101.

Contribution of Authors: Jailan Alshikhi created the proton plans. Wenyong
Tan provided the clinical data and valuable input. Richard A. Amos and Matthew
Lowe provided valuable input concerning the clinical importance and impact of this
work. Esther Bir and Gary Royle supervised and guided the project. All other work

was performed by myself.

6.1 Background

Anatomical models for H&N patients have been proposed in previous studies

[28, 63, 60]. Yu et al. (2016) [60] exploited the model to generate artificial defor-
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mations for DIR evaluation. Kranen et al. (2013) [28] generated CTs to represent
the systematic changes of previous fractions for plan adaptation. However, they
only assessed their model based on the misalignment of the anatomical landmarks.
The clinical application of anatomical models has not yet been fully explored and
evaluated.

The current offline adaptation technique is a reactive approach leading to an
unpredictable workload for treatment planning staff, the medical physics team who
perform patient-specific plan QA, and radiation oncologists who review and ap-
prove the plans. Also, patients must either continue treatment with an existing sub-
optimal plan or face interruptions to treatment whilst plans are adapted. Adaptive
plans that can be prepared in advance would be beneficial to the clinical workflow:
1) The adapted replan can be delivered as soon as it is needed due to the ability to
perform patient-specific QA/verification before the adaptation is required, for ex-
ample, on a predicted CT, which triggered a replan. 2) For the patient, there is no
gap in treatment or the delivery of a few sub-optimal fractions while the replan is
calculated, approved, and verified through QA. 3) For the workflow, the option to
prepare adaptive plans in advance allows for easier scheduling of patient-specific
QA around machine QA, maintenance, and other demands for beam time.

This chapter explores the use of the refined individual model (RIM) to generate
adaptive proton therapy plans in advance. Three different strategies are compared
to find a strategy that can maximise the use of the RIM, benchmarked against a

standard reactive clinical replanning technique.

6.2 Materials and methods

6.2.1 Refined individual model

In this chapter, the leave-one-out cross-validation strategy was applied to 20 NPC
patients who had a planning CT and weekly CTs during the treatment to build the
RIM. To predict a deformation for the remaining patient, the average deformation
of the training population (n=19) was applied to the patient’s planning CT. The RIM

was then updated based on the patient’s progression during treatment. This process
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was repeated for 10 randomly selected patients. It still follows that each validation

patient is independent from the training population used to create the average model.

6.2.2 Patient data

Ten validation patients were included in this study. Each patient had a planning CT
(pCT), weekly verification CTs and predicted weekly CTs. Contours in the planning
CT and weekly CTs were manually delineated by an oncologist. None of the IMPT
plans presented in this study was applied during the clinical radiotherapy treatment
of these patients. Instead, this is a retrospective study using the patients’ imaging
data. As tumour location and size are diverse in this dataset, predicting the change to
the high-risk CTV (tumour) is challenging. The RIM is most effective in predicting
the patient outline and parotid gland positions. Hence, for all OAR contours and the
low-risk CTVs (nodal area) affected by neck changes, the predicted contours from
contour propagation were used. For the high-risk CTV, the initial CTV of the plan-
ning CT was used in the predicted plan to ensure target coverage. In this study, plan
adaptation was triggered with the aim of protecting the parotid glands, following
the TORPEO trial (A phase III trial of proton therapy versus intensity-modulated
radiotherapy for multi-toxicity reduction in oropharyngeal cancer; CRUK/18/010)
[53]. When the difference (between the original plan calculated on the planning CT
and a weekly verification CT) of Dyean to both parotid glands was larger than 3 Gy
[54], a replan was created. Detailed clinical information of this cohort of patients
can be found in [18].

For all 10 validation patients, an original (nominal) IMPT treatment plan was
generated using Eclipse version 16.1.0 (Varian Medical Systems, Palo Alto, CA).
All plans generated throughout this study were robustly optimised with +3 mm
setup and 4+3.5% range uncertainty for CTVs and critical OARs. A RBE of 1.1
for proton beams was used. The dosimetric goals and priorities for all plans in this
study are summarised in table I [92, 93, 94, 5]. Further details can be found in
Appendix D.1.

The nominal plan was recalculated on the weekly verification CTs and eval-

uated to identify the need for adaptation. Adaptation was required for 9 out of 10
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patients (exception: patient ID 1 referred to in later tables), and adapted plans were
generated using the CTs that triggered the replan.

A plan was deemed acceptable if the goals set for the CTV and serial organs
were fulfilled in the nominal scenario (the error-free distribution) as well as all 12
dose distributions (3mm orthogonal shifts combined with the +3.5% range error)
in a robust evaluation. For dose distributions calculated on weekly CT images, the
DIR algorithm of Niftyreg was used to accumulate the dose in the reference frame

of the planning CT.

Table 6.1: Dosimetric goals of the treatment plans created in this study

Structure Goal under uncertainty Priority
High-risk-CTV  Dgs > 95% of prescription dose (72.6 Gy, 33 fractions) 2
Low-risk-CTV  Dgs > 95% of prescription dose (63 Gy, 33 fractions) 2
CTV D, < 107% of prescription dose 2
Spinal cord Dmax < 45 Gy 1
Brainstem Dmax <55 Gy 1
Chiasm Dmax <55 Gy 1
Structure Goal in Nominal

Parotid glands ~ Dpean <26 Gy 3
Oral cavity Diean <40 Gy 3
Larynx Dmean <40 Gy 3

6.2.3 Adaptive planning using the refined individual model

Three different adaptation strategies were proposed to use the predicted images
from the RIM to create adapted proton plans. These strategies enable adaptive plans
to be created in advance of necessity, streamlining the clinical workflow and facili-

tating QA.

6.2.3.1 Scheduled predicted plan on scheduled week

The first adaptation strategy consists of generating two adapted plans after the RIM
has been updated at week 2 of treatment. This study chose to use two plan adapta-
tions following the paper of Wu et al. (2009) [95], which demonstrated very limited
gains from increasing the replanning frequency from 2 to 6. The predicted CTs of
week 3 (PD3) and 5 (PDs) were used to create two predicted plans. The plan created
on PD3 was intended for the treatment of week 3 and week 4, whereas the plan cre-

ated on PD5 was intended to be applied in week 5 and week 6. For verification, the
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predicted replans can be recalculated on the corresponding weekly CTs before de-
livery, ensuring the applicability and suitability of the plan. This adaptation strategy

is referred to as SPS adaptation.

6.2.3.2 Reactive predicted adaptation strategies

Reactive predicted adaptation strategies included 1) reactive predicted plan on a

flexible week and 2) reactive predicted plan on a scheduled week.

* Reactive predicted plan on a flexible week. The second adaptation strategy
comprised one plan adaptation. For that strategy, the nominal treatment plan
was recalculated on each of the weekly predicted images, and the resulting
dose distribution was assessed. The prospective replan was created in the
predicted image PD; where the recalculated dose distribution met the con-
ditions required to trigger plan adaptation. The adapted plan, referred to as
the reactive predicted plan, was then applied as soon as the verification CT
collected during treatment triggered plan adaptation. Note that during this
strategy, the adapted plan is not necessarily applied in the week that predicted
adaptation but rather applied flexibly whenever an adaptation is triggered in a
verification CT. For verification purposes, the predicted replan can be recal-
culated to the verification CT to confirm if the plan satisfies the dosimetric

goals. This adaptation strategy is referred to as RPF adaptation.

Because plan adaptation was triggered to protect the parotid glands, the over-
lap of the predicted contours (used in the predicted plan adaptation strategy)
and the real contours (used in the standard replanning technique, mentioned
in 6.2.3.3) for the parotid glands was measured by the Dice similarity coeffi-
cient (DSC) and compared with no model, where the contours in the planning

CT replaced the predicted contours.

DSC _ PGyNPG,| (6.1)
" IPG I+ PG, |

where PG, and PG, represent the binary masks of the parotid glands in a

predicted CT and the corresponding real CT, respectively.
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Although the predicted replan was applied flexibly in this strategy, the pre-
dicted replan week can be compared with the actual replan week to evaluate

the predictive ability of the RIM.

* Reactive predicted plan on a scheduled week. Brown et al. (2016) [96] and
Wu et al. (2008) [97] showed that plan adaptations occur around the 3rd or 4th
week of treatment for H&N patients. To lighten the workload of weekly dose
monitoring, one adaptation to the fixed week can be used as an alternative
option. The TORPEdO trial[53], conducted by the Christie NHS Foundation
Trust in Manchester, UK, was designed to repeat the planning CT scan during
week 3 to evaluate the need for replanning. Therefore, this strategy applied
the reactive predicted plan from week 3. For verification purposes, the plan
can be recalculated to the verification CTs to confirm if the plan satisfies the

dosimetric goals. This adaptation strategy is referred to as RPS adaptation.

6.2.3.3 Standard replan

For comparison, the standard adaptation plan was optimised on the verification CT
which triggered a replan and applied to the treatment of the following week, repre-
senting a delay of 5 fractions before implementing the replan.

The workflows of the adaptation strategies mentioned above are shown in fig-
ure 6.1.

The dosimetric details of all plans generated for this study are summarised in

table 6.2.

6.2.4 Plan evaluation using accumulated dose metrics

For the standard replanning technique and the three proposed strategies using pre-
dicted anatomy, the dose distributions on the weekly CTs were calculated and de-
formed to the planning CT to accumulate the dose, allowing an evaluation of the
delivered dose to the patient. The accumulated dose using the standard replanning
technique is taken as the gold standard.

This study first compared the SPS and the RPF using five patient data sets

(IDs 1-5). This comparison can reveal if one additional adaptation can improve the
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(a) The workflow of the SPS strategy. In the SPS strategy, predicted plans are
created on PD3 and PDs and applied to the treatment of week 3/4 and week
5/6 respectively.
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(b) The workflow illustrating the RPF strategy. In the RPF strategy, the pre-
dicted replan is created on the predicted image which triggers a replan. The
dose distributions on the weekly verification CT are monitored all the time
during the treatment, and the predicted plan is applied whenever adaptation
is required.
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(¢) The workflow of the RPS strategy. The predicted replan is created on the pre-
dicted image which triggers a replan. The reactive predicted plan is applied
from week 3.
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(d) The workflow of the standard adaptation. During the standard adaptation,
the adapted plan is calculated on the CT that triggers a replan and applied in
the following week, representing a delay of 5 fractions.

Figure 6.1: The workflows of the four adaptive IMPT strategies.
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Table 6.2: Dose metrics of proton plans created for the 10 patient data sets. Does metrics
are from the CTs where the plans have been optimised (the planning CT for the
nominal plan, the adaptation-triggering repeat CT for the standard replanning
and the adaptation-triggering predicted CT for the predicted adaptation). Please
note that the patient with ID 1 has no row for the standard replan and flexible
replan because no replan was triggered from the verification CT of that patient.

D Plan High-risk CTV  Low-risk CTV D2 Spinal cord Brainstem  Chiasm Parotid ~ Oral Cavity ~ Larynx

D5 (%) Dosq(%) Dyax(Gy)  Diax(GY)  Dmax(Gy) Dmean(Gy) Dmean(Gy)  Dmean(Gy)
plans of five patient for best strategy selection.
Nominal plan 98.75 98.86 103.05 30.55 45.69 36.5 27.36 6.8 30.93
| SPS 98.85 99.02 103.24 28 46.15 339 28.88 6.7 28.35
98.8 98.98 103.34 29.43 46.49 34.46 29.18 7.48 28.22
Nominal plan 98.28 98.66 102.92 34.49 40.08 22.06 25.53 14.24 26.24
2 Standard replan 98.53 98.65 102.33 34.48 37.84 16.4 2471 12.14 22.84
RPF/RPS 98.3 98.53 102.97 36.89 37.1 16.36 25.15 14.6 21.55
SPS 98.3 98.53 102.97 36.89 37.1 16.36 25.15 14.6 21.55
98.36 98.34 102.58 36.23 37.1 17.38 27.25 14.68 22.6
Nominal plan 98.75 98.59 102.24 33.13 39.16 23.88 22.89 10.88 11.77
3 Standard replan 98.7 98.54 102.24 33 39.5 23.6 23 10.76 12.28
RPF/RPS 98.54 98.65 102.15 33 385 23.29 22 8.94 9.47
SPS 98.55 98.67 102.29 28.2 333 22.51 20 9.17 10.42
98.59 98.71 102.44 27.75 34.48 22.62 21.5 9.04 10.59
Nominal plan 98.42 98.82 102.96 329 34.4 32.02 24.53 743 22.18
Standard replan 98.68 98.79 102.05 15.51 38.59 19.18 22 6.07 14.02
4 RPF/RPS 98.57 98.70 102.83 17.46 37.8 18.7 23 6.8 17.6
SPS 98.57 98.79 102.71 17.6 36.88 19.45 23.9 6.68 16.97
98.61 98.65 103.14 16.71 37.55 20.54 23 6.7 17.81
Nominal plan 98.82 98.67 102.02 34.56 40.75 26.21 23.63 10.65 16.08
5 Standard replan 98.87 98.65 101.82 35 40.56 26.4 23.85 10.6 16.28
RPF/RPS 98.65 98.71 102.27 36.4 425 29.3 22.5 12.46 16.33
SPS 98.73 98.63 102.18 34.7 40.44 26.26 22 12 16.13
98.71 98.76 102.89 35.43 42.34 27.03 22.5 12.26 16.17
plans of five patient to verify the result of best strategy.

Nominal plan 98.5 98.65 102.7 36 38.93 34.37 26.13 15.38 30
6  Standard replan 98.4 98.57 101.3 35 42.38 20 30.1 13.29 22.71
RPF/RPS 98.5 98.65 102.81 33 42.4 37 27.21 15 29.9
Nominal plan 98.6 98.27 102.58 36.53 40 26.86 27.04 13.19 19.64
7  Standard replan 98.75 98.68 102.46 28.15 36.5 19.07 25.58 11.1 16.84
RPF/RPS 98.68 98.55 102.76 34 42.82 26.65 27.4 11.37 17.54
Nominal plan 98.37 98.63 102.48 35.47 36.01 23.43 27.24 10.6 19.77
8  Standard replan 98.6 98.5 101.97 32.95 37.68 24.24 26.96 9.92 15.43
RPF/RPS 98.43 99.00 102.33 24.88 38.84 24.63 26.84 10.77 17.06

Nominal plan 98.75 98.76 102.31 11.84 42.58 42.63 22.66 8.83 9.2

9  Standard replan 98.57 98.37 102.88 11.75 38.46 34.33 22.6 9.86 12.3
RPF/RPS 98.74 98.79 102.47 8.74 40.17 40.82 22.67 8.3 7.93
Nominal 98.62 98.28 102.01 29.2 38.76 36.3 27.64 7.1 21.44
10  Standard replan 98.45 98.42 102.05 31.75 42.19 33.57 28.74 8.52 17.33
RPF/RPS 98.52 98.61 102.04 31.73 39.63 40.27 28 7.73 20.34

accumulated dose distributions and reveal the accuracy of the RIM. Ten patient data
sets (IDs 1-10) were then used in the reactive strategies (the RPF and the RPS) and

compared to the standard replanning technique for further investigation.

Equation 6.2 was used to calculate the dose metrics difference between the

accumulated dose and the planned dose.

ADX - DXaccu - (DXn * Fl’l + DXr * Fr). (6.2)
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Dx represents a dose metric, ADx is the dose metric difference between the accu-
mulated dose and the planned dose, DX,y 1s the dose metric of the accumulated
dose, Dx,, is the dose metric of the nominal plan, and F;, is the number of fractions
to which the nominal plan is applied. Dx, is the dose metric of the adapted plan,
and F; is the number of fractions to which the replan is applied. The planned dose
is represented by the sum Dx,, * F,, +- DX, * F}.

The dose metrics of the plans (nominal plan, the standard replan, the SPS, the
RPF and the RPS) that are used for plan comparison are the same as in table 6.1. A
two-sample t-test was used to determine if there is a significant difference between
the distribution of ADx in two adaptation strategies, with p < 0.05 taken as the

significance level.

6.3 Results

6.3.1 Comparison between scheduled predicted plan on sched-

uled week and reactive predicted plan on flexible week

To compare the SPS and the RPF, both techniques were applied to the CT imaging
data of the five patients(IDs, 1-5). Table 6.3 shows the nominal plan and the accu-
mulated doses of the nominal plan with no adaptation, the SPS and the RPF for each
patient except patient 1. For patient 1, unlike patients 2-5, the dose recalculation on
the weekly verification CTs and predicted CTs did not trigger a replan. Therefore,
no plans were generated for the RPF.

This study found that the CTV coverage (Dgs) remains similar between the
SPS, the RPF and the nominal plan, with differences smaller than 1%. For the serial
organs, three strategies (no adaptation, the SPS and the RPF) all showed similar
accumulated dose metrics, with differences within tolerance (<3 Gy). The largest
differences were observed in the accumulated parotid Dpean between no adaptation
and each adaptive strategy (the SPS and the RPF). Compared to no adaptation, the
SPS and the RPF decreased the accumulated Dpeyn to the parotid glands by up to
3.82 Gy and 3.95 Gy, respectively.

In figure 6.2, the SPS and the RPF are compared for the five patients in terms
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Table 6.3: Nominal and accumulated dose metrics of the five patients used to compare the
SPS and the RPF. Please note that for patient 1, no replan was triggered accord-
ing to the replan criteria. The dose metrics for the parotid glands are highlighted
in bold. The asterisk in plan column indicates the numbers in the same row are
the accumulated dose.

D Plan High-risk CTV  Low-risk CTV D, Spinal cord Brainstem Chiasm Parotid Oral Cavity Larynx
D95 D95 Dmax Dmax Dmax Dmean Dmean Dmsan
(%) (%) (%) Gy Gy Gy Gy Gy Gy

Nominal plan 98.75 98.86 103.05 30.55 45.69 36.5 27.36 6.8 30.93

1 No Adaptation * 97.93 98.89 103.17 28.56 42.39 275 29.61 6.9 31.14
SPS* 97.82 98.89 102.34 28.31 42.62 28.79 29.8 7.04 29.49

Nominal plan 98.28 98.66 102.92 34.49 40.08 22.06  25.53 14.24 26.24

No Adaptation* 96.6 95.71 102.89 33.39 40.63 22.16  31.87 17.45 32.03

2 RPF* 96.6 96.35 102.62 35.81 41.27 19.45  28.92 17.39 28.43
SPS* 96.4 96.67 102.62 35.49 40.71 19.58  28.72 17.4 28.12

Nominal plan 98.75 98.59 102.24 33.13 39.16 23.88  22.89 10.88 11.77

No Adaptation * 97.97 98.89 102.07 30.59 35.69 2458 2453 10.76 12.36

3 RPF* 98.05 98.89 102.07 31.34 38.28 23.8 22.77 10.48 11.27
SPS* 98.01 98.89 102.07 30.02 36.69 2293 2298 10.5 11.77

Nominal plan 98.42 98.82 102.96 329 34.4 32.02 2453 743 22.18

No Adaptation* 97.74 97.94 102.62 30.47 29.68 29.29  28.36 8.62 25.09

4 RPF* 97.82 96.98 102.07 24.36 33.89 22.04  25.03 8.31 21.39
SPS* 97.86 97.62 102.34 24.24 34.04 2273 25.52 8.19 21.34

Nominal plan 98.82 98.67 102.02 34.56 40.75 26.21 23.63 10.65 16.08

No Adaptation* 98.09 98.57 102.34 39.36 42.39 2891 28.61 12.19 19.99

5 RPF* 98.01 98.57 102.07 35.86 42.18 28.89  24.66 12.24 19.5

SPS* 97.97 98.57 102.07 35.04 42.57 26.87  24.79 12.24 19.9

of dose metric differences ADx. The mean values across the five patients of the dose

metric differences for CTVs, parallel and serial OARs were relatively small (<0.5

Gy/%), with no clear trend as to which strategy produced plans with minimal dose

differences.
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Figure 6.2: Comparison of the dose metric differences for 5 patients observed in the SPS
and the RPF. The horizontal lines in the box plot indicate the median dose
metric difference among the five patients, and the asterisks indicate the mean
difference. Dy,x and Dpegn are given in units of Gy.

The statistical analysis using the two-sample t-test also demonstrated that the
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difference between the SPS and the RPF was not significant (p>0.05 for all inves-
tigated dose metrics), as shown in table 6.4. Given the findings and the workload in
clinical proton therapy, it appeared that a practical solution is to continue with the
reactive predicted adaptation strategy, requiring only 1 replan.

Table 6.4: p-value of the two-sample t-test between the distribution of ADx (see equation

1) in the RPF and the SPS with mean value(u) and standard deviation(c). Sta-
tistically significant differences between plans (taken as p<0.05) are highlighted

in bold.
Statistics High-risk CTV  Low-risk CTV D Spinal cord Brainstem Chiasm Parotid Oral Cavity Larynx
Dos Dys ’ Dinax Dinax Dinax Dincan Dinean Dincan
(%) (%) (%) Gy Gy Gy Gy Gy Gy
p value with mean value(u) and standard deviation(o) of five patients
RPF(u +0) -0.904+ 0.446  -0.7714+ 1.161  -0.138+ 0.228 -0.969+ 1.257 -0.543+2.247 -2.382+4.265 1.747+ 1.237 1.098+ 1.132  1.876+ 1.78
SPS(u +0) -0.994+ 0.524  -0.589+0.904  -0.3824+0.33  -0.752+0.932 -0.342+2.202 -2.171+£3.037 1.744+£0.705 1.099+£1.131 1.819+ 1.806
p value(SPS and RPF) 0.777 0.789 0.210 0.764 0.89 0.930 0.996 0.999 0.961

6.3.2 Comparison between reactive predicted adaptation strate-

gies and the standard replan technique

The predictive power of the method is shown in figure 6.3, including DSC and re-
plan week comparisons. The DSC of the parotid glands (DSCpg) between predicted
contours (used in the predicted plan adaptation) and the real contours (used in the
standard replan) are compared with no model, in which planning contours and real
contours in the standard replan are used to calculate the DSC, in figure 6.3a. Using
the reactive predicted adaptation strategies, the DSCpg was increased by 0.08.

The deviation of the actual replan week from the predicted replan week is
shown in figure 6.3b. Of note, this study did not apply the predicted plan to the
predicted week but applied it flexibly to the actual week that requires replanning. In
4/10 cases, the predicted images accurately predicted the replan week (one patient
that did not need a replan is included in this scenario). In the remaining 6/10 cases,
the predicted week and actual replan week differed by only 1 week.

In figure 6.4, the DVH differences between the dose of the nominal plan on a
predicted CT and on the corresponding triggering repeat CT are illustrated for an
exemplary patient. The DVH differences are small.

To further investigate the performance of the reactive predicted adaptation

strategies, the RPF and the RPS strategy were compared with the standard replan
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Figure 6.3: The predictive ability of the RIM. (a) The comparison between the RIM and
no model on DSCpg for the ten validation patients. The horizontal lines in the
box plot indicate the median value among the 10 patients, and the asterisks
indicate the mean value. (b) shows the distribution of cases on adaptation week
difference (between real replan week in the standard replan and the predicted

Figure 6.4:

replan week in the predicted plan adaptation).

Ratio of Total Structure Volume(%)

——SPINAL-CORD
—PAROTID-R
PAROTID-L
——HIGH-RISK-CTV
——LOW-RISK-CTV
CHIASM
——BRAINSTEM

Dose(Gy)

The DVH comparison between the dose of the nominal plan calculated on a
predicted CT and on the corresponding triggering repeat CT for an exemplary
patient. The solid lines belong to the dose on the predicted CT. The dashed
lines belong to the dose on the triggering repeat CT.

strategy based on the results of 10 patients (IDs, 1-10). Table 6.5 includes the nom-

inal plan and the accumulated doses of the nominal plan with no adaptation, the

standard replan, the RPF and the RPS. For patients who had a standard replan on

week 3, the accumulated doses of the RPF and the RPS are the same. The results of

the RPS are only shown in patients who did not have standard replan on week 3.
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Table 6.5: Nominal and accumulated dose metrics with no adaptation, the RPF, the RPS
and the standard replanning for the ten patients. Please note that for patient 1,
no replan was triggered according to the replan criteria. The dose metrics for the
parotid glands are highlighted in bold. The asterisk in the plan column indicates
the numbers in the same row are the accumulated dose.

D Plan

High-risk CTV  Low-risk CTV

D,

Spinal cord Brainstem Chiasm

Parotid Oral Cavity Larynx

Dos Dos Dimax Dimax Dimax Dimean Dumean Dmean

(%) (%) (%) Gy Gy Gy Gy Gy Gy
1 Nominal plan 98.75 98.86 103.05 30.55 45.69 36.5 27.36 6.8 30.93
No Adaptation * 97.93 98.89 103.17 28.56 42.39 27.5 29.61 6.9 31.14
Nominal plan 98.28 98.66 102.92 34.49 40.08 22.06 25.53 14.24 26.24
2 No Adaptation* 96.6 95.71 102.89 33.39 40.63 22.16  31.87 17.45 32.03
Standard Replan* 97.11 96.67 101.79 35.45 40.54 20.64  29.59 16.24 26.89
RPF* 96.6 96.35 102.62 35.81 41.27 19.45  28.92 17.39 28.43
Nominal plan 98.75 98.59 102.24 33.13 39.16 2388  22.89 10.88 11.77
No Adaptation * 97.97 98.89 102.07 30.59 35.69 2458 2453 10.76 12.36
3 Standard Replan® 98.05 98.89 101.52 30.28 35.55 23.53 23.65 11.19 12.16
RPF* 98.05 98.89 102.07 31.34 38.28 23.8 22.77 10.48 11.27
RPS* 98.01 98.57 102.07 31.90 39.34 22.76 22.15 10.47 10.87
Nominal plan 98.42 98.82 102.96 329 344 32.02 24.53 7.43 22.18
4 No Adaptation* 97.74 97.94 102.62 30.47 29.68 2929 2836 8.62 25.09
Standard Replan* 97.86 97.62 101.79 23.85 32.26 27.3 26.05 8.11 20.84
RPF* 97.82 96.98 102.07 24.36 33.89 22.04  25.03 8.31 21.39
Nominal plan 98.82 98.67 102.02 34.56 40.75 26.21 23.63 10.65 16.08
5 No Adaptation* 98.09 98.57 102.34 39.36 42.39 28.91 28.61 12.19 19.99
Standard Replan® 97.97 98.89 101.79 37.18 42.65 26.98 26.08 11.88 18.57
RPF* 98.01 98.57 102.07 35.86 42.18 28.89 24.66 12.24 19.5

Nominal plan 98.5 98.65 102.7 36 38.93 34.37 29.65 15.38 30
6 No Adaptation* 97.38 98.57 102.89 39.86 41.68 32.99 32.95 17.14 28.37
Standard Replan* 97.03 98.25 101.79 37.74 41.93 3298  30.44 16.15 27.41
RPF * 96.79 97.94 102.34 38.81 43.56 31.84 31.3 16.29 28.04
Nominal plan 98.6 98.27 102.58 36.53 40 2686  27.04 13.19 19.64
No Adaptation* 97.03 98.57 102.34 36.77 39.05 28.31 30 12.98 23.13
7  Standard Replan® 96.64 98.25 102.34 34.33 38.22 2629  28.87 12.61 21.04
RPF* 96.91 98.25 102.07 36.41 39.67 28.45 28.07 12.33 21.05
RPS* 96.91 98.25 102.07 36.62 39.74 28.58 27.49 12.11 20.91
Nominal plan 98.37 98.63 102.48 35.47 36.01 23.43 27.24 10.6 19.77
No Adaptation* 96.44 97.62 102.34 32.27 30.41 23.88 29.25 11.86 20.77
8  Standard Replan® 96.6 97.94 102.07 332 31.9 22.67  28.66 11.78 19.51
RPF* 96.6 97.94 102.34 29.13 31.14 2399 2848 11.98 20.91
RPS* 96.8 97.94 102.07 25.85 32.59 2342 27.27 12.17 19.73

Nominal plan 98.75 98.76 102.31 11.84 42.58 42,63 22.66 8.83 9.2
9 No Adaptation* 96.95 98.25 102.62 14.78 52.68 4176 27.14 9.45 17.64
Standard Replan® 96.95 98.25 102.07 15.2 47.39 38.97 25.2 10.14 14.67
RPF* 96.75 98.57 102.07 12.14 49.15 40.14  24.86 9.2 13.68
Nominal 98.62 98.28 102.01 29.2 38.76 36.3 27.64 7.1 21.44

10 No Adaptation* 97.7 97.62 102.07 32.28 36.51 37.21 31.47 7.21 219
Standard Replan* 97.54 96.98 101.24 33.62 39.52 37.66  30.29 7.06 20.12
RPF* 97.78 97.3 101.79 32.92 35.07 38.78  30.00 7.86 21.07

In figure 6.5a), the RPF and the RPS were compared with the standard re-

planning technique and no adaptation for all 10 patients in terms of dose metric

differences ADx. The mean and median differences of Dgs between the accumu-

lated dose and the planned dose for the CTVs were small, with a mean difference

observed to the high-risk CTV of -1.20%, -1.23%, -1.25% and -1.24% for no adap-

tation, the standard replan, the RPF and the RPS, respectively. For parotid glands,

on average, all adapted strategies can control the accumulated mean dose within

a 3 Gy difference of the planned dose, with 2.34 Gy, 2.03 Gy and 1.81 Gy for the
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standard replan, the RPF and the RPS respectively, compared with 3.91 Gy for no
adaptation. Furthermore, the parotid Dyean using a reactive predicted adaptation
strategy was generally lower than a standard replan, with 0.31 Gy and 0.53 Gy on
average for the RPF and the RPS, respectively. To be noted here, the parotid Dyean
of the predicted replan on the PD; (either the RPF or the RPS) was observed to be
lower than that of the standard replan on the verification CT in some cases (for ex-
ample, patient 3 in table 6.2) because they were optimised on a different geometry.

In figure 6.5a) that bias is removed using the dose metrics difference.
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Figure 6.5: Comparison of the dose metric differences and the accumulated dose metrics
for 10 patients observed in no adaptation, the standard replan, the RPF and
the RPS. The horizontal lines in the box plot indicate the median dose metric
difference among 10 patients, and the asterisks indicate the mean difference.
(a) shows the dose metric differences. Dpax and Dpeqan are given in units of
Gy. (b)—(c) shows the accumulated dose metrics. The dashed lines in (b)—(c)
represent the defined clinical goals summarised in table 6.1.

Serial organs were observed to be more sensitive to geometric changes than
parallel organs. In the standard replanning technique, the differences in the spinal

cord Dpyax between the accumulated dose and the planned dose range from -2.80 Gy
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to 3.41 Gy, consistent with the result reported by Noble et al. (2019) [98]. In the
brainstem, those differences range from -4.58 Gy to 7.16 Gy. In the chiasm, the
differences were observed between -9 Gy to 6.83 Gy.

Figure 6.5b)—6.5d) shows that all the accumulated dose metrics of CTVs and
OARs satisfied the clinical goals set for the plans, with one exception that the
parotid Dpean slightly exceeded the clinical goal. There are two reasons: firstly, the
parotid Dpyean of the nominal plan is already close to the clinical goal, with 25.82 Gy
on average, and secondly, this cohort of patients all received chemotherapy, which
causes severe shrinkage of the parotid glands during the treatment.

Statistical analysis using the two-sample t-test demonstrated that the accumu-
lated dose difference between no adaptation and the standard replanning technique
was significant (p<0.05) only in the parotid gland Dy,ean and D;g,. The differences
between the standard replan, the RPF, and the RPS were not significant (see table
6.6).

Table 6.6: p-value of the two-sample t-test between the distribution of ADx (see equation 1)
in two adaptation strategies with mean value(u) and standard deviation(o). The

capitals in parenthesis indicate no adaptation(N) and the standard replan(R). Sta-
tistically significant differences between plans (taken as p<0.05) are highlighted

in bold.
Statistics High-risk CTV ~ Low-risk CTV D Spinal cord Brainstem Chiasm Parotid Oral Cavity Larynx
o Dos Dos : Danax Danax Dinax Dinean Dinean Dinean
(%) (%) (%) Gy Gy Gy Gy Gy Gy

No Adaptation(u +0)  -1.203£0.491  -0.5564+0.96  0.007+£0.23  0.36543.029 -0.525+4.623 -0.767+3.267 3.913+1.773 0.945+ 1.071 2.5164 3.009
Standard replan(u +£0) -1.236+0.495 -0.545+0.753 -0.4664 0.325 0.7954 2.181 -0.5714+3.715 0.848+4.073 2.3374+0.989 0.989+ 1.125 1.8554 1.248

RPF(u £+ 0) -1.25240.567 -0.685+ 0.823 -0.295+0.271 0.328+2.307 -0.383+4.036 -1.301+3.201 2.03+1.265 0.87+0.867 1.846+ 2.206
RPF(u £+ 0) -1.235+0.550 -0.732+£0.786 -0.319+0.266 0.418+2.327 -0.2374+3.969 -1.4714£3.146 1.807£1.507 0.915+0.86 1.824+2.234
p value(N and R) 0.883 0.978 0.001 0.72 0.981 0.341 0.024 0.929 0.529
p value(R and RPF) 0.947 0.697 0.216 0.647 0.915 0.206 0.553 0.794 0.991
p value(RPF and RPS) 0.947 0.897 0.84 0.932 0.936 0.906 0.745 0.908 0.982

The weekly dose metrics changes of CTVs during the treatment are shown in
figure 6.6 for each patient. In figure 6.6, CTV coverage is basically above 95%
for all the adaptation methods, except for the variation of patient 10 at week 5.
However, because the Dys of the low-risk CT of patient 10 at week 6 is above 95%,
It can be deduced that this dose degradation is caused by small non-rigid variations
such as neck tilt, which are difficult to subtract when the RIM is updated using
individual information.

There are scenarios in which using the initial tumour contour of the planning
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Figure 6.6: The weekly changes of Dys for high-risk and low-risk CTV for the 10 patients
observed in no adaptation, the standard replan, the RPF and the RPS. Patients
are represented using different markers listed in the middle. The dashed lines
present the defined clinical goals summarised in table 6.1.

CT in the predicted plan shows better coverage than using the actual tumour contour
in the standard replan, for example, patient 9 at week 5 in figure 6.6a (the position
of the blue circle is below the pink circle and the green circle), it is because larger
contours can mitigate the variations during the treatment. In the TORPEdo trial,
therapeutic target volumes are not adapted according to changes in GTV. While
in some other cases, the tumour displacement was extended outside the original
contour [18], such as in patient 2 at week 5 in figure 6.6a (the position of the blue
"+’ is above the pink ’+’ and the green ’+’). In such cases, the predicted replan
using the initial contour is inferior to the standard replan using the actual tumour
contour.

The weekly dose metrics changes of parotid glands during the treatment are

shown in figure 6.7a). This study found that the average parotid Dyean in the RPS is
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Figure 6.7: The weekly difference Dpean between weekly Dipean and Dypean of week O (plan-
ning CT) during the treatment with different adaptive strategies for the ten pa-
tients.

lower than the RPF. This benefit comes from applying the reactive predicted plans
in advance for patients 3, 7 and 8. However, the reduced average parotid Dpean
comes with a slight degradation in low-risk CTV Dys, see figure 6.6d). Because the
reactive predicted plans were applied in advance to the triggering week, at which
the shrinkage of low-risk CTV was less severe than in PD;, the coverage of low-
risk CTV was slightly degraded. However, this degradation was less than 1% for
patients 3, 7 and 8. While initial high-risk CTV of planning CT was both used in
the PD; of the RPF and the RPS, no significant influence was made on the radiation

coverage of high-risk CTV.

Figure 6.7b) shows that the average parotid ADpean across ten patients is above
3 Gy from week 3. Therefore, week 3 can be justified as an appropriate time point
for adaptation. In this cohort of patients, 6/10 patients had plan adaptations around
the 3™ treatment week, and 2/10 patients had plan adaptations around the 4™ treat-
ment week, which is consistent with the conclusion from Brown et al. (2016) [96]
and Wu et al. (2008) [97]. The complete table of the actual replan week and pre-
dicted replan week in the RPF can be found in Appendix D.
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6.4 Discussion

Adaptive proton therapy can address the dose discrepancy caused by anatomical
changes observed in H&N patients during the course of treatment. However, the
offline adaptive strategy used in radiotherapy clinics can cause treatment delays and
challenge workflow efficiency. This chapter exploits the RIM to prepare adaptive
plans in advance. The results showed that the RPS can maximise the use of the RIM
for prospective replanning, with similar CTVs coverage and reduced parotid dose

compared to the standard replan.

Previous studies[51, 95] reported that the benefits of adapting the treatment
should increase with an increasing replanning rate. However, the ADx of the SPS
(using two adaptive plans) did not show significant benefits compared to the RPF
(using one adaptive plan). One reason could be that the geometric changes of this
patient cohort become stable in the last few fractions of treatment, resulting in
the second predicted plan not significantly improving the results. A second rea-
son could be that the prediction of the anatomical changes for some patients lags
one week behind the actual anatomical changes. It should be noted that the benefit
of the SPS is limited by the model accuracy, while the reactive adaptation technique
(either the RPF or the RPS) is not due to its flexible application. Accurately predict-
ing the week in which plan adaptation is an important next step in implementing a

prospective offline adaptive therapy.

The comparison between the RPF and the RPS inspires a further potential ap-
plication of anatomical models as follows: One could create predicted adaptive
plans using each predicted weekly CT; then clinicians verify each predicted plan on
CT3 and CTs and choose the best plan for application. While this poses an extra

workload to planning and QA, automated treatment planning [99] could be used.

In the RPF and the RPS strategies, although high-risk CTV and low-risk CTV
coverage were slightly lower than the standard replan, the differences were sta-
tistically not significant (< 1%). The CTV coverage degradation observed here is
because the accurate, newly defined CTV contours were used in the standard replan,

while the initial CTV contours from the nominal plan were used in the predicted re-
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plans. This limitation can possibly be improved by using the contours in the latest
weekly repeat CT or predicted CTV contours with improved accuracy after strat-
ifying patients based on tumour features. The improved CTV contours can help
further reduce the dose of OARs since the initial volume of CTVs is generally big-
ger than the CTVs adapted during treatment [18]. These works will be explored in

the future.

In this work, the average benefit of a no-delay treatment on parotid Dpean 1S
0.31 Gy for the RPF and 0.53 Gy for the RPS. If the standard replan is applied to
the same day of the RPF, the benefit of no-delay treatment from standard replan is
on average 0.47 Gy (one fractional benefit is 0.09 Gy) to parotid Dyean. This ben-
efit is 0.16 Gy higher than that from the RPF, indicating that the advantages of the
RPF can enable adaptive therapy to be delivered without 3 sub-optimal fractions,
but 0.06 Gy lower than from the RPS because in the RPS the adapted plans were
applied in advance for some patients. There is one interesting scenario worth notic-
ing. For patient 6, the predicted anatomy, which was used to create a prospective
replan, suggested the need for adaptation due to a change in the mean parotid dose
of >3 Gy. However, while the parotid ADyean 0of the nominal plan calculated on
the predicted anatomy was 3.05 Gy, the parotid ADp,ean calculated on the triggering
verification CT of week 3 was 6.35 Gy. A dramatic shrinkage of the parotid vol-
ume between week 2 and week 3 made the RIM less effective in this case. Despite
this, when the predicted plan was applied on week 3, the parotid ADpean On the
verification CT of week 3 was reduced to 3.05 Gy. In this circumstance, clinicians
might look to apply the predicted replan on week 3 and follow the standard replan
procedure to create a new replan. This limitation can potentially be improved if
patients are stratified by exploiting tumour-related features [87, 88] and outlining
change-related features [89, 90, 91] based on a larger dataset. Another scenario
worth discussing is where the dose recalculation on the predicted images indicated
a parotid ADpeqn that did not reach the triggering threshold but was close to it, for
example, 2.75 Gy(RBE). In this case, this study suggests having an alternative plan

available in case re-planning is triggered.
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This study only considered 1-step adaptation for the proof of concept. In figure
6.7 a), the parotid ADpean of some patients in week 4 is still more than 3 Gy(RBE)
because of severe shrinkage. For example, patient 2 adapted the plan on week 3
with a parotid Dpean of 25 Gy(RBE). However, when the adapted plan was applied
to week 4, the parotid Dy increased to 32 Gy(RBE). In this case, a second adap-
tation is needed. If the model is updated every time when a new CT is acquired,

then the prediction for a second adaptation is clearly possible.

In clinical practice, plans are robustly optimised to account for setup and range
uncertainties, and while anatomical changes may not be included explicitly in the
optimisation process, it is possible that some robustness to anatomical changes is
provided by improved robustness to these setup and range uncertainties. Where the
magnitude of setup errors in the robust optimisation is reduced, plans would likely
be more sensitive to anatomical changes. As such, the application of predictive
anatomical modelling to the design of a robust plan may allow for a reduced setup
robustness margin, thereby improving dose conformity to some extent. Though
there may be a trade-off between this margin and the number of plan adaptations
required during a treatment course. Furthermore, the use of a predictive model as an
additional error scenario in the robust optimisation may be of interest though further
work is required to understand the detriment to the nominal plan of such robustness.
The predictive nature of the approach can enable improved workflow management.
It also should be noted that robust beam angle selection remains critical for avoiding
anatomical variations such as nasal filling. Such variations cannot be modelled by

deformations.

The data in this study was initially used to report the geometric and dosimetry
changes of H&N patients who have received photon therapy. The mean parotid
dose of the photon plans was 32.12 + 11.2 Gy (mean * standard deviation) in this
cohort of patients, whereas the mean parotid dose of the proton plans in this study
was 25.82 + 2.33 Gy. Deduced from here, patients who underwent proton therapy
might experience less toxicity. Therefore, weight loss due to acute toxicity, such

as dysphagia and dysgeusia, could be lower, resulting in smaller magnitudes of
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anatomical changes. This study may overestimate the number of patients who can

benefit from using the predicted images of the RIM for offline adaptive therapy.

For this proof of concept, images from a cohort of 20 patients were used. This
cohort was particularly suited for this study, having weekly CTs with manually
delineated contours. In contrast, the use of weekly CBCT, which is more commonly
available, is subject to additional DIR uncertainty. Secondly, the error from HU
correction required by CBCT is removed. Weekly dose distributions can be directly
calculated, and a replan can be directly created. In addition, the weekly dose metrics

can be directly calculated using the manually delineated contours in weekly CTs.

Further model validation will be conducted on a larger cohort of IMPT patients
with CBCT. The SVFs of the DIR between CT-CBCT can be directly used to build
the model. The procedure is the same, except that the influence of the DIR uncer-
tainty needs to be re-evaluated because the estimation of deformation fields is less
accurate between CT-CBCT than CT-CT if the similarity metric of DIR is based
on intensity. Another option is correct the HU of CBCT [100, 101] before DIR to

improve the accuracy.

In the literature, anatomical models have only been used for DIR evaluation
[60] or assessed based on the misalignment of the anatomical landmarks [63, 28].
This is the first demonstration of the potential of anatomical models in adaptive ra-
diotherapy. Compared to online adaptation [50, 51, 48], this method can reduce the
treatment time by preparing complete adaptive plans in advance without the need
for real-time QA, which is one of the most challenging aspects of online adaptation.
Furthermore, by exploiting novel auto-planning techniques [99], this method may

allow for auto-replanning for adaptive IMPT.

6.5 Conclusion

This chapter explores the three strategies (the SPS, the RPF and the RPS) of using
the RIM to prepare adaptive plans in advance. The RPS reduced the parotid Dyean
by 0.53 Gy, achieving the benefit of non-delay treatment, while the dosimetric of

other organs had no significant difference with the standard replanning technique
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(p>0.05 for all investigated dose metrics). Prediction-based replanning could po-
tentially enable clinically acceptable adaptive therapy without treatment gaps or
sub-optimal fractions to be delivered due to delays in the standard adaptive strat-
egy, leading to an improved overall treatment course for patients. Furthermore, the
ability to manage the adaptive therapy workflow prospectively with the predictive

approach can increase the efficiency of a busy clinical proton therapy practice.



Chapter 7

Final remarks

Proton therapy has presented great potential in limiting the dose to normal tissues
adjacent to the target region for H&N cancer patients. However, the sharp distal
fall-off of the Bragg peak makes the dose distribution sensitive to uncertainty. With
this precise delivery technique becoming widely available, there is a clear need to

improve mitigation techniques to reduce the influence of uncertainty.

The anatomical changes commonly occur in the treatment of H&N cancer. Pre-
vious studies measured the anatomical uncertainty without discreetly categorising
it into different sources. However, the underlying causes of sSNRV and progressive
changes are different. The sNRVs arise from non-rigid positioning errors, move-
ments due to discomfort and spontaneous swallowing. They are more likely to
occur randomly during the treatment. While progressive changes are due to radia-
tion damage on cells and are patient-specific. The damage to tumour cells causes
tumour shrinkage. The damage on normal cells not only leads to volume shrinkage
but also causes acute toxicity, influencing chewing, swallowing and outline chang-
ing. Therefore, these two types of anatomical changes should be treated differently

in terms of using mitigation techniques.

One approach to mitigate anatomical uncertainty is robust optimisation,
which is accompanied by robust evaluation. In the conventional robust optimisa-
tion/evaluation, only rigid setup error and range uncertainty are considered. The in-
clusion of anatomical changes in anatomical robust optimisation/evaluation [43, 45]

needs multiple scanning or relies on the acquisition of CT images during treatment.
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It either gives the extra dose to patients and increases the workload for clinicians or
limits the creation of a robust plan at the planning stage.

Offline replanning is generally used to account for anatomical uncertainty.
However, patients must either continue treatment with an existing sub-optimal plan
or face interruptions to treatment whilst plans are adapted. This reactive adaptive
strategy also challenges workflow efficiency.

The work described in this thesis has contributed to the field by addressing the
aforementioned issues using imaging computing techniques, DIR. The diffeomor-
phic image registration algorithm of Niftyreg was evaluated for building anatomical
models for H&N proton therapy. Because anatomical models were built at each
weekly time-point, the weekly changing trend and accumulated influence of the
DIR were assessed. The results justified the use of this DIR algorithm. In this
study, the uncertainty evaluation based on WSLD was proposed. WSLD gives a
single value, making it easy to analyse. Besides, it combines spot location and
spot weights, both of which affect dose distribution, thus accurately and effectively
evaluating the uncertainty without having to calculate dose distribution.

Several potential applications for mitigating anatomical uncertainty were pro-

posed in this thesis.

1. Include sNRVs into the robust evaluation to choose robust plans against

anatomical uncertainty.

2. Develop the PM to generate the predicted images with high possibilities for

anatomical robust optimisation.

3. Develop the RIM for prospective replanning. Different strategies were ex-

plored to maximise the use of RIM.

sNRVs are unavoidable during the treatment. Thus they are better to be con-
sidered in the robust evaluation/optimisation. The role of sSNRVs in the robust eval-
uation was investigated in Chapter 3. This study used a probability approach to
evaluate the robustness of a plan and provided a way to quantify its performance

using robustness ranking consistency. The approach presented not only can help
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clinicians avoid the SNRVs that can lead to unacceptable dose distributions but also
help to select the robust beam arrangement. It was the first study to reveal the dosi-
metric influences of SNRVs and incorporate them into the robust evaluation to guide
the selection of a robust IMPT plan. The study suggests that the inclusion of SNRV's

can be beneficial to robust evaluation for all beam arrangements.

When a large patient cohort is available, it would be more efficient to limit the
included sNRVs to the most common/frequent ones by using an anatomical model.
In Chapter 4, the PM captured the major deformations at each weekly time point
based on population data and has been validated as the most effective model in de-
scribing anatomical uncertainty with an error of 0.814+0.56 mm. The dose variations
simulated by the PM in the first week (simulated sSNRVs) have no significant differ-
ence from those caused by the actual SNRVs. This study gives a solution to calculate
the probability of a certain type of anatomical change, which can be added to the
cost function of the optimiser. Not limited to just including sSNRVs in anatomical ro-
bust optimisation, anatomical robust optimisation can also account for progressive
changes during treatment. However, both Mesias et al. (2019) [43] and Lalonde et
al. (2021) [48] demonstrated that the robustness of anatomical robust optimisation
comes with the price of increasing the integral dose. The anatomical robust opti-
misation using the PM needs to be explored to find the best balance between those.
The potential images for anatomical robust optimisation can be from 1) the PM of
each week, 2) the AM of each week plus the PM of the first week. The anatomi-
cal robust optimisation using the PM does not require multiple CT scanning for the

same patient pre-treatment, therefore saving imaging dose and reducing workload.

The robust optimisation alone may not be adequate to account for progres-
sive changes during the treatment. Adaptive planning is still suggested [34]. To
prospectively prepare replans for offline adaptive radiotherapy, Chapter 5 built the
RIM based on the AM and updated it using the patient’s progressive information
acquired during the treatment. The RIM effectively reduced anatomical uncertainty
and can gradually refine the prediction. In this study, the predictive ability of the

RIM was demonstrated based on CT numbers, contours, range and dose distribu-
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tion. The validation steps and the steps for clinical translation can directly be ap-

plied to more complex future models.

Due to the limited patient data size used in this thesis, the RIM cannot accu-
rately predict the replan week. To minimise the influence of the current accuracy of
the RIM, a reactive strategy was chosen to create a predicted plan in advance. The
results showed that the reactive strategy using the RIM can achieve the minimum
benefit of no-delay treatment in terms of protecting parotid glands. The benefits of
using the RIM to prepare adaptive plans are 1) improved treatment quality as there
1S no gap in treatment or the delivery of a few sub-optimal fractions. 2) stream-
lined workflow as the option to prepare adaptive plans in advance allows for easier
scheduling of patient-specific QA along with machine QA, maintenance, and other
demands for beam time. 3) compared with online adaptation, which is intended for
same-day application. This application can reduce the treatment time by preparing
complete adaptive plans in advance and improve the plan quality as the plan of on-
line adaptation is never as good as offline adaptation due to limited computational

capacity and constrained optimisers.

Along with the application, the anatomical uncertainty was evaluated from
three aspects: 1) systematic progressive deformation of each week, 2) sSNRVs un-
certainty of the first week and 3) total anatomical uncertainty (from sNRVs and

progressive changes) of each week.

One limitation of this study is that anatomical models were built based on
a patient cohort treated with photon radiotherapy but collected retrospectively for
proton study. However, the presented methods are easily transferable to a patient
data set having received proton therapy. Another aspect of anatomical models that
is of interest for future research is exploiting big data techniques. Either stratifying
patients based on features in the planning stage or using deep learning methods to

directly obtain the predicted geometry worth investigation[102, 103].

To summarise, the work presented in this thesis provides a better understand-
ing of anatomical uncertainty and mitigation techniques. First, the influences of

anatomical uncertainty are presented. Second, the anatomical models and the model
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evaluation methods are given, which can guide the development of more complex
future models. Third, the applications and potential applications of models are pro-

vided. The results might inspire future clinical applications.



Appendix A

Parameters used in DIR

Velocity field option was used. Other optimal parameters used for CT-CT image

registration were investigated and shown in table A.1.

Table A.1: NiftyReg parameters for CT-CT registration.

Parameters Value
Similarity Measure | NMI
Control Point Spacing | Smm
Bending Energy 10%

Other optimal parameters used for CT-atlas

gated and shown in table A.2.

image registration were investi-

Table A.2: NiftyReg parameters for CT-atlas CT registration.

Parameters

Value

Similarity Measure
Control Point Spacing
Bending Energy

NMI
7mm
1%

Other optimal parameters used for CT-CBCT image registration were investi-

gated and shown in table A.3[104].

Table A.3: NiftyReg parameters for

CT-CBCT registration.

Parameters

Value

Similarity Measure

Control Point Spacing

Bending Energy

NMI
S5mm
3%




Appendix B

Pre-treatment analysis of non-rigid
variations can assist robust IMPT
plan selection for head and neck

patients

B.1 Examples of small non-rigid variations.
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B.2 Beam arrangements illustration.

(a) (b)

Figure B.1: Illustration of different beam arrangements. (a) - (e) are 3Bys, 3Bgg, 4B110,
4B 120, 5B, respectively.

B.3 Generation of average reference anatomy for sta-

tistical models

A groupwise registration algorithm was adapted from the NiftyReg package to gen-
erate an "average’ atlas. Group-wise registration can be used to spatially normalise
a cohort of patients in a common space. Using N different patient CT images, the

iterative algorithm consists of the following 6 steps:

1. Perform rigid registration between N-1 other CT /; and an arbitrary reference

image I*. The warped image I; = I;(Tyigid, 1). The template image is updated
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as the average of all N images:
1 N=L :
I'= N(l* + Y ) I; = Ii(Trigia) (B.1)
i=1

. Perform affine registration. All N images are registered to I*, producing the

affine transformations @, ; for each iteration.

. Update I* with a series of affine iterations. To enforce the mean of all the
transformations to be the identity, the mean of the non-rigid components of
the affine transformations @, ; is removed using ¢;ff i = Oafr,i — 1lv2i Qatr i I

is updated using the average of the q);fﬂ,.:

/

I = Pt (1) (B.2)

M=

1
NS

i

. Steps ii) and iii) are repeated until there is no visual improvement of quality

in I*.

. Perform diffeomorphic deformable image registration. All N images /; are
deformed to the current template image I* using the stationary velocity field

Vi.

. Update I'* with a series of deformable image registration iterations. The spac-
ing of the control points for the B-Spline velocity grid is gradually stepped
down from coarse to fine (30mm to 8 mm) during the iteration. For each
iteration, remove the mean of the velocity field from each transformation

/

vV =v— jlei v; as before. The average image is computed as:

Z| =
™=
<\

~
I
—_

I = exp< (1,-)) (B.3)
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B.4 Robust evaluation table for other three patients.

Table B1: The sNRV+setup evaluation, the conventional evaluation and the gold standard
evaluation for other three patients. p-values of the two-sample t-test are calcu-
lated between the distribution of ADx in the sSNRV+setup evaluation and in the
conventional evaluation. p<0.05 represents ADx in the sSNRV+setup evaluation
and ADx in the conventional evaluation are taken from significantly different
distributions. In the SNRV+setup evaluation and the conventional evaluation, the
beam arrangements were ranked based on the WD for each ROI matrix. In the
gold standard evaluation, the beam arrangements were ranked for each ROI ma-
trix based on ADy;. RP is the robustness ranking position of a beam arrangement
for a matrix.

sNRV+setup Evaluation Conventional Evaluation Gold standard evaluation
ROIMatrix | Plan Nominal Min Max WD RP| Minmum Maximum WD RP ‘ PVale | ) ccuyom  ADy  RP
patient 2
Low-risk CTV | 3Bys 9825 9222 9794 1.6 96.67 98.25 0.36 le-8 97.94  -0.32
Dos(%) 3Bgop 9825  93.17 9825 1.92 96.03 98.25 0.3 le-9 97.94  -0.32
4B1po 9825 9381 9825 097 95.71 98.25 0.36 le-5 97.94  -0.32

5B 9857 9444 9857 157
Highrisk CTV | 3Bss 9848  95.73 9843 0.87
Dos(%) 3Bgy 9848 938 9821 1.03
4By 9848 949 9821 0.89
SB 9848 9545 9848 0.77
Highrisk CTV | 3Bgs 10234 102.07 103.17 023
D2(Gy) 3Bgy  102.62  102.34 103.17 0.12
4By 10234 10207 103.99 0.5
5B 10207 10152 103.17 031
Parotid 3By 2169 1913 2905 122
Dinean(GY) 3Bgy 2496 2279 3133 126
4By 2307 208 3153 1.86

96.98 98.57 0.26
96.56 98.48 0.4
96.56 98.48 0.42
96.56 98.48 0.47
96.56 98.48 0.34
101.93 102.89  0.11
102.48 103.03  0.03
102.07 103.44  0.23
101.93 102.2 0.04
18.72 26.57 1.05
22.48 28.43 0.76
20.97 24.98 0.77

le-8 98.57 0

98.21 -0.28
le-6 97.93 -0.55
le-5 98.21 -0.28
le-4 98.21 -0.28
0.11 101.79  -0.55
0.93 102.07  -0.55
0.02 103.17  0.83
le-5 10234 0.28
0.01 24.67 2.98
le-3 28.2 3.24
le-6 27.51 4.44

W B W R W
—_
@
IS

5B 23.47 2052 31.15 1.9 21.78 26.7 0.57 le-4 28.6 5.12

Oral 3Bys 27.36 2278 3192  1.64 24.79 31.63 0.88 0.24 27.76 0.41
Dinean(Gy) 3Bgo 12.15 9.46 16.01  1.37 9.59 15.67 0.93 0.22 12.13 -0.01
4By  11.33 8.74 1555 136 7.46 14.38 0.98 0.04 11.44 0.11

5B 12.13 9.41 15.66  1.38 9.5 15.63 0.95 0.11 12.2 0.07

Larynx 3Bys 16.7 13.14  23.63 1.71
Diean(Gy) 3Bgo 17.13 13.61 2381 176

15.22 19.48 0.83
15.18 20.12 0.9

0.2 19.81 3.11
0.11 19.6 2.47

4Biy0  16.62 11.21 322 344 9.32 23.07 2.13 0.01 25.44 8.82

5B 17.76 1444 2644 242 15.53 21.5 0.98 0.01 21.17 3.41

Cochlea 3Bys 19.01 1496 2591 229 15.59 24.35 1.75 0.24 26.63 7.62
Diean(Gy) 3Bgo 13.33 8.24 2587 239 7.72 20.88 2.27 0.45 13.75 0.42
4B1y0  21.67 18.09  29.09 1.87 17.98 32.11 1.99 0.73 21.31 -0.36

5B 20.7 16.57 2946 2.26 15.36 27.77 2.09 0.65 2052 -0.18

Brainstem 3Buys 32.23 27.74 6533 945
Dinax(Gy) 3Bgp  39.17 30.07 59.99 537
4By 4135 2871 6047 5.38

24.03 43.13 3.26
26.57 50.67 3.95
29.15 57.95 4.49

le-6 354 3.16
3891 -0.26
091 38.86  -2.49

W AN W B =D WERWERE—=NMNW—BE WD == 8EWRNRNN BN~ WWWw

B W = B LB = W RN == W= W RN =& WWHPREND W= AR W =WLEhE=ND=WLhHNDND— & W

W R= W R W RN R WD R W=WNR R =R =R == RN R -
(=1
—
—_

5B 43.21 31.31 6329 4.1 30.91 53.71 3.79 0.9 4177 -1.44
Spinal 3Bys 26.47 1473 56.03 7.7 12.67 36.47 3.78 0.07 38 11.53
Dmax(Gy) 3Bgo 323 1439 4724 545 16 44 3.8 0.93 37.63 532
4By 3427 243 4933 501 26.77 50.57 3.6 0.97 38.09 3.82 1
5B 34.62 2632 4842 457 26.32 44.92 3.01 0.58 38.92 4.3 2
Chiasm 3Bys 29.45 23.11 535 933 15.55 44.05 5.56 le-7 2839  -1.07 3
Dnax(Gy) 3Bgo 27.1 2323 511 1031 14.8 41 4.96 le-8 26.31 -0.8 2
4Biy0  26.06 22.68 5093 11.29 14.86 41.06 5.22 le-8 25.46 -0.6 1
5B 27.92 2506 51.89 10.53 16.02 41.32 4.76 le-8 29.22 1.3 4
Optic nerve left | 3Bys 20.4 9.17  48.61 478 8.7 34.9 4.94 0.38 21.33 0.93 3
Diax(Gy) 3Bgo 23.6 11.56  49.63 478 11.1 38 4.75 0.62 24.1 0.51 2
4B1y0  25.02 1281 50.15 5.11 12.42 39.02 4.87 0.35 25.28 0.26 1
5B 24.76 13.03  50.04 5.04 12.76 38.56 4.58 0.7 26.13 1.38 4
Optic nerve right | 3Bys 23.48 9.68  48.61 6.89 9.98 40.68 5.9 0.3 27.27 3.8 4
Dinax(Gy) 3Bgo 30.18 1463 5259 6.6 14.78 45.98 5.54 0.65 32.46 229 2
4B 29.82 1447 5326 6.77 14.62 45.42 5.61 0.25 32.08 226 1
5B 31.78 1637 53.09 6.67 16.58 46.38 5.23 0.67 34.58 2.81 3




B.4. Robust evaluation table for other three patients.

Table B1: Continued
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sNRV-+setup Evaluation

Conventional Evaluation

Gold standard evaluation

ROIMatrix | Plan Nominal Min Max WD RP | Minmum Maximum WD RP ‘ PValie |y ccuyom ADy  RP
patient 3
Lowrisk CTV | 3Bgy 9857 954 9857 126 3 | 9556 9857 066 2 | le5 | 9825 -032 3
Dys(%) | 4Bjg 9889 954 9880 115 1 | 954 9889 052 1 | led | 9889 0 1
SB 9857 9508 9857 117 2 | 9476 9857 069 3 | 001 | 9857 0 2
High-tisk CTV | 3Bgy 9848  91.87 9848 121 1 | 927 9848 075 2 | 001 | 9821 028 2
Dys(%) 4B 9848 89.12 9848 131 2 | 9091 9848 082 3 | 002 | 9821 028 2
SB 9848 9187 9848 133 3 | 9339 9848 06 1 | led | 9821 028 2
High-risk CTV | 3Bgy 10372 10289 10675 0.6 3 | 10275 10468 024 2 | le-3 | 10372 0 1
DyGy) | 4Bjp 10344 10262 10537 052 2 | 10275 10441 035 3 | 0.3 | 10289 -055 3
5B 10317 10207 10565 038 1 | 10193 10358 022 1 | 001 | 10280 -028 2
Parotid 3Bg 3015 2749 4084 212 2 | 2716 3409 109 1 | le-3 | 328 272 3
Duean(Gy) | 4Biyg 2975 271 4162 212 1 | 2669 341 13 3| le3 | 3063 08 1
SB 2884 261 4029 225 3 | 2555 331 126 2| le3 | 307 187 2
Oral 3B 836 47 1233 123 3 | 45 244 133 3 | 088 | 779 058 2
Duean(Gy) | 4Big 849 519 1166 099 1 | 496 156 L1 1| 065 | 779 07 3
SB 731 403 1091 LI12 2| 383 1087 117 2| 093 | 676 -056 1
Larynx 3Be 341 1934 4166 31 1 | 2294 4023 298 2 | 077 | 3514 104 1
Duean(Gy) | 4By 3457 1673 4962 469 3 | 2191 4093 333 3 | 021 | 3732 275 3
SB 321 1669 4346 336 2 | 2177 3778 266 1 | 03 | 3346 136 2
Cochlea 3Be 1415 994 2662 326 3 | 1018 2714 288 3 | 038 | 1763 348 3
Dyean(Gy) | 4B 179 1459 2985 239 2 | 1467 3042 252 2| 064 | 208 29 2
SB 1893 1557 3068 233 1 | 1567 3121 25 1| 065 | 217 277 1
Brainstem | 3Bgy  40.18  36.11 5348 402 3 | 3398  53.68 319 3 | 011 | 4334 316 3
Dum(Gy) | 4Big 4742 4335 5828 259 1 | 4362 5942 252 1 | 082 | 4991 249 1
SB 4589 304 5794 336 2 | 4049 5859 3.1 2| 09 | 4865 276 2
Spinal 3Bg 2975 2339 4159 368 3 | 2635 3775 245 3 | 068 | 3205 23 3
Dumx(Gy) | 4Bip 4402 39.09 500 153 1 | 4162 5002 133 1 | 065 | 4601 199 1
SB 3337 2657 4097 221 2 | 2097 4067 202 2 | 066 | 3547 21 2
Chiasm 3Bg 3394 2224 5015 605 3 | 2064 4554 5 3 | 0.5 | 3641 247 3
Dmax(Gy) | 4Big 3759 2316 5188 580 2 | 2369 4809 456 2| 015 | 3841 082 2
5B 3668 2229 5036 574 1 | 2268 4648 445 1 | 0.4 | 3674 006 1
Opticnerve left | 3Bgy  31.63 1655 5631 671 3 | 1733 4923 578 3 | 035 | 3137 -026 |1
Dux(Gy) | 4Big 3184 1814 5326 548 1 | 1864 4644 494 1 | 055 | 3094 -09 3
5B 3155 1766 5352 56 2 | 1805 4605 503 2 | 051 | 3072 083 2
Optic nerveright | 3Bgy  35.31 2044 5631 7.2 3 | 1971 5350 593 3 | 038 | 3485 -046 I
Dux(Gy) | 4Big 3184 1814 5326 582 1 | 1874 4384 447 1 | 022 | 2855 329 3
5B 3155 1766 5352 6 2 | 1825 4405 458 2 | 02 | 2848 -3.07 2
patient 4

Low-isk CTV | 3Bey  98.57 9603 9825 1.04 1 | 97.62 9857 033 3 | le8 | 9794 -063 2
Dos(%) | 4By 9857 9635 9825 104 2 | 9778 9857 02 1 | le-13 | 9825 -032 1
SB 9889 9603 9857 118 3 | 98l 9889 022 2 | le-15 | 9825 -0.63 3
High-tisk CTV | 3By 9793 9408 9793 083 1 | 9669 9793 045 2 | le3 | 9738 055 3
Dos(%) | 4B 9793 9518 9738 LI 2 | 9683 978 047 3 | le9 | 9766 -028 2
SB 9793 9545 9738 114 3 | 9701 9793 03 I | lel3 | 9793 0 1
High-risk CTV | 3Bgy 10344 10289 10399 0.3 1 | 10331 10413 0.06 1 | le3 | 10262 -0.83 3
DyGy) | 4B 10289 10289 10372 037 3 | 10275 10372 018 2 | 001 | 10317 028 2
5B 10289 10262 10372 025 2 | 10289 10372 026 3 | 085 | 10280 0 1
Parotid 3Bg 281 2417 3889 282 1 | 2449 3202 141 1| le3 | 3227 417 1
Dmean(Gy) | 4B 2639 2387 3806 3.06 3 | 2235 3073 157 3 | led4 | 3127 488 2
SB 2627 2386 3773 301 2 | 2238 3042 148 2 | led | 3119 493 3
Oral 3Bg 1765 1444 2325 128 1 | 1569 2134 101 3 | 017 | 1863 098 3
Dyean(Gy) | 4B 1677 137 2058 157 3 | 1492 2047 1 2| 01l | 1769 093 2
5B 1667 1363 2042 151 2 | 1478 2036 097 I | 0.1 | 1756 089 1
Larynx 3Bg 3092 2659 3607 189 1 | 2895 3459 104 1| 09 | 3157 064 1
Duean(Gy) | 4B 3233 2400 4139 301 3 | 288 3973 21 3| 012 | 3649 416 3
SB 288 2269 3462 22 2 | 2651 3341 124 2 | 034 | 3106 227 2
Cochlea 3Bg 1875 1533 2842 209 1 | 1404 2552 233 3 | 066 | 1891 0.6 I
Duean(Gy) | 4B 2049 1718 27.62 231 3 | 1704 2675 211 2| 098 | 2078 029 2
5B 2113 1798 2824 223 2 | 179 2723 205 1| 089 | 2146 033 3
Brainstem | 3Bgy  39.62 3643 5281 598 3 | 2922 4682 355 2 | le6 | 3838 -124 I
Dum(Gy) | 4Big 37.12 2864 5308 513 2 | 2682 4612 36 3 | 009 | 3504 208 3
5B 3759 3004 5292 485 1 | 2789 4509 328 1 | 004 | 3568 -191 2
Spinal 3Bg 3266 1837 4391 496 1 | 2386 4256 344 1 | 022 | 4004 738 3
Dumn(Gy)  |4Big 2737 1884 4185 513 2 | 1947 3797 354 3| 01 | 3359 623 1
SB 2822 1974 4303 526 3 | 2042 3882 345 2 | 0.09 35 678 2
Chiasm 3Bg 3702 3955 5974 1608 3 | 2492 4762 41 3 | le2l | 3831 129 1
Dumax(Gy) | 4Bio 3427 3481 5698 14 2 | 2517 4487 398 1 | le-17 | 3708 281 3
SB 3545 346 567 13.66 1 | 2485 4585 403 2 | lel6 | 3788 243 2
Opticnerve left | 3Bgy  38.86  23.5 5691 632 3 | 2636 4976 548 2 | 086 | 3849 -037 I
Dun(Gy) | 4Biyg 4087 2707 5472 554 1 | 2767  5L77 533 1| 082 | 3942 -145 2
SB 3968 2687 5436 57 2 | 2588 5098 552 3 | 091 | 3821 -147 3
Optic nerveright | 3Bgy 3886  23.5 5041 668 3 | 2576 5176 504 3 | 034 | 3762 -125 2
Dum(Gy) | 4Biyg 4087 2048 5472 529 1 | 2787 5147 457 1| 061 | 3855 232 3
SB 39.68 2749 5436 556 2 | 2658 5058 472 2 | 063 | 3867 -1.01 I




Appendix C

Anatomical model

C.1 Individual Cases

The WSLD for each model in each test patient and week is listed in table B1. The
bold text marks the closest WSLD number estimated from models to the real WSLD

number from rCT.

C.2 Sensitivity of model

Because the AM is the basic model, the sensitivity measurement was conducted on
the AM using WSLD. To measure the sensitivity of the AM to the training data,
we randomly selected one test patient. Then, we randomly selected 5x15 patients
from the remaining 19 patients as the training set, resulting in 5 groups of sensitivity
training data for the test patient. For each sensitivity training data set, the WSLD
in the test patient was calculated (WSLDZef\l,ISiﬁVity). The 95% CI of WSLDZGII\I,ISitiVity
is used as a measure for the sensitivity to the training data. The result shows only
small differences between the 5 groups. Because there is a 15/19 chance that the
sensitivity training data include the data used in the original training dataset, this
measure only represents the sensitivity of the model based on this cohort of patients.
Another group of patient data is required to fully measure the sensitivity of the

model to the small set of training data.
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Table B1: WSLD for each model in each test patient and week. The numbers of the models
that are the closest to the corresponding number of rCT (no model) are high-
lighted in bold as the best prediction.

ID rCT(No model)(mm) AM(mm) RIM 2(mm) RIM_3(mm)

id=1

weekl 1.72 0.57 - -
week2 2.52 0.84 - -
week3 3.43 1.18 1.78 -
weekd 4.93 1.65 2.11 2.92
week5 5.62 1.70 2.18 2.95
week6 5.23 2.00 2.53 3.25
id=2

weekl 1.96 0.60 - -
week2 2.07 0.80 - -
week3 2.15 1.06 1.77 -
weekd 2.78 1.34 2.00 1.91
week5 2.73 1.47 1.98 1.91
week6 3.12 1.71 2.11 2.15
id=3

weekl 2.57 0.66 - -
week2 1.99 0.86 - -
week3 2.59 1.32 1.56 -
weekd 2.94 191 1.70 2.22
week5 4.02 1.79 1.56 2.17
week6 5.13 2.12 1.75 2.24
id=4

weekl 2.32 0.73 - -
week2 2.30 0.96 - -
week3 2.57 1.23 1.85 -
weekd 3.44 1.73 1.90 2.00
week5 2091 1.87 2.01 2.04
week6 2.62 2.12 2.13 2.22
id=5

weekl 1.89 0.65 - -
week2 2.54 1.00 - -
week3 3.49 1.53 2.12 -
weekd  4.69 2.07 2.43 2.89
week5 5.57 2.10 2.49 2.88

week6  6.27 2.38 2.68 3.07
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Figure C.1: The measurement of model sensitivity for AM. The WSLD of AM was calcu-
lated 5 times based on 5 groups of training data, referred to as WSLD}y; .

The figure shows the mean value and 95% CI of the WSLDfﬁiﬁVity.



Appendix D

Model application

D.1 Planning information

IMPT uses a multi-field optimization approach in which the target (both tumour,
nodes and radiation area) is split for each beam field. All beam fields are optimised
simultaneously so that their combined dose distribution covers the target volume
homogeneously. In this study, IMPT treatment plans were generated using a five-
field beam arrangement. The target split is shown in figure D.1. Beam directions
and the corresponding target region are listed in table D1 with the beam database

information.

Table D1: Beam directions and the corresponding target region. The colour is correspond-
ing to the region illustrated in figure D.1. Beam database information is listed in

the note.
Beam angle Target region
60 grey, red
110 grey, red
180 orange, red
250 orange, grey
300 orange, grey

Note: spot spacing size: 5Smm; energy range: 70 MeV — 250MeV.
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Figure D.1: Target split illustration.

D.2 Results of the model’s predictive power evalua-

tion on adaptation week.

The real week that requires a replan in the standard replan and the predicted week

of replan using the predicted images of the RIM are listed in table D2.

Table D2: The real week that requires a replan in the standard replan and the predicted
week of replan using the predicted images of the RIM.

ID standard replan week predicted replan week

1 None None
2 3 3
3 4 4
4 3 4
5 3 4
6 3 4
7 4 3
8 5 6
9 3 3
10 3 4
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